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Abstract

The increased complexity of modern manufacturing has lead to uncertainties in produc-
tion processes. Factors, such as unplanned machine maintenance, tool unavailability and
complex process adjustments, make it difficult to maintain a predictable level of output.
To be effective, an appropriate production model must incorporate these uncertainties
into the representation of the production process. This paper considers a one-time pro-
duction of an application-specific product which must follow a fixed routing through
the manufacturing system. The flow of items can be modeled as a multi-stage serial
production line. The productive capacity is uncertain at each stage and the decision
to produce at any stage incurs a significant setup cost. Semifinished products have
little value and inability to satisfy the demand incurs a penalty for each unit of unmet
demand. We show that the optimal production policy for this system can be char-
acterized by two critical numbers, which can be computed apriori based on the cost
parameters and distributional information for all downstream stages. Sensitivity of the

critical numbers is also explored.

1 Introduction

The increased sophistication of modern manufacturing processes in many high-tech indus-
tries has lead to an increase in internal uncertainties in these manufacturing systems. The
use of state-of-the-art technology, intricate equipment, complex tooling requirements, in-
volved process control, reliance on specialized operator skills and greater adherence to per-
formance specifications, are all factors that make it difficult to maintain a predictable level
of output. Often, the newer, more profitable products face even greater uncertainty because
the organization has not yet accumulated enough learning experience with the equipment
and processes to reduce the variance. Nevertheless, production needs to be carried out in

an economic manner, despite the inherent variabilities in the system.



We present a model for planning production in a multi-stage serial production system
where the aggregate productive capacity at each stage is uncertain. That is, the output
quantity at any stage is the minimum of input quantity and the realized productive capacity,
which is random. Production is carried out to satisfy an uncertain one-time demand for the
final product. Each unit of unsatisfied demand incurs a penalty, so does the the disposal
of any unused material. A decision to produce at any stage incurs a setup cost plus a
processing cost for each unit produced. Due to limited time until shipment, there is only
one opportunity to produce at any stage, i.e., a production shortfall can not be compensated
by another production run. Production control must decide, for each stage, how much to
produce after the output from the immediately preceding stage becomes available. One
must take into account capacity uncertainties at all downstream stages, together with the
demand uncertainties and costs, to arrive at an economic production decision. OQur analysis
shows that the optimal production policy for each stage can be characterized simply by
two critical numbers. If the available input exceeds the lower critical number, one tries to
produce as much as possible, but no more than the upper critical number. If, on the other
hand, available input is less than the lower critical number, one chooses not to produce. The
interrelationship among critical numbers and their sensitivity to various cost parameters as
well as capacities and demand distributions are also explored.

There are two fundamentally different models in the literature to represent internal
uncertainties. Yield models focus on output loss due to process imperfections while capacity
models deal with production loss due to resource unavailability. In random yield models,
one identifies the defective units after processing the entire input quantity and incurring
the production cost. In uncertain capacity models, one may not be able to process the
entire input material due to resource constraints; unused input incurs no production cost.
To further illustrate the differences between the two models, note that increasing the input
batch size always increases the expected output in an uncertain yield model. This is not
necessarily true for the uncertain capacity model where, no matter how large the input
batch size, the expected output can not exceed the average productive capacity. Henig and
Gerchak (1990) propose a general representation of production output which can be used
to model yield as well as capacity uncertainty.

Yield models have been studied rather extensively in recent years. Interested readers are
referred to Yano and Lee (1991) for an excellent survey. We discuss here only those works
which are closely related to the present paper. Lee and Yano (1988) analyze a single-period,
single-product, serial production system, similar to the one considered here, but without
set-up cost. The demand is known and the yield at each stage is a random multiple of input
batch size (referred as stochastically proportional yield by Henig and Gerchak, 1990). Lee



and Yano (1988) show that the optimal production policy for each stage can be characterized
by a single critical number representing the target input quantity. The policy stipulates
that one should input the target quantity, if enough is available; otherwise one should input
whatever is available. An identical result for the random capacity case can be obtained
from our model by setting the setup costs at all stages to zero.

A number of generalizations have been attempted for the Lee and Yano (1988) model.
Yano (1986a) shows that structural results similar to those in Lee and Yano (1988) are valid
even when the demand is random. Wein (1992) allows for the rework of defective items at
a cost. She shows that the optimal production/rework policy can be characterized by two
critical numbers. Barad and Braha (1991) allow for the procurement of semifinished items in
a multi-stage binomial yield model. They establish the optimality of a two-critical-number
policy where the second critical number specifies a procurement target for semifinished
items. Yano (1986b) presents an extension of the Lee and Yano (1988) model by incorpo-
rating a setup cost at each stage of production. For a single-stage problem, she demonstrates
that a two-critical-number policy, similar to that proposed in this paper, is optimal. She
also demonstrates the optimality of a similar policy for a two-stage system, but only under
certain restrictive conditions. The form of the optimal policy for general serial production
systems with random yield and setup costs remains an open research problem worthy of
investigation. This paper addresses the same problem for the case where production stages
are subjected to, not yield, but capacity uncertainties.

The analysis of Lee and Yano (1988) model for the multi-period scenario is quite involved
and is unlikely to yield a structurally simple policy. In fact, the dynamic problem is quite
complex even for a single-stage problem, as shown by Gerchak, Vickson and Parlar (1988).
As a result, recent research efforts have focussed on the study of such systems under sub-
optimal but tractable operating policies. Tang (1990) develops operating characteristics for
Lee and Yano (1988) model under partial restoration rule and provides interesting insights
about the impact of uncertainty. Denardo and Lee (1991) extend Tang’s approach to
allow rework and unreliable machines. Gong and Matsuo (1990) formulate a linear control
problem that tries to stabilize work-in-process and to smooth production. The development
of models for systems with setup costs is still lacking in the literature.

The aggregate capacity medel used in this paper captures parsimoniously the cumulative
impact of varying availabilities of numerous productive resources. Hopp, Spearman and
Duenyas (1993) have used this representation to model the total amount of regular-time
capacity available in any period. They demonstrate that the distribution of aggregate
capacity plays a central role in setting production quotas for a pull manufacturing system.

Ciarallo, Akella and Morton (1994) consider finite and infinite-horizon models for a single-



stage production system with uncertain capacity and uncertain demand. They show that a
single critical number, which represents the order-up-to point, is sufficient to characterize
the optimal policy in a multi-period setting. This is in contrast to stochastically proportional
yield models where, under similar circumstances, the optimal policy is known to have no
structurally simple form (see Gerchak et al. 1988).

The mathematical instrument used to model the uncertainty in aggregate capacity here
is identical to those in Ciarallo, Akella and Morton (1994). In contrast to their single-stage,
multi-period model, we analyze a multi-stage, single-period model with setup cost at each
stage of production. In Ciarallo et al., order-up-to policies are derived from the analysis of
a cost function which is quasi-convex. In spite of this non-convexity, the cost-to-go is shown
to be convex. The presence of setup cost in our model destroys the quasi-convex unimodal
structure of the cost function so effectively utilized by Ciarallo et al. in their analysis.
We derive the two-critical-number policy from the analysis of a cost function which is
neither unimodal nor quasi-convex. In fact, the nature of this cost function changes from
concave-increasing, to convex-decreasing, convex-increasing, simply increasing, and finally
to concave-increasing.

The contribution of this paper is threefold. First, the optimality of a simple two-critical-
number policy is established for an important class of manufacturing problems. Considering
the unusual behavior of the cost function involved, our proof of optimality is somewhat novel.
Second, the sensitivity of the critical numbers to cost parameters is explored, which reveal
many interesting structural properties of the system. Finally, the impact of uncertainties
on the production line is studied by changing the distributions of demand and capacities.
The interaction between internal uncertainties and demand uncertainty is also revealed by
the recursive equation used for the computation of critical numbers.

