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ABSTRACT

Receiver design and performance from a Bayesian viewpoint
depend upon a priori specification whenever unknown parameters are
encountered in the detection situation; any available information is
expressed in the form of an a priori density. A sensitivity index is
developed which measures the performance loss that occurs when the
receiver is designed to be optimal with respect to the given a priori
density g(-) but operates in an environment in which the a priori
density h(-) is considered to hold. The sensitivity index is shown
to possess several desirable features.

A comparison of receiver performance is made for the com-
posite hypothesis situation. The Bayesian approach is contrasted to
the classical approach. Initial indications were that classical statis-
tics (including parameter estimation) could be closely linked to
Bayesian philosophy in view of the fact that analysis according to
either mode often led to the same receiver. It appeared possible thal
many of the classical tests could be generated from a Bayesian view-
point by an appropriate assignment of the a priori density. Investiga-
tion revealed that this was not true'in general; and the conclusion is
drawn that the Bayesian approach is uniquely distinct from the classical
approach. Emphasis upon unbiasedness is an admirable quality of
classical statistics; yet incorporation of all prior information into
the detection model by Bayesian methods is considered a superior

attribute.
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The externally sensed parameter (ESP) receiver is reviewed
and its receiver operating characteristic (ROC) is evaluated for sev-
eral examples not considered before. The ESP receiver is a
hypothetical receiver whose performance with respect to the assigned
a priori density serves as an upper bound to the performance of the
optimum receiver.

Receiver design via numerical integration techniques is
demonstrated to be feasible for composite hypothesis situations
previously considered too complex to solve. The receiver is con-
ceived of basically as a digital computer; and its performance is
nearly optimal with little increase in complexity of operation. The
numerical procedure is especially adept at handling diffuse a priori
densities.

Receiver design via estimation techniques is considered jus-
tifiable in case optimal (Bayesian) procedures are too complex. The
optimum receiver is formulated for the single composite hypothesis
in such a way that when the receiver is operating in a sequential mode
it appears to ""estimate' the unknown parameter at each point in time.
It is not an estimator in the usual sense of the word but nevertheless
exhibits features and characteristics that are considered desirable
of an estimator. Subject to some mild conditions the "estimator"
converges asymptotically to the minimum mean square error esti-

mator.
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FCREWQORD

In practice detection equipment invariably operates in a
variety of different situations. Many of the parameters considered
known in the original design theory of the equipment will be unknown
in operation. This lack of knowledge affects the available process-
ing gain from a sophisticated receiver. The lack of knowledge of
such parameters as source level, propagation loss, target strength
(that is, those parameters affecting the received signal energy) or
any parameters affecting the received noise level or spectrum,
further complicate meaningful evaluation of system performance.

Classical engineering and classical statistics propose a type
of receiver design and evaluation which is often at odds with that
developed from the more recent Statistical Theory of Signal Detect-
ability. Basically, the classical designs are made insensitive to
uncertainties or--if the uncertain parameters are too important to
be ignored--the designs are based on worst case values; performance
is necessarily evaluated on a conditional basis. Unsatisfied or con-
fused, some operational analysts add means and variances and treat
an ""average situation. "

The theory of signal detectability allows the designer and the
user to incorporate what they do know or can learn about the many

uncertain parameters, and, in fact, makes them responsible for



accurate specification of what they do know. Performance is eval-
uated by treating all possible conditions, and "optimum'' means
best average performance (although performance can be evaluated
on a conditional basis).

This present theoretical thesis introduces mathematical
investigations into (1) the performance degradation due to inaccu-
rately specified uncertainties, (2) a re-evaluation of classical
statistical principles, in an attempt to salvage relevant work and to
discard misleading principles, (3) the feasibility of realizing the
receiver as a digital computer, taking into account inherent dis-
crepancies and quantization error that this type of processing will
introduce.

This type of mathematical investigation, motivated by prac-
tical and physical considerations, is necessary to provide proper
guidance to applied mathematicians and theoretical engineers in
information theory and signal detection so that they may develop
practical design principles and evaluation principles. This is neces-
sary before such theoretical principles can be trusted to guide the

development of advanced detection systems.
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CHAPTER I

INTRODUCTION

The problem of detecting a signal in a background of noise is
statistical in nature. The state of the environment can only be ex-
pressed in a probabilistic sense. Sometimes, even the statistics are not
completely known. When the statistics are known except for one or
more of the parameters the situation is termed a composite hypothe-
sis problem.

Several authors applied statistical decision theory to develop
a theoretical foundation for making the best possible decisions (Refs.
1-3). The theory shows that the optimum decision rule is based on
likelihood ratio whenever ''good' decisions are preferred to '"bad"

decisions (Ref. 4).

1.1 Problem Formulation

This work is conceived of as being somewhat expository in na-
ture with one of its main goals being to explain the basic nature of
detection devices and thereby reconciling Bayesian philosophy with
classical statistics.

The decision process is compounded whenever uncertainties
exist either in the noise and/or signal plus noise process. The theory
as formulated in the early 1950's (Refs. 1-3) inherently allows for the

inclusion of any available information (or lack of information) by



assigning an a priori density to the unknown parameter(s); statistical
inference is accomplished by adhering to the Bayesian philosophy.
Prior information is modified by actual data (observation) according
to Bayes rule, i.e., the a posteriori densities are computed from the
a priori densities and the observation statistics according to Bayes
rule.

Bayesian philosophy is generally considered to reflect a sub-
jective or personalistic attitude of ideally consistent people (Ref. 5).
However, Bayesian philosophy (assignment of a priori densities) can
equally well be interpreted to reflect the true state of the unknown
parameter(s) by absorbing any environmental data. For instance, the
mean of the a priori density might be chosen to be the most probable
value (mode) or the mean value (ensemble average) of some function
of the available data; the variance of the a priori density would be
chosen to indicate the designer's degree of confidence in the data.
Hence, a large variance would indicate either that no prior informa-
tion is available (total ignorance) or that the confidence level in the
data is virtually nil; information of this nature is described by what is
referred to as a diffuse a priori density. By the same token,a small
variance indicates a high level of confidence in the data; and the cor-
responding a priori density is highly dependent on the data.

The goals of this dissertation are:

a) To consider the effect of a priori specification on receiver

design and performance. In particular, a study was conducted to



examine the effect on receiver performance of a priori densities whose
means and variances were identical.

b) To examine the relationship between the Bayesian approach
to detection theory and that of classical statistics. The Bayesian ap-
proach and the classical approach often result in identical decision
rules (receiver action); yet they are contrasting viewpoints. Em-
phasis must be placed on the evaluation of receiver performance
conditional to the actual value of the parameter; classical statistics
never assigns a priori densities, and in fact the receiver will be
operating in an environment in which the parameter is constant though
unknown.

¢) To develop a method of coping with the inherent integration
difficulties that often arise in a composite hypothesis detection prob-
lem. Since a priori densities are never really known precisely, it
is suggested that numerical integration techniques be employed. The
receiver is conceived of as a digital computer; and it is shown that the
degradation in performance can be kept negligible.

d) To study the use of estimation techniques in connection with
the optimal procedure from the Bayesian point of view. It appears that
"estimators'' can be defined which yield optimal performance from the
Bayesian standpoint; yet the ""estimators' are closely allied to the
estimators of classical statistics and exhibit characteristics which are

considered desirable.



1.2 Previous Literature

There are many textbooks available today which serve as basic
background information to decision theory. These textbooks include
topics on mathematical statistics, hypothesis testing, statistical de-
cision theory, random processes, information theory and communi-
cations engineering, among others (Refs. 6-18).

Much of the work that has been carried on in recent years has
been concerned with detection problems in which only signal uncer-
tainties exist (Refs. 19-21). The theory of signal detectability was
extended to the double composite hypothesis problem (uncertainties
exist in both the noise alone and the signal plus noise process) by
Spooner (Ref. 22). Some of the present work is based on his work.

Since this work is intimately concerned with the evaluation of
receiver performance in terms of receiver operating characteristics
(ROC), the work by Birdsall on ROC curves and their character
(Ref. 23) is of prime importance. In addition, the article by Birdsall
and Tanner on psychological measures (Ref. 24) presents a useful one-
number measure of receiver performance (in lieu of the two-number
measure of the ROC) which is appropriate under certain circum-
stances. The article by Dempster and Schatzoff (Ref. 36) proposed
to use the area under the ROC curve as a measure of performance
level. This concept, although interesting, is of little value in com-
paring ROC curves. If neither ROC curve dominates the other (one

ROC is superior or equal to the other at all threshold levels), the



measure is useless; even when one ROC does dominate another the
proposed measure can easily lend too much significance to a particu-
lar characteristic of the ROC's (e.g., it might weight high probabil-
ities of false alarm more than deemed desirable).

Both Bayesian analysis and classical analysis of the composite
hypothesis detection problem base decisions on sufficient statistics.
Ferguson (Ref. 7) and Raiffa and Schlaifer (Ref. 9) present a good
discussion about sufficient statistics. An excellent discussion of
reproducing densities (or natural conjugate densities) is presented
by both Raiffa and Schlaifer (Ref. 9) and by Spragins (Ref. 25).
Spragins aptly demonstrates the relationship of Bayes rule to the
existence and functional form of a reproducing density.

The classical approach to testing statistical hypotheses is
presented from a fairly theoretical point of view by Lehmann (Ref. 8).
Estimation techniques are presented by Deutsch (Ref. 26) and by
Van Trees (Ref. 16). A presentation on a measure of information
provided by an observation was reported by Lindley (Ref. 27); fur-
ther information theoretic concepts are discussed by Kullback (Ref.
13) and by Feinstein (Ref. 28).

A thorough discussion of numerical integration techniques can
be found in the book by Kopal (Ref. 29); tables of the numerical con-

stants needed are conveniently listed in The Handbook of Mathematical

Functions (Ref. 30).



1.3 Procedure

Sensitivity of receiver performance to a priori specification
is approached by specifying a nominal or assumed a priori density
g(-) and then perturbing g(-) in such a manner that the desired
a priori density h(:) has its first few moments equal to those of
g(-). A sensitivity index is developed which exhibits several desir-
able features.

Adherence to Bayesian philosophy inherently leads to receivers
based on a monotone function of likelihood ratio. Prior information
(opinions, specifications or data) is specified in the form of an a priori
density and is modified according to Bayes rule by taking the actual ob-
servation into account. Classical statistics, on the other hand, never
assigns an a priori density, and instead attempts to design a receiver
which operates "'well' regardless of the actual operating conditions.
Unbiasedness (performance is at least as good as chance) is a cri-
terion often imposed by classical statistics; estimation methods are
also applied by the classical approach to detection theory.

For the composite hypothesis situation numerical integration
techniques can be used to design a receiver whenever integration dif-
ficulties prevent exact analysis. Once the observation statistics are
specified and the a priori density assigned, the absolute observation
statistics are obtained by using appropriate numerical integration
techniques. The particular choice of a numerical integration method

depends on the nature (region of definition, prior information available,



etc.) of the unknown parameter. Given the exact form of the a priori
density, a quality index is defined, based on information theoretic
measures, to determine the effect of the approximate numerical
methods employed. Furthermore, the performance of the receiver
based on numerical methods is compared to the receiver based on
exact (not always possible to do) analysis. A nominal degradation in
performance is not considered critical since a priori densities are
usually quite subjective anyway.

An attempt to justify estimation as an optimal procedure (the
Bayesian approach is considered optimal) is conducted by simulating
receiver operation for a particular example and comparing a pseudo-
estimator obtained by Bayesian methods to the minimum mean square

error estimator at each increment in time.

1.4 Organization

The basic background material is presented in Chapter II. The
composite hypothesis detection problem is presented; and the inher-
ent inclusion of prior information in the form of an a priori density
is emphasized. Chapter III conducts a study of the sensitivity of re-
ceiver performance to a priori specification. Separation of the
processing objective from the overall objective is discussed. An
index is defined which measures sensitivity of receiver performance
to the particular choice of a priori density assigned. In Chapter IV

receiver performance via Bayesian methods is compared to receiver



performance via classical methods. The ESP receiver is defined and
its important features are discussed. Receiver design via numerical
integration techniques is proposed in Chapter V for the composite
hypothesis situation whenever exact analysis is difficult or impos-
sible. A simulation of receiver operation based on a pseudo-esti-
mator is presented in Chapter VI to justify the use of estimation

methods as a ""good’’ approach to solving signal detection problems.

1.5 Notation

The recei{rer, as referred to in this work, is a device which
computes a test statistic (based upon the actual observation) and makes
a decision as to presence or absence of a signal depending on whether
or not the test statistic exceeds a pre-assigned threshold. Whenever
Bayesian methods are employed,the test statistic is the likelihood ratio
or a monotone function thereof. The terms 'receiver'" and 'test sta-
tistic' will often be used interchangeably throughout the succeeding
chapters.

Since this work is intended to apply primarily to fixed-time
detection theory, an observation will be denoted by an n-dimensional

column vector unless otherwise specified, i.e.,

t

X = (Xl, Xgy oo xn)

(A column vector will be denoted as the transpose of a row vector to

save space; in this connection t denotes transpose.)



Since much of this work deals with or relates to the normal
detection situation, it is convenient to define the normal distribution

function

o) = —— [ e dt
Vor -x

Probability density functions are denoted in symbolic form.
For instance, f(§ |H) is the probability density function of the obser-
vation x conditional to the hypothesis H. Likewise, g(o Ix, H) is
the a posteriori probability density function of the random variable 6
given the observation x and the hypothesis H. A priori densities
will generally be denoted by g(8).

The symbol ~ denotes "is distributed according to." For

instance,
X ~ MVNn(E,Z))

indicates that the observation x is distributed according to a multi-
variate normal probability distribution of dimension n with mean
vector u and autocovariance matrix 2 . The symbol t denotes
""is monotone with respect to." For example, £(x)t x means that
£(x) is a monotone function of x.

The likelihood ratio of an observation x given that the assigned

a priori density is g(6) will be denoted by £(xlg). The likelihood

ratio will be simply denoted by !Z(}_c) when no uncertainties exist or
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when no ambiguities exist as to the assigned a priori density.

The expectation operator will be denoted by E ; and the vari-
ance-covariance operator will be denoted by Var. Hence, if u
represents the mean vector and Z the autocovariance matrix of the

observation x, the following relationships exist:

k= EX)

Var(x) = E(x_)gt) - U Et

™
I

The determinant of the autocovariance matrix 2. will be denoted by
12 1.
A double notation is often used throughout this work for con-

venience. For example,

PAl ) f(x| onp) dx
SN 0(x)>B SN
means
PAIN) = f(xIN) dx
Lx)> B
P(AISN) = f(x|SN) dx
Lx)> B

Other definitions and explanations will be made as they occur

in the text.



CHAPTER II

REVIEW OF FIXED-TIME DETECTION THEORY

The theory of signal detectability was aptly formulated by
Peterson, Birdsall and Fox (Ref. 1) in 1954. This theory is now
called classical fixed-time decision theory. The basic theory was
extended by Nolte, Roberts and Spooner. Nolte (Ref. 21) considered
the problem of detecting a recurrence phenomenon in noise for differ-
ent degrees of certainty about recurrence time while Roberts (Ref.
19) expounded on composite deferred decision theory. Roberts for-
mulated the optimum stopping rule for the sequential detection of a
composite signal for which the response time is constrained to occur
within the observation interval. The cost of making an observation is
taken into account. Spooner (Ref. 22) developed a general optimum
processor for the double composite hypothesis situation. All uncer-
tain noise and/or signal plus noise process parameters were expres-
sed in terms of a priori densities. Since the present work is based
on the theory of signal detectability, it is appropriate that this theory

be reviewed.

2.1 Introduction

The basic signal detection problem is presented schematically
in Fig. 2.1. The noise process is denoted by n(t) while s(t) describes

the signal. The receiver is presented with an observation x(t) during

11
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>< + x(t) Decision
s(t) > » Receiver |——

n(t)

Figure 2.1. Illustration of the basic signal detection problem.

a time interval tO <t< tO + T . The observation consists of either
noise alone or signal plus noise. On the basis of this observation the
receiver must decide whether or not a signal had been present during
the observation interval. This observation-decision task of the

receiver can be formulated from a decision theory viewpoint as a

hypothesis test.

N: x(t) = n(t)

(42)]
Z
»
=
I

n(t) + s(t) t0§t§t0+T (2.1)

The hypotheses are mutually exclusive. That is, either the signal
was present during the entire observation interval or it was absent
during the entire observation interval.

In order to utilize statistical decision theory, it is customary
to describe the random process x(t) by a series representation. If
the observation x(t) is timelimited to an interval of length T and

Fourier Series bandlimited to a band of frequencies of width W, then
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the Shannon sampling theorem can be employed to represent the

observation x(t) by

_ t
X = (xl, Xgs « o xn) (2.2)
where
n = 2WT (2.3)
_ i .
X, —X<t0+7W) i=1,2, ... n (2.4)

A more general series expansion referred to as the Karhunen- Loeve
expansion is discussed in Ref. 16 and represents a random process

x(t) in terms of a complete orthonormal set of functions ¢i(t) so that

x(t) = lim ) x. ¢.(@t) t <t<t,+T (2. 5)
- s R 0="=70
N-x i=1
where
t+T
L
x, = J x(t) ¢, (t) at (2. 6)
t
0

Subject to certain regularity conditions, it is shown that there exists
a set of ¢i(t) that leads to uncorrelated coefficients and consequently
assures convergence in the mean-square sense. The second- moment
characterization of the Karhunen-ILoeve expansion makes it possible

to represent a Gaussian process in terms of an at most countably
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infinite set of statistically independent Gaussian random variables.

2.2 Receiver Design

The receiver will be presented with an observation x(t) during
a time interval t, <t < t0+T and make a decision as to presence or
absence of a signal at the end of the observation interval. In order to
optimize receiver performance, we need to specify a particular cri-

terion.

2.2.1 Criteria. The observation-decision task of the receiver

results in either one of two possible correct decisions or one of two
possible incorrect decisions. The receiver is capable of making two

distinctly different responses,

A is the response ''signal is present"

B  is the response '"'signal is absent"

to two possible hypotheses,

SN the hypothesis '"'signal plus noise"

N the hypothesis '"'noise alone"

Associated with each response is the possibility of error since noise
is present throughout the processing. The probabilities of error and

correct decision are denoted by

P(AIN) probability of false alarm

P(A|SN) probability of a correct detection
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P(BIN) probability of a correct rejection

P(B|SN) probability of a miss

These probabilities are not independent since

P(AIN) + P(BIN)

I
—t

(2.7)

P(AISN) + P(BISN)

I}
i

(2.8)

A cost may be associated with each possible outcome. The cost

structure of the decision process is illustrated in Fig. 2. 2.

SN N
A CD CF
B CM CQ

Fig. 2.2. Cost structure of the decision process

The cost of a correct detection is CD , the cost of a false alarm is

C., the cost of a miss is C,, and the cost of a correct rejection is

F’ M

Cn -
Q

Several different criteria may be appropriate depending upon
the user's goals or objectives. The Bayes criterion minimizes the

average cost C where
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C = P(SN) [C,, P(AISN) + C

b P(BISN)]

M

+ P(N) [CF P(AIN) + CQ P(BIN)] (2.9)

The Neyman-Pearson criterion maximizes P(A|SN) subject to the

constraint
PAIN) < a

where o is a pre-assigned probability. The weighted combination

criterion maximizes
P(AISN) - w P(AIN)

where w is a positive constant relating the costs involved. Other
criteria exist with analogous objectives.

2.2.2 Likelihood Ratio Receiver. It has been shown (Ref. 23)

that the receiver which bases its decision on likelihood ratio yields
optimum performance for a wide class of criteria including those de-

scribed above. In particular the decision rule is

1 20(x) > B
o) = (r 1(x) = B (2.10)
0 1x)< B

where

0(x) = (XlliN) (2.11)
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is the likelihood ratio, B is the pre-assigned threshold and ¢(x) is
the probability of deciding that a "'signal is present" with 0 <r <1.
(Whenever £(x) > B, the decision is made that a '"signal is present.')
The situation that occurs when £(x) = 8 describes a randomized de-
cision rule. Whenever the observation densities f(xISN) and f(x!N)
are analytic, the occurrence of £(x) = 8 has probability zero and
hence the value of r is of no consequence whatsoever.

Only the threshold depends upon the particular criterion invoked.
Birdsall (Ref. 4) has shown that the likelihood ratio receiver yields
optimum performance for any choice of criterion which considers
incorrect decisions '"bad' and correct decisions ''good''. This power-
ful result makes it possible to evaluate the merits of any other decis-
ion device by comparing its performance to the performance of the

likelihood ratio receiver.

