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SUMMARY

The effect of twist on the natural frequencies of uniform and tapered non-
rotating blades and the effect of twist and blade angle on the natural frequen-
cies of rotating uniform blades are shown by means of charts. Both cantilever
and articulated blades are considered. Offset of the root support from the axis
of rotation is also considered.,

The Rayleigh-Southwell procedure for determining the effect of rotation on
natural frequencies of beam vibration is evaluated with respect to twisted rotat-
ing blades and found to provide a useful spproximation only in certain cases.

A relation developed by Lo and Renbarger for the effect of blade angle on
the natural frequencies of a rotating blade is found to provide a useful approx-
imation, under some circumstances, in the case of the fundamental frequency of
a twisted cantilever blade.
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INTRODUCTION

The seriousness of the rotor-vibration problem in rotating-wing aircraft
usually necessitates a fairly accurate knowledge of natural frequencies of blade
vibration at the design stage. It 1s, consedquently, desirable that efficient
means be available for the estimation of these frequencies.

While several analytical methods have been developed in this area, they all
involve lengthy computation procedures and can be applied efficiently only by
the use of automatic digital computing machinery. They are thus not well=-suited
for use at a preliminary stage of design.

A simplified procedure has been developed for the rapid estimation of flap-
wise bending frequencies of rotating blades for the case of zero built-in twist
and blade angle.l The application of this procedure is, however, not restricted
to untwisted blades, but may be extended to blades with moderate amounts of twist,
such as have been common in most helicopters in the past. It has been found that
the effect of twist, in these cases, is not significant.

The current and projected development of high-performance rotary-wing air-
craft, including convertible aircraft, is bringing with it a trend toward sub-
stantially increased amounts of built-in twist of the rotor blades, to the ex-
tent that the effect of twist is no longer negligible. Under these circumstances,
it is desirable that simplified procedures of more general applicability, includ-
ing the effect of twist, be available for the estimation of blade frequencies.

The present investigation was undertaken to satisfy this need.

While a generalized treatment of the twisted-blade vibration problem for
combined torsional and bending motion is available,2 it was decided to limit
present consideration to bending alone to avoid introducing at one time an ex-
cessively large number of additional parameters.

The objectives of the program were (1) to develop simple approximate pro-
cedures for the rapid estimation of natural frequencies of blade vibration, and
(2) to determine the effect of parametric variations on these frequencies and
so provide background information of value in design. Because of the complex
nature of the problem, particularly the coupling effects introduced by twist,
the first objective has been only partially achieved; however, much information
has been obtained in pursuit of the second objective.

The principal simplification investigated was that involved in the use of
the Rayleigh method to predict the natural frequencies of a rotating beam from



a knowledge of the corresponding natural frequencies and mode shapes of the non-
rotating beam. This method has been found to provide a good approximation in
the case of untwisted beams.l In the present work, its application to twisted
beams is evaluated.

Another simplification evaluated involves the application to twisted blades
of a relation developed by Lo and Renbarger for the effect of blade angle on the
frequencies of rotating untwisted blades.

To provide a basis for these evaluations and to provide information on the
effect of parametric variations, it was necessary to perform extensive computa-
tions using a more accurate method. A number of such methods are available°5“8
It was decided, after considerable investigation, that the method best suited to
the needs of the program and to the available computing machinery was one devel-
oped by Targoff,8 representing an adaptation of the familiar Holzer-Myklestad
method to include the effects of twist and rotation. An outline of this method,
as modified in the present work, is presented in the Appendix.

The coordinates of the blade are shown in Fig. 2. The x-axis is coilncident
with the undeformed elastic axis, which is assumed to be straight and to lie in
a plane normal to the axis of rotation, and which is in turn assumed to be co-
incident with the axis of centroids of blade cross sections. The z-axis lies
along the axis of rotation, and the y-axis is normal to the x-z plane and posi-
tive towards the leading edge of the blade. The nomenclature and sign conven-
tion for displacements, shears,and bending moments are illustrated in Fig. 2.
Moment vectors conform with the conventional right-hand rule.

In addition to the blade properties and parameters pertinent to the problem
of free vibrations of rotating untwisted blades at zero blade angle, namely,
spanwise distribution of mass and of stiffness about the major principal axis
of the cross section, type of root support, and rotational velocity, the follow-
ing properties and parameters enter the problem when the blade is twisted: span-
wise distribution of stiffness about the minor principal axis of the cross sec-
tion, blade twist, and blade angular setting with respect to the plane of rota-
tion.