This paper is organized as follows. Section 2 presents a mathematical description of
the problem and its formulation as a dynamic optimization model. Section 3 analyzes a
single-stage problem and shows that a two-critical-number policy is optimal. This result is
extended in Section 4 to a multi-stage problem. The sensitivity of the critical numbers to
cost parameters, as well as to capacity and demand uncertainties, is explored in Sections 5
and 6, respectively. A numerical example is presented in Section 7. The paper concludes

with some final remarks in Section 8.

2 Problem Description and Formulation

Consider an N-stage serial production system shown in Figure 1. Let the stages be num-
bered such that the final stage of production is denoted as stage 1 while the stage of



production to be performed first is denoted as stage N. The production is aimed towards
satisfying a single uncertain requirement or demand for a product at the final stage. Let Z
be the demand random variable with c.d.f. Q(z) and p.d.f. q(z).

N _»Demand
System: 0 @ 7 ~00)

Stage n A Un @ minfu,,y, } :

zu+l Yn ~ En () mn

Figure 1: A Serial Production System

At any stage, the productive capacity may be uncertain due to a number of factors such
as machine failures, tool unavailability, time spent in process, parameter readjustments,
etc. Let the random variable Y, represent the available productive capacity at stage n
with c.d.f. F(yn) and p.d.f. fa(yn). We assume that all the random variables are mutually
independent and their c.d.f.’s are continuous and twice differentiable.

The problem is to determine a planned production quantity, un, at each stage of pro-
duction such that the expected total cost is minimized. The actual production output from
a stage may be less than the planned production quantity. This will occur whenever the
capacity realization, yn, falls below the production target, un. Otherwise, the complete pro-
duction target is accomplished successfully. In general, the production output of stage n,
Tn, is given by min{un, yn}.

We assume that the initial inventory of all semi-finished items is zero; the analysis can
be extended to accommodate positive initial inventories. The planned production quantity
at stage n is obviously constrained by the actual production output from stage n + 1,
which, in turn, depends upon the planned production quantity at stage n + 1, etc. That
is, un < Tny1 = Min{nt1,Yn+1}. We solve this problem dynamically by delaying the
specification of the planned input quantity at a stage until the production output from
the stage before becomes kniown. In other words, un,un—1,...,u; must be determined
sequentially after receiving the output from the stage before.

The following costs are considered in this model. The decision to produce at stage n in-
curs an “out-of-pocket” setup cost K, independent of the production quantity. In addition,
each unit of item actually produced at stage n incurs a cost wy,. Each unit of unsatisfied de-

mand incurs a penalty 7. There is a cost hy, for disposing a unit of item processed at stage n



but not used by stage n — 1. The cost of disposing leftover raw material is represented by
hn+1. Since this model is especially applicable to one-time production of unique products,
it is assumed that semi-finished items have little salvage value. Disposal of raw material
and finished product, on the other hand, may bring a net cash inflow; this is modeled by
allowing h; and hy4) to be negative. All other parameters and costs are assumed to be
non-negative.

The following two cost conditions are necessary to ensure that it is profitable to produce
and that production is motivated only by the desire to satisfy the demand.

CoONDITION 1 hy+ 7 > w;.

If Condition 1 did not hold, one would simply dispose the input material at cost hs and
incur a penalty 7 for not meeting the demand, rather than process an item at a higher cost

wy. Clearly, this makes it unprofitable to produce anything at the final stage.
CONDITION 2 Wy + hp > hnyy forn=1,...,N.

This states that it is less expensive to dispose an item at one stage than to process it and
then dispose it at the next stage.

Let Cn(zn4+1) be the expected cost of operating an n-stage system with available input
Tp4+1, assuming that the best input decision is used at stage n through stage 1. Then,
Cn(zn+1) represents the minimum expected cost to operate the whole system, where the
available raw material is x4 at stage N. A dynamic programming formulation for the

problem can now be given as

Co(z1) = Ez{hlmax{o,xl —Z}+7rma.x{0,Z——a:1}}, (1)
and Cn(xn+1) = 0<u1;‘n<i:2 o EY" {hn+1($n+1 - min{u,;, Yn}) + Kn&(un)
+wy min{un, Yp} '+C,,..1(min{un,Yn})}, n=1,...,N 2)
_ )1 ifus>0
where 6(un) = { 0 otherwise.

Let u;, be the optimal value of un. In our analysis we will often utilize the following

representation for Cp(Zn+1)

Ca@npt) = ,_min  {hopiZnss + Knbltn) + mtn)} n=1,..,N,  (3)

0<un<zn+1

where v, (us) is a function only of uy, and is given by

(o) = [t = Bt + Cocs(0n)] dFa(a)
+Fn(un)[(wn - hn+1)un +C -1(u,,)], (4)
where Fa(un) = 1= Fu(un).



The function 7, (un) plays a central role in defining the structure of the optimal policy
for this problem. The following observation follows directly from (3).

LEMMA 1 If5(0) < Yn(un)+ Ky for all uy, then it is not worthwhile to produce at stage n.

Thus, u,, = 0.

The following lemma points to another intuitive result. If no input material is available at
stage n, then the minimum expected cost for stage n through stage 1 is simply the expected

penalty for not meeting the demand.
LEMMA 2 Cr(0) = 7,(0) = wE[Z] for all n.

Proof: From (3), C(0) = 7,(0) and from (4), 9,(0) = Cn-1(0). The result follows by
induction, since Cy(0) = wE[Z] from (1). ]
These observations will be utilized during the analysis in coming sections.

3 The Single-Stage Problem

In this section we analyze the single-stage problem for the model introduced in Section 2.
This analysis will provide important insights in understanding the multi-stage problem. We
begin by rewriting (3) as

Ci(ea) =  min {hozs + Kib(w) +m(w)}, (5)

0<u;<z2

where v;(u;) is obtained by substituting (1) into (4),

(o o]

nw) = /Oul [(w1 —h)y1 +h /oyl(yx -2) dQ(z)+7r/

n

+Fiw)[ (w0~ b+ [ (w1 2) dQ(e) + 7 [ (2 - ) dQ2)]

(2 = 1) dQ(2)| dFi (1)

We first investigate the nature of +;(-) since it plays a central role in the minimization

in (5). The first two derivatives of v;(u;) are given by

Yi(w) = 3—3, = Ru)nw), 6)
2

Yiw) = \.;’Tj; = Fy(w)(h +m)g(w) — filu)gi(w), ™

where  gi(u1) = (h1 +m)Q(u1) + wy —hy — . (8)

91(u1) is non-decreasing since Conditions 1 and 2 together imply that (h; + 7) > 0.
Define S; such that ¢1(S1) =0, i.e.,

h2+7r—w1). (9)

_ -l
S = Q ( hy+m

7



S is non-negative and finite because (hy + 7 —w;) > 0 and (hy + 7 — w1) < (hy +7) from
Conditions 1 and 2. Then, g;(u;) is negative in (0, S1) and positive in (S}, 00). The nature

of y1(-) can now be characterized using (6) and (7):

1. For u; € (0,5)), 7(u1) < 0 and 7/ (u1) > 0, hence v;(u1) is decreasing and convex in

this region.

2. For u; € (S1,00), 71(u1) > 0 and hence 71(u;) is increasing in this region. Nothing
further can be concluded about the nature of ;(u;) since 7{(u;) may alternate its

sign in different sub-intervals.

From these observations, it is clear that v;(u;) attains its global minimum at u; = S;. The

behavior of v;(u;) is shown graphically in Figure 2.

4 Y (u )+ K
%(0) +kK
Y ()
%(0)
K
U
4,
0 S S

Figure 2: The form of v, (u;)

Whenever S; = 0, the problem is trivial since it is optimal not to produce. Note that
from (9), S; > 0iff

ho+m—w, > (hy+7m)Q(0),
or \‘w1+h1—h2 < (h1+7r)Pr{Z>0}.

