A STUDY OF INFORMATION IN MULTIPLE-COMPUTER AND
MULTIPLE-CONSOLE DATA PROCESSING SYSTEMS

K. B. Irani
I. S. Uppal
G. A. McClain
D. L. Hinshaw

University of Michigan

Approved for public release;
distribution urlimited

FOREWORD

This document, designated Annual Report No. 5, was submitted by the
Department of Flectrlca] Engineering, Systems anlneerlnp Laboratory, the
University of Michigan, Ann Arbor, Michigan. The research was sponsored
by Rome Air Development Center, Griffiss Air Force, Base, New York, under
contract F30602-69-C-0214, Job Order Number 55810006. Mr. Rocco F.
Tuorno, ISIM, was the RADC Project Engineer.

This report has been reviewed by the Information Office (0I) and is
releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved.

Approved:
ROCCO F. TUORNO
Prgoiject Tnplneer
Approved: 4{) ’ 7N ""T#‘u
Ir/wﬁ BRTHKE

Chief, Information Sciences Division

FOR THE COMMANDER:%(/& ‘z f

FRED |. DIAMOND
Acting Chief, Plans Office

ii

ABSTRACT

This report summarizes the achievements from April 1969 to June 1972
of continuing research into the development and application of mathematical
techniques for the analysis and optimization of multiple-computer, multiple-

user systems,

EVALUATION :

The purpose of this research was to apnly mathematical techniques to aid in
the analyses and systemization of hardware and software configurations for
the solution of general purpose data processing problems. The work covers
three years of effort and is documented in ten technical reports. Topics

in this investigation included: computer memory system design, communication
system design, microprogramming control, central processor design, optimum
program pagination, data base structures, optimization of computer scheduling,
and performance monitoring.

The studies pursued are directly related to the field of information
processing. They provide a theoretical treatment of the wvarious components
that make up or support an information processing system. The rigorous
treatment in paging algorithms, scheduling theories in a time sharing
environment, modeling software for test and evaluation, and effects of
reentrant coding on program/computer efficiency can be effectively used by
those developing or implementing advanced computer operating systems.
Designers faced with providing systems to handle large data bases with remote
access capabilities will find the work in communication systems very helpful
The modeling work in data base structures can be used by data management
researchers to assist them in selecting the proper structure for their
particular application. The research in central processor design, memory
design, and data path optimization, can be used by those working in advanced

computer designs.

The quality of reports generated from this research are excellent with most
of them approaching the beyond the-state-of-the-art in information processing.
The reports are getting a wide dissemination especially to those active in
the field.

This program has had an impact on the information processing research program
at RADC (Information Processing Branch). The theoretical investigations have
provided credibilitv and technical depth to the Branch's exploratory research
in: advanced operating system development, associative processor design,
data management development, distributive data base systems, and test
methodology for complex software systems. The fruitful results from this
study have warranted the initiation of a follow on three year effort which
will address topics in security and protection, computer lanpuages, test
methodology , data management, program documentation, advanced computer
designs, and software reliability.

ROCCO F, TUOBNO ~\

oo\

iv

Section

1

TABLE OF CONTENTS

INTRODUCTION

1.1 Contract Objectives

1.2 Contract Requirements

1.3 Progress Toward Contract Objectives

ABSTRACTS AND SUMMARY OF RESEARCH

2.1 Message Processing and Communication System

2.2 Multiprogrammed Computer Systems

2.2.1 Multiprogrammed Systems Using Storage
Hierarchies

2.2.2 Optimal Task Scheduling

2.2.3 On Finding Optimal Groups - A Quadratic
Programming Approach in Zero/One Variables
with Applications

2.3 Data Structures and Their Representation

2.3.1 Computer Memory Data Representation

2.3.2 Optimal Implementation of Interactive Display
Data Structures

2.4 Central Processor Design

2.4.1 Optimal Design of Central Processor Data Paths

2.4.2 Optimal Selection of Functional Components for
Microprogrammable Central Processing Units

APPENDIX A

Page

12
13
13

14
15
15
17

20

1. INTRODUCTION

1.1 Contract Objective

This effort is for applied research in the area of mathematical
techniques for analyzing multiple computer, multiple console, real-time
on-line data processing systems, and for analytical techniques and hypothe-
ses to assist system designers and users in determining the optimum
configuration, most complete utilization, and most efficient scheduling of
this type of system,

The main objective of this work is to make it possible, through devel-
opment and application of new mathematical techniques, to more optimally
design and control computer systems., A computer system consists of a
collection of electronic data processing machines, data transmission
channels, and multiple user terminals, organized to efficiently service the
computational needs of a geographically or functionally diverse population
of users. Such systems permit: remote communication and manipulation
of shared data bases; cooperative operations between user and computer
(symbiosis); an immediate access to a high-capability facility for problem

solving and data manipulation,

1.2 Contract Requirements

1) Exploration of Queueing Theory to enable the analysis of more
general models of computer utilities and their subsystems,

Emphasis shall be concentrated on numerical techniques, and

2)

3)

4)

6)

shall include extension of earlier work on quasi-birth-and-death
(QBD) models and the Recursive Queue Analyzer,

Collection and analysis of statistical data from existing systems
to determine the validity of the mathematical models developed,
and to isolate problem areas in need of attention, The techniques
of computer data collection shall be studied,

Application of new mathematical techniques in conjunction with
those previously available, to the analysis and optimization of
hardware and software configurations of general purpose computers,
These techniques shall be applied to typical systems in order to
test the analytical methods and provide specific analyses/recom-
mendations concerning the effectiveness of these systems.
Continued development of general design guidelines for time-shared
computer systems with distributed processing capabilities., Dis-
tributed processing has become economically feasible because of
rapidly decreasing small computer costs. This task shall extend
previous investigations of remote display terminal structures.
Continued development of mathematical models for the optimal
structuring of communication networks associated with computing
systems,

Continued development of optimal design of storage systems and

data base structures.

7) Continued exploration of Descrete Optimization Theory and Graph
Theory in relation to application concerning the scheduling of
programs in multi-processor systems, Also to investigate the
use of these theories in relation to problems of program organ-
ization,

8) Development of new conclusions and rules which can be used by
persons performing initial designs of real-time computer systems
having a large number of user consoles, Such rules shall allow
system designers to more rapidly choose the type of hardware/soft-
ware system needed to fit a particular organization or problem.

9) Application of statistical analysis to data collected from various
computing systems in order to gain an understanding of user demand
structures and their effects on systems performance, A search
for other theoretical approaches to the analysis of multiple computer

systems shall be pursued,

1.3 Progress Toward Contract Objectives

During the course of this contract, work progressed over the entire
spectrum of contract requirements, in the realm of both theoretical and

empirical investigations. As a result of this effort, ten RADC technical
reports [1,2,3,4,5,6,7,8,9,10] were published. These reports document
the theoretical and empirical investigations conducted, the conclusions
reached, and some typical applications. A number of papers based on the

results of these reports will soon be presented [11,12].

