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SUMMARY

The impact of spherical waterdrops upona rigid non-slip plane is
studied. The governing partial differential equations of compressible
hydrodynamics neglecting body force, viscosity and surface tension are
solved with a new Compressible-Cell-and-Marker numerical technique.
Flow patterns, impact pressures, and velocities are found as a function
of time. As the liquid boundary is free to deform, compression and rare-
faction take place simultaneously after the first instant of impact. However,
the net effect of compression is predominate during the early stages of
impact, until the radial lateral flow velocity exceeds the impact velocity,
after which the pressures attenuate. The maximum pressure attained for
liquid impact. Mach Numbers =0.2and 0.5 are about 60%*of the theoretical
one-dimensional Water-hammer pressure as corrected for changed sonic
velocity. This latter point is of considerable importance in estimating

damage capability of such impacts .

" The maximum pressures attainedare about 80% and 120% of the conventional

water hammer pressure S)ocovo for liquid impact Mach Numbers = 0.2 and

0.5 respectively.



NOMENCLATURE

Description

Exponent in Tait's equation of state
Constant in Tait's equation of state
Shock wave velocity

Sonic Velocity

Diameter

Dimensions of Computation Domain in
z- and r- direction, respectively

Constant
Length
Mach number

Pressure

p/e C.V,

Radius

Location of marker m in r- coordinate
Radial coordinate

r/R

Time

Non-dimensional time, Ct/D

Marker velocity component in z-direction

Velocity component in z-direction

Velocity component in normal direction
Marker velocity component in r-direction
Velocity component in r-direction
Velocity component in tangential direction
Impact velocity

Coordinate in normal direction

Coordinate in tangential direction
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Vertical coordinate

z/L

Location of marker m in z-coordinate
Stability factor

Density

Increment

Subscripts

Characteristic parameter
Marker index

Normal direction

Initial value

Tangential direction

Superscripts

Non-dimensional variable
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1. INTRODUCTION

Liquid droplet impingement is a serious and limiting phenomenon
at the present time in various important technological fields such as large
steam turbines, high-speed fixed-wing aircraft and helicopters, simply
to name three of the most prominent. Also, applications involving cavitation
should also be included due to the well recognized similarities between
these forms of attack.

A useful and necessary approach to obtain quickly the engineering
information necessary for the continued development of machinery ele-
ments such as these is the testing of candidate materials under droplet
impingement attack in the laboratory. However, a long-range solution to
the problem, allowing the eventual development of predicting ability, re-
quires an analysis of both reaction of the material to a given imposed
pressure-time distribution, and also of the detailed fluid-flow regime
during the impact in order to obtain the pressure and velocity distributions
on the surface as a ‘function of time. For a ''real' surface, i.e., one
where some deforvmation occurs during the impact, the two problems are
coupled. However, this is not the case if complete surface rigidity is
assumed (material with infinite elastic modulus and strength, and infinite
sonic' velocity). Such an idealized material behaves at least approximately
like many real materials during water droplet impact with air Mach Numbers
of the order 1 to 2*, which is the range of interest for the technological
applications previously mentioned. It is to this problem that the present

[1]

is addressed. The dissertation showed that the pressures and velocities

analysis resulting from the doctoral dissertation of the first author

during the earliest portion of the collision, which is also that of major
importance since these quantities are maximized during this time, depend
upon liquid impact Mach Number, droplet shape (spherical, cylindrical,

combined spherical-cylindrical, a non-dimensional time parameter, etc.),

"The present study considers liquid Mach Numbers of 0.2 and 0.5 which

are then equivalent.



and whether or not liquid slip was assumed at the solid interface.
Results with various combinations of the independent parameters

2,3,4
have already been reported[ 3,4, 5].

The present paper considers in
particular the case of a spherical water drop impinging upon a flat, com~
pletely rigid, surface, where a non-slip boundary condition is assumed
between the impinging liquid and the surface. Such a boundary condition is
of course requisite with real fluids, and implies the existance of at least a
small liquid viscosity. However, viscosity is not considered elsewhere
in the analysis, and is not believed to be important for fluids such as cold
water. Liquid compressibility is considered, as is necessary to obtain
a meaningful solution.

The remarkable appearance of an impacting liquid drop has been
observed for centuries, but detailed studies of the process were not pos-
sible until the development of high-speed photographic techniques.