The data may be suitably generalized by expressing all properties and pa-
rameters in nondimensional form. Vibration frequencies and rotational velocity
are nondimensionalized in the present work by multiplication by the quantity
VpoRI/EIlO, Two types of mass and stiffness distribution are considered, one
in which the mass and stiffnesses (both EI; and EI,) are uniform, and the other
in which the mass and stiffnesses taper linearly to zero at the tip. The lat-
ter distribution 1s considered only in the case of zero rotational velocity.
The relative stiffness of the blade about the major and minor principal axes
of the cross section is taken into account by means of the parameter y., Two
types of root support are considered, namely, cantilever and fully articulated,
and this support is considered to be located at the axis of rotation and, addi-
tionally, offset 5% of the rotor radius from the axis of rotation.
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SYMBOLS

offset of root support from axis of rotation
e/R

length of blade segment

1/R

mass of blade segment

/81,

JT/E1,

coordinate in negative direction of x-axis measured from outer end
of beam segment

coordinate in direction of x-axis measured from axis of rotation
X/R

bending stiffness about major and minor principal axis of cross sec-
tion, respectively

EI;/EI;, and EIp/Elp , respectively

Southwell coefficient for nth natural frequency [see Eq. (5)]
bending moment about major and minor principal axes of cross section,
respectively, when centrifugal tension is assumed to act along unde-

formed position of elastic axis

rotor radius

R
centrifugal tension,L/ﬁ 0Pe x dx
R X
J[‘ p x dx
X
1
d[\‘ﬁ X dX
X

shearing force in the direction of the minor and major principal axes
of the cross section, respectively
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By 0y

51762

Ol

by o,

angle between major principal axis of cross section and plane of ro-
tation

increment in B between blade segments
EI1 /Elz,
displacement of elastic axis in y- and z-directions, respectively

displacement of elastic axis in the direction of the minor and major
principal axes of the cross section, respectively

total twist in blade between x = 0 and x =R (= R3"')
© NpoR* /BT
Q NpoR*/El1,

mass per unit length of blade

p/Po

displacements in y- and z-directions describing shape of nth natural
mode of nonrotating blade

w natural frequency of blade vibration
Q rotational velocity

Subscripts:

R rotating

NR nonrotating

n order of natural mode

o value at x = 0

T value at x = R

Primes denote differentiation with respect to x.



THE RAYLEIGH-SOUTHWELL APPROXIMATION

In a free vibration of an elastic beam at one of its natural fredquencies,
the kinetic energy of the beam at zero displacement is equal to its potential
energy at maximum displacement. When the beam is rotating, the potential energy
includes a part associated with the centrifugal force field, in addition to the

strain energy.

Considering displacements both normal to and in the plane of rotation, the
kinetic energy may be written

R
; 1 2 2 2
K.E. = > URy f(;p (6yn + Bz ) dx (1)

where n refers to the mode under consideration.
Similarly, the potential energy may be written,
1 R
P.E. = =
2/

1" . n 2
(Ell (6yn sin B + By, cos B) +
0

El, (Syﬁ cos B + By sin B)g} dx +

R
1l =2 2 2 2
59 f {Tl(ayr'l + Bz, ) - p 6yn]dx s (2)
0
where the first term is the straln energy and the second term 1s associated with

the centrifugal force field.

Equating Egs. (1) and (2) and solving for agkf yields
R
L/ﬁ {EIl (dyy sin B + Bz, cos 6)2 + EIo (6y£ cos B + Bz, sin 5)2} dx
wg B = = .
Jf o (Syn2 + SZHE) dx
0

R
f {Tl (852 +8,'%) - p ayng} dx
0
R

JP P (Syn2 + SZH?) dx
0

(3)



Equation (3) is correct only when dyy and dz, represent the true mode
shape for the rotating beam, which is in general not known initially. It will,
however, provide an approximate value of the frequency if a mode shape is used
which resembles the true mode shape. If, as in the case of the untwisted beamn,
the rotation of the beam does not greatly change its natural mode shapes, it
can be expected that Eq. (3) will yield a satisfactory approximate value for WR,
when the corresponding mode shape, ¢yn) ¢Zn7 for the nonrotating beam is used.
When that is done, the first term on the right-hand side becomes the correspond-
ing natural frequency of the nonrotating beam, and the equation may be written

2

wp? = oyr,> + Kp @ (%)

where
R

f (T2 (" + 8227) - o Oy, ) ax
0

R

fo o (Fy® + §o.2) ax

and is seen to depend only on the mass distribution of the beam and the shape
of the nth natural mode when @ = 0. It is referred to as the Southwell co-

efficient.