That is, if the effective cost of processing a unit, (w; + hy — h2), exceeds the marginal saving
derived from making a unit available, one is better off not processing anything.

Now consider the minimization in (5), in particular the term (K;6(u1) + vi(u1)). The
nature of (K + v1(u;)) is identical to that of ;(u;) and it attains its global minimum at
S; with value Ky + %(S1). If m1(0) < K3 + m(S1), it is not worthwhile to produce, as



per Lemma 1. An excessively high setup cost makes the problem trivial, since one always
chooses not to produce. If, on the other hand, v,(0) > K1+71(S1), since v, (u, ) is decreasing

in region (0, S), there exists a unique s; € (0, S;1) such that

M0 = Ki+m(s1) (10)

It follows (see Figure 2) from the definition of s, and the decreasing nature of y,(u;) over
(0, S1) that

1(0) < Ki+m(u1) foru < s, (11)
and  m(0) > Ki+m(u1) fors; <u <58 (12)

Based upon the available input material z, the optimal policy can now be characterized
in terms of the two critical numbers s; and S;. For 25 < sy, it is not worthwhile to produce
because the setup cost, K, will offset the expected savings, (1(0) — 71(u1)), derived from
production. This follows from (11), since u; < o < s1. For 51 < 2 < Sy, the advantage
gained by producing, (71(0) — 71(u1)), can offset the setup cost, K, provided one plans to
produce more than s;. This follows from (12). In fact, since v;(u;) is decreasing in range
(s1,81), it pays to set the production target as high as possible; the optimal policy simply
inputs all the available material. Finally, for zo > Si, one sets the production target at S,
the point where (K +v1(u1)) attains its global minimum.

The optimal policy for stage 1 and the nature of v;(u;) are now summarized in the

following theorem.
THEOREM 1 For the model stated in Section 2, if it is worthwhile to produce, then

1. the optimal policy for stage 1 is

0 ifzo€e(0,81)
uj(ze) = { T2 ifz2€(51,51) (13)
Sl szQ € (81’00)7
where critical numbers S, and s, are solutions to equations (9) and (10) respectively
and satisfy the relationship, 0 < s, < S < 00;

1 .
decreasing'and convez in range (0,S))
increasing in range (Si, 00).

2. yi(ur) s {

The upper critical number, S; is the production target, i.e., the largest quantity one
would ever process at stage 1. The lower critical number, s;, represents the smallest input
quantity one is willing to process at stage 1. Note that Sy, given by (9), is the same newsboy
solution one would expect if the problem were formulated without any capacity constraint.



This observation is consistent with that in Ciarallo et al. regarding the order-up-to point in
a single-stage single-period model with capacity uncertainty. The lower critical number, s,
however, does depend on the capacity distribution. In effect, given an input quantity, the
decision as to whether one should produce is intrinsically linked to capacity uncertainty.
However, the production target is independent of capacity. Once a decision is made to
produce, one simply hopes that enough capacity will be available
The cost-to-go, C1(z2), is obtained by substituting u} from (13) into (5)
haza + 71(0) if z2 € (0,5;)
Ci(zg) = hoza + K1 + m(z2) if 22 € (51,51)

hoza + K1+ 1(S1) if z2 € (S1,00).
One can easily show that, unlike Co(-), Cy(-) is not convex. As a result, the mathematical
structure of the multi-stage problem presented in the next section is quite different than

that for a single stage problem.

4 The Multi-Stage Problem

The analysis of the single-stage problem, presented in the last section, was considerably
simplified because the terminal cost-to-go, Co(z;), is convex. This is no longer true for
the multi-stage problem that we analyze in this section. The key results of this paper are

contained in
THEOREM 2 For the model stated in Section 2, if it is worthwhile to produce, then

1. the optimal policy for stage n is

0 Zf Tn+1 € (0) Sﬂ)
Un(Tny1) = Tnt1 4 Tny1 € ($n,5n)
Sn 1f$n+1 G (Sﬂ, OO),

where critical numbers sy, and Sy, are solutions to equations

7n(3n) +Kn = 7n(0)) (14)
and v.(Ss) = 0,
respectively and satisfy the relationship
0<8p-1 <87 < Sp < Sn1 L 00
increasing and concave in range (0, Sp—1)
decreasing and conver  in range (Sp—1,Sn)

(

(
increasing in range (Sp, Sn—1)
increasing and concave in range (Sp—1,00).

2. (") 1

10



Proof: The proof will be by induction on n. Define sp =0 and Sp = oc. Then, for stage 1
all the properties are true from Theorem 1. To prove that these properties hold for thev
general case, suppose that Theorem 2 is true for stage n— 1. Then, the following properties
must hold:

0 if 2, € (0, $p—1)
u:l_l(xn) = mn if xn G (Sn_l, Sn_l) (15)
Sn-1 ifzn € (Sn—l,oo);

where critical numbers s, and S,,_; satisfy

7n—l(sn—1)+Kn—l = 711—1(0)’ (16)
Ya-1(Sn-1) = 0, (17)
8n-2 < 8n—1 £ Sp-1 < Sn-2, (18)

increasing and concave  in range (0, $p—2)
decreasing and convex  in range (sp—2,Sn-1)
increasing in range (Sn—1, Sn-2)
increasing and concave  in range (Sy_2, 00).

and  Yo_1(') is (19)

Figure 3(a) illustrates the nature of 4, _;(un—1) and the relationship among critical numbers
as indicated in the induction hypotheses (16)-(19).

Since the nature of 7,(-) plays a fundamental role in determining the form of the optimal
policy, we first explore its behavior. To this end, we first differentiate v, (un) in (4) to get

To(tn) = Fn(un)[wn = hnt1 + Cp_y (un)). (20)
The term Cj_,(-) can be obtained by first substituting u2_, from (15) into (3) to get

hnzn + 1n-1(0) if z, € (O,lsn—l)
Cn—l(xn) = haZn + Kn-1 + '7n-—1($n) ifzn, € (Sn—lySn—l) (21)
hnzp + Kno1 + 'Yn—l(sn—l) ifzn, € (Sn—l; 00)’

which can then be differentiated to yield

y _ Yoo1(Zn) + hn  if Zp € (Sp-1,Sn-1)
Cn-1(2n) = { Rn otherwise.

. (us) can now be written as

_ \‘ Fn(un)gn(un) if u, € (Sn-lasn-l)
(un) = { Fu(un){wn + hn = hny1]  otherwise, (22)
where 9n(Un) = Wn+hn —hayr + 71 (uUn). (23)
Differentiating v, (us), one readily obtains
' _ Fn(un)ﬂ-l(“n) = fa(un)gn(un) if tun € (Sn—1,Sn-1)
(tn) = { — fn(tn)[Wn + hp, = hny1] otherwise. (24)

11
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Figure 3: (a) The form of Yn—1(un-1) and (b) its derivative

We first investigate the behavior of v,(uys) for un ¢ (Sp—1,Sn-1). From Condition 2,
the term (wy + hn — hnt1) is always positive. Equations (22) and (24) then imply that
¥ (un) > 0 and % (un) < 0, and hence v, (uy,) is increasing and concave outside the interval
(8n=1,Sn-1)-

To explore the behavior of y,(uy) in the interval (sn—1, Sp~1), we need to first understand
the behavior of v,_,(un) since it controls the behavior of gn(uy). From the properties of
Yn-1(-) indicated in (19), it\‘can be inferred that (i) for un € (Sp-2, Sn-1), Ya_,(tun) < 0,

n_1(Un) >0, and (ii) for un > Sn_1, ¥s_;(un) > 0. These imply that v, _,(us) is negative

and increasing in range (sn—2, Sn—1), crosses zero from below at S;,_; and remains positive
for un > Sn-1, as illustrated in Figure 3(b).