The research conducted under this contract can be categorized into

several main efforts. The first of these, discussed in detail in RADC-TR-
70-272 [1] and previous annual reports [9,10], is concerned with the area

of the design of message processing and communications systems.

The second effort concentrates on the application of optimization theory to
the problems of program organization and program scheduling in complex
multi-programmed computer systems [3,4] . Work was also conducted

in the analysis and optimization of such systems using storage hierarchies
[2]. The third area of endeavor attacks the problem of optimal represent-
ation of data structures within the computer memory, Under this category
two approaches were formulated; one focuses on a particular application,
namely interactive computer graphics [5], while the second handles this
problem in a very general manner by developing a generalized computer
representation which is capable of representing any given collection of

data [6] . The fourth area investigates the design and optimization of
digital computer central processors [7,8], For the sake of completeness,
abstracts of all the RADC Tech. Reports published under this contract are
included in section 2, For details the reader is referred to the references
at the end of this section, Appendix A contains a reprint of a paper which
will be presented at the Ninth Annual Design Automation Workshop at Dallas,

Texas,

References for Section 1

1) V.K.M,. Whitney, "A Study of Optimal File Assignments and Communi-
cation Network Configuration in Remote - Access Computer Message
Processing and Communication System, ' RADC-TR-70-272. Jan 1971,

AD 881 929L.

2) A, M. Woolf, "Analysis and Optimization of Multiprogrammed Computer
Systems Using Storage Hierarchies," RADC-TR-71-165, Aug 1971,
AD 730 325.

3) D. Coleman, "On Binding Groups - A Quadratic Programming Approach
in Zero/One Variables with Applications,' RADC-TR-71-162, Aug 1971,
‘AD 729 437,

4) J. W. Boyse, "Solutions of Markov Renewal Decision Processes with
Application to Computer System Scheduling, " RADC-TR-71-180, Sep 1971,
AD 731 220,

5) J. H. Jackson, "Optimum Implementation of Topological Structure for
Interactive Computer Displays,' RADC-TR-71-91, May 1971, AD 885 492,

6) L. S. Randall, "A Relational Model and its Optimization for the
Representation of Structured Data Within a Random-Access Computer
Memory,' RADC-TR-72-25, Feb 1972, AD 740 581.

7) D, Hinshaw, "Optimal Selection of Functional Hardware For Microprogram
Controlled Central Processors,’ RADC-TR-72-182, Apr 1972, AD 748 221.

8) G. A. McClain, "The Optimal Design of Central Processor Data Paths,"
RADC-TR-72-183, Apr 1972, AD 748 224,

9) K. B. Irani, J. W. Boyse, et, al., "A Study of Information Flow in
Multiple-Computer and Multiple-Console Data Processing Systems, "
RADC-TR=-70-87, May 1970, (no AU number).

10) K. B, Irani, I, S. Uppal, et. al., ""A Study of Information Flow in
Multiple -Computer and Multiple-Console Data Processing Systems,
RADC-TR=71-160, Aug 1971, AD 729 1Y4,

1Al

11) V,.K.M, Whitney, "Minimal Spanning Tree, ' Algorithm 422, CACM,
Vol, 15, No, 4, April, 1972, pp. 273-274.

12) K. B. Irani, G. A, McClain, "Optimal Design of Central Processor Data
Paths,'" To be presented at the 9th Annual Design Automation Workshop,
Dallas, Texas, 1972,

2. ABSTRACTS OF TECHNICAL REPORTS
In this section we present abstracts of various technical reports pre-

pared as a result of this research effort.

2.1 Message Processing and Communication System

The goal of this research is the solution of several problems involved
in the optimal design of computerized message processing and communication
systems, The class of systems studied includes airline and hotel reserva-
tion systems, time-shared computer systems, and corporate message
communication systems,

A precise mathematical model of the systems being studied is form-
ulated to draw attention to the fundamental subsystems and to clarify the
basic independent variables of the design processes. Systems considered
must have a large data base organized into record files, widely distributed
users, an on-line communication network joining users to data base sites,

a quantitative performance measure and specified performance constraints,
The most general system model studied uses a queueing model for individual
communication channels, with the channel interconnections specified by a
weighted linear graph. The data base is assumed to be organized into files
of homogeneous records, and the processing costs are specified by a single
function of the number of messages processed.

One major problem area studied is the determination of the optimal

number and locations of sites for the system files, Several basic properties

of file site assignment on linear graphs are demonstrated and used in
efficient procedures for file assignment,

When the file locations are specified, the communication requirements
of the system are known, A second major problem area considered is the
optimal design of communication channels and networks of these channels,
A thorough study of stochastic message transmission channels has been
undertaken, The effects of channel capacity with one or more channels,
message length distributions, message retransmission order, and departures
from the model assumptions on message delay are studied, both analytically
and by simulation, Several channel and network performance measures are
defined and compared. The problem of the optimal allocation of channel
capacity among the channels of a network is solved for several important
system models, A complete set of guidelines is given to aid the designer
of communication systems and channels,

The third major problem area studied is the optimal design of com-
munication network topologies. Several previously available techniques for
the design of centralized networks are critically evaluated. New techniques
for the design of centralized and noncentralized networks are presented.
These new procedures more faithfully model communication networks than
the other procedures by including more realistic cost considerations, and
yield more general solutions,

Finally the solution procedures of these problems are integrated into

a systematic design procedure for a general class of computer message

processing and communication systems. An example of a complete system

design is given,

2.2 Multiprogrammed Computer Systems

2.2.1 Multiprogrammed Systems Using Storage Hierarchies

This research is concerned with the problem of predicting and con-
troling the behavior of complex computing systems using storage hierarchies
and multiprogramming,

A computing system using a storage hierarchy generally involves 2 or
more different type of storage devices, Different device types have widely
varying performance characteristics., User programs can be big or small.
They can access data in a serial or random manner. They can do large
quantities of I O or almost none at all, The data paths and routing of
information influence the load seen by storage devices. The logical record
sizes throughout the system and the number of programs running in a
multiprogrammed system also affect the system performance. All of these
factors and many others combine to create a complex and remarkably
difficult analysis problem,

The specific objective of this research is to develop and demonstrate
a mathematical model of computing systems which accounts for the above
factors., Such a model has been developed and implemented as a fast, highly
interactive computer program, The model developed exhibits the following

characteristics:

1. The model includes the effects of user program behavior, operating
systems characteristics and hardware performance. Models for
core or random access devices, drums, disks and data cells have
been developed,

2. The model is versatile and easily applied to a wide range of system
configurations. The model is useful as. a tool for both analysis and
optimization, Investigation of computing systems in general as well
as detailed investigations of a particular system can be carried out.

