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Abstract

In this paper we consider a serial production process which contains several stages. At each
stage, not only the production capacity is uncertain but also the setup cost may be non-zero,
essentially complicating the planning and control of the production. We have shown that the
form of the optimal production planning decision at each stage has either one or two critical
numbers depending on the setup costs at the downstream stages. Furthermore, we demonstrate
how the behavior of the critical numbers is affected by production capacity expansion, demand

increase and the change of the cost parameters.

1 Introduction

In many production systems, the manufacturing process for a certain type of product contains
a sequence of operating stages. In view of increasingly complicated products today, the produc-
tion output is not always perfect; in other words, the production output uncertainty can not be
neglected.‘The production uncertainty is influenced by many factors, such as defective items, ma-

chine breakdowns, insufficiency of labor, etc. Furthermore, setup costs are unavoidable for some



manufacturing stages, such as heating, painting and coating. Both production uncertainty and
setup costs essentially complicate the production planning and control in a serial process.

In attempting to analyze the production uncertainty, two different methods have been developed:
random yield and uncertain capacity. The random yield model focuses on unreliable production
processes resulting in defective items. On the other hand, the uncertain capacity model is concerned
with insufficient capacities due to machine breakdowns and shortages of resources.

A random yield model of a serial production process without setup cost has been studied in
Lee and Yano (1988) to deal with a single-period problem with a deterministic demand. They
show that if it is beneficial to produce, the optimal strategy is a sequence of single-critical-number
policies. Yano (1986a) extends their results to uncertain demand cases. Moreover, in considering
the model with setup costs, Yano (1986b) shows that the optimal policy has two critical numbers
in single-stage cases. For two or more stages in this system, it is still unclear whether or not there
is an optimal policy with a simple form, such as an (s, ) policy.

The uncertain capacity model has not been discussed very much in any production and inventory
systems. Recent work by Ciarallo et. al. (1991) has shown that in a single-stage production
planning system with no setup cost, the optimal policy is of an order-up-to form in both finite and
infinite horizon cases, although the cost function is not convex but unimodal in every period. In
this paper, we analyze a serial production system considering uncertain capacities. We have shown
that the optimal strategy in our model with setup costs has a sequence of two critical numbers.

In the next section we describe and formulate a single-period multi-stage production control
problem with a random demand, uncertain capacities and setup costs. In Section 3 and Section
4, we show that for single- and multi-stage problems respectively, the optimal policies have one or
two critical numbers at each stage. In Section 5 we discuss the behavior of the critical numbers
as influenced by demand, production capacities and cost parameters, such as the cost(s) of setup,
production, shortage and holding. Then, in Section 6 we extend the model to deal with initial
inventories or with raw material ordering capability. Finally, in Section 7 several numerical examples

will be demonstrated.



2 Problem Description and Formulation

An N-stage serial production facility is dedicated to meeting an uncertain demand for a given type
of commodity during a period of time. Let © be the demand random variable with c.d.f. Q(£) and
p.d.f. g(£). At each stage of this serial production facility, the production capacity is uncertain
and the production setup cost may not be negligible, i.e., non-zero. The production capacity at
stage n is assumed to be a random variable, Yy, with c.d.f. F;,(y,) and p.d.f. f,(ys). These c.d.f.’s
and p.d.f.’s are assume to be continuous and to be twice differentiable. Moreover, all the random
variables are assumed to be mutually independent.

In this serial production facility (see Figure 1), stage N is the first stage (the raw material
input) and stage 1 is the final stage (the finished goods output). At stage n, a planned production
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Figure 1: A Serial Production System

quantity, un, has to be decided. Clearly, the production quantity can not exceed the available input
quantity and the maximum capacity at that stage. Because u,, is limited by the uncertain capacity
at stage n, the actual production output, z,, is equal to min{u,, y,}.

Several costs are imposed on the facility which influence the production decisions. For the whole
facility, a shortage cost, , is charged for each unit of any unsatisfied demand. At stage n, there
are several costs: a) a holding cost, hn41, is associated with each unit of the unused available input
material, for instance, hy4; is relative to the raw material for the system and hq is relative to the
finished goods, b) a setup cost, Ky, is charged for any production decision, i.e., u, > 0, and ¢) a
marginal production cost, wy, is charged per unit of actual production output. All cost parameters
are assumed to be non-negative.