2.2.2.1 Simple Hypothesis. Whenever no uncertainties

exist either in the N and/or SN process, the likelihood ratio is

easily determined. It is

(2.12)

2.2.2.2 Composite Hypothesis. For the simple hypothesis

problem the N and SN process statistics were known precisely. For
the composite hypothesis problem either N and/or SN process

parameters are unknown. Any available information concerning these
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parameters is expressed in the form of an a priori density. The
available information might consist of either the designer's subjective
opinion or be specified by the range of parameter definition. That is,
if the current state of the unknown parameter is known reasonably
well (i.e., the designer possesses a high level of confidence that the
value of the unknown parameter is within a given range of values),
then the unknown parameter will be modeled by a proper a priori
density (the normalization constant exists so that normally the mean
and variance exist). On the other hand, if the state of the unknown
parameter is entirely unknown (i.e., the designer possesses total
ignorance), the unknown parameter might be modeled by a diffuse

a priori density (the normalization constant does not exist). A diffuse
a priori density in essence expresses the opinion that all admissible
states of the unknown parameter are equally likely.

2.2.2.2.1 Single Composite Hypothesis. When uncer-

tainties exist in the signal parameter(s), the situation is referred to
as a single composite hypothesis problem. If we denote the unknown
signal parameter(s) by ¢, then the absolute observation statistics can
be expressed in terms of the conditional observation statistics and the
assumed a priori density g() as

f(xISN) = | f(xly,SN)g@W) dy (2.13)
14

The observation statistics conditional to N remain the same since

only signal uncertainties are involved. Then



fo - SIS0
= { Lx1y) g) dy (2.14)
where
f(x |y, SN) 2.15)

The total likelihood ratio is therefore obtained by averaging the con-
ditional likelihood ratio over all possible states.

2.2.2.2.2 Double Composite Hypothesis. In the double

composite hypothesis problem uncertainties exist in both the N and
SN process. Uncertainty of a noise process parameter inherently
leads to a double composite hypothesis since noise is present condi-
tional to either hypothesis. Let iy denote the uncertain signal
parameter(s) and 6 the unknown noise process parameter(s), and
assume 6 and ¥ are independent. Again, the absolute observation
statistics can be expressed in terms of the conditional observation

statistics and the given a priori densities g(/) and h(9) as

fxISN) = [ [ f@&xly,0,SN)gW)h(s)deo dy (2.16)
v O
fxIN) = [ f(x!6,N)h(6)do (2.17)
0

The total likelihood ratio then becomes
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(x) = [ 2!y, h) gly) dy (2.18)
V'

where

J txly,6,SN) h(o) de
©

¢(xly,h) = (2.19)

fx16,N) h(s) do
C]
It is apparent that the receiver is now constrained to operate in a dual
channel mode, each channel operating on a different hypothesis. This

feature is inherent for the double composite hypothesis problem and

will become apparent in the work which follows.

2.3 Receiver Realization

Receiver realization consists of the implementation of equip-
ment in any fashion that realizes the likelihood ratio or a monotone
function of the likelihood ratio. The receiver may be realized either
sequentially in time or the entire observation may be processed. In-
formation processing may occur in either analog or digital form.
Hence, the receiver might be a matched filter or it might be a digital
computer. The availability of high speed digital computers and
sophisticated processing techniques has made it feasible to employ
computers to do the processing for the optimum receiver in real time.

Optimum processing of the observation x(t) according to
Bayesian methods also permits the extraction of information useful

for classification and/or estimation purposes. Prior information or
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opinions are modified by data in terms of a posteriori densities.

This learning or classification output as expressed in terms of

a posteriori densities must be used only in conjunction with the detec-
tion output since learning only occurs with respect to knowledge of the
true hypothesis. Both the detection output and the classification out-
put depend upon the observation x(t) only through its sufficient statis-
tics. Receiver realization of the optimum receiver in terms of the
sufficient statistics usually reduces the dimensionality of the problem,
thereby resulting in a fixed memory receiver regardless of the length

of the observation interval T .

2.4 Receiver Evaluation

Receiver evaluation is succinctly summarized by the receiver
operating characteristic (ROC). The ROC is a convenient way of por-
traying the quality of detection (Ref. 23). It is merely a plot of the
probability of false alarm, P(A IN), versus the probability of detection,
P(A|SN), for all possible threshold levels of the receiver output. For

any receiver these probabilities are

1l

P(AIN) E (¢ x)IN) (2.20)

P(AISN) = E(@(x)ISN) (2.21)

1l

where ¢(x) is the decision rule. When the receiver is the optimum

likelihood ratio receiver these relations are
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PAIN) = [ f(x |N) dx (2.22)
20(x)> B
PAISN) = [ f(x | SN) dx (2.23)
2(x)> B
By the obvious transformation
2 = 1) (2.24)
these relations become
2C
PAIN) = [ f(¢IN)de (2.25)
B
L
PAISN) = [ £(¢1SN) de (2.26)
B

Further simplification can be obtained by utilizing a fundamental
theorem of decision theory (Ref. 23) which states ''the likelihood

ratio of the likelihood ratio is the likelihood ratio.' That is,

=4 (2.27)

so that the parametric equations describing the ROC curve for the

likelihood ratio receiver become

C
PAIN) = [ f(¢IN)dL (2.28)
B
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P(AISN) = foc 2 £(¢IN) dg (2.29)
B

Although only the density function of the likelihood ratio conditional
to N needs to be determined to evaluate receiver performance, this
task is often formidable. Existence of sufficient statistics and some
facility with statistical transformations will usually simplify the
problem, although it may still be necessary to resort to numerical
integration techniques.

A standard for comparing ROC curves is the normal ROC. An

ROC is called normal if it can be parameterized by the normal distri-

bution as follows:

PAIN) = &) (2.30)
PAISN) = &(A +d") (2.31)
where
b
o) = —— [ e % a (2.32)
V2T -0

It is evident that a normal ROC curve can be characterized by the one
parameter d'. The parameter d' is usually referred to as the qual-
ity of detection. For convenience normal ROC curves are usually
plotted on normal-normal paper so that normal ROC curves become

linear. A family of normal ROC curves with parameter d' is plotted
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on normal-normal paper and displayed in Fig. 2.3.
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Figure 2.3. Normal ROC's with detectability paremeter 4d'.

The utility of normal ROC curves lies in the fact that physical
significance can be attributed to d'. For the detection problem sig-

nal known exactly in known Gaussian noise (SKE + KGN), the
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performance of the optimum receiver is described by a normal ROC

with parameter

d' = - (2.33)

where E is the signal energy and NO is the noise power per hertz.

The normal ROC provides a basis for the comparison of ROC
curves. When ROC curves are almost normal the equivalent detection
index dé as measured on the negative diagonal [P(AIN) + P(AISN) =1]
is indicative of the quality of detection and serves as a convenient

quantitative measure of performance.



CHAPTER III

SENSITIVITY OF RECEIVER PERFORMANCE

TO A PRIORI SPECIFICATION

3.1 Introduction

One of the first contributions of classical fixed-time detection
theory was the separation of the processing objective from the overall
objective. The optimum receiver has the task of formulating the like-
lihood ratio f£(x) of the entire observation interval. A decisionas
to presence or absence of a signal is made by thresholding the likeli-
hood ratio. The threshold value g is determined independently of
the likelihood ratio. It reflects the goal of the user and may incor-
porate such things as costs, a priori probabilities, a desired false
alarm rate, etc. The separation of roles is clearly illustrated by the

block diagram of Fig. 3.1.

X »| Optimum £(x) Comparator [———> Decision
Receiver

8

Figure 3.1. Separation of the processing objective from the overall objective

26
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Another important contribution to the theory of signal detect-
ability was recently made by Birdsall (Ref. 31). He showed that the
optimum processor for the composite hypothesis situation can be

formulated as two cascaded processors as illustrated in Fig. 3.2.

(x1g)
x(t,8) | Primary £(x|1SN) Secondary 2(x1h)
Processor £(xIN) ] Processor ’
g(8) r(6)

Figure 3.2 Optimum processor for the composite hypothesis problem as two
cascaded processors.

For simplicity assume that the unknown parameter is 6 .
Furthermore, let the primary processor be designed on the basis that
the unknown parameter 6 has a given a priori density g(6), but at
the time of use the a priori density h(6) holds; h(6) is related to

g(6) by the Radon-Nikodym derivative r(f) such that
h(g) = r(6) g(6) 3.1)

Then the equation describing the secondary processor is essentially

Eq. 39 of Ref. 31 and is
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J r(6) g(61£ (x|SN), SN) do
(xih) = oxlg) - -2 3.2)
[ r(6)g(6li(xIN),N)do
e
This relationship can be described equivalently as
(xIh) = t(xig) - ElO)Ixg SN] (3.3)

E[r(6)1x, g, N]

The a priori density h(#) is the density with respect to which
the user wishes to maximize performance. It may reflect his per-
sonal opinion as to the information available, or it may reflect the
true state of nature with respect to the possible values 6 can assume.
That is, the a priori density h(6) could either reflect a subjective
point of view or conviction, or it might reflect the actual physical
situation, or even a set of specifications.

The primary processor forms the likelihood ratio of the ob-
servation based on the conditional observation statistics and a natural
conjugate a priori density g(6) (provided that it exists). In addition
it also determines the sufficient statistics & (xIN) and & (x1SN) of
the observation. The secondary processor utilizes the output of the
primary processor along with knowledge of the a priori density h(9),
in the form of a Radon—Nikodym derivative r(6), to form the likeli-
hood ratio of the observation based on the desired a priori density
h(6). This partitioning of information has made it possible to design

and build a major portion of the processing equipment based on
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mathematically tractable functions and to allow the exact goals of the
receiver to be specified at a later time without any degradation of
performance. This should not be construed to mean that the design
and construction of the secondary processor is elementary. Quite to

the contrary, it is often a very complex and difficult task.

3.2 Sensitivity Study

Let 6 be an unknown noise process parameter; and consider
a receiver designed to be optimum with respect to the given a priori
density g(6), but whose performance is evaluated with respect to the
a priori density h(0). [Mnemonically, g is ''given' but h "holds'.]
The receiver is necessarily suboptimum with respect to the actual
operating conditions. A block diagram illustrating the decision pro-

cess is shown in Fig. 3.3.

x . Subopt.imum 2ixlg) Comparator | Decision
Receiver
g(6) B

Figure 3.3. Decision process based on the given a priori density g(®©).
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Performance via ROC

The performance equations of the suboptimum receiver are

N

P(Alg,h,slf\I) = f (x1h, o) dx (3. 4)
L(xlg)> B
with
N N
fx b, &) = f@ £x16, &) h(6) do (3.5)
N, _ N
fxlg, o) = f@ t(x19, g) g(6) d6 (3.6)
and
fx|g, SN)
= =2 3.
1(xlg) Hxle. N) (3.7)
The optimum receiver would have based its decision on ¢(x|h)
where

f(x | h, SN)

2(x\h) = (I N)

(3.8)

Its ROC will serve as an upper bound for the ROC of any receiver
operating under these conditions. The performance equations of the

optimum receiver are

N

Ny _
P(Alh, h =/ fx b, g

s anp) dx (3.9)
SN xin) > g
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Figure 3.4 sketches the idea of comparing the ROC of Eq. 3.4 (ROC G)

to the ROC of Eq. 3.9 (ROC H).

P(A|SN)
1
ROC H
ROC G
0
0 1 P(AIN)

Figure 3.4, Comparison of optimum and suboptimum receiver performance.

We are not attempting to compare g(6) to h(8); rather, we
wish to compare performance of the receivers based on g(6) and
h(6), under the condition that h(6) holds. Ideally, given that h(6)
holds, it is desired to compare the performance of the suboptimum
receiver based on g(6) to the performance of the optimum receiver
based on h(9) via the ROC's of Eqs. 3.4 and 3.9; but it is often very
difficult to evaluate performance for a specific example, even with the
use of a high speed digital computer and sophisticated numerical inte-

gration techniques.
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Performance via index

An alternative way of studying sensitivity of receiver perform-
ance to a priori specification would be to construct a procedure for
ordering ROC curves, i.e., find a meaningful and consistent way of
representing the two-number description of the ROC by one number.
Several authors have studied this task; and they suggest the use of
various indices. Several of these are reviewed by Birdsall (Ref. 23).

Kullback and Leibler (Ref. 34) used the "divergence between hypotheses"

J(1:0) £ E[z(x)ISN] - E[z(x)IN] (3.10)

where
z(x) = fn 0(x) (3.11)

The divergence J(1:0) was first introduced by Jeffreys (Ref. 35) in
another connection. J(1:0) is a measure of the ""distance' or 'diver-
gence'' between the hypotheses SN and N and is a measure of the
ease of discriminating between them. The divergence J(1:0) has

all the properties of a metric as defined in topology except the triangle
inequality property (Ref. 13). For normal ROC curves, J(1:0)=d

where

2E
Ny

d = (signal-to-noise ratio) (3.12)
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Development

Following this lead and given that h(6) holds, a performance

index of the ROC based on z(x!h) can be defined as

a

J(1:0) E[z(x1h)|h, SN] - E[z(xh)|h, N] (3.13)

It is tempting to define an analogous performance index of the ROC

based on z(xlg) [given that h(6) holds]as

J;g(1:0) = E[z(x|g)|h, SN] - E[z(x|g)|h, N] (3.14)

However, the relation of z(x|g) to the a priori density h(6) is most
important. Picture the situation at the moment of use of the subopti-
mum receiver. The user knows the value of z(xl!g) for the observa-
tion, say Zg» and he knows h(d). To get the best possible per-
formance he should base his decision on the likelihood ratio of what
he has, with respect to what he knows. That is, he should calculate
ﬁ(zolh), or equivalently z(zolh) . We therefore give the user credit
for using the suboptimum test statistic z(x!g) in the best possible
manner by constructing a performance index based on z[z(xlg) \h] ,

namely

Jg(l: 0)

E {z[z(x|g) h] |h, SN} - E{z[z(x|g)|h] |h,N}  (3.15)

The transformation z[z(xlg)}h] can be considered as a means of re-
ducing the test statistic z(xlg) to a "common denominator' with respect

to the a priori density h(6).
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The construction of an index of the ROC '"'difference' follows

quite naturally; use as an index of the ROC ''difference"

>

Iglh) = J (1:0)- Jg(l 1 0)

= E[e(x)|h, SN] - E[e(x)|h, N] (3.16)
where
e(x) = z(x!|h) - z[z(xIg)|h] (3.17)
One may also write
I(glh) = {( e (x) [f(x Ih, SN) - f(x|h, N)] dx (3.18)

Rationale

The rationale behind the particular transformation z[z(x|g)|h]
is threefold; and it is based on the work by Birdsall (Ref. 23).

First of all, if z(xlg) t z(x!|h), 1 then the ROC's are equiva-
lent. But equivalence of ROC's implies that z[z(xlg)|h] = z[z(x|h)|h].
Since z[z(xlh)'h] = z(x|h), this implies that e(x) = 0; and hence
I(g!h) = 0 whenever z(xlg) t z(x!|h).

Secondly, if z(xlg) t z[z(x!g)th] , then the ROC based on

z(x|g) is equivalent to the ROC based on z[z(x|g)|h]. Hence the

1a t b is read "a is strictly monotone increasing with respect to b."
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ROC is unaltered by the transformation, and furthermore the ROC
based on z(xlg) is a regular ROC. [A regular ROC is complete,
convex, and interior to the unit square except at (0,0) and (1,1).]

Finally, if z(xlg)*z[z(xlg).h], then the ROC based on z(x!g)
is irregular,and it is dominated by the regular ROC based on z[z(xlg)|h] .
When this condition exists, the quantity Jg(l : 0) may not be appro-
priate; and hence the sensitivity index I(glh), if used, should be
used with the utmost discretion.

Thus, the index I(glh) is a measure or indicator of the 'diff-
erence' between the ROC's based on z(xlg) and z(xlh), given that
h(f) holds; and as such it can be considered as a sensitivity index of
the quality of detection with respect to a priori specification. In other
words, the index I(glh) measures the performance loss that occurs
when g(9) is given but h(9) holds.

3.2.1 Equality of Moments. One way to organize a study of

sensitivity to a priori densities is to study the effect of using a priori
densities which differ in functional form but have their first few
moments equal. It is hypothesized that performance is not significant-
ly affected by different classes of a priori densities provided the

a priori densities are reasonably smooth and have their first few
moments equal. (The equality of moments of all orders of course
implies equivalence of the respective a priori densities and hence
performance.) In particular, equality of the means and variances

appears to be of paramount importance with respect to equivalence
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of performance.

Consider the class of distributions h(4) absolutely continuous

with respect to g(6) with
h(6) = r(9) g(8) (3.19)

Mathematical tractability will be provided by choosing
g i
r(@) = ) r. 0 (3. 20)

We require r(6) > 0 forall 6 e© since r(f) is a likelihood ratio.

Ease of algebraic manipulation will be provided by defining

o, = E6¥I1g) = [ 05g(0)ao (3.21)
o
B, = E(0"h) = / 0%n(o)ds
)
. p .
= J 0%g6) ) r 0 do
® i=0
p
= 12:0 Ty Yk 8.22)

Equating moments, i.e., Q= Bk, means the coefficients in the r(6)

polynomial satisfy

p
% ~ ,LO i Yk k=0,1, ... m; m<p-1 (3.23)
1=
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To avoid the trivial solution r(d) = 1, we shall assume Ty 1.
Set m = p-1 in order to obtain a unique solution of Eq. 3.23 to with-

in a value of Ty and rewrite Eq. 3.23 as
p
(L-r) oy = 121 r o k=01, ... (p-1) (3.24)

To simplify succeeding manipulations, define the following

matrices.

a = (ao, 0y, ap 1) (3.25)
r = (ry, r ...r)t (3.26)
=+ 1’ 9’ p
~
. o
= (ai+j—1) = |oy 0 ® i1 (3.27)
fzp ozp+1 ce a2p—1
Then Eq. 3.24 can be expressed equivalently as
(1—r0)_o_z = Ar (3.28)
Solving,
-1 : -1 .
r = (1- rO)A a (provided A ~ exists) (3.29)

The existence of A_1 depends only upon the moments of the a priori
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density g(8). Obviously, A-1 does not exist if the moments do not
exist. Even if the moments exist, the existence of A"l cannot be
assured in general and must be verified for the particular application

in mind. If we define

a = (al, ay, .- ap)t = A_l_ (3. 30)
then
r = (1- ro)g (3.31)
and explicit dependence of the polynomial r(9) on r, is
1Y .
r(g) = ro+ (1 - ro) 12’1 a, ot T'o #1 (3.32)

Although it appears that r, is arbitrary, the restriction r(8) > 0
for all 9e¢ © limits the permissible values of ry-

3.2.2 Signal Known Exactly, Unknown Noise Level. To deter-

mine the effect of the equality of moments on performance, a study
was conducted using as an example the detection problem, signal
known exactly, unknown noise level (SKE-UNL). This detection prob-
lem was extensively investigated by Spooner (Ref. 22). His study
used a gamma density as the a priori density of the reciprocal of the
unknown noise power. The same a priori density will be used in this

study. In particular he set
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g = — 1 (3. 33)
02 (xIN)
and chose
cb+1 b -c@
9) = - b>-1,¢>0 0<9< 3.34
g(6) TG , C < e ( )

Some typical densities of this form are shown in Fig. 3.5. The mo-

ments of g(9) are easily computed, namely

o o]
- E(6%1g) = / 6%g(6) as
% !
_ I (b+1+k)
ck T (b+1)
_ (b+1) (b+2)k. .. (b+k) (3. 36)
C

3.2.2.1 Preliminaries. It is shown in Appendix J that

a =dic i=1,2, ... p (3.317)

with di independent of c¢. Substituting Eq. 3.37 into Eq. 3.32 yields
r(9) ina form which explicitly shows its dependence on ry and c,

namely

P .
r(g) = rg+ (1- ro) 121 di(c())1 r, #1 (3.38)
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g(e)

e

g(e)

b =1

c =1

03 T

b =2
.2 "'

b=3
g
0 ' + + 4 e
0 1 2 3 I

Figure 3.5. Typical probsbility density functions from the gamma family.
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If we let

)
It

1-r

. o 4 i=1,2, ...p (3.39)

then the polynomial r(6) can be expressed in the form
D .
r() = ) f.(co) (3. 40)
i=0

with fi independent of c.
The restriction r(6) > 0 for all 9€[0, ) limits the permis-

sible values of r 0" It is shown in Appendix A that

* .
roe[ro,l) if dp > 0

* .
or r, € (1, ry ] if dp < 0 (3.41)

with ro* independent of c.

In particular, it is shown in Appendix B that for p =2

ro* = b+ 2 b > -1 (3.42)

while for p=3
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(" 9V+3 - b(b+3)

1< b<1
2(vb+3 + 1)
x
r, -< (3.43)
0 b > 1
-

A plot of the extreme value ro* is shown in Fig. 3.6 for several

values of p.