3. The results obtained from the model approach the accuracy and
realism of those obtained from simulation models., A number of
examples showing the usefulness and the generality of the model

are given,

2. 2.2 Optimal Task Scheduling

In multiprogrammed computer systems, the way in which system
resources are allocated among tasks can strongly influence system efficiency.
In such systems, as opposed to monoprogrammed computers, separate but
interdependent consideration must be given to scheduling of two critical
system resources: main memory and the central processors. A rather
wide class of scheduling procedures is available to the designer of such a
system, and so it is useful to be able to determine task priority rules which
allow the maximum number of task completions per unit time or throughput,
This research pursues the theoretical development and application of Markov

renewal decision processes for this purpose.

10

A major effort is devoted to theoretical development of a new technique
for finding the optimal stationary policy in a class of infinite time Markov
renewal decision processes in which the criterion is either maximization
of expected return per transition or maximization of expected return per
unit time. The modeling of stochastic service systems with Markov renewal
decision processes commonly leads to transition matrices which are sparse,
and the derived optimization method offers definite computational advantages
for this wide class of practical problems.

A Markov process is used to model a problem of current import in the
software design of multiprogrammed computer systems; namely, the problem
of assignment of central processors and main memory to those jobs requesting
them. Application of the optimization method to this model allows the deter-
mination of scheduling rules which maximize throughput. An additional
complexity in scheduling arises when tasks are allowed to share information
with other tasks in main memory, and this problem is treated also, Para-
meters which may be varied in the model include the size of the main memory
relative to the sizes of individual tasks, the execution characteristics of
tasks themselves, the number of central processors, and the fraction of its
total memory requirement each task may share with other tasks. Paging
is important in many modern computer systems and is treated indirectly in
the model by treating it as a special kind of input/output operation. Results
for a range of values of parameters are presented which compare the through-
put possible under optimal scheduling rules and under a good heuristic

scheduling rule.
11

In order to obtain results applicable to a typical general purpose
multiprogrammed computer system, data from such a system were collected
and analyzed in order to set appropriate values for parameters of the model
and also to test the validity of certain assumptions made in the model. These
data are general enough to be of interest in their own right and are therefore

presented in the form of graphs and tables as part of this research effort.

2. 2.3 On Finding Optimal Groups - A Quadratic Programming Approach

in Zero/One Variables with Applications

In this research we consider a mathematical programming problem

of the following form:

Maximize fx) = > ¢;i%%j -), bx,
. k
subject to Z a, x, < Hye k=1,2,...,m,

where bj is an arbitrary real, cij > 0 for all i,j, and ajk, Hy are positive
reals for all j and k, X; € {0,1} for all j.

For values of m < 2 we present an algorithm for solution of this
problem based upon generalized Lagrange multipliers. This algorithm is

suitable for application to problems with a rather large number of binary

variables.

This formulation is shown to be applicable to a number of optimal
grouping problems; a particular application to computer systems paging

is examined in detail,

12

2.3 Data Structures and Their Representation

2.3.1 Computer Memory Data Representation

In solving any problem on a digital computer one must store within
the computer memory certain pieces of information, or data, upon which
the program implementing the solution process makes its decisions or
performs its calculations. For virtually all problems the manner in which
the relationships of accessibility among the various items are portrayed by
the organization of these items in the computer memory can have a marked
effect upon the efficiency of the solution process. The objective of the
research reported here is the development of a rigorous quantitative method
for the automatic design of optimal computer memory representations for
data.

To this end, we define a relational model of data structure within which
we can specify the logical ordering or structure of the data involved in the
solution of a given problem. We then develop a decision model for the
specification of the storage structures (i.e., the computer memory repre-
sentations) which can represent an arbitrary data structure,

We define two basic measures of performance - a time cost function
and a storage cost function - for use in comparing the relative merits of a
collection of storage structures. The time cost function reflects the number
of time units required to perform certain of a set of primitive operations
using a particular storage structure, and the storage cost function reflects

the total number of storage units occupied by the storage structure.

13

Finally, we present a procedure which determines of the storage
structures which can feasibly represent a given data structure the storage
structure for which the time and storage costs satisfy certain optimality
conditions. A storage structure is considered to be optimal if it minimizes
the time cost function, subject to an upper limit on its storage cost.

To demonstrate the feasibility and the effectiveness of the techniques
we develop, we apply them to a problem for which a solution program al-
ready exists and for which fairly extensive data about system performance
are available. Our results demonstrate conclusively that significant im-
provement in program efficiency can be obtained by applying these techniques,
as opposed to the historically intuitive and qualitative methods used for

storage structure design,

2.3.2 Optimal Implementation of Interactive Display Data Structures

One of the many uses of data structures in connection with computer
graphics has been to represent hierarchies of picture parts so that a picture
may be easily modified. Essentially one data structure has been used for
this purpose, although the means by which it has been implemented has
assumed various forms, Previous research has described various
implementations of this data structure, rather than the information which
it contains. Because the data structure has not been described independently
of a particular implementation, past comparison of implementations has

been largely heuristic.

14

In this research, a mathematical model of the common display data
structure 1s given so that 1t may be considered independently of any parti-
cular implementation. Then, a method is presented for applying this model
to determine the implementation of the data structure which minimizes
response time to user inputs for a given application on a given hardware

configuration,

2.4 Central Processor Design

2.4.1 Optimal Design of Central Processor Data Paths

This research deals with the design automation of the central processor
of a digital computing system., The principal aim has been to lay the ground-
work for a new and unexplored area in the field of computer design. While
conventional design automation systems provide the user with a convenient
method of describing his design, we explore the possibility of giving the
user the ability of describing the desired computer architecture along with
the available building blocks with which it is to be implemented,

This leads to an investigation of the relationships between the archi-
tecture of a computing system and various hardware designs which implement
that architecture. By developing a model of a central processor and a
language for describing the architecture, we can study the manner in which
the architecture influences the data path design and develop algorithms that

will yield an optimal data path for a specified performance or cost.

15

The three inputs of this model are:

1) the architecture which describes the computer as the programmer

sees it,

2) the algorithm library which gives a set of possible translations of

the operators used in the architecture description language,

3) the hardware library which gives a set of hardware units to be used

as the building blocks in constructing a data path,
These two libraries allow a large number of data paths to be constructed
which implement the given architecture. The problem is to select the one
data path that gives the lowest weighted average instruction execution time
but which does not exceed a specified cost limit,

In order to evaluate a particular data path and architecture imple-
mentation, we need to know: the cost of the data path, the number of cycles
required for each instruction, and the duration of a data path cycle.

