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I. INTRODUCTION

Let us assume that the plasma under consideration is representa-

ble by a set of Boltzmann equations, corresponding to each kind of com-

ponents which constitute our system

CLONN . P St 1,2, N
reeg e (§+Ln i ’

o = aexfernat + gintemal

% oL

o= S (g oxdl

r

(1-1)
coupled with the Maxwell's electromagnetic field equations
N
\Z)(]—- —C——_Eé C J_ C rzgleré__'ﬁo\(f
ICAN.
Yx[_:—_*?at\:"' 0
v.H =0
b . d3
YE =4TTQ = 4—TEZ_\er£ﬁ v, (1-2)

where the symbols used have their usual meanings.

We shall treat the non-linear interaction terms due to the in-

ternally induced fields as perturbations.

(0) )
fo=f -1

Thus, setting

to the zeroth and the first order, we have

)
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K;Bt.+ = é&‘+ r - coll.
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and
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DI+ px,ut) = (gtr >¢on. (1-4)
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respectively, where

¢(§< U t) mt D'F(O)

a
2U

For most plasma problems perhaps it is a good approximation
to ignore the right hand sides of the Equations (3) and (4) completely.
However, it does not seem appropriate to study the transport properties
in the absence of such a dissipative mechanism as collisions. It is for
this reason that we shall adopt a relaxation-type collision model, to
which (perhaps because of its simplicity) a considerable amount of atten-
tion is given in the plasma literature,* in order to simulate the over-

all effect of these cumbersome terms to a reasonable extent. Thus we

write (0
() o dr=fe N
St leall T

/5?”’) 0, (5#”) L5

\8t C@H Jt Coll (1_5)

Here T is a properly chosen "mean collision time", which, for the sake
of brevity, will be assumed to be constant. It should be pointed out
that extra care must be exercised in handling this exercised in handling
this model, since the conservation laws are no longer satisfied in gen-

eral.

One can show that the Equation (4), coupled with (5) can be

put in an integral form:
t ]
o ut) - e wc( (o), yxet), 0)
B foé?‘}/)(é(’bgﬁ/): Y (x,0,9), £'5/> OIS,’ (1-6)

* Tor a detalled discussion of this model see, for instance, Reference 1.




where the functions £ (X,U,t) and }{Q(,IJ t) are to be determined by find-
ing the integration constants of the solution of the Lagrange's sub-
sidiary system corresponding to the unperturbed operator D, (cf., Refer-

ence 2), which is given by

dt _ 4
ds

g = aea(t. )

O g

’ 0%-’.“9’)
and
d o _ _ | ot ‘ (1-7)
AL A

Here we assumed that the solution of this system is of the form

X =X

_é_)?_{-25> ) g"Q(é)E{JS) (1-8a)

and the inverse

E=Eoes) 5y =y(xu9) (1-80)

-—
—

exists. We shall refer to the set (8) as "the unperturbed orbit equations
with respect to the parameter s."

The Equation (6) is particularly suitable for the initial value
problems. A special case of this form has been applied to the related
instability problems by Rosenbluth and Rostoker. (3) An asymptotic form

of (6) can also be deduced by assuming the system is perturbed at t = -w.

(1)

r satisfies an order property,* it

When the initial perturbation of f
can be shown that

_F(Q()-()g)t) - ‘jo e-'c ¢<€)§f

r

(1-9)

* For details see Appendix C.
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A special case of this form has already been deduced in connection with

the plasma microconductivity studies.<4)

which

gfxt, _

e
= = L
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where Eo and Eo are externally applied, constant fields

that the Equation (7) may be solved in this case, giving

X
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In what follows we shall restrict ourselves to the case in

(1-10)

One can show
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(1-13)
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The Equation (3), with the approximation (5) implies that the unperturbed

o

distribution f ) must remain constant on the unperturbed orbit. In

(

(

r

other words, f(o) is invariant under the transformation (12). Thus, it
r

can be any arbitrary function of ¢ and 7, i.e.,

]C(o()z‘g)ts - _?(o)<§_(g(e)og+‘\_j(lz)'§ 98&)'9.'(:_?_&)‘_8_)(1-14)

(Hereafter we shall drop the index r whenever no ambiguity arises. We
shall also suppress all terms involving the initial perturbations ex-
plicitly, and then take them into account subsequently as a whole when-
ever needed.)

Using the notation introduced above, the first order equation,

in tensor notation, can be written as

) £, =2 {® _qo
t, - Ef ; (l), 3'F(°) / QF(O) ¢
=_1 T - G,68)+— R,

where the prime on the Lorentz force denotes
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(1-16)



IT. THE FIRST ORDER TRANSPORT PROPERTIES

Let \!f(z) be any microscoplic property of physical interest.

We define the first order averages as

s

/

A
ja(gu dsec v, (11-1)
T
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;qugk \ & iy

using the definition of the derivative of a distribution defined on the
whole velocity space (in the sense of L. Schwartz),

'_B_qo),% F(O) ;&

BU% 3
(In the conventional analysis this step may be accomplished by remember-
ing that the averaged quantity <1[f> (1) will remain unaffected after such

a substitution, provided

‘ (0)
Lim ¥ (U ) =0
I > e
rapidly enough to insure that

Lim Y% =0 )
o= 00
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In particular one obtains the following:

i) Mass density ( ¢ =m, n<m>")z F(I))

/
A _G” _9_;(0)4‘)
P = 1ok axk(-(: F’F ) :
(11-3)
™ -0
ii) Mass current ( 7# = mo;q; ”(m%> = H>
A A / o =0’
LI Pk (TI-b)
Eliminating the field term, one gets
/2 A N
no— —_ - U,
A 2
V-t + L 3h )
m 'BU{'Q m U_k R
which shows that all the first order averages can be expressed in terms
of the "integrands" of @m and a[(‘) . 0 res
k (n)__ - :
iii) Residual stress tensor ( =my Uy, M U-LU.{;> = Y )
A A
res. A A
v
Yrecau - Lagoradd
Ak
(11-6)
N res
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T3 ek
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- U = U,
-’-3—()"'3 ¢ (11-7)
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iv) Residual heat flow (¢=ﬁm U’—% ) n<,3mg%>: _ (J:res.
Ares, 3 A res. _\_ 2/ A _U_A
f =2 'fr 2 (3k kf)-
(11-8)

The residual values given above are related to the first order averages

by the following relations:
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In particular, if f(°> is a symmetric function of v, one simply gets

(
q:f(l) - 'ﬂfmres M_ res ) _ (hres. 3 @o)‘(.) \ {\-r(o) (N
4 ik }r) -P ’ %“é‘ﬂ’k T2 Mmook (O“’-pa'&é"
(Hereafter the superscript (o) corresponding to the zeroth order averages

will be dropped whenever no ambiguity arises.)



ITI. A SPECIAL CASE

In this section we shall consider a special case, which is given
considerable amount of attention in the plasma literature, and which
assumes the following conditions for the unperturbed state:

i) Steady state,

ii) wuniform in space,
iii) E, =0, Qg

Then the Equation (I-14) reduces to

g(ogg) - ?(D)(B(Q'g)ﬂ? _C(o‘)z -C{O)(LL,UJ'>
= (Irr-1)

where w, u, and & are the cylindrical coordinates in the velocity space

A
3 Ho:Ha§3

U = W Cosi U"2=w'5fno< y Uy = U

Clearly, Maxwell-Boltzmann (MB) distribution is a special case of (1),

which reads

(o)

MB = (g-r@) QXP[ (U'+w )}

(111-2)
In this latter case one can fasily derive the following relatlons:
— - - / ?—E_' - @ va
P en G’P{* DX 4 G“?P _-ik ™ QXfaka'F
—_ - _@_ I 20
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T, = 58, - ®[_G 2+ G,y e ] ‘('@)QCT'Gkié
R mP ik P"Exf ¥ 9)(10 miTerq axraxa}
— _505 .38y 2P Lh Oz _LBG ?F
¥ “'B_F'nP-"B('n’\) f‘i&;%xq"gmp 3mG1°‘15§;
i = -(97G.2° . (8%w 2
4= -(%) G% an, T (%) LS Pwid
( (1T1-3)
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where

/
— A t -2 _
% = \.r dgux ) %0) = L oiS/ e © ')60.()1;/;)
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’g‘m _ L {m. (III-3a)
n