Before formulating the cost functions of this system, we presume that the initial inventories



of all intermediate materials are zero. Later in Section 6.1, we will address how to approach the
system without this assumption. Now, we are in a position to define recursively the cost functions
which form the basis of the analysis. Let Cy(z,+1) be the expected cost of operating the system
optimally from stage n through stage 1, where the available input quantity is 2,,11. Then, Cn(zn41)
represents the minimum expected cosf to operate the system, where the available raw material at
stage N is n41. As mentioned earlier, we should have u, < z,41 at each stage n. Therefore, the

cost expectation function C,(z,41) satisfies the functional relationships: For n =1 to N,

Cn(zn+1) = min {’Yn(un) + Knﬁ(un) + hn+lzn+l}7 (1)
0<up <Tn41

where

1 ifu, >0
6(up) =
0 otherwise,

n(w) = F(u)wu +7 / " (6= w) dQ(E) + by /0 (w1 — €) dQ(E) - hyui]

1

uy o] Y1
b ot [ €= m) @+ [ 0 - €4Q(E) - hay] dF(m), )
0 Y1 0
and forn=2to N,
7n(un) = Fn(un)[wnun - hn-H Up + Cn—l(un)]

+/(.) n[wnyn - hn+lyn + C —l(yn)] an(yn) (3)

There are two necessary cost conditions throughout this paper:

ConDITION I wy — hy < 7.
ConNDITION II For all n, wy, + hy > hytq.

The first condition implies that the penalty for unsatisfied demand is so high that it is profitable to
produce. The second one ensures that it is possible to dispose of the material at any intermediate

stage instead of producing.

The following lemma indicates that if there is no input material available at stage n, the cost
expectation is the expected shortage penalty, i.e., since there is no chance to produce, then pay the

penalty.



LEMMA 1 4,(0) = Cn(0) = 7E[O] for all n.

Proof: We know that 7,(0) = 7E[@] from (2). Furthermore, v,(0) = C,,—1(0) = C,,(0) from (3)
and (1). Therefore, 71(0) = ... = 7,(0) = C1(0) = ... = C;,(0). QED. [

When the planned production quantity has been raised from u,, to u}, at stage n, v,,(u!,) = v,.(u,,)

represents the marginal cost in view of (1), (2) and (3). Consequently, the following two lemmas

are readily perceived:

LEMMA 2 For all n, suppose that the first derivative of ¥, (uy), 7, (ur), ezists and is greater than
zero in interval (a,b). Then, it is not a benefit to increase the planned production quantity u, in

the interval. Clearly, v,(uy) has a local minimum at u, = a.

LEMMA 3 If vu(un) + Kn > ¥n(0) for all u,, it is not worthwhile to produce at stage n. Thus,

*x _
uy = 0.

It is not an interesting case if it is not profitable to produce at all stages. Hence, from now on,
we presuppose that it is beneficial to produce at any stage. Furthermore, we relax the maximum
capacity constraint in the analysis for convenience. Later in Theorem 10, we will show that the

analysis is still valid with the capacity constraint.

3 The One-Stage Problem

In this section we shall discuss the one-stage problem for the model introduced in Section 2. Our
objective shall be to show the following:
At the first stage,

.| decreasing and convex in (0,.54)
L. y1(wy) is
increasing in (57, 00),

2.0< 81 < 8 < o0,

3. The form of the optimal policy is

0 if 29 € (0,81)
'U,{(:l:g) = z9 ifzg € (81,51) (4)
Sl if Ty € (51,00),



where s; and 57 represent two critical numbers in this stage.

To do this, we start with property 1: the behavior of y;(u;). Now, taking the first and the

second derivatives of (2), we have

7(w) = Fi(u)gi(wm), (5)
1 (wm) = F(w)(r+h)g(w) - filw)g(w), (6)
where gi(u1) = (7+h)Q(uy) +wy — hy — . (7)

Clearly, g1(u1) is increasing. Then, define 7 such that g;(5;) = 0, i.e.,

).

5 = Q‘l(————’”:{lr —
From Condition I and Condition II, we have 4{(0) < 0 and limy, o 7'(%1) > 0, respectively. These
ensure that Sy € (0,00). Then, g;(u1) is negative in (0,.51) and is positive in (.51, 00). Hence, we
should discuss these two intervals separately in order to characterize the behavior of y;(u;). We

have
1. uy € (0,57): From (5) and (6), y1(u1) < 0 and 7{(uy) > 0, respectively. As a result, y1(u;)
is decreasing and convex.
2. uj € (81,00): From (5), y1(u1) > 0, i.e., 71(uy) is increasing. However, from (6), 7{(u1) may
change sign, i.e., 71(u;) may be neither convex nor concave.

Consequently, the behavior of 91(u1) is shown in Table 1 (also see Figure 2 which is from a numerical

example in Section 7). Hence, the minimum at u; = S is the global minimum.