The cost of the data path is taken to be the total cost of the individual
units, The computation of the minimum number of cycles per instruction
and the duration of each cycle are rather complex computations, but the
techniques to compute these values have been developed and are presented
in this dissertation,

Obviously a problem of this scope implies serious computational
difficulties if a working implementation is to be developed. In constructing
a system of computer programs to illustrate the potential of this research,

we have chosen to assume independence among a few key parameters in

16

order to compute estimates of the performance and cost of various sub-
portions of data paths. With these assumptions we can no longer guarantee
an absolute optimal solution, but we find instead an optimal in a reduced
solution space. The assumptions enable us to use our programs to find
solutions for some substantial architecture descriptions in reasonable
execution times. A number of examples are presented which illustrate both
the model of a computer and the programming implementation we have

developed.

2.4.2 Optimal Selection of Functional Components for Microprogrammable

Central Processing Units

The introduction and the wide acceptance of both microprogram control
and medium to large scale integrated circuitry have drastically altered the
manner in which central processing units are implemented. The use of
microprogram control and the tendency to acquire hardware in functional
units allows a microlevel hardware software tradeoff to occur during the
design of the central processing unit. The combined effect of microprogram
control and the availability of powerful functional units has been to alter the
CPU design environment. The overall goal of this research is to develop
a design philosophy which is applicable to the new CPU design environment,
The work proceeds in four steps: 1) the development of the general design
method; 2) the initial development of the Program Type Language; 3) the
development of the CPU model; and 4) the development of an efficient
optimization procedure,

17

The Program Type Language is an initial version of a machine inde-
pendent intermediate language. The language is designed to meet two
principle objectives. First, the language allows valid statistics to be
gathered on the functional requirements of the computer user, Each program
type is selected to provide a basic function which is a major building block
of a highly used computer area. Second, the language is machine independent
and it meets the requirements of an UNCOL language.

The CPU is modeled as a base hardware set plus a set of hardware
options. The base hardware set defines a general architecture and the
hardware options allow major design variations about the architecture, The
hardware options consist mainly of functional units and the use of the hard-
ware option concept in the model is desirable in view of the rapid acceptance
of large and medium scale integration. The cost of a hardware option is
dependent upon the choice of the other hardware options as is the number of
microbits required to control each hardware option, The specification of
microinstruction word size is very flexible, allowing both field encoding
and word encoding to be modeled.

The design method is user directed. The user writes or translates
his programs into PTL. Since PTL is constructed to allow valid statistics
to be gathered on user requirements, PTL provides a mechanism for deter-
mining user requirements. The design method makes optimum use of the
human design., The connection between the program types and the CPU

model is the implementation methods. There is one or more implementation

18

method for each program type. Each implementation method specifies a

CPU configuration. The human designer specifies the implementation method
and is concerned with performance - cost (hardware) tradeoffs at the program
type level. The optimization program performs the performance - cost
tradeoffs for the entire set of program types using the individual imple-
mentation methods supplied by the designer. The designer does not have

to attempt to evaluate the combined effort of adding an optional piece of
hardware on 100 or more program types. He can focus his attention on each
program type one by one.

The optimization technique involves three distinct parts. First, the
use of bounding techniques allows the search procedure to be applied to the
hardware option space (H space < 106) instead of the implementation space
(I space > 1012). Second, a modification of the Lawler-Bell technique is
combined with the bounding procedure to eliminate large sections of the

hardware option space. Third, a slope selection technique was developed

to select the optimal implementation set for any fixed hardware option set.

19

APPENDIX A

Reprint from Proceedings of Ninth Annual
Design Automation Workshop, June 26-28,
1972.

20

OPTIMAL DESIGN OF CENTRAL PROCESSOR DATA PATHS
Keki B. Irani
The University of Michigan
George A. McClain

International Business Machines Company
Poughkeepsie, New York

I. Introduction

The research described in this paper deals with the design automation
of the central processor of a digital computing system., The principal aim
has been to lay the groundwork for a new and unexplored area in the field
of computer design, While conventional design automation systems provide
the user with a convenient method of describing his design, we explore the
possibility of giving the user the ability of describing the desired computer
architecture along with the available building blocks with which it is to be
implemented,

We feel that in even the most advanced design automation systems
that are described in the literature, the assumption is made that the user of
the system unambiguously specifies the organization of the central processor
data path. The specification may be in the form of register transfer state-
ments, for instance, but this implies all the required interconnections and the
user is well aware of what these will be. In contrast to this we are construct-

ing a tool to aid the user in developing this initial data path organization,

21

The result of the process is to be a data path flow chart and the instruction
set microprogram,

In this paper we will describe the facilities of the model and then
discuss a solution technique we have developed. In the statement of the model
we will not attempt to include any of the mathematical formalism that under-

lies it.

II. Formulation of the Problem

Many different hardware designs will appear identical to the program-
mer if they execute the identical architecture. These designs, however,
may differ in their performance and cost. A model of a central processor
and a language for describing the architecture allows a study of the manner
in which the architecture influences the data path design and development
of algorithms that will yield the most appropriate data path for a specified
cost. The basic design automation problem that we are considering is

Given:

(1) A system architecture
(2) Performance requirements and a maximum cost limit
(3) An algorithm library

(4) A hardware library

(1) A unique, detailed data path

(2) The microprogram to control the data path for the instruction

set,

22

A. System Architecture

The system architecture specifies precisely how the computer is to
appear to the programmer. It is composed of a definition of facilities and
the list of instructions the computer is to perform. The facilities consist
of input and output busses, with which the computer interacts with its environ-
ment, and a set of registers, The architecture specifies a width in bits for
each of these.

The most important part of the architecture is the instruction set
which is a set of language statement groups that define the data transforma-
tions accomplished by each instruction. There is one group for each instruc-
tion., These definitions refer to the facilities possessed by the computer
and specify the desired contents of each register and output port after
execution of the instruction as a function of the input ports and the initial
contents of the registers, It is important that the set of statements that
define an instruction be complete and unambiguous, but it should not specify
a particular algorithm. This can be accomplished by using a rich set of
operators for defining architecture instructions and by providing a means
to distinguish those portions of an instruction definition which must have a
particular execution sequence from those which can be more freely reordered,
That is, we recognize that the user will want to specify a particular ordering
for some statements in the instruction definitions, but we want to be sure
we do not require him to order statements which he kncws need not have

a particular ordering.

23

Examples of this would be the use of one symbol to disignate multiply
rather than defining the operation as a sequence of adds, shifts, and sub-
tracts since the latter definition would greatly limit the choice of algorithms
and data path configurations. Similarly, for the loading of two registers, the

user should have freedom to say that it is immaterial which of these is done

first.