We have already pointed out the difficulty encountered in deal-
ing with the moment equations of the Boltzmann equation when the collision
model (5-I) is adopted to represent the short range interactions. Never-
theless, whenever T « (i.e., the collisionless case) this issue does not

exist. In this latter case the moment equations of the perturbed state,

when 4(\(0) e MB , read

200 . 249 _

545 T3 xi -

a-i'(;: + _a_ ,qr(‘ +ﬂ E (1) -en EU) - O
2+ Xy kp srkér R

(ITI-4)

It can be shown that (4) is satisfied by the set (3) when %— = 0. Although
in the case of finite T, by a sulitable interpretation of the amount of

the properties transferred by collisions, the above mentioned difficulty
may be overcome, it will not be necessary for us to introduce it here
since we shall be using the Equation (3) explicitly without referring to

(4). Some considerations will be given later to a possible employment of

(4) simultaneously with (3).
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(0)
Let us consider the more general case, by allowing {- (LLDU)
to be an arbitrary function of its arguments. Then the first order aver-
ages may be studied by making use of a Laplace-Fourier (FL) analysis in

time and space, respectively. We define

Ly N L (P PR iR
po ({3,10) = G §o dt e idx e L x,t)

(I11-5)

Hence, one obtains

9“0) L (@ / / dt’
Feom =-2 & g™ N @ eaplywd]dt,
ot m 2y ko kg (TI1-6)
where¥
L L g™ |
‘\“3 P’Ré} T % 81« k{ d ngRqo\ )
|
4l = -¢ k-Gu -(prz)t
(111-7)
Thus
/ !
- 0 ENE 2
W) QFL:%E):L\CHS N, 4 ['g%s vf?GsV/l ,.
(I11-8)
* The N dimensional Kronecker delta may be defined as
. 8 - &
»ee rne, 05 rsS
gz‘r;;m?n = Det (SQSJ') = . :n >

Xrnsl gfnsa“. grnsn

(in our problem clearly N = 3), where T1sTDseee Ty aANA S7,S0,...,5p
are positive integers < N.
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It can easily be shown that, upon performing the azimuthal angle integra-
tion, one obtains

Sd;:, -tk G‘U'F(O)(U,MJ) - (QT‘)% _FFHo(y) K)

where
%FHO(V,R) = —L-ﬁfwdu G:WS wdw & (kw) Y (uw)
v =kt K:_-é’-z_{e_l_sm%
Ro=VR, 4 =k o
Hence,
(an-%i%'ué;...uénéd%‘é'g C‘°)d3u @) G G " \CF(V,R)

6‘.? }1]%- 3’?()” 9{? 9

which indicates that the first order average of any property that can be

exhibited in terms of the powers of Vies is expressible by the Fourier-
Hankel transform of f(o> and its derivatives

In particular one has

FL

o —(nel
pft= - Len (an)? EFL{? dee.(w")t

- A FH
x 16, J-8 k G, G'g;;]\“wm)
4= en(am)i EF Swdt e‘(f*'f)t X

x[R +%>(CG "03:% *- -

AR
- kb £ 020 GsmGrs% akrae%]"c ). er1-0
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AC)
Let us finally note that the FH, transforms for some special ﬁk (U,UI)

read as follows:

. 2
Al _ S(w) @‘FHO = (QTO-'""
£7= dtu ) =>

A C)



IV. ELECTROMAGNETIC PROPERTIES OF THE PLASMA

A, Electric Conductivity

In this section we shall assume that the conditions of the
special case discussed in the last section are satisfied

Accordingly,

one can introduce the FL analysis

as before. The electric current

density now can be computed as
J-FL _ Zg_ 1;_FL
- m
R - *®

If one defines the conductivity as being the tensorial relation between
the FL components of the induced current and the electric field, one

gets the following, by using the Equation (II1-10):

FL

" (Iv-1)
where
> ~( +-—) £ FHo
%{: (27) jdt P Sk.” )
Arh, | om
Q )= LR +&’FG’3PGk PS}T’R%G)
\ gl G C :C\F(HS <)
T kfkﬂ i “ag”ms *”9{%2&
A AT ne (Iv-2)

-15-
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In particular, if one assumes that @_(l) is constant, then it can easily

be shown that (2) reduces asymptotically to the well-known result:

ké - T 1
(! fo 0
| 45T |+ T?
=) q
r -7 |
| +°C° |+t Tt
K 0 0 (1v-3)

where
c = — WT

0 4"& i
Here g is independent of k and p, so that (1) can be inverted easily.
(e.g., Reference 5; or Reference 4) It can easily be verified that
asymptotically the same result is obtained for the initially "cold"
plasma case, i.e., ‘cFHo = (aw‘)-g‘

If F‘°’e MB , then one gets

Z g er[é] { FGP?QGﬁ/k’%} d’Ct )

(Iv-4)

where

5= -lpelyt - 241k

m- = -

Apart from notation this is the result of L. Mower.(6)
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B. Field Equation and Dispersion Relation

In this subsection we shall follow closely, but in somewhat
generalized manner, the method of Bernstein in deducing a formal solution
to the special case of Section III, (cf., Reference 7).

First, let us compute the electric charge density, using the

Equation (III-10)

CfL - Z; ﬁ% f)F:L
2 3 00 +~)t 2 FHo
=) @ E §dte‘° Q™)
r 4L k 3
ij(fF [G *m , MM ]F(v ). (1v-5)

If we substitute the Equations (l) and (5) in the FL transform of the
Maxwell's equations, which after eliminating the magnetic field terms

as usual give

(k‘éﬂ;‘) EEL +i kU Qt+ LT IC“L

= (, = initiat conditions (1-6)
we obtain
TuEy =1
B T

Bp T e

(1Iv-7)
o 80 [T
gkt 7 T



-18-

where the generic term of g is given by
3 o 'CP+l)t ; AEH,
r 22 R 2,2 N T ,
-rj?n:(‘kc .1,19 )8348 +Cu)‘° ‘&j%f- (2IL) Sod,te. Q@Q\‘F )

. 3 (o “(pr )t PFH,
+ wr’z\o (am) Jo dt e (i Sa,k('p ) 3

T =) T,
= 2r‘ S (1v-8)

It is to be understood that the right hand side of (6), namely S, is to
contain all the terms involving the initial perturbations of the distri-
bution functions, if any, that have been consistently suppressed in our
formulations, as well as the initial perturbations of the electromagnetic
fields that may be introduced into our systen.

The Equation (7 provides a formal solution to our initial value
problem, since it enables one, at least in principle, to compute the trans-
port properties of the plasma under consideration in terms of the initial
perturbations only, when it is substituted in the Equation (I1I-3), al-
though the complexity of the mathematical structure of the operations
involved considerably reduces its practical applicability. Nevertheless,
the questions involving the plasma oscillations ( of course in the line-
arized sense) may be treated with considerable success for many cases of
interest.(Y) When the numerator of the Equation (7) is an analytic func-
tion of p, the dispersion relation is given by

Det(T) = 5‘—‘ gk 1 E%T‘W =0

P (1v-9)
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A detailed study of this equation is not our concern here. However, we
shall consider some famous particular cases, which are given some special
attention in the literature (e.g., Reference 7 and Reference 5), in order
to check the consistency of our formulations.

First, let us consider an initially cold plasma, for which case
the Equation (8) reduces to

a 2 2 ® ‘( +L)t
Tgeq = (W +f) 84% + cwfi fbavﬁe{ Jode €77YT Gy

. o -( +-‘_£)'L
a-u? i fa gt e f GLJ

(Iv-10)
Moreover, assuming HD=O 9 % = O 5 one gets
| 2
To= (Rf s T ) S+ b LT
gk 10 P iry (IV-11 )k
and the dispersion relation is obtained as follows:
& 22 2
2 2\ | 2oyt = 0
De{ (I\):(fqzc-‘-'oz'{-zwr) ‘?2 <1° wa )(éf’*'}O)
(Iv-12)

the first factor of which corresponds to the well-known phase velocity of

Langmuir

\/R:_@_: 3 (19:4.&0)

2 (Iv-13)
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As a second application let us consider E(l) as being pure trans-
versal such that k.Efz0 and fe X H°=0 . Again assuming an initially

cold, collisionless plasma we get

2 ®  -pt
T;k - (%ch—k‘fg) Sjk +P Z_wr S‘odt el"’ ngb)'

(IV-14)

Thus the dispersion relation in this case reads

n
a

( '}"rz ZT;Q&

(IV-15)

associated with the phase velocity

\/ by =53 < y (Ta = bed)

(IV-16)

The structure of T implies that E(l) clearly is circularly polarized.

