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ABSTRACT

This report documents the achievements from January 1968 to March
1969 of continuing research into the application of Queueing Theory and Mar-
kov Decision Processes to the design and investigation of multiple-computer,
multiple-user systems. A summary of the theoretical investigation conduc-
ted, the major conclusions reached, and some typical applications are in-

cluded.
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EVALUATION

This final report documents the last fourteen months of
progress on a three year effort. Earlier progress was docu-
mented in RADC TR-67-345 dated July 1967 and RADC TR-68-57
dated March 1968. The work was performed under contract
AF30(602)-3953 between the Rome Air Development Center, Griffiss
AFB NY and The University of Michigan, Systems Engineering
Laboratory, Ann Arbor, Michigan. The contract formed a portion
of overall efforts to develop advanced data processing tech-
niques and concepts under Air Force Project Number 5581.

This effort was undertaken to explore and-'develop better
techniques for analyzing the performance, control, and structuring
of complex data. processing systems. Emphasis has been placed on
developing and testing improved theories and modeling tools per-
miting rapid and accurate analysis of system designs. These
developments have then been applied to various system design
aspects in order to verify the accuracy of the models and to
predict system performance. Of particular significance in this
area has been the refinement and extension of the earlier Recur-
sive Queue Analyzer (RQA) program (a computational tool based
on Queueing and Markovian Modeling theories). This program has
recently been shown to provide acceptable analytical solutions
at rates significantly faster than standard "simulation' tech-
niques. Additional work has been completed toward extending the
program's capability for processing extremely complex models
which are beyond the range of present analysis techniques. (See
also RADC TR 69-134).

Major progress has also been made toward the formulation of
basic design guidelines and principles which can be used by
designers of large-scale, multiple-user computer systems. These
principles are being developed through the analysis of models
of various system aspects in order to determine optimum or near-
optimum configuration and performance algorithms. Initial results
in this area have been published in RADC TR-69-132. This work
shows significant promise for improving the efficiency and
effectiveness of future large-scale system design efforts and makes
steps toward moving system's design from the realm of "art" to
a refined' "science". Of equal value is the promise of more cost-
effective initial system implementations by applying these analy-
tical techniques to proposed designs prior to actual development
or production commitments. By these means, many alternate
approaches and design trade-offs can be evaluated much more
rapidly and cheaper than with present "built-it and try-it" or

X1



"full-scale simulation" techniques.

Additional effort to continue research in these areas is
being supported by RADC under Contract F30602-69-C-0214.

LAWRENCE W. ODELL

Project Engineer

Reconnaissance Engineering Section (EMIRA)
Rome Air Development Center, Griffiss AFB NY
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1. INTRODUCTION

1.1 CONTRACT OBJECTIVE

The objective of this contract is to develop analytical techniques to

assist system planners, designers, and evaluators in their determinations

of the gross structure, control rules, and performance characteristics of

multiple -computer, multiple-user systems, and to apply the techniques to

large computer systems shared on a real-time basis by a large number of

users, through consoles.

1.2 CONTRACT REQUIREMENTS

ao

Continued exploration of Queueing Theory and Markov Decision
Theory to improve their capability in determining scheduling and
performance parameters for general on-line computer system
problems.

Development of improved computer programs for carrying out
analysis and optimization of system models, based on procedures
resulting from the study of Markov Decision Theory and Queueing
Theory.

Utilization of the computer programs and theoretical investiga-
tions to develop new conclusions and rules which can be used by
persons performing initial design of real-time computer systems
having a large number of user consoles. Such rules will allow

system designers to more rapidly choose the type of hardware/

1



software system needed to fit a particular organization or prob-
lem,

Utilization of the computer programs to complete a queueing
theory model of actual or proposed systems which will be used
to project system performance and operating characteristics.
The Markov Decision Technique will be applied to determine
optimum scheduling and priority structures for such systems,
and determine any system operating ""bottlenecks" which are
anticipated.

Final analysis of The University of Michigan Computing Center
data, collected under contract AF 30(602)-2661, and use of the
final conclusions of that analysis to analyze data from the other
systems (when it is available). These data and conclusions will
be used to provide parameters and validity-checks to other
system models.

Statistical data will be gathered, where possible, from a num-
ber of running systems to gain a better understanding of user
demand and processing structures and to confirm theoretical
conclusions. The data from idem "d'' above will also be used
for this purpose.

A search for other theoretical approaches to the analysis, con-

trol and design of multiple computer systems will be pursued.



1.3 PROGRESS TOWARD CONTRACT OBJECTIVES

Progress has continued in both the theoretical and empirical areas.
Of particular interest is the completion of three long-range projects con-
cerning systems analysis and optimization. The first of these projects has
successfully laid the theoretical basis for extending the concepts of numeri-
cal queueing analysis to infinite state Markov chains. This work is reported
briefly here in Section 2.2, and in detail in a separate report [ 3]. The sec-
ond project has resulted in a telecommunications network design procedure
which is less restrictive and yields more nearly optimum results than pre-
vious methods. This work is described in Section 3.1 and in a report |1 |.
The third project concerns the optimum design of computer driven display
systems. This is described briefly in Section 3. 2 and in detail in a report
[2].

Other shorter-term projects have been completed: Chapter 2 reports
on conversion of our numerical queueing analysis program to a new compu-
ter, and the analysis of several proposed information storage and retrieval
systems. Chapter 4 reports on data collected from The University of Mich-
igan's time-sharing system. The data is analyzed, and some useful con-
clusions are drawn.

In addition to the completed long-range projects, there is one which
is not yet completed. This concerns the optimal design of large memory

systems, and is discussed in Section 3. 3.



Finally, Appendix A presents a soon to be published paper which dis-

cusses multiprogramming in page-on-demand systems.
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ses Arising from Multiple Access Computer Systems, " SEL Techni-
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2. NUMERICAL QUEUEING THEORY AND THE ANALYSIS OF SYSTEM
MODELS

Our past work has led to the development of numerical techniques for
the analysis of complex queueing systems. The programs implementing
these techniques have been converted to the University's new IBM 360/67
computer, as is described in Section 2.1, Unfortunately, these techniques
are not adequate to study certain types of large computer systems. Section
2. 2 reports on the extension of numerical analysis techniques to more (but
not all) large computer systems,

The remaining three sections report on the analysis of several

proposed systems and system models.

2.1 RECURSIVE QUEUE ANALYZER

The Recursive Queue Analyzer, or RQA [ 4], has been reprogrammed
to run on the University's IBM 360/67 computer. Because of the greater
computational capabilities of this new computer (as contrasted to the old
IBM 7090), the new RQA can do more in less time than the old version,
The most important consideration here is that the 360 version of RQA can
handle system models having up to 32, 000 states, as opposed to 5, 000
states in the old version. Interestingly enough, the limit of 32, 000 states

can be easily increased even further!



2,2 THE NUMERICAL SOLUTION OF INFINITE MARKOV CHAINS

2. 2.1 Introduction

Markovian models have found considerable application to the art of
computer system design for two significant reasons, First, they have been
applied because there is a sizable theory upon which to draw, and many
powerful theoretical results which are available. Second, computer sys-
tems have come to a stage of evolution where they are predominant "high-
traffic' systems and, as a consequence, the modeling and estimation of
statistical performance has become a crucial aspect of their design.

However, there are limitations to the models of this type which are
capable of analysis. The models which must be solved are often too com-
plex for classical queueing theory, and often have too many states for
modern numerical techniques [ 4 |. The precision required over a wide
range of parameter variations often rules out simulation as too costly.

The study of multiple-access computer systems and the so-called
"computer utilities' are particularly difficult in this regard. Furthermore,
as these systems grow larger and more complex (through servicing more
user circuits, the introduction of multiprocessing, the use of satellite com-
puters and data-concentrators, etc.)this situation can be expected to be-
come worse. Complexity and largeness of state spaces will be the rule.
Yet these are the very systems for which analysis of Markov chain models
can be of greatest use to the system architect. Thus, new techniques are

urgently needed.



A typical example of such a model will serve to make this need more
concrete, Consider a multiple-access computer system with two thousand
common-carrier trunk lines leading to a bank of fast processors operating
on a large, multiprogrammed, paged main memory. Suppose that the
memory is demand paged with a large bulk-core "virtual' memory. Sup-
pose, finally, that we wish to study the relationship between the expected
number of queued unserviced requests for computation and, say, the size
of main core memory.

A queueing model which could be used for this study is illustrated
diagrammatically in Figure 2-1, where circles represent queues and
squares represent service-holding. This model anticipates that congestion
in the channel to the bulk-core will be a major problem (see Appendix A),
and so it details the paging operations in a manner similar to the model of
Appendix A, However, arriving tasks in this case are queued in a "wait
queue'" which can, potentially, assume very large values. (Typically, for
a system of this size it could contain an average of several hundred re-
quests.) Because of this, the state space is very large and has been
modeled as infinite, a consequence of assuming that the wait queue can
assume any nonnegative value. A detailed description of this model is not
vital to this discussion. The important thing is the form of the state space
and the transition intensity matrix from which the equilibrium probabilities

and expectations are to be calculated.
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Table 2.1

States of Figure 1-1, when m=2, and m'=1
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2.2.2 The QRD Process

Let m and m be positive integers, with
m > m. (2.1)
Let N = {N(t), t > 0} be a continuous parameter Markov chain with station-
ary transition probability functions continuous at t=0, and with state space
9(, where
7’. = {<0,1>, <0,2>, ..., <0,m >, <1,1>, <1,2>, ...,
<L, m>, <2,1>, ..., <2,m>, ..., ...[|. (2.2)
The process N is called a QBD process if its transition intensities
{ujk; ihke n} , satisfy the properties:
(a) Ifj= <j1, j2> and k = <k1, k2 > are two states for which
ljl-klt > 2, thenuy = 0.
(b) If j= <j1, j2> and k = <k1, k2> are two states for which

kL <L G+ k > and

1 1)

k' = <k1—1, k2> , then ujk = uj'k"

A continuous-parameter Markov chain will also be called a QBD process if

>3, and if j' = <jy-1dg

a mere one-one mapping of its states results in a QBD process. However,
no loss in generality will result from consideration of only state spaces of
the form (2. 2), represented by the set n

The state space n is more graphically described as a two-dimen-
sional integer space whose first dimension is countably infinite, whose sec-

ond dimension is finite, and which has the configuration of Figure 2-2,

12



States in the setﬂo = {<0,1>,<1,2>, . . . ,<0,m >} will be called

boundary states and the set no will be called the boundary of N.

Figure 2-2 State Space

If the lexicographic ordering of the states used in equation (2. 2) is

preserved, then the conditions (a) and (b) are equivalent to a specification

that the transition intensity matrix U = {u].k 1 j, ke ﬂ} is an infinite matrix

which can nevertheless be displayed in the partitioned form

-

Q> H=
Q o) > >
>
(e}

vo)
>

13



where the submatrix E is an m X m matrix; where A, B, and C are

A A
m X m matrices; and where A and C are m X m and m X m matrices,

respectively, and are further partitioned into the forms

A A
A = (2. 4)
0
and
A
c = [c 0] (2. 5)

Many QBD processes whose transition intensity matrices do not have
the appearance of Equation (2. 3) can nevertheless be identified as QBD pro-
cesses by simply regrouping the states and reidentifying them.

When m0 =m =1, the QBD process is readily recognized to be a sim-
ple birth and death process. The "QBD' in the name ""QBD process'' is an
acronym for the somewhat barbaric, though apt descriptor "quasi birth and
death', in recognition of this fact. (The word "quasi' is frequently used in
matrix theory in describing matrix forms created by replacing scalar ele-
ments by submatrices, as in ""quasi-diagonal" and "quasi-triangular' ma-
trices. )

In order to calculate an equilibrium distribution of a QBD process N,
reasoning reminiscent of that commonly followed in solving birth and death
processes can be followed. This reasoning and the calculation technique

that results is essentially the same, in outline, as that proposed by Evans

[1].
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An equilibrium distribution is a sequence 7 = {wk, ke % ] of nonneg-
ative real numbers which satisfies the equation 7 §f, = 0 and whose compo-
nents have unit sum. If we let 7 = [¢>0, qbl, <1>2, .o ] be a partitioning of that

sequence for which is an m _-component row vector, and ¢,, ..., are
q 0 0 p ) 1 2} )

m-component row-vectors, then the equation 7 uo = 0 is equivalent to the
equations
A
¢>OE +¢,C = 0 (2. 6a)
A
qsOA + <1>1B + ¢>2C =0 (2. 6b)

bpiA+oB+o, C =0 n23.. . (26c)

Now suppose that there is a solution [qbo, ¢1s gy e s . | to Equations (2. 6)

of the form
A
<Z>1 = ¢0R (2. 7a)

é n=2,3,..., (2. h)

1l
-
[
=

n
A
where R is an m X m matrix, where R is an m X m matrix partitioned to

the form

A
R = , (2. 8)

and where ¢0 is some row-vector whose components are not all zero, Then
it develops that, by substitution of Equations (2. 7) in Equation (2. 6), the

matrix R and the vector qso must satisfy the equations

15



AN
$o(E +RC) = 0 (2. 92)

A A
6A +RB+RRC) = 0 (2. 9b)
A -
s,RR" (A +RB + R%C) = 0. 2. 9¢)

Furthermore, since a solution of Equations (2. 6) where ¢0, qSl, d)z, cees
have only nonnegative components is sought, 0 and R must guarantee that
nonnegativity as well. If we can show that such qbo and R exist, and yield a
solution 7 which is an equilibrium distribution, then the assumption of Equa-
tions (2. 7) will be vindicated. The Equations (2.9) suggest a sufficient con-
dition for such a solution to be found. This condition is that a matrix R ex-
ists having the properties:

(a) All entries of R are nonnegative.

(b) E + IQ(/J\ is singular, and has a nonnegative, nonzero vector 0

in its null-space (so that Equation (2. 9a) is satisfied).

(c) All entries of A + RB + R2C are zero.,
(This latter property is reminiscent of the classical characteristic roots of
a difference equation, while the first two are reminiscent of the application
of boundary conditions to difference equation solutions. )

It is our purpose to show sufficient conditions that a matrix R does ex-
ist having the properties (a), (b) and (c). Remarkably, those conditions are
very general, and include almost all interesting QBD processes. Under

those conditions, an equilibrium distribution can be calculated by the four

steps

16



(1) Determine a matrix R having properties (a), (b) and (c).

(2) Determine a vector o

(3) Normalize ¢0, if possible, so that 7 will have unit sum.

(4) Determine as many of the ¢, as desired using Equations (2. 7a)

and (2. Tb).
It will be shown also that such a matrix R can be determined by an iterative
process in every interesting case, and that ¢0 can also be calculated by
known techniques.

Thus, the problem of determining an equilibrium distribution of a QBD
process (which has an infinite state space) will be shown to reduce to sever-
al routine finite problems, each of which does not tax the memory or com-
puting capabilities of a digital computer of moderate-to-large size,

In addition, results are given providing (1) necessary and sufficient
conditions on R for an irreducible QBD process to be positive recurrent,

(2) sufficient conditions for R and 7 to be unique, with 7 equal to the limit-

ing distribution,

2.2.3 Boundary Leading QBD Processes

The sufficient conditions for the existence of the quadratic root R
are satisfied by a very general type of QBD process, the "boundary leading"
process.

Definition

A QBD process N is boundary leading if every nonboundary

state leads to a boundary state.

17



This condition is a very weak one, and encompasses all irreducible QBD
processes as well as a considerable variety of reducible ones.

