MULTIPLE INSTRUCTION ASSOCIATIVE PROCESSING

by

Keki B. Irani and Jamshed D. Mulla

Technical Report 78-13

THE UNIVERSITY OF MICHIGAN

Computer, Information and Control Engineering Program

MULTIPLE INSTRUCTION ASSOCIATIVE PROCESSING

Keki B. Irani

Jamshed D. Mulla
Systems Engineering Laboratory
The University of Michigan
Ann Arbor, Michigan 48109

Abstract -- This paper introduces the concept
of multiple instruction associative processing as
a departure from conventional SIMD associative
processing.

A formal definition of the conventional asso-
ciative processor (CAP) is provided. The CAP rep-
resents current SIMD associative processing archi-
tectures. Next, the multiple instruction associa-
tive processor (MIAP) is introduced and defined.
The MIAP eliminates the drawbacks of the CAP
caused by the undue synchronization required for
SIMD execution of associative procedures. A
multiprocessor computer architecture for imple-
menting the MIAP is also described.

The performances of the CAP and MIAP systems
are analyzed. The performance of each system is
measured in terms of the length of the instruction
sequence required to execute a given associative
procedure. Algorithms for computing the measure
for each system for general procedures are given.
Results are provided for some special families and
specific examples of associative procedures.

Introduction

The term associative processing is used here
to mean the manipulation of a set of data items
by a common process in such a way that operations
performed on a particular datum are dependent on
its value or some function thereof.

Early associative processors (AP's) were sim-
ple extensions of associative memories. These
extensions were achieved by incorporating elemen-
tary processing functions into each word of the
memory. Present AP's, such as PEPE (1], have pro-
cessing elements (PE's) that are capable of exe-
cuting a broad repetoire of arithmetic and logical
operations on their data memories.

The common limitation of all present AP's is
that they are all Single Instruction Multiple Data
(SIMD) systems. Since the PE's are essentially
only execution units, the total control in the
system remains in a main CPU that broadcasts oper-—
ations to the set of PE's from a single instruc-
tion stream.

This work was supported jointly by Rome Air Devel~
opment Center under contract F30602-76-C-0029 and
Army Ballistic Missile Defense Advanced Technology
Center under contract DASG-60-78-C-0073.

In this paper, we investigate a more general
system consisting of programmable PE's. We call
the corresponding concept of associative pro-
cessing, multiple instruction associative pro-
cessing. We will first outline a general repre-
sentation scheme for an associative process.

Then we will define the conventional associative
processor (CAP) that represents the current AP's.
Next, the concept of multiple instruction asso-
ciative processing will be introduced and a for-
mal definition of the MIAP will be provided. A
nultiprocessor computer architecture to implement
the MIAP will be described. Finally, the perfor-
mance of the CAP and MIAP systems will be ana-
lyzed and compared and some results for certain
classes of associative procedures will be given.

The APL language [2] is used frequently in
the paper to represent certain functions and
operations of associative processors.

Definition 1l: An associative process is a
two tuple (A, Q) where,

(1) A is a set of n data items. Let

A= {A A2, v An}

and Aie% i<1<N
Wis the set of all possible values of a data item.

(2) Q is a common procedure applied to each
item Ay of the data set A. Conventional flow-
chart structures will be used to represent the
procedure Q graphically.

A flowchart is defined recursively as fol-
lows. If F; and Fp are flowcharts, then so are
the structures (i) through (iv) shown below.

-y O |fep——

(iv)

(iii)

In flowchart (i), the operation p is a
apping

p: P>

nd its execution causes the data item Aj to be
‘eplaced by p(Ai).

In flowcharts (ii) and (iii), the operation
corresponds to a characteristic function

t: P~ {0,1} .

Xecution proceeds to the Y path of the flowchart
£ t(Ay{) = 1, otherwise it proceeds to the N path.

Note that the set of flowcharts defined above
.orresponds to the set of D-charts defined in [3].
‘he flowcharts describe the procedure carried out
m a single datum Aj. For the associative pro-
:ess, the same procedure is applied to all data
.tems in A independently.

Conventional Associative Processing

All present AP's can be classified as CAP's.
'EPE [1] and STARAN [4] are two particular exam-—
hles.

A CAP consists of two major subsystems. The
1eart of the CAP is an associative processing
tlemory (APM) that stores and manipulates the set
yf data items to be processed. The APM can
select data items by associative search opera-
:ions and can process the selected subset in
Jarallel.