A comparison of g(4) (r0=1) and h(#) is shown in Fig. 3.7
for p=3. Recall that for p =3 the means and variances match.
Observe that the given a priori density g(6) and the desired a priori
density h(6) differ noticeably for r, = ro*. As ry varies from
unity to the extreme permissible value ro* , h(8) changes from a
unimodal to a bimodal density. (This is not obvious in the figure since
the second mode occurs at 4§ > 4.)

The effect of matching moments will be shown in Section 3.2. 2. 4;
changes in relative performance level will be studied via the sensitivity

index I(glh) as developed in Section 3.2.

3.2.2.2 Receiver Design. The receiver is a device which

bases its decisions on z(xlg). It is designed on the basis of the given
a priori density g(6), although in fact h(4) holds. Receiver design
for the detection problem SKE-UNL was originally developed by
Spooner (Ref. 22). His work is the basis for this section.

Assume that the input observation x(t) is timelimited to the
observation interval (0, T) and (Fourier Series) bandlimited to a band

of frequencies of width W . Then the input waveform x(t) can be
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represented as a vector in 2WT dimensional space by employing the

sampling theorem. Thus we can characterize x(t) by

_ T
X = (XI, Xgr + v v xn) (3.44)
where
n = 2WT,the dimensionality of the space
W = bandwidth of input x(t)
T = total duration of the observation
and

- i =
X, = X(ZW) i=1,2, ..., n (3. 45)

The conditional observation statistics are

n

11_1
2

x.2
2 . 1
fx|02,N) = ( 1 ) e 207 i=l (3. 46)

and

n 1 S 5
3 " LGS
202 i=1
(3.47)

f(xlo?,8N) = ( 1 )
B 270 2

The noise power level ¢? is assumed to be an unknown but time-
invariant parameter over the observation interval (0, T). Substituting

7] -1 in Eqs. 3.46 and 3.47 yields
0.2
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fx16,N) = (%) e 71 (3.48)
and
n 6 3 2
o\2 2 gl ;- 5))
f(x10,8N) = (577) e (3. 49)

The total likelihood ratio depends upon the absolute observa-

tion statistics with respect to the given a priori density g(6). We

obtain
fixlg,N) = [ f(x16,N)g(6)do
O
n
n __9_ 2
% 2 2 Z’ =1 b+1
_ f A o i=1 Bb -cé do
0 27 I (b+1)
n
. —(b+1+§)
— 2
= Cn(.Z X, +2c) (3.50)
i=1
and
f(xlg, SN) = [ f(xI6,5N)g(6) do
O
-(b+1+£21)

n
C, 121 (xi— si)2 + 2¢c (3.51)
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where
(2¢)" I (o+1+3)
Cn = n/z (3-52)
i I (b+1)
Dividing,
n
r ) _ﬂ<b+1+'§>
x.2 4+ 2
f(x g, SN) 1;1 i T
(xlg) = ——— = (3.53)
fxlg, N) L
- Z (x.-s.)%2 + 2c
R S
L -

The likelihood ratio £(x!g) depends on the observation x only through

the sufficient statistics

EEIN) = ) % (3. 54)
i=1
n

EEISN) = ) (x;-s,) (3. 55)
i=1

3.2.2.3 Receiver Realization. An optimum processor is

any device which realizes the likelihood ratio or a monotone function
of it. A particular realization is presented in Fig. 3.8. The proces-
sor is essentially a dual channel device, i.e., one channel computes
a sufficient statistic conditional to N while the other channel com-

putes a sufficient statistic conditional to SN ; these outputs are
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combined to form the detection output.

Sample

x(t, 6) d(x)

and
Store

Figure 3.8. Receiver realization based on the given a priori density g(®).

3.2.2.4 Sensitivity Index. Performance of the receiver

based on the given a priori density g(6) will be compared to the per-
formance of the receiver based on the a priori density h(9) via the

sensitivity index developed in Section 3.2. From Eqs. 3.17 and 3.18

Igh) = [ e()[f&Ih, SN) - f(xIh, N)] dx (3. 56)
X
where
) = z(xlh) - z[z(xlg)|h] (3. 57)

An nth order integration is required by Eq. 3.56. The dimensionality
of the problem can be reduced by the choice of an appropriate trans-

formation.

Reduction of Dimensionality. If we let




n
E, = ), s (3. 58)
i=1
_ 1 S 1
u = E—S- (1= Xlsl> - p) (359)
2
v2=—!‘—ix2———]i—§xs (3. 60)
Bs izt + \Eg 55 11 .

then the transformation developed in Appendix C can be employed to

show that

-(b+1+l2‘)

_ n—2 1 2 2 ZC

f(u,vlh,N) = Knv (u+§) + VI n(u,v) (3.61)
S
and
—(b+1+g)
f(u,vlh,SN) = K Vn—2 (u——l)‘2 +v2+i?'E s(u, v)
VI, n 2 E ’

~-o<u< x, 0<v< (3.62)

with

2(2¢/E )P*L r(b+1+12‘)
K = 5

(3. 63)
n VT r<“—21> T (b+1)
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p i . -i
n(u,v) = 1 Z g, —%9 (u+—;) + v +%£ (3. 64)
T'(b+1+) i=0 "\"s S
and
p i 2 -i
s(u,v) = L = Z g; —%3) (u-}-) + v2 +EC (3. 65)
I"(b+1+-2-) i=0 S S
where
g, = fir(b+1+-g+i) i=01, ... p (3. 66)

The coefficients g, are independent of c; and hence the absolute ob-

servation statistics depend on ES and c only in the form ES/ c.

Calculation of z(xlg). If we let

o(u, v) 2 z(xlg) (3.67)
then
a(u,v) = [ g Vg, SN)] (3.68)
f(u,vig, N

Since g(f) is a degenerate form of h(f) obtained by letting p = 0

and ry = 1, we obtain
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B 2 7
(u +—§) +v2 +%E
afu,v) = (b+1+7) fn - S (3. 69)
(u—l +vz+—2—c
2 ESJ
L

Calculation of z(xlh). If we let

£, v) 2 zxlh) (3.70)

then

In

"

£ @, v) f(u, vih, SN):]

Lf(u, v!h, N)

= {n -s_(u,_v)] + o(u, v) 3.71)
| n(u, v)

Calculation of z[z(x|g)|h]. It is shown in Appendix K that the trans-

formation z[z(xIg)|h] can be expressed as a ratio of integrals; eval-
uation can be achieved via a Gauss-Mehler integration routine. The
transformation z[z(x|g) | h] appears to be monotone with respect to

its argument z(xlg). Asa matter of fact, the transformation is nearly
the identity transformation. Figure 3.9 shows how close the transfor-
mation z[z(x|g)|h] is to the identity transformation by plotting
z[z(x|g)|h] - z(x|g) vs. z(xlg) for the "worst" (rO = .0l) case.

(The transformation is precisely the identity transformation if h(9) =

g(f), i.e., when r0=1.)
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z(xig) - z[z(x|g)h]

-4

z(xg)
Figure 3.9. Transformation z[z(x]|g)|n].
Calculation of €(x). If we let
A
6(u,v) = e() (3.72)

then
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d(u,v) = z(xlh) - z[z(xlg)|h]

£(u, v) - z[a(u, v)h]

fn [%?—J—’—X—% + o(u, v) - z[a(u, v)|h] (3.173)

A contour map is used to inspect 6(u,v) in more detail.
Two contour maps of the upper‘right half plane are shown in Figs.
3.10and 3.11. An appreciation of the nature of 6(u,v) will assist
in keeping computational errors to a minimum. It can be shown that

6(u,v) is an odd function with respect to u, i.e.,
o(u,v) = -0(-u,v) (3.74)

Furthermore, there appear to be p-1 or fewer distinct contours of

o(u,v) =0.

Computation of I(glh). The sensitivity index I(glh) can be expressed

as

I(glh) = E[6(u,v)lh, SN] - E[6(u, v)!h, N]
(3.75)
-
=/ f 6(u, v) [f(u,vlh, SN) - f(u, vIh,N] dudv
0 -

Numerical Results. A Gauss-Legendre integration routine was used

on an IBM 360/67 digital computer to obtain numerical results. Care-
ful supervision of the inherent computational errors led to reasonably

accurate results.
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Figure 3.10. Contour map of &(u,v), b = 1, Es/c =1, n = 10, r = .5.

The effect of r, on the sensitivity index I(glh) is shown

in Fig. 3.12. The sensitivity index I(glh) =0 for ry=1 [rj=1

implies that r(6) =1 and hence that h(6) = g(6)]. The sensitivity

index increases monotonically from zero to its maximum value as
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Figure 3.11. Contour map of d(u,v), b = 1, Es/c =1, n=2, r =,5,

r,_varies from unity to its extreme permissible value rO* =0;

the sensitivity index changes more rapidly as rg- ro* . Sensi-

tivity appears to be almost independent of the number of observations

n.

The numerical values of the sensitivity index I(glh) are
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relatively small numbers, even for r, =r.*; it can be shown that

0 "0

the performance index Jh(l :0) is approximately equal to the expec-

ted value of the signal-to-noise ratio, i.e., Jh(l :0) = E(GESIh) =
E

E(@Eslg) = (b+1) Thus, sensitivity of receiver performance to

c

a priori specification is minimal even when only the mean and variance

of h(#) are matched to the mean and variance of g(6).

The validity of the sensitivity index can be ascertained by com-
puting the standard deviation of 6(u,v). Figure 3.13 shows how the
standard deviation of &(u,v) is relatedto r 0" The standard devia-
tion is almost linear with respect to r 0 and virtually independent of
the number of observations n. The interpretation follows: the level

of confidence one places on the sensitivity index should increase as

- 1 and should be independent of the number of observations n;

o
in other words, one should have little doubt about the sensitivity index

as an indicator of relative performance level whenever ry is close to
unity regardless of n.

It is not possible to show how the parameter b affects sensi-
tivity over its entire range if Ty is kept constant, since Ty is lim-
ited in its range of permissible values as indicated in Fig. 3.6. To
circumvent this problem it was decided to keep the degree of perturba-

tion between minimum and maximum permissible values of r, constant;

0

and hence a new parameter dp was defined as
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d = ——— (3.76)

Figure 3.14 shows how the sensitivity index is related to b for dp =
.5 (rO was kept at a level halfway between its minimum and maximum
permissible values.) The mode at b=1 can be accounted for by
referring to Fig. 3.6 and observing the transition that occurs at b=1
for p=3. At that point r(8) =0 for some 4 € (0,x); for p=3 and
b> 1, r(f)=0 onlyat 6 =0 so that ro* =0.

The effect of the parameter Es/c on the sensitivity index is

shown in Fig. 3.15. Sensitivity is nearly linear with respect to ES/_c

for 0< Es/c < 2. [Intuitively this is very reasonable. An increase

in signal energy ES for c¢ fixed results in a higher performance level
for any detection situation. The relative performance level as meas-

ured by the sensitivity index is likely to follow the same pattern. The

sensitivity index reaches a maximum and decreases as Es/c gets

larger and larger. Detection becomes almost a certainty as the signal

energy gets large in spite of the fact that the receiver is not optimum;
and hence it is difficult but irrelevant to distinguish between the per-

formance levels of the optimum and suboptimum receivers.
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CHAPTER IV

COMPARISON OF RECEIVER PERFORMANCE FOR THE

COMPOSITE HYPOTHESIS SITUATION

Two contrasting points of view to the theory of signal detect-
ability are presented by the Bayesian approach and the classical
approach. The Bayesian approach requires the assignment of a priori
densities to all unknown parameters and averages the conditional ob-
servation statistics with respect to the assigned a priori density.
This allows the user to introduce physical or empirical knowledge
about these parameters. Unfortunately, some view these a priori
densities as simply a convenient technique to eliminate the nuisance
of unknown parameters, mistaking "freedom to incorporate' for
"license to eliminate."

Classical statistics, on the other hand, seeks a test which is
either uniformly most powerful (UMP) or uniformly most powerful
unbiased (UMPU). Basically, it seeks a test which is either the best
test (maximizes the probability of detection for a given probability of
false alarm) regardless of the actual value of the unknown parameter,
provided only that it is admissible; or it seeks the best unbiased test
(never yields performance poorer than chance) with respect to the
admissible set of values of the unknown parameter. While UMPU

tests often exist, UMP tests exist only in special circumstances.

62
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Included in the classical approach are the "estimate and plug' tech-
niques, e.g., the "generalized likelihood ratio' method.

Both the Bayesian and classical approach often lead to tests
which yield identical performance in terms of ROC. This seems to
be particularly true of the single composite hypothesis for situations
where the parameters are ''non-energy-bearing, " and only when the
a priori knowledge is modeled by a maximum entropy density. Even
for the double composite hypothesis, application of classical estima-
tion techniques may result in the same test obtained by Bayesian
analysis. Thus, although the basic criteria employed for hypothesis
testing may be dissimilar, both Bayesian and classical tests often
yield equivalent performance. As a result it is conjectured that
Bayesian philosophy and classical statistics can usually be recon-

ciled with each other for the composite hypothesis.

4.1 Introduction

This chapter will consider both the Bayesian and classical
approach to signal detection for the composite hypothesis and con-
trast performance in terms of ROC for several examples.

In reference to Bayesian philosophy the ESP receiver is
postulated as a means of determining the information content and use-
fulness of a specific a priori density for use in receiver design. In
conjunction with the ESP receiver, conditional performance curves

are explained along with average performance curves. Several
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pertinent examples are worked out.

From a classical point of view UMP and UMPU tests are
described, and several examples are given. In addition some clas-
sical estimation techniques are employed in the task of receiver de-
sign. Indications are that ''estimate-and-plug'' procedures lead to
the same type of receiver obtained by utilizing Bayesian techniques

along with a diffuse a priori density.

4.2 Bayesian Approach

Bayesian philosophy assumes there is a known a priori density
for all unknown parameters of the conditional observation densities.
Let 6 denote an unknown N and/or SN process parameter(s) in
the subsequent development, and let g(d) denote the a priori density

assigned to 6 .

4.2.1 Evaluation Methods. According to Bayesian analysis

the absolute observation statistics are
tx1dy) = J 1(x10, 00 g(0) dd (4.1)
©

The total likelihood ratio is

_ f(x|SN)
L(x) = TN 4.2)

and the conditional likelihood ratio is

f(x16, SN) (4.3)

txl6) = f(x16,N)
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Optimum ROC

The optimum receiver bases its decisions on £(x) while the
conditionally optimum receiver bases its decisions on ¢(x14). Op-

timum receiver performance is determined via

pOPT(a 1 ) - pf(x)>3 (x| &) dx
= fxlo,N)g e)da:‘dx
1(x)> B [f N/
= [ [f f(x10 )dx:| (6) do
0 |tx)>p
=f®p A|9,SN)g(9) (4.4)
where

cS

Ale, Ny = fx10, N) dx (4.5)
SN i[(x)>B X9 SN

The parametric Eq. 4.5 describes the conditionally suboptimum ROC
obtained by the receiver which operates in a conditional environment
but bases decisions on £(x) instead of £(x16). Hence, the optimum
ROC is obtained by averaging the conditionally suboptimum ROC's

with respect to g(6) .

ESP ROC

The externally sensed parameter (ESP) ROC has been proposed
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as a convenient upper bound to the optimum RCC by Spooner (Ref. 32).
The name is derived from the hypothetic noiseless observation of the
parameter 6 as well as the usual observation, x . If 6 contains
"signal' parameters, the ESP receiver observes these whether the
signal is actually present or absent. The ESP receiver is a fictitious
receiver whose ROC is obtained by averaging the conditionally optimum
ROC's with respect to g(6) . Hence, it is independent of the unknown
parameter(s) 6 , but dependent on the a priori density g(6) . The

parametric equations describing the ESP ROC are

PPN = ! p@le, N) g6) as (4.6)
where
cO N
P-Y@ale, X)) = [ fx10, N) dx (4.7)
SN exl9)> B SN

Since the ESP ROC averages conditionally optimum ROC's while the
optimum ROC averages conditionally suboptimum ROC's, it is read-
ily apparent that the ESP ROC serves as an upper bound to the opti-
mum ROC. However, equivalence of the conditional ROC's does not

necessarily imply equivalence of the average ROC's.

Interpretation

The ESP ROC and the optimum ROC are both dependent on the

a priori density g(9). The difference between these ROC's indicates
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the degree to which the unknown parameter 6 has affected perform-
ance, subject to the a priori density g(§). One might conjecture
that a small difference means either that the parameter 6 is irrele-
vant, or if relevant, that the optimum receiver acts "as if it had
learned the value of 6 ' from the observation, x. A large differ-
ence indicates that knowledge of 6 is relevant, and the optimum
receiver is unable to effectively learn the value of 6 from the ob-
servation, x.

4.2.2 Examples. Several examples have been worked to

demonstrate the concepts presented above. The examples to be
considered are SKEA (signal known except for amplitude) with a
normal a priori density, SKEA with an a priori density that assigns
zero probability to the negative axis (known sign), and SKE-UNL
(signal known exactly, unknown noise level) with a gamma a priori

density.

Definitions

The following definitions will be used throughout this chapter

in each of the examples:

w = Et E_l X (4.8)
y = _§t z-1 X (4.9)
.= stz tg (nominal signal-to-noise ratio) (4.10)
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4.2.2.1 Signal Known Except for Amplitude, Normal

A Priori Density. Assume that the unknown amplitude a can be

modeled accurately by the normal a priori density

_(a-m)?

g@) = —— ¢ % (4.11)

and that the conditional observation statistics can be modeled by the

nl:g order multivariate Gaussian densities

fxla,N) = (21712\)— e (4.12)

-3 -3 &-29) 2 &-as)
fxla,SN) = 271Z 1) e (4.13)
where s isthe signal 'waveshape' and 2 is the noise autocovar-
iance matrix.
In order to avoid obscuring the principles involved, the
derivation of receiver operation and performance is performed in the

appendices for both the conditionally optimum and suboptimum cases.

Conditionally optimum receiver

The decision rule of the conditionally optimum receiver (de-

rived in Appendix D) is
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ad
Inp 0
! -
¢(x) = if a> 0
0 otherwise
or
ad
Inp 0
! y<o g
¢(x) = if a<o0 (4.14)
0 otherwise

(The nature of the decision rule ¢(x) was discussed in Section 2.2.2.)

The corresponding performance equations (derived in Appendix D) are

lal vd.
PP%a,N) - o |- . (4.15)
lal \/Ea
lal vd.
PCu,ia,sN) = & [- LB, 5 0 (4.16)
lal \/8—6

These parametric equations in 8 describe a normal ROC with d' =

x/%lal.

Conditionally suboptimum receiver

The decision rule of the conditionally suboptimum receiver

(derived in Appendix E) is
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1 {y+-‘§| > B
¢(x) = (4.17)

0 otherwise

The corresponding performance equations (derived in Appendix E) are

rSnA1a,N) = () + ®0) (4.18)
PS4 1a, sN) = (v +a Vg )+ @0y - avdy) (4.19)
where
-A + mv“1
vd,
A2 = -_A}‘—__r_nl__ (4.21)
vdy
and
A = \/2(v‘1 +d,) [ﬂn(B\/1+vd )+£n—2:| (4.22)
0 0 2v )
ESP ROC

The ESP ROC is determined by substituting Eqs. 4.11, 4.15

and 4.16 into Eq. 4.6. We obtain
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(a- m)?
oc lal vd. oA
PPamN = f o[- 222 0 L e ¥ @
- la| \/-d—a Vanv
(4.23)
2
% lal vd. --—T—(a‘m)
PESP(AISN)= f d (- {np + 5 0 1 e V. da
-0 lal \/—dg vV 2nrv
(4.24)

Numerical values for these parametric equations in 3 were obtained

by use of numerical integration techniques.

Optimum ROC

The optimum ROC can be determined by substituting Eqgs. 4.11,

4.18 and 4.19 into Eq. 4.4 and making use of Appendix H. We obtain

o _a-m)?
OPT 1 2v
P (AIN) = [ )+ @(,)] e da
foo 1 2 va2wv
=2+ 20,) (4.25)
- _fa-m)?
OPT 1 2v
P T (AlISN) = [ [o( +aVd )+ ®(, -aVd.)] e da
o 1 0 2 0 e
A, +mvVd, A, - mVd,.
- oL 0) + o-2 0 (4.26)
v1 + vd vl + vd

0 0
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Diffuseness

An inspection of Eqs. 4.18 - 4.21 shows that the conditional
performance of the suboptimum receiver depends on m and v only
in the ratio %] . The ratio % can be related to a measure of diffuse-
ness or non-centrality. An a priori density is said to become diffuse

-1

. m .
as the variance v becomes large. Hence, (—‘7) can be considered

a measure of diffuseness.

Evaluation of receiver performance

Results are presented in Figs. 4.1 - 4.4 for specific parame-
ter values of dO, m and v. The parameter dO represents the
nominal signal-to-noise ratio and was set equal to unity. Conditional
ROC's (optimum and suboptimum) are shown in Figs. 4.1 and 4.3.