Now consider the behavior of gn(us) over the interval of interest, (sn—1,Sn~1). From

(23), gn(un) = positive constant+v,_,(un). But v, _,(un) is increasing in range (s,,—2, Sn—1).

12



From (18), (Sn—1,Sr-1) € (Sn-2, Sn-1), i.e., the interval (Sn—1,Sn-1) is a sub-interval of
(Sn—-2,9n-1). Hence, gn(un) is increasing over (sp_1,Sn-1). The zero-crossing property of
gn(un) is of fundamental interest. But before we explore that, we propose the following
lemma which rules out the circumstances under which the problem is trivial. The proof

and further economic interpretation can be found in the Appendix.

LEMMA 3 If (Wn + hn — hny1) > —Yi_1(sF_,), then it is not worthwhile to produce at
stage n. That is, uy, = 0.

Consider gn(un) now. It is increasing over interval (sn—1, Sn—-1). From Lemma 3 and (23),
gn(sF_;) < 0. Also, gn(Sn-1) > 0 by substituting (17) in (23) and using Condition 2.

Hence, there exists an Sy, sn—1 < Sp < Sn-1, such that
gn(Sn) =0. (25)

Clearly, gn(un) < O for un € (Sp-1,5n) and gn(un) > 0 for up € (Sp,Sn-1). Also, from
(19), Y4_1(un) > 0 for un € (Sn-2,5n-1) 2 (Sn-1,5n-1). It follows from (22) and (24)
that (i) 7,(Sn) = 0, (ii) for un € (Sn-1,5n), Ya(tun) < 0 and ¥4(us,) > 0, and (iii) for
Up € (Sn,Sn-1), 7a(un) > 0, but ¥//(un) may be positive or negative. Together, these
properties imply that 7,(-) (i) has a local minimum at Sy, (ii) is decreasing and concave
over interval (sn—1,Sn), and (iii) is increasing over interval (Sy, Sp—1). Recall that v,(-) is
increasing and concave for u, < s,—; and u, > S,—;. This completes the characterization
of Yn(:).

We now characterize the form of the optimal policy. Note that v, (un) for u, € (0, 85-1)
achieves its minimum at 7,(0) while y,(un), Un € (Sn-1,00), achieves its minimum at
Ya(Sn)- If ¥n(0) < ¥:(Sn), it is optimal not to produce at stage n. If, on the other hand,
Yn(Sn) < 1(0), i.e., Sp is the global minimum of 7,(-), then it may be worthwhile to
produce. The answer depends on the setup cost, Kn. If Ky 2 ¥,(0) —¥.(Sp), i.e., the setup
is more expensive than the maximum benefit achievable from production, then one chooses
simply not to produce, irrespective of the available input material z,,;. If, on the other
hand, Ky < 1n(0) — Y (Sn), there exists a unique S, € (Sp—1, Sn) such that

(0) = Kn+Yn(sn)- (26)

Note that a point s, satisfying (26) can not lie in interval (0, s,—;) since vy, (+) is increasing
over this interval and yn(sn) < Yn(0). It follows from the definition of s,, and the decreasing

nature of v,(un) over (sp—1,Sy) that

Y(0) < Kn+Mm(un) for all u, < syq, (27)
and (0) > Kn+n(un) for all sp < up < Sp. (28)
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Based upon the available input material 2,41, the optimal policy can now be character-
ized in terms of the two critical numbers s, and Sp. For z,4; < sp, it is not worthwhile to
produce because the setup cost, K, will offset the expected savings, (1n(0) — Y (us)), de-
rived from production. This follows from (27), since uyn < Tnt1 < Sp. For 85 < Tpy1 < Sp,
the advantage gained by producing, (7,(0) — Yn(us)), can offset K, provided one plans to
produce more than s,. This follows from (28). In fact, since v, (uy) is decreasing in range
(sn, Sn), it pays to set the production target as high as possible; the optimal policy simply
inputs all the available material. Finally, for ,41 > Sy, one sets the production target at
Sn, the point where (K, + Yn(un)) attains its global minimum. Q.E.D. ]

The lower critical number, s,, represents the smallest input quantity one is willing to
process at stage n. In this sense, s, is a measure of the effective setup cost at stage n.
The upper critical number, Sy, is the maximum desired output from stage n. The interre-
lationship among critical numbers is of significance for their efficient computation and for

understanding how system operates. An immediate corollary of Theorem 2 is

COROLLARY 1 For the model stated in Section 2, the optimal operating policy is charac-

terized by a sequence of critical numbers, {sn, Sn}, such that

0<81<6<...<s§y<INK...£5 <85 <.

This relationship has many intuitive implications for the operation of the serial system

under study:
1. The lower critical number is zero at a stage only if it is zero at all downstream stages.
2. The lower critical number increases as one moves upstream.

3. The upper critical number decreases as one moves upstream. As a result, for n =
N -1,...,2,1, one has a binary choice: (i) input everything if Zn4+1 > sy, or (ii) input
nothing if zn41 < 8. In effect, the system has a single-critical-number policy for all

stages except stage N, which must follow a two-critical-number policy.

4. The upper critical number at any stage is greater than the lower critical number for
all stages. That is, the\largest lower critical number is smaller than the smallest upper

critical number.

5. The sequence of intervals {(sn,Ss)} is imbedded, i.e.,

(sn,SN) C (SN-1,Sn-1) € -+ C (52, 52) € (81,51) € (0,00). (29)
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5 Sensitivity Analysis

This section explores how the critical numbers, s, and Sy, change as the cost parameters
are varied. Whenever possible, we have tried to characterize the sensitivity quantitatively,

but in many instances, we could only give a qualitative characterization.

5.1 Sensitivity Analysis for the Upper Critical Number, S,

The upper critical number, Sy, was defined in Section 4 as the zero of the recursive function
¥,(-) in interval (sn-1,Sn-1). For the purpose of sensitivity analysis, it will be helpful
to express 7;(-) explicitly in terms of the other model parameters. Consider +,(us) for
Un € (Sn—1,Sn-1). Substituting (23) into (22),

Ya(un) = Fu(un) (Wn +hn = hng1) + Fr (un) Yooy (un),  fOr tn € (85-1,5n-1).  (30)
Similarly, for un € (Sn-2, Sn—2), Ya—1(un) is given by
Ya-1(tn) = Faci(un) (Wno1 +hnot = ha) + Facy (un) Yooz (un),
which can be substituted in (30) to yield

’){;(Um) = Fn(un)(wn + hn — hn+1) + Fn(un)Pn—l(Un)(wn—l + hp-1— hn)
+Fn(un) Fac1(Un)Vn—o(tn), for un € (sn-1,S5n-1)

Note that this substitution is valid because intervals (sp—1,Sn-1) C (Sn-2, Sn—2) as in-
dicated in (29). By recursive substitution, we can obtain v,(uy) in terms of the model
parameters alone. The result is

n

%(un) = Z HF] Un) U)k+hk—hk+l HF (un)(ﬂ'"*‘h'l)
k=1j=k J=1

for Uy € (sn—ly Sﬂ—l)! (31)

where Q(un) = 1 —Q(un) and we have used the definition of g, (u;) given in (8). Recall that
the upper critical number, Sy, is the solution to equation 7, (us) = 0, up € (8p-1,Sn-1)-
That is, Sy, satisfies

n

= ZHF; wk+hk—hk+1 H Sn (7l'+h1)= . (32)
k=1 j=k

Equation (32) defines S, in terms of model parameters; other critical numbers are not
present in this equation. The upper critical number for any stage can be computed using (32)
in a non-recursive fashion. Note that Sy is independent of the capacity distribution for

stage n, but it does depend on the capacity distributions for all the downstream stages.
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Also, the absence of the setup cost parameters, Kj;'s, in (32) implies that the upper critical
numbers do not depend on setup cost.
Using the implicit-function theorem, the sensitivity of S, with respect to any parameter

p can be expressed by

0Sn _ _ 074(Sw)/0p
o~ 0%(5)/95,

From (24), for u, € (s,._l,Sﬂ_l)