1(w)
u € Convex | Concave || Increasing | Decreasing
0,%) | v v
(S1,00) May vary! Vv

Table 1: The behavior of v;(uy)

Now that we have characterized the behavior of 4;(u1), we go on to property 2. From Lemma

3, there exists at least one 1 such that

71(0) = Ki+7(d). (8)
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Figure 2:" 1 (u1) of Example 2.1

Since y1(uq) is decreasing in (0, 51), let s be the @, € (0,57).

Now that we have proved that properties 1 and 2 hold, we go on to property 3. From properties
1 and 2, we still can conclude that the optimal policy is a two-critical-number policy with the
form of (4), although y1(uy) is neither convex nor concave. The optimal policy says that a) if the
quantity of the available intermediate material z5 is less than the lower critical number s;, then no
item should be produced, b) z; is between s; and the upper critical number Sy, then the planned
production quantity uj should be equal to the quantity of the available material, and ¢) z; is more
than 57, then u] should be equal to the upper critical number. Clearly, the lower critical number

of the optimal policy represents the effect of the setup cost Kj.

4 The n-Stage Problem

In this section we shall discuss a general problem which consists of n stages. Our objective is to

determine that the form of the optimal policy for the n-stage problem is

Un(®nt1) = { oy if Togr € (S, 5n) )

Sn if Tyl € (Sm OO),

where s, and Sy, represent two critical numbers in stage n (also see Figure 3).
Before proving (9), let us characterize a very important property as given in Theorem 4. This

property is also illustrated in Figure 4.



n+1

Figure 3: The Optimal Policy at Stage n

THEOREM 4 At stage n, suppose that an (sy, Syn) policy of form (9) is optimal, and y,(u,) is convez

and decreasing in (sy, Sn). Then,

) convez in (sp, Sn)
Cn(zn+1) 18 ) . .
linear with slope hy41  otherwise.

409756

Cl(x2)

200000

214 3000
Available Input Quantity, x2

Figure 4: Cy(z3) of Example 2.1
Proof: From (1) and (9), we have
Yn(0) + hp1Znt1 if zn41 € (0, Sn)

Cn($n+l) = 7n(xn+l) + K, + hn+1 Tnt1 if Tnt1 € [sna Sn] (10)
7n(5n) + Kn + hn-{-livn-H if Tn41 € [Sm OO)



Then, differentiating (10), we get

hn-H if Tp41 € (073n)
Cvlt(‘rn-f-l) = 7;;(zn+l) + hn+1 lf Tn+1 € ('Sna Sn] (11)
hn+1 if Tn41 € [Sna OO)

Hence, C',(2,41) is linear with slope Aty if Zng1 € (Sny Sn). If Znt1 € (8, Sn), then Cp(2pyq) is

convex since ¥, (zn+1) > 0 by assumption. n

Now, we are ready to introduce the following theorem showing the optimal policy and its

properties:

THEOREM 5 At stage n,

(
increasing and concave  in (0, 8,-1)

decreasing and conver in (8p-1,5
L yu(uy) is ? (8n-1,50) (see Figure 5)

increasing in (SnySn-1)

| increasing and concave  in (Sp_q,00),

2. $p-1 < 8 < 8y < Sno,
3. The form of the optimal policy is (9),

where sg = 0 and Sy = 0.

409756
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Figure 5: y3(u3) of Example 2.1

Proof: We have shown already that all the properties are true at stage 1. Suppose that at stage

n —1, all the properties are still true. By induction, let us validate the properties at stage n. First



of all, we should characterize the behavior of 7, (u,). Therefore, we shall consider Yn(ty) in the

following two intervals:
1. Uy € (O, Sn—l):

711(un) = Fn(un)[wnun - hn-H'U'n + Cn—l(un)]

Un
+A [wnyn - hn+1 Yn + Cn—l(?/n)] an(yn)-
2. Uy € (371.—1’00):
7n(un) = Fn(un){wnun - hn+1 Uy + Cn—l(un)]
Sn—1
+/0 [wnyn = hn+l Yn + Cn—l(yn)] an(yn)

+/ [wnyn - hn+1yn + Cn—l(yn)] an(yn)' (12)
Sn-1

For convenience, we divide the interval (s,_1,00) into (s,-1,S,-1] and [Sy—1, ), although u, =
Su—1 is the only break point of Cy,—1(uy,). Then, taking the first and the second derivatives of

