T HE UNIVERSITY OF MICHIGAN

Technical Report 15

AN EXECUTIVE SYSTEM
FOR A DEC 339 COMPUTER DISPLAY TERMINAL

James H. Jackson

CONCOMP: Research in Conversational Use of Computers
F. H. Westervelt, Project Director
ORA Project 07449

Supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 O0OSA-3050
ARPA ORDER NO. 716

Administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

December 1968

ABSTRACT

This report describes a real-time multiprogramming
software system for a DEC 339 computer display terminal, which
may communicate with an external computer through a serial-
synchronous data set. The system is designed to support both
programs which require the attention of an external computer
while they are being executed and programs which are independent
of external computation service. For either type of program,
the entire graphics support is provided by the 339 system, but
the interpretation of the relations implied by the graphics
may be performed either in the 339 or in an external computer.
Multiprogramming facility is provided to facilitate effective

use of I/0 devices in order to cope with the demands of a real-

time environment.

iii

TABLE OF CONTENTS

ABS T RAC T e e vttt oo veeesssssssaosssssacosnsscsssscscaes ceeeen .
1. INTRODUCTION.:.:eeseseesossasns s secesescssestsascenn ce e
2. SYSTEM ORGANIZATION. ¢t essveocecsosscassssscssssssssasanss
2.1 Bootstrap Arrangement......ceeeeeecectcctcncnannnns
2.2 TaSKSiiieiereieeeeesonsnssnnsannnn Ceseeettreaeansans
2.3 States of the System.......... ceseesessasse ceseesns
2.4 Entering System Stat@i...ieeeeeeesoeeocssacasoscons
3. SYSTEM SUBROUTINES..:.:essceesoscccccses s e s esess s cs e
3.1 Word Queues. $eseessssessss s seassenens cecteso e
3.2 Task Schedullng and I/0 Dev1ce Allocatlon
3.3 Format CONVErSiONS.:seseeescscessssassscsssssssnsss
3.4 Buffered I/0.....ieeeeeeeeceeeasscecsasssnsssnssnsas
3.4,1 Dataphone I/0...e.ceeecesesscsssssssassassns
3.4.2 Paper Tape I/0..vivenn. C et e e st ee e e
3.4.3 Teletype I/0.u:iieeeseeceeosssesssansonnsanns
3.5 Nonbuffered I/O0...eeeereeeens Gt e e eserececcacnacnannen
3.6 Push-Button ProCesSSing.....eeeeeeeeessecescsssssnns
3.7 Display Control CommunicCatiOn..seeeeseeesecossonsss
3.8 Light Pen TracKking...eseeeeeeseeseocoscassasenssnses
3.9 Display Structure Topology
3.10 Level Modification..eeeeeeiseoesesessecnsoaconas oo
3.11 Text List Manlpulatlon
4, IDLE-TIME TASK. ..ttt eeeeososesosoossssasesensascssansoss
4.1 CoOpYy FUNCLIiONS .t it et eeeeeeoeonsanens ceeenas ceeeaens
4.2 Scheduling oOf User TasKS::eeeeeeseeesossossnnsacnns
4.3 Clearing the Task Queue or Display Storage€.........
4.4 Teletype to Dataphone TransmisSsionN.....eeceeeesecess
4.5 Entering User State...iieieeeescessoscnsocssoncesos
5. SYSTEM CAPABILITY.:eeeeeeecccancancess s e e s acseas s e
BIBLIOGRAPHY ¢ttt vttt tesnessonnosnsssnssnnsns seesecsseeresssen
APPENDICES
A LISTING OF THE EXECUTIVE SYSTEM.:.teeeeeeecsncsssnosannss
B SUMMARY OF SYSTEM SUBROUTINES :::teeeeseesesssosssscssasas
c SUMMARY OF IOT INSTRUCTIONS. . :teteesesesesscanssancsssns
D ASSEMBLY LANGUAGE. ...t tttcteneosoosconsncsanns s eessesas s

Page

iii

1. INTRODUCTION

The objective of this report is to describe the con-
ceptual organization of the SEL (Systems Engineering Laboratory's)
Executive System for a 339 computer display terminal, as well
as to provide a manual for its use. More specifically, the hard-
ware configuration for which the System was designed consists of
the following items (plus necessary interfaces, multiplexors,
etc.):

DEC PDP-9 with at least two 8192-word

memory banks

DEC KEO09A extended arithmetic element

DEC 338 display control (less PDP-8)

DEC AF01B A/D converter

DEC AAOlA D/A converter

AT&T 201A data set
The System provides both a multiprogramming capability (based
on I/0 slicing, rather than time-slicing) and a complete set
of operators for maintaining a highly structured display file
and for interrogating it for relational properties.