The APM receives its instructions from the
pther subsystem of the CAP called the global con-
trol unit (GCU). Besides broadcasting operations
0 the APM, the GCU performs other functions to
synchronize the APM elements. We will first
jefine the APM and then describe the GCU and its
lunctions.

Definition 2: The associative processing
nemory (APM) of the CAP is a four tuple (A,R, 9,
%) where:

26

1) A = (A[1], A[2], ..., A[n]) is a
memory array of n words.é?/’is the set of all
possible values for a single word A[i] an is
the set of all possible values of the array A.

2)
response register of n
all possible values of

R = (R[1], R[2], ..., R[n]) is a
bits. g%is the set of
the register R.

search functions

3) Jis a set of
T =11, 1,, ..., Ty}
1, SRR,
where each T{ has a corresponding mapping tj,

ti:W—* {0,1}

1<i<N,

and Ti((A[l], Al21, ..., Alnl),

(R[1], R[2], ..., R[n])) =

(rl, Tos vees rn)

A Rfil=1

0 otherwise

{1 if ti(A[j])=1

The operation of a search function Tj
causes T;(A,R) to become the new contents of the
response register R. That is, each search func-
tion T; performs the operation represented by
the following APL statement:

A<« (RAN(TIA))
4) Pis a set of processing functions
P- (2, 2y, ..., B}

Pi L£¥7xé;?+l%f ,

Each processing function P; has a corres-
ponding function pj such that

pi :Qhk+4hV

1<i<HM,

and
Pi((A[l], Al2], ..., A[nD),
®R[1], R[2], ..., R[n])) =
(a;s 2y, «evy @),

where
p,(A[ID) if R[3] =1

L< e q tAL

otherwise

The operation of a processing function P
causes Py (A,R) to become the new contents of the
memory array A. That is, each processing func-
tion P4 corresponds to the following APL state-
ment,

A< ((Rx (PL A)) + ((~R) x 4))

The global control unit (GCU) of the CAP
performs several overall functions to control the
activity of the APM. The following are the main
functions performed by the GCU:

(i) The GCU possesses a stack which it uses
to store the contents of the response register R
of the APM.

Let S[0], S{1], ... represent the stack on
which the response register is saved. The GCU
can perform three operations involving the stack
and the response register.

(a) The PUSH operation causes the current
value of R to be pushed on the stack.

(b) The POP operation causes the value of
the response register R to be replaced by the top-
most value on the stack.

(c) The COMP operation causes the value of
R to be replaced by its complement relative to
the top of the stack, i.e.,

R+« (~R) A SCToP]

where S[TOP] is the most recently pushed value on
the stack.

(ii) In addition to broadcasting the
sequence of search and processing functions to the
APM, the GCU can perform certain conditional
branches by testing all response bits of the APM.
In particular the GCU can branch to a particular
instruction if the current response register is
all zeros. We will denote this jump as

IF NONE GOTO x

where x is the label of the target instruction.

(iii) The GCU can also perform unconditional
branches. This instruction is denoted
GOTO x .

The above control functions are sufficient
for executing a general associative process.
Similar control mechanisms have been proposed [5]
and are also present in existing AP's such as
PEPE [6].

We can now define an algorithm to determine
the "program" for a CAP for any valid associative
procedure flowchart as described in Definition 1.

Algorithm 1: Given a flowchart F, we can
determine the sequence of operations S.(F)
required to execute F on a CAP by applying the
following rules recursively.

(i) If F is a flowchart of type (i), then

SC(F) =P

27

(ii) If F is a flowchart of type (ii), then
SC(F) = PUSH, T,Sc(Fl), COMP’SC(FZ)’ POP

(iii) If F is a flowchart of type (iii),

then
S, (F) = PUSH, LL:T, IF NONE GOTO L2,
Sc(Fl)’ GOTO L1, L2: POP
(iv) I1f F is a flowchart of type (iv), then
SC(F) = Sc(Fl)’ SC(FZ).
a

Consider the flowchart representation of a
program shown in Figure 1.

A+«A-1

A+ A X2

l

Figure 1: A Sample Flowchart

Using Algorithm 1, we can determine the CAP
program for the above flowchart as:

P , COMP, P

POP, POP

%@)=WW,T PUSH, T

l’ 2) 2!

