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Abstract

This report details the data and program structures for a conver-
sational programming system which translates commands describing a
Markovian queueing network into a matrix of transition intensities, and
which provides equilibrium distributions and related solutions of the

network according to requested specifications.
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Preface

This report is in the form of a proposal heavily dosed with
tutorial matter. It was originally written in the latter part of 1967,
before work had begun on the program system now known as the Queue
Analyzer System (QAS). A working version of QAS [9] was completed
in early 1969, adhering in all major respects to the principles laid
forth in this report, except that the solution technique of Sections 6
and 7 has not been used directly.

While the system proposed here is described in terms of a
specific hardware configuration, this work is not limited in use to
any one such configuration. It should be noted that for a program-
ming system to be truly efficient, it is always necessary to tailor
its structures and formats in some way to the hardware used. This
has been done here. However, the techniques and structures are
readily adapted to other configurations,

Because of the unique nature of the system, it is instructive
to publish this report in essentially its original form, with only minor
attempts to bring it to correspondence with the final system. Thus,
it is more a treatment of programming philosophy, specialized the-
ory, and technique, rather than a complete documentation of an
existing program. Nevertheless, all essential information required
to understand the operation of QAS is here contained, as well as some

information pointing to future directions.

xi






1. INTRODUCTION

A graphical, problem-oriented system is being developed, by
means of which solutions to simple stochastic networks can be ob-
tained rapidly enough to facilitate conversational use. The problem
descriptions will be constructed in network diagram form on a re-
mote DEC 339 graphic console. Simultanecusly, information con-
cerning the construction will be sent via dataphone to a time-shared
IBM 360/67, which will prepare the solutions. It is the purpose of
this report to generally specify the central 360/67 programs and
data structures which accomplish this latter feat. These programs
will be referred to here as the Queue Analyzer System (QAS).

The networks drawn will be restricted by the pictorial lang-
uage syntax to systems which can be modeled by a continuous-time,
finite Markov chain, and will be solved by numerical solution of the
Kolmogorov equilibrium equations. The advantage, in terms of
speed and precision, of this technique over simulation procedures
is documented in [2].

Because the data required by the analysis program is in a very
different form from that describing a network (which is in terms of
blocks and connections), a translator from the latter to the former

is required. This translator, called the network compiler, is the

central, and most difficult, operation carried out by this system.



In addition, there are four other major operations which the system
must perform. It must generate the network description, which is
the input to the compiler, from information contained in commands
supplied by the console. It must analyze the resulting structure for
the equilibrium state probabilities. It must calculate from these prob-
abilities the specific results requested by the console user. Finally,
it must accept new definitions of symbols used in network generation.

All of these operations are to be performed on the 360/67. The
manipulation of pictures (network diagrams), the preparation and
updating of display files, and the recognition of commands and inter-
rupts from the user are all solely the responsibility of the SELMA
system in the remote PDP9 which is part of the 339 console. The
SELMA system [11] must also keep the QAS system informed, via
the dataphone link, of any operations which concern it, and must is-
sue commands to it to initiate major operations. The QAS system
will carry out its processes under the control of the remote compu-
ter, treated as an input file {(probably named *SOURCE* in MTS [ 4]
termirology). It will send its responses to the remote computer as
an output file (*SINK*)., To accomplish this, QAS will have its own
version of the current ""displayed network' stored in the central com-
puter memory.

In order to reduce some of the QAS system-programming prob-

lems to manageable proportions, certain limitations of capability



have been accepted. These limitations are chiefly ones which limit
the meanings which can be assigned to network symbols, and the man-
ner in which the symbols can be related. Our minimal objective in
this system has been to provide a system which can at least treat net-
works consisting wholly of queues, exponential servers, infinite
sources, infinite sinks, random branches, merges, and priority
branches. While many other symbols can also be treated in this sys-
tem, we can by no means treat all meaningful symbols. Nevertheless,
those which can be treated define a significant class of models having

considerable variety and power.






2. THE BASIC COMPILATION AND CALCULATION PHILOSOPHY

A continuous-time. finite Markov chain is a stochastic process Zt

which takes on values in a finite set of points callea states. If the set

of states is mapped by a one-one function h onto a set of integers {0.1,

ceen NS}. and if the equilibrium probability of the state mapped to the

integer k is represented by Ty then the vector 7 = < Tg Tpr oo Ty >
S
of these probabilities is a solution of the equation
7U = 0 (2.1)

where U is a matrix of transition intensities descriptive of the Markov
chain. An efficient procedure [1] for solving equation (2.1) for large

NS has been in use for several years., and derives much of its efficiency
from the form in which U is stored. An improved storage structure for

this purpose called the matrix outline structure [3] has been devised.

and proposed for this project. An adaptation of the earlier procedure
to this new structure will be required. and will be called RQA-2. Its
purpose is simply to calculate 7 when U is given.

In contradistinction to equation (2.1). the description of the Mar-
kovian system provided by the console is in the form of a network. We
may say. by way of definition. that a network N consists of a set

i

of elements and a set -« of connections,

N = &0 (2.2)



where the terms element and connection are yet to be defined but have
the intuitive meaning implied by ""blocks having a distinctive function"
and "'lines joining the blocks in particular ways.' Our objective is the
construction of the matrix outline structure for the matrix U from
knowledge of the structure that describes the network N. It is this
process which we term compilation of the network.

It should be noted that the state of the Markov chain will be re-
lated to the joint conditions of all of the elements in the network, so
that a part of the compilation will be to form the state mapping from
2 set of multi-dimensional state vectors to the set of consecutive inte-
gers {0,1,2,..., NS}. It is only after this mapping is specified that
the matrix U defines a Markov chain unambiguously. (The process of
deriving a suitable mapping is not a trivial one, since the boundaries
of the set of possible states will generally be irregular, and the map-
ping must be one-one on consecutive integers if computer memory is to
be used efficiently. )

The calculation process with which we are concerned involves
eight distinct phases.

(1) Generation of the Network

(2)  Compilation of the Network

(3) Definition of New Elements

(4) Calculation of Equilibrium Probabilities

(5)  Specification of Results



(6) Calculation of Results

(7)  Documentation

(8) System Control and Supervision

The user at the console creates a network through a long series
of actions, such as creation of elements or connections, evaluating
parameters, changing connections, etc. The sum total of all these
commands defines the network. The SELMA system (or possibly a
teletypewriter) conveys this list of commands to QAS, which must gen-
erate the appropriate descriptive structure, step by step. This process

is the process of network generation (phase 1, above). In definition of

new elements, a series of commands is received which represents the
meaning of a new symbol. This meaning must be assimilated during a
definition phase (phase 3), and preserved in a form which can be used
to identify future occurrences of the new symbol. Similarly, when de
sired results are being specified (phase 5), the specifications are re-
ceived as a stream of commands whose meaning must be collected in
a specific form. This form is used by the calculator program (phase
6) to prepare a matrix which can produce the desired result when ap-
plied to the vector of equilibrium state probabilities. The documenta-
tion phase (phase 7) is one in which names are associated with struc-
tures to be saved, and structures in the system can be substituted by a

named file.



Each of the phases is a distinctly different operation, requiring
its own set of programs and data structures. Each is likely to proceed
for a significant interval of time, and to continue at the discretion of
the SELMA -generated commands which are, in turn, responsive to the
user's changes of pace or purpose. Any phase can be terminated be-
fore completion and resumed later. It is the purpose of the "System
Control and Supervisor' programs (phase 8) to recognize changes of
phase from the information received from SELMA, and make appropri-
ate changes in the current files contained in (virtual) memory. (Since
the entire system is large, and the user's sessions are likely to be
long, it would be uneconomical to keep all files resident throughout
the session.) The segmented nature of the 360/67 addressing scheme
seems particularly well suited to this kind of overlaying of programs.

In the succeeding sections of this report, the structures of the
special files required will be described, along with the programs in the
various phases which use them. In the remainder of this section, some
further comments about the Supervisor and general file organization
will be made. The Supervisor program is tentatively diagrammed in
Figure 2. 1.

The Supervisor will be assumed to reside in virtual memory
throughout the session. One of its chief component parts is a program
which regularly reads the commands and data arriving from SELMA.

These are buffered (queued), and treated in the order in which they



ENTRY )

READ ALL AVAILABLE
SCARDS RECORDS INTO
COMMAND QUEUE

COMMAND
QUEUE

WAIT FOR
NEXT INPUT
RECORD

. EMPTY?

NEXT
COMMAND

AN"END.

LOOK AT PHASE
OF NEXT COMMAND
(P=PHASE)

1

s
i

SAVE AREAS NOT
NEEDED. FETCH
AREAS NEEDED

|

YES

|
I
l
l
l
|
I 4
|
I
l
|
|

"LINK" TO PHASE
P PROGRAM

Figure 2.1 Supervisor flow diagraz:.




10

arrived. Thus, QAS operates asynchronously with SELMA, lagging be-
hind it more or less depending upon 360 scheduling, rate of SELMA com-
mand generation, and its own speed. For this reason, barring blunders
of either system, care must be exercised that no command received
from SELMA and queued by the Supervisor should be able to produce a
""fatal" type error in QAS. QAS must not grind to a halt when SELMA
commits a syntax error, for example, because by the time the error
flag is conveyed to SELMA, SELMA may have gone far beyond the point
of error and be unable to retrace. The result would be a dilemma re-
solvable only by starting again froma clean slate—an intolerable burden
for the user. On the other hand, after certain commands SELMA might
wait for an affirmative response before issuing more. One such case
would be after the command for a network compilation. No other oper-
ations should proceed until it is known the network was compilable and
did not require changes.

The Supervisor has responsibility for a table of area names, and
for calling the routines for each particular phase via a LINK-type call
to MTS. Every area should have its own table of special pointers to
items within itself, the structure of the table being known to every pro-
gram which uses it. In that way, the Supervisor does not need to keep

tables other than the area tables.
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P. = {p.:je Ji}». (3.2)

ij
Then the element e, can be algebraically described in the form

e. = “7.p.P. >, foralliel (3.3)
i P

For certain useful elements. although not for the four basic primitives.
the number of parameters and the number of ports in a particular ele-
ment is a function of one or more of the parameters. Since the nature
of P and Pi is consequently dependent upon the value of this parameter
(or parameters). this parameter (or parameters) must be suppliea be-
fore equation (3. 3) has meaning. Such parameter(s) will be called gen-

eration parameters because of their special role in the network genera-

tion phase. They will always be placed first in the parameter list.
Quite similarly to elements. connections are defined by their
type. their parameter values. and the ports they connect. Types of
connections in our basic list are ""'simple. ' "overflow branch" (some-
times called "priority branch'). '"join.'" and "random branch.' The
remarks concerning parameter values of elements apply equally well
to those of connections. The ports connected by connections are the
ports of the elements. and each port may be involved in only one con-

nection. Thus, if the connection set . is represented by the inaexed

set

¢ D ke KL (3. 4)

Ia
|(k.

then a connection ¢, 1s represented as

k
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Cp = <7‘k. Py Pk >, (3.5)
where e and py are the type and the parameter list, respectively, and
Pk is a subset of the ports of the elements

Ians | +

p, & U P (3.6)

iel

Every port is in exactly one connection:

P, = ¢ k.keK (3.7)

U P = L b.. (3.8)
ke K K iel !

(In other words {Pk: k e K} and { P,: i¢ I} are each partitionings of
the set of all ports.)