B. Performance Requirements and Maximum Cost
There are two parts to the specification of performance requirements:
(1) A list of weighting factors for the instructions in the architec-
ture,
(2) A maximum permitted execution time for each instruction.

The fundamental means of evaluating the performance of a data path
will be to compute a weighted average instruction execution time for the
instruction set. A single value of performance will be found by:

(1) Multiplying the minimum number of cycles for each instruction
(on the particular data path) by the weighting factor for that
instruction,

(2) Summing these values over the instruction set.

(3) Multiplying this sum by the cycle time of the data path.

The weighting factors used in this calculation are approximations to
the frequency of occurrence of the instructions in the expected program
environment of the computer, However, an instruction mix is only an

estimate of processor usage and is generally derived from a statistical

24

analysis of representative programs. For instructions of very low usage
these figures are of questionable validity due to the limited data available
and uncertainty over the representative nature of the programs chosen for
analysis. Therefore we include a limit on the execution time of the instruc-
tions, as part of the performance requirements, which can be used to
insure that a reasonable implementation is chosen for instructions of low
usage.

The maximum system cost is simply a limit to the cost of the total

data path as obtained by summing the costs of the individual data path units.

C. Algorithm Library

A unique feature of this approach to design automation is the incor-
poration of an algorithm library and a '"'compilation' or "translation' phase
of the solution. The language used to define the architecture instructions
uses one set of operators while the definition of the hardware functions uses
a different set of operators. The architecture is then compiled by selecting
entries from the algorithm library which allow the architecture instructions
to be expanded in terms of hardware operations.

The principal advantage of this approach is that by including many
algorithms in the library to interpret each architecture operator, a wide
range of specific implementations can be investigated. Thus, an architecture
operation such as multiply can be implemented in hardware by a number of
specific adding, subtracting, and shifting algorithms. But in addition we find

there is no requirement to associate some understandable meaning with each

25

operator in order to accomplish the compilation. The meaning is thoroughly
and completely defined by the algorithm entries for the operators., Thus, to
say some architecture operator 1 is implemented by doing an o'1 or two
sequential o'2 hardware operations is to define completely the 0 architecture
operator. There is no need for the optimization strategy to be concerned
with what the 0, architecture operator actually does to data. The develop-
ment of the optimizing strategies can therefore be carried out in a very
general manner and kept independent of any fixed set of operators.

The algorithm library itself is treated as being open-ended in two
senses. First, new operators may be added to the set of architecture
operators simply by adding new entires to the library to translate them,
Second, some particular architecture operator can have a new algorithm
added by making a simple addition of the algorithm in tke appropriate loca-
tion of the library. Furthermore, the addition of a new hardware operator
implies only the modification or addition of algorithms to take advantage of
the new hardware operator, In all of these instances the optimization
strategy is not affected by these changes to the library. The effect is only

to allow more flexibility in the definition of new architectures or the dis-

covery of better data paths by exploring the new algorithms.

D. Hardware Library
As the algorithm library is a catalogue of different translations of the
operators of architecture definitions, so the hardware library is a catalogue

of different hardware units which implement the various operators of the

26

translated or compiled architecture. In principle then, when we have a
translated architecture, we can go to the hardware library and select a set
of units which covers the set of operators required by the instruction set
of the compiled architecture.

The hardware library is defined as a set of unit specifications where
the entry for each unit includes:

(1) A description of the unit facilities.
(2) The unit cost,
(3) The function set of the unit.

The facilities of the unit can be input ports, output ports, and internal
registers, and each of these has a specified width measured in bits,

The cost simply is the total cost for the unit.

[he most important part of a unit entry in the library is the set of
language statement groups, called functions, which specify precisely the data
transformation that can be performed by the unit., Each of these functions
gives a definition of the contents of the output ports and internal registers
as a function of the initial register contents and input ports using only
operators from the set of hardware definition operators. Since we place no
limit on the size of the function set or the complexity of a function, a unit
may perform many different and intricate transformations using any of the
hardware description operators. There is virtually no limit to the complexity
of a unit described in the hardware library. Each function also has time delay
information associated with it which gives the total time for that function

to be performed.
27

Again, as in the algorithm library, the hardware library is doubly
open-ended. First, a new unit can be added to the library which has some
functions to implement operators not previously covered by library entries.
Second, a new unit may be added which performs operators already covered
by existing units but perhaps has different cost and delay figures. These
changes to the library will perhaps lead to an improved solution to some
particular architecture by expanding the set of possible solutions, However,
they cause no change in the optimizing strategies and would require no change

in a computer implementation of this model.

E. Data Paths and Microprograms
The result of the design and optimizing routines consists of a des-
cription of a data path and a set of sequencing charts or microprograms
which specify the manner of implementing each architecture instruction on
the data path.
The description of the data path is given as:
(1) A list of the hardware units selected from the hardware library.
(2) A description of the connections between the input and output
ports of the hardware units.
The implementation of the instruction set is a cycle by cycle descrip-
tion of the operations of the data path for each instruction. This is essentially
a microprogram for the architecture on the data path.

For each cycle this specifies:

28

(1) The connecting busses between unit ports which are being
used and the bits of these busses which are being gated.
(2) The function that each unit is performing.
(3) The names of operands present in the data path at the end of
each cycle and the registers in which they are stored.
In order to evaluate a particular data path and architecture implement-
ation, we need to know:
(1) The cost of the data path.
(2) The number of cycles required for each instruction,
(3) The duration of a data path cycle.
The cost of the data path is taken to be the total cost of the individual
units. Each unit cost is part of the hardware library entry for the unit.
This computation is straightforward and the requirement for a valid data
path is that this figure be less than the value included in the input data as
the maximum permitted cost. We should observe, however, that in this
model no allowance is made for the cost of the interconnecting busses nor
for the cost of whatever hardware is required to control the data path. This
latter cost would normally cover status and sequencing triggers, gate control
triggers, clocking circuitry, and a control memory if the data path employed

microprogram control.

F. Variables in the Problem Solution
The parameters to be considered in deriving a data path for a given

architecture are:

29

(1) Selection of algorithms.

(2) Selection of hardware units.

(3) Selection of a data path bus configuration.

(4) Determination of the data path cycle time.

(5) Determination of the microprogram,
We will discuss here the difficulty of making these decisions in a general
solution. Later we will consider a solution technique which reduces the
complexity of these computations.

The selection of algorithms is basically a simple covering problem,
We have to explore the different possible covers, but the number of these
for a reasonable architecture and algorithm library tends to be very large
and it is difficult to establish any convenient objective function which can be
used to choose among them or search through them. Any one algorithm
defines an architecture operator in terms of other architecture or hardware
operators. Therefore, in order to translate some architecture operator into
terms of hardware operators only, it may be necessary to apply a sequence
of algorithms.