P,, COMP, P

3! _[‘,
where the search operations T,, T, and the pro-
cessing operations Py, Py, P3, P4 are defined in
APL as follows.

T = R« (RA(A<3))

T,z Re(RACA=3))

Pl = A« (Rx0)+ ((~R)x4)

P, = A+« (Rx(A=-1))+((~R)xA4)
P, = A« (RBRx1)+ ((~R)xA)

P, = A« (Rx(Ax2))+((~R)x4)

There are three major drawbacks in the con-
ntional associative processing system. First,
large percentage of the operations executed by
e GCU are overhead operations necessary to syn-
ronize the activity of the APM. The POP, PUSH,
d COMP operations are required solely to ensure
at the proper subset of PE's is active when the
arch and processing operations are broadcast to
e APM.

Second, since the CAP is a SIMD machine and
der the control of a single control unit, only
subset of the PE's in the APM can participate

instruction execution at any instant. As shown
Flynn [7], conditional branching has a severe
trimental effect on the performance of SIMD
chines such as the CAP,

Finally, since the GCU broadcasts a single
struction stream, it must ensure that all
ssible paths of the program are traversed.

One of the objectives of the extensions of
e basic CAP is to minimize the amount of syn-
ronization required between PE's of the APM.
the case of the CAP, such synchronization is
tal because the control of the system lies
tirely in the GCU. This restriction is relaxed
the multiple instruction associative processor
allowing each PE to fetch and execute search
d processing operations independently and
ynchronously. Synchronization of the PE's by a
ntrol unit is forced only when it is absolutely
cessary.

Multiple Instruction Associative Processing

The most important change from conventional
multiple instruction associative processing is
at the restriction of SIMD operation is relaxed.

stead of PE's receiving the same associative
structions broadcast by the GCU, each PE is
graded to a programmable processor so that it

n fetch, decode and execute instructions inde-
ndently. By providing each PE processor with a
py of the set of instructions for an associative
ocessing program, the system can execute it with
eater efficiency and significant increase in
eed. Since some global control instructions are
i1l required, the MIAP also contains a control
it corresponding to the GCU. However, in this
se, global synchronization operations on the

's are less frequent than in the case of the CAP.

28

Figure 2 shows a block diagram of an MIAP
system.

Data memories Processors Program memcries

-]
I
|

|
|
S

l AZ -t - CZ -t o MZ ||
T . Jﬁ
Processing
. Element . . I
. (PE) . . I
A -t C < - M I
n Lan n L n
Multiprocessor
Global Array
Synchronization (MA)
Unit (GSU) ’

Figure 2: MIAP System Block Diagram

We will first define two subsystems, namely,
the multiprocessor array (MA) and the global
synchronization unit (GSU) and state conditions
under which they constitute a multiple instruc-
tion associative processor.

Definition 3: A multiprocessor array (MA)
is a four tuple (A, R, M, C) where:

1) A is a data memory array of n words.

A = (al1], A[2], ..., AlnD) .

Qhﬁis the set of all possible contents of a single
memory word A[i].

2) R is a response register of n bits.

R = (R[1], R[2], ..., R[n])
R[i] ¢ {0,1} , 1<i<n

3) M is a program memory array consisting
of n program memories M;, Mz, ..., Mp. Each My
can contain the three types of instructions
described below:

(1) A test instruction T can set the
response bit R[i] depending on the result of a
corresponding binary valued function t.

t : P> {0,1}

The execution of a test instruction T causes
t(A[i]) to become the new value of the corres—
ponding response register bit R[i].

(ii) A processing instruction P can alter
the contents of the data word A[i] by applying a
corresponding mapping p,

p: >

The execution of a processing instruction P causes
p(A[i]) to become the new contents of the corres-
ponding data word A[i].

(iii) A branch instruction can transfer con-
trol to a target instruction either uncondition-
ally or based on a test of the response bit R[i].
The two instructions are denoted

GOTO x ,

and
IF NOT GOTO x,

respectively, where x is the label of the target
instruction and the conditional branch is exe-
cuted if R[i] = 0.