The random branch is an example of a connection having a gen-
eration parameter. This parameter is the number of '""branches"
among which tasks can be switched. The number of ports connected by
this connection is one more than the number of branches. as is the
number of parameters.

The elements and connections as described here collectively dzs-
cribe a network. However. it is not necessary that these elements
correspond precisely with the symbols used at the console. This no-
tation represents a language for describing networks whnich is distinct
from that used by SE LMA. ana it is the PDP-9's responsibility to trans-
late between these languages when issuing generation commands to

QAS. Nevertheless, if we associate particular graphs with each element-
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type in QAS. then a network N can be drawn like that in Figure 3. 1.

Figure 3.1

A Diagram

Such a diagram is useful in visualizing networks, and may be so used
in this report. A summary of properties of the standard elements
and connection types is given in Table 3.1, along with a set of graph-

ics which may be used for them.

3.2 Syntax of Networks and Diagrams

Fquations 2.1 and 3.1 through 3. 8 aefine the syntax of a net-
work as required by QAS. QAS must enforce rules upon the specifi-
cation of networks to it which will guarantee that the network satis-
fies this form. In addition. SELMA may apply further rules for the

form of its diagrams. These are primarily to protect the user from
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constructions which may be compilable, but not meaningful in semantic
terms.

The chief syntactic rule of QAS is that ports of elements may only
be joined through connections. A second constraint is the one, mentioned
in the description of connections, that requires ports to be associated
with exactly one element and exactly one connection. A third constraint
is that parameters of an object (element or connection) must be numer-
ically valued (not variables) at the time of compilation, and generation
parameters must be numerically valued at the time of the first mention
of the object (i.e., at the time of creation). Finally, elements and con-
nections are restricted to instances of types whose meaning has been
previously defined using the notation to be described in sections 4 and
5 of this report. These restrictions merely reflect the requirements
necessary to fit the data structures used by QAS.

The first constraint, part of the second constraint (the require-
ment that exactly one element be associated with a port), and the last
constraint will all be automatically enforced because, using the com-
mand set to be described, SELMA will be unable to violate them. How-
ever, it is possible to attempt multiple connections at a port, or to
leave a port unconnected, or to supply the wrong number of genera-
tion parameters, or to fail to provide values for other parameters.
Either SELMA will be expected to guarantee that the proper constraints

are met, so that QAS may treat their violation as fatal, or QAS will be
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empowered to test for them at the time their violation can cause diffi-
culty. and demand immediate correction from SELMA. The latter
course means that there must be a procedure for the QAS supervisor
(the only program residing in memory at all times) to interrupt
SELMA demanding a specific type of response without losing commands
from the input stream. In any case, there must be provision in QAS
to test these properties at appropriate times, and to return diagnostics.
SELMA will require that ports be characterized as either input
or output, and that each connection type may connect inputs and outputs
only in certain ways. QAS does not have this requirement, and will
not test for it. Indeed. it will not even know which ports are inputs

and which are outputs.

3.3 The Network Data Structure

The mathematical notation used in equations 2.2, 3.1, and 3.2
in defining networks can also be regarded as a shorthand notation
for a data structure. To illustrate, let

N = e b Phe

& = {el.ez,...}
(" = {c3....}
e = \"Tl.pl.Pl >

9 = STyPg Py

N

g = * 73-Pg P3~
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©
[
i
AN
=
Vv

Py = <N g0 >
1 = {p4’p59°°°}

P3 = {pS,HQ}°

Figure 3.2 describes, schematically, a data structure for this network.
The meaning of the various diagram symbols is called out in Figure 3. 3.
We have represented sets by a one-word head of a ring, the ring linking
its elements. The values of n-tuples have been represented by an n-
word contiguous block, while elements belonging to a predeterminable
number of sets have been represented by a like number of contiguous,
one-word ring elements followed contiguously by the value of the ele-
ment.

Because every set in this structure contains elements having iden-
tical form and because the programs operating on these structures will
always know what kind of element is being operated upon, the use of con-
tiguous blocks in this manner is feasible, and will result in an efficient
and compact structure. If objects belonging to a variable number of
sets were present, a form of association structure such as that used
by Newman [5] could be easily incorporated using ""nubs" and nested
rings in addition to the above. So far, that has been unnecessary.
Although the structure of the network is to be manipulated in the course
of executing these programs, the sizes of contiguous blocks will not

change during the execution. However, blocks will be created and
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Ring Flement (Defining Set) —{] ]

Ring Element (Definition) {7}

Value E:

Dummy Value
— ]

Pointer

Figure 3.3

Network structure diagram notation,
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destroyed, and this structural technique depends heavily upon the avail-
ability of an efficient free-core manager. The manager proposed in a

separate memo [6] (Appendix A) appears to satisfy the requirements.

3.4 The "Generate'" Program

The generate phase program consists of a collection of routines
corresponding to the generation-commands receivable from SELMA.
Upon entry from the Supervisor, the generate program examines the

command and issues a call to the appropriate generation routine. The

network description is received by QAS in the form of a stream of
these commands. The functions of the "generation routines" carrying
out the commands are summarized in Table 3.2. More generation
routines may be added as use of this system becomes more sophisti-
cated.

These routines operate entirely on an area called the network
area of memory which contains the network structure, the type struc-
ture (to be described in section 4), and a symbol table. The symbol
table provides the means for converting element names, connection
names, and other names used by SELMA to corresponding addresses
in the network area. The table grows as commands are received de-
fining new objects. Objects also can be removed from the symbol
table. The simplest form for it is obtained if SELMA assigns consec-

utive integers as names for objects, whereby the table consists solely
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of a vector of pointers. The location of this vector within the network
area should be permanent. The symbol table should also keep a pointer
to the network block (N) as, say, its first symbol. Thus, the symbol
table will keep the locations of all master objects as well as those
which must be referred to by SELMA. This will permit master blocks
to be moved at will for such things as documentation functions which use
the network area, by merely changing a pointer in the network area's
symbol table.

To facilitate discovery of unconnected ports, which would prevent
execution of a compile command, a special master object R is in the
symbol table representing the set of unconnected ports. When elements
are created, their ports are automatically joined to this set. ''Connect"
commands unjoin ports from this set, and join them to a newly created
connection. The symbol table and unconnected port set block are illus-
trated in Figure 3. 4.

The "create element'" and "alter generation parameter' routines
will be described in detail in section 4, which treats the information
needed to define types. The other generation routines in Table 3.2

should be self-explanatory.

3.5 Service Programs Required

Four sets of service programs will be needed by the generation
routines. They should be FORTRAN-callable so that the generation

subroutines can be written in FORTRAN. They will also be found



*H 19 1xod pajosuuodoun pue

o1q®) Joquids SuTMOYS JusWIBIJ 9IN}ONI)S JIOMION

¥ ¢ 2anSig

24

N

319vl
TO8WNAS




25

useful to other phase programs, such as the compiler. Their func-
tions and calls are summarized in Table 3. 3.

The list of programs shown is probably not complete, and may be
added to once programming is begun. In particular, the ring operators
represent a subset of the commands used in Roberts' CORAL system [7],

and some of the other CORAL commands may be also desirable.
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4. PRIMITIVE ELEMENTS AND THEIR MEANING

The elements in the network structure have been described in terms
of their types. Examples cited were the types ""queue, " "server, ' "exit, "
and "'source.'" Each of these are called primitive types because they
cannot be described in terms of any other element types. However, a
description of their meaning must be given if the compiler is to have suf-
ficient information on which to operate. In this section, a means for for-
mal description of the meaning of a type will be given, and a data structure

for conveying that meaning to the translator will be provided.

4.1 The State Set

Every element has a set of states associated with it. These states

represent the various possible identifiable conditions which the element
can assume. In QAS, the state set of any element will be a finite set of
non- negative integer n-tuples, where n is characteristic of the element.
In the case of a queue whose "maximum length" parameter is N, this
set is the one-dimensional set of integers, {0,1,...,N}, representing
""the number of waiting tasks.' In the case of the server it is the one-
dimensional set of integers {0, 1, 2} representing the "idle, " "busy, "
and "holding" conditions, respectively. Finally, in the case of both
the exit and source it is the set {0}, a condition representing ""readi-
ness to receive (or send) a task.' Although all four of the basic ele-

ment types have one-dimensional state sets, higher dimensions are

29
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possible for yet unnamed elements.
The things which most characterize elements are the stimuli which
can produce changes in state, and the responsive changes. These are

characterized by the so-called events of the element-type. Some of the

stimuli are self-generated, as, for example, the "service completions"
of a server. Others are external stimuli, as the occurrence of "inputs
of tasks' at a port of an element. The stimuli and responses of the for-
mer will be described by autoevents, while those of the latter will be

described by exoevents.,

4.2 Autoevents
By definition, an autoevent £ ‘ of an element €; having a state set
Si is a triple

b, 1is a subset of Si

g is a constant n-tuple, such that for each x ¢ loﬂy X+g,
is in Si

iy is a positive real number

¢ 1is an index in some index set Lin

Here b . is called the autocondition set of the event & 0 and represents

a set of states for which the event is possible; the constant My is called

the rate of the event, and represents the probability intensity of its
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occurrence; the constant n-tuple g is called the increment of the event,
and represents the change in state which results from the occurrence of
the event.

To illustrate, consider the ''service completion' event 501 for a
server having mean service rate (parameter) y. The event can occur
only in the busy state, state 1, and when in that state it occurs with
probability intensity y. The event causes a change from state 1 to the

holding state, state 2, so that the change in state is unity. Thus,

g o= < {th 1, y>. (4. 2)
%

It is possible for an element to have more than one autoevent.

Consequently, for every element there is a set of autoevents, called

the autoevent set

O {EﬁzﬁeLi} (4. 3)

of the element € where the index sets Li are disjoint over all i in L
Frequently, when the format of equation 4.1 is insufficiently general
to describe a particular stimulus and its response, the desired des-
cription can be obtained by splitting the description up into several

autoevents.

4.3 Exoevents
By definition an exoevent Cm at a port p of an element €; hav-

ing a state set Si is also a triple
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8 = <bpg oT > (4.4)

b is a subset of Si
is a constant n-tuple such that for each x ¢ bm’
X+g is in S i

T is a probability

m is an index in some index set.

Here bm is the endocondition set of the event, and represents a set
of states for which the event is possible (e. g., if the port p is an input
port, b is the set of states for which an input of a task can be accepted);
the probability of the event ™ is the probability, given that the stimu-
lus (e.g., an input of a task) has occurred and that the element is in a
state of bm’ that the change in state produced is equal to g’ the incre-
ment of the event.

An example of an exoevent is the "input of a task' event (call it
CJQ) at the input port p of a queue whose maximum length is N. An

input can be allowed only when the state is less than N, and it results,

with certainty, in an increase of the state by unity. Thus

¢, = <{o,1,...,N-1}, 1, 1 >, (4. 5)

for N > 1.

For every port p of an element € there is an exoevent set Z i(p),
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representing all the possible responses to the external stimulus at the

port p. The function Zi will be called the exoevent function of the ele-

ment € The exoevent set is a set of exoevents whose probabilities

add up to zero or one for each state of the element. Let

Z.(p) = {¢_, meM(p)}, pe P, el (4.6)
and

Cm = < bm7 gm) ﬂ'm > ) (4e 7)
where the bm’ g’ "m have the forms appropriate to exoevents of an
element, and where the Mi(p) are disjoint for all p and i. Then

Z‘ﬂ = Qorl (4. 8)
m
m:

X € bm
for each x € Si where Si is the state set of the element. Those states
for which this sum is zero are states for which the external stimulus
cannot occur, such as, for example, the states where an input task

cannot be accepted.