The selection of the hardware unit is also a simple covering problem,
but this is complicated by a lack of structure among the various library
entries. For instance, we have chosen not to require any monotonic rela-
tionships between the costs or delays of units which execute the same
operator, Hence, we have little basis for predicting the characteristics of

different covering sets based on an analysis of the operators or the evaluation

30

of some similar covering sets, Each set requires an involved performance
evaluation. Another complicating factor is the ability for each unit to
perform many functions in serial or parallel order. We would nevertheless
like to examine all sets of units with particular attention to the comparison
between simple but quick units requiring a number of passes to achieve the
desired transformation and complex but slow units capable of performing
involved functions in a single pass.

For a given set of data path units an enormous number of different
interconnecting bus patterns is usually possible. The search for an optimal
bussing configuration to maximize the performance of a unit set can be
organized for an efficient search of the possibilities, but unfortunately we
are generally handicapped by the exceptional number to be examined. As
with the unit set selection, an important characteristic of different bussing
configurations that we want to explore is a comparison of short, simple
data path cycles to long, complex cycles.

The evaluation of the data path cycle time from the individual unit
delays can be formulated as a ''longest path' problem, but a reasonable
model for a computer does not lead to a longest path problem having an
efficient solution,

Finally the computation of a microprogram to implement the compiled
architecture is itself a major undertaking. The two most important facets
of this are the assignment of operands to registers and the sequential

ordering of the statements in each instruction. The ordering of these

31

statements is deliberately left vague in the architecture definition to provide
flexibility, and it is in the computation of the microprogram that use is made
of this freedom. We must look at many different assignments or groupings
of statements into instruction cycles to find the one which yields the small-

est number of cycles.

G. Data Path Evaluation

The figure of merit of a particular data path design is the weighted

average instruction execution time, WAIET. This can be defined as:
N
WAIET = T - 12_1 ¢, * n,

Where
N = number of instructions
T = data path cycle time
n. = number of cycles for instruction i

cpi = weighting factor for instruction i

Of all the possible compilations of an architecture and all the possible
data paths assembled from hardware library units we would like to find the

one whose total cost is less than the specified cost limit and which minimizes

WAIET.

H. A Simple Example

For a simple example of the general processes just described, consider

32

an architecture with one instruction which is defined by the single archi-

tecture operator, 0y- We might write this instruction as:

R2 “ o, (R1)

1 ¢
where R1 and R2 are the two architecture registers. Figure 1 is a graphic
representation of this instruction. Let us assume the algorithm library
has an entry that defines o1 in terms of hardware operators o'2 and oé as
shown in Figure 2. Then we compile the instruction by applying this
algorithm to obtain the result depicted in Figure 3.

Going to the hardware library we find a unit, uy, shown in Figure 4
which has functions for both o}, and oé. That is, uy performs two functions,

2

one of which is O:‘Z and the other oé. In Figure 5 we have a possible data
path constructed with two register units and u;. An optimal microprogram-
ming of the instruction is quite obvious. There are two possibilities, but
both require two data path cycles. We have arbitrarily chosen one of these
and listed the data path cycles in Figure 6. This represents an implement-
ation of the instruction on the data path.

This example illustrates the basics of compilation and microprogram-
ming, With just one algorithm and one hardware unit we do not see the
process of algorithm and hardware unit selection, and more importantly we

have not mentioned the techniques that enable the various units to be assem-

bled and connected into a data path.

33

III. Development of One Solution

A completely general solution to this problem seems at present to be
too complex to be implemented in a computer solution. Since we were in-
terested in developing a working, prototype system, we investigated a
number of possible approaches which would simplify the computation necess-
ary to generate data paths from an architecture description,

We eventually selected one particular method of implementing the
model and developed techniques that would enable us to solve the optimization
problem defined in the last section. This required making compromises
such as simplifying certain features of the model and accepting a suboptimal
solution for certain problem variables, but as part of the research we then
developed a complete programming system to implement this method of
solution. One consideration in selecting this particular solution approach
was to achieve a balance between the execution time of the programming
system on nontrivial examples and fidelity to the complete mathematical
model in order to demonstrate its capabilities.

The approach we chose to pursue is based on the assumption that we
can compute estimated performances for algorithms using the available
hardware units and then apply these estimates to the solution of a particular
architecture. Using this approach we have developed a system that can
process relatively elaborate architectures and generate good designs without

excessive computer execution time,

34

Basically the procedure followed is to manipulate the algorithm and
hardware libraries to construct a table which associates a delay value and a
large set of compilations and hardware realizations with each architecture
operator, The table, called a GH Table, is constructed giving the complete
set of algorithms and possible data path unit sets for implementing each
architecture operator and the execution time of the operator on that unit
set. For a particular operator the table can have entries for every expansion
of the algorithms and every possible hardware implementation of the expanded
algorithm.

When we are given a particular architecture, we can use the delay
values for each operator in this table to select both a set of algorithms to
compile the architecture and a set of hardware library units for the data
path., That is, for each required architecture operator we pick one entry
from among the set of entries for that operator based on the frequency of
usage of the operators in the particular architecture. We then need only
maximize the performance for this compilation and unit set without iteratively
changing either of these.

There are two basic assumptions implied in this approach which limit
the solution space that is explored. First, it assumes that the algorithms
can be evaluated independently. During the selection process for a particular
architecture we do not take into account the possibility of parallel execution
of various operators in an instruction. In a truly optimal data path the

execution of some operators might be overlapped. The implementation of

35

each operator will be dependent on the other operators required by the
instruction and the execution sequence imposed by the partial ordering of
the statements in the instruction statement group. But we do not consider
this at the time. We make a selection from the GH Table (although we do
consider parallel execution later during performance evaluation). The
second assumption on which this method is based is that we need choose only
one entry for each architecture operator. We will compile every occurrence
of an operator in an architecture in the same manner. We make a selection
based on the overall importance of each operator (a weighted average com-
putation is used) in the architecture as a whole and hence arrive at a single
choice for compiling every occurrence of an operator,

The programming system that implements this approach falls into
two separate parts: (1) the generation of the GH Table for a given algorithm
and hardware library, and (2) the generation and evaluation of a data path

for a given architecture.

A. GH Table Generation
For each architecture operator there is a group of GH Table entries.
Each entry consists of:
(1) A delay value
(2) A sequence of algorithms
(3) A set of units from the hardware library,
The delay values and the unit set are used later to select entries from the

GH Table for a particular architecture. The algorithm sequence describes

36

the compilation process used in generating the GH Table entry from the
initial architecture operator. After entries have been selected for a partic-
ular architecture, the algorithm sequences for each selected entry allow the
architecture instructions to be compiled in a manner compatible with the
unit set that has been selected.