Transition graphs of a number of simple boundary leading QBD pro-
cesses are shown in Figure 2-3, demonstrating this variety, These graphs
represent every state by a vertex, and efrery nonzero, non-diagonal transi-
tion intensity ujk(j # k) by a directed branch from state j to state k. The
states are arranged as in Figure 2-2, Two-way paths in Figure 2-3 are
shown by heavy lines, and boundary states by square vertices. These
graphs are useful in visualizing the communication properties of particular
QBD processes, since a state j ''leads to' a state k if and only if there is a
directed path in the graph which can be followed from j to k. Note that only
the graphs (e) and (f) describe an irreducible process. The rest are reduc-
ible,

It should be particularly noted that the definition of boundary leading
processes makes no mention of paths between boundary states, Thus,
branches between square vertices in Figure 2-3 can be removed or added
at will without altering the boundary leading character of the examples.
This exercise offers still other interesting examples. The most interesting
aspect of all the examples, however, is the way that the horizontal repeti-
tiveness, characteristic of QBD processes, forces certain communication
properties.

The assumption that N is boundary leading is so general that it auto-

matically includes every QBD process which has a finite number of

18
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communicating classes, The converse is not true, however, since Figure
2-3(d) describes a boundary leading process which (degenerately) has an
infinite number of communicating classes. The boundary leading QBD
process has been singled out for study here because it represents one of

the most general processes for which a quadratic root matrix R exists

having the required properties,

2.2.4 Conclusions

It has been shown that, under common and predictable circumstances,
the QBD processes lend themselves to expeditious numerical solution, and
are therefore a useful class of stochastic models for computer system anal-
ysis (or other queueing application), The equilibrium distributions and
other related measures are determined by a procedure which involves op-
erations with only finite matrices, and which is analogous to procedures
used in solution of the difference equation of simple birth and death pro-
cesses,

This conclusion has been demonstrated by a comprehensive algebraic
theory whose two main theoretical conclusions can be summarized as:

Conclusion 1

If a QBD process is boundary leading, then the matrix quadratic

A +XB + ch is, indeed, analogous to the characteristic equa-
tion for the birth and death process, having a root matrix R

which generates the characteristic solution

20



n-1
d)n:(blR n=2,3,...-

The m-vector qsl satisfies a boundary condition

A A
¢>O(E +RC) = 0
A
¢1 = ¢0R7
and the equilibrium solution is given by

To= [¢O)¢1)¢2’---]

The root matrix is in a known set & . If 7 is convergent, the equili-
brium distribution is merely a scalar multiple of 7.

Conclusion 2

If the QBD process is irreducible and positive recurrent,
then the root R can be found by a well-defined iteration

process

)]
i

n+l T( Sn)

R -1

C(B + Soo)

and the resulting solution 7 will be convergent, Conversely,
if the process is irreducible and a root R is found for which
the resulting 7 is convergent, then the process is positive re-
current,
Much more has been said, of course, but these results are the most sig-
nificant and general. The theory presented is broad enough so that there

are numerous specific questions about QBD processes which can be
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answered by intelligent use of the theorems, corollaries, and lemmas
explicitly supplied. Thus, this theory provides a good base on which to

build even greater usefulness.
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2.3 RELATIVE PERFORMANCE ANALYSIS OF SELECTED COMPUTERS
AND ASSCCIATED BULK STORAGE DEVICES

A very important use of system analysis techniques is the selection of
hardware to be included in new or modified computer systems, and also to
determine how the hardware is best used. Thus this and the next two sec-
tions discuss specific systems which have been analyzed. In this section,
we discuss the computer and bulk storage needed in an information retrieval
system. In a system of this type, two things are of concern: (1) Data
and programs must be moved from peripheral bulk storage devices into
and out of the core memory; and (2) while in the core memory, data
must be manipulated by the central processing unit (CPU) by executing
programs.

We shall use speed of response of the system as the performance cri-
terion., The system performance is related to both the speed of the CPU and
the speed at which data can be moved into and out of the core memory. If
the CPU is in use 100%of the time and its speed is doubled, then if the CPU
can still be kept busy 100%of the time, the system speed of response doubles.
On the other hand, suppose the CPU is only in use 50%of the time because
there are not enough programs and data in core memory available to keep
it busy. In this case doubling the CPU speed will have little effect on sys-
tem response. It will merely mean that the CPU will now be idle 75%rather

than 50%of the time.
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Thus two kinds of imbalance may occur in the system. If there is
excess CPU capacity, increasing this capacity further will have little (if
any ) effect on system performance. If data can be transferred from bulk
storage to core memory faster than the CPU can process it, then increasing
this data transfer rate will have little effect on system performance. Of
course, the relative CPU and bulk storage transfer rates required to main-
tain a balance vary depending on the type of problem the computer system is
solving. In many scientific calculations, for example, there is much mani-
pulation of a small quantity of data. Here the speed of the CPU should be
high relative to the data transfer rate. In the system we are concerned
with, however, the reverse is true. Large quantities of tactical intelligence
data must be scanned for parameters of interest. This involves transferring
a lot of data into the core memory but involves little computation on each
record read in, Thus for a balanced system the relative CPU to data trans-

fer rate can be much lower in this case.

2.3.1 System Specifications

The computer specifications we considered in this analysis are shown
in Table 2-3, Note that the Execution Speed is the ratio of word size to core
cycle time. The specifications of the bulk storage devices are shown in
Table 2-4, Two storage systems are considered. One consists of 200 mil-
lion bits of drum storage and is called the dual channel drum. From

Figure 2-4 it can be seen that transfers can take place from the disk and
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Table 2-3

Computer Specifications

Computer Beta™ Epsilon*
Word Size 18 bits 30 bits
Core Cycle Time 2 usec 1.8 usec
Execution Speed 9 bits/usec 16.7 bits/usec
Max Data Transfer Rate | 7.20 mega-bits/sec 4. 8 mega-bits/sec

(400, 000 words/sec) (160, 000 words/sec)
also

(100, 000 words/sec),

(55, 500 words/sec)

*
""Beta' and "Epsilon" are designations chosen for ease of reference and to
avoid use of any commercial designations.
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Table 2-4

Bulk Storage Device Specifications

Device | Disk | Drum
Avg. Access Time | 184 msec 9 msec
Transfer Rate . 730 mega-bits/sec | 2 - 6 mega-bits/sec
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drum storage simultaneously in the disk-drum storage system and from
both halves of the dual channel drum storage system simultaneously. It
should be noted that the access time is much more significant in determining
bulk storage speed than the transfer rate. Average access time is the av-
erage time required for the disk or drum to rotate to a point where the de-
sired data are located. Once this point is reached the transfer rate is the
rate at which data are read from the disk or drum. Thus for the dual chan-
nel 6 mega-bits/sec drum 9 msec average access time is required but only

1.5 msec are required to read a 512 word, 18 bit record.

2. 3.2 Results

We have mentioned the concept of balance between the CPU rate and
the rate of data transfer. For the proposed use of the computer systems
under consideration we estimate conservatively that only rarely will more
than five execution cycles be required per data word transferred. This es-
timate is made because the system is basically a data storage, and retrieval
system (file system) in which little manipulation of data by the CPU will be
required outside of the executive control program. For example, a target
record may be searched on a few key words, but much of the record is text.
Well under one execution cycle/word transferred would probably be needed
here.

Using the estimate in the preceding paragraph the disk-drum storage

system may be rejected immediately for both computers as being highly
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inefficient. This system is so slow (average access time 184 msec) that
approximately 90 execution cycles/word transferred would be available in
Beta and about 160 cycles/word transferred in Epsilon. (See triangles in
Figure 2-6.) This means that the Beta processor would be idle 95% of the
time and the Epsilon processor would be idle 97% of the time. At the
other end of the scale consider the six mega-bit/second dual channel

drum with these two computers. At its maximum rate (average access
time 9 msec), approximately 6.5 execution cycles/word transferred are
available in Beta and about 13. 5 execution cycles/word transferred are
available in Epsilon. Thus the performance of these two computers

should be roughly equivalent even when the fastest available bulk storage
system is attached to them. Both these systems are much faster and make
much more effective use of the CPU capabilities than did the systems using
disk drum storage. In fact there will be roughly an order of magnitude
improvement in the performance of either computer with the dual channel
drum over that same computer with the disk-drum.

With the fast dual channel drum storage (6 mega-bits/sec) the compu-
ter system will be fairly well-balanced. Only in this case will the execu-
tion speed have any appreciable effect on performance because now the
storage system may occasionally have to wait for the performances of the
two computers as a function of the percentage of time the storage system is
held up by the CPU in Beta. For most programs the percent of time storage

must wait for the CPU will probably be 1% or below. In this range the
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performance of the two computers is essentially the same. Note that for
a given storage configuration the relative performance of Epsilon to Beta
will never rise above about 1. 85 since this is the ratio of their execution
speeds.

We also studied the relative performance of the systems as the frac-
tion of time varied for which the storage is idle waiting for the CPU to
generate an I/O request. This is plotted in Figures 2-7 and 2-9. It is the
ratios between these curves that are important and not absolute values.
The system should usually be operating at or below the one percent level
because the system is seldom compute bound.

The curves are useful in comparing the relative merits of the various

storage systems for different (small) degrees of compute-boundedness.
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2.4 ANALYSIS OF PROPOSED ON-LINE SYSTEM

A proposed on-line storage and retrieval system has been modeled
to study response time and CPU utilization. Analysis of the model has been
completed using both minimal queueing analysis and simulation. Figure
2-10 shows the physical configuration of the system being modeled as it
is presently envisioned. Figure 2-11 is the general queueing model which
was developed for the purpose of analysis by both the Recursive Queue
Analyzer (RQA) [4] and the General Purpose Simulation System (GPSS)

[2].
The specific descriptions of the respective models with pertinent

assumptions made for each are presented in Sections 2. 4. 2 and 2. 4. 3.

2.4.1 Description of the Physical System being Modeled

The console-computer system being studied is assumed to have 14
active consoles at which operators generate job requests requiring proces-
sing by the main computer. These requests originate at the consoles
and are for terminal support functions of the following types:

a) Copy from one terminal to another

b) Column tab

c) Scrolling

d) Page turning

Requests generate jobs which are entered in a queue for execution at

the CPU. In both models it has been assumed that the computer (CPU) is
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dedicated to the four tasks associated with terminal support.
Jobs may also require access to a drum and/or a paralle] arm

disc unit for input-output activity before being completed.  If there is

a request for such a data transfer from the disc, jobs queue at the disc
data channel awaiting service by the disc which processes the incoming
requests on a FCFS basis. There is a second independent data channel
for the drum and its operation is considered to be independent of the disc.
Again requests for this data channel are allowed to queue and the FCFS
processing discipline is used. Basic performance features of a typical

drum unit have been used in both models.

2.4.2 Queueing Analysis

In the queueing model it is necessary that the various service time
distributions be derived from the negative exponential distribution, For
simplicity, the negative exponential distribution itself has been used. The
same negative exponential random variable is used for the CPU service
time distribution for each of the four job types. In the actual system a de-
terministic service time (in general different for each type of job) would
be the most realistic manner of describing the CPU service mechanism,

It is also assumed that upon completion of the CPU execution phase, jobs
are either completed with probability q or request some type of input-
output activity with probability dy +dg- In the actual computer system, cer-
tain job types request a deterministic number of druin and disc accesses
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and in a specific sequence; other job types are completed without any in-
put or output; hence if the type of job departing the CPU is known it can
be determined with certainty whether a drum access, disc access or nei-
ther will follow,

It has also been assumed that in the queueing model the console in-
teraction time (the time elapsing from the completion of a job at the CPU
to the time when the next request emanates from that console) is an expo-
nentially distributed random variable with mean 24 sec. A further assump-
tion is that the service time distributions for the drum and disc are expo-
nentially distributed with means of 12 and 120 millisec, respectively. In
the physical system the console interaction time would be more nearly
uniformly distributed; certainly the service time distributions for the
rotational storage devices would be more nearly uniformly distributed be-
tween the minimum and maximum positioning times than exponential,

In summary, exponential service times have been assumed for all
service mechanisms in the queueing model; in reality the service distri-
butions range from deterministic at the CPU to uniformly distributed for
the drum and disc service times. The actual process which is being
treated as Markovian is significantly devoid of the necessary exponential

characteristics.

2.4.3 The Simulation Model

The simulation model has been formulated to simulate the behavior of

the actual computer system in every element of detail. Each of fourteen
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facilities corresponding to the consoles initially submits one job (chosen
from a mix of job types) to the computer system after a think time interval
determined by a sampling from a uniform distributed random variable fol-
lowing system startup. Associated with each job submitted is a parameter
which indicates which type of job (Page Turn - Type 1, Scroll - Type 2,
Tab - Type 3, Copy - Type 4) has been submitted. Job types 1 and 2 al-
ways require 50 ms; job type 3 always requires 75 ms; job type 4 al-
ways requires 100 ms of CPU service time, Different types of jobs '"flow"
through the system facilities in differing sequences, since each type of

job requires a unique sequential service from the various system facilities.
Table 2-5 indicates the sequential flow through the system for jobs as a
function of type.

Upon the termination of one job at the CPU, a new job is chosen
from the mix of job types. A free console facility is seized by the job
and after a think time interval of 24 sec has elapsed the new job reenters
the CPU queue for service.

For example, a type 2 job generated at a console will in sequence
request service by the CPU, drum CPU, disc, and CPU facilities before
being terminated. A type 4 job does not request any input-output activity
and is completed following a single CPU service increment.

The job mix is specified in the simulation model on a probabilistic
basis through use of a discrete valued random variable for the job mix

distribution, Table 2-4 indicates the job mixes that were used in various

41



Type 1
CPU
DRUM
CPU
DISC
CPU
DRUM
CPU
DISC
CPU
DRUM
CPU
DISC
CPU

TERMINATE

Table

2-5

Flow of Control by Job Type

Type 2
CPU
DRUM
CPU
DISC
CPU

TERMINATE
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runs.

When a particular type job does enter the queue for service by the
drum, the service time is uniformly distributed between 4 and 20 ms; for
the disc the service time is uniformly distributed between 10 and 230 ms.

Response time is defined to be the elapsed time between job submis-
sion at the console and the job termination following its final CPU process-
ing operation,

In determining the length of the simulation, runs of 1000, 5000,

10, 000, and 25, 000 jobs were made. The difference in response times for
the 10, 000 and 25, 000 job runs was less than two percent for each of two
runs made with different job mixes. Since the average IBM 360/67 execution
time for one 10, 000 job GPSS run was approximately five minutes, the sig-
nificantly increased expenditure of 360/67 processing time on the longer

25, 000 job run did not produce a proportionate improvement in the results.
Hence 10, 000 jobs were used for all the simulation runs made.

A critically important question arises as to how one determines the
set of parameters for the queueing analysis which correspond to those for a
particular simulation., Since the queueing analysis parameters T1, T2, T3,
T4, dqs g and qq are all expected values, averaged over all four job
types, it is obvious that different sets of parameter values in the simulation
model might correspond to one particular set of parameter values in the
queueing model., In the comparisons which have been made, only the job mix

distribution function in the simulation model was changed in order to vary q-
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Define the following parameters, taken from the GPSS model:
di 2 the total number of departures from the CPU in one com-
plete sequence of processing operations for a type i job.
m, 2 fraction of the di departures which are followed immedi-
ately by a drum processing operation,
c. 2 fraction of the di departures which are followed immedi-
ately by a disc processing operation,

X, 2 mix fraction of job type i (an input to the GPSS model).

-1 i=2 i=3 i=4
d. 7 3 2 1
1 ;
m. | 3/7 1/3 1/2 0
c; 3/7 /3 0 | 0

The following expressions are used to compute the parameters dy

oPY and dg for the RQA model, given the GPSS model's values for Cys di’

m,., and X..
i i

4
), %
=l ) 1
9 4 = 7
), %4, x,d,
i=1 i=1
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qz = R
Xidi
i=1
4
Z del m,
_ i=1
d3 = 4
Z Xidi
i=1

To compute the average CPU service time for an RQA run the following ex-

pression was used
1) Avg CPU Service Time, Tl = _;___._

where Ti is CPU processing time for a type i job and X, and di were pre-
viously defined.