This is Spitzer! s( 5) result of ordinary and extraordinary waves corre-
sponding to the signs + and -, respectively. If we assume a binary plasma
with singly ionized ions, and the electron to ion mass ratio, u, to be

much less than unity, we get

(Iv-17)
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where

S P

— 2
LT P w‘]oc-'-) (Alfven's velocity) . (1v-18)

It is seen that if the following conditions are satisfied, we have:

2
w w
1) -_— << << -—_E(') =D \/ ~ OC
2, I Qe ph
or
2
ii) w= DL ) 0_&1 &1l (for the extraordinary waves) = \{%NQ .
¢

This case corresponds to the so-called magnetohydrodynamic (or Alfven)
waves.

Finally, let us consider the longitudinal oscillations. Here,
applying the assumption that E(l) is ignorable, so that a pure longitudi-

nal oscillation can be isolated, we get (e.g., Reference 8)
> F ' FL
'f? x E Lo 0 = E L = -1 % (p

In this case the Equation (5) is more appropriate to work with, since it

gives the result more readily.

Initial Conditions

FL
¢ % (a3 b4 Yup §dx ot Gg-e?i'if, <)

(Iv-19)

If the numerator is an analytic function of p, then the dispersion rela-

tion is given as

%'& T oa(®, -+t A FHo _ _(a%
%;%%L&ePt %ﬁc%©— am)

Y

(IV-20)
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This result corresponds to the Harris' dispersion relation,(8) but it is

given in the closed form. In particular, if one sets FQ =0 );é-: o,

it can easily be shown that the relation (20) reduces to the well-known

Vlassov equation

/\(o)
\+Zw;Sd3U'_P(“’W) =0,
r (p+< ko) (1v-21)

which is studied by many authors. (e.g., Reference 9.)

The Equation (19) seems to have computational advantages.
Harris(8) in his letter considered the instabilities induced by the aniso-
tropic unperturbed distributions, while Bernstein(7) has shown the absence
of the exponentially increasing solutions whenever'?m)e P«B . Thus 1t
seems of some interest to investigate the class of functions which gives
rise to such instabilities. Harris has considered two particular func-
tions only. This, perhaps, is due to the long computational procedure,
involving infinite series ranging from -« to +w., It seems that, instead
of specifying #%lwﬁ, as Harris did, one may select the function FFH%\%K)
which allows instabilities,; using (20), then compute @m}txﬂﬂﬁ by invert-

ing the transform, if necessary.



V. PLASMA PARAMETERS

A. "Mobility" and "Diffusion" Tensors (f(o)e,MB)

Let us assume that the unperturbed state of our plasma satisfies
. . . . . (o MB
the conditions of the special case considered in Section III, and e .

Then it can be shown that the first order transport properties in the FL

space may be expressed as

—FL:-QHL'&? EkG{ -L{??Gak?):"fg @%&MQ{QFF
yii e = FL
6‘12 = enRyu B T RGP
T - 0 TR Ry OF = FL
T = 25m g, - T kl6 g G 1Ak P
—eL 50 = a@& —FL L‘®'FL'QL '—FL
’PF :%%PFL_E(E>§%’M€3‘P ) EP "3 wm %GJQQQ
Z%;L —'(%)c%'%fqpﬂ (%) 4"4&’3‘ Mea ?;L ?
(V-1)
where
Y= § exp LHer] gCFL(@)?,k’)th/
@(D = —(10+LT)-(; - % 43_2\(4._).{3
(v-2)

Clearly, knowing the solution of the field equation [cf. the
Equation (IV-7)] corresponding to the initial value problem, one can formally
compute the transport properties of interest by making use of (1)

But due
to the complexity of the mathematical operations involved, the above

-23.



o) I

described method seems to involve almost formidable labor in order to
deduce physically interpretable analytical expressions for these proper-
ties. Nevertheless, in this particular case under consideration, one

can define certain tensors (in a sense, operators), resembling the general
character of the classical concepts, such as mobility, diffusion, viscosity,
thermal conductivity ..., by observing the mathematical structure of the
Equation (l), which may be approximated, if necessary, by an averaging
process sultable to the physical conditions of a given problem. In what
follows we shall restrict our attention to the mobility and the diffusion
only, although the extension of the general procedure employed to the other
parameters does not involve much complexity. Therefore, only the first two
equations of (l) need to be considered.

FL FL
Let us introduce the tensors Kéﬁ and I)j& as follows:

F e” ; /
Kég'; E % Soexfa[@] R)%. At

D < 9“_ S:axp[@l] G/‘ﬁé §FL dt’
m ® ’
So exF\\_@] @FL dat  [= PFL]

PREN
3
i

(v-3)

which we shall refer to as "the ‘mobility' and the ‘'diffusion' tensors in

1

the FL space," respectively. Thus, by integrating the second equation of

(l), one obtains
FL FLTFL FL RL
é'k-;nm K‘QQE{ -L,k{:D“QeF 3
(V-k)

the mathematical form of which Jjustifies our terminology to some extent.
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We observe that the mobility tensor defined above i1s given
explicitly is terms of the known functions only. However, this is not
the case for the diffusion tensor, in general, which can be written in

terms of the induced field as

o . O kB Cerld16,G,dr

{Q - ] " ?
3 " % EFLgexP[él G dt’
(V-1)
or in terms of the initial conditions as
o -° 480 T P 7ﬂC 5 QXFLSNG G, dt
.& qu
: m ém s¢n PS c;ec g cxpl:@] Grmd*: (V-5)

Nevertheless, there are some special cases of interest for which the
field dependence in (4) [therefore the initial conditions in (5)] cancels
out. Among these, the following cases may be mentioned.

Case I. F{ =0 Hence G =t 5 . 5 thus

=R - _0 {?(] 1

» § ? dt

FL ® ,exp Ll T

oo

So e)cF [.@1 —t dJc

=
H
=4

where
Bt
a

3@

Q) = —(prx)t -
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Upon performing the indicated integration one obtains

-bz
ot . 20 T [b \+.2b)»—er\fc(b)— 5'&
ik T Tm Lt ¥ ab Tertc(b) - :
f 3 et (v-6)
) m
where b‘—‘\]:\)‘@ \;kt For b» 1 on has
L2
D L 38 T 4 20 4 r*o,%-’o-
3'{« = m |+1(0'L‘ L2 m
2 (V-7)
Case II. Since one has
- FL Qt-sint , -FL
g - SR S e B A,

then in the following subcases the diffusion tensor is unaffected by the

induced fields:
E(\) —()
i) Pure transverse L , perpendicular to tlo s 1.e., f:a =0 s

and
(1 2 )
(a) Q =0 b} 9-‘_1: H5 # 0 or
0 2 n’'-o0
(b) Q'+ 0 , 5C 3

g " 2 'L
ii) E % 0, but Q=0 ana by Hg‘ O both.

There are also some cases (to be considered later) involving the linearly

{
polarized E ) and a fixed direction of propagation, in which the same

property may be observed.
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It is of some relevance to note that a diffusion tensor may be
defined in this particular case without referring to the FL transformation.
To do this we consider the second equation of (III-B) in the integrated

form, which is given as

) S ds e [en /- %

o {l ax ]

(v-8)

Identifying the second term of the right hand side as the diffusion cur-

rent, we can define

T P
SO ds € 4 Gk% P
m j:ds’ e‘f’ é [-_s CD(l)J

(73]

ol

(V-9)

There are some special cases of interest, which will be considered later,
for which the latter form seems to be more suitable for a given approxi-
mation procedure, than the relation (5) which defines the diffusion tensor
in the FL space in terms of the initial conditions. However, because of
the fact that in general EEL [cf., the Equation (III-}a)] has different
values for every particular species under consideration, a concept of the
mobility tensor based on the coefficient of-E; in the first term of the
right hand side of (8) seems no more relevant, unless some additional
assumptions are introduced. This will be done in Section VI.