Since an on~line operator tends to produce a burst of
inputs and then to be idle for a relatively long period of time,
appropriate feedback to each input must be provided rapidly if
the operator is to be allowed to proceed at his own rate. If
the terminal were not multiprogrammed, the processing of one
input would have to be completed before processing of the next
could be begun. Consequently, bursts of operator activity
could not be effectively handled by this scheme. However, if
a multiprogramming system (where the users of the system are
programs which respond to various inputs) were used, feedback
to each input could be produced almost immediately, and the
remaining (and usually time-consuming) part of the processing
could be deferred until a later time.

-2-

Bandwidth limitations on the data link between the
remote computer and the central timesharing system suggest that
programs be distributed between the central computer and the
remote computer such that dataphone traffic is minimized (sub-
ject to the constraint of the capacity of the remote machine).
In terms of a remote display terminal, this usually means that
the relations implied by a display file, rather than the display
file itself, be transmitted. For this reason, the remote system
should provide a facility for constructing a display file based
partly on relational information, and for interrogating a dis-
play file for relational information.

A general discussion of the organization of the System
and detailed discussions of the various system subroutines and
the idle-time task follow. A complete listing of the System is
given in Appendix A, a summary of system subroutines is given
in Appendix B, a summary of all IOT instructions pertinent to
the hardware configuration is given in Appendix C, and a brief
description of the assembly language used in the examples is

given in Appendix D.

2. SYSTEM ORGANIZATION

2.1 Bootstrap Arrangement

The System should be loaded by the following procedure:

1) Place the system tape in the reader.
2) Set all switches to 0 (down).
3) Depress the read-in key.

This procedure causes the first record, which is written in
hardware RIM format, to be read, and the computer to be started
at the last location loaded. The record read is the bootstrap
loader represented by the following assembly code:

$ORG 0

IoT 144 SELECT READER IN BINARY MODE
IO0T 101 SKIP ON READER FLAG
JMP *-1 WAIT FOR READER FLAG
IOT 112 READ READER BUFFER
DAC* 10 LOAD A WORD

JMP 0 READ NEXT WORD

HLT

HLT

$DC 17731 INITIAL INDEX VALUE
JMP 0 START BOOTSTRAP LOADER

The bootstrap loader is capable of loading one binary
block (Section 3.4.2) starting at location 177324, but is not
capable of detecting the end of the block. However, the block
which immediately follows the bootstrap loader on the system
tape is loaded into locations 177328,...,177778, 0. The word
loaded into location 0 is a JMP instruction to the beginning of
a more sophisticated loader, which is contained in the block
read by the bootstrap loader.

The loader loaded by the bootstrap loader is capable
of loading an arbitrary number of binary blocks, and it is this

-3~

-4

loader which loads the System. Immediately following the last
block of the System is a one-word block which modifies the
loader and causes execution of the System to begin.

At the end of the loading process, the System occupies
locations 0—117778,
are no longer usable. (The storage occupied by the system loader

is salvaged by the System for display structure use at a later

and the bootstrap loader and system loader

time.)

2.2 Tasks

Each program written to run with the System is called
a "task" and is identified by its entry point. The System
maintains a task gueue, each entry of which consists of the
entry point for the task, together with other information re-
quired to determine the eligibility of the task or to restore
the contents of certain registers before the task is executed.
Whenever execution of a task is begun, the task is removed from
the task queue.

A task is entered by a JMP instruction (rather than
a JMS instruction, as in some other similar systems) and is

subject to the following restrictions:

1) No user task may contain an IOT instruction.

2) No user task may store in core bank 0. (No user
task should be loaded into core bank 0. Locations 120008—177778
are used by the System to store the display structure.)

3) A task which uses an allocatable I/O device
(via system subroutines) must allocate the device before calling
the system subroutine to use it, and must release the device
before terminating. (The task may allocate and/or release the
device implicitly by insuring that another task is scheduled to

perform the function.)