Average ROC's (ESP and optimum) are shown in Figs. 4.2 and 4.4

for the same parameter values as the conditional ROC's.

Conditional ROC's

An inspection of the conditional ROC's of Fig. 4.1 immediately
leads to the conclusion that the conditionally suboptimum ROC may
become biased (yield performance poorer than chance) for some par-
ticular ch‘oice of a. This situation will occur whenever the environ-

mental conditions (actual operating conditions) and the given a priori

1From a dimensional standpoint, —% is a more appropriate choice,

especially since (—g—) is termed a measure of centrality.
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P(AISN)

Optimum

.05 /
/ / / - — — Suboptimum
/ d, =1
/ 0
/
/ m_ 9
/ v
.01 Zl ] / | ] | 1 ]
.01 .05 10 .50 .90
P(AIN)

Figure 4.1. Conditional ROC's, comparison of optimum and suboptimum receive
performance, SKEA, d_ =1, n/v = 2.
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P(A|SN)

ESp
— — — Optimum
d, =1
.10 0
m= 2
v =1
.05+
o1 [ I L L 1 [ ! |
.01 .05 .10 .50 .90
P(AIN)

Figure 4.2, Average ROC's, comparison of ESP and optimum receiver perfor-
mance, SKEA, do =1, m=2, v =1,
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P(A|SN)

/ Optimum
.10 /
J/ —-=— Suboptimum
v
=1

.05 4

— m_y

| v
.01 I L1 1 ! I ! ! J 1 |

.01 .05 10 .50 .90

P(AIN)

Figure 4.3. Conditional ROC's, comparison of optimum and suboptimum receiver
performance, SKEA, d_ =1, m/v = 0.



76

P(A1SN)

10k // = =7 7 Optimum
L do = 1
05 m= 0
.01 I L1 L ! 1 1 1 [ !
.01 .05 .10 .50 .90
P(AIN)

Figure 4.4, Average ROC's, comparison of ESP and optimum receiver perfor-
mance, SKEA, do =1, m =0,
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density differ widely. Hence the receiver designer must be cautioned
to be very careful about the a priori density he chooses to model the
physical situation. The assumption that negative amplitudes occur
rarely can lead to very poor performance (worse than chance) when
the environmental conditions are such that a negative amplitude does
occur. The performance index d' may be reduced by as much as
2m/ (v w/ElB). For instance, the conditionally suboptimum ROC of Fig.
4.1 obtained for a =-6 has an equivalent d' =2 whereas precise
knowledge of the amplitude would have resulted in d' = 6. By the
same token, the conditionally suboptimum ROC obtained for a =4
yields essentially the best performance possible under the circum-

stances. Hence it is very important to incorporate into the a priori

density, in a very precise manner, any information concerning actual

operating conditions. It is best to assume a diffuse a priori density

(—r‘—? << 1) if little or no knowledge is available; use a sharp a priori
density (_r‘r’_x >> 1) whenever precise knowledge is available.

The conditional ROC's of Fig. 4.3 are based on an even sym-
metric (m=0) or a diffuse (m # 0;as v - wx, %] — 0) a priori density.
Note that the conditionally suboptimum ROC's are unbiased (perform-
ance is at least as good as chance) for all admissible amplitude values.
However, the conditionally suboptimum ROC's of Fig. 4.1 are super-
ior to the conditionally suboptimum ROC's of Fig. 4.3 for positive
amplitudes.

It should be clearly understood-that the "optimum’'' receiver
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produces the best average ROC, best with respect to the given a priori
density g(-). That is why it is important to carefully choose g(-)

to reflect the performance balance the user wishes (and not the de-
signer's convenience). If the user does not desire best average
performance, but, for example, something like maximum wor st-case
conditional performance, 1 then it would be advisable to drop likeli-

hood ratio and use other design principles.

Average ROC's

The average ROC's for this detection problem are presented
in Figs. 4.2 and 4.4. Since the ESP ROC is the average of the con-
ditionally optimum ROC's and the optimum ROC is the average of the
conditionally suboptimum ROC's, Fig. 4.2 is a "'capsule' summary
of Fig. 4.1 and Fig. 4.4 is a ''capsule' summary of Fig. 4.3. Close-
ness of the optimum ROC to the ESP ROC tends to indicate that on the
average the conditionally suboptimum ROC's are close to the condi-

tionally optimum ROC's. In essence, comparison of the average

ROC's gives some indication of the relative behavior of the conditional

ROC’s.

4.2.2.2 Signal Known Except for Amplitude, Known Sign.

This section will determine the operation and performance of the re-

ceiver which is optimized with respect to an a priori density that

1Ma.ximum worst-case conditional performance means ''go after the
little signals and don't try to take advantage of the big ones.”
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assigns zero probability to the negative axis. [The sign of a is
known, i.e., P@ > 0) = 1.]

Restriction of the a priori density to the class of densities
which assigns zero probability to the negative axis leads to some in-
teresting results. The unusual aspects of this detection problem will

be discussed. Both conditional and average ROC's will be derived.

Conditionally optimum receiver

Conditionally optimum receiver operation and performance do
not depend on the given a priori density. The decision rule and ROC
were derived earlier. The decision rule is given by Eq. 4.14 and the
ROC is described by Eqs. 4.15 and 4.16. Receiver operation con-

1

sists of simply computing the sufficient statistic y = _st z X and

comparing it to a threshold which depends upon the actual amplitude a .

Conditionally suboptimum receiver

It is shown in Appendix F, subject only to the restriction that
g(a) assigns zero probability to the negative axis, that suboptimum
receiver operation is identical to optimum receiver operation. Again,
receiver operation consists of merely comparing the sufficient statis-
tic y to a threshold y;the threshold y depends upon the a priori
density g(a) but is independent of the actual amplitude a .

Conditionally suboptimum receiver performance depends upon
the conditional observation statistics of y. It was shown in Appendix

D that
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_J
2d
fyla,N) = —— ¢ O (4.27)
VanO
and
_(y—ado)z
2d
f(yla,SN) = — = e 0 (4. 28)
v211d0

Hence, the conditionally suboptimum ROC is described by

pSala,N) = [ ila,N)dy
y> v
and = & (d) (4.29)
P“S@ala,sN) = [ fyla, SN) dy
y>v
= @(a+a¢a;) (4.30)
where
5 = —X (4.31)
vd,

These performance equations yield a normal ROC with d' =a \/d0 .
Hence, the conditionally optimum ROC's are equivalent to the condi-
tionally suboptimum ROC's. However, the parametric equations

describing the ROC's are different. Knowledge about the exact
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operating point (threshold level) becomes significant. As a result

the ESP ROC and the optimum ROC are not equivalent.

ESP ROC

The performance equations of the ESP ROC are

% a vd,
PPPan = [ o L %) s@e)a (432
0 a */56
and
% avd_
PSP s 1sN) = o8, 20 g(a)da  (4.33)
0 a.«/d_0
Optimum ROC
The performance equations of the optimum ROC are
OPT X
P~ @AIN) = [ ®()g@)da = @) (4.34)
0
and
OPT *
P U(AISN) = [ 2(+aVd))e)da (4.35)
0

Evaluation of receiver performance

An example of this type was worked by Spooner (Ref. 32).

The a priori density used in his study was the truncated normal dens



ga) = L . 0<a<x (4.36)
22 CID(%)

He presents performance curves for the ESP receiver and the opti-
mum receiver for various values of @ and A . Basically, the aver-
age ROC's displayed the same features and characteristics as those
of Figs. 4.2 and 4.4.

4.2.2.3 Signal Known Exactly, Unknown Noise Level,

Gamma A Priori Density. For the detection problem, signal known

exactly, unknown noise level (SKE-UNL), the autocovariance matrix

of the observation is known only to within a scale factor. If ¥ denotes

the autocovariance matrix, then
v = ¢g?2 2 (4.37)

where Z is knownand o2 represents the unknown noise level. If

we let
p =L (4.38)
02
then the conditional observation statistics become
n
) \? ~3EEx
fxl9,N) = < ) e (4.39)



Reduction of dimensionality

The following transformation turns out to be very useful.

(Details are discussed in Appendix G.)

If we let
y 1
u = > - =
d0 2
2
2 _ W y
V _— —— - ———n
i (&)
where
w = l(t E_l_
g = stz ly
d, = st z-1 S (nominal signal-to-noise ratio)

then

1
0 d\* - —
f(ulg,N) = o e ~-c<u< x

(4.41)

(4.42)

(4.43)
(4.44)

(4.45)

(4.46)
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o 6dyv®
6 d -
( O) n-2 2
2 '—2'—' A e
fvlg,N) = 0<v< < (4.47)
(%) ]
(&=
2
1 edo(u_%)2
2
Qdo 5
f(ulg,8SN) = (277 > e ~e < u< x (4.48)
f(vig,SN) = f(vig,N) 0<v< x (4.49)

The quantity (u,v) is a sufficient statistic of the observation and has

reduced an n-dimensional problem to a 2-dimensional problem.

Conditionally optimum receiver

In terms of (u,v) the conditional likelihood ratio is

f(u,v16,8N) _ f(ulg, SN) f(vig, SN)
f(u,v1o,N) f(ulo,N) f(vlg,N)

I

2(u,vig)

gd.u

-e U (4. 50)
Since #(u,v10)> B implies that u > 9“(‘13 , the decision rule of the
0
conditionally optimum receiver is
4nfB
1 >
6d,
¢x) = (4. 51)

0 otherwise
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The decision region is pictured in Fig. 4. 5.

P
>

//

7.

Figure 4.5. Decision region of the conditionally optimum receiver, SKE-UNL.

Dependence of the decision region only on u simplifies cal-

culation of the conditionally optimum ROC. The performance equa-

tions are
vo d
PCO(AlQ’N) = f f(uIO,N) du = & ",QIIB _ 5 0
u>_§9§ 9dg 4. 52)
0
v d
PCO(A|9,SN) = f f(ulg,SN)du = @ -{nf 4 5 0
fng Vod,
u>—é—a— 0
0 (4. 53)

Conditionally suboptimum receiver

The conditionally suboptimum receiver is based on the total
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likelihood ratio. The total likelihood ratio can be determined from

the absolute observation statistics

f(u,vIN) = [ f(u,vI6,N) g(6)do (4. 54)
)

f(u,vISN) = ffu,vIG SN) g(6) dg (4. 55)
)

If we model the unknown parameter 6 with a gamma a priori density

b+1

C
9) = 0 >0, b>-1, 0<9 < 4.56
g(0) T (oe1) e c < x (4. 56)

then performing the required integration is straightforward and yields

—(b+1+—g)
¢ B n- 2 2c
(u,viN) = Knv [(u+ 2) + v2 5 (4. 57)
0
b+1+=3)
f(u,vISN) = Kn Vn-2 l:(u— 2) + v?2 +§C (4. 58)
0
where
% b+1
2(———) I‘(b+1+2)
ko= Y (4. 59)
JEP(Z)rwu)

Hence, the total likelihood ratio is
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_ 1(b+1+—121)
2 2 2C
(u+3)" +v 5
Q(u’v) = w = 20 (4.60)
f(u, vIN) (u-2)2 4 vz 426
’ %o
-

and the decision rule of the conditionally suboptimum receiver is

1 L(u,v) > B
¢(x) = (4. 61)

0 otherwise

Some algebraic manipulation reveals that £(u,v) > B implies

(u-a)®>+v? > r?2 if A<1

(u-a)+vZ < r?® if A>1

u> 0 if A=1 (4.62)
where

1 A+1
a = '§ A-1 (4. 63)
r? = A %9 (4. 64)

(a-1)2 %
1

b+1+%

A =8 (4. 65)

The decision region is pictured in Fig. 4.6.



88

—
X ot

a

Figure 4.6. Decision region of the conditionally suboptimum receiver,
SKE-UNL.

Conditionally suboptimum receiver operation consists of determining
whether the observation (u,v) lies inside or outside of the semi-
circular region described by Eq. 4.62. This is in contrast to the
decision region of the conditionally optimum receiver (Fig. 4.5) which
consisted of a half plane.

The conditionally suboptimum ROC's are described by the
parametric equations

r*S@ale,N) = [ £(u,v16,N) du dv
L(u,v)> B

r a-+
fvio,N) [ f(ulg,N) du dv

a- r/-v

I

J
0

fr f(vig,N)[®(R VE) - ®(SVF)] dv (4. 66)
0

n
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PCS(AIB,SN) = f f(u,v!6,SN) du dv
2(u,v)>B
(4. 67)
r
= [ iwle,SN)[@®R' V) - &(S' VF)] dv
0
where
R = (a+§ + Yr? - v? \/d_o (4. 68)
S = [a+3- rz-v2) x/d—0 (4. 69)
and
R' = (a-3+ rz-v2> \/_c% (4.70)
S = la-3- rz-vz) fd? (4.71)
ESP ROC

The average ROC's can be determined in terms of the condi-

tional ROC's. The ESP ROC is described by

0
PRSPy = f PCOui6,N) g(0) do
0
0 vod,
= o [24nE | 0 g(6) de (4.73)
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o 6]
pCC@ 10, SN) g(0) do

PPN = f
0

v dO
g(p)do (4.74)

oo
_ f & -Inf N ;
0 vedo

Optimum ROC
The optimum ROC can be determined from the conditionally

suboptimum ROC's.

0
POPTaiN) = [ PYS@aIN) g(0) do
(4.75)

o

= fac g(g)frf(vm,N) [©(A V6)- @(B V)] dv do
0 0

Reverse the order of integration, make the substitution & = ‘/ ) (2c+dovz)

and utilize Appendix H to yield

v
r "2
POPTaiN) = k[ 2 ( 2 +§—C> [T (t5) - T (t,)] dv
0 0
(4.76)
where

v = 2b+n+1 (4.77)
t; = v 5 (a +3- Yr2- v?‘) (4.78)
2 , 4C



ty = ——3—2~c— <a +3 + ¢re- V2> (4.79)
2

= i (4. 80)
r(-n-z—) T (b+1)
and
(1
r(.”il) t 2 2
T ) = —2/ [ (1+% dx (4. 81)
v ) v
Vur I"(—z-) -0
Similarly,
4
OPT T h-2 oc\ 2
P (AISN) = Kf v (v2 +H_) [T (t’z) - Tv(ti)] dv
0 0
(4. 82)
where
t'1 = v 5o (a—%— rz—v2> (4.83)
Vv +d—
0
. v _ 2 _ 2 .
t2 = TS (a 5 + r v) (4.84)
Vv +—a—
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Evaluation of receiver performance

Although the equations describing the various ROC's are not
in a very convenient form, they are amenable to numerical integra-

tion techniques. The ROC's presented in Figs. 4.7 - 4.10 were
d

obtained in this manner. The conditional ROC's depend only on —EQ ,

) d0 and n. The parameter b is absorbed into the threshold and

does not affect the conditional ROC's. The average ROC's depend
d
only on —EQ , n and b and are independent of 6 by virtue of the

fact that we are looking at average performance.

Conditional ROC's

The conditional ROC's of Fig. 4.7 clearly show how uncer-

tainty about the noise level affects performance. Whenever the thresh-

old is unity (8=1), conditionally suboptimum receiver performance is

equivalent to conditionally optimum receiver performance. This fea-

ture is easily explained by a closer inspection of the decision regions.
The decision region of the conditionally suboptimum receiver is the semi-
circular region depicted in Fig. 4.6. When the threshold is set to
unity, the semicircular region degenerates into the half plane u> 0. The
decision region of the conditionally optimum receiver depicted in Fig.
4.5 is also the half plane u > 0 whenever the threshold is set to unity.
Hence performance is equal at that particular threshold setting.

The importance of this feature lies in the fact that many binary

communication systems operate under 1) the assumption of equally
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Figure 4.7. Conditional ROC's, comparison of optimum and suboptimum receiver

performance, SKE-UNL, n = 2.
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Figure L4.8. Average ROC's, comparison of ESP and optimum receiver perfor-
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Figure 4,10. Average ROC's, comparison of ESP and optimum receiver perfor-
mance, SKE-UNL, do/c = 1.
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likely signals and 2) the criterion, maximize a posteriori probabil-
ity. Hence, decisions are based on likelihood ratio with a threshold
of unity; and performance is optimized and independent of fluctuations
in noise level.

Conditionally optimum receiver performance depends solely
upon the actual signal-to-noise ratio, 6 do, whereas conditionally
suboptimum receiver performance depends primarily upon the expec-

ted value of the signal-to-noise ratio,

dg
E@dy) = (b+1) > (4. 85)

The conditional ROC's of Fig. 4.7 indicate that conditionally subopti-

mum receiver performance converges to conditionally
do
optimum receiver performance as gryling 0. The following interpreta-

tion is offered: whenever the actual signal-to-noise ratio, 8 dO’ is

in close agreement with the ratio ico— (the parameter b is absorbed

into the threshold and affects only the particular operating point, not

the ROC), a close correlation exists between conditionally optimum

and conditionally suboptimum receiver performance. For instance,

the conditionally suboptimum receiver designed for ? large (iiég > 10)
performs rather poorly whenever 4 d0 is small (6 d0 < 10). Cc()in—
trariwise, the conditionally suboptimum receiver designed for TO

d
small (—CO- < 1) performs very well for 6 dO large (6 dO >1).

Hence, it is very important to assign an a priori density which reflects
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as closely as possible the actual environmental conditions. When

much uncertainty concerning the actual state exists, be realistic in

assigning an a priori density.

Average ROC's

d
The average ROC's of Fig. 4.8 are parameterized by —C—O—

and n and reflect the conditional ROC's of Fig. 4.7. The ESP ROC
and the optimum ROC average the conditionally optimum ROC's and
the conditionally suboptimum ROC's respectively with respect to the
given a priori density. Equality of the ESP ROC and the optimum

d
ROC on the negative diagonal is apparent, independent of TO, b or

) . 0 -
n. Performance increases as a function of — In addition, the

optimum ROC converges to the ESP RCC as n — «, although con-

vergence is not uniform along the RCC.

Diffuse a priori density

The conditional ROC's of Fig. 4.9 and the average ROC's of
Fig. 4.10 behave in an analogous manner. The conditional ROC's of
Fig. 4.9 were presented for ¢ =0 (or Eéq = ) in order to make the
effect of n obvious. A value of ¢c=0 corresponds to a diffuse a priori
density. The conditionally suboptimum ROC's nevertheless converge
quite rapidly to the conditionally optimum ROC's independent of 6 d0 .
Hence, conditionally suboptimum receiver performance can be consid-
erably enhanced if the total observation is at least 20-dimensional.

d
Figure 4.10 presents the ESP and optimum ROC's for —CE =1
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(the ROC's are singular for c¢=0). Convergence of the

ESP ROC to the optimum ROC is apparent as n - x independent

d
of b and —CO In addition, average performance improves as b

increases.

Summary

It has been shown that the ESP ROC serves as a useful upper
bound to the optimum ROC. The ESP ROC averages the conditionally
optimum ROC's while the optimum ROC averages the conditionally
suboptimum ROC's. The importance of matching a priori specifica-
tion to the environmental conditions has been demonstrated. In addi-
tion, performance of the conditionally suboptimum receiver has been
shown to converge asymptotically to the performance of the condi-
tionally optimum receiver as the dimensionality of the total obser-

vation is allowed to increase.

4.3 Classical Approach

The classical approach to composite hypothesis decision theory
consists essentially of constructing a test (decision region) which is
either uniformly most powerful (UMP) or uniformly most powerful
unbiased (UMPU) or of estimating the unknown parameter(s) by some
appropriate method and then proceeding as though the estimator(s)
were exact, e.g., the 'éeneralized likelihood ratio method. An un-
known parameter is not assigned an a priori density. Nevertheless,

Bayesian and classical approaches to detection theory, though at odds,
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often lead to tests which yield equivalent performance, especially for

certain single composite hypotheses. All the tests (or receivers) in

this section will be evaluated conditionally since this is the only

available means of comparison.

4.3.1 Uniformly Most Powerful Tests. A uniformly most

powerful (UMP) test is basically a test which yields the same per-
formance that would have been obtained if the unknown N or SN
process parameter(s) 6§ were known. In addition a UMP test re-
quires that the probability of false alarm be independent of the
unknown parameter(s). In essence, the ROC corresponding to the
UMP test (UMP ROC) is equivalent to the conditionally optimum ROC
for all e © . It is not particularly difficult to construct a test whose
ROC is equivalent to the conditionally optimum ROC for a particular
choice of 8 ; but to construct a test which is equivalent for all 9 € ©
is possible only in special circumstances. A more detailed discus-

sion of the UMP test can be found in Refs. 6-8.

Example

A UMP test is obtained for the detection problem SKEA if it
is known that the amplitude is nonnegative (@ > 0, i.e., the sign of

the amplitude is known). The UMP test is

1 y > o
¢(x) = (4. 86)

0 otherwise
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where y is the sufficient statistic

y = _}St E-l_s (4. 87)

Hence, the receiver consists of a device which computes the suffi-
cient statistic y and compares it to a threshold a to make a decis-
ion as to presence or absence of a signal. The UMP ROC will be
equivalent to the conditionally optimum ROC for all ae [0, x) since

the test (receiver operation) is of the same form.