Some general considerations will be given later to the case in

which the conditions of the special case of Section IIT are not satisfied.
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B. Ambipolar Diffusion

Due to the different diffusion rates of the charged particles
in an initially neutral plasma, a space charge is developed soon after
the introduction of the perturbations. This space charge provides a re-
storing mechanism that ultimately may form a different type of diffusion
in which the charged particles diffuse with equal rates, essentially pre-
serving the charge neutrality. (cf., Reference 10 and Reference 11.) This
process, which will be called the "ambipolar diffusion" will be our next
subject.

Let us consider a binary plasma which consists of electrons
and singly charged ions. Thus the Equation (4) can be written for each

type of particles by setting

D L (B TP
 FL(F) T FL(F
. = nmt® Wy ) ) (V-10)

where n is the unperturbed density which is the same for both particles,
and the signs (+) and (-) denote the ions and the electrons, respectively.

Thus, we have

) FL(+H)
FL(H) FLen EFL b D
- FL(=)  FL(=)
L= = BT ok DTN |
Mﬁ~ = N th A N gk

(v-11)
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. FLG) EL(-)
By making use of the commutativity property of K and K

which can be shown without much difficulty, one can eliminate the ohmic

current terms in (11), to get

FLG) ALY rL<+> FL(-) FLM EL+) l-LL-r) FLONLE) pL) |
V-12

Furthermore, as i1s customary in the elementary theory of the ambipolar

diffusion, one can assume the following conditions

aFLeD o ZFLE) =y FL
 ARMRNSET LU R A (V-13)
which gives
. AMB. =
nngL - {?e {D%] At
(v-1k)
where
1 N R FLA) FEO)
[DAMB.}FL .[SFL(}D o D ] ,
= FLE). FLC-«-)] = = B -
[ % (v-15)
or
AMB.~ FL 5 Y‘ L(—) rL(+)J[KFLC—) \~L(+)] UL R L )_}
(01 4 Bkt - &0
g% 2 De £ € FLe-) »L(ﬂ-)" sk i

(V-16)
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Inverting the FL transform in the Equation (12), one obtailns

X' ° 0% (v-17)

t AMB 30
O 3 r1y N oy -
nm;~—Ho|xdt Dm,ag,t) (x-%,t-t) .

Thus, one may write

(- 9 D ﬂ(‘) 5
nw ng < > ] )
where .
( AMB ,
Ul de DT ot npe, e-)
< ISMB> )-(/ ) k.& -
' = t / } ) ¥
“ [0 o)
¥ ©
) (V-19)

Making use of the continuity equation one can deduce a "diffusion" equa-

tion as

9n(|) AMB 1

ot x, o oK. V 3
6 (v-20)

Finally, it can be pointed out that for sufficiently smoothly
nd)

varying functions , one has approximately

<DAMB> ~ dim {DAM‘B]FL
= k>0 = .
1¢—->0
This limiting process can be seen to correspond to the case in which the

higher derivatives of h“) may be ignorable. Some further discussion on

this matter will be given in Section VI.
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(o)

C. "Diffusion Tensor" in the Case of the Anisotropic f

The concept of the diffusion tensor introduced earlier for the
case of the Maxwellian f(o) becomes somewhat ambiguous in the anisotropic
case, since the current Equation (II-4) does not seem to have an explicit
dependence on V Pm (or rather Y{J\ ). It is of some interest to note

that whenever {(o) satisfies the differential equation

%f €)= -4 Oy, FU -BOE Y,
(k=14 3) (v-21)

such a dependence can be. exhibited. Clearly, (21) has a solution if

Ak' = Aék . Substituting (21) into the current equation, by elimi-
4 A
nating the term P, one gets after some manipulations

k
"""’& q’e 9 +%¢e§ T % (v-22)
where
71‘«3' = R?’R A‘ﬁl‘ﬁ R‘Té
510 GH* ) 1"( 2

~ W' _ e
V, = R FF} CEW i

(gl
~
[

ﬁs ax { {(03 H (l) }

(v-23)

provided é’l exists. The Equation (22) allows one to define a diffusion

tensor as /

[ : f’m ] | (v-2k)
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G oo+ MEE

(29

where él

This definition is to be compared with the Equation (V-9), rather than
the Equation (V-3).

The general solution of (21) is readily found to be

9 ) exP “XAM{k "XKB]
(v-25)

A consistency condition, which expresses the invariance property along
the unperturbed orbits, has to be satisfied to insure that f(o) is also
a solution of the zeroth order equation. This condition may be written

as

[ n C(x_—é-g*rﬁ/\-@ﬂ
- 214A0 A 7 o) '"(Ra'cui'éﬂ@%l

25 L] k gﬁ (v-26)

where s is the unperturbed orbit parameter. If we assume that the
zeroth state is i) uniform, ii) steady, iii) é =0, as considered

in Section III, we get

Q

l

A%k F%rn F%kn U, Uk - Fzék E%y q% = 0,

(the dot denotes the derivative with respect to s), which implies
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Therefore

Té _—_(o)o)B> )

' /AIl © ©
A = |le A, o ' (v-27)
0 o Asz

Clearly, the Maxwellian distribution is a special case of this class,

corresponding to

BR=0 , A||:A53:%—

If we assume no mass flow along Eo’ i.e., B =0, (25) now can

be written as¥*

3 2
p&: n(—ﬁa———exF[ ﬁg “_.ELu] )
[ @
AT @\/@,l (v-28)

where %-(%\ and % @h correspond to the average kinetic energies,

parallel and perpendicular to H,, respectively, such that the total

average kinetic energy is

_3_@ _ é.(@“u&@g.

In the case when GD

: MU »\
"1 " h that _
| is "large" enough, so that for <Q@ << l/

we can write

ex?i_a-’%l—‘u‘] = m '

¥ The first order transport properties corresponding to a zeroth order
distribution as given in (28) have been computed, but because of their
length, they will not be given here.
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Upon re-normalization, (28) reduces to

- m 2
po_ N ln__\]ﬁ exp [~ 15, ]
ST ANy m e

A0,

(V-29)

Apart from notation, this is one of the distributions which is considered
by Harris in his Letterf8) who has shown the existence of the instabili-
ties induced by such a ¢(0)

In the absence of an equation such as (21), in an effort to
give a meaning to the diffusion tensor, one may proceed as follows. Com-
bining the Equations (IT-4 and II-5) properly, one has

2 A
a‘ _ (;, - ?igﬁ _ (}/D' Uk ?%Ez N ‘Qik {YO)FT“/,
R 4 koxe  mTkoxp J

Thus, whenever the second term of the left hand side is ignorable, again,

in a sense, a concept of the diffusion tensor may be introduced as

jodi €

G 127 5%




VI. ATTEMPTED EVALUATION OF THE EARLIER WORKS ON PLASMA DIFFUSION

A. General Remarks

The diffusion of the charged particles in a weakly or fully
ionized plasma has been of considerable interest in plasma research for
some time. The results of the earlier experiments on arc plasmas(lg)
have indicated the diffusion rates of much larger amplitudes than that
of the predicted values which are derived in the context of the classi-
cal collision-diffusion theory. In an attempt to explain this discrepancy,
Bohm and co-workers have postulated (Reference 12, page 201), a new mecha-
nism of diffusion which is produced by the "random electrostatic fields
arising from turbulent type plasma oscillationsﬁ(lB) Although the details
of the theory of this so-called "drain-diffusion" mechanism have not been

made available, an approximate formula for the coefficient of the diffu-

sion across an externally applied magnetic field was given as

\08 ® (ev)
b M, (cersted)

i

D.L
(vi-1)

which predicts [L_ to the same order of amplitude as that of the experi-
mentally observed values.
However, later studies at the ORNL (for a review, see Reference
s . - .
14), have indicated that IQL seems to be proportional to '40 , rather
-
than ‘40 as the Equation (1) implies. This result, being in agreement
with the prediction of the collision theory in the large magnetic field

range (more precisely‘flT>>1.), led Simon(lS) to the conclusion that the

-35-
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diffusion process, in this particular case, is not ambipolar in character,
and it is the electron "short-circuit" through the end plates of the arc
chamber that mainly maintains the charge neutrality, which is due to the
much larger mobilities in the direction of the axis of the arc chamber,
along which the magnetic field is applied. On the basis of this considera-

tion, Simon derived the following formula:

(+)
D = I§49 Do+ o«
= ) = ) experimental, (Vi-2)
L LTl

where the index o denotes the case in which the magnetic field is zero.