Yn(tn), and substituting expressions from Theorem 4 and (11), we get

Fo(un)[wn 4 By = hg1] i wn < 8y

77,1.(”") = F, (un)gn(un) if sp-1 < Up < Sp—t (1‘3)
n(un)[wn + hn - hn+1] if Un Z Sn—h
and
_fn(un)[wn + hn. - hn+1] lf Unp, < Sn-1
7::("’") = Fn(un)g;(un) - fn(un)gn(un) if 8p—1 < Uy < Sn—l (14)
_fn(un)[wn + hy, - hn+l] if up > Sp—1,
where
gn(un) = ( )+ Wy, — hn+1
= F ( )gn— (’U,n) + Wy, + hn hn+1 (15)
n—1
= H Fi(un)[(m + 11)Q(un) + w1 — hy — 7]
J=1
n—-1n-1
+ 3 TI Fiun)lwi + bk = hip1] + wn + by, = hygr. (16)
k=2 j=k

10



Differentiating g,(u,) and using Theorem 4, we get

g;(un) = vZ—-l(un) >0, (17)

i.e., gn(u,) is increasing in (sp—1,.5n-1)

Now, let us discuss 7,(u,) in the intervals (0, s,-1) and (S,-1,00). Because of Condition II,
n(tn) > 0 and 77/ (u,) <0, i.e., 7,(uy) is increasing and concave.

Knowing that v,(u, ) is increasing in (0, s,—1) and (S,-1,0), we are in a position to determine
the behavior of 7, (uy) in (8n-1, Sn-1]. Since 7,(Sn-1) > 0, gn(Sn-1) > 0. By Lemmas 2 and 3,

gn(s5_;) must be less than zero, i.e., 7.(s}_,) < 0. (Otherwise, it is not worthwhile to produce.)

Therefore, define S, € (8p—1,97-1] such that

gn(sn) = 0. (18)
Hence, we divide (sp—1, S,-1] into two intervals: ($,-1,9,] and [Sy, Sn-1].

1. Uy € (Sp-1,5n]: From (18), go(u,) <0, i.e., v/ (un) < 0. Therefore, y/(u,) > 0 from (14).

1

2. uy, € [Sn, Sn-1]: From (18), gn(un) > 0, ie., 7, (un) > 0. However, from (14), v”(u,) may

change sign.

Tn(Un)
Uy € Convex | Concave || Increasing | Decreasing
(0,8n-1) v Vv
($n-1,5n) v v
(Sny Sn-1) May vary! Vv
(Sn-1,00) v v

Table 2: The behavior of 7, (un)

Consequently, the behavior of v, (u,) is shown in Table 2. Again from Lemma 3, the minimum at

U, = Sy, is the global minimum.

Now that we have characterized the behavior of v, (uy), we go on to property 2. From Lemma

3, there exists at least one i, such that
M(0) = Kn+ yn(in). (19)

11



Since 7,(0) < Yu(8n-1) and v,(uy) is decreasing in (s,—1,55), let s, be the 4, € (s,-1, ).

Now that we have proved that properties 1 and 2 hold, we go on to property 3. From properties
1 and 2, we still can conclude that the optimal policy is a two-critical-number policy with the
form of (9), although 7,(uy) is neither convex nor concave. The optimal policy says that a) if
the quantity of the available intermediate material z,,41 is less than the lower critical number s,,,
then no item should be produced, b) if 2,41 is between s,, and the upper critical number S, then
the planned production quantity u* should be equal to the quantity of the available material, and
¢) if z,41 is more than §,, then u; should be equal to the upper critical number. Clearly, the
lower critical number of the optimal policy represents the effect of the setup cost K,, (a detailed

discussion of this effect will be shown in Section 5.2). |

5 The Properties of Critical Numbers

In this section, we shall characterize the behavior of the critical numbers. We discuss the effects of
demand increase and production capacity expansion in Section 5.1 and the effects of the costs of
setup, production, holding and penalty in Section 5.2.

The general properties of the system are illustrated by the following two corollaries. Corollary
6 comes from the structure of the optimal policy and Lemma 3. Corollary 7 comes from Theorem
5.

COROLLARY 6 If it is not worthwhile to produce at stage n, S, = s, = 0.

COROLLARY T A sequence of (sn, Sy) policies is optimal for this serial production process. Further-

more, 1 <83 < ... SN S IN <. <5 < 5.

Corollary 7 indicates several characteristics of the system: a) If it is not worthwhile to produce
at stage n, i.e., S, = 0, it is also not worthwhile to produce at any of the upstream stages, i.e.,
S; =0, Vi > n,b) the monotonic sequence {s, } implies that the effective setup cost at an upstream
stage is always higher than at any downstream stage, i.e., an upstream production decision may
trigger downstream production decisions, and c) the monotonic sequence {9, } shows that it is not
economical to produce more items than the optimal intermediate material needs from the immediate

downstream stage. (In a random yield approach of this model with no setup cost, Lee and Yano

(1988) have shown Sy > ... > S > §;.)