Comparison to Bayes test

The Bayesian analysis of this problem (Section 4.2.2.2) in-
corporated the knowledge a > 0 by assigning an a priori density
which gave zero probability to negative values of the unknown ampli-
tude; the corresponding receiver operation and performance are
identical to that of the UMP test.

It appears as though Bayesian analysis might be sufficiently
general that it could conceivably encompass classical statistics as
a subset. Further investigation of this aspect of the problem was
deemed worthwhile and will be pursued in later sections.

4.3.2 Uniformly Most Powerful Unbiased Tests. A uniformly

most powerful unbiased (UMPU) test is basically a test which never
yields performance poorer than chance and is the best test among all
tests satisfying this criteria. An additional restriction placed on a

UMPU test is that the probability of false alarm be independent of the
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unknown parameter(s). Naturally, such a test is highly desirable,

but the existence of a UMPU test is not always assured. However,
when the conditional observation statistics belong to the exponential
family, a UMPU test exists (Refs. 7 and 8). Thus, a UMPU test
exists if the conditional observation densities are multivariate normal

densities.

Example

The detection problem SKEA with no restriction on the range
of the unknown amplitude (i.e., -0 < a < x) will yield a UMPU test.

It is the familiar two-sided test (Ref. 7, p. 225).
1 lyl > o

¢(x) = (4. 88)

Hence, receiver operation consists of determining the sufficient sta-

tistic y and comparing its absolute value to a threshold a.

Comparison to Bayes test

The receiver designed by Bayesian methods (Eq. 4.17) with a
symmetric a priori density (m=0) is based on a test which is iden-
tical to the UMPU test. Assignment of an a priori density symmetric
about zero reflects the designer's knowledge (or opinion) that the sign
of the amplitude is equally likely to be + or -, the maximum entropy

condition for sign knowledge. Thus, Bayesian analysis was sufficiently




103

general to include the UMPU test in its repertoire and flexible enough

to incorporate information ignored by classical statistics. Although

Bayesian methods can lead to biased tests, this should not be consid-
ered a defect since biased ROC's will occur seldom (i.e., with small

probability).

Example

A UMPU test can be obtained for the detection problem SKE-
UNL if we let the observations X i=1,2, ... n be independent and

specify the signal as constant, i.e., let

Z =1 (4.89)
and
s = sol (4.90)
where
1=@1, ..., 1) (4.91)

and SO is a known constant.

Subject to these conditions, the sufficient statistics w and y of

the Bayes test (Eqs. 4.43 and 4. 44) become

n
w=x2 xX=xx-= ) x?2 (4.92)
i=1



n n
y = s Z §=§§='insi=so.2xi (4.93)
i=1 i=1

n
d, = s Z §=_§§=Zs.2=ns2 (4. 94)

Furthermore, the transformed random variables u and v (Eqgs.

4.41 and 4.42) become

w =X _l_x 1 (4. 95)

2 . i
2z - W _(y\ _ 1= =
v? = <d ) . (4. 96)
where

u+3) (4.97)

The UMPU test is the one-sided test (Ref. 7, p. 229)

._X_.>a
Vw

$x) = (4.98)

0 otherwise
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This test can be expressed in terms of the standard t-test as

1 yn-lx o o
\
¢(x) = (4. 99)
0 otherwise
or equivalently,
Vn-1 (u+ %)
1 > a"
\4
¢(x) = (4.100)
0 otherwise

The decision region turns out to be a half-cone with its center at

, v=0. A typical decision region is pictured in Fig. 4.11.

(M

u:—

T

Figure 4.11. Decision region of the UMPU test, SKE-UNL.

]
O
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Interpretation

The random variable u + 3 is the signal portion of the obser-

vation, the part of the observation in the signal direction, or the part

that ""looks just like'' the signal. The random variable v is the noise

portion of the observation (the signal direction is excluded), the part

of the observation that can be viewed as a r.m.s. noise level estima-
tor.

The Bayesian approach decides '"'signal is present' only if the
observation (u,v) looks like the known signal with some modest
amount of noise added to it.

The classical solution is illustrated in Fig. 4.12. The

classical approach bases decisions on the estimated signal-to-

estimated noise ratio, (u+3)/v; it may decide "signal is present”

even though the signal portion of the observation, u+ 3, is "far away"
from the known signal, so long as the apparent signal-to-noise ratio
is high. The classical solution corresponds to the common engineer-

ing solution of processing the signal portion of the observation through

X Gx Dimensionality Classical u+z

Reducer v Processor | 4

Fig. 4.12, Classical solution to the detection problem SKE-UNL.
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an automatic gain control (AGC) device. The advantage of the AGC

action is that the decision process is not affected by the observation

level, i.e., the detection output, (u+3z)/v, is independent of the

variable gain G.

Evaluation of receiver performance

The performance equations can be obtained in terms of the
central and non- central t-distribution on n-1 degrees of freedom

with noncentrality parameter 6. Specifically,

PAIN) =1- Tn—l, O(oz”) (4.101)
PAISN) = 1 - Tn—l, 6(oz") (4.102)
where
6 = w/e_do (4.103)
and

C
YT [ e cb(i’i—- )dx (4.104)
0

vn

Note that the probability of false alarm is entirely independent

of both the signal and the noise level as was to be expected. Tests of

this type are often denoted as CFAR (constant false alarm rate) tests

in the literature. In addition, the probability of detection only depends
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upon the actual signal-to-noise ratio, 4 d0 .

The UMPU ROC's are shown in Fig. 4.13 for various values

of Vo dy and n. At P(AIN)=.5 (50% false alarms) receiver

performance is independent of n and has a maximum normal index

of detectability, although this operating point is unlikely to be accept-

able. Whenever P(AIN) = .5, the threshold o' =0 so that the cone-
shaped decision region of the UMPU test (Fig. 4.11) degenerates into

the same decision region obtained for the conditionally optimum test
6d
0

when 8 = e 2 (Fig. 4.5), namely the half-plane u> 3. The

UMPU ROC's asymptotically approach a normal ROC with perform-

ance index d'=+v49 dO as n = . This performance bound corres-

ponds to the ROC of the conditionally optimum receiver for 6 known.
Convergence of the UMPU ROC's to the conditionally optimum per-
formance bound appears more rapid for small values of V6 d0

(9d0< 4) .

Comparison to Bayes test

Comparing Fig. 4.6 and Fig. 4.11 gives one an appreciation
of the difference in decision regions between Bayesian and classical
analysis. A comparison of the performance of the UMPU test and
the Bayes test (Eq. 4.61) can not be made on an absolute scale.
Neither the Bayes test nor the classical test yields the best perform-
ance that could be attained if 6 were known. Both tests have their

merits. Obviously, the UMPU test is superior whenever P(AIN) =.5.
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By the same token, the Bayes test is superior on the negative dia-

gonal [i.e., whenever P(AIN) + P(AISN) =1].

Existence or non-existence of an a priori density

Since the Bayes test is not equivalent to the UMPU test for any
choice of the parameters of the assigned gamma a priori density, the
question of whether or not equivalence can be acquired for any other
choice of a priori density is raised. In particular, does there exist
an a priori density g(+) such that
t 5 -1

X

S
= (4.105)

X2 x

L(xlg) t

That is, can we find a function g(-) such that

° - -%(w-zy+do)
J 6%e g(6) d6
0 (-
- g(6) do
0

(4.106)

It is shown in Appendix I that no such a priori density exists. Hence,

the Bayesian approach and the UMPU test of classical statistics cannot

be reconciled for the double composite hypothesis problem, SKE-UNL.

The author believes that in general Bayesian and classical procedures
(UMPU tests) yield diverse solutions to double composite hypothesis

detection problems.
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4.3.3 A Modified Uniformly Most Powerful Unbiased Test.

A slight modification of the UMPU test to an altered form of the t-

test is of interest, namely

1 vn-1 u S o
v
¢(x) = (4.107)
0 otherwise

The decision region of this test is shown in Fig. 4.14 and is a sym-

metric version of the decision region of the UMPU test (Fig. 4.11).

Figure 4.14. Decision region of a modified UMPU test, SKE-UNL.

The performance equations for this test are

PAIN) 1-T () (4.108)

n
e
I
=

P(A|SN) a) (4.109)
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Figure 4.15 displays the ROC's for various values of n. The

ROC's are symmetric about the negative diagonal and equal to the

performance bound on the negative diagonal. In addition the ROC's

converge to the performance bound everywhere as n - o« .

Comparison to Bayes test

The modified form of the UMPU test has the same gross char-
acteristics as the Bayes test (Eq. 4.61). A comparison of the condi-
tional ROC's in Fig. 4.14 and Fig. 4.7 or Fig. 4.9 will reveal that
the modified UMPU test is not uniformly superior to the Bayes test,

or vice versa. Whereas the Bayes test may be superior in a certain

range of parameter and threshold values, the modified UMPU test is

superior elsewhere. If one is interested in conditional and not aver-

age performance, then the particular test one chooses to use in any
given situation will depend upon the desired operating point and the
surmised state of the unknown noise level.

4.3.4 Estimation Techniques. An easy and appealing way of

attacking a composite hypothesis problem is to estimate the unknown
parameter(s) and substitute into the observation densities as though
the estimator(s) were exact. Minimization of mean square error is
an appealing criteria while other desirable qualities in an estimator
include unbiasedness, consistency and efficiency. Maximum likeli-

hood techniques often result in estimators meeting one or more of
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these qualities. An excellent discussion of estimation techniques can

be found in Ref. 26.

Generalized likelihood ratio

A classical method of estimating unknown parameters is the
method of maximum likelihood. An estimator(s) of the unknown parame-
ter(s) is obtained by choosing the estimator 6 to be the statistic which

maximizes the likelihood function L(6) where

L) = f(x109) (4.110)

The "'generalized likelihood ratio' is obtained by treating these esti-

mators as though they were exact, i.e.,

. f(xl9=OSN, SN)
018y, Og) = X (4.111)
fxlo =9N, N)

where @SN is the maximum likelihood estimator with respect to

f(x10,SN) and &, is the maximum likelihood estimator with re-

N
spect to f(x16,N).

Example

Consider the detection of a signal with an unknown amplitude
(SKEA + KGN); and let the range of admissible values be ~x < a < x.

The likelihood function is



-3 -tw-a9) 2 -2y
L@) = f(xla,SN) = @riZ1) % e (4.112)
n i 2
__é ‘2(W‘23y+a. do)
= @nzl) % e (4.113)
where
w=x3zlx (4.114)
y =xzlsg (4.115)
and
a, = s'z7ls (4.116)

Since the likelihood function L(a) is maximized whenever a =Ey' ,
0

choose

a = L
a = do (4.117)

The "'generalized likelihood ratio’' is

f(xla=a, SN)
f(xIN)

11

2(x\a)

a2

A a
ay——2~d0

= e (4.118)
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Since £(x!a) 1 lIyl, the decision rule becomes

1 lyl > «

0 otherwise

Comparison to Bayes test

(4.119)

This is precisely the decision rule obtained for the Bayes test

(Eq. 4.17) when a symmetric a priori density (m=0) was assigned.

Hence, application of classical estimation techniques for this single

composite hypothesis problem resulted in a receiver which is identi-

cal in both operation and performance to the Bayes test which assigns

a symmetric a priori density.

Example

Consider the double composite hypothesis problem, SKE-UNL.

The likelihood function conditional to SN is

0
21 Z |
7]
2wl 2 |

and the likelihood function conditional to N is

ol =

1

L(61SN)

n
2

)
——2-(W-2y+d0)

(4.120)
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n
o \% - % xz7
L(6 IN) =
(01N) <2ﬂ123i)
L. w
(e V2
2712 |
The maximum likelihood estimators are
by = T
SN w - 2y + d0
5. =31
‘N T w
The "'generalized likelihood ratio" is
L £(x10 =8y, SN)
QL)BSN,GN) = — ASN
f(xl6 = QN’ N)
n
- 2
_ (s
QN
n
w 2
- (w - 2y + do)
n
2
= w4+ 3)% + v2
(w-5)° +v?

(4.121)

(4.122)

(4.123)

(4.124)



118

where

v =L - % (4.125)
0

vZ = aw— - (_dy_)z (4.126)
0 0

(The random variables u and v are sufficient statistics of the ob-

servation and are defined as before.)

Comparison to Bayes test

The "'generalized likelihood ratio' is the limit of the likeli-

hood ratio of the Bayesian approach (Eq. 4.61) when a diffuse a priori

density is approached (b - -1, c¢ - 0). Again, classical analysis
led to a solution which can be identified with a particular Bayes so-

lution.

4.4 Comparison of the Bayesian Approach and the Classical Approach

A general discussion of the relation among UMP tests, "'gen-
eralized likelihood ratio, ' and total likelihood ratio with respect to
a diffuse a priori density is deemed worthwhile; it may shed some
light on the specific examples considered earlier from both the
Bayesian viewpoint and the classical viewpoint. Of necessity, this
discussion has to be from the Bayesian viewpoint, i.e., we must

assume a known a priori density for discussion's sake.
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The basic equation is Bayes rule, namely
fx,0 H) = f(x16,H)g(81H) = g(61x,H) f(xlg, H) (4.127)

where H is either N or SN.

4.4.1 Single Composite Hypothesis. No uncertainties exist

inthe N process for the single composite hypothesis. Hence, the
conditional likelihood ratio is

(x10) = ﬂi;-(‘}(ims—)—m (4.128)

Since f(x|N) is independent of 6, choosing 6 = §(x) to maximize
£(x16) is equivalent to maximizing f(x!6,SN). Furthermore, if we

rewrite Eq. 4.127 for H = SN and g(9 |SN) = g(9), then
f(x19,8N) g(6) = g(6|x,SN) f(x|g, SN) (4.129)

and if g(0) is diffuse or constant [i.e., g(f) =K for all 9¢®©],
then choosing 6 = 9 (x) to maximize f(x10,SN) is equivalent to

maximizing g(6 |x,SN). Hence, maximum likelihood, maximum

conditional likelihood ratio, and maximum a posteriori estimators

are equal with respect to a diffuse a priori density.

UMP test

Theorem. If there is a uniformly most powerful statistic

t(x), then t(x) is sufficient for total (or average) likelihood
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ratio independent of the a priori density.

Proof. A uniformly most powerful statistic t(x) has the

property that
tx) t 2(x16) foreach 6€e® (4.130)

If t(xl) > t(xz), then Q(xll9)> ,a(lee) for each ¢ ©O .

Since

tixlg) = [ 2(x10)g(6)ds (4.131)
©

then ﬂ(x1 lg) > !Z(leg) independent of the a priori density g(4).

Q.E.D.

Thus, the relation between a UMP test (when it exists) and

average likelihood ratio is quite strong, and does not depend upon a

diffuse a priori density.

Generalized likelihood ratio

Dividing Eq. 4.129 by f(xIN) yields

L(x10)g@) = g(blx,8N) ¢(xlg) (4.132)

Let @ (x) be the maximum likelihood estimator of 6, and denote the

"generalized likelihood ratio' by

M) = £(x]6 =0 (x)) (4.133)
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If g(9) is restricted to be a uniform or diffuse a priori density, then

K M(x)
g(d (x)1x, SN)

= (xlg) (4.134)

Necessary condition

Denote the inverse image of M(x) by Ra, i.e., let
Ra = {x|M(x) = a} (4.135)
A necessary condition for the relation
Mx) t f(xlg) (4.136)

to hold is that the inverse image of #(x!|g) must be the inverse image

of M(x), i.e., we must have
txlg) = o for all X€R, (4.137)
This condition requires that

g(d x)Ix, SN) = % for all xeR (4.138)

and necessarily implies that g(8 (x)!x, SN) must be a single-valued

function of M(x). That is, we must have
g(d ®)Ix,SN) = p[M(x)] forall x (4.139)

so that
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D>

g(6 (x) 1%, SN)

1l

constant for all xe¢ Ra (4.140)

Example

The most well known example of this is the case of signal
known except for carrier phase (Ref. 4) where the uniform a priori

density yields

d
tlg) = e * I [r@)] (4.141)
r(X)-%1
MEx) = e (4.142)
d
. r(x) 2
g(f (x)Ix, SN) = —°2 = e M) 3 (4.143)
2m Io[r(x)] 27 Iy [£n M(x) +§]
where
d = normal detection index if 6 1is known

r(x) is the suitably normalized envelope of a matched filter

output

IO(-) is the modified Bessel function of the first kind.

Further necessary condition

If the first necessary condition is met, i.e., if

2(f (x)Ix, SN) = p[M(x)] for all x (4.144)
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then f(xlg) } M(x) is equivalent to

P M) (4.145)

If the function p(-) is differentiable, then monotonicity of the above

relation corresponds to

d M

T [p(M)} > 0 for all M (4.146)
or equivalently,

M) - b for all M (4.147)

Example

For the example considered above

d
e2 M
p(M) = 3 (4.148)
27 Io[ﬁnM+—2—]
d M
and M [p(M)} > 0 corresponds to
IO'[r(x)] > 0 (4.149)

Since r(x) > 0 for all x and since IO'(-) > 0 for all positive values

of its argument, #(xlg) 4 M(x) for this example.
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Irrelevance

This discussion is somewhat beside the point, because the
"generalized likelihood ratio’' is usually employed when computation
of the total likelihood ratio (for any a priori density) is insurmountably
difficult. If g(6 |x,SN) were known, then f(xlg) could be found

simply.

tixlg) = M) —E0X) (4.150)
g(6 (x)1x, SN)

Although we may talk of total likelihood ratio and a posteriori densi-
ties arising from diffuse a priori densities, we must recognize that
they will be difficult to obtain analytically in most cases where the
"oeneralized likelihood ratio'' is employed.

Therefore, let us discuss these topics in general terms; and
pictorially, not rigorously, we turn to the double composite hypothesis
case for this discussion.

4.4.2 Double Composite Hypothesis. Let éH maximize

f(x!6,H) and consider

L £(x16 g r SN)
M) = Q(leSN, GN) = ~ (4.151)
f(x!6.., N)

compared to
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[ txl6,SN) g(6|SN) do
©
L(xlg) = (4.152)
S
®

fx19,N) g(oIN) dé

If f(x16,H) is "concentrated'" in 6 near 0. for both hypotheses,

H

which we intuitively feel is necessary for .. tobea good estimator,

H
we would be willing to use the estimate-and-plug procedure of ''gen-
eralized likelihood ratio." Following the logic found so useful else-

where in "'ellipse of concentration' and ''equivalent square bandwidth, "

let us try a '"region of minimum size' such that

[ f(x16,H) g(61H)do = fx18 5, H) [ g(9 |H) do (4.153)
¢ R(x, H)
Then
£x16 g SN) [ g(6 |SN) do
(xlg) = —— R(x, SN)
£x10 N) S g(9 IN) do
R(x, N)
(6 1SN) dg
- M) - B&SN) (4.154)
g(f IN) do
R(x, N)

This immediately suggests that if the regions R(x, SN) and R(x, N)
are of comparable size under either hypothesis, and the a priori den-
sities are constant and equal, the ratio of integrals will be unity.

Under such conditions we would expect the ''generalized likelihood
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ratio" M(x) and the total likelihood ratio £(x|g) to be nearly equal.
In other words, when the a priori density is uniform or dif-
fuse, and when the conditional observation densities are very sharp
with respect to 6, and when the regions of concentration R(x, N)
and R(x, SN) are of about equal size under both hypotheses, then the
"generalized likelihood ratio' should be approximately equal to the

total likelihood ratio (with respect to this diffuse a priori density).

4.5 Conclusions

Both classical tests and Bayes tests base decisions on suffi-
cient statistics. However, the decision regions are generally of a
dissimilar nature and hence receiver operation and performance are
not equivalent; but whenever Bayesian analysis is based on diffuse
a priori densities, the Bayes test can be identified precisely with a
classical test, at least for the examples considered.

Since many of the classical tests can be obtained as a degen-
erate form of the Bayes test, the Bayes test is judged more flexible
and representative of the actual operating state. Whereas it is a
straightforward procedure to incorporate available knowledge (or
ignorance) into the model by use of Bayes techniques, it is often
difficult and sometimes impossible to construct a classical test that
does. To a large extent the classical tests ignore available informa-

tion concerning the true state of the unknown parameter(s), although
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one redeeming feature of the classical approach is the emphasis on

unbiased tests, an aspect not considered from the Bayesian standpoint.



CHAPTER V

RECEIVER DESIGN VIA NUMERICAL

INTEGRATION TECHNIQUES

5.1 Motivation

It is often difficult to determine the likelihood ratio for a com-
posite hypothesis situation. When the analytical form of the likelihood
ratio eludes the designer, the electronic circuitry that comprises the
receiver itself surely cannot be built. In this section an alternative
approach is suggested which circumvents these difficulties and con-

ceives of the receiver as a digital computer.