In an attempt to eliminate the short-circuit effect, a series
of experiments has been performed in Sweden using a .long-thin chamber
geometryfl6) the result of which seems to indicate that the diffusion of
the charged particles increases for the magnetic fields greater than a
critical value, to the intensities comparable to the diffusion rate in the
absence of the magnetic field, which is no longer interpretable by the
ordinary collision theory. Lehnert(l6> concluded +that this perhaps can
be considered as an indication of the existence of an a la Bohm "drain-
diffusion" mechanism, for the arguments based on the "short-circuit" ef-
fect as introduced by Simon do not seem to have relevance in this case.
The similar long-thin geometry experiments at ORNL and Los Alamos have
been reportedly proposed, nevertheless no experimental result has been
made available yet.

In the following part of this section we shall make attempts

to evaluate the ambipolar diffusion under the influence of strong magnetic
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field intensities, in an effort to explain the above described discrepancy
between the theory and the experiment in the context of the formalism
developed earlier. It will be shown that this discrepancy may be attri-
buted to the "transverse" diffusion which is characterized by the off-
diagonal elements of the tensorial plasma parameters, and which is seem-
ingly ignored in the earlier treatments. To the same order of approxi-
mation the "direct" diffusion, i.e., the one characterized by the diagonal
elements of the plasma parameters only, will be shown to give identical
result to that of the collision theory.

Finally, by making use of our formulations, attempts will be
made to re-establish the common result of two different approaches in
estimating the diffusion of fully ionized gases across a magnetic fieldfl7ia

both indicating that D.L is proportional to H;q'.

B. A Study of the Diffusion Processes in Arc Plasmas

Let us consider a weakly ionized gas mixture, in which the trans-
port properties of interest remain substantially unhindered due to the
encounters between the charged particles, such that the mean collision
time, T, can be characterized merely by the short range interactions be-
tween the charged particles under consideration and the neutral molecules
which more abundantly exist in the system, and which will be assumed to
remain unperturbed in an equilibrium state for all time. This presumably
being the case for most arc plasmas, it seems necessary to distinguish,

in general, the mean collision times corresponding to the ion-neutral and

the electron-neutral encounters. Nevertheless, as the experimental results
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indicate, these two parameters are of the same order of magnitude, so that
for the present purpose of estimation this distinction will be assumed to
be ignorable. Clearly, this assumption is by no means a restriction to
the general procedure employed, and can easily be relaxed.

In the case when the external field H, is zero, the Equation

(V-9) can be written as

Dﬁ‘ = Do gah ’ (VI-3)

where

OO
"
3|®
1

1

i
2
%]

o

i

]

(vi-k)

It can easily be seen that ?5, which we shall refer to as "the modified

' asymptotically approaches to T, whenever o can be

mean collision time,'
treated as a constant. Hence, for most diffusion problems of interest
Oy may be considered of order unity.

The significance of this representation is two fold; first, the

form of (%) closely resembles the result of the elementary collision theory,

since, by setting
EE
- - = 2\) _—
):«):ruq:TVwW = %T N7 0

we get

3 (VI-5)
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(cf., Reference 11, Chapter 9) Secondly, as can be seen from the defini-
tion of ?5, the overall effect of the internally induced fields is con-
tained in an appropriately chosen collision parameter. (At least this is
true for the diffusion process when Hj = 0.) This perhaps may be inter-
preted as an indication of a possible connection between the two different
approaches which have been used in attacking the plasma problems; one of
them, which is essentially due to Vlassov, is employed in this work. The
other is the one in which the range of the internally induced fields is
assumed to be screened by a cut-off distance, such as the Debye radius,

50 that their interactions with the charged particles may be treated in
the context of the binary collision formalism by means of properly chosen
reaction cross sections (e.g., Reference 5, Chapter 5; and Reference 19),
such that the conventional methods of solving the Boltzmann equation@9)2Q>
become applicable, (cf., Reference 21 ‘and its references).

In the presence of an externally applied field s The above

Eo
given interpretation seems no longer relevant, unless the modified mean
collision time is agreed to be a tensorial quantity. It is for this reason
that this case perhaps can be best studied by being divided into sections,
as the diffusion along and across the magnetic field. The former presents
no difficulty, since it does not differ appreciably from the case in which
the field is absent. Hence, accordingly we may define

I) = ¢ %% T = a; I:L

3 3 (VI-6)
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The diffusion

projection of the diffusion tensor in the (x,y) plane, namely D

be subdivided as:

-ho-

s
pmj'a (6T

across the magnetic field, which is represented by the

» May

(a) direct diffusion, (b) transverse diffusion, as

indicated before, which will be the subject of the next subsection.

Cl

Diffusion Across the Magnetic Field (1 >> 1)

Let us first note that the Equation (V-9) asymptotically re-

duces to

direct

transverse

whenever 5 can be treated as a
that of the one which is deduced
collision-diffusion theory (cf.,
page 396). It can be shown that
of the strong magnetic field and

the unperturbed orbits such that

ignored, i.e.,

t,s) -

P (x,t, S-+

| J
~
A ,+ n-z,tl DO n’lt?.

i

[« .
° | inie 0T

constant. This result is identical to
in the framework of the elementary

Reference 20, Chapter 18; Reference 10,
a similar result is obtained in the case
5 along

the slowly varying functions

the change over a Larmor period may be

Ty € €.
(v1-8)
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Now, dividing the path of the integrations involved in the Equation (v-9)

as

N An+H) T /5L s
— 2 L -
L6 ) S . dse’-’ G«g‘“ fa(g,tjs)
~ 2 n=0 L
'DJ&;\ T m N Q(n+\)lc/ﬂ. s !
Z n‘lt/.ﬂ ¢ e’ P‘X;t; s)
nN=o

(VI-9)

and applying the mean value theorem to each subintegral with the condition

(8) we get
QTI/SLl _Ss | a
T T
e td —_— ===
L. 0 : Gﬁa‘ S D et Tt
D;“k - E __2_T_L - (o} . Qﬂc I
T ( I - € nt) s 1.1
|+ 0T |+
(VI-10)

[at-11, (2t>1).

where N 1is the closest integer to
The Equation (lO) indicates that in the context of the above
delineated approximation formalism the direct and the transverse diffu-
sions are proportional to H;E and Hgl, respectively, as expected in the
elementary theory. It is of some interest to note that the transverse

diffusion coefficient gives, in this case,

' Do - C @
t - L T el R,
ransverse l Ho (V-11)
I I O I C))
= — |0 )

P40 (oersted)
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where Z denotes the ionization degree of the particular species under
consideration. Apart from a numerical factor («JlO), this is identical

to the Equation (l), which gives the approximate form of the Bohm's drain-
diffusion coefficient.

In order to estimate the ambipolar diffusion, it seems necessary
to introduce a mobility tensor in the range in which the previously in-
dicated assumptions hold. The difficulty encountered in the definition
of such a tensor, without referring to an FL (or similar) analysis as con-
sidered earlier, has already been pointed out. However, as the gyration
radii of the unperturbed orbits corresponding to different species decrease

with increasing H,, the quantity

Er = & (El-ghe) 47w db

N, (VIi-12)

G

may be expected to be quite insensitive in r, i.e., it does not differ
appreciably from one kind of particles to the other,. provided E(l> is a
sufficiently smooth function of x, and the zeroth state is sufficiently

0 2
cold, e.g., C>Q<a &1 , where %. is a characteristic length of the system

—

such as H/\Yh,
If this is true, then by replacing Ei by Ex in the Equation (V-8), the

mobility tensor may be estimated asymptotically as

asA
b
[

2
m -0 'fJ (VI-13)
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which, after the indicated integrals are performed, gives (cf., Reference

10, page 39%4)

| 2
ezt T;s%z‘ ©
g'{q C 9l Lax i 0 .
QT 1T (VI-14)
o) © !
where
K, = =T

The diagonal elements again are seen to resemble closely the result of
the elementary theory (cf., Reference 11, Chapter 9). Furthermore, we

also observe that K, and [)o satisfy the Einstein relation

e
= ) D, (VI-15)