Since the RQ A output consisted of steady state probabilities for vari-
ous states in the model, the following expression relating various queue
lengths, service times, etc., was used to compute the system response

time,.
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System Response Time =

1 |py” REE B QDRUM
q [I- Pr{CPU is idle} a4y dy+dg Pr{Drum is idle}

NER dp 1 [ T3(PDSCL +. 5(Qpqc - PDSCI))J
dy dg*dg] | 1 - PriDisc is idlej

where Q is the average number of jobs in the queue for CPU service,

CPU
are similarly defined, and PDSC1 is the joint probability

Qprum 219 Qpgc

that one disc mechanism is busy and there are no jobs in the disc queue.

All the (;_)'s and probabilities were obtained as output from the RQA program,
For example, a type 2 job generated at a console will in sequence re-

quest service by the CPU, drum CPU, disc, and CPU facilities before being

terminated. A type 4 job does not request any input-output activity and is

completed following a single CPU service increment,

The job mix is specified in the simulation model on a probabilistic

basis through use of a discrete valued random variable for the job mix,

2.4.4 Discussion of Queueing Analysis Results

Figures 2-12 and 2~13 depict the results of RQA runs. The following
parameters were used in the calculation of the system response time with

the model of Figure 2,

N number of consoles in operation = 14
Ty =1/1y mean job execution time
Ty = l/p2 mean operator response time
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T3 = l/u,3 mean block transfer time for disc = 120 ms
T, = l/u4 mean block transfer time for drum = 12 ms
dy % of jobs departing the CPU which do not require
I/0 accesses
d % of jobs departing CPU which require a disc access

dg % of jobs departing CPU which require a drum access.

As indicated on the plots, it is assumed that Ay and qq are identical

for these particular RQA runs of Figures 2-12 and 2-13.

2. 4.5 Discussion of Results of Comparison

Figures 2-14 and 2-15 contain plots of response time and CPU utili-
zation as functions of dys the probability that a job departing the CPU does
not require further input-output activity. The RQA curves for these figures
were obtained using the same model as for Figures 2-12 and 2-13 with
different parameter values., Table 2-6 indicates the parameter values
which were used in making the runs,

The lower bound curve of Figure 2-14 was computed by assuming no
queueing delay at each server; hence response time was simply the summa-
tion of the average service times of the various servers which a job se-
quences through in the system between input and termination,

As would be expected the results of GPSS and RQA compare most
favorably in the middle and upper ranges of qq values. This interval cor-

responds to the area in which the CPU service time distribution used in the
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GPSS model most closely resembles the exponential distribution assumed
in the RQA model (even though the resemblance is in fact quite poor).

For example the weighted CPU service time distribution is given by

Pr{CPU service time < x|

N
-

50 X
CPU service
time, ms
for the job mix (100%, 0%, 0% 0%), which corresponds to q =. 1428.
When the job mix is changed to (30,%, 30,%, 30,%, 10%) corresponding to

q = 27778 the weighted CPU service time distribution is given by

9 weighted
PR{Service Time CPU} B ean
is less than X ms
6 - - -
50 75 100 ~

CPU service time,
X in ms

At the upper end of the q, range with a job mix of (10%, 20%, 30%,
40%) corresponding to q = - 43478 the weighted CPU service time distri-

bution is given by
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Service Time CPU ) 6 Weighted

Pr {is less than X ms “"Mean
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This in the middle and upper portions of the qq range, the weighted
CPU service time distribution for the GPSS model most resembles the neg-
ative exponential distribution function used in the corresponding RQA mod-
el. As would be expected, the percentage of error in using RQA is large
where the dichotomy of corresponding service time distributions is rela-
tively large. Even though in the worst case a constant rate server in a
GPSS model was assumed to be exponential in the corresponding RQA mod-
el, the percentage error in system response time and CPU idle time was
less than 8%.

Furthermore, in all cases, as would be expected the response time
computed using RQA exceeded that obtained using GPSS. This is so be-
cause the variance (normalized to the mean) of the respective service times
in GPSS is always less than the normalized variance which arises as a re-
sult of the negative exponential service time distributions assumption for

the same server in RQA.
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2.4.6 Conclusions

The results of this analysis (Figures 2-12 to 2-15) show that system
response time as well as the CPU idle time is critically affected by the in-
tensity of I/O demand generated by the consoles. The response time (de-
fined as the average time for a request originating at the consoles to be
serviced) is seen to grow monotonically with an increase in the fraction of
jobs requiring I/O. This is to be expected since the disc and drum I/O
times enter additively into the computation of response time and if on the
average more jobs require I/O, then the average response time will in-
crease,

It suffices to say that the 4y parameter should be made as large as
possible, corresponding to minimum I/O. The natural question which a-
rises is: what can be done in the actual system to force changes in the qy
parameter of the model? Certainly the job mix would be fixed once the
operating environment has been established. However it is possible that
the disc and drum units can be organized so that multiple accesses can be
made without interrupting the CPU. If this is done, then the resulting dy

value is effectively increased and system operation improved.

2.4,7 Comparison of Analysis Times

Since the Recursive Queue Analyzer program is implemented on the
IBM 7090 and GPSS is implemented on the IBM 360/67, it is most mean-

ingful to normalize execution times before comparisons are made,
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The computations for all nine points on the RQA curve of Figures
2-14 and 2-15 required approximately 18. 67 minutes of CPU time on the
7090. The corresponding GPSS computations required 49, 48 minutes of
CPU time on the 360/67. Since the 360/67 is approximately three times
faster than the 7090, the RQA time normalized to a 360/67 equivalent ma-
chine would be reduced to approximately 6.22 minutes.

In conclusion, the GPSS model effectively required 7. 95 times more
CPU execution time than did the RQA model to compute nine points. The
maximum error in system response time introduced by using RQA was
7.7% while the maximum error in CPU idle time introduced by using RQA
was 2,88%. It is noteworthy therefore that the Markovian modeling tool,
RQA, which is substantially more efficient than GPSS from a computational
standpoint, can yield such satisfactory results in modeling a system whose
behavior is significantly devoid of the characteristics theoretically neces-

sary for a valid Markovian model.

2.5 ANALYSIS OF A CANDIDATE CRT SUPPORT SYSTEM

This section presents results of an initial analysis of a candidate
CRT Support System. The purpose of the analysis is to determine the
additional utility gained by implementation of the system on an IBM 360
model 40; the basic capabilities are presently being implemented on

an IBM 360 model 30.
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The basic on-line capability will provide a CRT user with the ability
to retrieve, by specifying arecord number, a record from a single file and
to display that record on a CRT in one of two formats. The system will
be so partitioned as to allow batch proéessing to proceed in the background.
The CRT's will be locally operated, that is, they will be cable connected
to the computer, The essential system components considered in deter-
mining how well the system will perform the initial functions are:

1) IBM 2311-Disk

2) IBM 2848-Display Control

3) IBM 2260-Displays (8)

4) IBM Multiplexor Channel

5) IBM 2030-Processing Unit,

The multiplexor channels available have data transfer rates well in
excess of the devices to which they will be attached, i.e., the disk and
display control, Therefore, the rates at which blocks of data are trans-
ferred will be determined by the devices themselves. Assuming a block
of data consists of eight-80 column lines (640 characters), the average
transfer time for the devices will be obtained from the following informa-
tion, The 2311 disk has an average positioning time of 75 milliseconds;
the average latency time is 125 milliseconds; the transfer rate is 156

Kilobytes/second. Therefore for a block of data the total time required is

1 ias
75 +12.5 + 640 X — = 91. 75 milliseconds.
156 x 10
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Normally a request will require six blocks of data from the disk; this in-
creases the total disk time to 113 milliseconds (assuming all blocks of
data are contiguously located). Assuming that a full screen display is 12
lines (960 characters), we compute the time for the 2848 as follows: The
time required for synchronization of the channel and the 2848, prior to
data transfer, averages 8.4 milliseconds. After synchronization, the
transfer of data requires approximately .4 ms/character for the charac-
ters on a given display line. During the transfer of data from the channel
to the 2848, data transfer is halted for a period of 16. 7 ms before the start
of each display line except the first, During this pause the 2848 services
2260 display station key boards, i.e., it stores the data from a single
2260 keyboard in the associated 2260 buffer or performs the specified con-
trol function. Therefore the 2848 time required for transfer of 12 lines
each consisting of eighty characters is

8.4 +80x .4x 12 +11x 16,7 = 576.1 ms.
Therefore, for the average request, the time required to display the first
block of data will be 576 + 113 = 690 milliseconds plus the required pro-
cessing time (generally less than a second). These times are independent
of the 360 model used. With the model 30 there is suspension of the CPU
while the data transfer is in progress. The model 40 allows the multi-
plexor mode transfers and the CPU to operate concurrently once the data

transfer has been initiated.
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To get an estimate on the response time for the system we made the
following assumptions:
1) Average request requires six blocks of data (3840 bytes)

2) Requests handled sequentially

3) Buffer space provided for complete record (all six blocks)
4) Core space not released when data is transferred to display
5) CPU is suspended during data transfer in channel (as is done

with model 30),
If response time is defined as the time interval between the system first re-
ceiving a target number request and the first screen display associated
with the request, the minimum response time is .69 + 1 = 1. 69 seconds.
This response time is composed of one second processing time associated
with a request, plus the disk and 2848 time., In the unlikely event that
eight CRT's required service simultaneously, the maximum response time
will be 13.6 seconds. On the average, the response time will be 6. 8 sec-
onds with half the CRT's in the service queue, If core buffer space must
be provided for each of the consoles, and a 65K core model 30 is used, up
to 45% of core could be tied up for buffering,

The decision to use a given 360 model should, of course, be based
on the ultimate uses of the system; however we can make some qualitative
judgments, If an average response time of almost seven seconds is not
unreasonable, and if the size of the supervisor and the associated on-line

software package will allow up to 45% of core to be tied up for the
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information retrieval function, then the model 30 is adequate. If this is
not the case, then it might be necessary to change to the model 40 since:

1) With the model 40, overlapping of CPU execution with the
I/0 channel will allow a more efficient operation. If the
system is multiprogrammed, response time can be decreased
considerably.

2) The added complexity and the size of the software package
might make multiprogramming infeasible with the smaller
model 30 core,

3) The larger core of the model 40 gives potentially a larger
buffer area, thereby giving possibility of fewer disk accesses
and hence better response time,

Before we can make more quantitative estimates on system per-

formance, additional information is needed:

1) How much core will be used for buffering?

2) When a record of six blocks is accessed, will only that part
of a record which can be displayed be brought into core?
Or will all six blocks of a record be stored in core?

3) Will the system be multiprogrammed or will the supervisor
queue up request from CRT's and handle on a first come—

first served basis ?

4) Is core released when information is transferred to display

buffer?
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5) Under what conditions are data swapped within each core

partition?
6) How is core partitioned between batch and on-line jobs?
7) How much of core will be occupied by the supervisor and the

resident on-line software package?
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3. OPTIMUM DESIGN TECHNIQUES

As computer system designers our goal must be not just to find a sys-
tem adequate for the job at hand, but to find the best, or optimum, system
design, In virtually all cases, the optimum design must meet certain con-
straints, usually with respect to performance or cost. The three sections
in this chapter discuss in turn the optimum design of telecommunications

networks, graphical display terminals, and large storage systems.

3.1 OPTIMUM DESIGN OF TELECOMMUNICATIONS NETWORKS

3.1.1 Introduction

In this section we will be concerned with the problems of designing the
portions of remote access systems which lie outside the central location,

A central digital computer complex and the communication facilities
which connect remotely located terminals to the central complex constitute

a teleprocessing system. The most significant analytic distinction between

a teleprocessing system and a conventional batched input system lies in the
random manner in which requests for service (jobs) arrive at various entry
points to the system. In the conventional batch mode, arrival patterns are
deterministic in the sense that they are monitored by machine operators
and computing center scheduling personnel, while inputs to a teleprocessing
system are seldom controllable, Furthermore, a very significant fraction
of capital expenditures in a teleprocessing system is devoted to communica-

tions facilities outside the central complex; in the batch system almost all
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capital expenditures are devoted to software and hardware facilities at the
central computer complex.

In the Jdesign of such teleprocessing systems, various queueing prob-
lems arise as consequences of both the random or unscheduled requests for
service and the importance of effectively utilizing the expensive communi-
cations equipment linking the remote terminals to the central computational
facility. This research is accordingly centered around the development of
techniques for the analysis and synthesis of the communications network
portion of the teleprocessing system.

In the communication network portion of the teleprocessing system,
the costs of communication link transmission capacity and data concentra-
tors are frequently of the same order of magnitude as the costs of the cen-
tral processing facility. Hence there is significant motivation to make ef-
ficient utilization of these communications resources in order to maximize
the cost effectiveness of system operation,

In general, the important macroscopic lead variables with which the

designer of the network must be concerned are:

. Topological structure
. Link capacity value
. Response time or performance of the network

. System reliability
. Control procedures

. Types of data concentrators
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° System cost.

The development of the topological structure of the network is prob-
ably the single most important portion of the design procedure; it is next to
impossible to achieve any degree of cost-effective performance in a network
where structure is poorly chosen.

A completely point-to-point network (Figure 3-1) is defined to be a

structural configuration in which each remote terminal is connected to the
computer over a channel which is not shared with any other remote termi-
nals. A multipoint network, (Figure 3-2), on the other hand, is a config-
uration in which one or more information channels in the network are shared
by two or more remote terminals.

In general, the completely point-to-point network can seldom be just-
ified from an economic standpoint since there is no sharing of communica-
tion lines, and the cost of lines in this structure tends to be high in compari-
son to other structures. Thus a strong motivation exists for the develop-
ment of techniques which enable the communication channels of a network to
be shared, thus reducing the total cost of lines in the system. However, as
multipoint configurations are formed, additional costs for concentrating
equipment are incurred and must be considered. Furthermore, the average
response time increases as the congestion builds up due to the formation of

more multipointed branches.
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Figure 3-1

Point to Point Configuration

Figure 3-2

Multipoint Configuration
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In designing the network, one must be able to assess these tradeoffs
with queueing and other types of analytic models which characterize the in-
terrelationships in mathematical terms. As the first step in the desired
direction, we consider some relatively simple models for data concen-
trates in networks having fixed structures.

These models form the basis for the more complex design problems
in which topological structure and link capacity values are treated as var-

iables in the design procedure.

3.1.2 Models for Data Concentrators

In this section we present models which are useful in assessing the
performance of multiplexor and message switching center (MSC) types of
concentrators. The multiplexor model is valid for either frequency or time
division schemes; the MSC model holds for any store and forward devices
which can buffer message blocks at intermediate nodes of the communica-

tion networks.

3.1.2,1 Message Switching Center Model

Consider the single concentrator configuration of Figure 3-3. The
queueing model for this network can be depicted as shown in Figure 3-4.
where it is assumed that messages arrive at node i according to a Poisson
distribution having mean Yy The mean lengths of all messages are 11-1 and
we let {al, coos an} denote the capacity of the input links to the concentrator.

The capacity of the high speed shared link is denoted by Qe For most
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Figure 3-3

Single Stage Message Switching Center
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reasonable state of the art MSC's it can be shown that the buffer capacity
is large envugh so that the average message delay in the network can be

written as follows, assuming a first in—{first out discipline at the queue in

the MSC,
- n ~
1 1 1
TMsc = ad Z a. T
i=1 i H
Z 71 — -1 by -1
i=1 7i n+l
N U & —
where An+1 is the sum of the mean arrival rates of messages from all

remote terminals in the configuration.

3.1.2,2 Multiplexor Model (MX)

In the network of Figure 3-3, if a MX concentrator is used instead,
the equivalent structural model can be shown as depicted in Figure 3-5.
Passages refer to the fractions of the total link transmission capacity which
are assigned to the individual remote terminals in the sharing group. It is

possible to express the average delay for a single multiplexor network as

follows:
. i 1 nfl 1
MX n+l ._’ C.
Doy | Tl
LY v
i=1 2l
L H -

where Cj is the capacity of the j-th passage on the shared link and it is as-
sumed that each passage capacity is less than the capacity of the
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corresponding input link.
The problem of determining the values of the Cj capacity assignments

which minimize T for an arbitrary centralized network has been investi-

MX
gated. An optimization procedure has been developed for minimizing the
average message delay in any centralized network where the link capacity
values are known and where one or more MX concentrators are used.