4.4 Type Definition

The meaning of the "type" 7 of a particular element e; is con-
sequently conveyed by the triple < S = ;7 %; >, sothat we can write

o= <S,E, &> (4.9)

for all i ¢ I. The above rules for determining the state set, autoevent

set, and exoevent function have been applied for instances of each of
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the four basic element-types, and these properties have been sum-
marized in Table 4.1. In each of the first two cases, the port Py is
the input port, and port Py is the output port. It is interesting to note
that the exit and source elements are identical in these terms. Con-
sequently, they will both be treated as instances of a single element-
type, the source-exit. Other element-types are, of course, possible
provided their stimuli and responses can be completely described by
events of the form described.

The information conveyed in Table 4.1, and extensions of it if
more element-types are defined, must be made available to the com-
piler. In particular, there must be a data structure which describes
the type U] of an element e; in literal form, with all dependencies
upon parameters evaluated and readily available. In addition, the
compiler in the course of its work will be creating more elements
which are not instances of these basic types but are equally described

by triples <S§,, =, Z; > . The structure for providing this informa-

T

A

tion to the compiler is added, at the appropriate times, to the network
structure by use of the 7-line in the element blocks. This structure

is illustrated schematically in Figure 4.1 for an element € such that

P, = {p;p,} (4.10)
2y = {ep k) (4.11)
2,0)) = {85:¢,) (4.12)

Zl(pz) = {C5} (4°13)
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The sets of states 819 bl’ b29 coasy b59 and the increments g5 +o o 85
are not shown; their form will be discussed in section 4.6. The block
7 is referred to as a type block.

It should be noted, however, that at the time the element block
was created (during generation phase) the type line 7 in the element block
contained a name of the type, rather than a pointer to a structure like that
shown in Figure 4.1. It is not possible during element creation to form
this type structure because the parameter values are not yet known. (It
should be noted in Table 4.1 that variables N and y were necessary to
represent the state set and the events.) It is also not completely de-
sirable to supply this structure immediately, even if it were possible,
because it would considerably increase the amount of storage required
during generation. This information is needed only during compilation,
or if compilation has been partially performed.

In any case, the 7-line in the element block has two possible mean-
ings, and during compilation either meaning may appear in the line.
Since a pointer requires only 24 bits, and the name (a type number,
actually) can be contained in an 8-bit byte or less, it is not difficult to
distinguish between the two cases. By reserving the name 00" (hex-
adecimal) to literal valued types (i. e., those for which a structure is
present), and using the format shown in Figure 4.2 a simple routine
can determine whether name or pointer is present. If the pointer to the

type structure is present, we say the type is literal valued. Otherwise,
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the type is said to be named.

NAME POINTER

Figure 4.2 Format of 7-line of element.

4.5 Type Structure Generation

When the compiler creates an element itself, it will always have
a literal type. When the element is created by the 'create element"
routine during generation phase, it will have a named type. The con-
version of the named type to a literal type will be carried out only when
the type structure of the particular element is needed by the compiler.
The compiler requests the literal type of an element through a routine
called the type finder. The element is specified and if the element is
already of literal type. the pointer to the type block is immediately re-
turned. If the element has a named type. the finder calls a particular

type-evaluation routine which creates the type structure. using the

parameter values of the element. There is one type-evaluation routine
for each type name. These routines are written whenever a new type
name is added to the repertoire of QAS.

The operation of the type structure programs is summarized in
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Table 4.2. These programs are used during compile phase, and re-

quire the presence of the working network structure only.

4.6 Representation of Sets of States and Increments

The set S for each element is a set of n-tuples. The autocondition-
sets and endocondition-sets of the events of the element are subsets of
this set. For reasons of efficiency in the operation of the compiler, it
must be possible to rapidly form unions, intersections, and differences
of these sets. For efficient use of storage, these sets cannot be repre-
sented by rings of members; their number is too great.

For these reasons, a special data structure must be used for
representing sets of n-tuples. The basic unit in this structure will be a
structure representing rectangular sets of n-tuples, sets which are Car-
tesian products of sets of consecutive integers. Any state set, or sub-
set, will be represented by a union of rectangular sets. This structure
is illustrated in Figure 4.3. The basic line describing the set is a sin-
gle word whose format is shown in Figure 4.4. This word contains the
dimension, n, of the n-tuples, and is a ring head. The upper byte of
the ring elements pointed to is zero, and, since sets of dimension zero
are not permitted, the head is recognized by the non-zero value of this
byte. The ring elements define rectangular blocks, with the ring itself
representing the union of the rectangles represented. There are n+2

half-words in each rectangle block (the first two being the ring element
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> —
Cn | Ci2
C2) | C22

__fmnl Cn2 |

Figure 4.3 The set structure for n-tuples,.

n POINTER
O 78 31

Figure 4.4 The n-tuple set head word.



word). Each half-word after the first word consists of two bytes, the
first of which supplies the lower bound on the rectangle in one of the di-
mensions, and the second of which supplies the upper bound. Set oper-
ators for intersection, union, and difference can be readily designed
for this structure.

Increments (the g-lines in events) will be represented by the
same type of head element as for sets, showing the dimension and a
pointer. In this case, however, the pointer will be to a block of n
bytes, each giving the increment in its corresponding dimension.

All blocks in these two structures should be rounded to full words
in their allocation.

A set of operators for these two structures will be required for
such things as intersection, union, sum, etc. One special operator,
called back-projection, is needed by the compiler. It has two oper-
ands, a set and an "increment, " and forms the structure for a set
whose members are the members of the set operand minus the value
of the "increment" operand. This set will be represented by the sym-

bol (S, g), where S and g are set and increment operands, respectively.



5. THE COMPILATION PROCESS

The compiler is a program, called by a single command from
SELMA, which transforms the network structure into a new structure
suitable for numerical analysis. The new structure represents the
matrix U of transition intensities (see eq. 2.1) in a compact form, so
that the iteration may proceed rapidly without extensive paging (which
would cause response to the ""solve'" command to be uncomfortably
slow).

The compiler operates destructively upon the network structure,
so that a copy of the network structure must be saved prior to the
compilation. This function, which calls upon the documentation phase
programs, is carried out by the QAS supervisor when it detects a
"compile phase' command. In order to distinguish between the net-
work structure and the workspace of the compiler (which is identical
to the network structure when compilation begins), we will refer to

this workspace as the working network area.

The compiler makes use of two areas, the working network

area and the transition-table area. This latter area is the place where

the new structure is placed after the compilation is finished. It is,
obviously, one of the areas used by the analysis procedure during the
analysis phase. This area is required only at the last stage of compila-

tion, and is created during the compile phase. (If a translation table
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area already exists at the time a compile command is given, its contents
will be replaced by the new transition table. Hence, a documentation
phase "'save transition table area' command must be given by SELMA
before the compile if the old information is to be saved. )

The procedure for compiling the network involves a successive
absorption of the connections. Each connection is considered in turn,
and it and the elements it connects are replaced by a single equivalent
element. This process continues until no connections remain. To illu-
strate, observe the network of Figure 5.1a.  The connections of this
network will be absorbed in the (arbitrary) order shown by the encir-
cled numbers. The compilation proceeds as schematically indicated in
Figure 5.1b, ¢, d, e, finally resulting in a single element having no ports,
which is equivalent to the original network. This procedure provides a
systematic means for tracing the influence of each autoevent upon the
entire network's behavior. The resulting element consists of a long
list of autoevents describing the probability intensity of every change
in state which is possible. The translation of this information into the
form of the transition table is then a relatively simple operation.

Figure 5.2 shows the flow diagram for the compiler. After it
is invoked by a "compile' command, the compiler first determines
that no ports remain in the network which are not ccennected to another
port, by testing the ring whose head was labeled R in the symbol table

of the (now) working network structure. If this test is successful, the
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(d)

(Clpel6}

(e)

Figure 5.1

Illustrating the com

pilation procedure.
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C ENTRY )
'

EXAMINE FOR
UNCONNECTED
PORTS

NO
> PICK AceC

CREATE MATRIX COLLECT Asso(,-
AND STATE MAPPING IATES OF ¢
STRUCTURES

RETURN -/ABSORB c >
\ l
TRIM STATE
SET OF NEW )
ELEMENT

©

The compiler flow diagram.

Figure 5, 2
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compiler proceeds through a loop, successively absorbing connections
until none remain.

The absorption of a connection has been divided into three dis-
tinct steps. In the first step, the elements joined by the connection to

be absorbed (we will call these elements the associates of the connec-

tion) are collected into a single equivalent element having ports corres-
ponding to each of those of the associates. This collected element then
replaces the associates. In the second step the connection, which now
joins only ports of a single element, is absorbed to create still another
element. This time the element is equivalent to the collected element

with its connection, and the final replacement takes place. (The two

step operation eliminates the need to treat connections between ports of
a single element differently from those between ports of different ele-
ments,) In the third step, the state set is reduced to eliminate certain
common types of transient states.

The operation of the compiler and its major subprograms is sum-
marized in Table 5.1. The remainder of this section will discuss the
subprograms in more detail. The subprogram which creates the ma-

trix and state mapping structures will be discussed in Chapter 6.

5.1 Collection of Associates

The operation called collection of the associates of a connection

c has a simple algebraic interpretation. What it entails is the creation

of a new element e* whose port set is the union of the port sets of the
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associates, whose state set is the Cartesian product of the state sets
of the associates, and whose events are adjusted to correspond to the
new state set.

Let the set of elements to be ""collected" be E*, where
E* = {ei: ie Ix}, (5.1)
and let the collected element (the result of this operation) be e*

e* < 1%, p*, P* > (5.2)

where
T* = 8%, DX B* >, (5. 3)

the parameter set p* is null, and the new port set of e* is

P* = U P. (5. 4)
ie I¥
Let I* = { isdgseee, 1n*}, and select an arbitrary ordering
< il, i?, e, in* > on the members of I*. The new state set can
then be written
§¥ =8, X8, X...xS8. |, (5.5)
4 19 I

where the product A1 X A2 of two sets Al’ A2 of n-tuples is defined
as a set of n-tuples having a dimension which is the sum of the dimen-
sions of A1 and A2, and for which the m embers of A1 X A2 consist of
all concatenations of members of A1 with members of A2" For exam-
ple,
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{<1,1>,<2, 1>} % {<3,2>,<3,3>} = {<1,1, 3,2>,<1,1, 3, 3>,
<2,1,3,2>,<2,1, 3, 3>} (5.6)

(Notice that this operator is not precisely the Cartesian product operator,

for which the example would give the set {<<1,1>,<3,2>>, <<1,1>,
<3, 3>>, <<2, 1> <8, 2>>, <<2,1>,<3, 3>>}.)