12



5.1 The Impacts of Demand and Production Capacities

Here, we shall discuss the impacts on the critical numbers of changing demands and production

capacities.

Let ¥ and @ represent two different distributions with densities 1 and @, respectively. We say
that the density 1 is stochastically smaller than the density ¢ (written 9 <y ¢) if ¥(z) > &(z) for
all z > 0.

THEOREM 8 If we are given two demand distributions Q and (), and if ¢ <s G, then S, < S, and

Sp > 8y at all stages.

). Therefore, g1(u1) > §1(u1) referring to (7). Since

Proof: By assumption, we have Q(z) > Q(z
71(#1) > 41 (w1) from (5). Hence, from (8), we have

>Q
g1(wp) is increasing, Sy < S;. Then, 7} (u;)
Ki _ m(0) -mn(s1) o 51(0)—H(s1)

_ > , ie, Ki < #1(0) = 41(s1).
-8 -8 -8

Because of Theorem 5, 41(u1 ) is decreasing in (0, Sl) This implies that s; > 3.

By induction, we have g,(us) > §n(un) from (15) for all n. Since §n(uy) is increasing from
(17), 8, < $,.. From (13), 71(un) > 47, (un) in (8p—1,00). By Theorem 5, v,(u,) and %, (u,) are
increasing in (0,8,-1) and (0, 3,-1), respectively. Since $,_1 > 3,1, from (13) v/ (un) = %% (u,)
in (0,8,-1). Let us define 2z, € (sp—1,5y) such that y,(z,) = 7,(0) and 2, € (én_l,.é'n) such that
An(Zn) = 4n(0). Notice that v} (un) > 47 (un) in (83-1,5n-1). Therefore, 2z, > 7,. Then,

Kn  _ n(zn) = 1n(sn) > Fn(2n) = Fn(sn)
Zn — Sn Zn — Sn, = A

ie, K, < '?n(zn)"&n(sn) < '}n(én)_;yn(sn)

Again from Theorem 5, §,(uy) is decreasing in (.§n_1,5'n). As a result, s, > $,. [ ]
Theorem 8 is reasonable since if we have more demand than before, then not only the effective
setup cost will become less, i.e., s, > 3,, but also the shortage penalty will drive the system to

produce more, i.e., S, < .5,.

THEOREM 9 If we are given two capacity distributions F; and F] at stage j, and if f; < fj, then
S; = 8; and S; < S; for all i > j.

13



Proof: Following the assumption, we have 1 - F;(u;) < 1- F;(u;) for all u;. Then, g;(u;) = §;(u;)
from (15), i.e., S; = Sj. By induction and (15), we get g;(u;) > §:i(w;) in (si—1, Si—1), i.e., S; < S
for all 7 > j. [ ]
Theorem 9 illustrates that if we enlarge the production capacity at stage j, we are willing to produce
more (5; < 00) at all the upstfeam stage ¢ > j. However, the upper critical number at the current
stage will remains the same ($; = $;).

Unlike the stochastically smaller demand condition in Theorem 8, the condition in Theorem 9
is not sufficient to show the behavior of the lower critical numbers since the stochastically larger
production capacity can not guarantee that the effective setup cost will become less. For example,
let us “move” the probability of the production capacity from just below the original lower critical
number to far above the original upper critical number. Then, if the quantity of the available
intermediate material is equal to the original lower critical number, then we may have a greater

probability of producing less than before.

Now, we shall indicate a way to solve the problem dealing with the capacity constraint. Let

sup y, denote the minimum upper bound of the capacity at stage n.

THEOREM 10 If S, > supy, > $n, then set S, = sup y,. If supy, < sy, then set S, = 0. Then,
Theorem § still holds.

Proof: From Theorem 5, v,(uy,) is decreasing in (s,,S,). Thus, if S, > supy, > s, then set
S, = supy,. It is clear that u, = supy, is still the global minimum. On the other hand, if

SUp Yn < Sn, then set S, = 0. n

5.2 The Impacts of Cost Parameters

Now, we shall examine how the critical numbers are affected by the costs of setup, production,
shortage and holding.

In Theorem 5, we discussed the problem with the setup cost at each stage. However, there is
no indication whether or not the optimal policy would be affected by the setup costs at the other
stages. In the following theorem, we will determine how the setup cost at a stage influences the

critical numbers of the other stages.

14



THEOREM 11 K; =0, for all i < n if and only if the optimal policy at stage n is of a produce-up-to
form: wi(zn41) = Tt Y Eni < Sa i.e., s, =0.