These models were used to conduct some comparisons between MX
and MSC concentration sehemes. It is well known that MSC's are more
costly than MX's. However, there is no basis for determining which type
of concentrator should be used in a given situation, unless one uses models
like those just presented to quantify the differences in performance between
multiplexors and MSC's.

Figures 3-6 and 3-7 depict the results of two studies which were made
to compare the performances of a MX and a MSC at the concentrator node
in the network of Figure 3-3 when n=9. As the next phase in adding reality

(and hence complexity) to the design model the problem of efficiently allo-

cating the link capacity resources in a network has been considered.

3.1.3 Efficient Allocation of Link Capacity

We now consider the problem of how to assign capacity values for the
links of a structure so as to get the minimum line cost and satisfy an aver-
age response time constraint. The problem is combinatorial in nature and
hence the size of the optimization space can get very large for networks

having more than 15 or 20 remote terminal nodes. Computational short
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cuts have been developed which enable one to optimize otherwise untractable
networks. Also, an approximate solution which is computationally very
easy to determine, even for networks of moderate size, has been obtained.
These approximation procedures consistently produced solutions to the
capacity assignment problem which were within reasonable limits of the

true optimum and did so in an efficient way.

3.1.4 Network Design when Structure is a Variable

All of the optimization models developed for the analysis of data con-
centrators and the assignment of link capacity obviated shortcomings of
existing network design procedures such as the minimum spanning tree
algorithm [11] and one due to Esau and Williams [ 7] of IBM. These pro-
cedures do not treat link capacity as a variable and also do not consider
the average response time property which was introduced in Section 3.1, 2,

In this research, we have directed our efforts toward the solution of
the network synthesis problem: Minimize total telecommunication network
system cost (lines and concentrators) subject to the constraint that the aver-

age response time of the network must not exceed Tm » a given maximum

ax
acceptable value. The important control variables are network topology,
link capacity values, and the types of data concentrators.

A procedure has been developed for solving this problem which, al
though it generally produces suboptimal solutions, represents a significant

improvement over existing network design algorithms. The improvements

accrue as a consequence of the greater level of reality and generality which
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are embedded in the design model.

Some of these major improvements are now summarized:

. It is capable of working with nonlinear discrete valued cost-
capacity functions.

. It treats the type of data concentrator as a design variable,

. The performance (average response time) of any potential
configuration is readily assessable.

. Since the problem statement involves a given constraint on
average response time, it is possible to predict cost-perfor-
mance relationships for different levels of response time, be-
fore the network is actually constructed.

We now summarize the fundamental approach which has been taken in

solving the above formulation of the design problem.

A multi-dimensional design parameter space is constructed in which
topological structure, link capacity value and types of data concentrator
are varied. Topological structure is varied by systematically decreasing
the number of central links one at a time, reducing link costs at each step
until no further reductions can be made. Then link capacity values are
assigned for the structures of these topological sequences in a manner
which creates efficient utilization of the system resources. The type of
data concentrator is varied by using MSC's in those situations where they
produce a large enough performance improvement to justify their larger

cost.
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No configurations are ever formed by the topological variations which
have average response times in excess of a certain given value.

A number of examples which illustrate the usage of the proposed de-
sign procedures and the results of their application to realistic problems
are discussed at length in the final report on the communication network

synthesis effort [ 6 ].

3.2 DESIGN OF OPTIMUM DISPLAY SYSTEMS

3.2.1 Introduction

The subject of the study reported here is the systems design of
highly-interactive graphical display terminals for time-shared computer
systems. A more detailed report of the work is available in a reference
[ 8]. The overall goal of the study is to develop insight into how the choice
of subsystems for a display system can affect the system's performance,
and to develop methods of finding the combination of subsystems which
will be optimum for any well-defined display application, where optimum
is defined as minimizing a display system's response time subject to a
cost constraint.

Viewed in a slightly different way, display system design can be
thought of as presenting a problem in resource allocation. The resource
is a fixed number of dollars, which are allocated to the purchase of display -
subsystems in a manner which minimizes the total system's response time.

Response time is important in any highly-interactive remote access

computer system, and is even more important when considering the
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graphics terminals which often form part of such systems, because fully
capitalizing on the potential interaction rates achievable with a graphics
terminal demands good response time. Dollars are significant because
display system hardware is still quite expensive, and improper allocation
of the dollars can produce a display system whose response time is orders
of magnitude worse than what can be achieved with the optimum allocation.

Figure 3-8 shows the type of system of interest to us. The four
subsystems of particular interest are the data link, the remote computer-
display control, the display terminal's core storage, as well as the display
terminal's bulk storage. In specific cases the terminal's bulk store may
simply be a cable between adjoining rooms. In most cases, the remote
computer-display control and its core storage will be part of a display
system, with the core serving both as a refresh buffer for the display,
and as program and data storage fof the remote computer. This computer
(usually small and inexpensive) is used to take the burden of much of the
display processing from the main computer. The exact nature of the rela-
tionships among the display control, remote computer, and core storage
is discussed in a reference [12]. The main computer is included in the
system to provide inexpensive bulk storage and, above all, because of the
extensive computations demanded by most display applications, such as
network analysis [ 4, 5, 14 17], drafting and numerical control [13], inte-
grated circuit layout [ 9,15], and many others.

When designing a display system, there are large numbers of
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hardware-hardware and hardware-software tradeoffs or alternatives which
can be exploited. By hardware-hardware tradeoffs is meant the possibility
of increasing the capability of one display subsystem in exchange for de-
creased capability of another display subsystem, while keeping response
time constant. The purpose of juggling hardware in this manner is of
course to minimize cost. As a specific example, if we wish to maintain

a specified response time at the display console and wish to decrease the
data link speed, it is necessary to increase the '"power' of the remote
computer/display control, or the amount of core storage, or the amount of
remote bulk storage, in order to compensate for the extra data transmis-
sion time. The converse also applies. Increasing remote computer power
cuts computation time, while increasing core storage decreases bulk stor-
age accesses, either at the terminal or at the main computer, and increas-
ing remote bulk storage cuts down on data link usage.

In some cases, however, it may not be possible to completely com-
pensate for a lower transmission rate., This will depend both on the de-
crease in transmission rate and on the relative usage of the four system
components. Specifically, a small decrease in transmission rate for an
infrequently used data link is far easier to accommodate than a large de-
crease in a heavily used link.

Similar statements can be made with respect to each of the other
system resources: a decrease in any one can be compensated for by

increases in one or more of the other resources, within certain limits.
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With hardware-software tradeoffs, we are referring only to the re-
mote computer-display control. Certain display-oriented functions can be
implemented either by software with the remote computer or by hardware
in the display control. Several possibilities exist here.

When a position indicating device, such as a RAND table [ 3 | is used
at the display console, it is often necessary to correlate a position with an
entity currently being displayed on the CRT. This can be done with soft-
ware,' or with display control hardware which continually compares the
current CRT beam position with the indicating devices' position[10]. The
first method can consume much remote computer time, but costs nothing.
the second method takes neither computer time nor display control time,
but does take money.

If, on the other hand, a light pen-type entity indicating device is
employed, its position will frequently need to be known: this is the famil-
iar light pen tracking problem. Once again, the work can be done with
either special purpose hardware built into the display control, or with a
program running on the remote computer. A current hardware implemen-
tation takes about 10% of the display control's time, decreasing by a like
amount the quantity of flicker free material which can be displayed [16].
Software implementations of various pen tracking algorithms do not affect
the display, but do require remote computer time to execute.

One of the most demanding display functions is the rotation of a

three dimensional object, which requires a matrix multiplication operation
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of six scalar multiplications and four scalar additions for each point and
line of the display. Implemented in software, this can be very slow, and
can limit the smoothness and rate of dynamic rotation. A first step toward
improvement is adding hardware multiplication to the remote computer.

A second step is implementation, in the display control, of the actual
matrix multiplication. There are two current manifestations of this sec-
ond possibility. One uses binary rate multipliers, followed by digital
addition [ 16]. The second uses analog multipliers and analog addition

[1].

Hardware facilities for display subroutining allow one display list to
be used many times in the course of drawing a picture, and therefore
avoids needless duplication in core of display instructions. This is all a
direct parallel to subroutining for computer programs.

Similar display control hardware-remote computer software trade-
offs exist with respect to problems of dashed lines, blinking lines, trans-
fer of control, recursive subroutining, displaying lines, and displaying
alphanumerics.

With this multitude of tradeoffs between the varicus display system
components, an important question arises: for a given display system
application, and a given dollar cost, what combination of display subsys-
tems will produce the best possible service for display users? The best
hardware will produce the fastest, or minimum, average response time

experienced by the display system's users.
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What is needed for use by display system designers is a rigorous ob-
jective method for evaluating the effects upon system cost and response
time of the various tradeoffs discussed qualitatively in the previous section,
By now the qualitative tradeoffs, which are in fact rather obvious, are well
understood. The tradeoffs need to be quantified for the sake of intelligent
systems design, because the consequences of using poor systems design are
the overloading of some subsystems, under utilization of other subsystems,
and decreased productivity for the system's user. The work reported here

has been conducted with this goal always foremost.

3.2.2 Display System Model

In order that display systems e studied in a rigorous manner, par-
ticularly to find optimum display systems, a mathematical model or abstrac-
tion of how a display system operates is needed. To be useful, the model
must reflect the varying capabilities of the display subsystems; the remote
computer-display contrel, the data link, and the remote terminal's core and
bulk storage. The model must also be sensitive to the varying computational,
storage, and data transmission requirements of the many different applica-
tions which might be implemented with a display system. Furthermore, any
explicit or implicit assumptions imbedded in the model must be tenable.
Finally, the model, when appropriately analyzed, must yield some measure
of system performance; specifically, the system's response time will be

the desired performance measure.
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A model which satisfies these requirements has been developed. It
possesses the properties that as the capabilities of the display subsystems
increase, the system's response time decreases and its cost increases.
These two complementary properties will greatly facilitate the finding of
optimum display systems. The model also includes a mechanism for divid-

ing display processing between the main and terminal computers,

3. 2.3 Analysis Techniques

The manner in which the display system can be analyzed to find res-
ponse time is of significance. When the display terminal serves only one
display console, no queueing occurs in the system. An analytic expression
is then available to calculate response time. However, when queueing oc-
curs, either simulation or Markovian (queueing) analysis must be used.

A problem arises here. Markov analysis requires that the model
possess certain properties; there is unfortunately no assurance that the
display model satisfies the requirements. Simulation, on the other hand,
places virtually no restrictions on the model. The problem is that in terms
of computer time, simulation costs from 5 to 15 times more than Markov
analysis.

Because of this problem a study was made to compare the results of
simulation and Markov analysis as applied to the model, even when the
model did not meet the requirements for Markov analysis. The results
showed less than a seven percent difference between the two analysis meth-

ods for the specific parameter set used with the model. While this result
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is definitely not generalized to other models or to greatly different model
parameters, it does justify the use of Markov analysis for the work re-

ported here. This means that fhe Recursive Queue Analyzer (RQA) pro-
grams developed by the Systems Engineering Laboratory[18] can be used

to analyze the model.

3.2.4 Optimization

An optimization procedure has been devised to find the display sys-
tem (set of four subsystems) which minimizes response time subject to a
cost constraint. The optimization accepts as inputs a paramaterized des-
cription of the display system's application, and descriptions of up to six-
teen choices for each of the four display subsystems.

The most important feature of the optimization is that it minimizes
the number of times RQA is used: even though RQA is less expensive to
use than simulation, it is still not cheap. Typically in examining about a
thousand possible display systems, RQA will be used but two or three

times during the optimization.

3.2.5 Evaluation of Computing Power

A critical necessity in the optimization is the creation of a suitable
data base of hardware subsystems from which an optimal display system
can be chosen. This can rather easily be done for all subsystems except
the remote computer-display control subsystem for which not just computing

power, but also display capability must be determined. Display capability
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must be known because not every display control can display the same
amount of information. Only those able to display more than some mini-
mum amount of information can even be considered for inclusion in a dis-
play system; this minimum amount of information is application dependent.
Having eliminated unacceptable display controls, the remaining display con-
trols—remote computers must be rated according to their computational
abilities.

A convenient way to measure the display capability of various display
controls is with standard test patterns typical of various applications. The
method used by Adams Associates in The Computer Display Review [ 2 ]
is typical of this approach.

The second part of the problem, measuring the computing power of
remote computer-display controls, is a bit more difficult. A list of dis-
play oriented macro-level operations was drawn up; such that any and all
display work could be performed by programs made up of sequences of
these macros. Different pieces of hardware are evaluated by finding the
execution time of each macro. These times will vary as the hardware's
capabilities change, and will decrease or increase as more or less of the
hardware—software tradeoffs are manifested in hardware. By taking a
weighted sum of the execution times (where the weights are application
dependent), a particular remote computer-display control is evaluated for

a particular application.
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3.2.6 Results

Four display system applications were selected for close study.
They are text editing, general two-dimensional drawing, general three-
dimensional drawing, and general network analysis. These four applica-
tions were chosen for their differences; that is, they each use the facilities
of a display system in different ways. For each application all the para-
meters needed by the model and optimization were estimated (not measured).
Optimizations were performed for each of the four applications for systems
with one, two, and three display consoles, and for different levels of capi-
tal investment. This resulted in a large number of display system designs.
The per console cost and average response times of these systems are
graphed in Figures 3-9 to 3-12 . R refers to the number of display con-
soles in a display system. There are no display systems below and left
of the curves: there are many display systems above and right of the
curves, but they are nonoptimum. They cost more and give poorer res-
ponse times than systems on the curves. If a display system is built, it
should be chosen from any one of the curves, so that it is optimum. Choos-
ing which one of several systems to build can be based on a cost criteria,
a response time criteria, or on some combination of cost and response
time which gives a cost-effectiveness measure, such as interactions per
second per dollar.

It is useful to notice the changing slopes of the graphs. For long res-

ponse times, a small additional investment yields very good returns in
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terms of decreased response times; the returns diminish as response time
continues. By studying this behavior and by correlating it with the hard-
ware used in each of the display systems, a set of general design guide-
lines has been developed. The read as follows:

"A satisfactory inexpensive display system uses a voice grade
data link, no bulk storage, little or no core storage beyond the min
imum needed, and the least expensive remote computer-display con-
trol. For little additional expenditure, the addition of a significant
amount of bulk storage provides better response time. Inexpensive
increases in the remote computer-display control's capabilities are
also helpful. Further response time decreases are achieved with
broad band data link speeds and more bulk storage. Additional res-
ponse time improvements are obtained (at high cost) first by improv-
ing the remote computer-display control and then by using more core
storage." [ 8 |
To justify the necessity for these guidelines, Figure 3-13 shows just

how severe the penalties of using a nonoptimal design can be. The figure
plots response time versus cost for the network analysis application with
three users. Both optimum and worst case response times for various
values of cost are plotted. The worst case response time is the maximum
response time of those display systems which cost the same as an optimum
system. The graph's interpretation is that, for instance, is that if $2340
per month is to be spent on a display system, the response time can range
from . 155 seconds (Point A) to 3. 92 seconds (Point B). These times differ
by a factor of 25. Also, the graph can be interpreted to show that if a res-
ponse time of .1 seconds is needed, the display system's monthly cost can

vary from about $2600 (Point C) to about $3400 (Point D). This represents

an unnecessary expenditure of up to $800!
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In conclusion, the differences between optimum and worst case dis-
play systems are significant, with respect to both cost and response time,

Therefore, display system designers must have at their disposal means

of making intelligent design decisions, because the consequences of making

bad decisions are too serious.