0m(Sn) _
aSn - ’Y:l

But gn(Sn) = 0 from definition of S,, which makes the last term of the above equation

Sn)‘ﬂ;- (Sn) = fn(Sn)gn(Sx).

vanish. Hence

0Sn o 31 (Sn)/0p
6}7 F (Sn)'Yg—l(Sﬂ) '

The sensitivity of S, to changes in cost parameters can now be obtained by taking partial

(33)

derivative of (32) with respect to h;, w;, 7 and K; respectively and then substituting the
results into (33). We get

THEOREM 3 The sensitivity of the upper critical number, Sy, with respect to

1. disposal cost, hs, is

( n-1 _
—Q(Sn) Hl FJ’(Sn)/')/I-l(Sn) ifi=1
J=
n-1 _
05n = ¢ —-Fi_1(Sa) T1 FJ‘(Sn)/’Y”_l(Sn) ifl<i<n
Bh. =i
Oy —Fn-1(Sn) 'Yﬁ-l(sn) ifi=n
1/%n-1(Sn) ifi=n+1
[ 0 otherwise;
2. unit production cost, w;, 18
! . p .
% _ JI;I‘ F; ( n)/%—l(sn) ifi<n
wi | —1/%-1(Ss) ifi=n
0 otherwise;

3. penalty for not satisfying the demand, «, is

on — Qisa n Sl Heea(S2);

4. setup cost, Kj, is

0Sn —0.

@
X
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Note that ¥4_,(Sn) > 0 since Yn—1(un) is convex in ($n-1,Sn-1) and Sy € (Sn-1,Sn_1) by

Theorem 2. We make the following observations based on Theorem 3:

1. The upper critical number at a stage (i) decreases with an increase in disposal cost
at a downstream inventory location, (ii) increases with an increase in disposal cost at
the inventory location immediately upstream and (iii) remains unaffected by changes

in disposal cost at all other upstream inventory locations.

2. The sensitivity of the upper critical number at stage n, with respect to changes in
disposal cost at a downstream inventory location i, 8S,/dhi, is directly proportional
to the probability that the entire input Sy gets through all the production stages
following stage n, up to and including stage ¢, and is stopped at location 7 (due to

insufficient capacity at stage i — 1, or insufficient demand, if ¢ = 1). That is,

%%— « Pr{Yn_1>Sn; Ya—2>Sn; ... ;Yi> Sp; Yic1 < Sp} for1<i <,
and g_iﬂ x Pr{Y‘n—l > Sp; Ya-2 > Sn; ... ;Y1 > Sp; Z<Sﬂ}'
1

Clearly, the farther the inventory location i from stage n, the smaller the likelihood
that the entire input S, reaches location i, and hence the weaker the dependence of
Sy on h;.

3. The upper critical number at a stage decreases with an increase in production cost at
that stage or at any other downstream stages, but it remains unaffected by the changes
in production costs at all upstream stages. Moreover, 3S,,/0w; is proportional to the
probability that input S, is successfully processed at all stages following stage n, up
to and including stage i. Based on observation 2,

0Sn _ { Pr{Yi; < 5,}8S,/0w; ifl<i<n
Oh; | Pr{Z < S5,}08S,/0w ifi=1,

also, fori < j < n,

o5, 95, _ 95,
Ow; ow; ~ Ow;’

i.e., the upper critical number at a stage is far more sensitive to the changes in pro-

=Pr{}/;>5n; },1+1 >Sn; e ;),]'-I>Sﬂ}

duction cost at a nearhy downstream stage than those at a stage farther downstream.

4. The upper critical number at a stage increases as the penalty for not satisfying the
demand increases. Moreover, the sensitivity 3S,/dr is proportional to the probability
that input Sy, is successfully processed at all downstream stages, and still falls short

of satisfying the demand. Based on observation 2, we have
0Sn

0Sn
‘577 = —PI'{Z > Sn}%-;,
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i.e., the upper critical number is less sensitive to changes in production cost than
to changes in stockout penalty; the negative sign signifies that their effects are in

opposite direction.

5. The upper critical number is equally sensitive to changes in disposal cost at the
immediately preceding inventory location and to the production cost at the stage
under consideration. In fact the changes in either of these parameters affects the

upper critical number the most, as can be seen from,

0Sn S, 1 . .
=— = - = Constant of proportionality.
Own 6hvﬂ+l ’Yﬁ,'_l(Sn) prop Y

5.2 Sensitivity Analysis for Lower Critical Number, s,

The proofs of the following sensitivity results for the lower critical number are somewhat

involved and are relegated to the Appendix.

THEOREM 4 The lower critical number at a stage is zero if and only if the production at
that stage incurs no setup cost and the same is true for all downstream stages. That is,
sn=0ifand only if K; =0, for alli <n.

Whenever the lower critical number, s,, is zero, the optimal policy at stage n is of produce-

up-to form given by a single critical number, Sy,

ut ($n+1) — Tn+1 %fxn+1 <5
n Sn lfxn-{-l > Sﬂ‘

According to Theorem 4, a nonzero setup cost at a stage makes the lower critical number
positive not only for that stage, but for all upstream stages. If the optimal policy for a
stage is of produce-up-to form, the optimal policy for all downstream stages must also be
of produce-up-to form.

The following theorem shows that any increase in the setup cost at a stage will also

increase the effective setup costs at all the earlier stages.

THEOREM 5 An increase in setup cost at a stage leads to an increase in lower critical

number at that stage as well as at all preceding stages.

The lower critical number at a stage (i) increases with an increase in setup cost at that
stage or at any other succeeding stages, and (ii) remains unaffected by setup cost changes
at preceding stages.

THEOREM 6 An increase in stockout penalty leads to a decrease in lower critical numbers

for all stages.
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As the shortage penalty increases, one is more likely to carry out production (due to a
decrease in'lower critical number) and one tends to produce in a larger quantity (due to
an increase in upper critical number) at all stages, to avoid the higher shortage penalty. A
reduction in unit production cost has an analogous affect on all upstream stages as indicated

in the theorem below.

THEOREM 7 A decrease in the unit production cost at a stage leads to a decrease in the

lower critical number at that stage as well at all preceding stages.

The lower critical number at a stage (i) decreases with a decrease in unit production cost
at that stage or at any other succeeding stages, and (ii) remains unaffected by the changes

in unit production costs at preceding stages.

THEOREM 8 A decrease in disposal cost at an inventory location leads to an increase in

lower critical number for the stage next to the inventory location.

Any decrease in disposal cost at the inventory location before a stage increases the lower
critical number and decreases the upper critical number at the stage. However, the decrease

in the disposal cost will increase the critical numbers at all the upstream stages.

6 The Impact of Uncertainties

We now turn our attention to examine the effect of demand and capacity uncertainties
on the optimal policy. We explore this by examining changes in critical numbers as the
demand or capacity distribution is changed stochastically. Our results are summarized in

the following two theorems; their proofs can be found in the Appendix.

THEOREM 9 As the demand increases stochastically, the upper critical number increases

but the lower critical number decreases at every stage of the system.

An increase in demand tends to increase the expected shortage penalty. To avoid this extra

penalty, one is less reluctant to start production and is willing to produce more.

THEOREM 10 A stochastic\increase in capacity at any stage leads to an increase in the
upper critical numbers for all upstream stages, but the upper critical numbers for all doun-

stream stages, including that for the current stage, remain unchanged.

As capacity decreases stochastically at a stage, there is larger probability that capacity will
take on smaller values. Since it is more likely that only a smaller input quantity can be

processed at this stage, the maximum desired output from upstream stages are curtailed.
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The capacity changes at a stage, however, does not affect the maximum desired output
from that stage. To explain this, suppose that the maximum desired output for a stage was
determined assuming an infinite capacity at that stage. In case of capacity uncertainty, one
simply hopes to produce this desired amount. Reducing the maximum desired output in an-
ticipation of a low capacity realization guarantees lower output for all capacity realizations.