PROGRAM OF INVESTIGATION

A program of computations was performed for selected values of the signifi-
cant parameters, using the methoddf the Appendix with the blade divided into ten
equal segments. The error in frequency introduced by this approximate representa-
tion when the blade is nonrotating was found to be positive and was estimated to
be about 1.5% in the case of the highest modes considered and to decrease accord-
ingly for the lower modes. There is evidence,as discussed in the following sec-
tion, that there is a further error introduced in the rotational case, which is
negative and which consequently tends to reduce the ratio of the higher frequen-
cies to their nonrotational values. These errors, while not insignificant in
themselves, should not be substantially influenced by twist, and consequently
would not be expected to mask the effect of twist on the natural frequencies.

As discussed in the Introduction, two types of mass and stiffness distribu-
tion were considered, namely, uniform distribution and linear taper to zero at
the tip. - The latter distribution was considered only in the case of zero rota=-
tional velocity. In addition, three values of y— 0, 0.1 and~f6?i—-were con-
sidered. The blades were assumed to be twisted linearly, the total angle of
twist ©, measured from the axis of rotation to the blade tip, being given values
of 0°, 15° and 30°. For each of these values of twist angle, three different
blade angular settings were considered, involving B values at the tip of 0°,
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15° and 30°. Two different types of root support, namely, cantilever and
fully articulated, were considered, the location of this support being either
at the axis of rotation (€ = 0) or offset from it by an amount equal to 5% of
the rotor radius (¥ = 0.05).

The rotational velocity parameter, p, was varied from O to 15, with the
bulk of the computations performed at values of O, 10, and 15. This range is
believed to include most practical cases. Mode shapes were determined in the
cases of zero rotation and this information was used in testing the Rayleigh-
Southwell approximation for the effect of rotational velocity.

Another approximation considered was that given by the following relation
due to Lo and Renbarger, for the effect of blade angle on the natural frequen-
cies of an untwisted rotating blade with y = 0.10

QRE = &R§=O - 0Fsin®p (6)

This relation,which is exact for linearized vibration theory for untwisted
blades, was tested for applicability as an approximation in the determination
of the fundamental frequency of a twisted, rotating, cantilever blade, using
the blade angle at the root.

DISCUSSION OF RESULTS

The Nonrotating Twisted Blade

The influence of twist and of the parameter y on the natural frequencies
of a nonrotating blade is shown in Figs. 4 to 7 inclusive. It is seen that the
fundamental frequency is almost completely unaffected by these two parameters
in every case considered. There is actually a very slight increase in frequency
with increase in twist, but it is not discernible on the graphs. The effect of
¥ can also be expected to remain slight as long as ¥ is not close to 1.

Figures 4 and 5 illustrate the effect of ¥ on the higher frequencies con-
sidered. On these plots the bending stiffness EI; remains constant as ¥ is
varied; that is, only the stiffness EI, is varied. This occurs directly as a
result of the nondimensionalization of w in terms of EIls,-

For y = 0, that is, for the blade infinitely stiff about the minor princi=-
pal axis, 1t is seen that the higher modes reduce in frequency as the twist is
increased. As y is increased, an additional spectrum of frequencies moves to
the left, which, for zero twist, corresponds to modes in bending about the minor
principal axis of the cross section (chordwise bending). It is seen that, when-
ever one of these frequencies is close in value to a frequency in the original
set for bending about the major principal axis (flapwise bending), twist has a
strong coupling effect and tends to drive the two frequencies apart.
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Figures 6 and 7 show the same frequency variations on a percentage basis.
It should be noted that some of the frequency ratios correspond to modes which,
for zero twist, involve displacement in the direction of the major principal axis
of the cross section. It is seen that, for the most part, the effect of twist 1is
substantially reduced with the introduction of taper in mass and stiffness.

The Rotating Twisted Blade

Figure 8 demonstrates the combined effect of twist and rotational velocity
on the absolute values of the natural frequencies for different values of y for
the case of the cantilever beam. It is seen that, when y = 0, the frequencies
are all well separated and the trends introduced by twist at zero rotational
velocity are maintained as rotational velocity is increased, except that the ef-
fect of twist on the frequency of the fundamental mode becomes quite pronounced
at the higher values of p if the tip blade angle is maintained constant.