3.3 DESIGN OF OPTIMUM BULK MEMORY SYSTEMS

3. 3.1 Introduction

The purpose of this work is to provide usable techniques for design-
ing large scale computer storage systems. The approach being taken has
been to develop techniques for the optimal design of such systems. Our
concern in this research is assembling existing components rather than
developing new ones,

In the normal process of developing optimal design techniques it is
common to encounter obstacles which require that simplifications or con-
straints be made in the mathematical models being used. The final result
is a precise, well formulated technique which will design optimal memory
systems under a set of restricting conditions and assumptions.

There are several uses for such an optimal technique. First, one
may find many situations where the memory design problem to be solved
does not conflict severely with the restrictions imposed by the technique so
that an exact optimal solution may be found. Second, when the problem to
be solved does not conform to the restrictions of the techniques, often much
can be learned by solving related problems which do conform to the
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restrictions. Third, the rigorous optimal technique provides a base for
future work as well as the possibility of generating general theorems rela-
ting to memory structures,

Having stated the general goals and direction of this work, we now
turn our attention to the specific goals of the optimal memory technique
which has been developed to date. We will also discuss the specific restric-
tions which limit the present techniques as well as what direction has been

and will be taken in removing or reducing some of these restrictions,

3. 3.2 Design Method and Restrictions

Progress has been made along two branches. The first is the devel-
opment of improved mathematical techniques. The second is the implemen-
tation of those techniques on the computer. As would be expected the de-
velopment of a mathematical techniques precedes its implementation by a
considerable period of time.

At the beginning of this past year, the mathematical limitations of the
method which had been developed required that the size of the system, i. e,
the total number of storage bits, be stated. The method also required a
description of how storage will be used. This took the form of the expected
value of how many times a given unit of storage (a unit of storage may be a
bit, word, page, etc.) is accessed, divided by the number of times that the
entire system is accessed. The method also required a statement of the
cost and specifications of all devices which might be used to construct the

storage system. From this information a set of configurations could be
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generated which represented the optimal storage systems having average
access times which vary over a predetermined range,

During the past year all the capabilities of the earlier methods were
realized in software., Figure 3-14 shows part of the results obtained from
a single run of the current software. In this case the total system capacity
is fixed at four million bits and the devices used to build the system were
fictitious. This computer generated graph shows the optimal storage sys-
tems generated, with the system cost in dollars plotted versus the average
access time of the system. Each asterisk in this figure represents a com
plete storage system composed of from a few to many devices with varying
characteristics. These systems were selected as optimal by taking into ac-
count the various factors discussed above for a specified case,

There are several interesting facts to be discussed concerning this
plot. Because of the discrete nature of the components used the resulting
optimal systems are discrete. The large gaps between some optimal sys-
tems is caused by large gaps in device performance. The average access
time of a typical core memory is about 10, 000 less than that of a typical
drum. There are 34 systems plotted and there are only 34 optimal systems
in the range considered. This implies that between system A and B of
Figure 3-14 no system exists with a cost less than that of system A.

Notice that it is simple to build systems above and to the right of the
plot. That is, a system with a capacity of four million bits, a .1 sec.

average access time, and a cost of ten million dollars is easy to design,
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Conversely, it is impossible to design systems below and to the left of the
plot of optimal systems shown.

The general shape of this curve is also important and can be utilized
in the design considerations of the overall computing system. Notice that
between systems C and D there is very little increase in cost and a corres-
ponding large increase in performance. Between systems E and F there
is a relatively small performance gain corresponding to a large cost in-
crease,

During the past year the storage system optimization procedure has
progressed, becoming extremely general. Currently in principal there
is no limit to the detail which may be introduced in the description of how
the system is to be used. Correspondingly, there is no limit to the detail
with which prospective components may be described. There is also a
wide range of possible relationships between components selected and sys-
tem performance which may be used. In order to realize this new flexi-
bility in the software implementation of this procedure, great care must
be exercised to isolate the basic optimization procedure, which does not
change, from the software which deals with the details of a specific prob-
lem, This partitioning of software (into subroutines) will have two effects.

1. Maintain the new flexibility of the technique in the software

implementation

2. Result in a more logical and manageable software organization,

which will be easier to maintain.
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During the past several months numercus changes have been made
to the internal structure of the programs in order to effect this partition-
ing of the software. These changes have not changed the operation of the
implemented algorithms in any way but have increased the flexibility and
maintainability of the package.

Other changes are being made in the software, These changes are
of a different nature and involve the basic process of optimization, A-
mong these are several small modifications which provide increased per-
formance and improved error checking. One large modification is under
way which will result in a major change in performance., Currently the
dynamic programming process must take rather coarse increments in ca-
pacity during its operation, This results in an error which is almost un-
determinable, The major change now being effected will allow the incre-
ment size to be reduced by a factor of about 1075,

This major change will be the result of approximately four relative-
ly small changes and one major addition, The small changes may be
made without changing the basic operation of the system and serve a pre-
paration for the major addition,

The modifications discussed above have been in progress and will
remain in progress for some time to come, It is expected that they all
will be completed by the end of 1969,

Both the old and the new approaches produce the same result.

That is, the least expensive storage system having an average access
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time equal to or less than some fixed time, and the storage system
which gives the smallest average access time for a cost equal to or less
than some fixed cost. In either case, the storage system will be com-
pletely specified, The most important change is increased flexibility and
increased accuracy.

One of the primary restructions remaining concerns the problems
of describing how storage will be used. This concerns the difficulties
involved in predicting the usage of a future system. There is a straight-
forward problem of not being able to closely predict the future, A sec-
ond and far more complex problem, however, arises from the fact that
the way in which a storage system is used is often a function of its de-
sign, Therefore we may face the problem of designing a storage system
for an existing computing system whose storage usage characteristics are
not changing with time, yet the introduction of a new storage system will
cause those characteristics to change., One may be able to predict the
changes in usage which will occur due to the iatroduction of a new stor-
age system, but this will not be simple, For many situations we may be
able to reason that any changes in usage which take place due to the in-
troduction of a new storage system, which is optimal for present usage,
will result in further improvement of the overall system economy.

An interesting situation arises when a computing system is perform-
ing some well defined service for which there are several different im-

plementation methods. Very often the specific method used is dictated
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by the storage system design., It would be possible under these condi
tions to compare the methods when each is using an optimal storage
structure, In this way we may select an optimal method and an optimal
storage system, An example of this type of problem is found in large
scale information retrieval problems.

A second major restriction is imbedded in the definition of aver-
age access time which is being used., In the older technique it was as-
sumed that, regardless of the number of storage devices, there was no
overlap in its usage; that is, each storage request is handled sequen-
tially, The new techniques allow much greater flexibility in this area.

Another limitation which the older method encountered is accuracy
versus computer time., This problem has been all but eliminated in
theory and only awaits implementation,

Accompanying the effort to improve the basic theory and its asso-
ciated software has been an effort to bring this technique to bear on real
design problems., As a result a data base of components has been struc-
tured and will be added to in the coming months, Also, considerable
effort has been expended in making the results produced by the computer
as useful as possible to the user., This is being done by presenting the
results in graphical form,

During the coming year a complete report on the most advanced

technique will be written,
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4, MEASUREMENTS

It is always desirable to understand how the various components of
a computer system are utilized. Such knowledge can be helpful when
used to analyze and modify existing systems, or to synthesize new sys-
tems., Existing systems often need modification to decrease response
time or to improve the utilization of system resources, New systems
need to be designed to give high levels of performance from the start
of their operation,

The following sections describe two different types of data collec-
ted from the Michigan Terminal System (MTS), which is a time-sharing

system running on an IBM 360/67.

4,1 GENERAL MTS DATA

This section describes the general data collected from MTS [ 4]
using a data acquisition system [ 3] built into the MTS operating system,
The information has been taken from a more detailed report on ¥irtual

Storage Computer Systems [2].

4,1.1 General Description

The data acquired for this study was taken during the period Octo-
ber 15, 1967, to March 31, 1968, in normal operating periods of the
MTS system. Data collection periods ranged from 15 minutes to 7 hours
duration, depending on the volume of data being generated and the nature

of the jobs being observed. The periods were selected insofar as

105



possible to mirror the typical prevailing demand on the system: unusual
circumstances of light load (such as just after system startup or malfunc-
tion) and heavy load (such as the hours preceding a student problem due date)
were avoided.

Essentially three types of jobs are run in the MTS system:

1) Normal remote terminal, interactive use of MTS with Model
33/35 Teletypewriters, IBM 1050 and 2741 Communications
Terminals, (During the data acquisition period the number of
such tasks which could be supported concurrently by the system
grew from about 4 to 40).

2) Non-interactive use of MTS via batch mode, using an IBM 2540
card reader/punch and 1403 line printer as input/output devices,
while providing full use of the command language and other sys-
tems features,

3) Peripheral support programs for an IBM 7090 batch-processing
system which produce input tapes from punched card, and print
and punch output tapes.

During normal daily operation of the MTS system, from 9 a.m. to
midnight, the then current maximum number of communications lines for
remote terminals was enabled, one or two batch streams were processed,
and up to two additional line printers and reader/punches were used for
peripheral support jobs, Generally, less than half of the remote terminals

were active at one time, one batch stream was rather consistently busy,
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and an average of two to three of the SPOOLingl operations were in pro-
gress, Data are not included here for the SPOOLing jobs, since they ex-
hibit a very regular behavior: each I/O wait for tape or unit record de-
vice requires 50-200 msec., and is separated from the next such event by
2 to 3 msec. of processing, These peripheral support programs create a
maximum of about 15% of the CPU load, and normally only 5-10%.

Data given here for the use of the CPU and I/O devices are separated
for batch and conversational tasks. The I/O delays are 2lso shown sepa-
rately for different kinds of devices. A great deal of information is impli-
cit in the data being collected which is not shown here, and additional kinds
of data can be collected to answer specific questions,

At least three distinct points of view could be taken to govern the or-
ganization and collection of computing system data: workload, system, or
user, For the purposes of this investigation we have regarded their rela-
tive importance in the given order, For example, in displaying CPU data,
we are more interested in the CPU intervals requested by a task than by
the service actually supplied by the system. Again, when considering I/O
delays, we are concerned about the} length of time the system must wait
before it can resume processing a task rather than the time an individual
must wait to receive his answer, Thus in our case some output delays ap-
pear to take almost no time because the lines are buffered and the computa-

tion can proceed while the line is still being typed.

l_S_imultaneous Peripheral Operations On-Line
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4,1.2 Specific Characteristics

Some facts about the MTS data chosen for display in this section are
given in Figure 4-1. The number of jobs is the approximate number of Uni-
versity of Michigan Multi- Programming System (UMMPS) jobs using MTS
that were observed with the data collection facility., The number of tasks is
the approximate number of individuals who used these jobs during the collec-
tion interval. The total number of unit record devices, communication lines,
disks, etc,, that were referenced by these jobs is also given, The identifica-
tion numbers 0-5 of these different sets of data will be used to label graphs
in the succeeding figures.

Several general observations can be made about the environments in
which the data was taken, MTS # 4 was obtained after only a few weeks of
experience with paging in MTS. At that time the system had a communica-
tions line capacity of about 10: at most 10 conversational users could run in
addition to the batch and SPOOLing operations, Furthermore, use averaged
considerably less than the capacity, The data sets # 2 and # 3 include only
data for the batch streams active at the time, Because they use unit record
devices instead of remote terminals, batch jobs are processed much more
quickly and create a heavier system load than conversational jobs, More
I/0 operations generally occur in batch, since people take advantage of its
lower cost and speed for input and output functions.

The data # 1 was taken with 10-20 conversational users, which approx-

imated an average load at that stage of MTS development. With less than
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General Characteristics of the MTS Data
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about 16-20 users, the paging drum frequently had periods of inactivity: most
command chains for I/O operations were half-empty, and there was often no
channel program in progress at all. In order to observe tasks under a heav-
ier system load, data set = 0 was taken while a special background job

(called PAGE-IT) was running to increase drum activity, The PAGE-IT job
acquires a large number of virtual storage pages and references them cyclic-
ally in rapid succession, When run with a moderate load of normal taks,
PAGE-IT keeps drum channel programs running more or less continuously
and forces other tasks' pages out of main storage at a faster than normal
rate,

Figure 4-2 shows the distribution of actual CPU intervals obtained by
tasks during the data collection periods. Any interruption in service to
process another task ends the CPU intervals appearing in this distribution,
One to four percent of these intervals lie in the neighborhood of about 300
microseconds, or about the minimum time required by UMMPS to service an
interrupt which requires little or no processing, The smoothest curve, and
the one with the smallest mean, is that of data set # 0. The reason for this
is that the system was the most occupied with ordinary tasks at that time,
and PAGE-IT was running to force additional page-wait interruptions for the
normal tasks. Since # 0 was the latest of the given data to be taken, it also
reflects some improvements made to the system which make it operate more

efficiently under periods of heavy load.
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Actual CPU intervals depend on the frequency of interrupts, hence it
is not surprising that the data set (# 2) with the longest mean value was col-
lected over a noon hour., Except for that case, the mean length of a CPU in-
terval decreases steadily with time—average system load grew significantly
over the period of study. Data set # 1, whose curve shows a large number
of intervals of length about 4 msec., was taken during the testing of a new
I/O routine when an error occurred, and over 28, 000 I/O operations were
executed in rapid succession, generating an equal number of short CPU in-
tervals,

In Figure 4-3 we have distributions of CPU intervals requested by in-
dividual tasks: here the interruptions in service to process other tasks are
removed from the data, so that the given times represent CPU intervals ter-
minated only by I/O and paging operations for the task using the CPU. The
curves for # 3 and # 4 also accumulate time across paging delays for the
given task—they show the distributions of CPU time requested between I/O
operations, We note here that both of the latter curves exhibit a gap in ob-
served values near the origin: there are a few nearly immediate I/O opera-
tions, but then almost none of duration 800 to over 2000 microseconds. The
difference between the curves for # 3 and # 4 is probably due to the fact that
the former data is for batch jobs, which generally do more I/O operations,

Turning to the curves for # 0 and # 2 in Figure 4-3, which represent
CPU intervals terminated by either page or I/O wait for the given task, we

see again that a heavy paging load (# 0) significantly reduces the mean length
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of a CPU interval. There is too much variation in the origin and makeup of
batch jobs to draw hard and fast conclusions from differences between the
curves for # 1 and # 2, which represent conversational and batch jobs run on
the same day. Batch runs include a number of distinctly different tasks:
small student problems limited to batch mode, use of faster devices for list-
ing and card reading jobs, and long computational tasks, The difference be-
tween the two curves is probably more influenced by the fact that the batch
data was taken earlier in the day, when a lighter overall load contributed an
average of fewer page-wait interruptions., The density functions for reques-
ted CPU intervals exhibit a number of local maxima in the range 0-6 msec.,
which are present in almost every case and more noticeable with less paging
load. A careful analysis could probably associate these peaks with one or
more frequently-used system functions.

Figure 4-4 displays the distributions of page-wait delays experienced
with the MTS paging drum processor. The mean values of these distributions
strictly increase with increasing system load, which is the reverse order
from which the data sets are numbered. Although the given data all repre-
sent the time required to obtain a requested page, each curve is a composite
of several different kinds of distributions. Once an unavailable page is ref-
erenced one of five actions may be taken:

1) It is a new page for which space can be allocated immediately

in core (1-5 msec. ).

2) It is a new page for which core space can be allocated only after
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another page has been pushed out (a written page may be posted
at any time)

3) An existing page must be read from the drum (at least 36 msec. )

4) An existing page must be read from the drum but must wait for a

write to provide core space.

5) The page may still exist in core even though a write operation

is currently in progress, which may be cancelled to make it
available immediately.
If a drum operation is required (cases 2 to 4 above) then a further distinction
is possible: whether or not the drum is currently under the control of a
channel program to which the new request(s) can be chained, I so,
a distribution of actual completion time can be found. [2] If the
drum is not currently transmitting an additional average delay of half a
physical revolution is experienced, since a new channel program is always
started at the drum index point. In the latter case, however, it is unlikely
that more than a single revolution will be necessary to reach and transmit
the desired page.

