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ABSTRACT

A relationship between the shock wave and impact velocities
in high- speed liquid-solid impact is determined from the funda-
mental equations (continuity, momentum, and state). Very good

agreement is found with available experimental data.
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ON SHOCK-WAVE VELOCITY IN DROPLET
IMPACT PHENOMENA

INTRODUCTION

The pressure developed in the high speed impact between
a liquid and a solid surface is of interest and concern in the
problems of turbine blades operating in moist vapors and of
supersonic aircraft and missiles flying in rain.

The pressure which acts on the material surface and causes
the damage is related to the ''water-hammer pressure', p = eocvo,
where v is the impact velocity and foc is the mass flux, assuming
that a shock front can be regarded as a discontinuity and that a
shock front has negligible volume.

The velocity of propagation of the pressure or shock wave,
c, can be approximated by the acoustic velocity, . in the un-
disturbed liquid if the impact is just a small disturbance. However,
for high velocity impact, the deviation from s becomes signifi-
cant, and c must then be taken as an approximate shock wave
velocity satisfying the continuity and momentum equations with an
appropriate equation of state.

It would be desirable to have an expression for ¢ as a func-

tion of v, which could then be used to calculate p directly, Most of

2,3,4,5,6

the fundamental studies ( 5, 6) have tabulated shock front
velocities, ¢, as a function of pressure, P, Heymann has pro-
posed, as an approximate relationship between c and v, ¢ = <, + kv.

However, no direct analytical formulation has been given, as yet, to
justify this approximation. Such a relationship is developed in the

present paper.



II. FUNDAMENTAL RELATIONS

If a shock front is discontinuous and its thickness is neg-

ligible, the governing equations applying to such a shock front

impinging upon a rigid boundary, derived from continuity and

momentum considerations,are:

where

C,c = Clc-w a

p-p, = Ccv (2)
¢ is the shock wave velocity,

v is the impact velocity,

P is the density of liquid in the compressed state,

e, is the density of the undisturbed liquid, and

P-P is the impulse of the net force per unit area

across the shock front.

The equation of state of water should provide the additional

relation necessary for solving the problem, namely

where

n

N
= (@)
o

B is a function of the thermal state (B has the value
of 3.047 kilobars at 20°C and 1 bar. Though somewhat
sensitive to temperature, it is relatively insensitive to
pressure.), and

n is approximated as a constant equal to 7.15 for pressures

up to 25 kilobars,



Solving equations (1) and (3) for { and equating, we obtain

LTSI S Y .
Cc-Vv (o} p +B ( )
o
Raising both sides to the power n, and replacing p from eq. (2),
eq. (4) becomes
( €° N n 14 (Oocv )
c-v - Po p +B (
Rearranging eq. (5) yields
2
c 1~(1-—E)n (6)
po+B v v . .n |
( e ) ( = ) (1- = )
o
where A & PO { lalwa
- - e ways.
Equation (6) now gives the shock wave vel ocity, ¢, directly
in terms of%. The value of ¢ is then used to determine impact
velocity v. It is more desirable to have explicit relations for
¢ directly in terms of v. One such relation, we propose
here, is
c v v 2
S o- 1ra (2 o+ b () (7
c c c
o ) o
In the present case, constants a =1.925 and b =-0,083

v
are determined by a least square fit computer program for py
up to 3 from the curve resulting from eq. (6). Within this 19ange

predictions for ¢ from eq, (6) and (7) agree to within + 1%.



III. RESULTS

Results calculated from eq. (6) agree extremely well with

(7,8,9,10) )
as shown in

the whole spectrum of experimental data
Fig. 1. The asymptotic value of acoustic velocity, < calculated
from eq. (6), is about 4850 ft/sec which is slightly lower than the
4900 ft/sec that we adopted from Heymann's paper for calculation
of v/co,

The relations

(9)

= -1+ k=2 , k =2.0, (8)
C C
o] (o]
and
c v v 2
= = 1+ a(=) + b(= )", a=10925
C Co Co
© b = -0,083

have been evaluated and compared with the numerical results of

o° 1-(1-H"
+B N <
p
o v n
( ) (=) (1-=)
Po c c
Table I shows that the percentage deviation of % 1+ Z{-
o o
v ) v
increases as - increases. It is about 6% at - - 1.2, 11% at
“o o
2z = 2.0, and 16% at Y -3,0, On the other hand the percentage
“o “o
c v v 2 ]
deviation of — = 1+ 1. 925 - - 0.083 (—C— ) is less than
C
o o o

1. 2% over the whole range of CX up to 3.
0
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TABLE 1

Comparison of Values for Shock Wave Velocity as Function

of Impact Velocity Calculated from Three Different Equations

Nondimensional Nondimensional Shock Wave Velocity Deviation %
t locit
Impa‘;:/CVe oety Computed Computed |Computed €5-C €3-¢
o from eq, (1)* from eq. (2)*from eq. (3)* " .
cl/cO <:2/c0 C3/Co 1 1
0.1 1.1924 1,2 1. 1917 0.627 -0.065
0.5 1. 9643 2.0 1. 9418 1. 808 -1.145
1.0 2.8547 3.0 2.8422 5.073 -0.439
1.5 3.6947 4.0 3,7012 8,263 0.177
2.0 4,5020 5.0 4,5186 11. 06 0.370
2.5 5,2863 €.0 5.2945 13.50 0.159
3.0 €.0528 7.0 6.0290 15, 65 -0.391
c = 4900 ft./sec. = speed of sound in the undisturbed liquid.
o
2 v n = 1,935 1b. sec. Z/ft.4
s eq. (D C]_ 1- ( 1- E_) 7
= 1 = 0.6367 x10 psf
Py*B (Xy (1-3)7
(=) c o = 7.15
Yo
eq. (2) fe
2 = 1+2 —
c
o o
eq. (3) C 2
S - 1+1925 (L) - 0.083 (—/—)
c c c

0 o o
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Figure 1.

Shock Wave Velocity versus Particle Velocity in Water