This situation is altered considerably as ¥ 1s increased because of impor-
tant coupling effects introduced by twist. It is seen that for zero twist and
zero blade angle the effect of rotation on the frequencies for flapwise bending
is much greater than that on the frequencies for chordwise bending. As a con-
sequence, frequency curves for flapwise and chordwise bending may cross, and
this is indeed seen to be what happens for both 72 = 0.0l and 7% = 0.1, two
such intersections occurring in the latter case. However, when twist is intro-
duced, the intersections are seen no longer to occur. This must be attributed
to a strong influence of twist in coupling the flapwise and chordwise motions,
and it must be concluded that, due to this coupling, the character of the indi-
vidual modes changes substantially but continuously as the rotational velocity
is increased from zero to large values,

Presentation of the frequency data in the manner of Fig. 8, while valuable
in demonstrating the effects just discussed, does not lend itself well to a gen-
eralization of the data in a useful form. TFor this purpose it is preferable to
express the natural frequencies of the rotating blade in the form of a ratio to
the corresponding frequencies of the nonrotating blade and the rotational veloc-
ity in the form of a ratio to the fundamental frequency of the nonrotating blade.
This is done in Figs. 9 to 13 inclusive, which contain all the data generated.
These figures demonstrate the effect of tip blade angle, By, for given values
of total twist. In most cases data are presented for both zero and 5% offset
and for both cantilever- and articulated-type root support. It is seen that,
while the effect of blade angle is large in the case of the fundamental frequen-
cy ratio, its effect decreases rapidly as the order of the frequency is in-
creased, and, for many of the higher frequencies, is negligible. It appears
also that twist tends to reduce the blade-angle effect on the higher frequencies.

It should be noted that the discontinuity in slope of some of the curves
for zero twist, as, for instance, in Fig. 10a, is attributable to the fact that
the curves are plotted for modes of given order, and when a discontinuity occurs,
the mode of given order changes abruptly from a chordwise to a flapwise mode, or
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vice versa, as seen in Fig. 8. Since no abrupt change occurs in the character
of a mode with increase in rotational velocity when the blade is twisted, as
seen in Fig. 8, the curves for the twisted blades are smooth, The same is ap-
parently true when there is zero twist but the blade angle is different from
zero, as seen in Fig. 1lla, since blade angle in the rotational case also has

the effect of coupling bending vibrations in the directions of the two princi-
pal axes of the cross section. In the case of the higher modes, this effect ap-
pears to be small at moderate values of the blade angle, as seen in Fig. 10a.

The effect of offset of the root support is seen to follow the trend dis-
closed in Ref. 1 for untwisted blades; that is, the centrifugal force has an
increased stiffening effect and consequently increases the frequency ratio. In
view of the conclusion reached in Ref. 11, that the frequencies depend almost
linearly on the amount of offset in the case of an untwisted beam at given ro-
tational velocity, it appears safe to extend this conclusion to twisted beams
with moderate offset, and to determine frequencies for amounts of offset cther
than those specified here by linear interpolation or extrapolation from the
present data.

Figures 9 to 13 are not convenilent for an evaluation of the effect of twist,
For this purpose the plots of Figs. 14 to 18 inclusive are considerably more ad-
vantageous. Figure 14 shows that, for ¥ = O, the fundamental frequency of the
uniform cantilever beam is highly dependent on twist when the blade angle at the
tip is maintained constant and only slightly dependent on twist when the blade
angle at the root is maintained constant. This indicates that in this case the
dependence is primarily on root blade angle rather than twist. Furthermore,
the reversal in the trend of the curves with twist variation when the tip and
root angles are maintained constant, indicates that there 1s an intermediate
station, not far from the rootysuch that, if the blade angle is maintained con-
stant at that station, the fundamental frequency will be independent of twist.
It can be anticipated that its location in the general case will be dependent
upon the mass and stiffness distribution of the blade, and that it will tend to
move outward with increasing taper in stiffness.

In the case of the higher modes, it is seen that twist has a negligible
effect on frequency, irrespective of where the blade angle is maintained con-
stant. In view of this conclusion and the corresponding small effect of blade
angle, discussed earlier, it appears that the frequency ratios for these modes
when the blade is very stiff in chordwise bending relative to flapwise bending
(y << 0.1) can be estimated satisfactorily by neglecting blade angle and twist.
For this purpose the data of Ref. 1 could be used. It would, of course, be nec-
essary to determine the natural frequencies of the nonrotating twisted blade to
convert frequency ratios into actual frequencies. For this purpose, methods
such as those of the Appendix or Ref. 12 could be used.

Figure 15 indicates that, when 72 = 0.01, conclusions similar to those dis-
cussed above with regard to the fundamental frequency of the uniform cantilever
blade when y = O apply again. In the case of those higher frequencies which



evidence substantial coupling effects, there 1s now a moderate influence of twist
on the frequency ratio.