The autoevent set =* is the union of autoevents of the elements,
suitably modified to account for the changed state space. In particular,

let gﬁ = <bﬁ, gﬁ, /u;ﬁ> be an autoevent of an element ei in E* (i.e. £ ¢ Li .

a o
.r;a ¢ I*), Then & ¢ will be represented by the new autoevent

¥ o= ¥ g * (5. 7)
gf <bﬂ :gﬁ ;uﬂ > ’ \\5 >
where
b * = S. X...XS8, X b, X8, X oo X8, (5. 8}
{ gl 'a-1 { ‘a1 ‘p
and
* = <0,... N U 5.9)
gﬁ <09 909 gﬂy 0, 90 (5 9,/

with gﬁ concatenated with zero-valued n-tuples in a position corres-

ponding to S, in S*. The set = is
¥ = {gﬁ:ﬁ el ie I*}, (5.10)

To simplify notation, eq. (5.8) will be rewritten

% o QEX
bg S Xy bg’
a

defining "><i '""as an operator meaning "'restrict the projection of S* in

0]

the components corresponding to Si to the set bﬁ"o In a similar vein,
a
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eq. 5.9 will be rewritten

g% = SO g (5.12)
a

defining "@i '""as an operator meaning ' extend ) into the set S*, with

a
projection g 0 in the components corresponding to Si , and projection
a
zero in all other components. "

For each port pJ. € Pi’ i e I*, the exoevent function Z * is given,

similarly by

2¥(py) = ¢ cme M), i€ I¥f (5.13)
where
Gy = <P, (5.14)
b* = S*.b (5.15)
m 1 m

and where Mi(pj) is the index set, defined in section 4. 3, of the original
elements. Each Z i*(pj) is readily shown to be an exoevent set, satis-
fying the constraint on 7, given in eq. 4, 8, provided only that Zi(pj)
was.

The collection routine, called by the compiler, makes the

changes in the working network structure corresponding to the above
equations. Its input is a pointer to a connection, and its output is a
pointer to an element e* which is the '"collection' of the connection's

associates. The original elements (the associates) are destroyed.
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This program, which is flow-charted in Figure 5.3, has three main
parts. The first finds the associates, removes them from the E ring,
and joins them to a newly formed ring E*. The second forms the state
set S¥ of the collection E* using the natural order of the E*-ring as the
reverse order (right to left) of the products of the Si’ ie I*. (The or-
der is reversed for consistency with later operations, since the port
set P* and event sets =* and Z* will be most easily formed by repeat-
edly joining successive components immediately behind the head.}) In
the course of this activity the types will be evaluated by calls to the
"type finder'" ( ef. section 4.5). The third part successively extends
the event sets and then accumulates both the port sets and the event
sets of each element, destroying the elements as execution proceeds
until E* is empty.

Figure 5. 4 shows part of the structure upon entry to the collector,
The encircled symbol represernts a ""bug' or pointer retained in the col-
lector program. Figure 5.5 shows that part of the structure after the
first two parts have been executed and the program has progressed to
the point marked g in the flow diagram (Figure 5.3). Figure 5,5 shows
the same part of the structure upon return from the collector. The
structure of the state sets has been omitted from the diagrams and
will be treated separately later, in section 5. 6.

The first two parts of this program need no further discussion.

Part three (point 8 in Figure 5. 3) begins by taking the first element
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ENTRY
( FIND ASSOCIATES
E*
LET E<—E-E*
|
Y
ES ERROR
NO

EVALUATE TYPES FOR
PART 24 ALL e€E¥
FORM S*

Y

[ PICK FIRST e'€E

LET E*<E*-{e’}
LET S'<—SX

LET E<—E U{e'}

LETp* BE EMPTY

Y
@XTEND EVENTS'
. OF ¢’
a} >

PART 1 ¢

PART 34
DESTROY E*

RETURN
PICK FIRST eeE¥ eXe—e’

Y

EXTEND EVENTS
OF e

i Figure 5.3 Flow diagram

LET P’<—P'UP for "called asso-
LET E'<H'UE ciates'" routine

LET 2'=2'UZ
DESTROY e,T

®
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block of E* and letting it be the element block which will become the
collected element e*. It is removed from E* and put back in E. The
S* which was calculated in part two replaces the state set of this ele-
ment. The parameter list of this element is replaced by an empty

list (the type must henceforth be literal). From here on, following
programming convention, this element will be referred to as e', until
the end of the operation, when it becomes the e* of equation (5.2). The
b andg ‘ of the exoevents and autoevents of e* are extended to the new

4

state space, and replaced. That is, bﬁ is replaced by S*><i bﬂ
o
for each gﬁ € ~* and each Cg € Z*. This latter operation

and g i
by 8*O; g,

a
is done by a separate subroutine,

At this point ("a" in Figure 5, 3) each remaining element in E* is
taken, in turn, its events similarly extended to S*, and its ports and
events added appropriately to the ports and events of e'. If P, =, Z
are the port set, autoevent set and exoevent function of the current

element, then, since they are each represented by rings, they are

added to P', =', Z' by insertion

P' < P'UP (5.18)
Bl F'UE (5.19)
Z' <— Z'UZ (5.20)

where the arrow represents '"'replaced by' and the union symbol here
means "insert the ring members of the second operand between the

head and ring members of the first operand.' The head of the second
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operand is destroyed in the operation, which was called "'ring concate-

nation' in Table 3. 3.

The major subprograms of the collect routine are summarized

in Table 5. 2.

5.2 The Meaning of Connections

The exoevents at the ports of an element represent the conditions
under which tasks can be removed from (or inserted into) the element
via the port, and the consequence to the element's state of that removal
(or insertion). The function of a connection is to indicate a relationship
between the exoevents of a set of ports. It indicates the conditions under
which a task is to be transferred between a pair of ports. For example,
when a pair of ports is joined by a simple connection, a transfer of a
task occurs immediately whenever the "output' port has a task which can
be removed and the "input" port simultaneously can accept a task. The
exoevents at the two ports are thought to "occur' spontaneously whenever
these conditions are met. For each type of connection the rules deter-
mining the occurrence of the exoevents will differ, and the meaning of
connections is conveyed by these rules.

Since we will be operating only on collected elements, the only
time we are concerned with the meaning of a connection will be when
it is a connection between ports belonging to a single element. The def-

initions that follow will assume that condition.
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The information describing the effect of such a connection upon its
associated element will be described by a set of objects called spontane-
ous events. These events describe the conditions for, and immediate
consequences of, transfer of tasks through the connection. These
events can be thought to occur "spontaneously' whenever the state of
the element becomes one of a set of forbidden states. For example, in
the simple connection, a forbidden state would be one in which one port
was "'offering' a task and the other could "accept" one. The consequence
would immediately be a further change in state.

Let the spontaneous event set @k of a connection Cye joining ports

of the element ei be

0, = {eh: he Hk} (5.21)

where

Oy = <b,, g 7Th> (5.22)

b, 1is a subset of Si

h
g, is a constant n-tuple such that

for each x ¢ bh, X+g Isin Si

T is a probability

Hk is an index set.

The set b, is the forbidden state set, g is the increment of the

h
event, and T is the probability given that the state is in bh that it will

jump by an amount g As for exoevent sets, the probabilities in a

spontaneous event set must satisfy the restriction that, for each x € Si
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), m = 0or 1, (5. 23)
h:
Xe bh
The spontaneous events are formed from the information con-
veyed in the exoevent sets of the connected ports in a manner which
is distinct to the "'type' of the connection. Let a connection Cy be of

simple type. Let the ports joined by Ch be Pk = {pj ) pj } and let

1 72
those both be ports of the element e, S0 that P C P.. Recall that
the exoevent sets of pj and pJ are given by
1 2
zi<pj1) {cmlz m, ¢ Mi(pjl)} (5. 24)
= : : (5. 2
Zi(p32> {Cm2° m, ¢ Mi(pjg)} (5. 25)
¢ = <b_,g 7T > (5.26)
m, m,’®m,’ "m,
Cn = <b_ g T . (5.217)
2 2 72 2

The spontaneous event set @k for this simple connection is given by

O = (o e Moy )< M(py )} (5. 28)

where

> . (5.29)

T 7
"8m. "m ”mQ

172 ! 2 ™ 2 ™
This indicates that spontaneous events occur whenever the state is in

both endocondition sets, and that the increment is the sum of that due
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to removing a task from one port and that due to inserting a task into
the other port. The set of states for which no spontaneous event occurs
is
b =8 - U (b nb_ ) (5.30)
m,, my
For convenience in the programming, we will find an augmented
spontaneous event set ©, to be useful. It is defined, for the simple con-

k

nection, as

ék= O, U i< Bk, 0, 1>}, (5. 31)

where the additional event represents no change for states which are not

forbidden. In this case, the probabilities add to 1 for every member of

Sio It is readily shown that eq. 5.23 is satisfied for the spontaneous
event set @k

The other connection types will be discussed below. In what fol-
lows the element whose ports are being connected will be called ei, and

the exoevent set of any one of its ports pj will be assumed to be written

a
Zip; ) = {8, imy e M;(p;)} (5. 32)
a a
with
Cm = <bm '8 T >, (5. 33)
a a a a

The probability summation property will hold for all spontaneous event

sets defined.
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Considering a connection Cr of overflow type, let the output port

joined by Cye be pj , the preferred input port be pj , and the overflow
0 1
input be p. , so that P, = {p. } C P.. The spontaneous events
Jg k o "yl
consist of two classes: those which represent a preferred task flow,

9PJ 9pj

and those which represent an overflow. The first class occurs when-

ever the state is in bothb_ andb__ , for each m, and m, in M(p, )
m, m, 0 1 Jo
and M((pj ) respectively, since that is the only condition where the pre-

1
ferred flow is possible. The second class occurs whenever the state

is in both b_  and bm , but not in any of the bm , My ¢ M(pj ) (i.e.,

m
0 2 1 1
preferred flow is not possible), for each m, and m, in M((pj ) and M(p;j R
0 1
Algebraically,
0, = {Qh: he M(pj ) % M(pj ) {G)hz he M((pj ) X M(pj )} (5. 34)
0 1 0 2
g = <b_nb_,g +g_ ,u_ T_ > (5. 35)
o™ Mo My Mo My Mo ™My
0 <b nNb_ - ( U b ), g +g_ T2
MMy My My m, & Mp; ) My Mg My Mg My
1
(5. 36)
for m, 2 M(p. ), m, € M(p, ), m, ¢ M(p. ). The no-event state set
0 o’ 1 i g
is
b, =S, - U b, (5. 37)
k he H h
where H = (M(pj ) X M<pj ) u (M(pi ) M(pj )), and the augmented

0 0 2

spontaneous event set

1

6, = 0 .U {< Bk, 0,1>}. (5. 38)
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The merge type connection, joining an input port Py of e, a (pre-
ferred) output port Py and (secondary) output port Py (one must, in de-
fining any merging-type elements resolve the competition among inputs,
and that is done here on a purely priority basis) has precisely the
same spontaneous events as the overflow-type element. Thus they are
indistinguishable, and will henceforth be given the same type-name, the
"overflow-merge "

The random branch is defined, for the purposes of this report,

as a branch for which flow can occur only if a task can be accepted at
any connected input port of the element, and if a task is also available
from the connected output port. Let the output port of the element be
Pq and the input ports be PyseeerPps where N is the number of branches
in the connection, When this condition is met a task is transferred

from Py to one of the ports, pj say, with probability Y a=1,2,...,N,

a
where (N,yl, .o ,yN) is the parameter list of the connection, Alge-
braically,

0, = {ah:heM(JO)xmxM(jN)x{l,...,N}} (5. 39)
] =<b_ N...Nnb_ , g +g , 7T _ ...7m_ vy > (b5 40)
mg. .. myo 0 my’ "mg " m 7 Tm, m '@

for all m, € M(pj ), a=1,...,N. As usual
a

(5. 41)

and
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ék = O U {< 5k9 0,1 >}, (5. 42)

Provided that the property

N

Yy, =1 (5. 43)

a=1
holds, the probability summation property (eq. 5.23) will also hold for

@k"

5.3 The Absorption of Connections

The operation of connection absorption removes the ports con-
nected from the associated element, prunes the exoevent sets at the
removed ports from the exoevent function, forms the spontaneous
event set, and then consolidates the autoevents, remaining exoevents,
and spontaneous events, to produce a new element. The operation of
this subroutine of the compiler is illustrated schematically in Figure
5.7, and its major parts are summarized in Table 5. 3.