One final fact is of importance in understanding the distributions of
Figure 4-4: MTS page transfers were posted (at the time) exactly once at
the end of each logical revolution of the drum. Thus every actual read or
write operation is known to be completed only after some multiple of the
logical revolution time (35 msec. ), plus any delay in synchronizing with the

construction of channel programs,
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All the data in Figure 4-4 is dominated by the characteristics of start-
stop rather than continuous drum operation except # 0, where the drum was
forced to run more or less continuously. In that case a great many read
operations took three logical revolutions or more. Apparently most avail-
able core pages were ""'reclaimed" or used for newly created pages, so that
read requests for drum-resident pages often had to wait for drum writes as
well as queueing and read delays. In any case the performance of the drum
under the conditions of # 0 leaves a great deal to be desired.

The overall distribution of I/O wait times given in Figure 4-5 is poorly
shown due to a gap in the plotted points in the range from 0.2 to 2, 5 seconds.
Most delays fall into three ranges according to the type of device:

a) Terminal and other I/O to buffered devices which appears to

take almost no time at all,

b)  Disk and unit record I/O, most of which lies in the range

from 35 to 70 msec.

c) Terminal output with buffer full, and unbuffered input, which

usually takes over half a second.

The curve for MTS # 1 is missing from Figure 4-5 because of the
large number of identical I/O waits occurring in the test mentioned earlier,
Batch and conversational jobs have distinct distributions—in the former
case the longest normal I/O operation is a maximum disk seek, which re-
quires about half a second.

The ready distributions of Figure 4-6 show how the MTS system
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responds to requests for service, This data is rather consistent, The fact
that # 0 has the shortest mean is again due primarily to the fact that the
heavy paging load forces many more transitions between tasks entering
page-wait,

The remaining figures in this section give disk and terminal character-
istics. The disk observed during this period was the IBM 2314 Disk Storage
Unit, which provides a bank of eight separate packs on a single control unit
and channel, The disk is used in MTS for line file storage and utility files
for compilations and assemblies, In Figure 4-7 we see the actual lengths
of disk I/O operations. The principal components are

a) Control unit wait (iransmission of data or commands from ano-

there disk pack on the unit)

b) Seek time to move the read/write heads to the proper cyiinder

(which is often not required)

c) Rotational delay to reach the front of the appropriate record

on the disk track

d) Transfer time for actual reading or writing of the record.

The distribution with the longest mean is that for the data taken under
the heaviest load. Under these conditions we expect control unit wait to be
a significant factor, since at the time up to six of the packs could be in com-
petition for the use of the single control unit. Another very large factor is
the frequency with which seeks are necessary: a single task will often re-

quire several records from the same cylinder in short succession, hence
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few seeks are necessary unless the load is such that a task can obtain only
one record at a time before another task causes a seek to a new cylinder.

The fact that the earliest data has the second longest mean value is
due in part to the fact that less efficient file routines were in use at the
time, which required more long search operations that tie up the control
unit., Another cause is the fact that only four disk packs were available,
Similar remarks can be made for Figure 4-8, which shows the distributions
of times that tasks had to wait in queue for the use of a specific disk pack,
The times in Figure 4-8 are somewhat inflated because the end of a wait
for a pack is non-interrupting, and hence it is not discovered to be over until
the task reaches the head of the CPU queue.

Finally, we display in Figure 4-9 a few distributions of terminal I/O
times, Two distributions each are given for specific Teletype lines from
the three sets of conversational data, Although this data exhibits consider-
ably more variation than the synchronous intervals, we can see the effects
of the following characteristics of terminal I/O operation: over half the
times are for output lines, which clearly predominate, Many of these lines
can be placed immediately in the one-line output buffer, so that most output
times are less than the time required to actually print a line at the remote
device. Shorter times for the input lines of MTS # 0 data suggest that as
system response time moves away from practically instantaneous, an indiv-
idual can make use of the time to formulate his next command, which he

‘then gives more quickly.
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4,1.3 GPSS/360 ‘Simulation Model

A simulation model of MTS was written to study the effects of hard-
ware changes on system performance. Input to the simulation is the data

discussed in the preceding section.

4,1.3.1 GPSS/360

The General Purpose Simulation System/360 is a discrete, digital
simulation program developed by the IBM Corporation [ 1] which runs in
the standard IBM Operating System/360. Simulation model statements, af-
ter simple processing by an assembly program, are interpreted during
execution by the GPSS/360 program.

GPSS/360 is the outgrowth of a series of general purpose system
simulators for the IBM 7000-series computing machines, the most recent
version of which is titled GPSS-IIL. GPSS/360 relaxes many GPSS-III re-
strictions, introduces new entities and block types, allows much more con-
trol over storage allocation, and provides a limited graphic output feature,

The GPSS language is particularly suited for modeling in such com-
mercial applications as job shop scheduling and manufacturing network
flow. However, it is also useful for computer system simulation at the
fairly gross level of detail which is used here, Its primary disadvantages
are that it is comparatively difficult to learn and relatively slow in execu-
tion, Its generality and flexibility were considered to outweigh those dis-

advantages for this particular application,
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4,1.3.2 Organization of the Model

The simulation model described in this paper consists of about five
essentially different parts:

1) hardware descriptions

2) operating system algorithms

3)  workload characteristics

4) variable system parameters

5) statistics gathering,
The first of these is the simplest to implement in a simulation language,
and requires a negligible fraction of the set of model statements. Charac-
terizing the data in the system (in this case requests for computing ser-
vices) and specifying the parameters by which the system is '"tuned" to
improve its performance require about the same amount of effort, and
together account for only a fifth or so of the total description. By far the
most design and analysis work and the resulting model statements are re-
quired to describe the algorithms used by the operating system for handling
devices and service requests, and to decide what information about the
model operation is relevant and measurable, and how it should be collected
and presented. Each of these two aspects of this particular model required
over a third of the total simulation effort.

The following sections will discuss each of the basic aspects of the
model in terms of its content, overall structure, and the GPSS statements

essential to this implementation,
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4,1.3.3 Model Data: the Workload Description

An approximate description of each MTS interaction is given by the
parameters of a single transaction (XACT). The size of the executing pro-
gram, the time intervals required for execution and synchronous I/O waits,
and the frequency of requirements for additional virtual memory pages dur-
ing execution are all described by XACT parameters,

The master XACT representing each MTS interaction is passed
through the job scheduling part of the model, Transactions are also used
elsewhere to stand for a single memory page as it passes through the drum
I/O channel, an entry on the queue for use of the CPU, and to implement the
data transfer Jduring the drum rotations.

Virtual memory page XACTS required by a task are members of a
GPSS assembly set, and a specified number of them must be ASSEMBLED
before a task is ready for execution, These XACTS are SPLIT from others
as needed, and TERMINATED when they are no longer required to trigger

additional events by their flow through the model.

4,1.3.4 Hardware Descriptions

The only parts of this model which directly represent physical devices
occur in the choice of the time unit as the drum sector rotational delay, and
in the model parameter which specifies the capacity of core storage., Hard-
ware/software combinations such as the operation of the drum as an exten-
sion of main memory and the supervisor algorithm which drives it are also

modeled.
12%



As each page transfer request arrives at the drum processor, it is
LINKed to one of the GPSS "user chains, ' which are used to represent drum
sector queues., Once every time unit a special ""clock' XACT passes through
an UNLINK block which attempts to remove a queue entry from the sector
currently at the read/write heads. Any XACT so UNLINKed is next AD-
VANCED for one time unit to represent the transfer time, and then either
sent to be ASSEMBLEJd for CPU service (if a page-in request) or simply

TERMINATEd to remove it from the model (if a page-out request).

4,1.3.5 Operating System Algorithms

Additional algorithms represented in the model for the operating sys-
tem itself include

a) the choice of when to interrupt the task currently using the CPU

b) the choice of when to allow a new task to bring its pages to real

memory and compete for the use of the CPU

c) the choice of when to page-out a task not ready to use the CPU.

Decisions are made with these algorithms at specific "control points"
in the model by routing task XACTS based on the value of task character-
istics (WACT parameters), system load factors (QUEUE lengths and STOR-
AGE usage), and decision-aiding parameters (SAVEVALUEs). The control
points occur when the executing task requests a virtual memory page which
is not in real memory, when a task has used a certain amount of CPU time,
when real memory usage drops enough to allow room for the pages of ano-

ther task, when a task begins an I/O operation, and when an executing task
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is interrupted.

4,1,3.6 System Parameters

Decision-making algorithms for operating systems are normally de-
signed to use a number of parameters—numerical values which can be
changed as frequently as desired to improve performance as more is
learned about how the system behaves, as the hardware configuration
changes, and as the workload develops different patterns of demand for sys-
tem resources. Examples of such parameters existing in this model are

a) the maximum amount of real memory available to a single

task at one time
b) the maximum length of time a task may continuously use
the CPU
c) the maximum number of real memory page requests allowed
to enqueue in the system when core is full
d) the number of real memory pages required to be free before
a new task is allowed to compete for the CPU.
These values are stored in GPSS SAVEVALUE locations. They are initial-
ized for each run, and can be changed during the simulated operation if

necessary.

4,1.3.7 Simulation Results

This section gives the data obtained from GPSS/360 simulations made

with the model described in the previous sections, A number of simulation
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runs were made using a pair of JOBTAPEs of task transactions from the

MTS data.

These tapes were obtained by abstracting MTS data sets # 0 and

# 1 during the analysis of that data for the presentation in Section 4, 1. 2,

Each simulation run begins at the front of one of these two tapes and uses

as many transactions as necessary in order to simulate system operation

for a specified amount of elapsed time,

For initial runs, both JOBTAPEs were run with a pair of "extremal"

choices of the model parameters:

a)

a Basic configuration of hardware and programming techniques,
using :

80 core pages

a 9-sector drum

16 time unit time-slice

read before write drum queue discipline

drum writes to shortest queue

FIFO CPU queue discipline

posting of pages once per revolution

an Advanced configuration, which differs from the Basic one in
the following choices of parameter values :

144 core pages

large core storage instead of drum

24 time unit time-slice

priority in drum queues to large tasks
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immediate posting of pages.
The remaining runs were made using parameter choices differing from Ba-
sic in only one or two parameter values, and generally with values chosen
from the Advanced model substituted for the Basic values,

Each run begins with an initialization period, after which two or three
sets of data are taken for intervals of 30 simulated seconds. Because the
initialization intervals were taken to be rather long, their data (which is
not included here) agrees quite closely with the values observed for the
regular intervals, The Basic and Advanced models were each run for three
intervals, and the remaining models for two. In several cases, however,
runs were terminated after a somewhat shorter last interval because of a
problem with controlling the input rate of task data from the JOBTAPES.
Thus the data displayed in the figures of this section is normalized by the
length of the run segment,

Figures 4-10 and 4-11 show the results of running the Basic model
with the MTS # 1 and MTS # 0 JOBTAPESs, respectively., The same data for
the Advanced model is given in Figures 4-12 and 4-13. Figure 4-14 lists
the values obtained by using the Basic model except for the larger core
size taken for the Advanced model. Similarly, Figure 4-15 gives the data
for the Basic configuration altered only by immediate page posting, Sub-
sequent figures show other variations. Only one run (described in Figure
4-18) was made with values deliberately chosen outside the techniques used

in the Basic and Advanced models, In this case several poorer techniques
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BASIC SIMULATION MODEL

MTS Data # 1

L ) T ] 1 i
| PERFORMANCE... | I | 11 | IIT |
t i { } |
| | | | |
| e CPU Utilization | 456 | 436 | .591 |
| Average queue contents | .601 |} .508 | .767 |
| Maximum queue contents | 9 | 7 | 6 |
| Percent zero entries | 53.6 | 55.3 | 40.7 |
| [ I I |
| ¢ Paging mechanism utilization { 499 | .685 | .672 |
| Average queue contents i 12.5 | 22.1 | 19.4 |
| Maximum queue contents | 69 | 69 | 65 |
| Mean completion time | 25.1 } 32.0 | 28.9 |
| | | | |
| Tasks Completed/Second | 10.5 | 12.8 | 16.4 |
| | | ! |
| Mean No. of Active Tasks i 8.8 | 7.1 9.2 |
! | I | |
[ 1 1 1 ]
| 1 ) 1 1
| WORKLCAD | I | IT | IIT |
L | { 3 !
| D i A ¥ 1
| | 250~ | 564- | 950- |
| Task No. Range | 563 | 949 | 1319 |
| | | | !
| No. of CPU Intervals/Second | 52.4 | 43.2 | 63.8 |
| Mean CPU Service Time | 2.24 | 2.60 | 2.38 |
I | | | |
| Percent Initial Pages | 86.4 | 89.7 | 82.3 |
| No. of Pages Written/Second | 64.2 | 88.3 | 86.2 |
I | ! I {
| Mean No. of I/0 Operations | 5.49 | 3.38 | 5.20 |
| Average I/0 Time f 42.3 | 41.3 | 41.6 |
| ! [ | |
L 1 [ 1 ]

Figure 4-10

Basic Simulation Data
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BASIC SIMULATION MODEL

MTS Data # 0

L 3 A ] L] ]
| PERFORMANCE... | I | II | III |
= + : : 4
| [ | I l
| e CPU Utilization | «253 | .311 | .189 |
| Average queue contents | .304 | .261 | .136 |
| Maximum queue contents | 8 | 6 | 5 |
| Percent zero entries i 37.6 | 51.0 | 55.3 |
I | | { .
| e Paging mechanism utilization { 439 | 401 | .263 |
i Average queue contents I 11.0 | 5.56 | 3.48 |
| Maximum queue contents i 71 | 47 | 48 |
| Mean completion tinme | 24.6 | 13.8 | 13.2 |
| i | | |
| Tasks Completed/Second | 1.0 | 7.8 | 4.9 |
| | l I |
| Mean No. of Active Tasks i 7.5 1 8.7 | 6.0 |
i | i | |
1 ] | i ]
L} L] [] k) A
| WORKLOAD I I | II | 1III |
L. i 1 1 1
1 3 ] 1 1] L}
| i 252- | 582- | 816~ |
| Task No. Range i 581 | 815 | 901 |
| | | i I
| No. of CPU Intervals/Second | 47.7 | 52.8 | 36.5 |
| Mean CPU Service Time | 1.37 | 1.28 | 1.34 |
! | | | !
| Percent Initial Pages | 51.3 | 34.2 | 34.9 |
i No. of Pages Written/Second | 56.5 | 51.7 | 33.4 |
| | | | |
| Mean No. of I/0 Operations | 3.73 | 5.55 | 3.24 |
| Average I/0 Tinme |102.4 | 68.4 | 82.5 |
| | | l l
L i 1 | ]

Figure 4-11

Basic Simulation Data
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ADVANCED SIMULATION MODEL

MTS Data # 1

L} 1 ¥ 1 1
| PERFCRMANCE... | I { I  1IIT |
H f 1 } {
| | | I |
| e CPU Utilization i 717 | .621 | .856 |
i Average queue contents | 2.19 | 2.14 | 5.08 |
| Maximum queue contents | 16 | 20 | 16 |
| Percent zero entries | 28.9 | 34.9 | 15.2 |
I l f | I
| e Paging mechanism utilization | .804 | 779 | .721 |
| Average queue contents | 32.9 | 36.8 | 21.1 |
| Maximum queue contents | 2100 | 2100 | 95 |
| Mean completion time | 40.2 | 47.2 | 29.3 |
| | | | |
| Tasks Completed/Second | 13.7 | 13.8 | 16.2 |
l | I i [
l Mean No. of Active Tasks | 14.5 | 12.9  18.3 |
| | | l |
b { 1 t 1
| WORKLOAD | I | II | TIII |
k + 1 : :
| | 251- | 661~ |1077- |
| Task No. Range | 660 | 1076 | 1483 |
| | | | |
| No. of CPU Intervals/Second | 81.5 | 64.8 [100.6 |
| Mean CPU Service Time | 2.26+} 2.47 | 2.19 |
| I | | |
| Percent Initial Pages | 78.2 | 76.1 | 74.6 |
| No. of Pages Written/Second 1104.5 | 99.2 | 92.3 |
l | | | |
| Mean No. of I/0 Operations | 6.69 | 3.98 | 7.60 |
| Average I/0 Time { 38.1 | 37.5 | 32.0 |
l | | | |
L A L 1 ]