When 72 is increased further to the value 0.1, there is substantial coupling
between the fundamental flapwise and chordwise modes, but it is still seen (Fig.
16) that the frequency ratios for these modes are primarily functions of root
angle and are only slightly dependent on twist. In the case of the higher modes,
coupling is again seen to effect a moderate dependence of frequency ratic on
twist.

In the case of the uniform articulated blade, the relative absence of coup-
ling effects for the parametric values and modes considered produces results sim-
ilar to those discussed above in connection with the cantilever blade with y = O.
The fundamental frequency ratio is again independent of twist if the blade angle
is maintained constant at an intermediate station, which in this case can be ex-
pected to be considerably further out along the blade. The frequency ratio for
the second mode is seen to be virtually independent of both twist and blade angle
for moderate values of the twist and blade angle.

Evaluation of the Rayleigh-Southwell Approximation

The Rayleigh-Southwell approximation was applied to most of the zero-offset
cases considered and the results are shown in Figs. 9 to 13 inclusive. It is
seen from Fig. 9 that, with yZ = 0, the error introduced by the approximation
into the fundamental frequency of the uniform cantilever blade increases sub-
stantially with twist and with blade angle in the range considered. On the other
hand, these parameters are seen to have little effect on the accuracy of the ap-
proximation in the case of. the higher frequencies.

It should be noted that the results for zero twist and blade angle indicate
a discrepancy with corresponding results in Ref, 1 for the higher frequencies,
the error introduced by the Raylelgh-Southwell approximation being different
both in magnitude and sign. This indicates that the method of the Appendix
yields values for the higher frequencies of a rotating blade which are lower
relative to the corresponding frequencies of the nonrotating blade than they
would be in an exact determination. It is not expected, however, that this er-
ror is sufficiently affected by blade angle or twist to alter any conclusions
reached with regard to the effect of these parameters on the accuracy of the
Rayleigh~-Southwell approximation.

Figures 10 and 11 indicate that, as y is increased, conclusions similar to
those reached above for 72 = 0 still apply in the case of frequencies which are
not substantially influenced by coupling between bending about the two princi-
pal axes of the cross section. On the other hand, where such coupling is large,
the curves of frequency ratio depart radically from a straight-line variation
and the Rayleigh-Southwell approximation loses its value, except at low values
of the rotational velocity. This could easily be anticipated, since the mode
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shapes, in such cases, can be expected to change radically with increase in
the rotational velocity.

In the case of the articulated blade (Figs. 12 and 13), no strong coup-
ling effects, as discussed above, were encountered for the parametric values
considered. Consequently, the Rayleigh-Southwell approach was found to yield
a valid approximation in these cases. The error introduced by it is seen to be
relatively insensitive to twist, but to decrease somewhat with increase in
blade angle.

Evaluation of the Relation of Lo and Renbarger
in Application to Twisted Blades

The applicability of Eq. (6) in the determination of the fundamental fre-
quency of a rotating, uniform, twisted, cantilever blade, using the blade an-
gle at the root, is illustrated in Fig. 19. It is seen that the accuracy of
this relation deteriorates somewhat with increase in twist, but it still rep-
resents a valid approximation for estimation purposes. It is seen also that
the slope of the actual curves is very close to that of the approximation. Re-
sults are not presented for y2 = 0.1, since the large coupling effects present
in that case would be expected to make Eq. (6) inapplicable.

CONCLUDING REMARKS

On the basis of the data presented, a number of conclusions can be reached
concerning the natural frequencies of twisted nonrotating and rotating blades.
These are:

(1) The fundamental frequency of cantilever and articulated nonrotating
blades is effectively independent of twist if the bending stiffness about the
minor principal axis of the cross section is at least three times as large as
the bending stiffness about the major principal axis.

(2) The second and third natural frequencies of nonrotating cantilever
blades and the second natural frequency of nonrotating articulated blades de-
crease with increase in twist if the stiffness about the minor principal axis
of the cross section is very large in relation to the stiffness about the major
principal axis.

(3) When two frequencies of a nonrotating untwisted blade are close to each
other in value, the introduction of twist tends to increase the separation of

the two frequency values.

(4) The effect of twist on the lower natural frequencies of nonrotating
blades decreases with increase in taper of both mass and stiffness.

11



(5) The fundamental frequency of a rotating twisted cantilever blade de-
pends primarily on root blade angle and only secondarily on twist. It is inde-
pendent of twist when the blade angle is maintained constant at an appropriately
selected intermediate station close to the root. The location of this station
can be expected to depend upon the spanwise distribution of mass and stiffness.
A similar station exists in the case of the fundamental frequency of a rotating
twisted articulated blade, but it is located considerably further outboard.