Sn if Tuy1 > Su,y
Proof: From (8), we have s; = 0 if and only if K; = 0. From (19), we have s,, = 0 if and only if
K, =0 and s,_; = 0. The proof is done by induction. [ ]
In other words, the optimal policy is a single- instead of a two-critical-number policy if the setup

costs at all the downstream stages (including the current stage) are zero. Theorem 11 ensures that

the setup cost at a stage would have an influence on the optimal policy of all the upstream stages.

The upper critical number is independent of all the setup costs since g,(uy,) (refer to (16)) is

not a function of any setup cost. Thus, Corollary 12 follows.

COROLLARY 12 As the setup cost increases at a stage, the upper critical numbers at all stages

remain the same.

The following theorem shows that any increase of the setup cost at a stage would also increase

the effective setup costs at all the upstream stages.

THEOREM 13 As the setup cost increases at a stage, the lower critical numbers also increase at all

upstream stages as well as the current stage.

Proof: Assume that the setup cost K; increases to fﬁ at stage 1. Now, we know that ;(u;) is
decredsing in (8i-1, S;) by Theorem 5. Since K; < K;, we have s; < §; by the definition of the lower
critical number (refer to (19)). Clearly, vi(u;) = 9i(u;). From Corollary 12, we know that §; = ;
for all j.

At stage i+ 1, v, (vis1) = ¥{1(uig1) in (3, Siy1) because of (13). When uiyq € (3, Siy1), we
have from (12) and (10):

Yir1(wir1) = Yier(wiy1)

Fip1(i41)[Ciluitn) = Ci(uipr)] + / i(uir1) = Ci(uipr)] dFip1(9igr)

Ui+l L a
b i) = i) dFosa i) + / Ci(win) = Ci(uign)] dFosa (3i1)

- ~ Ui41r .
Faa(us )K= K+ [ 1K= KD dFigs (i) (20)
+/ [’71 - % u1+1) i] dFi+1(3/i+1)-

15



Clearly, the first two terms of (20) are greater than zero. Since y;(u;y;) is decreasing, the third
term of (20) is also greater than zero from (19). Therefore, Yit1(uit1) > Vir1(uis1) in (3, Sis1).
By induction, assume that s;_; < §;_1 and v;-1(uj-1) < ¥j-1(uj—1) for j > i + 2. Because of

(13), 7i(uj) = 4;(u;) when u; € (3;_1,5;). When u; € (§;_1,5;), we have from (12) and (10):
-~ ' A uJ -~
Fi(us) = 7(u;) = Fj(Uj)[‘fj—l(uj)—71—1(uj)]+/ [¥5-1(u;) = v5-1(u5)] dF5(y;)
Sj—1
851 R
+ [ Biea(0) = 3g-1(07) = Ky dE (). (21)
5j—1

Since 7;-1(u;j-1) < ¥;-1(4;-1), the first two terms of (21) are greater than zero. Since y;_1(u;) is
decreasing, the third term of (21) is also greater than zero from (19). Therefore, Yi(us) > ¥5(u; )
in (3;-1,5;). Recall the definition of z; in the proof of Theorem 8: z; € (s;_1,95;) such that

7i(2;) = 7;(0). We have that z; < Z; since 7(2;) = 9}(2;) < 0. Therefore, s; < §; from (19).

THEOREM 14 As the shortage penalty increases, the upper critical numbers also increase but the

lower critical numbers decrease at all stages.

Proof: Assume that the shortage penalty increases from 7 to #. Therefore, g1(u1) > §1(uq) for
all u; from (7), i.e., y1(u1) > 41(v1) from (5). Then, follow the same procedure as in the proof of
Theorem 8. QED. ]
Theorem 14 ensures that an increase of the shortage penalty will force the system to produce more

and reduce the effective setup costs at all stages.

The following theorem shows that any decrease of the marginal production cost at a stage will
reduce the effective setup costs and also force the system to produce more at all the upstream

stages as well as the current stage.

THEOREM 15 If the marginal production cost w; decreases to w;, then S; < §j and s; > 8; for all

j2u

Proof: Since w; > 1, g;(u;) > §;(u;) in (8j-1,5j-1) from (7) and (16), i.e., ¥;(u;) > 91(u;) from
(5) and (13). Then, follow the same procedure as in the proof of Theorem 8. [
THEOREM 16 If the holding cost h; decreases to h;,
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l. Forallj>1, 5; < §j and s; > §;.