Figure 4-12

Advanced Simulation Data
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ADVANCED SIMULATION MODEL

MTS Data # O

1) ] 1 ¥ L
! PERFORMANCE... | I 1 I i IIT |
- : ; i 1
I | a | |
| e CPU Utilization | 642 | .630 | .555 |
i Average queue contents t 1.55 1V 1.79 | 1.74 |
] Maximum queue contents ! 16 | 17 | 17 |
] Percent zero entries ! 36.3 | 37.7 } 40.2 |
| | ! { !
} ® Paging mechanism utilization ! .900 { .881 | .957 |
| Average queue contents ! 25.4 | 29.4 | 45.2 |
i Maximum gqueue contents i 96 | 2100 | 2100 §
i Mean completion time | 28.0 | 33.2 | 47.2 |
{ ! | i i
! Tasks Completed/Second i 21.1 | 16.9 | 20.5 |
i { i | {
] Mean No. of Active Tasks { 18.5 | 15.7 | 17.9 }
i i | | {
k ! + f {
{ WORKLOAD | I i I1 | IITI |
— } 1 i 1
! { 251- | 884~ 1392~ |
i Task No. Range i 883 | 1391 | 2007 |
l { | | |
i No. of CPU Intervals/Second 1114.7 1100.5 | 88.7 |
| Mean CPU Service Time | 1.44 | 1.61 | 1.61 |
| i | { |
| Percent Initial Pages | 46.6 | u48.4 | 60.3 |
] No. of Pages Written/Second 1116.2 |112.5 1123.1 |
i | | i |
| Mean No. of I/0 Operations i 7.32 | 3.69 | 2.u48 {
i Average I/0 Tinme | 59.2 | 37.0 | 32.9 |
{ { ! | |
i | 4 ] ]

Figure 4-13

Advanced Simulation Data



MODIFIED BASIC SIMULATION MODEL

(Using 144 colke pages)

MTS Data # 1

| T L] 1
{ PERFORMANCE... | I | I1 |
L [} 4 |
L L) Y 1
| | | |
| e CPU Utilization | .601 | .707 |
| Average queue contents | 1.78 | 4.08 |
i Maximum queue contents | 15 | 17 |
I Percent zero entries | 38.0 | 21.8 |
| | | |
| e Paging mechanism utilization | .854 | .856 |
| Average queue contents | 49.3 | 56.2 |
| Maximum queue contents { 2100 | 2100 |
| Mean completion time | 56.8 | 65.5 |
| | | I
| Tasks Completed/Second { 17.6 | 20.0 |
| i | |
| Mean No. of Active Tasks | 12.8 | 13.3 |
| | ! |
[1 { 1 ']
' 1 t 1
| WORKLOAD i I | ITI |
H % = !
| | 250- | 777- |
| Task No. Range t 776 | 1378 |
I | I l
| No. of CPU Intervals/Second i 68.1 | 72.2 |
| Mean CPU Service Time | 2.27 | 2.52 |
I i | |
| Percent Initial Pages | 91.0 | 89.2 |
| No. of Pages Written/Second 1110.3 1110.2 |
| | | |
| Mean No. of I/0O Operations | 6.78 | 4.79 |
| Average I/0 Time | 42.9 | 30.5 |
| | | |
L 1 1 J

Figure 4-14

Modified Simulation Data
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MODIFIED BASIC SIMULATION MODEL

(Using immediace page posting)
MTS Data # O

L] ] T

| PERFORMANCE... | I | II
- } }

I | |

| ¢ CPU Utilization { 484 1 .310
| Average gueue contents | .250 | .099
| Maximum queue contents | 6 | 5
| Percent zero entries | 73.9 | 82.8
| | |

i e Paging mechanism utilization | .705 | .387
| Average queue contents | 16.6 | 5.96
| Maximum queue contents | 69 | 55
| Mean completion time | 23.5 | 15.4
| | |

| Tasks Completed/Second i 14.0 | 6.1
| I {

| Mean No. of Active Tasks i 7.7 | 7.6
| | |

g + ;

| WORKLOAD I I | II
b = 1

| | 201- | 621-
| Task No. Range | 620 | 805
| | I

| No. of CPU Intervals/Second | 98.3 | 60.1
| Mean CPU Service Time | 1.44 | 1.33
| | |

| Percent Initial Pages | 44.3 | 28.9
| No. of Pages Written/Second | 90.7 | 50.0
| | |

| Mean No. of I/0 Operations | 4.41 | 5.05
| Average I/0 Time | 51.9 | 69.3
| |

L ! 1

Figure 4-15

Modified Simulation Data
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MODIFIED BASIC SIMULATION MODEL

(Using LCS for paging mechanisnm)
MTS Data # 0

r T T " 1
| PERFORMANCE... | I i II |
k t ; 4
! i ! !
i e CPU Utilization | .362 { .202 |
| Average queue contents | 562 | .332 |
{ Maximum queue contents | 10 10 |
! Percent zero entries { 36.2 { 39.8 |
| | i |
] e Paging mechanism utilization | .598 | .369 |
i Average queue contents { 10.8 { 7.15 |
i Maximum queue contents { 59 i 62 |
! Mean completion tinme i 18.0 | 19.3 |
| ! i i
i Tasks Completed/Second | 16.9 | 9.8 |
| { } i
i Mean No. of Active Tasks | 12.6 | 7.3 |
i | i i
b { ; 1
{ WORKLCAD { I i IT ;
t i { {
| i 251- | 759- |
| Task No. Range i 758 { 1052 |
! i { i
i No. of CPU Intervals/Second | 72.7 §} 37.6 |
i Mean CPU Service Time i 1.28 § 1.39 |
| | i |
i Percent Initial Pages | 53.5 § 61.6 |
i No. of Pages Written/Second | 77.0 { 47.5 |
| | { |
| Mean No. of I/0O Operations 7,42 1 3,24
{ Average I/0 Time ¢ 94.5 § 85.2 |
| | i |
' i} 3 []

Figure 4-16

Modified Simulation Data
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MODIFIED EASIC SIMUIATION MODEL

(Using preenptive CPU queue discipline)

MTS Data # 1

r | T
| PERFORMANCE... | I | II
f— 4 ;

| | |

| e CPU Utilization | 425 | .407
| Average queue contents | 339  .347
| Maximum queue contents | 5 8
| Percent zero entries | 53.0 | 53.3
I | |

| ¢« Paging mechanism utilization | .513 | .709
| Average gueue contents } 13.5 | 22.9
| Faximum gueue contents | 68 | 74
| Mean completion time | 26.4 | 32.1
| | I

i Tasks Completed/Second | 10.8 | 13.0
! ! I

} ¥ean No. of Active Tasks t 8.7 7.0
| i |

H f }

| WORKLCAD | I | II
F i }

| | 250- | 574-
| Task No. Range { 573 } 963
| | |

| No. of CPU Intervals/Second | S4.4 | u42.8
| Mean CPU Service T me | 2.01 | 2.45
| ! |

{ Percent Initial Pages | 85.4 | 89.3
| No. of Pages Written/Second | 66.2 | 91.4
| I I

| Mean No. of I/O Operatiomns { 5.28 | 3.30
| Average I/0 Time | 39.8 | 41.9
| | |

L i 1

bee o e o e G O — — — e ot v hn w——— Gy —— — — — — —— ——— — — o o ok oo a]

Figure 4-17

Modified Simulation Data
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MODIFIED BASIC SIMULATION MODEL

(Using random drum writes and FIFO queues)

MTS Data # 1

r 1 L] L
| PERFORMANCE... | I | 1II |
- 1 { {
| | | |
| e CPU Utilization { 410 | .291 |
| Average queue contents | 455 | .154 |
| Maximum queue contents i 9 1 5 1
| Percent zero entries | 59.7 | 65.9 |
| | I |
| ¢ Paging mechanism utilization ] 493 | .515 |
| Average queue contents | 13.2 | 15.2 |
| Maximum queue contents i 62 | 61 |
| Mean completion time | 26.7 | 29.4 |
I | l I
{ Tasks Completed/Second I 9.7 | 8.9 |
| | | l
i Mean No. of Active Tasks I S.1 | 7.3 )
| | | |
— i { 1
| WORKLOAD | I | II |
F + % 1
| | 250- | 542- |
| Task No. Range | 541 | 808 |
{ | I |
| No. of CPU Intervals/Second I 52.3 | 37.8 |
{ Mean CPU Service Time | 2.02 | 1.98 |
| | I |
i Percent Initial Pages | 82.9 | 80.7 |
| No. of Pages VWritten/Second | 63.3 | 66.5 |
| | I |
| Mean No. of I/0 Operations | 4.88 | 3.24 |
| Average I/0 Time I 39.3 | 51.4 |
| i | |
L . A t ]

Figure 4-18

Modified Simulation Data
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MODIFIED BASIC SIMULATION MODEL

(Using queueing options and longer time slice)
MTS Data # O

L B T L] 1
| PERFORMANCE... i I | II |
t + } 1
| i | |
| e CPU Utilization | .324 | .238 |
| Average queue contents | 533 | .180 |
| Maximum queue contents | 10 | 5 1
| Percent zero entries | 33.9 | 42.2 |
| | } |
| e Paging mechanism utilization | 478 | .296 |
| Average queue contents | 9.56 | 3.72 |
| Maximum queue contents | 67 | 39 |
| Mean completion time | 20.0 | 12.6 |
| | | |
i Tasks Completed/Second I 11.2 §{ 5.9 |
I | | |
| Mean No. of Active Tasks I 7.7 | 7.8 |
! i | |
3 + t 1
| WORKLOAD | I | IT |
t } ' t {
| { 251- | 588~ |
| Task No. Range i 587 | 765 |
| | | l
i No. of CPU Intervals/Second | 55.1 | 47.9 |
| Mean CPU Service Time | 1.51 | 1.28 |
| i | |
| Percent Initial Pages | 47.6 | 31.3 |
| No. of Pages Written/Second | 61.7 | 38.1 |
| i | |
| Mean No. of I/0 Operations | 3.68 | 4.98 |
| Average I/0 Tinme | 80.1 | 79.8 |
| | | |
L i L J

Figure 4-19

Modified Simulation Data
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MODIFIED EASIC SIMULATION MODEL

(Using U-sector drum and 20% unchanged pages)

MTS Data # 0

i hj 1
| PERFORMANCE... | I | 1T |
t i f {
! | | I
i e CPU Utilization { 426 | .350 |
i Average queue contents { U475 { .223 |
| Maximum queue contents } 6 | T 1
| Percent zero entries { 30.6 | 36.9 |
| | [ !
| e Paging mechanism utilization | 574 | .458 |
| Average queue contents | 11.2 | 6.08 |
| Maximum queue contents | 70 | 57 |
| Mean completion time { 19.5 | 13.3 |
| | | |
| Tasks Completed/Seccnd I 13.9 | 9.7 |
| | l |
l Mean No. of Active Tasks | 9.2 | 8.2 |
| | ! |
t 1 4 4
{ WORKLCAD i I | II |
F - 1 ! 1
{ | 253- | 669~ |
| Task No. Range | €68 | 959 |
| | I |
| No. of CPU Intervals/Second | 81.4 | 68.2 |
| Mean CPU Service Time { 1.35 | 1.32 |
| | | |
| Percent Initial Pages I 63.4 | 62.2 |
| No. of Pages Written/Second | 64.6 | 52.7 |
| | | |
| Mean No. of I/O Operations | 5.32 | 5.05 |
| Average I/0 Tinme | 45.4 | 67.4 |
| | i |
L 1 (] ]

Figure 4-20

Modified Simulation Data
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were used to gauge the sensitivity of paging drum processing to such
changes.

Figure 4-20, which was run with a 4-sector drum in the (other-
wise) Basic configuration, also provides for a fraction of unchanged
pages: 20% of the write requests were not executed in this case, as-

suming that the pages were unchanged since their last trip to the drum,

4,2 MTS DISPLAY CONSCLE DATA

In this section data taken on different display applications will be
presented. The purpose of this data is to compare the computational
requirements of various display {and non-display) applications. The data
has been collected for jobs running on the University of Michigan's
360/67, using the Michigan Terminal System.

Imbedded within MTS's executive system is an efficient data collec-
tion system, Basically, a data item is recorded (on tape) whenever an
event pertaining to specified jobs occurs. Examples of the events are
1) the start of a CPU processing interval, 2) the end of a CPU process-
ing interval, 3) page read in or page read out start and end, 4) acquir-
ing or releasing virtual memory pages, and 5) 1/O to terminals, print-
ers, or tapes,

A program has been written to analyze the data for any job and
produce a series of probability distributions and summary data for the

following quantities.



1) User think time, This begins when the computer system is
ready to accept new input from the user, and ends when the
input is completed with an end-of-line indication,

2) CPU time used during the think period.

3) Computer system response time., This begins at the comple-
tion of an input line, and ends when all output has been fin-
ished and the computer system is again ready to accept input,

4) Processing interval lengths during response periods, During
a processing interval a job has exclusive use of the CPU, ex-
cept for supervisor functions.

5) Number of processing intervals during a response period.

6) Number of characters in input lines.

7) Number of characters in output lines,

When the analysis program was originally conceived and implemen-
ted, some of its results were intended to be used as part of the appli-
cation specification required by a display system model (section 3.2).

A serious deficiency in the data collection facility became evident and
frustrated this aim. The problem is that input-output information is
gathered only at the MTS level. The display service routines for the
IBM 2250 display console do not use the MTS I/O routines once a graph-
ics application program has been loaded and started from the console
until it has been terminated. Therefore to the data collection facility,

running a graphics program appears as one long response time, despite
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the many user interactions generated with the light pen and function but-
tons. Because this was the case, gathering much in the way of useful
statistics for display applications became impossible, All of use that
can be garnished from the display applications statistics is CPU utiliza-
tion during response periods, and also averaged over think and response
periods. While this information will be shown to be useful, it is not
what was anticipated. This information is in Table 4-1.

The first application referred to in the table, Michigan's Own Math
ematical System (MOMS) is used to manipulate and plot mathematical
functions, All interaction is via the light pen, The second application,
text editing, uses the light pen and keyboard to modify text displayed
on the console.

The 2250 display console could also be used in MTS as a teletype,
with a screen instead of printer and paper, Table 4-2 shows pertinent
data from this mode of operation. The first three applications consist
of general program preparation, correction, and debugging, The last
application, running the system program *TASKS, gives a listing of jobs
active in MTS.

The data collection facility was also used to monitor all MTS users
for about one hour, The statistics gathered from a random sampling of
the monitored teletype terminals are given in Table 4-3.

Finally, a small amount of data was collected from a remote dis-

play terminal using MTS. The system consists of a DEC 339 with
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«w Average Use of CPU by

[y

Program

o
==
RN N

. 20%
. 15%
. 40%
.50%
.10%
.10%
.10%
.10%
. 20%
. 90%

Table 4-3

Data Gathered for Random Teletype Users

Average Use of CPU by Pro-
gram During Response Time

.8%
1%
2. 4%

R

w

4. 4%
4. 5%
9.8%
1. 2%
1.5%
2. 9%
1. 8%
1. 0%
3.3%

Elapsed Time, Seconds

1525
578
297
4760
512
778
207
83
356
1580

3610

2930

CPU Time, Seconds

12.3

34.7

25. 2
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o Average Think Time,

16.
194.
14,
42,
12.
14.

24.
35.

44.

Seconds

(o)

5

. 00

10
00
60
60
10

00

.30

10
90

60

Average Response Time,
Seconds

[y
o

o0
1>

31.

35.
39.
28.
63.

36.

14.