(6) When curves of natural frequency versus rotational velocity for an un-
twisted blade set at zero-blade-angle cross, the introduction of twist or blade
angle tends to couple the corresponding modes and yields frequency curves which
do not cross.

(7) When coupling effects, as discussed in Item 6, are not appreciable,
the effect of twist and blade angle on the ratio of rotating to nonrotating fre-
quencies of the higher modes is small or negligible. FEven when such coupling
effects are large, the frequency ratio is not highly sensitive to blade angle
or twist.

(8) Offset of the root support increases the frequency ratio.,

(9) The Rayleigh-Southwell approximation yields results, in the case of
twisted rotating blades, which are similar to those of the untwisted blade at
zero blade anglel for the higher modes when coupling effects of the sort dis-
cussed in Item (6) are not in evidence. When such coupling effects are in
evidence, the approach yields very poor results except at small values of ro-

~tational velocity. The fundamental frequency of a cantilever blade is less
well represented by the Rayleigh-Southwell gpproximation when twist and blade
angle are introduced. On the other hand, the accuracy of the approximation in
determining the fundamental frequency of an articulated blade is relatively in-
sensitive to twist and improves with increase in the blade angle.

(10) The relation of Lo and Renbarger for the effect of blade angle on
natural frequency of rotating blades is found to be useful in determining the
fundamental frequency of twisted cantilever blades when blade angle 1s measured
at the root of the blade and the fundamental mode is not substantially coupled
with other modes.
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APPENDIX
METHOD OF ANALYSIS

The present method of analysis represents a modification of a method de-
veloped by Targoff,8 which in turn 1s an extension and adaptation of the famil-
iar Holzer-Myklestad method? to the case of bending of a twisted rotating beam.

The beam is divided spanwise into a number of segments, not necessarily
equal in length. The mass of each segment is assumed concentrated at its center,
and the bending stiffnesses EI; and EI, and angle of incidence B are assumed con-
stant between masses, appropriate average values being selected. The twist of
the beam is accounted for by relative rotations of adjacent uniform bays (be-
tween masses) about a spanwise axis, the change in angle, AR, being equal to
the total twist in a segment and occurring just outboard of the mass, as shown
in Fig. 1.

The quantities Vi, My, 81, 81, Vo, Mo, 04 and 8 (Fig. 3), applying when
the beam is at its maximum displacement in a free vibration, are defined at
stations along the beam, and may be represented, at any station, in the form
of a column matrix,

The elements of this matrix will vary as one moves along the beam, and in
such a manner that the variation can be considered to occur in a series of steps.
Moving from the tip towards the root of the beam, the change in {A} occurring
from a station immediately outboard of one mass to a station immediately out-
board of the next mass can be broken down into three steps, the first involving
movement across the mass, the second involving movement from one end to the other
of the weightless uniform bay, and the third involving movement across the dis-
continuity in B.

The relationship between the {A} matrices as they apply at the two extremes
of this travel can be represented as follows:
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8o = IR (E] [F] {A]n , (a1)

where [F], [E], and [R] are rectangular matrices representing linear relation-
ships corresponding to the three steps discussed above.

The [F] matrix, relating the {A] matrices on either side of a concentrated
mass, is written as follows:

[F] =
(1 0 0 w(P+02sin®®) 0 O O -mQ02sinp cos B
o 1 0 -m Q% x o o0 0 0
o o0 1 0 0o 0 o0 0
o 0 0 1 o 0 0 0 (a2)
0 0o 0 -m Q% sin B cos B 1 0 0 m {&f + Q% cos®g) [
o 0 0 0 o 1 o0 -m 0F x
o 0 0 0 o o0 1 0
O 0 0 0 o 0 0 1

It is seen that only the shear forces and bending moments are changed,
since there are no discontinuities in slope or displacement. The changes in
shear force are due partly to the inertia force associated with the vibrational
motion of the mass and partly to the component of centrifugal force normal to
the undeformed position of the elastic axis. The change in bending moment is
fictitious and arises from a special feature of the analysis. This feature in-
volves the replacement of the component of the centrifugal force parallel to
the undeformed position of the elastic axis by an equal force along the line of
the undeformed axis and an appropriate couple to provide static equivalence.
The changes in bending moment indicated in the [F] matrix are then due only to
the applied couple, the moment due to the force applied along the undeformed axis
being accounted forin the [E]lmatrix. When moments due to both sources are con-
sidered, the discontinuity in bending moment disappears. It should be noted
that, on the basis of this procedure, the bending moment at any station is not
M, but rather M plus the moment of the tensile force T acting along the unde-
formed elastic axis.