5.2 Formulation

When the conditional observation statistics are of exponential
form, it is often possible to average with respect to the given a priori
density g(9) by the use of an appropriate transformation and a finite
order Gauss- Hermite or Gauss-Laguerre integration routine (Ref.
29). Performance must not be affected adversely by the error intro-
duced in this manner.

The normal detection situation falls into this class. The nth

order multivariate normal density is

ol =
15
i
=
83

n
fxlp,¥) = @rlvl) 2 e (5.1)

128
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where . is the mean vector and ¥ is the autocovariance matrix, i.e.,

i = E(x) (5.2)

v = B[~ p) - p)] (5.3)

In particular consider the situation where both u and ¥ are known

except for a multiplicative constant, i.e.,

L =as (5.4)
v = g2 2% (5.5)
where a and 02 are unknown parameters.
If we define
o =L (5. 6)
0.2
then
) 3 - % x-a9) 27 x-as)
fxla,8) = (27”2 l) (5.7)
Furthermore, if we let
dy = _st =1 E (nominal signal-to-noise ratio) (5. 8)
. St 2_1 X
a == 3 = (minimum variance, unbiased (5.9)

0 estimator of a)
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W =2 " - (5.10)

then the conditional observation density can be written in the form

2 04 0
o \2 ~ o @A -5x Wx
e (5.11)

fxla,0) = (21TIE|

Gauss-Hermite integration

Consider first the detection situation SKEA (signal known ex-
cept for amplitude) with known noise parameter 6 and unknown sig-
nal parameter a. Let the admissible values of the unknown amplitude
a range over R where R = (-x,x);and let g(a) denote the given

a priori density of a. The observation statistics conditional to SN

are
o o)
f(xISN) = [ f(xla, SN) g(a) da
-C
(5.12)
n 6d
20 3 -9 dtwx —~——0(a—:?1)2
- B)ez_ Te 2 g) da
S 2m\ 2 |
If we make the change of variable
u =vedy/2 (a-2a) (5.13)

then
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HalSN) = (zmzl

C 2
f e ! g(ﬁ +—~—q~——) du (5.14)

Let f*(x|SN) be an approximation to f(x|SN) obtained by using a
pth order Gauss-Hermite integration routine to evaluate the integral

in Eq. 5.14. This gives

>0t
. 0 2 - 5 X Wx i1 P
f*(xISN) = T (8dy/2) 2 . g@.) (5.15
(xISN) (27”21) (0 ay/2% L w gl (519
where
Y
a, = a+— (5.16)
\/Gd072
and
W U are pth order Gauss-Hermite integration constants.

1’

Gauss-Hermite integration is a natural choice since f(xla, SN) is of
exponential form and ae€ R. The error depends upon the magnitude
of the (2p)th derivative of g(a) over aeR. If g(a) were a poly-
nomial of order less than 2p, the error would be zero; one might
conjecture that the error would be small provided g(a) behaves like

a polynomial in the vicinity of 2 (2 is a minimum variance unbiased
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estimator of the unknown amplitude a.) The degree of error will be
demonstrated to be minimal for a particular problem in succeeding

sections.

Gauss-Laguerre integration

As a second example consider the detection situation SKE-UNL
(signal known exactly, unknown noise level) with known signal parame-
ter a and unknown noise parameter 6 . Let the unknown parameter
6 have a given a priori density g(6) for 6 €[0,2). The observation

statistics conditional to SN are

xC
f(xISN) = [ f(x16,SN)g(6)do
0
(5.17)
n
0 2 -—9—(x—as)t Enl(x—as)
= i 2= = T T g(8) do
0 2wl 2 |
If we make the change of variable
v = %@—a_s)t 2_1(§—a_s) (5.18)
then
n
0 2
fxISN) = t 2-1 t 2i/1
(x-as) Z “(x-as) O 27(x-as) Z “(x-as)
-v 2v
e g T dv (5.19)
(x-as) Z ~(x-as)
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Presume that g(9) is of such a nature that analytical integration is
difficult or impossible. An approximation to f(x!SN) can be obtained
by employing a pth order Gauss-Laguerre integration routine, namely
_h
2 (27) 2

(3<—a§)t z-1 (x-as) i=1

p

ol =

f*(x|SN) = r, 0. g6,)  (5.20)

1

where

2 Vi
. = (5.21)
' x-as) z7lx-as)

and

r,, v, are pth order Gauss-Laguerre integration constants.

For this detection situation a Gauss-Laguerre integration routine is
the natural choice since f(x!6, SN) is of exponential form and 6 > 0.
The error is proportional to the magnitude of the (2p)ic£1 derivative

of g(6) over 6e[0,%). If g(6) varies slowly over its region of
definition, i.e., if g(9) is a diffuse a priori density, the error will

be held within tolerable limits.

5.3 Signal Known Except for Amplitude

Apply the procedure outlined in the previous section to the
detection situation SKEA. Without loss of generality this study can
be restricted to the one-dimensional case. (The integral of Eq. 5.14

requires knowledge of the n-dimensional observation vector x only
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in the form of the scalar random variable 4.) Hence, consider the

one-dimensional case with conditional observation statistics

- (x-a)?
2
fxla,SN) = —L— o 2° o< x< 0w (5.22)
Vor o
XZ
2
fxla,N) = —— ¢ 2° o< x< e (5.23)
Vor o
and a priori density
L gy eom
g@a) = e ~-o<a< ® (5.24)

5.3.1 Receiver Design. It is possible to determine the ob-

servation statistics and the total likelihood ratio of the observation
for the above example since g(a) is amenable to analytical integra-

tion. The availability of the exact form of the observation statistics
and the total likelihood ratio makes it possible to evaluate the use-

fulness of numerical integration techniques for receiver design in

composite hypothesis situations.

Exact approach

The exact observation statistics are
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fxISN) = [ f(xla, SN) g(a) da
-0
__1_2__ (x- m)?
_ 1 o 2(v+0°%) (5. 25)
2r(v+0%)
P XZ

fxIN) = fxla,N) = — L ¢ 20° (5.26)

27 02

and the likelihood ratio is

1 —21V~ l}’;-l (x +—-I;;—1)2 - mz]
I(x) = /p+1 e p (5.217)

where

p = — (5.28)

Approximate approach

If analytical integration had been impossible, a numerical
integration routine could have been employed to obtain an approxi-

mate form of the observation density f(x|SN). In particular,
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f(x|SN) = [ f(xla,SN)g) da
-
- (x-a)?
C 2
= f 1 e 20 g(@) da

- \/27702

If we make the change of variable

u = 1 (a-x)
V2 o
2 1 2
then f(x|SN) = f — eV gx+VZou) du
- V7

(5.30)

(5.31)

An approximation to f(x|SN) via Gauss-Hermite integration techniques

is
1 p
f*xISN) = — LA gx+V20 ui)
Va ooi=1
D ———1—(x—m+\/§0u)2
_ 1 Z 2v i
= LA
7 V2v  i=1
where

(5.32)

w., u. are pth order Gauss- Hermite integration constants.

1 1

For completeness define
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X
*xIN) = fxIN) = \/_; e 20° (5.33)
T O
t*(x) = L xISN) (5.34)
£*(x IN) '

5.3.2 Receiver Realization. If £(x) were unavailable be-

cause of integration difficulties, an alternative approach would be to
base decisions on £*(x). The receiver would then consist essentially
of a digital computer with two channels as depicted in Fig. 5.1. The
one channel computes f*(x|SN) while the other computes f*(xIN).
The outputs of the two channels are combined to form the natural loga-
rithm of ¢*(x), namely z*(x); and a decision as to presence or ab-
sence of signal is made by thresholding z*(x).

5.3.3 Quality Index. One would like some assurance that the

quality of decisions would not suffer drastically when decisions are
based on £*(x) instead of f£(x), or equivalently when decisions are

based on z*(x) instead of z(x) where

z¥(x) = fn 0¥ () (5.35)

7(x) In 0(x) (5.36)

Development

An indication of the ''closeness' of z*(x) to z(x) can be

obtained via the index
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J 2 E[e(x)ISN]
= {( e (x) f(x|SN) dx (5.37)
where
€(x) = z2*x) - z(x) (5.38)

This index will be referred to as the quality index and is based on
information theoretic concepts analogous to those employed to obtain
the sensitivity index developed in Chapter III. It is "obvious' that
there is little or no degradation in performance whenever the quality

index J 1is close to zero.

Application

For the detection problem SKEA as developed in the preceding

sections

ex) = z*x) - z(x)

0¥ (x)
ey

*(x | SN)

£ |SN) (5.39)

= fn

Evaluation of the quality index yields
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xC
J = [ e®) fxISN) dx
-
. - - w)?
2
= [ &) 1 e 2v+o?) ax  (5.40)
-% \/21r(v+02)
If we make the transformation
y = _Xx-m (5.41)
v+0o?
then
yz
fGISN) = 2 ¢ 2 (5.42)
Vor
and
oC
J = E[8(y)ISN] = [ &(y) f(y|SN) dy (5.43)
-
where

o(y) = ¢ (m y + m) (5.44)

Evaluating Eq. 5.44 via Eqs. 5.25, 5.28, 5.32 and 5.39 and simplify-

ing yields

1
i T+p p 5 [y? + 2V2(1+p) wy + 2uiz]
6(y) = £n —= Z W, e
mp S i

(5.45)
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Since 6(y) depends on the parameters v, 0% and m only through
p, the quality index J depends only on p.

An inspection of 6(y) will be helpful in understanding the be-
havior of J; knowledge about the nature of &(y) will also assist in
keeping computational errors to a minimum. Figures 5.2 and 5.3
present plots of &(y) for typical parameter values of p and p. It
can readily be shown by considering the nature of the Gauss-Hermite

integration constants u, that 6(y) is an even function of y, i.e.,
6(y) = 0(-y) (5.46)

Also, 0&(y) - x as |yl = « although this doesn't affect the exist-
ence of J since f(ylSN) is of exponential form. In addition, &(y)
oscillates about the axis; the number of zero crossings is 2p.
Furthermore, &(y) stays closer and closer to the axis for a longer
and longer period as p increases for fixed values of p or for p

increasing for fixed values of p.

Results

Numerical integration techniques were employed to evaluate
the quality index J for specific values of p and p. The results are
presented in Fig. 5.4. For fixed values of p the quality index J ap-

proaches zero as p increases; this indicates that z*(x) is a better

and better approximation to z(x) as p increases. For fixed values

of p the quality index J approaches zero as p increases;
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this shows that as the a priori density g(a) becomes more and more

diffuse z*(x) becomes a better and better approximation to z(x) .

The fact that the best results are obtained for large values of
p should not be construed to mean that the entire procedure is of
little significance. On the contrary, diffuse a priori densities are
used to develop receiver design whenever the designer is totally ig-
norant of the true state of the unknown parameter, or the physical
situation dictates that the unknown parameter may range over a wide
latitude of equally permissible or probable values.

The validity of the results described above can be ascertained

by examining the variance of &(y), namely

Vy = Var[6(y)ISN]
xC
= [ [3(y)-J]2 £y ISN) dx (5.47)
-

This quantity is plotted in Fig. 5.5 for the same parameter values as
in Fig. 5.4. It shows the same gross characteristics as Fig. 5.4 and

should be interpreted as follows: the degree of confidence one places

in the quality index J should increase as both p and p increase.

In other words the validity of the above- mentioned results should not
be questioned for p and/or p large.

5.3.4 Receiver Performance. The recommended procedure

for comparing receiver performance considers first the performance

of the optimum likelihood ratio receiver [decisions are based on £(x)]
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and then compares it to the performance of the suboptimum receiver
which bases its decision on £%(x). The only difficulty lies in the
fact that the decision region of the suboptinmium receiver for an arbi-
trary threshold level is difficult to determine analytically; and hence
performance in terms of ROC is difficult to evaluate.

An alternative procedure is to consider the optimum likelihood
ratio receiver in a slightly different context. Suppose decisions are
based on f£(x), but evaluation of performance is done with respect to
f(x|SN) and f(xIN) inadditionto f*(x|SN) and f*(xIN). A sche-

matic diagram of this procedure is given in Fig. 5.6.

Receiver operation:

i £
x(t,a) —— gztleril“rler? ) Comparator b————— Decision
g(a) B

Receiver evaluation:
1) With respect to f(x|SN) and f(xIN)

2) With respect to f*(x|SN) and f*(xIN)

Figure 5.6. Receiver operation and performsnce evaluation structure.
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Neither ROC is superior to the other in any sense, but close-
ness of ROC's will indicate closeness of f*(x|SN) and f*(x|N) to
f(x|SN) and f(xIN). For the example at hand, closeness of ROC's
will necessarily indicate closeness of f*(x|SN) to f(x!SN) since
only an unknown signal parameter is involved (single composite hy-
pothesis).

Evaluation of receiver performance for either case is based

on the decision region {x12(x) > B} where f£(x) is given by Eq. 5. 27.

Some algebraic manipulation reveals that {xl¢(x) > B} = {x| Ix + _YPEI > Al
where
A = —ﬁp—tl— JZvﬂn(B\/p+1)+m2 (5.48)

Receiver performance with respect to f(x|!SN) and f(xIN)

Evaluation of receiver performance with respect to f(x|SN)

and f(xIN) yields

PAIN) = [ f(x |N) dx
lx+—=| > A
A
p

=1- [ f(xIN) dx
A1
p

1

O-A"-m')+ D(-A'"+ m'") (5.49)
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where
r - A
Al = (5. 50)
m' = _I% = (5. 51)
p Vv
Likewise,
PAISN) = [ f(x |SN) dx
IX +£1| > A
P
AR
P
=1- [ f(x |SN) dx
N
p

Receiver performance with respect to f*(x|SN) and f*(x|N)

Evaluation of receiver performance with respect to f*(x|SN)

and f*(x|N) yields

P*AIN) = [ £*(x IN) dx
’x+———| > A

= [ f(xIN) dx
|x+=| > A

= ®(-A'"-m')+ D(-A"+ m") (5.53)
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and
P*(AISN) = [ £*(x | SN) dx
|x +E‘ > A
p
m
A_—E L p —%(X~m+\/§0ui)2
=1- f Z W, e dx
A7 2v i=1
P
)
=1 -— w. [®(A" - m)- ®(-A" - m.")] (5.54)
VT oi=1 ' !
where
Al = __é_ = _9:_ (5. 55)
Vv Vp
(p+1) m' - V2 u,
m" = i=1,2, ..., p (5. 56)
Vp
Results

Results are shown in Figs. 5.7 and 5.8. ROC's are presented
only for p=2. For p> 2 the difference in ROC's became indiscern-
ible, and for all intents and purposes the ROC's were equivalent.
Observe that even for p = 2 the difference in ROC's is negligible for

p > 5. This would indicate that diffuse a priori densities and numeri-

cal integration techniques blend well together.
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P(A1SN)

Evaluated with respect to
f(xISN), f(xIN)

—~—~= Evaluated with respect to
.05} f*(xISN), f*xIN)

i L

.01 L 1 i 1 1
.01 .05 .10 .50 .80 .90

P(AIN)

Figure 5.7. Effect of numerical integration techniques on receiver perfor-
mance, SKEA, p =1, p = 2.
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Evaluated with respect to

.90

z £(x|SN), f*(x|N)
< !
5 .10
Evaluated with respect to
f(x|SN), f(xIN)
1
.05+ R |
- cw =L o
B varv
| g2 =1.0
p =2
.01 i 1 11 1 1 ] Il | 1 1 1
.01 .05 .10 .50 .80
P(AIN)
Figure 5.8. Effect of numerical integration techniques on receiver perfor-

mance, SKEA, & = 1, p =2,
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5.4 Conclusions

The quality index for the detection situation SKEA shows an
almost imperceptible difference in quality of decisions for p > 1
when the receiver is designed via Gauss-Hermite integration tech-
niques in lieu of exact analysis. Hence, it appears that use of numeri-
cal integration techniques and access to a high speed digital computer
is all that is required to design a receiver for the composite hypothe-
sis situation that performs almost as well as the optimum receiver.

Likewise, comparison of receiver performance in terms of
ROC indicated little discernible difference in performance for p > 2.
Closeness of the ROC's indicated closeness of f*(x|SN) to f(x!|SN)
and hence the appropriateness of Gauss-Hermite integration techniques.

Thus, it would appear reasonable to use these same techniques
for other composite hypothesis detection situations with the assurance
that degradation of performance is minimal or even imperceptible.
In view of the fact that a priori densities are subjective in nature and
never really known precisely, use of numerical integration techniques

to realize the receiver is really no concession to performance at all.



CHAPTER VI

PSEUDO-ESTIMATION

6.1 Introduction

In this section an attempt is made to justify the use of estima-
tion techniques for single composite hypothesis receiver design situa-

tions by constructing an "estimator' which yields optimum performance

in the Bayesian sense. It is not an estimator in the true sense of the
word but nevertheless exhibits features and characteristics that are
considered desirable of an estimator. The motivation for this work
came from a recent paper published by Kailath (Ref. 33) which shows
that the likelihood ratio for the detection of a random signal in addi-
tive white Gaussian noise has the same form as that for a known sig-
nal in white Gaussian noise. However, the correlation integral has to
be interpreted in the special sense of an Itd stochastic integral. Nev-
ertheless, it suggests the use of an estimator-correlator as an

engineering approximation to the optimum receiver.

6.2 Formulation

A word of explanation is in order. Because this chapter will
be intimately concerned with a sequential processing of the observa-
tion, the notation used in this chapter will be different but self-explana-
tory. Rather than use a succinct notation which often leads to confusion,

dependence of the observation statistics on the preceding observation

154
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will be explicitly indicated.

Development of the basic theory

Assume the observation statistics are conditionally indepen-

dent, and let 6 denote a signal parameter with a continuous a priori

density g(9).

observation are

f(Xl’XZ’ ... xnl 6, SN)

f(—xl,xz, e xnl 9, N)

N

Il

The conditional observation statistics of the total

and the conditional likelihood ratio of the total observation is

fx,,x
1, 27
2(x,,x x 18) =
1’72
n f(xl,xz,
where
f(xlle,SN)
L(x.10) =
(1 ) f(xilN)

is the conditional likelihood ratio of a single observation.

n
II f(x.16,SN) (6.1)
i=1 !

n
II f(x,IN) (6.2)
, i
i=1
. xnle,SN) n
= II Q(Xil())
. Xn\N) i=1
(6.3)
i=1,2, ... n (6.4)
By employ-

ing Bayes law we can write the absolute observation statistics of the

total observation conditional to SN as



156

f(XI’X2’ - xnl 6,SN) g(9)
f(xl,xz, ... X_|ISN) = (6.5)
n g(@lxl,xz, xn)
and the likelihood ratio of the total observation is
f(XI’XZ’ - xn\SN)
ﬂ(xl,xz, xn) =
f(xl,xz, xnlN)
(6. 6)
n
_ g(0) I 0(x.16)
g(61x,%9, --- X)) i=1 !

(The a posteriori densities depend implicitly on the hypothesis SN
since 6 is a signal parameter; this dependence is not expressed
since it only serves to complicate the notation.) Although it appears
that the RHS of Eq. 6.6 depends on 6, it is in fact independent of 6
since the LHS of Eq. 6.6 is independent of # . Let's inspect the

RHS of Eq. 6.6 in more detail. Since

g(8 lxl) g(6 |x1,x2, o X_ )

g(0) - _glo) n-1
g(@lxl,xz, .. .Xn) g(6 le) g(6 lxl,xz) g(6 lxl,xz, .. .xn)

n g@1x,,X,, ... X, )
.- 1’72 i-1 (6.7)

i=1 g6 le,xz, xi)

then

g(6 le,xz, e Xi_l)

ﬁ(xi\()) (6.8)

oY
2
(==Y
>
N
Y]
|
=

n i=1 g(6 'XI’XZ’ K Xi)
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If we define

A
z(xl,xz, xn) = {n Z(xl,xz, xn) (6.9)
then
n n g(01x,,X,, X, 1)
Z(Xl’XZ’ X ) = Z z(x.10) + fn 1’2 i-1
i=1 1 i=1 g(9 ‘XI’XZ’ Xl)
(6.10)
where
z(xilG) = ﬂnﬁ(xilé?) (6.11)

If it is possible to determine 91 such that

g(0. 1%, X0, ++. X, 1)
1|1 2 1)1 =1 i=1,2, ...n (6.12)
g(6i X(sXgs o Xy
then
n
2(&y; Xy, -oe X)) = 1;1 z(x,10,) (6.13)
Therefore the optimum (Bayesian sense) test statistic Z(Xl’ Xgy « - Xn)

can be obtained from the conditionally optimum test statistics z(xi\ 91),
i=1,2, ... n with 91 determined in accordance with Eq. 6.12.