'The above result alternatively can be obtained from the Equation (III-3)

by setting p = O and k = O. We, therefore, write the ohmic current in
the form

N ng E& 3
s0 that for a binary mixture of charged particles the total current equa-
tions can be given as

qw® = ng@®E - DF 9“(;),

o

The ambipolar diffusion tensor now can be obtained by following

the procedure of Section (V-B) closely. Thus, accordingly, we eliminate
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the ohmic currents in (16) by using the commutativity of the tensors

-)
!So+) and ﬁf , and, introducing the conditions of the Equation (v-13),

we obtain

D"‘“"B'z [KM- (-1-)]“'° [_5"

= (VI-17)

~

(¥ P
By inserting the estimated values of L} and §++ from (6), (lO), and
(lh), and making the further assumptions that the ions being singly

charged, and the mass ratio
M-y

H: <<1a

M(+)

we get, after some straight forward but somewhat tedious manipulations,

AMB 1 0
D_L ~ ;LD:.) (o ]> ’ (VI-18)

Moreover, in the absence of go’ it can easily be shown that the

ambipolar diffusion coefficient is given as

- A -
N&))DOH_ Kg-HDo( ) - D(_'_)

c )

D

o Ké)'- é+ﬁ (V1-19)
(cf., Reference 10, loc. cit.) so that, being of the same order of
magnitude, the Equations (18) and (19) seem to explain the result of the
long tube experiments, without referring to an additional diffusion
mechanism, such as drain-diffusion.

Finally we note that, if the off-diagonal elements of the ten-
sors involved in (17) are ignored, the result is found to be identical

to the value expected in the elementary theory: (cf., Reference 10, loc.cit.)

AMIR ~ (') a o]
D = aD, /_Q(_)"C . (VI-20)
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D. Diffusion in Fully Ionized Plasmas

In general, the study of the diffusion processes in & completely
ionized plasma is perhaps somewhat simpler than the case in which the
ionization is but partially accomplished, since in the latter case addi-
tional distribution functions representing the neutral molecules, and
the corresponding Boltzmann equations, have to be further introduced into
our system of coupled equations. However, this fact does not seem to
provide any particular advantage if a relaxation-type model is to be
adopted (as is done here) to replace the complicated collision integrals,
in which the only coupling of the distribution functions of the neutrals
appears. Therefore, one has to make a proper choice for the mean colli-
sion time, perhaps depending on the particular problem under consideration.
As the earlier studies on the plasma diffusion indicate that alike particle
encounters do not contribute anything (to the first order) to the diffu-
sion current, (because of the fact that the motion of the "guiding centers"
is substantially unhindered due to these types of interactions), perhaps
it would be reasonable to choose T as being the mean time between the un-
like particle collisions, provided such a concept is meaningful. However,
since the purpose of the present section merely is the re-derivation of
the result of the formerly mentioned works, the study of the general case
will not be our concern here; rather we shall adopt the particular special
case considered there.

In an effort to resolve the well-known paradox that appears in

the magnetohydrodynamical treatment of the diffusion process, which states

that there can be no net current (or mass velocity) in a simple gas of

charged particles along the direction of the density gradient, Simon(l7)
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has considered the effect of the off-diagonal elements in the first order
stress tensor which is developed in the kinetic theory in the context of
the Enskog-Chapman formalism.(eo) His result indicates that under certain
circumstances like particle collisions may make a considerable contribu-
tion to the diffusion rate.* However, in this case the Fick's law appar-

ently does not hold, since

ooz 3 0_'['_?‘.22] ,
1 32 T dxtn dx° (VI-21)

where ro is the Larmor radius given as

e = <U'>_L/Q ::ﬁ,__ %’%_D

Moreover,(gl) exhibits a dependence such that the diffusion rate varies as

H;h. Longmire and Rosenbluth(ls) have shown that apart from a factor of

k/}, the same result is obtained by making use of a Fokker-Planck approach.
The special case considered in Simon's paper, which also will

be adopted here, assumes that (1) only one kind of particles exists in the

system, i.e., simple gas, (ii) the functions involved vary with x only,

(1ii) the induced electric field is linearly polarized along the x axis,

(iv) the z component of the current is constant, i.e., ;?_‘10): o, (v) the
X ¢3

system is in the steady state.

¥ Also see Reference 22.
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The moment equations given in the Equation (III-4) reduce in this case

to

é_ 0 - o

dx !

d O _0q®<enkE”

¥, 42

dx 1 &

gi : ’*3" -0 - (VI-22)
X I

The difficulty encountered in the employment of these equations has already
been pointed out when the collisions are represented by the relaxation
model. Thus, in order to justify the employment of (22), let us suppose
that we have ignored the collision interactions in the Boltzmann equations
completely. Clearly, the solution of this latter problem can be easily
obtained by simply setting %»ttD in the former results. Now we can use

the relation derived for the stress tensor in the Equation (III-3), which
gives in this case

T -9
m

(Vi-23)

In order to take the collisions into account, we introduce an averaging
process which resembles closely the one which is customary in the elemen-

tary diffusion theory:

_s
T

<’>¢> = Jo S ae ,c_f% (VI-2k)
) T
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Averaging the coefficients in (23) accordingly, and integrating along

the unperturbed orbits we obtain

q}u) _ gl (DU) _ (%%)Q <(3i >z ‘j&mtj

=1l m

W

dj?“)

Gl Cdx* (v1-gs)

\Vm _ T < 30) (@) (6,

and after some straightforward elimination procedures with the use of

Poisson's equation

(VI-26)

Remembering that Simon's result does not contain the terms of higher order
in Y= VB{Q , Where % is a characteristic length of the system, and
the term corresponding to the electric field is ignored, then (21) is to
be compared with the first term of the right hand side of lAFf” only.
Therefore, apart from a numerical factor of 5/2, the linearized form of
Simon's result is equivalent to the one which is obtained here to the same
order of approximation. ©Since our equations were linearized to start with,
this result should not be considered as surprising. The origin of the
factor 5/2 is not known. Perhaps it is inherent in the approximations

used in the two methods.
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The order property indicated in Simon's paper, i.e.,

u) -
2= ()
nyd R

can be easily seen to be also satisfied by (26). Clearly, the last term
|
in the right hand side of LQi)represents the linearized Hall current.
On the other hand, the relation given for the perturbed pres-

sure in the Equation (III-3), after the indicated approximation procedure

is employed, reads
6 \a »
40(” = ::35_ % PU)+% (m) <|\4u >..,

My, = #a - (v1-27)

dl )

Introducing the concept of the perturbed temperature as follows:
= - ) ) ()]
= ® =N OQ+P) = p+
ﬂdt. tt. tt. ) T’ F

W ) )
N ®
Ny ).11;_. - —r)_ + = 3 where F = n @ s we get

®

ada (n(l)) Bf_(_” n(l)— 5_ @(n— a _E_ 5@01 -n_
n @) + ® n ~ (vI-28)

which shows that to the first order in 7 the adiabatic law is obeyed.

Inserting (28) in (26), to the fifth order in y we obtain

o o~ l}? 1w 4 U) 3 YBa&f ()0)
w = ar[4+ P]dx )-f—.“p—;t—;&(é—)
w2 30 d/ no _3 .34 4 @(.) ED

’ 4 dx< ) g ‘de( )" o
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Thus, we observe that to this order of approximation the Fick's law still

is satisfied, provided the effect of the thermal diffusion is properly
identified. We have
2 &
D = &['---r U_L)_\o]
l 2T -4 *
3

where kT is the thermal-diffusion ratio.



VII. DISCUSSION AND CONCLUSIONS

The theory developed here in an attempt to investigate the
transport properties of plasmas essentially is a combination of the
various techniques which have been employed in attacking some special
plasma problems. Among them Bernstein's formal solution of the first
order equation, which was deduced in his studies concerning the plasma
oscillations, and the investigations performed by Drummond and Mower on
the microconductivity properties of the plasma may be mentioned.

Making use of the integral representation of the first order
distribution, we were able to show that the perturbed values of the trans-
port properties may be exhibited explicitly in terms of the "integrands"
of the first order mass density and mass current, instead of the perturbed
Lorentz force as has been used in the earlier studies. In the framework
of this new representation, the relations established among the integrands
of these properties enabled us to descry some tensorial functionals oper-
ating on these above mentioned integrands, such that the resemblance be-
tween the mathematical structures of these relations and the results of
the ordinary kinetic theory provided a means for an identification of the
plasma parameters.