The elements in the [E] matrix are found by solution of the differential
equation for bending in the weightless uniform bay between masses. For bending
about the major principal axis of the cross section, this equation is written
as follows:

81" EI;y = Vis + (My + T 8y) , (A3)

where V3 and M; apply at the outboard end of the bay, and s is a spanwise co-
ordinate measured inward from the outer end of the bay.
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The solution of Eg. (A3) is

sinh (p1s)
b1

(Ak)
+ M {cosh (p1s) - 1& + %% {2; stah (pas) - s} ’

T P1
pl = —_|I|_.
J EI,

Substituting s = £, where £/ is the length of the bay, into this solution
and its first derivative and into a similar solution for bending about the
minor principal axis of the cross section, the elements of the [E] matrix are
obtained. This matrix is presented as follows:

51(s) = 81(0) cosh (p1s) + ©1(0)

where

[E] =

1 0 0 0 0 0 0 0
y/ 1 0 0 0 0 0 0
Eaz Ea2 Eas Esq 0 0 0 0
E41 E4o E4s Bsa 0 0 0 0
0 0 0 0 1 0 0 0
> (A5)
0 0 0 0 ¥/ 1 0 0
0 0 0 0 E7s E7e E77 Ezg
0 0 0 0 Ess Ese Esgy Ess
where
1 g
Ber = -Bep = -7 {cosh (pr4) - 1}
Eas = - 2L sinh (pif)
32 = " 'q 51 Pa
Ezs = E44 = cosh (pi#)
Esq = - pi1 sinh (p14)
By = 23X sinh (pid) - E}
T [p1
Fas = - = sinh (py4)
b1
E7s = -Egss = - 1 {COSh (p2t) - l}
T
Bre = - %2 sinh (p2f)
Ev7 = Egs = cosh (po4)

Evs - po sinh (po4)
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Egs = L1 L simn (pat) - %}
T (P2

g7 =--— simh (pst)
b2

It should be noted that Bi and Bé are positive for increasing deflection in the
positive direction of x.

The [R] matrix serves merely to rotate the coordinate axes through the angle
AB, and is written as follows:

[R] =

cos AB 0 0 0 -sin AB 0 0 0

0 cos AB 0 0] 0 -sin AB 0 0

0] 0 cos AB 0 0 0 -sin AB 0

0 0 0 cos AB 0 0 0 -sin AB
sin AB 0 0 0 cos AR 0 0 0

0 sin AB 0 0 0] cos AB 0] 0

0 0 sin AB 0] 0 0 cos AB 0

0 0 0 sin AB 0 0 0 cos ABJ

By a successive multiplication of the appropriate matrices, a linear rela-
tionship can be established between the {A} matrices at the root and tip of the
beam.

{A}root = [C]Edltip (A6)

Recognizing that the shears and bending moments are zero at the tip of the
beam, the {Aztip matrix can be reduced to a four-element matrix and the corre-
sponding four columns of the [C] matrix eliminated. 1In fact, these four columns
can be eliminated from the first [F] matrix at the tip of the beam, and succes-
sive multiplications will then yield an 8 x 4 matrix product.

Satisfaction of the boundary conditions at the root of the beam then re-
quires that the determinant of a 4 x 4 matrix formed from appropriate elements
of the [C] matrix be equal to zero. The elements of this determinant will be
polynomials in «®, and, upon expansion, a polynomial equation in «® will be ob-
tained. In principle, the natural frequencies of the beam could be determined
by solving for the roots of this equation. Such a procedure would be far too
cumbersome to be feasible, however,

A more practical procedure involves the introduction of trial values of w
into the various [F] matrices and evaluating the elements of all the matrices
numerically. The matrix multiplications can then be carried out numerically
and the appropriate determinant evaluated. The value of this determinant, which
may be termed the "residual," may then be plotted versus w or «f, and the lo-
cation of zeros of the residual will determine the natural frequencies of the beam.
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For the purposes of a parametric survey, it is desirable to treat the prob-
lem in nondimensional form., Toward this end, the {A} matrix can be redefined in
terms of nondimensional forces and moments as follows:

rV1R2 /EI lo1
MiR/EI;
81
51/R
{3 = \VoR2/EI1,
MoR/EI10
B2
85/R

(A7)

~

7

The corresponding nondimensional forms for the [F] and [E] matrices are as
follows, the [R] matrix remaining unchanged:

(F] =

1 0 0 Zp(M+p2sin®) 0 0 0 -1 pu2 sinp cos B
O 1 0 -1 pxu2 0O 0 O 0
o o0 1 0 0O 0 O 0
0 0 © 1 O 0 0 0 o
0 0 0 -Tpusinpeosp 1 0 0 Tp5 (3+u2 cos?p) [,(A0)
O 0 O 0 O 1 © -1 p x p?
0O 0 O 0 o o0 1 0
0O 0 O 0 0O 0 O 1
[E] =
[ 1 0 0 0 0 0 0 0 ]
1 1 0 0 0 0 0 0
Ezz Es2 Eas Esa 0 0 0 0
Eax E4o Eas Egq 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 7 1 0 0 » (49)
O 0 0 0 Ers Ezg Err Evs
0 0 0 0 Eas Eae Egw Fas
where
= = 1 - | T
E31 = - E_~ = - —— cosh M ,(Z e -1
: W2T { < EIi> }
Bao = - —77§aaa= sinh (p 7 [==
MNT EIy - I3
= = — [T
E = E = cosh A
33 4.4 <H EIl>
Boo = - [ ot (37 [T
EI, Tl



_ y [T
Evg = = ———— sinh é M2 -
M NT EIg 12
Eor = Egg = cosh |y ut I
§ 'E-:"TZ
= T - | T
B = = = sinh b =
78 w7 i 7 M i,
E85 = i‘_ 1 E_-EZ sinh (7 M f —_—E—- - 7
pT(pyd T Elz
= 1 [EL . /T
E = - —— [=—= sinh 1 =
87 "y T 7 K L,

For the case of zero rotational velocity, the [F] matrix is obtained direct-
1y by substitution of p = 0. When this substitution is made in the [E] matrix,
some of the elements are found to be of indeterminate form and a limiting process
must be applied. This results in:

[E] =

[ 1 0 0 0 0 0 0 0]
1 1 0 0 0 0 0 0
72 ry
S - L 1 0 0 0 0 0
oFT, I,
-1 - _
L L2 iy, 1 0 0 0 0
6EIq 2814 . (AlO)
0 0 0 1 0 0 0
0 0 0 0 7 1 0 0
272 o
0 0 0 o -l ya 1 0
2E12 E o
273 o272 -
0 0 0 22L 72k ) 1
6B, oFT,
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It has been found that a direct application of the method as indicated leads
to computational difficulties under some circumstances. Roundoff errors in the
succession of matrix multiplications and small differences between large numbers
in the determinant expansion may result in considerable random error in the values
of the residual, making it difficult to obtain an accurate estimate of the natur-
al frequencies. Such errors are negligible when the rotational velocity is small
and only the lower natural frequencies are desired. They increase with increase
in the rotational velocity and the order of the desired natural frequencies, and
may become very troublesome.

This difficulty can always be overcome by a sufficient increase in the num-
ber of significant figures carried in the computations, such as by the use of
double-precision programming in machine computation, but only at the price of
increased programming complexity, increased storage requirements, and greatly
increased computing time. An alternative scheme for circumventing it has been
devised by Targoff.l5 It involves a refinement of the basic method for values
of frequency in the neighborhood of an expected solution. The basic method is
applied at such a value, and three of the four unknown tip quantities (deflec-
tions and slopes) are related linearly to the fourth by solution of three of
the four homogeneous equations obtained from Eq.. (A6) for satisfaction of the
root boundary conditions. This corresponds to an approximate mode shape. The
correction to this approximation to yield the exact mode shape may then be rep-
resented as follows:

1 1
01 - 51a 01
01
! 1 s
82 - 83, 81
B2 - Bz, B2

where 81,, 83,5, and 8, correspond to the approximate mode normalized for &; = 1.
Thus, the following relation may be written:

0 0 o 0
0 0 o o0
1 8i, 0 of (s1-3i, 0
0 1 0o 0 51
{Agtip 0 0 o of |8 - 83, 8 (a11)
0 0 0 0] (8 -8z, 81
o &, 1 0
0 &, O 1

If this relation is substituted into Eq. (A6) and the successive matrix
multiplications are repeated, starting with the new 8 x 4 matrix introduced by
this substitution, it is found that the residuals determined in this manner
show greatly reduced scatter and permit a more accurate determination of the
natural frequencies. It should be noted that the present modification does not
change the values of the frequency at which the zeros of the residual occur,

19



since it involves the addition to one column of the determinant of a linear
combination of other columns, thus not changing the exact value of the determi-
nant but merely scaling down one of its columns.
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Fig. 1.

Coordinate axes of blade.
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Fig. 19. Effect of root blade angle on fundamental frequency of uniform canti-
lever blade.
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