2.3 States of the System

At any instant, the System is operating in one of

two states:

1) System state--A special system task, called the
idle-time task (Section 4), is executed. However, an incoming
message from the 201A dataphone which is not directed to a user
task will cause the 20l-to-teleprinter task (Section 3.4.1) to

be scheduled.
2) User state--All scheduled user tasks are exe-

cuted and the idle-time task is not executed. The 201-to-tele-

printer task is scheduled when necessary as in system state.

The states of the System may be depicted by the follow-

ing diagram:

201l-to-teleprinter task

Idle-time
task

Set of tasks which may Set of tasks which may
be executed in system be executed in user
state state

2.4 Entering System State

Whenever one of the following events occurs, the System
is reinitialized (i.e., all I/0 activity is stopped, the task
queue and all buffers are cleared, and all I/O devices are

-6-

released), and system state is entered:

1) The System is reloaded.

2) The currently executing user task terminates
with the task queue empty, and all output buffers become empty.

3) An unidentifiable interrupt occurs.

4) The manual interrupt button is pressed. (The
manual interrupt is used by the operator to reinitialize the
System in case of emergency.)

5) The task queue overflows.

6) The program is started at location 228 via the
panel switches.

7) An illegal instruction (operation code 008) is

executed.

Immediately after system state is entered, a comment describing
which one of the above events occurred is typed on the teletype,
and, if enough free display storage remains, it is displayed

on the screen. Reinitializing the System does not include clear-
ing the display storage area, but it does cause the active
structure to be detached from the highest active level (Section
3.9).

3. SYSTEM SUBROUTINES

Sections 3.1 through 3.1l describe the various system
subroutines which are callable from user tasks. The entry point
to each subroutine occupies a fixed position in a vector such
that the actual code for the subroutine may be relocated (by
some future modification of the System) without requiring user
tasks to be reassembled. Since the System occupies core bank
0 and user tasks cannot be loaded into bank 0, system subroutines
must be called via an indirect reference, i.e.,if o is the
symbolic name of a system subroutine, a call to o is written

in the following form:
JMS* =q,

Most of the system subroutines return immediately after
the JMS instructions which call them. (Parameters are passed
in the AC and MQ.) However, several subroutines have "failure
returns," i.e., a return is made immediately after the location
containing the JMS instruction if the function which the subrou-
tine must perform cannot be performed. If the subroutine succeeds,
return is made to the next location. The two types of calling

sequences may be illustrated as follows:

Subroutine with no failure return:

————— (return)

Subroutine with fajilure return:

______ (failure return)

————— - (success return)

A subroutine which has a failure return is denoted by an aster-
isk (*) appended to its symbolic name in Sections 3.1 through
3.11. (The asterisk is not part of the symbolic name.)

3.1 Word Queues

The basic structure which supports cyclic I/0 buffer-
ing and task scheduling in the System is a word queue. This

structure consists of a block of three words, called control
words, followed by n data words and has the properties of
both a first-in first-out (FIFO) queue and a last-in first-out
(LIFO) queue.

A word queue is represented in core as shown by the

following diagram:

g
95 1
9;
3 control words
d3
I —
S

n data words

A

The symbols in the diagram are interpreted as follows:

dq, = Address of the word queue. By convention, this
is the address of the first control word.
q; = Pointer to the physically last data word in the
queue.
= Pointer to the last word put into the queue
(FIFO sense).
q5 = Pointer to the last word taken out of the queue.

Q
N
|

-0-

The word queue is empty whenever d, = d3 and it is
full whenever d3 = 4, + 1 or dy = 94 + 3 and d, = 4; - The
maximum number of words which may be stored in the queue is then
n-1

The cyclic nature of the word queue regquires that the
terms incrementing and decrementing a pointer be defined
for this structure. A pointer g is "incremented" if it is

modified so that it takes on the wvalue

q+1l, if q# q

d, + 3, 1f g = q;
A pointer g is "decremented" if it is modified so that it

takes on the wvalue

q-1, 1if qgq # dg + 3

qq if g = 9, + 3
The following system subroutines have been defined

for managing word gqueues:

Q.C - The word queue whose address is given in bits
3-17 of the AC is cleared. (q2 and q, are both
set equal to d; .)

Q.I*- The word given in the MQ is added in LIFO fashion
to the word queue whose address is given in bits
3-17 of the AC. (The word to be gueued is stored
in the location which a5 references, and d3
is decremented.) A failure return is made if
the queue is full before the operation is at-
tempted.