This can be no better than letting the realized capacity limit the output.

7 A Numerical Example

The purpose of this example is (i) to demonstrate that the two critical nun.oers can be
computed efficiently, (ii) to validate that the sequence of critical numbers, {sn,Ss}, is
imbedded, and (iii) to illustrate the nature of v,(-) numerically.

Consider a three-stage serial production system with the following costs,

w3 = 30 we=10 w; =15
hy=10 h3=20 hs =25 h1 =50 7 =200
K3;=25000 Ko2=0 K, = 45000.

Demand as well as capacities are assumed to follow a lognormal density function

_ — )2
d(alp,0) = \/2—;0(1 exp| (ln;ﬂ u)]

where p and o are parameters of the lognormal distribution. That is, ¢(z) = @(z|uq,04q)

for all a > 0,

and fn(yn) = &(Ynlpin,on), n = 1,2,3. The parameters of these distributions are

3 =85 =83 w =85 jug=73
o3 =.2 02=.9 01=.3 o4 =.5.

The upper critical numbers, Sy’s, can be computed using (32). Note that this compu-
tation need not be carried out in a recursive fashion, i.e., the upper critical numbers can be
obtained independent of each other. In fact, since the implementation of the optinial policy
requires only S3 (see Observation 3 for Corollary 1), there is no need to compute any other

upper critical numbers. For the purpose of comparison, we report below all the S,’s
S3=1708, S, =2177, S)=2434.
The lower critical numbaers are calculated recursively using (14) to obtain
s3 =453, s2=231, s =214

Note that s9 is greater than zero despite the fact that Ky is zero. This is because the effective
setup cost at stage 2 is greater than zero due to a positive setup cost at stage 1. Observe
also that the critical numbers satisfy the monotonicity property indicated in Corollary 1.

To illustrate the nature of s, a plot of v3(u3) is shown in Figure 4.
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, Y3 (43)

Y5(0) 11

U3

=21 S,=1708
Figure 4: A plot of v3(u3) for the numerical example

8 Concluding Remarks

A major goal of this investigation was to explore how capacity uncertainties affect produc-
tion decisions in a multi-stage system with setup costs. Despite the unwieldy nature of the
cost functions involved, we were able to establish the optimality of a simple two-critical-
number policy. The critical numbers for successive stages were shown to be monotonic.
This fact was exploited for efficient computation of critical numbers. The monotonicity of
critical numbers also lead us to the interesting conclusion that production for all but the
very first stage, can effectively be controlled using only the lower critical numbers. In our
effort to understand how production decisions are affected by cost parameters, we explored
the sensitivity of critical numbers to these parameters. The impact of demand and capacity
uncertainties were also studied by letting their distributions change stochastically. These
results provided us with further insights on the interrelationship among various stages of

the system.
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Appendix

Proof of Lemma 3: Suppose (wn +fin—hny1) > —7,_,(sF_,) then, from (23), gn(sF_,) >
0. Since gn(un) is increasing over interval (sn-1, Sp—1), it remains positive over this entire
interval. As a result, from (22), v, (un) is always positive. That is, y,(0) < Yn(un) for all
Un, and it is not worthwhile to produce at stage n. Q.E.D. [ |

Further Explanation for Lemma 3: Recall that for the single-stage problem, an equivalent
condition is (wy + h1 — hg) > (7 + hi)Pr{Z > 0} or g;(0) > 0, which implies that S; = 0.
Condition 2 and Lemma 3 together specify lower and upper bounds on quantity (wy, + hy, —
hn4+1) which can be explained as follows. If (wp + hn — hn41) < 0, one has an unnecessary
incentive to process the input at stage n, just for the sake of disposing the output at the
next stage. On the other hand, as (wn + hn — hn41) increases, it provides an increasing
disincentive for production, and beyond a point, it may well become totally uneconomical
to carry out production at stage n. In general, if the effective cost of processing a unit,
(wn + hn — hat1), exceeds the maximum marginal benefit derived from making the unit
available at the next stage, —,_,(s}_,), one simply chooses not to produce.

Proof of Theorem 4: From (10), we know that s; = 0 if and only if K; = 0 since
s1 € (0,51) and 7 (-) is decreasing in (0,S);) by Theorem 1. Assume K; = 0. From
Theorem 2, 7o(-) is decreasing in (s; = 0, Ss). Then, from (26), s, = 0 if and only if K5 = 0
since sy € (0,52) by definition. If K} # 0, then s; > 0. By Theorem 2, s2 > s; > 0.
Therefore K} must be zero to have sy = 0. To proceed by induction, assume s,_; = ... =
s2 =81 =0if and only if K,_) =... = K3 = K; = 0. By Theorem 2, ¥,(-) is decreasing
in (sp-1 = 0,S,). By the definition of the lower critical number, s, = 0 if and only if
Ky = $p—1 = 0 since s,_; € (0,S,) by definition. Suppose K; # 0 for some i < n. Then,
$n—1 > 0 by assumption. By Theorem 2, s, > sn—; > 0. Therefore, K; for all i < n must
be zero to have s, = 0. QED. [ ]

Proof of Theorem 5: Suppose the setup cost at stage i increases from K; to K;i. Let
the corresponding functions¥ya(-), Ca(-), etc., be represented by 4s(-), Ca(-), etc. Similarly,
let the new critical numbers be represented by $§, and 5',,, for all n. Recall that the upper
critical numbers are not affected by changes in setup costs (Property 4 of Theorem 3),
ie, Sy, = S‘n for all n. Since the change at stage i does not affect decision for any of the
downstream stage, hence s; = §; for all j < i. From (26), for stage

%(si) = %(0) - K;,
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Since 7% (0) = %(0) by Lemma 2 and K; < Kj, hence ¥(s;) > #i(8;). Observe from (3) and
(4) that y(-) is not a function of Kj, i.e., vi(ui) = %i(us) for all u;. Then, %(3;) = %(3) <
7i(si). By Theorem 2, 4;(-) is decreasing in range (si-; = §;-1,5;), and both s; and 3
belong to interval (si-1, Si). Hence, §; > s; since %(8;) < ¥i(s;).

For stage i+ 1, from (4),

Ui+l -
Yirr1(Uig1) = /0 [(wit1 = hiv2)¥i+1 + Ci(Wit1)] dFit1 (Yig1)
+Fi1 (i) [(Wig1 — higo)uign + Ciuipr)).

Then, we can derive

Uil
Hit1(Uig1) = Nir1(vip1) = /0 (Ci(Wit1) = Ci(%ir1)] dFig1(Big1)

+Fir1 (wig1)[Cilwit) = Ci(uigr)],  Vairr. (A1)

Consider (A.1) for u;4; € (5, S;). Since §; > s; and S; = S;, the first term can be divided
into three sub-intervals (0, s;), (si,8i) and (i, ui+1), and then by substituting (21) into
(A.1), we have

Fip1(Uit1) = Vi1 (Uig1)

= /Oss [%(0) — %(0)] dFi+1(vi+1) + /‘ ’ [%:(0) = ¥i(yis1) — Ki] dFip1(3ig1)
+/:“+l[f(,- — Ki) dFit1(i41) + Fipr(wig)[Ki — K. (A.2)

The last two terms of (A.2) are positive since K; > K;. Observing that 7;(0) = 4:(0)
from Lemma 2, the first term becomes zero and the integrand of the second tern: can be
rewritten as % (s;) — 7i(yi+1) by the definition of s;. By Theorem 2, () is decreasing in
(8i,8:) C (8i-1,S5i). Therefore, 7i(si) > Yi(3i+1) for yis1 € (s4,8;). Hence, the second term
of (A.2) is also positive. As a result, Fi+1(ui+1) > ¥i+1(ti+1) in (3i, Si+1). By Lemma 2
and from the definition of the lower critical number, we have
Yit1(Sit1) = %+100) = Kiy1 = %i+1(0) — Kig1 = Fip1(3ip1).
\