4) C is a processor array consisting of
n processors Cl’ C,y +¢.4C . Each C, can exe-
cute instructidns %rom itsnprogram memory M
and thus manipulate its corresponding data
memory A[i] and response bit R[i]. The processors
can operate independently. -

The global synchronization unit (GSU) per-
forms two major functions to control the activity
of the MA. It can initiate the execution of the
MA processor programs by the respective proces-
sors. We will denote this operation as INIT.
GSU must also wait for all the MA processors to
terminate their programs before continuing with
any other operation. This operation will be
denoted as WAIT. The GSU can perform normal
sequential processing operations but these do not
relate to the present discussion and will not be
treated here.

The

Multiple instruction associative processing
is performed by the MA and GSU pair when each
program memory array M;j in the MA is loaded with
the identical sequence of instructions. Whereas
the PE's of the CAP either execute or ignore
broadcasted instructions depending on the value
of their data items, the processors of the MA
select the appropriate sequence of instructions
from the common program in their program memories
depending on their data memory contents. Assum-
ing that this program contains some conditional
branches, the instruction sequence, and hence the
data transformation operations performed by the
individual processing element of the MA is data
dependent and, therefore, associative.

We will refer to a system consisting of an
MA and GSU under the conditions described above
as a multiple instruction associative processor.

29

We can now define a corresponding algorithm
for the multiple instruction associative processor
to determine the GSU and MA "programs" for any
valid flowchart.

Algorithm 2: Given a flowchart F, we can
determine the sequence of instructions required
to execute F on an MIAP as follows:

The GCU program for a flowchart consists of
only two instructions, namely, INIT and WAIT.
The INIT instruction initiates the MA program
corresponding to the flowchart F. The MA program
Sp(F) can be determined by applying the following
rules, recursively:

(i) If F is a flowchart of type (i), then
S (F) =P
p()

(ii) If F is a flowchart of type (ii), then
SP(F) = T, IF NOT GOTO L1, Sp(Fl),

GOTO L2, LI1: Sp(FZ) N

where L2 is the label of the instruction follow-
ing the sequence SP(F).

(iii) 1f F is a flowchart of type (iii),

then
sp(F) = L1: T, IF NOT GOTO L2, Sp(Fl),
GOTO L1
where L2 is the same as above.
(iv)

5,(F) = 5,(F]), 5, (F,)

If F is a flowchart of type (iv), then

We can now derive the MA program for the
flowchart in Figure 1 by using the above algo-
rithm. The program Sp(F) is given by:

Sp(F) = Tl, IF NOT GOTO L1, Pl’ EXIT,
Ll: P,, T,, IF NOT GOTO L2, Py, EXIT,
L2: P4

The test and processing instructions for
the ith processor are defined as follows:

R{I]
R(I]
ALT]
ALI] <« ALI] -
AlT] « 1

A[T] « A[T] x 2

(ALT]
(AL1]
«0

mn
4
A

3)
3)

+

(11}
i

1]
+

[

Lo~ I - B - I - B T |
SN H N M

g2 use EXIT to denote GOTO instructions that ter-
inate execution of the MA program.

Comparing the above program with the corres-
onding CAP program, we see a significant
ecrease in the length of the instruction
equence. In particular, the longest sequence of
nstructions executed by the PE's of the MA is 6
ompared to the fixed CAP program of 12 instruc-
ions. A comprehensive performance analysis study
f these two systems for a broad class of associa-
ive processing problems is provided in a later
ection.

Referring back to the three major deficien-
ies of the CAP, we see that the MIAP system
voids all of them. First, since the PE's execute
ndependently, there is no need for global
nstructions to synchronize activity during execu-
ion of a flowchart program. This also eliminates
he need for PE's to be idle while waiting for
ther PE's to execute different instructions.
inally, since each PE selects its own path
hrough the program flowchart, the execution time
epends on the longest path and not on the total
raversal of the flowchart as in the case of the
AP.

The cost of using this system as opposed to
he CAP is the cost of the program memory array
o store copies of the PE programs. The cost of
oading the programs into the memory array is not
ignificant since program partitioning is a deter-
inistic problem and dynamic loading of programs
S not necessary.

An Implementation of an MIAP System

We now describe a multiprocessor system on
hich multiple instruction associative processing
an be implemented. This architecture is similar
o that described by Kober [8].

An overall block diagram of the system archi-
ecture is shown in Figure 3.
. central processor (control unit) P, is con-
ected to a memory M, which is divided into equal
1locks My, My, ..., M. Each Mj has an asso-
:iated processor Pj. The Mj-P; pairs serve the
unction of processing elements.