Q.A*- The word given in the MQ is added in FIFO fashion
to the word queue whose address is given in bits
3-17 of the AC. (q2 is incremented and the word
to be queued is stored in the location which the

resulting d, references.) A failure return is

-10-

made if the queue is full before the operation
is attempted.

Q.F*- A word is fetched from the word queue whose
address is given in bits 3-17 of the AC and is
returned in the AC. (q3 is incremented, and
the word stored in the location which the result-
ing dj references is fetched.) A failure re-
turn is made if the word queue is empty before

the operation is attempted.

A word queue may be constructed by defining only the
pointers d, and dq - since, if the queue is cleared (via Q.C)
before it is used, the pointers d, and a4 will be automati-
cally established. For example, the word queue whose address
is Q may be constructed by the following two statements, where

€ 1s an expression whose value is n + 2:

0 $DC *t+e
SDS £

As an example of the manipulation (but not application)
of word queues, consider a task, whose entry point is TASK, which
stores sequential integers on a first-in, first-out basis in
the word queue FIFO until the queue is full, and then copies
words from FIFO into another word queue LIFO on a last-in, first-
out basis. Both FIFO and LIFO will be assumed to have a capacity

of X words, where X is a predefined symbol. An algorithm for

this task is given below. (T.F 1is described in Section 3.2.)
TASK LAC =FIFO GET ADDRESS OF FIFO QUEUE

JMS* =Q.C CLEAR FIFO QUEUE

LAC =LIFO GET ADDRESS OF LIFO QUEUE

JMS* =Q.C CLEAR LIFO QUEUE

DZM COUNT START COUNTING AT ZERO
LOOP1 LAC COUNT GET VALUE OF INTEGER

LMQ SET UP PARAMETER

LAC =FIFO GET ADDRESS OF FIFO QUEUE

JMS*
JMP
1S2
JMP
LOOP2 LAC
JMS*
JMS*
LMQ
LAC
JMS*
$DC
JMP
FIFO $DC
$DS
LIFO $DC
$DS

-11-

=Q.A ADD INTEGER TO QUEUE
LOOP2 COPY INTO OTHER QUEUE
COUNT INCREMENT COUNTER
LOOP1 QUEUE NEXT INTEGER
=FIFO GET ADDRESS OF FIFO QUEUE
=Q.F FETCH WORD FROM QUEUE
=T.F TERMINATE TASK

SET UP PARAMETER
=LIFO GET ADDRESS OF LIFO QUEUE
=Q.TI INSERT WORD ON QUEUE
0 PROGRAM SHOULD NEVER GET HERE
LOOP2 COPY NEXT WORD
*+X+3
X+3
*+X+3
X+3

3.2 Task Scheduling and I/0 Device Allocation

The following system subroutines have been defined for

controlling task scheduling:

T.S -

T.P =~

T.F -

As an

consider a task,

two tasks TASK1l

The task whose address appears in bits 3-17 in
the AC is scheduled for execution.

The task whose entry point is the location
immediately preceding the call to T.P is sched-
uled for execution, and execution of the task
which called T.P is terminated.

Execution of the task which called T.F is

terminated.

example of the use of these system subroutines,
whose entry point is SCHED, which schedules the

and TASK2 after a nonzero value is stored (by

some other task) in location SWITCH. One algorithm for this

task is the following:

-12-

SCHED JMS CHECK SKIP IF SWITCH IS SET
JMS* =T.P WAIT FOR SWITCH TO BE SET
LAC =TASK1 GET ADDRESS OF FIRST TASK
JMS* =T.S SCHEDULE FIRST TASK
LAC =TASK?2 GET ADDRESS OF SECOND TASK
JMS* =T.S SCHEDULE SECOND TASK
JMS* =T.F TERMINATE TASK

CHECK $DC 0
LAC SWITCH GET SWITCH VALUE
SZA SKIP IF SWITCH NOT SET
ISZ CHECK INDICATE SUCCESS
JMP* CHECK RETURN

The call to T.P is given whenever the subroutine CHECK produces
a failure return (in the same sense that some system subroutines
produce failure returns) to reschedule the call to CHECK. Be-
cause tasks are scheduled on a first-in first-out basis, the
rescheduled call to CHECK is not executed until each other eli-
gible task in the task queue has been executed.