[6]

recently the phenomenon has been investigated much more intensely. To

Worthington" - gave the first extensive description around 1893. More

7
name just a few of such studies: Edgerton and Killian[ ]used droplet im-

8]

pingement to illustrate their photographic techniques: Hobbs and Kezweenz

[9]

studied the break-up of the rebounding drop. Engel ~“examined the dynamics

[10]

of an impinging water sphere. Fyall and many others, have been con-
cerned with the damage process on a high speed vehicle by collision with
raindrops in the atmosphere.

These previous investigations are primarily experimental. Fully
theoretical analysis has been precluded by the formidable task of solving
the pertinent non-linear partial differential equations. Harlow and Shannorpl]
employed the Marker-and-Cell numerical method to obtain computer sol-
utions of the full Navier-Stokes equations describing the flow dynamic
during the splash for a viscous, incompressible fluid. Amsden[lz]devel_
oped the Particle-in-Cell method for the calculation of the dynamics of
compresaible fluids, but this code is suitable only for hypervelocity impact

where the target material behaves as a fluid also. For the response of a

liquid drop at intermediate values of the impact liquid Mach Number, VO/CO,
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an application of considerable technological importance, we have developed

the Compressible-Cell-and-Marker numerical method herein described.
II. ANALYSIS

When a free spherical water drop collides with a rigid non-slip
plane, the liquid is compressed, deformed and diverted into lateral flow.
Equations and boundary conditions describing the situation are well known,
but it is precluded to seek a closed form solution through a formidable
and probably impossible analytical method. Our approach, therefore, has
been numerical, using our newly-developed Compressible-Cell-and-Marker
(ComCAM) technique to obtain computer solutions of simplified Navier-
Stokes equations for an inviscid, compressible fluid. The purpose is to
determine the flow dynamics during the impact and thereby to explain some
of the experimental results that have been published with little or no cor-
relative interpretation.

The governing equations in cylindrical coordinates with axial sym-

metry for a spherical water drop are

3 , Digy . 1 dlrev) _
ot * Dz ¥ r Or 0 (D
A(qu) B(Quz) 1 3(rguv) Op
® T vz r " r | 3z (2)
2
dgv) , Blevw) . 1 Bdrev) _ _p (3)
ot dz r or or

The quasi-steady states are assumed and the density [ and the
pressure p are coupled by the equation of state for water

p+B _ (9_)A

po+ B e,
: : . [13]
which was first proposed by Tait" ° The proper values of the two con-
stants for cold water are as reported by COIJ]A].
A =7.15and B = 3008 atm
The above set of equations (1) through (4) are used to find impact
pressure and velocity distribution within the liquid boundary. Since the

boundary is free to move, it is necessary to keep track of its location by



4

imbedding marker particles on the boundary. This arrangement is possible
because of the condition that fluid particles initially on the free boundary
always remain on the free boundary, as argued by Lamb[lsl

The appropriate equations for the marker particles used to indi-

cate the interface movements are

dev) _ _de (5)
dt dz

dev) _ _dp (6)
dt dr

z_ - Suat (7
R_ = Svat (8)

where U and V ;rxl'e the marker velocity components, Zrn and Rm are marker
locations in z- and r- coordinates respectively.

The appropriate initial conditions over the domain of calculation
are

= u = u v =V
pp0 (6] (o]

where po is the environmental pressure, uo and vo are the initial impact
velocities in the z- and r- direction respectively. In the case of a nor-
mal impact (i.e., perpendicular), vo= 0 and VO: uo

The appropriate boundary conditions are-

i) along the axis of symmetry (z), r=0, and symmetry requires

ou -Bp _
v=0, or =0, dr 0
ii) along the impacted rigid surface, z =0, v=0, u =0,
’-25- = 0, for non-slip wall condition

iii) along the free surface, the incompressible continuity condition

yields
du th

p:po’ ox T dx
n t

where w and v, are the moving velocity components of the
liquid air interface in the normal 'xn and tangential X, directions
of the surface respectively.

iv) along the sides of the finite computational domain, permeable

boundary conditions will be imposed, in such a way that the normal
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space derivative of the variable vanishes at the boundary,

du ov _ op | N
3z O a0 o T 022
du _ o 5 Op . _
3 0 3 T 0 gy T 08tr=H

where H1 and Hzare sizes of computational domain in the z-
and r- direction, respectively.

All the above equations are then nondimensionalized and approx-
imated by finite difference expressions corresponding to the mesh of com-
putational cells over the domain. The initial-value problems are solved
by advancing the configuration through a set of finite time steps or computa-
tional cycles. Each numerical computational cycle consists of the following
steps .