The procedure for constructing one entry for the table is simply to
enumerate one of the possible translations of an algorithm for an architecture
operator that leads to a statement of the algorithm in terms of hardware
operators only. Then select one of the possible coverings of the required
hardware operators by hardware units.

The result of the compilation of an algorithm can be represented as a
noncyclic, directed graph. Each node corresponds to an operator and the
edges correspond to transfers of operands. When the delays to perform each
operation are associated with each node according to the covering of the
operations by the selected unit set, then the computation of execution time
is simply the problem of finding the longest path through the graph. This
value of longest path delay is the figure of merit associated with the particular
GH Table entry,

The GH Table must be essentially a complete enumeration of the
possibilities for each operator because it is not possible to choose here
between two different implementations of an operator on the basis of their
individual cost and performance. This can be done only by considering the

whole set of operators required by some architecture, To illustrate this

37

point consider an architecture operator that can be implemented by both

units b and ¢, where c is the more costly. Now, if they have identical
execution times, we might be tempted to omit the unit ¢ implementation from
the GH Table. But some specific architecture may require both this operator
and a second operator which can only be performed by unit c. Had we omitted
the entry for unit ¢ for the first operator, we would now be forced to add

unit b to the data path to implement the first operator rather than take advant-

age of unit ¢ which must be included to cover the second operator,

B. Data Path Generation

There are three principal steps in the process of generating a data
path for a specified system architecture after the GH Table has been computed.
First, the GH Table is used to select entries for the architecture operators
used in the given architecture. This process yields both a unit set for the
data path and an algorithm sequence for compiling each architecture operator,
Next, the architecture is compiled using these algorithm sequences. Finally
the compiled architecture is implemented and evaluated on the unit set.

This process can be considered one complete pass through the data
path generation program. However, there is a complicating factor. We
have not discovered any procedure to predict the optimal number of registers
a data path should have., No registers were considered in the generation
of GH Table entries and the unit sets associated with the entries in the table
do not include registers. How do we determine the number of registers to
be included in a data path?

38

We obviously need at least one hardware register for each architecture
register, but there will usually be an advantage to including some temporary
storage registers for intermediate results during an instruction execution.
‘Without a cost limit we would simply put in a very large number of registers.
Additional registers cannot cause a loss in performance because our model
does not consider fan-in and fan-out limitations, the cost of busses, or
increased bus delays that would, in reality, result from increasing the
number of registers, But since there is a total system cost limit, unneces-
sary registers may reduce the number of transformational units the data path
can contain and hence lead to a suboptimal data path. Starting from the
other extreme of including too few registers, in order to be able to afford
more transformational units within the cost limit, may result in some units
being unusable because there is no available temporary storage for their
results, This again leads to a suboptimal data path. The proper number will
usually represent a balancing of these two, opposing considerations,

Our research has not produced a satisfactory solution}to this problem.
So we will try different numbers of registers and compare the data paths and
performance for each. The process just described then becomes one inde-
pendent computation for a fixed number of registers, and the entire process
is simply repeated with an increasing number of registers, We start with
the number of registers in the architecture and add one for each iteration
until either we find that an additional register has not improved the perform-

ance or we have reached some arbitrary upper bound.

39

The objective of the first portion of the data path generation program
(selection of GH Table entries) can be outlined as follows:
Given:
(1) The system cost limit for the architecture
(2) The number of registers in the data path
(3) The frequency of occurrence of the architecture operators
in each instruction

(4) The weighting factor of each instruction

(1) The number of copies of each unit that the data path should have
(2) An entry in the GH Table for each operator that occurs in the
architecture
Subject to the constraints that:
(1) The cost of the selected unit set, including registers, does
not exceed the systems cost limit
(2) The estimated delay (from a weighted average computation)
for the selected unit set and GH Table entries based on the
entry delay values, is minimized over all possible unit sets and
table entry selections,
The second portion of the program uses the algorithms associated with
the entries selected from the GH Table to compile the architecture. Recall
that there is an algorithm sequence associated with each GH Table entry

that describes how that operator has been compiled for tlat specific entry.

40

Now this algorithm sequence is used to compile every occurrence of that
operator in the architecture in exactly that same manner., This is an import-
ant step in the programming system; no other compilation procedure can be
used. If the architecture were compiled by algorithm sequences other than
those used in forming the selected entries, then the compiled architecture
could require operators not coverable by the selected unit set.

The compilation phase of this programming system is very straight-
forward. Each operator in the architecture is treated independently, and
the program simply proceeds by compiling the first statement of the first
instruction, then the second statement of the first statement and so forth
until the last statement of the last instruction has been done,

At this point in the generation of a data path we have determined both
the compilation of the architecture and the unit set for the data path. For
the third step we need to determine the optimal interconnection of the units,
the cycle time, and the number of cycles per instruction., Because we chose
to make rather an accurate measure of performance, this component of the
programming system is rather complex. We will not attempt to describe
this procedure in detail.

The only solution variable remaining unassigned at this point is the
set of interconnecting busses. We have mentioned previously that since we
have no cost associated with the busses, the only detrimental effect of having
an extra bus is that it may contribute to an unnecessarily long cycle time,

So the basic approach in optimizing the bus configuration is to start with

41

essentially all possible busses and compute a performance; then see if an
improvement can be obtained by temporarily deleting any bus that is part

of the longest path. (Busses unused by the microprogram are not included.)
If that is possible, we make the deletion of that bus permanent. For the new
data path we can again compute a performance and a longest path and repeat
the above procedure. In this program we choose to assume we have an
optimal bus configuration when no improvement results from deleting any
bus in the longest path. We recognize that will be only an approximation

to the optimal data path since it is possible that in some cases deleting two
or more busses will yield improved performance even though deleting any

one bus may not,

IV. An Example

After the programming system was completed, it was used in an
undergraduate course in computer organization at The University of Michigan,
Students have been able to use these programs to "design' a DEC PDP-8
computer. This means, of course, they described a computer architecture
based roughly on the PDP-8 architecture but with a number of simplifications
required by limitations of the programming system. Then they defined a set
of appropriate algorithm and hardware libraries. The particular data path
which is generated by this program, even for fixed algorithm and hardware
libraries, is dependent on the cost and performance specifications and may
range from a mini-computer to a super-computer in terms of the number

of hardware units included in the data path.

42

The actual input and output to the program for this example is too
large to be included here, but we can summarize the characteristics of one
design that was done in this course:

Architecture:

4 registers
3 input ports
3 output ports
10 instructions (averaging 7 statements per instruction)

Algorithm Library:

10 architecture operators
1 algorithm per architecture operator

Hardware Library:

10 hardware operators
10 unit types

The ten instructions (using DEC mneumonics) are: TAD;AND;DCA,;
JMP;JMS;ISZ; and four instructions to define some of the Group 1 micro-
instructions, Group 2 microinstructions, teletype reader instructions, and
teletype printer instructions.