The simplicity of this approach is enticing. Merely determine
a set of values 91 satisfying Eq. 6.12 and use these values in the

conditionally optimum receiver as though they were exact. For the
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detection problem SKEA in added white Gaussian noise, the optimum
receiver becomes an "'estimator-correlator, ' a correlator in the
sense that the optimum receiver would be a correlator if the signal
amplitude were known exactly, an estimator in the sense that "esti-
mators' of signal amplitude at each increment in time are employed

in the receiver as though they were exact.

Observations

Consider the solution(s) of Eq. 6.12 in reference to Fig. 6.1.
There may be multiple solutions to Eq. 6.12 for each 1i;there is at
least one solution since the a posteriori densities are continuous by
virtue of the assumption that the a priori density was continuous.
Each value of 9i depends upon the first i observations (Xl’ Xo;
. Xi) and might conceivably be interpreted as a posterior estimator

of 8 at time ti'

f

T

two possible values of Gi

Figure 6.1. Sketch of a posteriori probability density functions.
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Multiple solutions to Eq. 6.12 could cause some confusion in
regard to the interpretation of (9.1 as an estimator of 6, but pos-
sibly a particular solution 6 i* exists which behaves more like a true
estimator than the other solutions. To explore this possibility define

the posterior mean

by = E(@lxl,xz, Xi) (6.14)

and the posterior variance

v, = Var(Glxl,xz, Xi) (6.15)

It is common knowledge that the posterior mean My is the MMSE
(minimum mean square error) estimator of 6 . The posterior mean
My is an unbiased estimator of 6 if E(uiieo) =0, where 6, is

0

the true value of 6 .

Conjecture

Conditional to the hypothesis signal and noise if the a posteriori

densities are unimodal and if v < Vi then it is conjectured that a

-1’

particular solution 61* exists (the pseudo-estimator or "estimator')
which converges to the MMSE estimator s i.e., 91* = Wy, Or

more precisely, given 6 > 0 there exists i, such that IBi* - ,ui| <3d

0

for i> iO' Furthermore, u, = 64, provided P(16 -6 Ol <e€ {51)> 0

for arbitrary € > 0, regardless of whether or not iy is biased, and

hence 6, ~ 0,;if u; is biased, then 91* -~ p; more rapidly than
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Explanation

A heuristic explanation is offered in lieu of a rigorous proof.

If vy < v, the a posteriori densities become ''sharper' as more

-1
observations are taken into account; the mode and the mean become
almost indistinguishable for "sharp' densities and become identical

in the limit since V.= 0. In addition, for each i the solutions 91
either tend to be clustered about Iy (usually around the mode) or

else one solution is close to My (usually between posterior modes)
while the others tend to be on the ''tails''. Hence, as soon as the
posterior variance reaches a fairly low level, i.e., after a sufficient
number of observations, there is always one reasonable ''estimator"
of 6 near the posterior mean. If we denote the solution closest to
the posterior mean by 91* , then it seems plausible that 91* - by
Furthermore, provided P(l6 - 90| < e‘§i) > 0 for arbitrary € > 0,
By 90 regardless of whether or not My is biased since v, = 0 and
the a posteriori densities are unimodal by assumption. If 1, were
biased, it appears reasonable that 91* = p; more rapidly than p, -
90 ; it may require many observations for the effect of the bias to
"wear off, ' especially if the a priori density was of a diffuse nature.
In either case both My and 91* converge to 90 .

The convergence of the pseudo-estimator Gi* to the MMSE

estimator My will be demonstrated in the following example.
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6.3 Signal Known Except for Amplitude in Added White Gaussian Noise

Consider the detection situation SKEA in added white Gaussian

noise and attempt a comparison between the optimal Bayesian ap-

proach and estimation. The sequential nature of the problem makes

it convenient to use the notation

OO xi)t (6.16)

)t i=1,2, ...n (6.17)

|t

;= (81’82’

Let In denote the nth order identity matrix.

The hypothesis test for SKEA in added white Gaussian noise

consists of
N: X ~ MVN (@s, 021)
n. —n n

SN: X~ MVN (0, 021)
n n n

where the unknown amplitude is denoted by a.

A priori density. Let the a priori density on a be given by the

truncated normal density

g(@lx,, SN) =
=0 & (ﬁ> V2nv
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To facilitate subsequent algebraic manipulation, it is convenient to

express the a priori density in the equivalent form

g(alzo, SN) = KeAaz + Ba 0<a< x (6.19)
where
1
A = -2—V“ (620)
. m
B = < (6.21)
1
K = ——F— (6.22)
Vv w (-“i)
Vv
and
_ 2 ()
wkx) = 5 &) (6.23)

The parameters m and v can be expressed in terms of A and B

as

m = - 'éK (6. 24)
1
v = - EK (60 25)

Conditional log-likelihood ratio.

It has been shown previously that the conditional log-likelihood

ratio of the total observation for this situation is



1 t a? 1 t
zix la) = [— x s a-—-+ [— s s
“n 2 =N —n 2 2~ —n
o o
aZ
= a yn - —2— dn (6.26)
where
n
1 t 1
y, G =-—X_ S = -—— Z X.S, (6.27)
n o_z n n 0_2 i=1 11
1t 1 &
d =—s's =— ) g2 (6.28)
R S R = R

The sequential realization of the conditional log-likelihood ratio is

n
z(xn\a) = 1;1 z(xila) (6.29)

where

X, §; 2 /8.2
z(x.la) = a( 1 ) -2 (——1—) (6.30)
1 02 2 0_2

A posteriori density

The a posteriori density is proportional to the product of the
conditional likelihood ratio and the a priori density, i.e.,

aZ d.
1

ay. - —5— 2
galx,SN) = Ci(xla)ga) = C' e = 2 A2 B2 (g3

0<a< x
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Since g(a ll‘i’ SN) is a proper density, we normalize and obtain

Aia2 + Bia
g(al§i,SN) = K e 0<a< x (6.32)
where
d
_ i _ 1,-1
Al = A———T = ——2 (V +d1) (6.33)
B. = B+y =mv_1+y (6.34)
i i i
K. = L (6.35)
i m,
V., w|—
1 Vv,
i
and
B, mv +Y;
my = -9A. T T 1 (6.36)
i v © +d.
i
_ 1 1
Vi T T9A, T T (6.37)
i A% d

The a posteriori density can perhaps be more easily interpreted in

the form

galx, SN) = e ! 0<a<

i (6.38)
\/;';
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In this form it is readily apparent that the a posteriori density (Eq.
6.38) is of the same functional form as the a priori density (Eq. 6.18).
Hence the a priori density is a reproducing density with respect to

the conditional observation statistics.

MMSE estimator

The MMSE estimator of a after i observations is the pos-

terior mean

Q|
n

E(alx,, SN)

I

f a g(alici, SN) da

Pseudo-estimator

The posterior variance Vi
be shown that the posterior variance vy
L i.e., v~V In addition, it can readily be shown that \A < V..

and hence it is plausible that A < v,

=m |1+ 1 (6.39)
1 m. m.
1 1
Vi Yy

-1

is difficult to compute; but it can

converges asymptotically to

1’

Furthermore, the a pos-

teriori densities (Eq. 6.38) are unimodal for each i [mode = max

(0, mi)]. Since P@ < 0!_}51) = 0, asymptotic convergence of either

the MMSE estimator or the pseudo-estimator to the true amplitude

a will occur only if 0<a<<wx.

To obtain the set of pseudo-estimators for this detection
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situation we determine that

glalx,, SN)
=1 0<a< 6.40
c@lx. -, SN) >a% (8.40)
=i-1
implies that
Aia2+Bia Ai_la2 + Bi—la
Kie = Ki—le 0<a< (6.41)

or equivalently,

K.
2 1 _
a (Ai-Ai_1)+a(Bi—Bi_1)+ fn Ki_l = 0 0<a< x (6.42)
Since
s.2
.
A-A = > (6.43)
and
X; 8
Bi- By = (6. 44)
Equation 6.42 becomes
%
az—Za(?)+ci=0 0<a< (6.45)
i

where
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2 K.
= 2#'_ £n< 1_1) (6.46)

The pseudo-estimator(s) at time ti is the solution(s) of Eq. 6.45.

If we let

i K

K.
a, -1 X, + «x.2+2021n ! i=1,2, ... n (6.47)
s i i 1

and denote the pseudo-estimator(s) by a,, we get

®
i

a, O§a1<:>o, i=1,2, ... n (6.48)

Since the a posteriori densities are continuous, there is at least one

valid pseudo-estimator.

6.4 Receiver Operation

A simulation of receiver operation was conducted conditional
to some actual amplitude value a. The signal waveform was chosen
to be a dc signal with an energy content of unity over a total observa-
tion length of 20 time intervals. In order to observe the convergence
of the pseudo-estimator described by the solution of Eq. 6.40 to some
asymptotic value, the simulated run included calculation of the pos-
terior mean (MMSE estimator) at each increment in time. These
values along with the admissible pseudo-estimators are presented in

the figures at each time increment as bars for improved legibility.
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In addition the detection output z(§20) is shown on each figure to
indicate the receiver's opinion as to presence or absence of a sig-
nal at the end of the observation interval. Naturally a high value is
indicative of signal presence whereas a low value tends to indicate
absence of a signal.

The simulated runs are summarized in Figs. 6.2 - 6.7 for
three radically different information levels. Figures 6.2 and 6.3
summarize the receiver operation for a diffuse a priori density while
Figs. 6.4 and 6.5 summarize receiver operation for precise knowl-
edge. Figures 6.6 and 6.7 present a simulation of receiver opera-

tion for an intermediate information level.

Diffuse information level

Receiver operation of Figs. 6.2 and 6.3 is parameterized by
m=2 and v =100. This represents an a priori density that is
rather diffuse. In other words the receiver designer did not have a
great deal of ivnformation available concerning the true value of the
unknown amplitude. His ignorance necessarily forced the receiver
to weigh the actual observations more heavily than the prior opinion

of the designer and consequently the simulated run and detection output

are heavily influenced by the data. This becomes readily apparent by
inspection of the figures. Figures 6.2 and 6.3 both show the disparity
between the pseudo-estimator and the posterior mean at the beginning

of the observation interval although convergence of
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the pseudo-estimator to the posterior mean has pretty well taken
place at the end of the observation interval independent of the true
amplitude. Note however that the posterior mean has not yet con-
verged to the true amplitude. In both Figs. 6.2 and 6.3 a general
inclination of the posterior mean to converge to the true amplitude
already appears, but in both cases convergence is not yet apparent.

This tends to indicate that the pseudo-estimator is in fact closely

related to the posterior mean long before the posterior mean has

converged to the true amplitude. This observation lends some cre-

dence to the use of estimation techniques as nearly optimal proced-

ures for composite hypothesis detection and/or estimation problems.

Precise information level

When the receiver designer has some very precise opinions
and/or knowledge concerning the true amplitude, the actual physical
situation had better bear him out or else his job may be in jeopardy.
Precise opinions are reflected in the a priori density in terms of
small variances, and heavily influence the operation of the receiver.
Figures 6.4 and 6.5 show the dominant effect of precise prior opin-
ions and the insignificant effect of the actual data on the simulated run.

The receiver is firmly convinced that it knows the actual amplitude and

acts accordingly regardless of the data. Hence, precise opinions must

be corroborated by the actual situation in order to yield optimal be-

havior.
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Intermediate information level

For the intermediate level of knowledge the results of Figs.
6.6 and 6.7 show a '""'middle of the road" policy. Receiver operation

is influenced by both prior knowledge and data. The effect of prior

knowledge is most noticeable at the beginning of the observation

interval while the effect of the actual data outweighs a priori knowl-

edge at the end of the observation interval. Hence the receiver has

obtained a delicate balance between the two extremes of knowledge,
and yet its action can be closely allied to the action of a receiver

which is designed on the basis of estimation techniques.
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CHAPTER VII

SUMMARY

7.1 Conclusions

One of the major goals of this work was to examine the effect
of the particular choice of a priori density on receiver performance
for the composite hypothesis detection problem. This study was con-
ducted by constructing a sensitivity index which measures the perfor-
mance loss that occurs when the receiver is based on the a priori
density g(:) but in fact h(:) holds. The sensitivity index was shown
to possess several desirable features.

The exact form of the a priori density is never known precisely
since the a priori density reflects the subjective viewpoint of the
designer. There is a lot of leeway in choosing both the functional form
and the parameters of the a priori density. The sensitivity index was
employed to show that performance depends primarily on the first few
moments of the a priori density. Functional form was important only
to the extent that the entire range of parameter definition was modeled.
The design of a receiver which accurately reflects and incorporates
the information at hand can be accomplished by choosing an a priori
density whose mean corresponds to the designer's confidence level in

his choice of the mean.
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Comparison of receiver performance for the composite hypothe-
sis situation was done in Chapter IV. The Bayesian philosophy was
contrasted with the classical approach for several examples. The
Bayesian approach to detection problems is more versatile than the
classical approach. The Bayesian approach inherently incorporates
all prior information into the model by the assignment of an a priori den-
sity. By using a degenerate form of the a priori density (a diffuse
a priori density), the Bayesian approach leads to the identical receiver
obtained by at least one of the methods of classical statistics for all the
examples considered. In particular it appears as though the UMPU
test of classical statistics (if it exists) is equivalent to the Bayes test
corresponding to a diffuse a priori density for the single composite
hypothesis. No such relationship exists for the double composite
hypothesis.

Emphasis upon unbiasedness by classical statistics is certainly
desirable; Bayesian analysis can and often does result in a test which
is not unbiased. The nature of the Bayes model should, however,
preclude the notion that Bayes tests are 'bad' since biased tests
seldom (with small probability) occur.

The concept of an ESP receiver was useful in comparing Bayes
tests. The ESP ROC served as a convenient upper bound ROC to the
optimum ROC with respect to the assigned a priori density and thereby
served to indicate how much useful information was conveyed by the

a priori density. The ESP ROC was shown to be the average of
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conditionally optimum ROC's whereas the optimum ROC was shown to
be the average of conditionally suboptimum ROC's. Hence the ESP
and the optimum ROC can be viewed as ''capsule’ summaries of the
performance of the conditionally optimum and suboptimum receivers
respectively.

Receiver design via numerical integration techniques was
proposed in Chapter V for composite hypothesis situations whenever
exact analysis was difficult or impossible. It was shown that by using
a numerical method which was ""matched' to the detection situation,

a receiver design could be achieved that was almost optimal (in the
Bayesian sense) and yet was readily implemented. The receiver is
conceived of as an analog-to-digital converter in conjunction with a
digital computer. The availability of high speed electronic components
makes it possible to operate such a device in real time.

In Chapter VI a study was conducted which attempted to justify
estimation as a technique which is almost optimal in the Bayesian
sense. The impetus for this study was provided by a recent paper
published by Kailath (Ref. 33). For the single composite hypothesis a
pseudo-estimator is constructed which is optimal in the Bayesian sense
and compared to the minimum mean square error estimator. Simulation
of receiver operation for a particular example shows a close correlation
between estimation techniques and exact Bayesian analysis and lends cre-

dence to the use of estimate-and-plug techniques as "'good'' techniques.
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7.2 Contributions

A sensitivity index was developed to measure the performance
loss that occurs when a receiver is designed to be optimum with
respect to the given a priori density g (-) , but in fact the a priori den-
sity h(.) is considered to hold; the important features of the sensi-
tivity index were discussed. The sensitivity index was used to show
that the functional form of the a priori density chosen to model the
state of the unknown parameter of a composite hypothesis detection
problem has little effect on receiver performance. Of prime impor-
tance are the first few moments of the a priori density, especially the
mean and variance. The designer should choose the mean to be that
value which, in his opinion, most accurately represents the state of
the parameter; and the variance should be chosen to reflect the
designer's confidence level (how sure is he?) in his choice of the mean.
Hence, the functional form of the a priori density can be chosen to be
mathematically tractable.

Bayesian analysis and classical statistics were compared and
reconciled. It was shown that Bayesian analysis was more versatile
and that one or more of the classical tests could often be obtained by
a Bayes test based on a diffuse a priori density. The Bayesian
approach is judged to be superior to the classical approach primarily
because the Bayesian approach incorporates all available information
into the model via a priori densities; classical procedures ignore such

information.
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The externally sensed parameter (ESP) receiver was reviewed
and its ROC was evaluated for several examples never considered
previously. Its function as an upper bound ROC and its relationship
to the conditionally optimum ROC's was pointed out.

The feasibility of receiver design via numerical integration
techniques was shown. Conceived of as a digital computer, the
receiver is nearly optimal in performance with little increase in
complexity. The numerical procedure is especially adept (little or no
error) at handling a priori densities which are of a diffuse nature.
Hence, receiver design for composite hypothesis situations has been
demonstrated to be feasible for many problems previously considered
too complex to solve.

E stimation techniques for single composite hypothesis decis-
ion problems have been shown to correspond closely to optimal
Bayesian analysis by the construction of a pseudo-estimator. Condi-
tional to the hypothesis signal and noise this pseudo-estimator was
shown to exhibit many features considered desirable of an estimator
and to asymptotically approach the MMSE (minimum mean square
error) estimator. The close correlation between the pseudo-estima-
tor and the MMSE estimator serves to point out that receiver design
via estimation techniques can surely be considered justifiable in case

the optimal (Bayesian) procedure is too complex.



APPENDIX A

NATURE OF THE SET R0

This appendix will determine the nature of the set RO where

R, = {r0|r(9)20, 0<6 <, ro#l} (A.1)
and
p .
r(9) = ry+ -1ty ) dico) (A.2)
i=1

with di independent of c .

Independence of c. If we let

¢ = cé (A.3)
s@) = r ) (A.4)

then
Ry = {rgls@) >0, 0<p<wx, r,#1} (A.5)

Since s(p) is independent of c, RO is also independent of c.

Range of permissible values. Without loss of generality, let ¢=1 so

that
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p .
_ _ . i
r(9) = ry+ (L-ry) }_J d; (A. 6)
i=1
Manipulating Eq. A.6 we get
r(g) = (1—r0) [d0+r0(6)] (A.7)
where
r
_ 0
dO s (A.8)
0
D i
rg(0) = 2, d; 8 (A.9)
=1 *

Then r(6) > 0 for 0€[0,x) implies

d0+r0(0)20 and OSrOSI if dp>0

or

d0+ rO(G) > 0 and ry > 1 if dp< 0 (A.10)

The extreme permissible value of r, can be determined by choosing

dO to be an extremum. This is easily accomplished by choosing

min  r.(6) d >0
" 0 €[0, ) 0 P
d.* = (A.11)
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Then the extreme permissible value ro* is

+ .0 (A.12)

and

(A.13)

28]
I
)
O_—
—
AN
=
o
VAN
}-s
o
*
o,
A\
(e



APPENDIX B

EXTREME VALUES OF ry

In this appendix we will calculate the extreme value ro"< for
p=2 and p=3.

It was shown in Appendix A that

r, = —— (B.1)

where

min r0(9) dp >0

" 9e[0,x)
do* = B.2)
_ max r,(6f) d <0
6 €[0, ) 0 P
P
ro(0) = ), d, 6 (B. 3)

d = (d,, d

12 g -0 d

where
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- _
= ('}/1_*_]_1) = ')/2 ')/3 '}/p+1 (B.5)
Yo Ypil Yop-1
— J
vy = (v ¥ y ) (B. 6)
L 1’ 72 p )
and
vy = (b+1) b+2) ... (b+i) (B.7)
p=2. FromEq. B.4
_ 2
d =571 (B. 8)
d, = - L (B.9)
2 (b+1) (b+2)
Since d2 < 0, choose
% max
d, = - r,(6) (B.10)
0 6 €[0, ) 0
where
— 2
rO(B) = d19 +d26 (B.11)

The critical values occur at § = 0 and at those values of 4
d
for which r,'(d) =0. But r,'(#) =0 implies that 9 = - L with
0 0 2d2
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2
r <_ _Eil_) = - iil_ Hence
0 2d2 4d2
dl2
d.* = - max 0, - =
0 4d2
2
_ 4
4d2
q.x*
and ro* = *O = b+ 2
d0 +1
p=3. From Eq. B.4
3
d1 T b+1
d. = ____._3___
2 (b+1) (b+2)
d, = 1

3 (b+1) (b+2) (b+3)

Since d3 > 0, choose

d x _ min 9
0 f¢e[0,x) rO( )

where

rO(G) = d,0 +d,0% +d_03

(B.

(B.