2. For stage 1 — 1, S;_1 > §;_1 and s;_1 < §;_1.

Proof: 1) Since h; > hy, for j > i, g;(u;) > gj(u;) in (sj-1,5;-1) from (7) and (16), i.e.,
7;(u;) > #1(u;) from (5) and (13). 2) On the other hand, we have g;_j(u;—1) < §i—1(u;=1) and
Vi1 (viz1) < 4i_;(uiz1) in (8i—2, Si—2). Then, follow the same procedure as in the proof of Theorem
8. QED. [ |
Theorem 16 tells us that any decrease of the holding cost at a stage influences the critical numbers
not only at the current stage and all the upstream stages but also at the immediate downstream
stage. The influence at the current stage and all the upstream stages decreases the effective setup
costs and drives the system to produce more than before. On the other hand, the influence at the
immediate downstream stage increases the effective setup costs and forces the system to produce

less than before.

6 Two Extensions of the Model

In this section we shall discuss two extensions of this model. First, we consider the problem with
initial inventory at each intermediate stage. Second, we expand the system with raw material

purchasing ability.

6.1 The Extension of Positive Intermediate Inventory

Suppose that the initial inventory level of any intermediate stage is non-negative. Through the
same analysis as before, let I,,1; denote the initial inventory of available input material at stage n.

Accordingly, Cp(2n+1 + In41) satisfies the functional relationships: For n =1 to N,

Cn(xn+l + In+1) = min {Vn(un) + Kné(un) + hn+1(xn+l + In-H)},
0Lun<znt1+In41

where

n(u) = Fl(ul)[wlul-l'WLm (€ —w - 11)dQ(¢§)

1+4

u+
+h1/(; (w1 + 1 = €) dQ(€) — hauy]
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-|-/0ul[w1y1 +7r/yoo (€ —u - 1) dQ(¢)

1412
y+lh
e [77 (0 B = ©)dQ(E) - hayn] dFi (1),
and forn=2to N,
Vn(un) = Fn(un)[wnun - hn+lun + Cn—l(un + In)]

+/0 [wnyn = hng19n + Croa1(yn + In)] dFn(Yn)-

Similar to the analysis without any intermediate inventory, we have

n(w) = Fu)p(u)
Fo(un)[wy + = haga] if up + In < 8p1
Va(un) = { Fu(un)pu(un) if sp-1 <up+ I < S
Fo(un)[wn + by, = o] if up + I > S,

where
n(w) = (T+h)Qu+h)+w —hy—7
pn(un) = Fn 1(un + I )pn 1(un + I ) + wy, + hn - hn+1

= HF Uy + ZII (7 + k1)@ (un-{-ZI[)-I-’wl—hz—ﬂ']

=541 =1
n—1n-1
+ E H Fj(un + Z I)[wk + bk — Pgga) + Wy + by, = By1.
k=2 j=k I=54+1

Then, for all n we can get S, such that

and s, € (Sp-1,9y,) such that
vn(0) = wn(sn) + Ki.

Hence, the form of the optimal policy at stage n is

0 if Tng1 + Ingp1 <8
u;(zn'!-l + In+1) = Tpt1 + In+1 if s, < Tp41 + In+1 < S

18



6.2 The Extension of Raw Material Ordering

Here, assume that a dummy stage N + 1 represents the raw material purchasing stage in the series.
In this stage, the purchasing capacity is unlimited and certain. Let wy,; represent the marginal
cost for each unit of raw material purchased. Notice that zy42 = hny4y = 0, because there is no

physical inventory at this stage. Then, we have

Cny1(any1) = min  {Cn(uny1) + wnp(unsr — Tv41))
TN$1SUNGL
Consider

IN1(un+1) = COn(un41) + WNp1UN 41,

Tvi(unvs1) = Ch(unsr) + wnp
hnt1 4+ wN1 if un41 € (0,sn)

= In(uN+1) + hngr + wN if un41 € (SN, SN] (22)
hnt1 + wN41 if un41 € [Sn,0),
and
Tv+i(uns1) = Ch(ungr). (23)

We know that yn41(un+1) is convex in (sy, Sn) from (23) and Theorem 4. In case that unyy €
(0,sn5) or (Sn,00), YN+1(un+1) is linear from (22) and is increasing from Condition II. Now, if it is
beneficial to order any raw material, then from Lemma 2, vy ,(un) < 0 for some uy € (sn, Sn).

By convexity, 71’\,+1(3ﬁ) < 0. Now, define Sny41 € (sn, In] such that

YN41(SN41) = 0. (24)

If it is not beneficial to order or yn411(Sn+1) > Yn+1(2N41), then unyi = Zn4q is the global
minifnum. Hence, let Sy41 = zn4+1. Then, the optimal ordering policy is an order-up-to policy
with a critical number Sy 4.