In order to exhibit the effect of the anisotropy in the velocity
distribution of the unperturbed state, a Fourier-Hankel analysis has been
used, with which a seemingly more efficient study of some of the problems
of interest may be performed, as has been pointed out earlier. The trans-
port properties of the plasma are shown to be expressed explicitly in terms

of these transforms and their derivatives.

-51-
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We have given a considerable amount of attention to a special
case in which some of the unperturbed properties of the plasma are suita-
bly specified, and for this particular case we have deduced explicit ex-
pressions representing the diffusion properties of the plasma in terms
of the initial conditions only, in the context of a Fourier-Laplace analy-
sis performed on the position and time variables, respectively. However,
because of the fact that for most cases of interest these representations
turn out to be so complicated as to be almost absurd, in order to deduce
any physically meaningful, analytically tractable result, it becomes in-
evitable to employ some kind of approximation formalism which provides
accessible interpretations for the general character of the process under
investigation without having to refer to an integral transform technique,
such as FL analysis.

Two seemingly distinct methods of approximation, which neverthe-
less give essentially identical results, have been discussed in our pre-
vious work. Both provided sufficiently convincing agreements with the
respective results of the treatments in which various theories have been
employed that are available to plasma investigators.

It is believed that adequate evidence has been presented in this
work leading to the conclusion that it is possible to investigate the be-
havior of the transport parameters of plasmas in some given physical con-
ditions by making use of the mathematical model employed here, although
there has been some doubt expressed in the recent literature about this
matter. Moreover, this belief is also found to be supported (to some ex-

tent) by the fact that our attempted estimation of the ambipolar diffusion
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rates across an externally applied strong magnetic field appears to cor-
respond to that of the experimentally observed results, and seems to
provide a possible explanation for the discrepancy that has been found
in the previous theoretical approaches, so that as a result of this

postulation of a new mechanism of diffusion was considered necessary.



APPENDIX A

A REMARK ON THE n-th ORDER PERTURBATION FORMALISM

Iet us assume that our system is near to a state, which will
be denoted by the superscript (o), and the departure from this state can
be represented by a dimensionless parameter ¥, such that the solution of
the Equations (I-1) and (I-2) may be exhibited in the form of a power

series as

Pr = ¥:w+?'ﬂ03+ Xa{:2)+"'-

(A-1)
The collision model (I-5) now may be written as
€ N (0) _ (n (2)
() = ]
St ‘ ‘ (a-2)
We introduce the quantities for (k = 0,1,2,...)
- 70 _ § ()
QU-Left®ds,  T9-Lefudar
r g r 4 (A-3)
so that
. (o) \T(D s
) (}) . :T - Q + Jy o+ ’
Q:Q‘O-ry@ + ’ = v (1)

Moreover, denoting the solution of the Maxwell's equation corresponding
to the charge and current densities, Q(k) and. g(k), respectively, by E(k)

and E(k), i.e.,

S Jlo
g
=
N
i
@)
<8
W)
\
~
e
D}
=
N
>
Ul
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clearly we have

0) “)..A
E = E(0)+}’ Em""" ) H = H( +)/H T (A-6)

P

Here we shall assume that in the zero-order state the effect of the

(o) _ glo) . 0,

internally induced fields is ignorable. Accordingly we set E
( )
hence éQdL 0, Q(= 0. Substituting in the Boltzmann equation, and setting

the coefficient of 7k equal to zero, we obtain

)
—D‘Fr(o\ ) , Dfr(u) + Qm’ a_‘fr— - i lEu) =0
- ey

K (A-7)
Wt 250t
Dira oy T ir. ) )
R- , ({a-4
- - 2_ g(g)‘ 94r J (A-8)

3’:’ 5—(}-

where

ad - = [E(é)-{' Lux HE'] gl
2 m, L= c =7 = -
Now, if we assume that the Equation (8) coupled with (5) has been solved for
k¢{n-1 i.e.,the right hand side of (8) already is at our disposal, then it
is seen that the problem reduces to the one which is already considered

in the form of the first order equation [cf., the Equation (I-4)], provided

a modified definition of function § is introduced as follows:

@ o (n-4)
d)(n) = Q_(n) —2—.& -+ Z C_{(é) . 9—6.- a 3
CL I °g (8-9)

which enables us to write the Equation (8) in the form of the integral

equation
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Now, the latter may be treated in exactly the same manner as in the case
of n=l; therefore, by induction we conclude that the solution of the
non-linear system (I-1) and (I-2) with the model (I-5) can be successively
approximated to any order without introducing much complexity to the first
order problem, provided the series (1) converges fast enough to insure the
applicability of this method.

The above delineated method of deducing a formal solution of
the non-linear Boltzmann equation coupled with the Maxwell's equations
perhaps can be criticized as being too elaborate on the basis of the fact
that another source of non-linearity in the Boltzmann equation, i.e., the
contribution of the short range interactions, has been treated by means
of a linear model, which, in general, does not yield the conservation
equations. However, since no such difficulty arises in the case when the
collisions are absent ( or ignorable ), as is pointed out in the text on
several occasions, the effort to obtain the non-linear effects of the
internally induced fields seems to be Jjustified to a reasonable extent
for plasmas in which such a condition occurs. Although when the questions
involving the transport properties of the plasma are under consideration
this condition does not seem to be relevant, it is perhaps possible to
shed some more light on the understanding of these phenomena, in a some-
what sophisticated manner, by the employment of an approximation procedure,
such as indicated in the Equation (VI-24), --which presumably (and hope-
fully) provides a sufficiently appropriate, resonably accessible treatment
of the collision interactions--to the results obtained by using the formal

solution of the collisionless case as described above.



APPENDIX B

SOME PROPERTIES OF THE TENSCRS R, G, AND M.

The tensors R, G, and M as defined in the Equation (I-13) have
some operational properties which make the tensorial representation in-

troduced earlier a powerful technique in handling the problem under con-

sideration. Some of these properties will be given below without proof

since most of them are almost trivial in character. We have

_ p-l - p-!
Rq(s) = Ry (9 = R =R (),

i 1 (B-1)
R, (9 R{Am = r\’kecw R‘d‘(s} = Q&J(S+t) , o
GM(_Q :'Gﬂ'k<9 : M%(S) =+ Mjh('S)> (B-3)
G Qeé(g =_ Ree® G = (B-4)

G (s+b - Gk.(ﬁ ,
ka {

Gy =Cyl0 = R OG, [0 - R o9 G (1) -
_ — G (L (),
= G, P{a.(’c) er) er'

. - _ G )

Ckem Ra.em - Gq“) IQ“((S) = G 0

|

) (B-6)
_ ‘ = . -6

9} E3;l'f< GU‘? = 0 E?kt’ ij IQ*(} i (B-7)
_ A =4d

_(2 533{? QAIQ = Q 83444' Q&a - Q'{J - OTS (\),'A' (B-8)
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< — - G- 8,
M= 2 M+ GO

3{k (B-9)
. s ,
EB{Q&‘ LG-{&( + G{( i-] - mn th (B-lO)
L
3aeG£t«Ge =84 =g, M M ],
! { (B-11)
= = [VI + V\ .
G'km de Gmk Gmd' 3{‘ /‘Cd ) (B-12)
_G (&) G (9
M(k(%*o = I‘/\Jk(&)—\— M%,CS) b MJ
= MO M = G Cenl® (51
Alternatively one can write
s =sinfls O
R, (D= [an
f 3({())57.3 Cosgls ? (B-14)
sip Qs B | — cos 28 0
- Q SL
G;J(S) | = 0sRS sinQs o
L ok (B-15)
0 & S
= L sinQs & + (I msQ§>
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|- sQs  _ Qs-sinfls
N6 -sin s | — cos 828 0
N3 o2
0 0 <
\ 2
(B-16)
= 5 (-es29) g + g5 -5in2s) 540
A =
+ L [%_(:—wsﬂs)jggioga'
Gl = [Qwt2s 2 o0
1(,) a a ey
-4 QetdE
: =% s (B-17)
= 5L 325 5 2 . 2,42
7 ot 73 6:('{ * X 536({ +('%"Z{C°{ Bé)g;é 3
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APPENDIX C