12)

13)

.14)

.15)

.16)

.17)

.18)
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- - 2—
) d2 ‘/d2 3d1d3

The critical values occur at 91 =0, 62 = 3d3
-d, + d2-3d, d
_ 2 2 173 . _
and at 03 = 3d3 with ro(el) =0,
b(b+3) + 2 Vb+3 b(b+3) - 2Vb+3
= = H
Y o) ey 2 Tolfy) (b+1) (b+2) ence
* _
d,” = -min [ro(el), rO(Bz), r0(93)]
2Vb+3 - b(b+3)
-1<b<1
(b+1) (b+2)
= (B.19)
0 b>1
and
2/br3 - bb+8) < p <y
q.* 2(vb+3 + 1)
S U (B. 20)



APPENDIX C

A TRANSFORMATION FROM n DIMENSIONS

TO 2 DIMENSIONS

This appendix will consist of two parts. The first part will
make a transformation from n dimensions to 2 dimensions and de-
termine the effect of the transformation on the conditional densities.
The second part will use the same transformation but determine the

effect of the transformation on the absolute densities.

1) Transformation with respect to conditional densities

This section will show that the transformation

1 2
' = —
o= g Z/ X,;8; (C.1)
s i=1
n n 2
2 = 1 N
VT E 2 % E 2 %5 (C.2)
s i=1 s i=1
will convert the conditional density
n
n C) 2
0 2 2 1;1 &
txlo) = (—27) e (C.3)

to the conditional densities
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1 6E u'?
PE \2 - —23
' _ s 2 '
f(u'lg) = 57 e ~e < u' < x
(C.4)
—né~1 OE v2
OE -5
2( s) n-2 2
5 v e
f(vig) = i 0<v< »
r &= -
2 (C.5)
where
n
— 2
E_ = LS (C. 6)
i=1
Proof:

If we let y= A X define an orthonormal transformation

AtA = 1) with

y, = X, (C.7
= VE_)
then
n
PR A
p 2 2t
fylo) = (Z—W) e (C.8)
If we let
Yy
Z. = i=1,2, ..., n (C.9)
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then
n BES n
5 _ 2
PE\* "2 glzi
Next, let
{ L
, -— -_ [P
uwo= oz =g 2 X,8; (C.
s i=1
d - FEENA Y
2 _ 2 _ _+ 2 _ —_
V—ZZI—E.Z_"xl E. .~ %% (C
i=2 s i=1 s i=1
Since z4 is independent of (ZZ’ Zgy +ees zn), this implies that

is independent of v and furthermore

2 o y2
OE v Xn—l (C
That is,
1 GES u’z
BES 2 . 9
f(u'le) = 57 e ~o<u'<
(C
n;zl 6E v
o E -5
9 S n-2 2
5 v e
fvlig) = 1 0<v<
r &) (€

.10)

11)

.12)

.13)

.14)

.15)

.16)
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2) Transformation with respect to absolute densities

This section will determine the effect of the transformation of

Eqs. C.1 and C. 2 on the absolute densities with respect to the a priori

density
h(g) = r(8) g(p) (C.17)
where
cb+1 b -cé
g(9)=—1=.—(5m6 e b>-1,C>0,0§9<00 (C.18)
b
r(6) = ), r; 0 (C.19)
i=0

From Eq. 3.40 an equivalent expression for the polynomial r(9) is

p .
r(e) = ), f.(co) (C.20)
i=0

with fi independent of c.

Average the conditional densities derived in part 1) to obtain

J f@,vle)h(e)do
)

f(u',vih)

1l

J f'l9)f(vie) h(6)do
5]



o< u <o, 0<v< oo
with

mzm@g)rwb+1+g)

and
g.=fiP®+1+9+n i=0,1, ... p

(C.21)

(C.22)

(C.23)

(C.24)



APPENDIX D

OPTIMUM RECEIVER OPERATION AND PERFORMANCE

FOR SKE + KGN

The operation and performance of the optimum receiver for
SKE + KGN (signal known exactly in known Gaussian noise) will be
derived in this appendix. From Eqs. 4.12 and 4.13 the conditional

observation statistics are

B _g -1 xt Z-l X
f(xla,SN) = (2712 |) e 22 = (D.1)
n t -1
A L i
fxla,N) = @rlz]) 2 e 2&-38) T x-as) g,
Receiver operation
The conditional likelihood ratio is
dO
- f(x1a, SN) ay - a® - 0.3
a - - = e .
%12) = e, N) )
where
ot -1 .
y =s 2 °x (observation vector) (D. 4)
t-1 o .
dO =s Z s (nominal signal-to-noise (D.5)
ratio)

The random variable y is a sufficient statistic of the observation x
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since f(xla) depends upon x only through y. Subsequent discus-
sion of receiver operation and performance will center about the

sufficient statistic y. Since f(xla)> § implies that

ad
y > Q23+—7—() a>0
(D. 6)
ad
y < 226+—2—0 a<o

the optimum receiver operation consists of simply thresholding the

sufficient statistic y.

Receiver performance

In order to determine the ROC, it is necessary to determine
the statistics of y. Since y is a linear transformation of multivar-
iate normal random variables, y is alsoa normal random variable.
Hence, we need to determine only its mean and variance conditional

to both N and SN for a complete description. We obtain

EgisN) =Es 'z x) = sfo lEEIsN) = stz las
= ad0 (D.17)
t t -1 t -1t
Var(yISN) = Var(s £ "x) = s £ = VarxISN)(s = 7)
-tz lz ity
= d (D.8)
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Likewise,
EyIN) =0 (since a = 0)
Var(yiN) = d0
Hence
yz
T 2d,
fyla,N) = 1 e 0
2% 27rd0
_ 2
) (v - adj)
2d
f(yla, SN) = 1 e 0
VZ’}TdO
The performance equations are
CoO N - N
P (AlSN) = f f(yla, SN) dy

L(xla)>p

Utilizing Eq. D. 6 and simplifying yields

vd, lal
pPPuIN) = of- 1B | ___0_2_
vd, lal
0
vd, lal
PCOuisn) = of. B, 0

(D.9)

(D.10)

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)



APPENDIX E

SUBOPTIMUM RECEIVER OPERATION AND

PERFORMANCE FOR SKE + KGN

The operation and performance of a suboptimum receiver for
SKE + KGN (signal known exactly in known Gaussian noise) will be
derived in this appendix. Receiver operation will be based on the
total likelihood ratio for SKEA (signal known except for amplitude)
with a normal a priori density on the unknown amplitude. Receiver

performance will be evaluated conditional to the actual amplitude a.

Receiver operation

The conditional likelihood ratio was derived in Appendix D and

is
d
ay - a? —29
i(xla) = e E.1)
where
y =stzlx (sufficient statistic of the  (E.2)
observation)
dg = _st »-1 E (nominal signal-to-noise (E.3)

ratio)

From Eq. 4.11 the a priori density on the unknown amplitude is
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a(a) = e E.4)

Subsequent algebraic manipulation will be simplified if g(a) is ex-

pressed in the form

2
gl@) = KeAa + Ba (E.5)
where
1
A = -—2;- (E.G)
B = r—‘? E.7)
mz
e"?v"
K = . (E.8)
vanv

The parameters v and m can be expressed in terms of A and B as

_ 1
v = - 2A (Eog)
_ B

The total likelihood ratio Q(}_{) is the average of the conditional like-

lihood ratio f(xla) with respect to the a priori density g(@), i.e.,
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0x) = [ 2(xla)g@) da
d
0
x ay-a® + 2
_ f o 2 KeAa +Ba dqa
=-C

xC 14 2 [
sz eAa+Ba

da
-
- _IIE_ (E.11)
where
d
A= Ao = -3 (v"1+d0) E.12)
B'=B+y=mv_1+y (E.13)
mvz
e— 2v'
K' = (E.14)
vanv'
and
_ -1
v o= o = v leay) (E.15)
y - -1 -
m' = -123? = (v 1+d0) (mv 1+y) (E.16)

Substituting,
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2(x) = % e (E.17)

Receiver operation is determined by the nature of the decision region
{xle(x)> g} . Itis easy to verify that 0(x) t [y+mv_1l . Thus the
suboptimum receiver operation consists of thresholding |y + mv " | .

In particular, the decision rule is

1 ly + myv 1l > A
o(x) = (E.18)
0 otherwise
where
A = JZ(V~1 + do) l:!Zn (B v1+vd0) + —1;3‘—?] (E.19)

Receiver performance

The statistics of y were already determined in Appendix D

and are

Yy
2d
f(yla,N) = 1 e 0 (E.20)
v27rd0
) (y-a—do)z
2d
f(yla,SN) = — L ¢ 0 E.21)
v2nd
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The performance equations are

P (Alslf\l) = f f(yla,slf\l) dy

!y+mv_1l > A

Performing the integration and simplifying yields

PC3aIN) - () + 2 0)
PCS(AlSN) = @(A1+a«/ag)+®(hz-a\/%)

where

-A +mv

M
Vdy

-A - mv-1

N, = T
vd

(E.22)

(E.23)

(E.24)

(E.25)

(E.26)



APPENDIX F

MONOTONICITY OF THE LIKELIHOOD RATIO

FOR A SPECIAL CASE

This appendix will show that the total likelihood ratio for SKEA

is strictly monotone increasing in the sufficient statistic

t «-1_t
X

y = s Z (F.1)

whenever the assumed a priori density of the unknown amplitude has
z ero probability on the negative axis.

From Appendix D the conditional observation statistics of y

are
_ zy?‘
d
fyla,N) = —L o 0 (F.2)
vzndo
_ 2
) v -adg)
2d
f(yla, SN) = 1 e 0 (F.3)
\/Zﬂdo
and the conditional likelihood ratio of y is
d
0
ay-a? —
f(yla, SN) _ 2 (F. 4)

012 = fTam

202



203

The total likelihood ratio £(y) for a single composite hypothesis is
the average of the conditional likelihood ratio f(yla) with respect

to the assigned a priori density g(), i.e.,

(y) = [ e ga) da (F.5)

To determine whether or not £(y) is a monotone function of its argu-

ment, check its derivative

dy
0 ay-a? ——
') = [ ae 2 g@)da
-0
_ * . fyla, SN)
= :[OO 5 N) g(a) da
1 2
= 51N f a f(y|SN) g(aly) da
-
= L(y) E@ly) (F. 6)

Since f(y) is a non-negative function of its argument, the mono-
tonicity of £(y) depends only upon the posterior mean Efly).
Furthermore, the posterior mean will be positive provided only that
g(@) has zero probability on the negative axis. Therefore, the mono-
tonicity of £(y) is assured whenever g(a) has zero probability on the

negative axis.



APPENDIX G

A USEFUL TRANSFORMATION OF

NORMAL RANDOM VARIABLES

This appendix will show that the transformation

u' = —d}—’(—) (G.1)
v? = EWB - (ax(-))z G.2)
where

y = sz x G.3)
w = x 3z lx (G. )
dO = _st Z—l_g (G.5H)

will convert the conditional density

6 2 '%l‘t 27 x

fxl8) = (ZW\Z\) G-9)

to the conditional densities
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1 -6d.u'?
3 0
6d _—
. 0 2
fu'le) = ( 2ﬂ> e
___n;l 6d. y2
6d .
< 0) n-2 2
2 —5— \% e
f(vig) = o~
')
Proof:

If we make the transformation

r = AXx

with A determined such that

AT A =1
or equivalently
ata = =71
then
9 121 - g_l_'tf
f(rlg) = (—2}) e

[4)]

G.

(G.

G.

.8)

10)

11)

.12)

13)
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S S
with
n=As
t
Eg=mn1
to obtain
1 9E u'z
9E \? - Sé
1 _ S
f(u'lg) = (21; e
9—;—1— O E v?
0E -5
9 S Vn—2 o 2
p)
fivig) = ]
&)
Since
ﬂtz = (A_s)t (Ax) = _StétAz = _st
zt_lz = <Az<)t Ax) = _tAtAzs = zt
_7_7t17 = (As)t(As) = tAtAs = st

the transformation

~e<u'< x

0<v<x

G.

.14)

.15)

.16)

.17)

.18)

19)

.20)

.21)



results in
12
% Gdou
Hdo - 5
f(u'le) = 5 e
_Il—_l 6d yz
2 0
6d -
2( 0) n-2 2
3 v €
f(vlig) = ]
I'&5

(G.22)
(G.23)
~o<u'< x
(G.24)
0<v<
B (G. 25)



APPENDIX H

USEFUL INTEGRAL RELATIONS

The following integral relations turn out to be useful in analy-

tically evaluating receiver performance.

v-3
2 v
0 2 ')
1) [ e cb(ti) x = — 2 T () (1)
0 Vv VT v
where
r&dy . '(%1)
T (t) = —& 2 <1+l‘—) du (H. 2)
v Vr 1"%) -0 v
X b
2) J o@x+Db)d'x)dx = & —— (H.3)
-% 1+a?
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APPENDIX I

NON-EXISTENCE OF AN A PRIORI DENSITY*

This appendix will show that there exists no a priori density
g (-) such that the solution to the double composite hypothesis detection
problem SKE-UNL (signal known exactly, unknown noise level) results
in a likelihood ratio which is monotone in the test statistic of the UMPU
test. Specifically, it will be shown that there exists no function g(-)

such that

0 - m-—y——> (I.1)

where m(-) is any monotone function of its argument.

Proof:

Restate the hypothesis in terms of the function h(-) where

o B _OW
hiw) = [ 8% e 2 g(6)ds (L 2)
0

*Credit is due to R. Heitmeyer for the technique of this proof.
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Then an equivalent hypothesis is: there exists no function h(.) such

that

h(w—2y+d0) (
m

A
h (w) B f{v‘) (1.3)

If we define

n = - (1. 4)

the equivalent hypothesis becomes: there exists no function h(.) such

that

= m(n) (L. 5)

Thus, it remains to show that the LHS of Eq. I. 5 is, in fact, dependent

onboth w and 7.

Proof by contradiction:

Suppose the LHS of Eq. I.5 were dependent only on n . Then,
consider the particular case

d
0
1) 77:—2—

w =1

so that
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) Y6y 1 (I.6)
and
2) n = —dz—q
w = 4
so that

h(W—an/_vV+d0) h(4—d0)

L7
h (w) h(4) &7
If the LHS of Eq. 1.5 were dependent only on 71, then
h(4 - dO)
Y= 1 (I.8)
h (4)
But this implies that
n
© 5 -d
I eze'?‘e(l - e (9 g(6)do = 0 (L9)

0

Since the integrand is non-negative for all 6 € [0, ) and not
identically zero, this implies that no function h(-) exists satisfying
Eq. I. 5 and hence no function g(-) exists which reconciles the Bayes
test to the UMPU test for the double composite hypothesis problem

SKE-UNL.



APPENDIX J

EXISTENCE OF Al

AND CALCULATION OF COEFFICIENTS

This appendix will show that it is plausible to assume the exis-

tence of the matrix A—1 where

al a2 pr
o a a
_ (%2 %
A = (ai+j-1) N .
Y% %prl “op-1

and

(b+1) (b+2) ... (b+k)

@ = ®
Furthermore, if
a = (al,az, ap)t = A'l_
a = (ao,al, ...ap_l)

then the coefficients ai can be written in the form

a, = d. c i=1,2 ... p

with di independent of c .
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Existence of A'l.

Write the moments ai in the form

_ -1
ai = 7;¢ (J.6)
with
Yy = (b+1) (b+2) ... (b+i) (J.7)
Define
B ]
c_1 0
C = -2 (J.8)
-p
0 c
L 4
- ]
Y{ V9 Y
Yo Y3 e+ Yoiq
_ _ p+
r = (‘yi+:]-1) - (J'g)
yp yp+1 T y2p-1
L. .

so that the matrix A can be expressed in the form

A = ¢ CIcC (J.10)

and o can be written as
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where

t
Y = (yl’y2’ oo yp) (J'lz)

Since ¢ > 0, the diagonal matrix C is obviously invertible.
Hence the matrix A—1 exists provided only that the matrix I‘_1

exists. The existence of 1"_1 will be assured provided the determinant

of the matrix I' is unequal to zero. For p= 2

ITl = (b+1)2 (b+2) ¥ 0 (J.13)

while for p=3

3

Tl = 2b+1)° +2)2 0b+3) # 0 (J. 14)

since b > -1. Computer evaluationof [I'l for p > 3 and for
specific values of b appeared to indicate the existence of F'l in

general and hence the existence of A_1 in general.

Calculation of coefficients.

If we assume that I" is in fact invertible, then

- Ata = ccroytecy

&
!

-1 -1 -1

= (c " C I C-l)cle
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where

d = (d,d,...d) =T "y (J.16)

The vector d is independent of ¢ since both I' and y are indepen-

dent of ¢ . In addition

c 0
2
-1 c
c” = . (J.17)
0 P
so that a=C ~ d implies
a. = d. c' i=1,2, ... p (J.18)

with di independent of c .



APPENDIX K

THE TRANSFORMATION z[z(x | g) | h]

This appendix will construct a procedure for calculating
z[z(x 1 g) [h] . The transformation of Egs. 3.59 and 3.60 has simpli-
fied the task considerably; we need only determine z[a(u, v) | h]

where

a(u, v) 2 z(x 1 g)

n -
1\ 2c
u+§> + VvV +E-‘~
= <b+1+2>£n S (K.1)
2 2 ’
(-l) 73
2 E
_ S

with f(u,v!h,SN) and f(u,v|h,N) given by Egs. 3.61 and 3. 62.

Distribution Function

Let H denote either the N or SN hypothesis. The distribu-

tion function of @(u, v) can be determined via
Ftlh,H 2 Pla(,v) <tlh,H (K. 2)

It can readily be shown that

216



217

0 t < -t,
F(tIh,H) = (P[(w,v) e RIh,H] -t; <t <t (K. 3)
1 t > to
where
n Es Es Es
tO = <b+1+—2-)£n 1+Z-é—+ Ic 4—C-+2 (K.4)

th{(u,v)lvzo and (u—:a.)2+v2'>r2 if 0<t<t0;v20and

(u—a)2+v2<r2 if -t0<t<0 ; or v >0 and (K. 5)

u <0 if t=0}

and

1 A+1
a = 3 . A1 (K.G)
e A X (K. ")

(A-1) S
t

b+1+a

2
A = e (K.8)

For [tl < ty» the distribution function is
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r uz(A,V)
F(tih,H) = [ f(u, v | h, H) dudv -ty <t <0
0 ul(A,V)
c 0
F(tlh,H) = [ [ f(u,vIh,H) dudv t=0 (K. 9)
0 -
r uz(A,v)
Fitlh,H =1 - f(u,v I h,H) dudv O<t<t0
0 ul(A,V)
where
ul(A,v) = a - rz—v2 (K.10)
uz(A,V) = a + :('z—v2 (K.11)

Density Function

The density function can be obtained by differentiating the

distribution function.

f(t 1 h, H) = % F(t | h, H) (K. 12)

We can direct our attention to the interval 0 < t < t0 ; the interval

—t0 <t< 0 can be dealt with in a similar manner. Using the chain rule

for differentiation
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f(t 1 h, H) = ‘;—? : Hdg F(t | h, H) (K. 13)

For 0 <t < tO’ employ Leibnitz's rule to obtain

r

dA
f(t1h, H) = 0 /[f(uz(A,v),th,H) . aaA 2(A V)
0
- fu,(A,v),vIh, H) - o ul(A,v):| dv (K. 14)
Simplifying,
f(tlh, H) = / f(u (A,v),v!Ih,H) 'uz(A,v)
(A —1) b+1+
0
dv
+ f(u (A,V),vlh,H)u(A,v)] 0<t<t
1 1 2 2 0
r -v
(K. 15)
If we make the transformation
2
w = 2(-‘5) -1 (K. 16)
r
then
1 0(w | H)
ft1h,H) = [ ——— dw 0<t<t, (K.17)
-1 2
1-w

where
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A
f (wlH) = f(u,(A,v),vIih,H) - u(a,v)
0 2(a - 1) (b+1+%> [ 1 1
+ f(uy(A,v),vIh,H) - ul(a, K. 18
uy(8,v),v 1h,H) - uy(a, v) . (K. 18)
vV=r D)

A Gauss-Mehler quadrature routine is ideal for evaluating

Eq. K. 17 for specific values of t. An mth order Gauss-Mehler

quadrature routine evaluates Eq. K. 17 via

m . 0<t<t
o 2j-1 0
f(t1h, H) = — L fol:cos (—ﬁ—)n IH]
¥ (K.19)
This method is exact if fo(w | H) is a polynomial in w of degree <
2m -1 (Ref. 29, p. 381).
An entirely analogous procedure for -tO <t <0 leads to
m : -t,. <t< 0
2j-1 0
ftIh.H) =~ -2 » l:cos<——-———>7r lH:I
m o 0 2m (K. 20)
The Transformation z[a(u,v)|h]
If we let
t = a(u,v) (K.21)

then

~|f(tIn,sN)
z(t 1 h) = ﬂnl:———-f (tlh,N):l 0 < Itl < to (K. 22)
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It can readily be shown from symmetry considerations that the trans-

formation z(tlh) is an odd function, i.e.,
z(tlh) = -z(-tlh) 0 <I[t] < t (K. 23)
and hence from continuity that

z(tlh) = 0 t=0 (K. 24)
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