Unlike production stages, the purchasing stage does not suffer the problem of limited input
material available. For this reason, the optimal policy at the purchasing stage has only a single

critical number.
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7 Computational Results

Here, we shall give several numerical examples of the system in this paper. In the examples, there
are three production stages in each series. All the probability distributions are assumed to be
LogNormal. The definition of the LogNormal probability density function is given below:
~(lnz - p)?
a

f(zlp, o) = z >0,

1
ex
V2roz
where f(-) is determined by p and o. In order to find the critical numbers in these examples, from

Sections 3 and 4 we should solve S, and s,, which satisfy (18) and (19), respectively. Furthermore,

the property s,_1 < 8, < S, < §p—1 of Tﬁeorem 5 essentially reduces the computation effort.
ExampLE 1 The demand distribution is described by uy and o4 chosen as

pa = 7.5 and o4 = .5.
At stage 1, pu; and o; represent the two parameters of the capacity distribution and are selected as
3 =85 pp =83 =85
03 = 2 g9 = D g1 = 3.
The cost parameters are chosen as
ws = 30 wy =10 w; =15 ‘
hy=10 h3 =20 ho =25 Ry =50 7 =200
K3=25,000 K;=0 Ky = 45,000.

Then, by solving (18) and (19), we find the critical numbers of the example to be

s3 = 424.40 sy = 230.77 s = 214.29
83 =2,176.25 S, =2,654.55 §; =2,972.70.

Clearly, these critical numbers have the monotonic property described by Corollary 7. Controlling
the system optimally, the planned production quantity at the first stage, 3, is always less than
the quantity at the second or the third stage. Therefore, S; and S; are useful only in calculating
53 but are meaningless in controlling the system. However, all s’s are very helpful to prevent any
non-economical production due to high production setup costs. Notice that the setup cost at stage

2 is zero. From Theorem 11, s; is greater than zero due to the nonzero setup cost at stage 1.
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We portray the behavior of functions ;(u;) and C;(z;) of Example 1 in Figure 2 and Figures 4
through 8. Evidently, y;(u;) is not a K-convex function. We know that v;(0) = Ci(0) = TE[0] =
$409,756 for ¢ = 1,2,3. This also demonstrates the intuitive result of Lemma 1.

Let us now consider ordering capability, which we mentioned early in Section 6.2. Let the
purchasing cost, wg, be twenty dollars for each unit of raw material. Then, we get S4 = 1,863.30
from (24). Suppose that the system dose not hold any raw material. Then,>74(S4) = Cy(Sq) =
$305,247. In other words, we can save T E[Q] — Cy(S4) = $104,509 by using this critical number
strategy against doing nothing.

When demand or production capacity changes in Example 1, the behavior of the critical numbers

also changes as shown numerically in Examples 2 through 4.
EXAMPLE 2 Set pg = 7.3 in Example 1.

Then, the critical numbers in this example are

s =a5255 P =23077 s =214.29

s =1,46869 5P =1,70820 SP=2177.12 5@ =9 433384,
Clearly, s; < 352) and §; > 5,.(2) for all 5. This is because the demand distribution here is stochasti-

cally smaller than in Example 1 (see Theorem 8).
ExAMPLE 3 Set py = 7.6 in Example 1.

Then, the critical numbers in this example are
O =a2446 P =23077 P =214.29
s =1,62643 S =1,93066 S =2,65455 S =2, 972.70.

Clearly, S; > S,-(3) for all ¢. This is because the capacity distribution at stage 2 here is stochastically

smaller than in Example 1 (see Theorem 9).
EXAMPLE 4 Assuming the capacity at stage 2 is perfect in Example 1.

Then, the critical numbers in this example are
sV =12140  §0=23077 ¥ =21429
s =1,90061 59 =22198 5 =265455 5Y =2 97270,
Clearly, S; > S§4) for all <. Because the production output at stage 2 is perfect, we may consider

that Fy(us) is equal to one for any finite u,.
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8 Summary

We have studied the uncertain capacity approach for planning and control in serial production
processes with setup costs in which the output at each stage may be stochastic. The optimal
control strategy for any N-stage system is shown to have a sequence of two critical numbers. We
also show the sensitivity of the critical numbers to changes in demand and system parameters. Four
numerical examples are offered to scale the behavior of the critical numbers and cost functions.
However, further research needs to incorporate multiple periods into the current model since the

demands for some products may occur more than once.
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Figure 6: y2(uz) of Example 2.1
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Figure 7: C3(z3) of Example 2.1
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Figure 8:"C3(z4) of Example 2.1
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