DERIVATION OF THE INTEGRAL FORM OF THE BOLTZMANN EQUATION

Here we shall assume that the condition (I-lO) is satisfied,
although the derivation of the integral form of the Boltzmann equation
can be accomplished in a much more general case. First, let us consider
the unperturbed orbit Equation (I-11). To show that it is the solution

of the Equation (I-?) let us differentiate it with respect to ¢t (or s)

to get
a = < - =
gt ¥ =gt T r\)g'k» T 3fo€g k (c-1)
and differentiating again
d
gt = 7% Cao 667 * Qakg’
= -0 €3€k [(é— _JCC'J] -+ Rg{? éj
= —-S£2 - -3, ) , ,
te - (R =516 + R
d e e _ gt D,
d‘l:gi = F/)EO'PEchtlo'g . (@.ED) o2
Moreover, we observe that X = g , =Y at $= 0 .
Now let us consider a function f(g,y,t), and define
Fig o) = 80utt), ot 9es) e

on the basis of the transformation indicated in the Equation (I-ll) .
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Differentiating (3) with respect to s, clearly we get

oF o . dy % d 2y et
95¢—a7 dsx"'ag ds - 7 28 ~ (c-4)
which essentially proves the last equation of (I-7), since we have
— | -
Df =-21 ¢ - (c-5)
Thus in the transformed space we can write
~ S .o 2 7
., L7 ._4& 2(etf|=-e* ¢ ]

and integrating from s = 0 to s = t, we get

(c-7)
Now, re-labeling
x = E+y G-+ &.-MO - f = x-GW-u+ M©).&
o= y.RM) +EGW) Z=8(H"J—@“) ¢
with = O , and changing the integration variable g=4+-< we have

= _gtcls’e"sf B (x-Gru+ ML RS -GEE £-4)

(c-8)



-62-

Here, in the last step, we have made use of the Equations (2, 4, and 13 -

Appendix B). On the other hand, if we re-label

(g, 0=k >% , vlL,y 0>y

-— -

in (7), and take the limit at t » - , we obtain

)+ M), Y _'Blﬁ)--ré.g(é),q?’.,.t)]

u®

Lim [e%{j(é +U-

t-a

=- g‘m qﬁ(x-ru G+ € M(s), u. R(S)'i-é G(s> 1?'+3>A5.

Now, changing the integration variable as s' = -s, and identifying 'Jh-i'f

we get the asymptotic representation
® S e Cle eog)ds
foe0 = - | €Pdlegute, RY-G'E, * (€-9)

provided

s
dim \:e‘%g(x,(g(s).w M)-€ , B(s)-g-@s)@, t—ﬂ} =0 o)

§> 00



APPENDIX D

FIELD EQUATION WITHOUT INTRODUCING THE INTEGRAL TRANSFORM

We shall restrict our attention to the special case of section
ITIT in order not to complicate the problem unduly, although the general
procedure employed requires no such restriction, provided the unperturbed
orbit equations are available so that the integral representation already
developed can be used. We shall also consistently ignore the dissipative

effects, by neglecting the collisions, for the reason indicated above.

Let us compute 41T YQ +‘%§cg . First, we consider the first
term.
2Q ) oE, (x ,t,9)
W &~ = - ) = 2SdsG(t s) —k = ]
9"({ %Bxa[ Po R 3%,
# E,
= = z: w2 G * ‘“‘Eﬁ& ’
— [ % 9 axg (p-1)
where

—
—

_\_ 3 _ -<)- ,t (o) (o)
W = mldv B - Gueory ) {%n ,(f9e MB),

I ¢—

(p-2)
and where the generalized convolution notation is defined as
t
- -5) ds
1) = | h(st-5)g(st :
h (5t) ¥ glsit) ), d (p-3)

The second term gives

Am I -?-Zw;[JolsR(H)E(xts\)
@
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which after some manipulations can be written as

b1 g-ga' = E_{wr Eg(x ) - w“_QEB% Rk/l ‘:k

2 E E
o @[RR(] mﬂ-ka % R%'Gkr *923 E,

—

o4 s
M>f’( ) kp ‘13 ef‘ ax'pxqéxgx ~f } '

(D-L)
Now, inserting (1) and (4) into Maxwell's equation we get
0%, = V“Ed—éé‘);% - L, = L
T GE R - A6 19 ARy
c\?Z@rﬁwF [R'ﬁer‘f th‘i ‘n hf aa ‘;1;
4T
ﬁ? Z;( ) [ ke 93 G E;?gi:g;;g;ﬂ k

)
where Z3 is an explicit function of -F ()_(,g,O) only.

It can be shown that the FL transform of (5), making use of the
second moment equation of (III-4), gives the field equation deduced in

section IV. Although this deduction will not be attempted here, to exhibit
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the consistency of (5), we shall re-examine some of the particular cases

studied in section IV. First, for initially cold plasma (5) reads

e = 55 L9 -5y Lep QR XE

(D-6)

Moreover, if Hy = 0 we get

2 )
A - -\— a t -S ? E (X)s ds Zw2 - Z‘
D L‘.a CQEj Z_wr + go ('E ) a)(k aXa r e (3_7)

Differentiating twice with respect to t

s AoE P FE v 2
V3E T ot Bicgzwf’ 2x, OX.

and setting

E = Elexplebex-<wt] , :@"exr[{@.g-me]

we obtain
2 »0
[wi(&icl_w&_ ZL\JF) &‘J - C",{i_{,% ZW‘; 1 E'.LO = - czu.) C? (D-8)

which is identical to the Equation (IV-ll) .
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As a second application, we consider again an initially cold
plasma, and the pure transverse wave case propagating along H, , i.e.,
7E=0., E-H=0, 2Ek.2En_p . Then (6) can be put in the

form

PE; L TR 7
sza‘ca a%‘z&[ f’at’gG(S)EQ&S}dS Za

(D-9)
The Equation (9) exhibits the fact that the plasma medium is dielectric
in character* (at least in this case) if we generalize the concept of
the dielectricity as being tensorial and hereditary. In order to study
this effect we expand E into Taylor series
a’Ea | X [ M(o} 9"# M"’ A 7k, Mm
B & 99 P oLk & 2t K

=7

where
‘\/\(n) - S‘f éﬁ(_mn G-(S)O‘S ) l\—/](o) = __f\ﬁ_\ .
= o nl = =

Ordering with respect to the time derivatives, we get

e L2E _LE Ty %R, v [%e -tR

PEY ¢ 28 c?

L (ng-tekfg- Ry

3

“f

SO - ntn
+ Z 2 Ey wa(m(“al(.x 1 e g Pki

“ (h-)!
= (.- (D-10)
Z:'J D-10

¥ Bee, for instance, Reference 23.

]

)]
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Although, taking the FL transform, the dispersion relation (IV-16) can

be obtained without much difficulty, it seems of some interest to employ

the averaging process which will be discussed in what follows. This

process will be performed in two steps; first, the time dependent coeffi-
cients in (10) will be approximated by using the Equation (VI-24), secondly,
we shall take the limit as T-»0 . After performing these above indi-

cated manipulations on obtalns

5L, _C %?9£L OE; ) o), J

|
220 & R mae‘ Sl‘* ot

23k l .

F(+) ’ Ckho L -+ ] E3é

C:" [Q(+)9t3 M@l:? d
(D-11)

7E; _

Here we considered a binary plasma with singly charged ions, and neglected
M-y

M ¢+)

E>E +1E8 = E° exp [ ikz + iwt ], in order to examine the circularly

the terms of the higher order in M= Now, if we substitute
polarized waves, after summing the resulting geometric series we can
easily obtain Spitzer's dispersion relation discussed earlier [cf., the
Equation (VI-16)].

It is of some interest to note that in the case when the terms
having the higher order derivatives of E are ignorable (for instance when
W ! ), then (11) identically reduces to the magnetohydrodynamic-

wave equation
2'E; __L(‘_'_LHIECQ) ’31:3 =,
c? HE 4

N\ 5|
02 ot (D-12)



-68-

(see, for instance, Reference 5, Chapter 4), corresponding to the dielectric

A g-_
constant =1+ 4TFPC |40 . This result, as most of our earlier

results, exhibits a complete agreement with the predictions obtained by the

simple first order orbit theoretical considerations (cf., Reference 23) in

()
their common applicability region, namely X =.§z <1 , so that the

physical properties of the plasma do not vary appreciably during an ion

Larmor period.
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