Each P; can reference only its own Mj and
‘an execute programs and operate on data from it
ndependently of and asynchronously with all
ither Py's. The P, can also access all My's as
rell as its own private memory M,.

The P, can access the Mi's in two modes.
me is the conventional mode where the set of
[i's is perceived as one large contiguous memory
lock. The second is the "multiwrite" mode where
he P. can write data into the same relative
ocation of a selected subset of Mi's simultan-
ously.

Although there is no direct data link
etween P, and P;'s, there are direct control
ines connecting them. The P. can instruct any

30

particular module processor or a selected subset
of P;'s to begin execution of a program at a
specified starting address stored within their
Mi's. After executing the programs, each P; can
interrupt the P, and pass its results or other
termination data through the module memory M, .

<

Mb g o P — o Mp

Pc backup storage

P, activation

lines~— |

=

|
i\
(2]

+
=

¢
| |
I : I Pc - Mi :
, I : | data and
I . I address bus *
"4I‘Mn-l L ; Lo Pn—l"'
|
B el IR i
{ tdL M L LU P |
i s Bl

Pi interrupt

Processing

lines to Pc
Element

Pi - Mi data and

address bus

Figure 3: Multiprocessor Architecture for the MIAP

The Performance Measure

The performance measure used to compare the
CAP and MIAP systems will be the length of the
instruction sequences required to execute flow-
charts. 1In order to obtain quantitative results
of this analysis, certain assumptions will be
made while modelling the characteristics of
associative procedures represented by flowcharts.
These assumptions will be explicitly stated in
the following discussion as they are used.

For a given flowchart F, the performance
values Ng g and Ny p for the CAP and MIAP,
respectively, are the number of instructions
executed by each system from the corresponding
sequences S, (F) and S, (F). Since the actual
number of instructions executed for a particular
flowchart is dependent on data conditional
branching, the performance values NC,F and Ny
are random variables. The assumptions we maké
about conditional branching probabilities of
certain flowchart structures will enable us to
determine distributions and expected values of
the variables involved.

We will first give an algorithm by which
the performance can be computed for any given
flowchart structure and then analyze some results

for certain families of structures. Due to the
lack of space, details of computations are not
provided in this paper but may be found in [9].

Algorithm for General Flowchart Structures

In the following algorithm we assume that
the associative processors are operating on a
data set of cardinality n. It is assumed that

the data items are randomly selected from the
space of allowable values.

Algorithm 3: Given a flowchart F, the per-
formance values No p and Ny p for the CAP and
MIAP, respectively, can be determined as follows:

Ny g is the length of the longest sequence
from a Set of n independent sequences executed by
the n PE's of the MIAP. To determine Ny,p» the
length of the sequence executed by a single inde-
pendent PE, Np p will be determined first. Ny g
is given in terms of NP,F by

N)

wr - &

P,F’ (n)

where, Y(,) denotes the n-th order statistic [10]
of the random variable Y. 1In other words, Y(n

is the largest of n independent samples of the
random variable Y.

For a given flowchart F, No p and Np y can
be determined by applying the following rules
recursively.

(1) If the flowchart F is of type (i), then
Nep=Npp=1
(ii) If the flowchart F is of type (ii),
then
N, .=4+N +N
C,F C,F, ~ TC,F,

If we assume that each branch of the flow-
chart F has equal probability of being executed
by an arbitrary PE, then NP,F has the following
distribution:

=x} =1 =x -
Pr{NP’F = x} = Z(Pr{NP’Fl x - 2}

+ Pr{NP’Fz =x - 2}) .

(iii) 1If the flowchart F is of type (iii),
then
X
z(n)
N =4 + 2+ (N).)
C,F & C,F i
and
i
N =2+ Q2+):)
P,F i=1 P,Fl i

where (NC’Fl)i and (NP’Fl)i are the performance
measures for the flowchart F; for the CAP and

31

MIAP, respectively, during the ith iteration of
the loop.

X is the random variable that characterizes
the number of loop iterations required for a
single datum. If we assume that at any iteration,
the loop termination condition has probability p
of being satisfied, then we can represent X by a
random variable that is distributed geometrically
with parameter p. Hence,

Pr(x=i) = p(l-p)° i=0,1, 2, ...