Hence, Yi4+1(Si+1) = %i+1(8i+1) > 7i+1(8i+1) since 3i41 € (8, Siv1) by Theorem 2. Notice
that vi4+1(-) is decreasing in (8i, Si+1) C (si, Si+1) by Theorem 2. Therefore, si1; < §i+1. In
order to proceed by induction, we need ¥i+1(%i+1) > ¥i1(ti+1) in (841, Si+2) € (i, Si+1)
from (29). The rest of the proof for stage n > i+ 1 is analogous to the proof at stage i + 1.
However, instead of the term (K; — K;) in (A.2), it will become 4n—1(un) — Yn-1(un) for
stagen > 1+ 1.
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By induction, assume sp—; < 8z—1 and Ya—1(Un-1) < n-1(tn—1) in range (Sn_1, Sy)

for n > i. For stage n, from (4) we can write

'711.(“11.) - 7n(un) = /(;u" [én—l(yn) - Cn—l(yn)] an(yn)
+Fn(un)[én-1(un) = Cn-1(tn)]- (A3)

Consider (A.3) for up € (§p—1,Sn-1). Since 8p—1 > Sp—1 and S —1 = Sn-1, the first term
can be divided into three sub-intervals (0, Sn—1), (Sn—1,8n-1) and (8p—1,un), and then by
substituting (21) into (A.3), we have

:Yﬂ(un) = Yn(un) .
= /osn_lﬁn-l(o) ~ Yn-1(0)] dFn(ym) + / ':1[,.7"_1(0) — Ano1(yn) = Kn1] dFn(yn)

+ _u" (n-1(Un) = Ye1(Un)] dFn(¥n) + Fu(tun)[n—1(tn) = Ya-1(tn)]- (A4)

Sn-1
The last two terms of (A.4) are positive since Yn—1(un) > Yn-1(un). Observing that
Yn-1(0) = #n-1(0) by Lemma 2, the first term becomes zero and the integrand of the second
term can be rewritten as Yn—1(Sn-1) — Yn—1(y¥n) by the definition of s,_;. By Theorem 2,
Yn-1(+) is decreasing in (Sp—1,8n-1) € (Sn—2,Sn-1). Therefore, Yn—1(sn-1) > Yn-1(¥n)
for yn € (Sp-1,8n-1). Hence, the second term of (A.4) is also positive. As a result,
n(tn) > Yn(tn) in (8p-1,Sn). By Lemma 2 and from the definition of the lower critical

number, we have
'Yn(sn) = 711(0) -K, = ﬁn(o) - K, = 'S’n(§n)-

Hence, Yn(sn) = An(8n) > Yn(3n) since 3n € (8n-1,Sn) by Theorem 2. Notice that yn(-)
is decreasing in (8p-1,Sn) C (Sn-1,Sn) by Theorem 2. Therefore, s, < $p. In order to
complete the proof by induction, 4n(un) > Yn(ua) in (3n,Sn+1) € (8n-1,5n) from (29).
QED. N

Proof of Theorem 6: Suppose the penalty cost 7 increases to 7, and the associated yn(-),
sn and S, become An(-), 8n and S’n, respectively. The following lemma must hold for all

stages

LEMMA A.1 For all stage n,

/ " Fo(un)tn + B — hoga] dun+ [ () dm = —Kn. (A.5)
0

Sn—1

Proof: By the definition of sy, consider

“Kn = lsn) =) = [ alun) dim,

24



by definition of integration. From (22), 74 (un) can be decomposed into two sub-intervals
(0, 8p—1) and (sn—1, Sn) instead of (0, s,). Hence, equation (26) can be rewritten as (A.5).
QED. a

By Condition 2, the integrand in the first term of (A.5) is positive, and since ¥,(-) is
decreasing in (Sp—1, Sn) by Theorem 2, the integrand in the second term is negative. Hence,
equation (A.5) can be interpreted as follows: the increment of v,(:) from 0 to s,_; minus

the decrement from s,_; to syn, is always equal to — K.

Consider (A.5) for the case when the penalty is 7
8

Sn—-1 _ n
/0 Foa(tn)tn + b = bt dtin + [ Hi(ttn) dtin, = K. (A6)

Sn-1
Since — Ky, is a constant, the difference between the left-hand-sides of (A.5) and of (A.6) is
zero. We will prove the theorem by induction. For each stage n, we will show if s, > §,
is not true, then the difference between (A.5) and (A. 6) will turn out to be negative. By
contradiction, sp > 8n.
For stage 1, the first terms of both (A.5) and (A.6) vanish since so = §o = 0. Then, by
subtracting (A.6) from (A.5), we have

/alf*/l(ul)dul— /5’:/1(1“)¢1ul Y (A7)
0 0

In order to prove by contradiction, suppose s; < §;. Then, equation (A.7) can be rewritten

as
[ttt ) d+ [ ) d = o (A9

Since # > m, thereby 7} (u1) > #1(u1) in range (0, 1) C (0,00) from (31). Then, the first
term of (A.8) is negative. The second term is also negative since the integrand, %, (u1),
C (0,31) by Theorem 1. Hence, the left-hand-side of (A.8)

is negative in range (s, $)
becomes negative. This breaks the equality in (A.8). Therefore, s; > 3.

By induction, assume sp—; > 8,-1. For stage n, in order to prove by contradiction,
suppose Sp < 8n. Hence, 8,—1 < Sp—1 < Sn < 8y since sp—) < sp by Theorem 2. Subtract
(A.6) from (A.5)

= [ Fa(un)ltn + B = o i + / " 41 m) di
+ / [ (tn) = %a(un)] dun + / Yo(un) dun = 0. (A9)

The first term of (A.9) is negative since wy, + hn — hn41 > 0 by Condition 2. By Theorem 2,

4 (-) is negative in range (8n—1,5,), which contains intervals (8n-1,8n-1) and (sn,3n).
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Therefore, the second and fourth terms of (A.9) are both negative. From (31), consider
¥(un) in (Sn=1,5n-1) and 4, (us) in (3n-1,Sn-1). Since # > =, hence 4 (un) < 7. (un)
in range (Sn—1,Sn-1) = (8n=1,8n-1) N (§n_1,.§'n_1) since Sp—; < Sn—; by Property 3 of
Theorem 3. By Theorem 2, (sp—1, Sn—1) contains interval (sn—1,55). Therefore, the third
term of (A.9) is also negative. Hence, the left-hand-side of (A.9) is negative. This breaks
the equality in (A.9). As a result, §,, < s,. QED. ]

Proof of Theorem 7: Suppose the unit production cost w; at stage 7 decreases to i,
and the associated Y,(-), s and Sy, become 4n(-), 3 and Sy, respectively. By Lemma A.l,
rewrite (A.5) for stage 1,

$i—1

— 8
F,-(u,-)[w; +h; - h1;+1] du; + %(u,-) du; = —K;. (A.l())

0 8i—1

For the change from w; to 1, equation (A.10) becomes

/0 . Fi(u,-)[tb,- + h; — h¢+1] du; + ’)/(‘U.,) du; = —K;. (A.ll)

§io1
Since —K; is a constant, the difference between the left-hand-sides of (A.10) and of (A.11)
is zero. We will prove the theorem by induction. For each stage n, we will show that if
Sn > 85 is not true, then the difference between (A.10) and (A.11) will turn out to be
negative. By contradiction, s, > §.