1) Marker particles on the fluid boundary are moved to appro-

priate new positions.

2) The continuity and momentum equations are used to advance

the densities and velocities through the time change of one cycle
by an explicit technique.

3\ The pressure is calculated as a function of densities according

to the equation of state, assuming quasi-steady process.

4) Boundary condition values and time counters are adjusted to

prepare the next computational cycle.

The results are printed periodically including the configuration of
marker particles, the pressures, velocities and momentums.

The numerical results represent approximate solutions to the orig-
inal differential equations, since derivatives are replaced by finite differ-
ences. Terms of the order of the square of the time increment and spatial
step size are neglected. The convergence of the finite difference repre-
sentation, i.e., the degree to which the approximate solution approaches
the exact solution, must then be examined.

It is known that although the explicit formulation avoids the need of
iterative or matrix inversion techniques, the Courant stability criterion

must be satigfied, i.e., the distance a wave travels in the time increment



Az or Ar. That is:

At <. min. (Az, Ar)

c (9)

where C is the shock wave velocity in the liquid phase. With the definition

of the stability factor

ot - C At

min. (Az, Ar)

one can satisfy the stability criterion by selecting a value of ©¢ less than
unity.

Numerical experiments were carried out to determine the stability
factor and required numbers of cells so that convergence of the result is
reasonably assured, in regard to magnitudes, timing, and wave shapes.
For actual study, a stability factor OC= 0.1 and 20 x 40 mesh were used.

The detailed description of the ComCAM method was given by

Huang 1 ]

III. RESULTS AND DISCUSSION

In examining the results for two impact Mach numbers of 0.2 and
0.5, one must consider the following. Constant atmospheric pressure at
the water-air free surface is imposed. The impact plane is perfectly rigid,
flat, but non-slippery. The water is assumed inviscid, without surface
tension, but compressible and elastic. The fracture strength. of water is

6]

dinarily impure water will rupture at much smaller tensions, but perhaps

taken to be 270 atm., an experimental result of Brigg Of course, or-
not for the very short duration of tension here involved. The two constants
in Tait's equation of state for water are A = 7.15 and B = 3008 atm.

Fig. 1 shows the deformation of an initially spherical droplet at
various time instants following an impact on a rigid plane at Mach Numbers.
= 0.2 and 0.5 for non-slip boundary condition. The upper half of the drop-
let remains relatively undeformed up to the time of t°= 1, while the defor-
mation near the contact edge is not apparent at least up to t°= 0. 25

Fig. 2a through 2d show the isobar distribution at various instants,
The major pressure release comes mostly from the radial flow along the

impacted surface and less from the rebound on the top of the drop. While
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the liquid - solid interface acts like a pressure source, the liquid-air free
surface serves as a pressure sink, These two effects interfuse with each
other. The exact consequence depend upon both location and time.

Fig. 3 shows the pressure distribution on the impacted surface
(z = 0) at various time instants. From these curves, one can see that the
time-rate change of pressure as well as the spatial pressure gradient are
greater near the contact edge than those at the center (0, 0) of the contact
area during the period dominated by compression.

Fig. 4 shows the pressure distribution on the axis of symmetry
(r = 0) at several time instants. By comparing the curves at times 0. 25
and 0.5, one can see that while the pressures on the upper portion con-
tinue to increase, the pressure near the rigid plane (z = 0) start to fall.

As the effect of rarefaction propagates from the stagnation point toward
the top of the droplet, the pressure diminishes everywhere toward the stag-
nation pressure along the axis of symmetry.

Fig. 5 shows the pressure at four given locations as a function
of time. The pressure at the stagnation point '"a! reaches its peak value
at time to = 0.2, and then subsides to about the final steady-state stag-
nation pressure. The pressure at a location on the axis of symmetry
(r =0, z=0.5R) behaves in a similar manner except with a time lag. Since
this location lies between the stagnation point and the top of the droplet, it
is credible that this pressure-time curve lies below the pressure-time
curve for the stagnation point. The pressures at ''c' and ''d" on the impacted
surface remains unaffected until the contact ring reaches that point. The
time-rate of change in pressure for rising portion of the curve ''c'' and ''d"
is about the same as that of the curve '"a'" for the stagration point. The
pressure at ''c' rises and at some time exceeds the respective pressure at
the stagnation point "a', before it starts to fall along with the latter.