A typical instruction in this architecture (AND) is written:

MB(1,12):FTCH(R3(1,12)) 00000
R3(1,12):ADDD(R3(1,12), R4(1,12)) 10000
XX(1,12): ADRR(MB(1,12)) 10000
W(1,12):READ(XX(1,12)) 10100

R1(1,12):ANDD(W(1,12),R1(1,12)) 10110
R1 through R3 are names of architecture registers, and MB, XX, and
W are temporary names of operands. R4 is a register whose contents are

always one (one method of handling literals in this program). In these

43

statements the value computed to the right of the colon replaces the operand
whose name appears to the left of the colon,

The first statement specifies instruction fetching and decoding; the
second is instruction counter incrementing; the third computes the operand
address; the fourth reads the operand from memory; and the last AND's
it with the accumulator.

The binary number to the right of each statement defines the execution
sequence of the statement group. This is done by associating the ith bit of
each number with the ith statement in the list, If the binary number of the
jth statement has a one in the ith position, this means that statement i must
precede statement j. If it has a zero there, then statement i does not have
to be executed before statement j. In this example this flexibility is used
to specify that instruction counter updating can be done at any time during
the instruction execution. (All the binary numbers have the second bit equal
to zero.)

A typical algorithm to define one of the arcnitecture operators (FTCH)
is:

MB(1,12):FTCH(PC(1,12)
X(1,12):ZREA(PC(1,12)) 00
MB(1,12):0PDC(X(1,12))10

The structure here is analgous to a programming MACRO where the

first statement is a model for the usage of FTCH in an architecture instruction,

and the second two statements give a translation in terms of hardware

operators (ZREA and OPDC). This algorithm would be used to compile the

44

first statement of the AND instruction where the names MB and R3 from the
instruction statement would be substituted into the algorithm statements to
replace the dummy variable names MB and PC there.

After all statements have been compiled, this instruction becomes:

T1(1,12):ZREA(R3(1,12)) 0000000000
MB(1,12):0PDC(T1(1,12)) 1000000000
R3(1,12):ZADD(R3(1,12),R4(1,12)) 1100000000
T2(1,12):ZREA(MB(1,12)) 1100000000
T3(1,12):ZSAN(MB(1,12), T2(1,12)) 1101000000
T4(1,12):ZTZE(T3(1,12)) 1101100000

T5(1,12):ZSAN(T4(12,1),MB(1,12)) 1101110000
XX(1,12):ZADD(T5(1,12),T3(1,12)) 1101111000
W(1,12):ZREA(XX(1,12)) 1101111100
R1(1,12):ZAND(W(1,12),R1(1,12)) 1101111110

Finally a typical hardware unit (MEMORY) is described as:

Cost = 300

Delay =15

Number of Functions = 2
P1:ZREA(Q1)
: ZWRT(Q1, Q2)

The two statements define the two separate functions which the unit can
perform (only one function can be selected for a single data path cycle). Q1
is the address input port; Q2 is the data input port; and P1 is the data output
port,

One data path generated by the programming system is illustrated in
Figure 7. The program has included three extra registers for temporary
results, Because there is no cost associated with the busses, we find a

larger than usual number have been included by the program. Also, we do

not distinguish which port is used on units having more than one input port.

45

We can assume all busses to a unit go to all input ports since we have no
fan-in or fan-out limitations. The execution time for this example was

about three minutes (CPU time) on an IBM System 360 Model 67.

V. Conclusion

The most important objective of this research has been to develop a
model of a central processor and of a computer architecture in order to
formalize and investigate the way in which the architecture influences the
processor organization. The particular implementation and solution tech-
nique we developed is only one of a great many possible interpretations of
the model. We were forced to simplify or omit certain features of the model
and to accept approximate solutions instead of a true optimal result for some
computations in the program. These trade offs were necessary in order to
allow a reasonable solution time for nontrivial problems.

This paper is based on research that was supported by the Rome Air
Development Center, Research and Technology Division, Griffiss Air Force
Base, New York under Contract No. F30602-69-C-0214. The complete
report is available from The Systems Engineering Laboratory, The University

of Michigan, Ann Arbor, Michigan as Optimal Design of Central Processor

Data Paths, SEL Technical Report No. 58, May 1972,

46

R1

!

R2

Figure 1. The Instruction Graph.

N -

() =

w-‘

\ %

Figure 2. An Algorithm for 0;-

R1

Figure 3. The Compiled Instruction,

47

Figure 5. The Data Path.

cycle 1 Rl - u - R2 uy does fl
cycle 2 R2 -y -»R2 uy does f2

Figure 6. The Microprogram.

48

s _ _
(A d 9- hd A)
/1 "
— , - k ﬂ \]
@,4@ :L y ¥ | P oy "y Y Yy
REG | REG2 | | REG3 REG 4 REG S REG 6 REG 7
AC LINK PC ONE
1 T —Y ¢
(- gy Py
(r— -
: »
Y \Auij wYw Y YWY WY
EMORY| | ADDER ZERO ANDER ANDER INST OMPLE!
‘ TEST (128IT)] | (IBIT) DECODE MENT
| s
Figure 7. An Example Data Path

49

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1 ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION
University of Michigan UNCLASSIFIED

Dept. of Electrical Engineering, Systems Eng. Lab., 2b. GROUP

Ann Arbor, Michigan 48104 N/A

3. REPORT TITLE

~A STUDY OF INFORMATION IN MULTIPLE-COMPUTER AND MULTIPLE-CONSOLE DATA
PROCESSING SYSTEMS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final Report Apr 69 - Jun T2

5. AUTHORI(S) (First name, middle initial, last name)

K.B. Irani, I.S. Uppal, G.A. McClain, D.L. Hinshaw

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
October 1972 50 12
Ba. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERI(S)

-69-C-021k
F30602-69-C-021 Annual Report No. 5

Job Order %o. 55810006

9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned
this report)

RADC-TR-T72-250

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

RADC Project Officer:
Rocco F. Iuorno (ISIM)
AC 315 330-7011

Rome Air Development Center ISIM)
Griffiss Air Force Base, New York 13440

13. ABSTRACT

This final report summarizes the achievements from April 1969 to June 1972 of
continuing research into the development and application of mathematical techniques
for the analysis and optimization of multiple-computer, multiple-user systems.

DD °.2¥.1473 UNCLASSIFIED

Security Classification

AT

UNCLASSIFIED

Security Classification

14. LINK A LINK B [}
KEY WORDS Nk e

ROLE wT ROLE wWT ROLE wT

Mathematical Models
Multiprogramming

Paging Algorithms

Data pase structures'
Microprogramming

Central Processor Design
Design Automation

SAC--Griffiss AFB NY UNCLASSIFIED

Security Classification