The first operation in the program determines the element joined,
and alters the structure in preparation for the formation of the spon-
taneous events. The ports joined by the connection are removed, and
appropriate alteration of the exoevent function is carried out, with the
exoevent sets of the removed ports shifted to the connection structure,
This operation is clearly illustrated in Figures 5. 8 and 5.9, which show
fragments of the network structure before and after the first block of

Figure 5.7 is executed. In the course of finding the element associated
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ENTRY

FIND e MORE THAN
Z;‘-Zi _Zi(Pk) ggI%EEBEgAYENT
C
P,<P;- Py L(ERROR RETUF
Pk‘_ ZI(PK)
DESTROY ALL pé€P,

"SIMPLE" "RANDOM"

"OVERFLOW"

CREATE SPONT CREATE SPONT." CREATE SPONT. "
EVENTS EVENTS ' EVENTS
(SIMPLE) (OVERFLOW) RANDOM)

\\l//

ON SOLI DATE
EVENTS

!

| DESTROY
’®k

RETURN

Figure 5. 7

Flow diagram for absorption of connections.
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Figure 5. 8

Fragment of working network structure at beginning

of connection absorption.
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with the connection, this block will also discover if, by failure of the
element collection program, the number of elements connected is not
unity, This is a fatal error.,

At the conclusion of these operations, an appropriate Spontaneous

Event Routine is called, depending on the connection type. Since the

spontaneous events will not be altered during the period of their exis-
tence, and since the operation of ""getting' and "freeing" small blocks is
relatively time-consuming, the Spontaneous Event Routines should create
the entire ©-structure so that it is physically contiguous., If this is
done, only one fairly large block need be gotten from the free core
manager, and it will be kept until the connection absorption is complete,
at which time the entire structure can be destroyed by a single ''free"
command to the manager (see '"Destroy @k" in Figure 5. 7).

The spontaneous event routine (a prototype of which is shown in
Figure 5.10) constructs a list structure which corresponds to the set
described in the previous section in its requested core space. The
events will be generated one by one and added to a ring, while the

state set Si and no-event set b, will be pruned with the formation of each

k

event. Thus, at the conclusion of the formation of the last spontaneous
event, the state set has had all forbidden states removed from it, and
the augmented spontaneous event set ék has been formed. Whenever a

forbidden state set b, is found to be empty, the corresponding spontaneous

h

event Qh will be simply omitted. In this routine, also, the parameters
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ENTRY

COMPUTE AND

GET REQUIRED
CORE BLOCK. +(ERROR RETU@
CHECK PARAMETERS

{

SET UP POINTERS
FOR INDEXING
THROUGH EXO-EVENTS,

FORM by < Si
J

Y

GENERATE A b, EMPTY
SPONT. EVENT 6, l

by <— by — by,
S""S“bh
i

il |

NO

DESTROY EXO-
EVENT SETS

A

( RETURN )

Figur> 5.10

Prototype flow diagram for spontaneous event routines.
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are checked, if this is a random branch, to see that the probabilities (ya
in section 5. 2) sum to unity. The exoevent sets for the connected ports
are being destroyed after the spontaneous events have been formed , and

the structure finally appears as illustrated in Figure 5.11.

5.4 Consolidation of Events

The operation of event consolidation replaces each event (either exo-
event or autoevent) in the element & associated with the connection by a
new event, or events, which includes the effect of the spontaneous events.
The action to be accounted for in this operation is that produced when an
event of the element causes a spontaneous event to occur,

Such is the case, for example, when a task completion in a server
causes a transfer of the completed task through the connection joining its
output port. The effect of the autoevent is to change the state., If the
state is thereby changed to a forbidden state, the spontaneous event
(task transfer) occurs, changing the state again. In this report, we
assume that only one task may be required to pass threugh a connection
upon occurrence of any event, so that the second state change cannot
itself result in another spontaneous event at the same connection.

A similar argument applies to exoevents, as, for example, the
consequences of a task being entered into the input of a queue. This
will result in an increase in state which may cause a transfer of a task

through the connection joining its output., That is, the state is changed
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to a forbidden state and a spontaneous event causes a still further
change in state.

The new event set is readily found from the old and the spontaneous
events, Let (:)k be the augmented spontaneous event set

S {o:he ﬂk}. (5. 44)

k

] <b > (5. 45)

1}

h 80 Th

and let Ei be the auto-event set of the associated set e

Il

; {gQ:QeLi} (5. 46)

gﬂ <bﬁ,gﬁ,,uﬂ > (5. 47)
Then the new auto-event set = i* of the associated element ei will be

= {gz*:ﬁ*e L, X ﬁk}, (5. 48)

These events are

g*ﬁh = <bﬂ N bh N Tigﬂ(bh)’ gﬁ + 8o “ﬁ Qh>

(5. 49)

for all ( ¢ L her,

found by subtracting the vector g from every member of the set b. The

where, by definition ng(b) represents the set

set bﬁ n bh n 77 (bh) represents all non-forbidden states in bg which,
i

upon occurrence of the event ¢ £, are carried into a (forbidden) state in

b It is these states only which are affected by the increment &

b

Similarly let pJ. be any port in P., and the exo-event set

Zy(p;) = {C :my e My(p))}, (5. 50)
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¢ = <b_,g_,7_ >, (5. 51)

becomes

where

§*th = <b_ nmn, (o) g +g; ij T, > . (5.52)

J m, J

(The probability property, eq. 4.18, for exo-event sets is readily

shown to be preserved. )

may be found to

Many of the sets b (bh) and bm nn_ (b

N
: ngﬁ j ®m.
be empty. In such a case, the event conveys no uselful information and

N

may be omitted from the corresponding set of events.

The program which will accomplish this transformation is the
event consolidator, described by the flow diagram of Figure 5.12.
This program calls on the "event set consolidator' which is described
by the diagram of Figure 5.13. The symbol ® is used in this diagram
to represent an arbitrary event set

¢ = {pde D} (5.53)

¢d = {de gd" d} ° (5. 54)

This program proceeds around the & ring, inserting the new events
behind it as it proceeds. Each time a @d has been treated completely,

it is destroyed and the program proceeds to the next ¢d until it comes
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ENTRY

*
CONSOLIDATE

=
Lot

l

PICK FIRST | Pi= ¢
p eP| ‘—-»@RROR RETURD

ONSOLlDATE
Z; (p)

* SEE "EVENT SET
CONSOLIDATOR

GET NEXT
pe€ Pi.

LAST p
OBTAINED
P

YYES
RETURN

Figur= 5,12

Flow diagram: Event consolidator,
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(Center )
+

PICK FIRST
b4

RETURN

PICK FIRST
Oh

PLACE ¢,

6,, EXHAUSTED
DESTROY
]

NEXT FOUND

¢4 EXHAUSTED
"RETURN

Figure 5.13 Flow diagram: Event set consolidator.
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back to the head of the ring. If either set is empty, the result is an

empty &*,

5.5 Trimming of the State Set

The consolidation procedure described above can, under certain
circumstances, produce surprisingly large state sets. This will be par-
ticularly troublesome when a random branch was involved in the compila-
tion at some stage. This is an manifestation of a general problem facing
this translation which cannot be economically solved: the problem of
transient states and reducible Markov chain models.

The points in the rectangular 'state set" SR of the (finite) Markov
chain of the entire network fall basically into three categories

1) Forbidden states

2) Recurrent states

3) Transient states.

The forbidden states are points of SR which result immediately in spon-
taneous events, which, in turn, take the process to a point which is not a
forbidden state, The forbidden states are automatically pruned from the
state set upon each consolidation, and hence are no problem,

The present difficulty revolves around the presence of transient
states in the model. Transient states are legitimate states of the Markov

model. However, since they have an equilibrium probability of zero,
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and since information bearing upon them ordinarily has no bearing on the
calculation of equilibrium probabilities of other states, they are "excess
baggage' and will waste valuable storage in the various data structures
of QAS.

The ideal procedure would be to identify all transient states of con-
solidated elements as they are created, and to remove them from the
state set. Unfortunately. there appears to be no systematic procedure
for identifying all of the transient states without performing a calculation
very similar to evaluation of all equilibrium probabilities, which defeats

our purpose. (We want the state set reduced before we calculate equili-

brium probabilities. )
The example of the random branch is a good one. Let a diagram

contain a fragment like that of Figure 5.14. The states for which more

P
l:'g K e
) Par—m
N-@.M_,N ) 2 o
=
Rila e
Figure 5. 14

A network fragment containing a random branch.
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than one server is busy cannot be entered from any state for which less
than two servers are busy, since the random branch is blocked when one
server is busy, and no "'tasks' will be transferred. However, if the sys-
tem starts with more than one server busy it will, upon exit of tasks

from service, enter states with less than two servers busy. Thus, there
is a fairly large number of transient states (37 recurrent states, 120 tran-
sient states, 4 forbidden states). As more elements are consolidated with

this fragment, the ratio of transient to recurrent states will remain much

the same, at best decreasing to 2:1. The states of the example were easy
to identify through physical insight, a weapon not available to the compiler,

A general solution to the problem of eliminating a transient states
is not available. A more specific ""fix"" must be one which is guaranteed
valid for every network and every definable element and connection, In
other words, it should not unnecessarily restrict the already restricted
class of models which can be treated by QAS. Especially, it should not
result in a restriction on inputs to the compiler which cannot be enforced
syntactically before compilation is attempted.

Fortunately, there is a class of transient states which is relatively
easily recognized and which includes those of the example. The recom-
mended solution will eliminate this particular kind of transient state,
and result in perfect pruning of states for the random branch. Figure
5.15 illustrates various cases of communication among transient (shown

by circles) and recurrent states (shown by x marks) for a total of three
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states.

(a) O—»—0—»—x (e) mx
(b) o ®>=—x (f) o—»x X

(c) O/DX (g) X—C::X
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The procedure recommended is that. subsequent to the absorp-
tion of each connection, the states which are not '"target states' of any
event be successively trimmed from the state set until no more such
states can be found. Since case (a) of Figure 5.15 is representative
of what happens in the random branch example, the need for success-
ive trimming should be clear. The target states of an event q‘;d (either

auto- or exo-) are found by the expression

using the "back projection" operator 1 previously defined.
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Figures 5.16 and 5. 17 illustrate the programs required, and show
how the removal of previously located transient states can be efficiently
accomplished while new transient states are being sought., The set T1
represents a set of known transient states, while the set T2 is a set of
states formed by starting with the state set and repeatedly deleting tar-
get state of events as they are sequenced through. Once T2 is found to
be empty, we know that no further transient states will be found by this
method. However, the sequence must be continued if T1 is not empty,
so that all previously located transient states are removed from all
events. Figure 5.17 is not particularly efficient as shown, since cal-
culations of set-differences, and evaluations of i are performed even
when some components (T1 or T2) are known to be empty. Suitable
switch setting or branching can make this program highly efficient since
the most probable situation is expected to be the case with T1 empty,
and since T2 is expected to be frequently empty after only a few events
are examined. Figure 5.18 shows one possible configuration which will

take advantage of such information,

5.6 The Result of Collection, Absorption and Trimming

After repeated collection of associates and absorption of connec-
tions, the working network structure will eventually lack remaining
connections. At that point, the network structure will ordinarily look

like Figure 5,19, with a single element having no ports or exoevents,
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A more efficient ""test and trim' program.
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Typical result of absorption of all connections,
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and a large set of autoevents. The information in this set of autoevents
describes the information in the matrix of transition intensities for the
network, which must be prepared next.