By subtracting (A.11) from (A.10) and observing s;_; = §;_;(since s;_1 is not a function

of w;), we have
/ Fy(us)[; — w;) duy +/ H(us) — ¥ (w;)) dug +/ F(ui)du; = 0. (A.12)

The first term is negative since w; < w;, and the third term is also negative since %(-)
is negative in range (s;,4) C (si—1,Si) by Theorem 2. From (31), consider +/(u;) in
(si-1,Si=1) and #(u) in ($i—1,S8i-1). Since @ < w;, hence ¥(ui) < ¥/(wi) in range
(8i-1,Si-1) = (8i-1,Si-1) N (8i—1, Si—1) since Si—; < Si—1 by Property 2 of Theorem 3.
By Theorem 2, (si-1,Si-1) 2 (Si-1,58:i). Therefore, the second term of (A.12) is also neg-
ative. Hence, the left-hand-side of (A.12) is negative. This breaks the equality in (A.12).
As a result, $; < s;.

By induction, assume sn—; > 8n—1. For stage n > 4, consider (A.5) and (A.6), which is
the version of (A.5) after w; shifts to ;. Suppose s, < 3n. Hence, §n—1 < Sp—1 < 8n < 8n
since sn—~1 < sn by Theorem 2. Notice that both integrands in the first term of (A.5) and
(A.6) are the same. Subtract (A.6) from (A.5). Then, we get (A.9). The first term of
(A.9) is negative since wn + hn — hny1 by Condition 2. By Theorem 2, 4,(-) is negative in

range (3n—1,5,), which contains intervals (8n-1,8n-1) and (sn, 8n). Therefore, the second
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and fourth terms of (A.9) are both negative. From (31), consider +,(un) in (sn-1,Sn-1)
and 4, (un) in (8n—1,Sn_1). Since 1; < w;, hence 4, (un) < ¥a(un) in range (sp—1, Sn_1) =
(8$p-1,Sn-1) N (8n-1, 5',,_1) since Sp_1 < Sn_1 by Property 2 of Theorem 3. By Theorem 2,
(Sn—1,Sn-1) contains interval (sn—1, sp). Therefore, the third term of (A.9) is also negative.
Hence, the left-hand-side of (A.9) is negative. This breaks the equality in (A.9). As a result,
Sn < 8p. QED. [ |

Proof of Theorem 8: Suppose the disposal cost hn4; at inventory location n+1 increases
t0 Any1, and the associated yn(-), s, and Sp become 4n(-), 3, and Sy, respectively. By
Lemma A.1, consider (A.5) for stage n when the disposal cost at inventory location n + 1
is hﬂ+la

§n—1 _ - 3n
/0 Fa(tn){n + b — hogi] din+ [ Au(tn) dtn = =Ko (A.13)

Sn-1

Since —Ky, is a constant, the difference between the left-hand-sides of (A.5) and of (A.13)
is zero. In order to prove s, > §, by‘ contradiction, we will suppose that s, < §, for stage
n, and then show that the difference becomes negative. Suppose s, < §,. Notice that s,_;

is not a function of hn4i, i.€., Sn—1 = Sn—1. By subtracting (A.13) from (A.5), we have

Sn—-1_ a

Fo(tn) 1 =] it [ (5 (i) =7 (1)) i+ / ) dun =0 (AL4)

Sn—1

The first term is negative since ﬁn+1 > hnt1, and the third term is also negative since
v..(+) is negative in range (Sn,3n) C (sn_l,S’n) by Theorem 2. From (31), consider +}(us)
in (Sn-1,Sn-1) and 4, (un) in (3n-1,5n-1). Since hAny1 > hny1, hence 7 (un) < ¥4(un)
in range (Sp-1,Sn-1) = (8n-1,Sr-1) N (.§n_1,5‘,,_1) since Sp—1 < Sn_1 by Property 1 of
Theorem 3. By Theorem 2, (sp—1, Sn—1) contains interval (sn—1, $,). Therefore, the second
term of (A.14) is also negative. Hence, the left-hand-side of (A.14) is negative. This breaks
the equality in (A.14). As a result, 8, < sp. [ |

Proof of Theorem 9: Suppose that the demand distribution changes from Q(z) to Q(z)
such that Q(z) < Q(z) for all 2, and the associated gn(-), Yn(-), Sn and S, become gn(-),

Y (+), 3n and S, respectively. We first show inductively that S, < S, for all stages. By

substituting (22) into (31) for 4y € (Sn-1, Sn-1), One obtains

n-1n-1
n(un) = (Wn+ho—hapr) + Y [T Fi(un)(wr + b — higs)
k=1 j=k
n-1
— 1 Fi(un)Q(un)(m + h). (A.15)
j=1
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Since $o =50 =0 and So = So = 00, both g;(u;) and §; (u1) are defined in (0, co) in (A.15).
Since Q(un) < Q(un) hence g;(u1) > §1(u1) in range (0,00). Then, §1(S1) < 91(51) =0
by definition of S;. Hence, S1 < S, since function §i(uy) is increasing and §1(5'1) = 0. By

induction, assume Sp—1 < Sn-1. For stage n,
1. in case that Sy, < $n—1: By Theorem 2, S, < S'n since §p—1 < S’n .

2. in case that S, > 3n,_1: From (A.15), consider gn(un) in (Sn-1,Sn—1) and gn(us)
in range (8n-1,9n-1). Since Q(un) < Q(un), hence gn(un) > gn(un) in range
(maz{sn-1,8n-1},Sn-1) = (8n-1,Sn-1) N (3n-1,8n-1). By Theorem 2, both S, and
Sn belong to the interval (maz{sn—1,3n-1},Sn—1). Hence, gn(Sn) < gn(Sa) = 0 from
(23). Therefore, Sp > Sy, since jn(-) is increasing in (Sy, Sn-1) € (3n-1, 8n-1).

Now, we need to prove that s, > 3y, for all stages. From (31), while the demand density
shifts from Q(z) to Q(2), we have #,(un) < ¥4(un) in range {(sn-1,Sn-1) N (n-1,5a-1)}
since gn(un) < gn(un) in the same range. This result is analogous to the one in the proof of
Theorem 6, where the penalty cost increases from 7 to #. Following the proof of Theorem 6

by using (A.5)-(A.9), one can show that s, > §,. QED. [

Proof of Theorem 10: Assume the capacity density at stage i change from Fi(y;) to
Fi(y;) such that F(y) < f‘;(yi) for all 3;, and the associated gn(-), sn and S, become gn(-),
3, and S,, respectively. From (A.15), gi(u;) is not a function of Fi(-). Hence, from (25)
S; = S;. From (22),

Yi(u) = Fi(u)gi(uwi) if u; € (8i-1,S5i-1),
M(w) = Fi(ui)gi(w) ifuie(éi—l,ge-l)-

-

>

Then, ¥} (u;) > #i(u;) in range {(si-1,Si-1) N (8i—1,Si-1)}. From (23),

Gir1(Uiz1) = Wip1 + hig1 — higa + Y (uit1),
Gi1(Gig1) = Wigr + hig1 = higo + A (uwig1).

Hence, git1(ti+1) > Jit1(uip1) in range {(si—1,Si—1) N (8i—1,Si-1)}. By recursive substi-
tution and (29), we obtain 7?‘(1‘") > Yn(un) and gn(un) 2> (un) in range {(Sp-1,Sn-1) N
(én_l,S',,_l)} forn > 1.

By induction, assume Sp—; < Sn-1 for n =1 > i. Then, gn(tsn) > Gn(us) in range
{($n-1,Sn-1) N (8n-1,5n-1)}. For stage n, if Sp < 8,-1, then S, < Sn since §n_1 < Sn
by Theorem 2. If, on the other hand, S, > 3n-1, then Sp € {($n-1,Sn-1) N (3n=1,Sn-1)}
by Theorem 2. Hence, §n(Sn) < gn(Ss) = 0 from (23). Therefore, Sp > Sp since gn(-) is

increasing in (S, Sn_l) C (8p-1, 5',,_1). ]
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