S o
o O O

W
(e

20
80
60
60

70

.70

10

Average Processing Inter-
val Length, Microseconds

6103
3316
5215
5837
3998
5782
39417
4610
3462
4454
3438

4807



16,384 words of core storage, connected to the main computer via a
2000 bits per second data link, The application is queueing network
analysis, in which the user draws on the display a queueing network,
and then can see various probability distributions pertaining to the net-
work, All graphics work is done by the display terminal: the main
computer merely solves the network for the required results. The data
is in Table 4-4. Only a very simple queueing network was analyzed.
It can be expected that for more complicated and realistic models, the
average CPU utilization of 7.3% would increase. Note that in this
case '"Think Time' does not refer to the user, but to the remote dis-
play terminal., Thus an average of 2.5 seconds after receiving a reply
from the main computer, the remote computer sends a new request for
service to the main computer,

Table 4-5 compares and summarizes some of the more important
statistics from the four modes of using MTS reported on in Tables 4-1
through 4-4., Several points should be noted. First, using a display in
lieu of a teletype reduces response time by a factor of 4, with think
time remaining nearly constant, This is a consequence of the fast rate
of output attainable with the display console. The input rate (and con-
sequently think time) is unaffected because a keyboard is used in both
cases. Second, the faster output rate results in higher CPU use by the
terminal, because more computation is done in less time. This means

that a display terminal user gets more done in unit time than does a
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Table 4-4

Data Gathered for Remote Display Terminal

Average Use of CPU
by Displav Terminal

Average Use of CPU
by Display Terminal
During Response Time

Elapsed Time, Seconds

CPU Time, Seconds

Average Display Terminal
"Think Time," Seconds

Average Response Time,
Seconds

Average Processing Inter-
val Length, Microseconds

150

13.

800,

58.

60017,

. 30%

30%

00

.50

00



Table 4-5

Comparison of Stati stics

Application Lverage Use Average User Average Response
Class of CPU Think Time Time
Teletype 1.05% 22. 8 24,40

2250 Display
Used as Teletype 2. 36% 23.0 6. 40

2250 Display _
Used for Graphics 3. 03% * *

Remote Display
Used for Graphics 7.30% * 2. 96

* Not Applicable



MEAN SICMA SANPLES
25ET€43.C €€4SS(2,.C 14¢ THINK TIVME
.10293.4 3€€3,5 145 TCTAL CPU TIME USEC_QURING THINK PERICDS
2662184.0 1CC457€€.C 144 RESPONSE TIME
_ 353€617C.6 14€8283,.C 144 CPy _TIMES DURING RESPCNSE PERIODS B
6CC7.1 66SC.4 S431 CPU INTERVALS CURING RESFCNSE FERICOCS
€5,5 25¢€.C l44 NUMBER CF CPU INTERVALS CURING RESPONSE PERICDS
5.8 1.6 14¢ INPUT MESSACE LENGTHS
_ 15.3 2S.1 144 CUTPUT MESSAGE LENGTHS

TIMES ARE IN MICROSECONDS

Figure 4-21

Summary Data for Remote Display Terminal
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teletype terminal user, and the display user should therefore have a
shorter connect time, Third, the 2250 display used for graphics work
takes more CPU processing than when it is used as a teletype. Last,
the remote display terminal uses more CPU processing than any other
application class, However this final point, being based on just one
data set, must at best be regarded as tentative. Also, the 360/67
hardware configuration in use when the remote display data was taken
differed from the hardware in use when the other data was taken.

All this data, then, gives very positive confirmation to the idea
that displays in place of teletypes use the CPU more and increase res-
ponse time, and that graphics-oriented work requires more CPU time
than does teletype-oriented work,

Figures 4-21 through 4-29 show some of the probability distribu-
tions and the summary data found from the remote display terminal
statistics. They are meant to be indicative only of the type of informa-
tion available: because the data represents only one application, no

conclusions should be made from it.
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1. Introduction

The relationship between the number of programs permitted simul-
taneous assignment of core, drum traffic rates, and central processing
unit (CPU) utilization is a central relationship to a page-on-demand, multi-
programmed, time-shared computer system [1 |. A clear understanding
of this relationship is vital to systems planners (software or hardware) if
adequate performance is to be obtained. In this apaper, a simple stochastic
model will be described which offers a base for that understanding. This
paper also serves to further demonstrate the feasibility of applying numer-
ical analysis of queueing models to the development of general insight into
key computer organization questions.

Considerable investment has been made in building systems to operate
under the page-on-demand strategy, and difficulty has been encountered in
obtaining satisfactory performance. Several excellent studies, both analy-
tical [2, 3] and simulational [4, 7, 10], have been applied in attempts to ex-
plain and predict their performance. One of the chief underlying conclu-
sions of each of these studies is that the number of tasks simultaneously in
core memory must be severely limited if efficient operation is to be a-
chieved. However, because of the detail attempted in these studies, a
clear, general picture of the fundamental trade-offs has not emerged. The
model to be presented offers such a picture by ruthless simplification, par-
ticularly in those places where reliable data is sparse and the use of

""guesstimates' must still prevail, The simplicity can then be exploited by
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exploring a much broader range of environmental parameters than would
otherwise be possible., The insights resulting can better educate our intui-
tion when reviewing more refined results and more refined environmental

statistics as they become available.

2. A Model

To that end we shall consider a system (Figure 1) which possesses a
single CPU, a single secondary store for page swapping (which will be called
a drum, for concreteness), and a single data channel serving that secondary
store, Overhead (execution of system software) and non-drum input-output
(I/0) operations will be ignored, Furthermore, it will be assumed that the
supervisor is so designed that the number of users simultaneously having
core assigned (which will be called the ""degree of multiprogramming') will
have a maximum value N, and further requests for execution when N users'
programs are already in this active condition will simply be queued until one
of the N active programs terminates or is terminated by the supervisor,

We wish to determine, among other things, the rate R at which jobs
having a known statistical character can be completed when requests for exe-
cution continuously exceed the rate of service. On the other hand, our only
concern is with the behavior of user programs during the interval when they
actually have core memory assigned to them, Thus, a ""job" in our context
will be that set of operations which starts when a page of core is first put at
the disposal of a user, and ends the next time that the user's program is

made ineligible to hold core memory. It is during that interval, which will
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be called a '"service interval", that execution of the program will take place—
in smaller intervals interspersed with the page transfers demanded from the
drum, During any service interval, the control of the CPU will be shifted
among the N jobs in core as they receive their demanded pages.

Finally, we make the following assumptions about the page demands:

1) Upon initiation of a ''job'", there is a burst of page demands
during which a negligible amount of execution is achieved for
that particular job.

2) The cumulative drum-channel service time for this burst of
demands is an independent, exponentially distributed random
variable having mean Tb'

3) Once the burst is over, a job executes for an independent,
exponentially distributed interval of time before a page de-
mand occurs,

4) The drum-channel service time for the latter request is an
independent, exponentially distributed interval with mean Tp.

5) The execution-page demand cycle is repeated a random num-
ber of times, with the number of pages demanded after the
initial burst (but before termination of the job) being a geo-
metrically distributed random variable having mean Np.

6) Jobs which become eligible for either execution or page tran-
sfer join an appropriate queue whenever another job is al-

ready undergoing execution or page transfer, Jobs in the
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midst of their initial burst of page demands will be interrup-
ted by the non-burst demands. When the burst demands can-
not proceed, the jobs waiting for such such service also form
a queue, separately from the execution and non-burst page
demand queues, (See Figure 2,)

It is readily shown that the above assumptions assure that the total
execution time taken by each job is also an independent, exponentially
distributed random variable having a mean which is Np times the mean
execution interval described in assumption (3) above, The mean total
execution time will be designated T o SO that the mean execution inter-
val will be Te/Np.

The assumption that the supervisor will enforce an upper limit (N)
on the number of programs allowed to have core assigned results from
the conviction, supported by the results below and the cited prior art,
that such a policy must be enforced (under heavy use of the system) if
the page demands are not to swamp the drum channel, with serious con-
sequences to CPU utilization and to the rate of job completions. Indeed,
it is a central idea of this paper that for a given set of environmental
statistics (Te’ Tb’ Np, Tp), there will be a finite "best'" value for the
variable N,

The assumed '"burst'" behavior reflects, qualitatively, behavior
described by Fine, Jackson, and MclIssac [ 5] and by Coffman and Vari-

an [ 8] in experimental studies. Although their data were taken from a
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simulated paged system, and although they measured paging character-
istics for programs not specifically wirtten for a paged system, their
results do give an idea of the nature of the page-on-demand environment,
Besides showing that the rate of page demands is remarkably greater
when the number of pages assigned to a job is small (as would be the
case for recently started jobs), they also argue forcefully that the area
of primary concern should be the high level of page requests when any
program has significantly less core than its total storage requirements.
This "burst" assumption also corresponds to the assumption of
the existence of a "working set' of user pages, used by Denning [9 ]
to model paging behavior, The '"burst" represents acquisition of
the initial working set., Obviously, that set will consist of an average
of Tb‘/ Tp pages, and total memory will need to be at least N Tb/ Tp
pages if the burst is not to be prolonged by considerable reshuffling of
pages. The assumption of exponential distributions for drum channel
service time gains some credence from the realization that several fac-
tors (access, latency, transfer, and posting delays) make up its total,
and their durations are in general independent of one another. Latency
will favor shorter intervals because the write operations will use the
first sector available, GCrganization of queue disciplines can also affect
distributions. Nevertheless, need for simplicity is still the major justi-

fiction,
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Unfortunately, the samples of the statistical measurements by Fine,
et al., are too small, and the results insufficiently differentiated, to
give an accurate notion of the distribution function for the execution in-
tervals conditional on the degree of multiprogramming, Smith [ ] ar-
gues for the hyperexponential approximation., However, the principal
reason for the exponential assumptions used here is to avoid complicat-
ing the modei, especially in view of the sketchiness of present data.

It seems reasonable, also, to assume that continuing jobs would
be given priority in the use of the drum-channel over jobs undergoing
their initial burst of paging, Prudence suggests that once you have
committed a major portion of core to a user, you should do everything
possible to expedite completion before committing yourself to new arri
vals.

While this model does not explicitly show the process of task or
job creation, ''thinking" delays at terminals, priority assignments in
queues, page removal strategies, time-slicing, and many other facets
of time-sharing operation, it is nevertheless a fairly realistic repre-
sentation for the purpose at hand. Each of these factors has an effect
on the parameters Te’ Tb’ Np, Tp, through their influence on the distri-
butions of the job properties— execution intervals, number of pages de-
manded, etc. While there may be considerable dependence among the
statistical properties of the jobs of a particular user at a terminal,

these jobs will begin their service intervals at widely spaced times,
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mixed in order with the jobs of many other users, making the assumed

independence a reasonable approximation,

3. The Results of Analysis

The model described was analyzed for 448 separate combinations
of the parameters Te’ Tb, Np, and N covering a wide range of values,
The analysis was accomplished using the Recursive Queue Analyzer
(RQA) [ 6], a program for rapid numerical solution of the equations of
equilibrium probabilities for Markov chains., The results were calcu-
lated to three significant figures accuracy, using a total of about 20
minutes of RQA execution time (on an IBM 7090).

The results of the analysis are plotted in Figures 3 and 4, which
show the CPU utilization n as a function of the parameters, The CPU

utilization as N —o was hand calculated according to the formula.

1 whenever Tb+N T < T
n = p p—- €
Te otherwise
T, + N T
b "p’p

All results are shown with time normalized to units of the mean page
transfer time T . Thus Te = 30 means that, on the average, the mean.
total execution time of a job is 30 times the drum-channel time for a
page transfer, If it were assumed that the drum channel could service
page requests at an average rate of one every 5 milliseconds (ms),

then Te = 30 would correspond to an average total execution time of
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150 ms.

The point of balance between execution time per job and drum-
channel time. per job is, in every case, the value of Np at which the
N =w curve breaks away from 7 =1,00, It is seen that this value of
Np is critical, for it represents a value at which CPU utilization begins
to fall markedly, regardless of the degree of multiprogramming,

The CPU utilization is proportional to the expected rate R of job
completions (per unit time), according to the formula

R = n/Te,

while the expected service interval can be found from the formula

W = N/R.
Consequently, the results shown readily infer the values of these alter-
nate measures of performance,

The figures show how, other parameters remaining constant, CPU
utilization improves as more programs are permitted to share the core
memory, This, of course, is the desired effect of multiprogramming,
resulting from the improved probability that some one of the jobs is
available for execution at any given point in time.

It is to be noted, however, that the improvement becomes increas-
ingly small as N is increased. Indeed, in every case the ratio n/N
decreases with increasing N, and we thus deduce that the expected ser-
vice interval W will always increase with increased N. Nevertheless,

the improved rate of service completions R will result in a more than



compensating decrease in the time the job must wait to get into the ac-
tive state, have core assigned, and begin its service interval., Thus,
overall delay, as seen by users at terminals, will decrease in spite of
the increase of the service interval. Since the waits before entering the
service interval will represent the major portion of the delays, they can
be expected to be roughly proportional to 1/x.

The figures also show that over a very wide range of the paramet-

ers Te’ T Np, and Tp, there is relatively little to be gained by choosing

b’
an N greater thar about 8, since those curves already approach the N=w
curves quite closely. Indeed, when the rate of page requests is such

that drum-channel demands (as described by Tb + Np Tp) exceed the CPU

demands (Te) of a job, all performance measures inevitably get worse,

and multiprogramming offers less and less advantage.

4, The Optimum Degree of Multiprogramming

The figures offer a picture of the advantages of multiprogramming
which is misleadingly optimistic, Because systems generally operate
under a core memory limitation (for economic reasons, if no other), it
can be expected that an increase in N will cause each job to have, on
the average, proportionately less core available to it. This, in turn,
will cause the amount of page shuffling to increase, tending to lessen
performance, and countering some of the advantage of the increased N.
We do not, as yet, have a very good quantitative idea of how these page
demands might increase with decreasing core. However, suppose for
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example that the number of page requests per job, Np’ was known to
relate to the degree of multiprogramming in such a manner that
N = mN+hb.
p
Then, for m > 0 there will be some N which gives best CPU efficiency.
The dotted curve in Figure 5 shows the effect of increasing N when

Te =30, T, =20, m=2, and b=0. For this example, if one must choose

b
between N=1,2,4, or 8, the best choice would be 4, since that gives best
CPU utilization,

Figures 6 and 7 show the optima for a number of choices of Te’
Tb’ m, and b, What is shown in each case are the regions in an (m, b)-
space for which the optimum selection would be either 1, 2, 4, or 8
when these are the only allowed values. The solution of Figure 5 is
shown as a heavy black point on the horizontal axis of Figure 7 (Te=30,
Tb=20)° Notice that small values of N are favored for conditions where
the expansion of demands on the drum is great, and where execution
times are small, The size of the burst page demand seems not to be
too important to the choice of optimum N, although it is very important
to the performance which that optimum gives.

It is remarkable that the selection is so relatively insensitive to b,
It is also clear that the value of m for the jobs to be served by the sys-
tem is an extremely important parameter in determining a suitable choice

of N. Hopefully, future published data from real or simulated POD sys-

tems can give us a better idea of what values to expect.
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5. Conclusions

The observations above have been based on a grossly simplified
model, and have aided understanding of a complex problem through ex-
ploration over' a wide spectrum of parameter values. This is the type of
analysis most benefited by queueing models, and it is well served by
numerical solution technique,

The analysis has provided a more quantitative aid to understanding
the role of multiprogramming and of job characteristics in determining
CPU utilization in POD systems. While most of the observations are
intuitively unsurprising, or perhaps even obvious, the model offers some
clearer insight into the questions '""how much better?' and "how much
worse?', It also dramatizes the fact that the optimal choice of degree
of multiprogramming is primarily determined by a few key statistical
properties of the job population to be served. While scheduling strate-
gies and equipment selection can strongly affect these parameters, it is
still vital that an idea of their values for each choice of strategy and

equipment be available for a rational choice of N to be made.
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