It is, however, possible that the network will consist of more than
one element, with all the elements isolated from one another. There
can still be no ports, since there are no connections, and there were
originally no unconnected ports. This multi-element condition is the
result of the original network consisting of two or more isolated parts.
This implies that the model described was, in fact, several models,
each of which has been compiled here. At present, this situation can
be treated as an error condition. Nevertheless, it offers interesting
potentialities for more flexible use of the system, and future implemen-
tation should probably allow for it. In that case, procedures would be
needed for identifying which isolated network was to be solved, and for
what variables. For the time being, however, it is easier to give an
error return if the result of absorbing all connections is a network with

more than one element,






6. THE STATE AND TRANSITION-MATRIX STRUCTURES

In the numerical calculation of equilibrium probabilities, it is neces-
sary to repeatedly multiply the "matrix" of transition intensities by a
probability "vector.'" The autoevent set resulting from the repeated
absorption essentially describes the matrix of transition intensities: the
set bk describes a set of columns of the matrix which contain the inten-
sity kg while = describes how far off-diagonal the intensity e is in
each of these columns—hence defining the row in which each can be
found. The state set resulting from the repeated absorption describes
the index set of the probability vectors. (To each state there must
correspond a unique probability in the probability vector),

Because of the multidimensional description of states, however,
the structure that results from the repeated absorption is unsuited to
rapid execution of the matrix-vector multiplication. To use this struc-
ture in its original form one must either spread the probability vector
over a prohibitively large area of memory so that a very simple formula
can be used to find a probability when a state is given, or one must
spend enormous amounts of time in the process of state mapping re-
peatedly upon each multiplication. The large number of dimensions
involved makes it likely that a simple linear mapping of a large rec-
tangular prism containing all the states may actually use hundreds or

even thousands of times as many locations as there are states. Even

91
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so, that mapping would have to be performed twice with each scalar
multiplication in the matrix multiplication, and would be dominant in
determining the time required for the operation. Any more efficient
mapping would require much more time and be completely unreason-
able. Such time demands would defeat the primary purpose of this
project, which is to provide sufficiently rapid (and inexpensive) res-
ponse to enable the user to experiment with models on the computer
in a symbiotic manner,

As a consequence, the only alternative is to prepare a new struc-
ture which is well suited to the matrix-vector multiplication-operation
operation, and permits rapid execution with minimal storage require-
ments,

The expense incurred is the addition of another stage of transla-
tion between the consolidated network structure and this new structure,
This operation is a part of the compiler and was shown in the flow dia-
gram in Figure 5.2, The objective is to allow the matrix-vector mul-
tiplication to proceed with such computational efficiency that the time
taken is only ten to twenty percent greater than that taken by the scalar
multiplications and additions which are inherent in the matrix operation.
This section will describe first the state mapping function and the
structure which supports it, It will then describe the structure to be
used to represent the matrix. Section 6. 3 will finally describe the

procedure used to create these structures.
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6.1 The State Mapping Function

To obtain an efficient use of memory for the probability vectors,
the state set should be mapped onto a consecutive set of integers.
This has the advantage of minimizing the number of pages to be used

for the probability vectors, and hence decreasing the elapsed time

(rather than cpu time) of solution under dynamic paging in the computer,
The state set has been represented as a union of rectangles (in n dimen-
sions). Let the state set to be mapped be S, and let

S = s1 usQ UM,USN (6.1)

where SV is a rectangle,

S
N

{VLJ K (6. 2)

Each S is an integer, ceorresponding to appropriate values in the n-
s

tuple structure and n is the dimension of the set, for u=1,2,..., NSO
The mapping will associate a unique integer with every state by

providing a simple expansion of each rectangle. Let d ) be the car-

dinality of the union of the rectangles Sl’ coas Su~l . ’
v-1 -1 N
5 - # 1[1 S, | = Zﬁ #(8,) (6. 3)
and let
ol = 0 (6. 4)
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Then 6 , F 1 represents the state number corresponding to the lowest
0
numbered state in Sy. The numbering of the remaining states within Sv

is according to the usual rectangular mapping used in most programming
systems, Letbd y be the product of cardinalities of the previous i-1 di-

i
mentions of Sv , S0 that

5 y " 1 (6. 5)
5 v(isl) = 5 Vi(VV12 - VVil +1), i=1,...,n. (6. 6)

Then, accordingly, a vector x = < SRR > which is a state in Su

will be mapped to the integer

-v )o +°°°+(Xn_vu )GVQ (6.7)
nl ™n

In this manner, each of the states in S has a distinct mapping x

and the states in S map to a set of consecutive integers, {1,...,0 N 0}0
S
Complete information required to use the state mapping, Eq. (6. 7),

is given by the two-dimensional array < & 5 cv=1l,..., NS’ i=0,1,...,n >,
i
The state mapping structure produced by the compiler is simply a MAD

(or FORTRAN)-type two-dimensional array of halfword integers, as-
suming (reasonably) that the number of states will always be less than
65, 536.

Operators required to construct this structure include one (a
""state structure generator'’ which prepares the structure when the
state set in n-tuple set form is given, and another (a 'state mapper")

which uses this matrix and the n-tuple form of S to obtain the mapped
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value of a given state according to Eq. 6.7 .

6.2 The Transition Matrix Description

The matrix structure must describe the autoevents = in such a

form that no state mapping need be performed during matrix-vector
multiplication. It should permit rapid execution and efficient storage
for the common forms encountered.

The requirements seem to demand that the structure be in some
type of outline form whereby events which occur for rectangular sub-
sets of the state sets can be compactly represented and evaluated
through direct indexing on the data of the structure. One such struc-
ture was proposed in [3] for a somewhat more general class of prob-
lems, and that reference gives some useful ideas. A more special-
ized structure which appears to be more efficient will be incompletely
presented here.

The structure is illustrated in Figure 6.1. A value-line <‘u1 or
Hy in the figure) indicates the value of a collection of identically valued
matrix elements. A block-line (509 g in the figure) indicates the first
row index (BO) of a subset (called a "block') of the collection of iden-
tical matrix elements, and a number (g) which, when added to a column
index, gives a corresponding row index for each member of the block

of matrix elements. The members of the block are identified by a

series of indexing-lines (B, in the figure), which indicate increments
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Figure 6.1 Illustrating a matrix structure.

(6) to be applied to the column index to get another column index,
and counts (f) of the number of times the increment is to be applied.
Each line is a word: the Bo's. o 's. and é's are halfwords, the §'s are
bytes. and the remaining bytes are coded with sufficient information
so that line types can be recognized.

This structure. when the details are worked out, should be
capable of describing any matrix at least as efficiently as by a list
of triples (value, row index. column index), and much more efficiently
when element values are repeated diagonally in a regular pattern. as
will be the case for QAS transition intensity matrices using the above-
described state mapping procedure. Because the information con-

tained in the indexing-lines is exactly the information required for
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quickly loading and testing "index-registers, ' rapia execution of the
matrix-vector multiplication should also be assured.

To further illustrate. consider the matrix U:

| !
- L :
X A }
CH X : A '
.l__. ! ta s e b _1|. ______ |
I | . !
tX ! ! '
| '“: | : |
l’w“_f B A L S U
| KX ! LA
u: ! ILL‘ X | : >\
'I . X !
U - ; |
LR . I -
: : H . X :
! ! Mo “ : !
S
-.__(-........T _____ ..%.._. m e e " —— e
| | T
: X
i : | ~ X
) | z ' J
! ? ’

where only two sets of elements of the matrix are shown. These
elements would be described in the matrix structure as in Figure 6. 2,
The first block is the set of values "'y in the fourth, fifth, seventn,
eighth. tenth. eleventh, thirteenth. and fourteenth rows. Thus the

ﬁo index is four. Each element of this block is in a column whose
index is two less than its row. Thus the g for this block is -2. The
value repeats twice with unit spacing. and that pair repeats four times
with spacing of three. Two other blocks consisting of single elements

(i. e. b-lines only) complete the treatment for y. For " A" there is a



B
bl 4 |-2
i 2 I
i 41 3
bl 3 | -2
bl 2 |-
v A
b{ I |+5
i 31 |
i 2| ©6

Figure 6.2 The structure for the matrix in eq. (6.9).
single block starting in the first row (g =1, g=5, etc.).

Multiplication of this matrix by a row vector proceeds by con-
sidering each block of the matrix structure in succession. The value
. is placed in a register and index registers are set up for nested
loops, with depth of nesting equal to the number of i-lines in the block.
The BO gives the initial displacement of index of the appropriate ele-
ment on the vector to be multiplied by y. and g indicates the increment
to be used to locate the index of the element of the result vector into
which the product is to be accumulated.

To be more concise. if y and x are vectors and

y = xU.

and if a vector y is initially zero. then y(50+ g+ il + 12 +...) will be
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replaced by
y(,80+§+11+12+”0) + U * X(ﬁ0+il+iz+”,)

repeatedly for each i, = 0,8 ,,26,,...,8;0,; 1y=0,6,, 20 55000 52525

S &
ceo3i =0,6,20 ,...,8.0 ; where q is the number of i-lines in the
q a q q4a
block, This replacement is repeated for each block of the matrix struc-
ture. The result is the vector y.
By suitable use of registers, this operation should not require

significantly more time for execution than is taken by the scalar mul-

tiplications and additions alone.

6.3 Creation of Transition-Matrix and State Mapping Structures

The proposed outline structure for matrix representation is
well suited to the storage of transition intensity matrices because it
is efficient for both isolated matrix elements and for nested, diag-
onally repetitive elements, These two cases occur with great fre-
quency in transition intensity matrices of Markovian queueing net-
works,

The final subprogram of the compiler has the task of providing
the state mapping structure and the transition matrix structure.
These are created in two separate areas: the state area, and the

matrix area. These areas are created by suitable calls to the QAS

supervisor,
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The state and matrix constructor (a subprogram of the compiler)
contains two subprograms.  The first creates the state area and its
structures, The second converts an autoevent into a series of lines in
the matrix structure. The state and matrix constructor calls the lat-
ter subprogram once for each autoevent in the network. The charac-
teristics of these subprograms are summarized in Table 6. 1.

The state area must contain three items: the state set (in its
multidimensional form), the ring which identifies the state variables,
and the state mapping structure, The first and third are required
for the state mapper (which provides a mapped state when a vector is
given), the second is required in the specification of results (cf., sec-
tion 7). All three are required in the generation of the matrix struc-
ture and the compilation of the results matrix, Figure 6, 3 illustrates
a reasonable form for the structure in this area., The symbol table is
used precisely as it was in the network and working network structures.
The procedure for constructing the state mapping structure should be
clear from eqs. 6.3 - 6.6 .