(iv) 1If flowchart F is of type (iv), then
Ne,F = NC,Fl + Nc,F2
and
No g = NP,Fl + NP,FZ .
Results

We will now analyze and compare the perfor-
mance of the CAP and MIAP for two families of
flowchart structures. The two major families
will consist of loop and loop~free programs.
Finally, performance values for some mixed flow-
chart examples will be compared.

Loop Programs

In this section we will analyze the perfor-
mance values for two classes of programs contain-
ing loop structures, namely, programs with a
sequence of loops and programs with a nested
pair of loops.

Loop Sequences

Consider a program that consists of L con-
secutive loop structures as shown in Figure 4
below,

We assume that the sequence consists of L consec-
utive loops and that the data set cardinality is
n. We also assume that an arbitrary datum
requires X iterations of a loop to be executed,
where X is distributed geometrically with param-
eter p.

The performance values for the flowchart F

in Figure 4 are then:

NC,F

L
4L+3] X

=1 @

and

Ny, F

L
2L +3 ()

X)
=1 @

Figure 5 shows the plot of the ratio of the
expected values of Np p and Ny g against L for
p = 0.3 and various values of A.

I

L

—

Figure 4: Loop Sequence Program

Data set
cardinality (n)
~—300
AR 200
70
] ~—
. F] 3 ‘—gg
M,F _20
re—— —10
5
1 | | { L] | | |
0 10 20 30 40 50 60 70 80

Number of loops (L)

Figure 5: Expected Performance Ratio for Loop

Sequence Programs (p = 0.3)

tF 50 Number of loops (L)
30
C,F] 20
]
M,F
3.—.
10
2 L ! ! 1>
0.5 0.3 0.2 0.1 0.05 0.01

Loop termination probability (p)

Figure 6: Expected Performance Ratio for

Loop Sequence Programs (n = 200)

32

Figure 6 shows similar results for a fixed
n = 200 and various values of L.

As shown by the plots in Figures 5 and 6, the
relative performance of the MIAP over the CAP
improves for longer sequences of loops and larger
cardinality of the data set.

Nested Loops

Consider a program that consists of a pair
of nested loop structures as shown in Figure 7.

-l

—

%2

S

Figure 7: Yested Loop Structure

By applying the rules of Algorithm 3, we
can find the two performance values for flow-
chart F in Figure 7 as:

N F - 4+ 7X + 3 X

C, (n)

and

X
NM’F=2+ (5x+3izlx)(n)

Figure 8 shows the curves for the ratio of
the expected values, (E[N, .]J/E[N_ ._]), against
- C,F M,F
p for various values of n.

Once again it can be seen that the relative
performance of the MIAP increases with n. Simi-
lar results for a greater number of nested loop
structures may be found by using Algorithm 3.
However, computation of expected values in such
cases 1is not tractable.

Data set
cardinality (n)

500
4
E(N, _]
E[VCIF]
M, F 100
) 50
3\
\30
20
2.5 P ——
10
2 | | |
0.2 0.3 0.4 0.5

Loop termination probability (p)

Figure 8: Expected Performance Ratio for
Nested Loop Programs

Loop-free Programs

The loop-free constructs considered here con-
sist of nested conditional constructs called T-
charts. We define this family of flowcharts as
follows.

Definition 4: A T~chart is a flowchart that
can be constructed using the following rules
recursively:

1)

(ii) 1If F; and F, are T-charts, then the
following structure is also a T-chart:

The null structure is a T-chart.

We are interested mainly in two subclasses
of T-charts, namely, the full and bare T-charts.
Full T-charts are those which contain the maximum
number of conditional constructs at each level.
Bare T-charts are those which contain only a
single conditional at each level. The height of
a T-chart is the maximum depth of nesting of con-
ditional constructs. Figures 9 and 10 show sample
full and bare T-charts of height 2.

33

-
-t

Figure 9: Full T-Chart of Height 2

Figure 10: Bare T-Chart of Height 2

For a full T-chart
formance values are:

F, of height h, the per-

= 62" - 1)

=z
[

C,F
Ny,p = Mp g (ny = GM () = 3n

For a bare T-chart B, the performance for
the CAP is:

N 6h

c,B
The performance of the MIAP for a bare
T-chart B is non-deterministic and lies between

the following bounds

3<Ny gz <

Figure 11 shows the curves for the perfor-
mances for bare and full T-charts for different
values of height h. For the performance value
NM,B’ the bounds NP,B,MAX and NP,B,MIN are shown.