Fig. 6 shows the radial velocity distribution on the impacted sur-
face (z = 0). The dotted lines signify the portion of the liquid which is
very close to,but not actually in contact with,the impacted plane (z = 0).
The velocity and the location indicated by the end of a dotted line are those

which photographic observations of the impacted droplet would indicate



(Fig. 8 from reference 9). The maximum radial velocity at any given in-
stant occurs at a location between the tip of jetting and the center line

(r =0). For an impact liquid Mach Number of 0.2, the absolute maximum
radial velocity is 2. 65 times the impacting velocity V in the caseof a
free-slip boundary condition, which has been reported elsewhere [3:! and

2. 86 times VO in the present case of a non-slip boundary condition. These
calculations are in good agreement with the experimental results of Fyall [10]
He used the technique of high speed photography and observed that the rad—
ial velocity during the first three microseconds was 3056 ft/sec for an
impact speed of 990 ft/sec with a 2mm waterdrop. Perspex was used as

a target material in his case .

The present calculations indicate that the lateral flow and pres-
sure build-up begins simultaneously with impact, but that jetting is not
appreciable during the early stage of impact, (Fig. 1and 2). The pressure
is highest at the center of the contact area and decreases to atmospheric
pressure at the edge, where it is just about to be contacted by the rigid
plane. Due to the presence of this radial pressure gradient, the liquid
flows radially to expand the contact area. The radial velocity at the contact
edge is often decelerated by the liquid rushing toward the rigid plane.
However, the protrusion in the contact periphery is so slight that it is
almost impossible to detect or measure by experiments or photographical
means. The fact that compression and rarefaction take place simultan-
eously from the very beginning of impact is strictly in accordance with the
governing equations. Thus it is only an approximation that would assume
no gross flow or splashing at the very beginning of impact. Since the
boundary condition of atmospheric pressure on the contact edge should be
satisfied at all times, the pressure is released by the lateral flow from
the first instant of contact, and hence, the impact pressure becomes less
than the theoretical one-dimensional maximum pressure, as depicted in
Figs. 3,4, and 5.

Fig. 7 shows the magnitude and location of the maximum radial

pressure gradient on the impacted surface. The higher the impact Mach
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number, the greater the peak of pressure gradient. It is conjectured that
the material may be damaged by this severe pressure gradient.

Fig. 8 illustrates photographs taken from Engel[c)} of the deforma-
tion stages for a water droplet following an impact on a solid plane. This
experimental evidence of the physical process is very much in agreement

with the analytical results calculated in this paper (Fig. 1).

IV. CONCLUSIONS

The objective of this paper was to study the hydrodynamic pheno-
mena during the impact of a spherical liquid drop on a rigid plane. Effort
was directed to investigate the effect of the spherical curvature of the drop.
Pressure and welocity distributions were found as a function of time. The
following conclusions can be drawn.

1. The impact is characterized entirely by liquid impact Mach Number and
non-dimensional time in this case. In general, it is a function of these
independent parameters and droplet shape and surface effects (as liquid
slip).

2. Since the liquid surface is free to deform, the pressure build-up is
affected by the immediate radial release flow from the first instant of
impact.

3. From the first instant of contact, the compression and rarefaction
effects are superimposed at the same point for a spherical drop. Con-
sequently, the maximum pressure generated in a spherical drop is lower
than that in a finite cylindrical jet of the same radius (as shown in ref. 5).
In both cases the pressure is well less than the theoretical one-dimensional
pressure.

4. Since the maximum radial pressure gradient on the impact surface

is greater in the case of a spherical drop than in the case of a finite cylin-
drical jet, the maximum radial lateral flow velocity is greater for the spher-
ical drop than for the finite cylindrical jet. Therefore, the erosion caused
by shear with this lateral flow, and its collisions with surface roughnesses,

etc., may be higher for the spherical drop than for the cylindrical.
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5. As was expected, the non-slip boundary condition retards the flow.
However, it also contributes to a build-up in pressure inside the droplet.
Accordingly, the instantaneous peak radial velocity is higher than for the
free-slip case (as discussed in ref. 3). Otherwise, the patterns of pres-
sure and velocity responses for the non-slip and free-slip cases are es-
sentially analogous.

6. Unlike the impact of a cylindrical droplet (ref. 2 and 5) and the impact
of a spherical-cylindrical composite droplet (ref. 4), there is no cavita-
tion indicated in a spherical drop for the liquid impact Mach Numbers

0.2 and 0.5 investigated.
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