Two difficulties will be encountered in programming the matrix-

event generator, In converting an event

e = <o g > (6.9)
to matrix form, we must note that: first, although a part of bk may be
rectangular, it will map into a "block™ in general only if it is also a

subset of the state rectangles; and, second, the "increment" ) will
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map into a constant only when it does not represent a crossing of a
boundary between state rectangles. Thus, if the state set were of

two dimensions and consisted of two rectangles S; and Sz, and b

1 k
1 bk may still need to be represented

by more than a single ""block" in the matrix, as illustrated in Figure

were a rectangle contained in S

6. 4. Here the event is assumed to take each state in the direction of

Dz.

AALE S,

Figure 6. 4
Illustrating ''splitting' of bk for constancy of g.
All but the rightmost column woula have a constant mapped incre-
ment ék' found by simply weighting the i-th component of &y by the

respective However. it can be readily shown that the mapped

1i
increment (é'k) would generally be different for each of the states in
the rightmost column of bk’

Some procedure like that diagrammed in Figure 6. 5 would have



bﬂ‘_ b' nng(sul)
b'e—b'-7g(Sy,)

YES

b"= ¢

NO

//\NCORPORATE \
o" INTO MATRIX
\STRUCTURE FOR¢
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| NCORPORATE
S, CROSSING

STATES (b) INTO

STRUCTURE FORE

. b= Cf) P " . ] |

B4

\YES

Figure 6.5 Tiiz matrix-event generator,
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to be used to take account of these difficulties. Here, one first deter-
mines which of the SV rectangles contains which portion of bk“ These
are designated b’, and are removed from the bk. Then one determines
which of the b' cross into a different state rectangle. These are desig-
nated b", and consist of a rectangle or set of rectangles readily mapped
by a block or blocks. The remainder of the b' must be treated indiv-
idually by a routine (labeled "incorporate Sz/ crossing ...").

Experience with handworked examples suggests that the boundary
crossing cases can fairly frequently be added to existing blocks, but
in a nonpredictable way, and that this is sufficiently frequent to warrant
considering a scan in the "incorporate Su crossing. .. ' routine which
adds stray terms to existing blocks. However, the cost of such a scan
and the typicalness of the handworked examples are still imponderables.
In any event, the advantage of treating transitions within a state rec-
tangle by blocks in the structure, rather than individually, seems un-
questionable, There should be a small number of state rectangles rep-
resenting large numbers of states, giving major advantage to the tech-
nique,

It should be declared also that since execution of the matrix-
vector multiplications will probably not use every indexing line as a
register (hence fast) operation, and since order of indexing-lines within

a block is irrelevant, the procedures should place the indexing-line

with highest repetitivity (8) first in every case, on the assumption that
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only the first one will involve exclusively register-to-register indexing.

The extension of this idea if more registers are available is obvious.
Upon completion of the execution of the state and matrix construc-

tor, the working network area contains no useful information, and will

be cleared.



7. THE SOLUTION FOR EQUILIBRIUM PROBABILITIES

Once the matrix structure has been formed, it can be used to
calculate the equilibrium probability of each state. A single command
will initiate the process, which makes use of three areas: the matrix
area, a state probability area, and a working probability area. The
latter two areas, which will contain vectors of state probabilities,
are created upon entry to this process. The working probability area
is temporary and will be destroyed upon completion of the process.

The input of this program is the matrix, a specification of de-
sired accuracy, and a specification of the maximum number of itera-
tions to be allowed (which provides a limitation to the investment in a
run, protecting the user from excessive expense for ill-conditioned
problems). The output is the equilibrium state probability vector,
which is left in the state probability area, and an error estimate, also
placed in the state probability area. Table 7.1 summarizes the char-
acteristics of this program.

The numerical technique to be followed is an iteration process

of the form

Tl = ’J‘TmA (7.1)

where A is a stochastic matrix, and 7 is a state probability vector.
When A is formed from a matrix of transition-intensities in a partic-

ular way, and when the initial iterate T is suitably chosen, then the

107



108

QUON

sanITIqeqoad wniiqirinbyg jo uornjos oy werdoad

qoyms
UOT)TPUOD
-UIN}RI ‘I0IJ0
90U3BI9AUDD)

*X1J)eW 9]
Aq pojuasaadaa ureys
AOYJIBIN IOJ SOT1ITIqR
-qoad wmrxqirinbs a
sondwod pur ‘seage
1031994 Aynfigeqoxd
wnrxgifinbe dn sjog

JUnod
TOI}EIS}L ‘9oue
=I9[01 ‘XI1I}BIN

I°L 919®L

JI3A10S L1719
-eqoxd 91e1S

SUOTITPUOD
JIOJIH

sI9joweIed
mdinQ

poawixojrag suorjexadQ

sjuswnday jndug

QWEBN 9UIjnoy



109

limit of this iteration is the equilibrium probability vector

7 = lim T (7.2)
n-co

A detailed treatment of the numerical technique is provided in [1],
which describes the prototype program, RQA-1.

The matrix stored in the matrix area is not precisely the matrix
of transition intensities, since it does not include diagonal elements.

T

Letd™ = <d > be a column vector consisting of the diag-

EARRE dNS
onal elements. Let Q be the matrix actually stored in the matrix
area. Then the matrix U of transitional intensities is

U=Q-D (7.3)
where

d = Q1 (7. 4)
and 1 is a column vector of appropriate dimension whose elements

are all unity. Then, according to eq. (12) of [1], with a suitable

change of notation, the stochastic matrix A is given by

A = AQ+D)+1 (7.5)
where
.99
A = m (70 6)

1

Thus the iteration process is

T = ‘Nm(AQ) - WHAD T (7.17)

n+1
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This program follows the basic outline of the RQA-1 program,
which we will assume is familiar to the reader. It differs, however,
in several major ways.

First, because the matrix stored describes Q rather than U,
the iteration process is different. The values of A and d must be cal-
culated, AQ is formed, the previous iterate T, is copied from the
probability area into the working probability area, and then ﬂn(AQ)
is accumulated onto the probability area, forming WH(AQ) + Fin-
ally, d is used to accumulate ?Tn)AD onto the same area, to complete
eq. (7. 7).

Second, since the matrix Q is formed automatically, there is
considerably less demand for testing and diagnostics, and the sizes
of the arrays are known and do not need to be calculated.

Third, there will be no repeated runs in any particular sys-
tematic form, so that the choice of how to form the initial iterate
is narrowed. It is also narrowed by the greater remoteness of the
user, since he has no knowledge of the state space and is unlikely to
want to provide his own initial iterate,

Fourth, this program is designed as a subroutine, rather than
as a main program, and the discipline subroutine (DISCPL in RQA-1)
is no longer needed.

Finally, output is the responsibility of another program, the

result of this program being merely the probability vector,
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A flow diagram for this program is shown in Figure 7.1, where the
names of corresponding RQA-1 programs are inserted (in parentheses)
where appropriate. A default is provided so that, if a matrix has not
been prepared, the program supplies a trivial solution. This prevents
system shutdown over such errors, with the error having a clear mean-
ing to the user,

It is expected that an interface program will be created which
will allow a batch or teletype user to directly supply a list of auto-
events and state rectangles, and a description of a results matrix (see
section 8), and obtain a solution without involving the compiler and the
network generation programs. (In this way we obtain a very powerful,
primitive model solver which is akin to, but an improved version of,
RQA-1.) This interface program, which calls on several QAS sub-

routines including the '"State Probability Solver, ' will be called RQA-2.
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8. SPECIFICATION AND CALCULATION OF RESULTS

The results desired by the user of this system will not ordinarily
be the state probabilities in their raw form. Rather, they will be vari-
ous quantities which are readily computed from the state probabilities.
For example, one may desire the probability distribution of the number
of tasks in a particular queue; or the mean queue length; or the proba-
bility that a particular server is ir use; or the mean rate of service
completions in that server; or the rate of transfer of tasks through a
particular port; or the probability that a task is blocked at that port.

Each of these represents a weighted sum of state probabilities,
or a set of weighted sums. In other words, there is a matrix [— such
that the result vector w (perhaps with dimension one) is

w o= 7l . (8.1)
In addition, many other useful results, while rot of this type, are read-
ily found from results which are of this type. For example, the ex-
pected waiting time in a queue (which is the mean number of tasks in
the queue, divided by the mean rate of task transfer into its input);
or the mean time between service completions of a server (which is
the reciprocal of the mean rate of service completions). Such results
can be treated as functions of weighted sums

W = f(w) (8.2)

which are describable by subroutines.
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Furthermore, in any particular solution, the user may have sev-
eral results which he would like to observe simultaneously, so that the
vector w may consist of several results strung together, and the func-
tion f may be a set of functions on different parts of the vector.

There are four separate operations which QAS must be prepared
to carry out to produce output:

(1) The specifications of results must be retained in a storage

structure,

(2) The matrix [ must be prepared.

(3) The vector w must be computed.

(4) The result w must be transformed into the format required

for SELMA.,
The commands associated with the first operation will be added to the
generation phase commands, while the last three of these operations

will together constitute a phase called the results phase.

8.1 The Specification of Results

The need for a separate structure which '"'remembers' the re-
quested results stems primarily from the desirability of allowing
SELMA users to specify results at any time during the development
of the network model. Often he will want comparable results for sev-
eral modifications of the network, and will want to change the network

without changing specifications. Often, too, he will want to make minor
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alterations, as an afterthought, long after he has decided what results
are to be observed. The specification can not be transformed to its
final form (a matrix I ) until the network is complete and the state
mapping structure determined. Thus. the results specifications must
be saved, awaiting a command to prepare the matrix and to solve for
the results at the appropriate time.

The structure which accomplishes this should be available during
the generation of the network, however, and consequently should be

placed in the network area. During generation, changes in the net-

work may invalidate existing result specifications, and procedures
which are responsible should make adjustments. For example, a queue
whose expected length has been specified as a result may subsequently
be eliminated from the network. During the operation of the "destroy
element" command in network generation phase, a test should be maae
to determine if a result specification is involved. and if so to eliminate
the result specification at the same time.

The reference of a specification to an element or a port is syn-
tactically like a connection. in that a aestruction of the object requires
a choice of destroying the connection or refusing to aestroy the object.
Thus, one form which this structure can take is a ring structure form.
adding new attributes to the element ana/or port blocks and connecting
them to appropriate ""result blocks. ' Since the number of results

specifiea will generally be very small. most such attributes would
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normally have their default (empty) values. A more efficient, but
less uniform. structure would provide a simple table of result specifi-
cations which can be searched by generation routines and rewritten

in the (improbable) event that alterations are required.

A minimum set of result specifications is tabulated in Table 8. 1.
The purpose of each of these specifications should be self-evident,
except for the sixth. By means of this latter specification. it is pos-
sible to establish the probability that an input port is in a blocking state.
or that an output port has a blocked task. All of the specifications in
the table represent weighted sums of state probabilities.

Since commands altering the results specifications will be inter-
mixed arbitrarily with generation commands., and their structures are
in the same area. these commands are best treated as additional rou-
tines in the generation phase program. Table 8.2 indicates a minimal
set of results specification routines needed to carry out alterations

of the results specifications.