=N

N
M,F P,B,MAX

Number of Instructions

N
P,B,MIN

I !]]
1 2 3 4 5 6

T-Chart Height (h)

Figure 11: Performance for Bare and
Full T~Charts

xed Flowchart Structures

All the programs considered so far contain
ther loops or conditional branches but not both.
particular, the loop programs are made up of
op constructs that contain only a single pro-
ssing operation in each loop body. T-charts
2 built up of conditional structures that con-
in single processing operations in each branch.

The performance of the MIAP is dependent on
2 complexity of the flowchart. In general, the
rformance of the MIAP relative to that of the
> improves substantially if a greater number of
smentary structures are composed or nested. To
lustrate this point, we give results for some
riations of the basic families of flowcharts
1sidered previously. In each case, a single P
rration is replaced by composite subflowchart.

(i) Consider a sequence of 20 loops where
:h loop body contains a full T-chart of height
Assume that the parameter p for each loop is
} and the cardinality of the data set is 500.
* this flowchart,

E[NC]/E[NM] =16 .
(ii) Consider a full T-chart of height 5
ire each branch of conditional statements con-
ns a single loop construct. Assume parameter

f each loop is 0.2 and the cardinality of data
. is 50. The expected performance ratio is

E[NC]/E[NM] = 24 .
(iii) Consider the same problem as in (ii)
ept that a nested pair of loops is substituted
each branch. In this case,

E[Nc]/E[NM] > 65 .

This is a conservative lower bound for the

34

ratio. In fact, if we approximate the distri-
bution of the performance value of a single

PE, (Np), by a Gaussian distribution (which is
reasonable for small values of p and large values
of h), the expected ratio is

E[N,I/E[N,] = 106 .

Conclusions

This paper has introduced the concept of
multiple instruction associative processing that
removes the restrictions of SIMD operation from
conventional associative processing techniques.
The concept is realizable through a highly modu-~
lar and extendible multiprocessor computer archi-
tecture. A study of the relative execution
speeds of the conventional and multiple instruc-
tion associative processor shows that significant
improvements can be expected depending on the
structure of the associative process under con-
sideration.

An implementation of the MIAP using Texas
Instruments TI990/4 microcomputer modules is in
progress at the University of Michigan. The
system is supported by several software facili-
ties, including a high level language oriented
towards associative processing problems, a cross
compiler for the language, and an operating
system providing run-time support for the
language.

References
[11 A.J. Evensen, and J.L. Troy, "Introduction
to the Architecture of a 288-Element PEPE,"

Proc. 1973 Sagamore Computer Conference on
Parallel Processing, (1973), pp. 162-169.

L. Gilman, and A. Rose, "APL—An Inter-
active Approach,”" J. Wiley & Sons, (1974),
384 pp.

S.R. Kosaraju, "Analysis of Structured
Programs," Jour. of Comp. Sys. Sciences,
(9, 1974), pp. 232-255.

K. Batcher, '"STARAN Parallel Processor
System Hardware," AFIPS 1974 NCC, (43,
1974), pp. 405-410.

H.J. Siegel, '"Masking Scheme for Determin-
ing the Active/Inactive Status of SIMD
Machine Processors, Purdue University,
TR-EE-77-25, (May, 1977), 40 pp.

J.R. Dingeldine, "Parallel Fortran (PFOR)
PEPE Assembly Language (PAL) User's
Manual,” Systems Development Corp., SDC
Rep. No. TM-HU-046/400/01, (Aug, 1976),
415 pp.

M.J. Flynn, "Some Computer Organizations
and Their Effectiveness,'" IEEE Trans. Comp,
(Sept, 1972), pp. 948-960.

[8]

[9]

(10]

R. Kober, et al, "SMS 101 - A Structured
Multimicroprocessor System with Deadlock
Free Operation Scheme," Euromicro News-
letter, (2, 1976), pp. 56-64.

J.D. Mulla, "Associative Processing and its

Extensions," (Ph.D. Thesis), The Univ. of

Mich., (1978), (also SEL Tech. Rep. 119,

Systems Engin. Lab., Dept. of Elec. & Comp.
Engin., Univ. of Mich.).

H.A. David, "Order Statistics," J. Wiley &
Sons, (1970).

35