8.2 The Calculation of Results

The calculation of results. which can result from a single QAS

command issued after the compilation of a network. involves., as we've

|-

said, three operations: preparation of the matrix | computation
of the vector w (cf., eq. 8.1 ). and formatting for output to SELMA.

In this section, we will assume that the last operation constitutes a
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simple supplying of the appropriate portions of the vectoer w with the
copies of the results specifications so that the result can be identified

by SELMA. Thus, we assume that SELMA takes responsibility for mak-
ing necessary further transformations, either of the form of eq. (8. 2)
or into graphical displayable form.

(If this is not the case, and if QAS is to provide more general re-
sults than those which were described in Table 8. 2, or if QAS must pre-
pare the output graphics, then further structures must be supplied to
accept format specifications and function identifications in the results
calculation phase. )

The commands for this phase are summarized in Table 8. 3. The
only nontrivial operation in the figure is the preparation of the
matrix [ . For this purpese an ared is created, called the results
matrix area, where the structure describing T will be kept. The
matrix [ should probably be represented in matrix outline form, with
the modification that the increments g should be replaced simply by the
row index of the result, This reflects the fact that repetitive element
values in r will generally be along columns instead of diagonals. Nat-
urally, the vector-matrix multiply operator will need to be different,
reflecting this change.

To illustrate how this process would proceed, consider a column
of the matrix corresponding to the probability that a particular queue

has length two, The elements of this column will consist of ones at
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each row corresponding to a state for which the queue length is two.
This set of row indices is the set found by restricting the state set to
the value 2 in the appropriate dimension. An operator ("set restric-
tion'") for creating such a set of n-tuples already exists (see Table

4, 4), and is readily used. A set of iteration blocks for the matrix
outline corresponding to this column can be generated from the set

of n-tuples using programs developed for the transition matrix trans-
lation,

The operation of preparing columns of the results-matrix are
correspondingly simple for every specification-type in Table 8.1 ex-
cept type 5. For this type, the flow rate through a port is to be cal-
culated. Equivalently, the probability intensity of occurrence of a
particular spontaneous event must be shown for each state of the net-
work., Since the autoevents which can cause the spontaneous event
are not obvious, the desired probability intensities are not easily
found, particularly from the information in the network structure,

Nevertheless, the result specified in type 5 specification is val-
uable, and worthy of the difficulties, What is required is a form of par-
tial compilation of the network, exploring only those connections whose
spontaneous events can cause the spontaneous event under examination.
By this procedure, each autoevent of the associates of the connection
are examined to find the subset of their autocondition sets which are

""taken into" the forbidden states of the connection by the autoevent.
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The intensity (u) of this autoevent is added to the matrix outline for the
state subset so found. The exoevents of the associates are similarly
examined. and whenever a nonempty subset of the endocondition set at
a port is found which is ""taken into' the forbidden set by the exoevent,
the connection at the offending port is absorbed. The new autoevents
are then examined as before, and the process repeats until no more
absorptions are necessary. This process will usually involve absorp-
tion of only one or two of the connections, and can make good use of
existing compiler subprograms. All the intermediate results can be
kept in the working network area as the compiler does.

Alternatively, the network can be compiled with the connection in
question being absorbed last. The desired information is readily
found in the process of the final absorption, for which a special sub-
routine can be written that prepares the column of [ instead of actually
absorbing the connection. Of course. this method is expensive since it
duplicates the process of compilation.

The program which prepares the results matrix continues to add-
on columns to the | matrix. suitably identified with the specifications.
until all specifications have been treated. Thus all results are computea
simultaneously when the matrix is multiplied by the equilibrium probabil-
ity vector.

The computation of the matrix | as an intermediate result. rather

than computing the results directly, will facilitate future generalization
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of QAS whereby parameter values will be permitted to be changed without
necessitating recompilation of the transition-matrix or the results-

matrix.






9. EPILOGUE

It has been necessary to describe the system in considerable detail
in order to work out the critical interrelationships between the major pro-
cesses and data structures. In this concluding section, a series of ob-
servations will be made about some auxiliary matters which are not cen-
tral to the main interrelationships, and hence do not need to be presented
in such detail. These observations represent a summary of organization
concepts, notions for useful generalization, and certain reservations about

unresolved theoretical questions.

9.1 Organization

We have described a system for the solution of simple stochastic net-
works as an amorphous collection of well-defined routines which operate
upon a collection of well defined data structures. The organization of
this system is expected to be imposed by the calling system (in this case
SELMA), and ultimately subject to the whim of a user. Such an organiza-
tional philosophy is a natural one for a programming system designed
for conversational use, and imposes a minimum constraint upon the
thought sequence of the user,

To implement this organizationa] philosophy, each routine should
be designed to function in any position in a command sequence without
catastrophe. The consequence of the routine's operation should be the

most logical and consistent one that could be expected. In some cases
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that might have to be an error diagnostic, and a default operation. In
any case, the response must be consistent with previous operations,

For example, if a "generation command” (altering the network)
is received after a "compile’ command, and then a "calculate-prob-
abilities" command is received, the most logical response to the latter
is to provide the probabilities for the altered network, rather than use
the results of the “compile” (a "transition matrix'), Thus, upon alter-
ing a network, the transitior. matrix from any previous ''compile"
should be destroyed, and the “calculate-probabilities’ should either
give an erreor indication (non-fatal) when ro transition matrix is pre-
sent, or it should automatically call the "compile" program. (If, for
some reason, the user desires that the transition matrix be saved be-
fore the network is altered, he should use a "documentation command. )

Simiar potential inconsistercies cecur in the alteration of results
specifications, the calculation of results, and the use of state mapping
structure and state probabilities. All of these conflicts can be re-
solved by insisting that the information in all areas be applicable, at
all times, to the current network and rasults specification, and auto-
matically clearing such areas whenever an inconsistercy arises., If
this is done, no control over the order of commands will be required
of SELMA by QAS. (SELMA may, however, impose such control it-
self. )

For convenience, the commands, and their associated phases and
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areas are listed in Table. 9.1. In the column marked "areas cleared,
areas in parentheses are those automatically cleared because of in-

duced inconsistency.

9.2 Documentation

Documentation phase commands will provide the ability of a user
to save any network structure, transition matrix-state mapping, results
specification, or results as a named file, and to restore them to QAS
for resumption of analysis. This documentation must be done in such
a way that QAS can, at a later time, be restored to an operating condi-
tion with the saved network.

Moreover, the file will have to contain sufficient information to
restore the displays of SELMA, via dataphone, since the PDP-9 has no

facility for long-term saving of display files,

9.3 Deferred Evaluation of Parameters

One of the most crucial improvements which this system requires
is a provision which permits compilation of networks and results speci-
fication with parameters in the elements’ parameter lists treated as
variables, With such a provision, the operation of compilation will
be expanded into three operations: compilation, evaluation, and calculation.
The first operation compiles the network, preserving an arithmetic des-
cription of how each parameter-dependent constant can be found. The

second operation uses the arithmetic descriptions to place the parameter-
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dependent constants in the appropriate locations of the transition matrix
structure. Then, when a user is exploring a single model with many
values of the parameters, the compilation is performed only once and
the evaluation (and calculations) are performed for each set of parameter
values.

With anticipated modes of use, based upon current usage of RQA-1
which has a similar feature, this will reduce the number of compilations
required by an order of magnitude or more. Since compilation is an ex-
tensive operation, this is an important economic improvement, and will
also provide a dramatic improvement of response time.

Indications are that compile time will not be dramatically in-
creased by implementing this capability, and that evaluation can take
considerably less time than compilation. An experimental prototype
of one system for accomplishing this was developed [8] for use on the

IBM 7090 and demonstrated feasibility.
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APPENDIX A

Preliminary Description of a Free-Core Manager

This is a brief proposal for a programming system which gives
and collects blocks of free core during execution of list-manipulating
programs. It is assumed here that three properties are required by the
programs which use this system:

1. Blocks of core in use must be format free. In other

words, there may be no reserved words or bits in
blocks which are in use.

2. Blocks of arbitrary size may be requested or released,

but certain sizes will be much more frequently used than
others.

3. No relocation is possible for a block once it is put to use.

This proposed system is believed to be a satisfactory compromise
between time, storage efficiency, and programming effort under the
above circumstances.

The area in which the blocks are to be allocated will be con-
sidered a large, named vector. Thus, if there is reason to segregate
blocks for economic or other reasons to different parts of virtual
memory, it is possible to exert such control. (For example: different
parts of the list structures to be generated may be in use at different
times, and it may be uneconomical to keep them all in virtual memory

at once.)
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The first n words of each area should represent some number of
categories (say eight) . Half of each of these words will be pointers to
a member of the category or back to itself if there are no members.
That is, they each form the head of a ring. The other half word
indicates the number of members in the ring. The members of the
categories are blocks of free memory in a particular range of sizes.
(Usually, most categories will consist of a single commonly used
size, with one category being a "miscellaneous' category.) These
free memory blocks will have the format shown in Figure A 1. Notice
that one-word "blocks' have a special format. For this reason, it is
necessary that one-word blocks always be in the first category.

There should be at least three calls to the manager system

ALLOC (AREA, SIZE)
GET (SIZE, AREA, ERROR)
FREE (LOC, SIZE, ERROR)

Their functions will be as follows:

ALLOC (AREA, SIZE)

Here "AREA" is the name of the vector of length SIZE which is
to be used by the manager as its working region. SIZE must be less
than or equal to the dimension declared (elsewhere, in the using
program) for the vector. ALLOC may be used as often as desired,
setting up as many regions as necessary. ALLOC sets up the category
heads in the vector suitably linked so that all categories are empty

except "misc' which contains one large free block representing the
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rest of the vector. Of course, ALLOC also puts the right head and tail

words on this free block.

GET (SIZE, AREA, ERROR)

GET is a function which locates a free block of the specified size
in the specified area. It has value equal to the address of the first
word in the located block. If a block of the exact size is not available,
GET splits a larger block. If no larger block is available a return is
made to the specified error statement label. The second and third
arguments are optional with default values "same as last specified
in an ALLOC, GET or FREE call", and "system return", respectively.

The procedure for GET is charted in Figure A 2. The operations
marked with an asterisk (*) are adjustable procedures which can be
controlled so that the sizes of remainders after splits have a dis-
tribution close to that of expected requests. They should be under
some control of the user, as also the choice of sizes in each caiegory
(which is made by a procedure in the FREE subroutine) .

FREE (LOC, SIZE, ERROR)

FREE is a subroutine which places a block back into an approp-
riate category of free core. LOC is the address of the first word of
the block to be released, SIZE is its size (an integer), and ERROR
is the statement label to which return is made when the entire
block is not contained in a current working region. The latter

argument is optional, with default value "system return',
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In order to avoid splintering of free core, which would result after
a long sequence of GET's and FREE's, FREE joins the block being
released to its neighbors if they are also free. The chart of Figure A 3
shows how this is accomplished. The symbols "F1(...)" and "F2(...)"
represent the left half word and the right half word of ..., respectively.

The operation marked with an asterisk (*) has a portion, loosely
under user control, which decides which size blocks to put in which
categories. It is through the '"*'" programs that the assignment
strategies can be adjusted to minimize unnecessary splintering by
taking account of statistical conditions of the user's list structure.
For example, use of categories should be with approximately equal
probabilities, and splits of large blocks to assign smaller ones should
generally produce remainder blocks of a size which is likely to be

needed.
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