A task allocates and releases I/0 devices by calling
appropriate system subroutines, supplying them with "allocation
masks." An allocation mask is a representation of the set of
I/0 devices which are involved in an allocation operation. Each
bit position in the mask is associated with one I/0 device. If
a bit position contains a 1, the corresponding I/O device is
involved in the operation; otherwise, it is not. The bit posi-

tion assignments are given by the following table:

Bit Position I/0 Device
9 201 Dataphone Input
10 201 Dataphone Output
11 Reader
12 Punch
13 Keyboard
14 Teleprinter
15 D/A Converter
16 Push Buttons

17 Display

-13-

The following system subroutines have been defined

for controlling I/O device allocation:

T.A - The I/O devices specified by the allocation mask
in bits 9-17 of the AC are allocated. The
calling task is terminated, and the return from
this subroutine is scheduled as a task to be
executed after the specified devices become
available. Bits 0-4 of the AC are ignored.

T.R - The I/O devices specified by the allocation mask
in bits 9-17 of the AC are released. Bits 0-4
of the AC are ignored.

In order to guarantee that all scheduled user tasks
become eligible for execution in a finite amount of time, I/0
device allocation must be performed according to the following

rule:

Whenever an I/O0 device is allocated, all other I/O
devices which are to be allocated before it is

released must also be allocated.

As an example of I/O device allocation, consider two
tasks, which are scheduled one immediately after the other,
whose I/0 device allocation activity is summarized by the fol-

lowing tables (where ti,k+l > ti,k):

Task #1:
Time Devices Allocated Devices Released
tll A -
tl2 B -
t13 - A
t14 cC -
t15 - B,C
Task #2:
Eimg Devices Allocated Devices Released
€21 ¢ -
22 B -
t - B,C

23

-14-

Assume the rule given above is ignored, and the I/0 devices
are allocated precisely as shown in the above tables. Then,
I tyy > 81 >ty By
not release device B until it can allocate device C, and Task

+ o and t22+ © because Task #1 will

#2 will not release device C until it can allocate device B.
By applying the allocation rule to the above tables,

the following new tables are obtained:

Task #1:
Time Devices Allocated Devices Released
t'll A,B,C -
t'l2 - B,C
t'13 B,C -
t|l4 - A,C
t'1s ¢ }
t'16 - B,C
Task #2:
Time Devices Allocated Devices Released
t'o1 B/C)
t'22 - B
t'23 B -
t'24 - B,C
With this modification, all tasks will become eligible for
execution. (A new task is scheduled and the calling task is

terminated each time I/0 devices are allocated.)

A subroutine which may be called by several concurrent-
ly executing tasks and which allows tasks other than the one
which called it to execute before it returns is in danger of
being reentered from one task while it is servicing another.

This event results in the loss of the return address for the
subroutine and perhaps some of the data upon which the sub-
routine operates. To facilitate the writing of reentrable sub-
routines (i.e., subroutines which are protected against reentry),

the following system subroutines have been defined:

-15-

T.L - Lock subroutine against reentry. If the loca-
tion which immediately follows the call to T.L
does not contain zero, the call to the subroutine
whose entry point immediately precedes the call
to T.L is rescheduled. Otherwise, the content
of the location which immediately precedes the
call to T.L is copied into the location which
immediately follows the call to T.L.

T.U - Unlock reentrable subroutine. The location
whose address is the address contained in the
word which immediately follows the call to T.U
plus 2 is zeroed, and a JMP to the address which
was stored in that location before it was zeroed

is executed.

Because both T.L and T.U must preserve the contents
of the AC and MQ, these subroutines have the following special

calling sequences:

Calling sequence for T.L:

-——- $DC 0 (reentrable subroutine entry
point)
JMS* =T.L
$DC 0 (save location for T.L)
-———- (return)

Calling sequence for T.U:

JMS* =T.U
SDC ———— (subroutine entry point)

As an example of the use of T.L and T.U, consider the
reentrable subroutine WAIT which returns to its calling task
after all tasks on the task queue have had a chance to execute.

An algorithm for this subroutine is the following:

WAIT $DC 0
JgMs* =T.L SET REENTRY LOCK

$DC 0 SAVE LOC FOR T.L

-16-

SKP SCHEDULE NEXT LOC AS TASK

SKP RETURN

JMS* =T.P SCHEDULE PREVIOUS LOC AS TASK
JMs* =T.U UNLOCK SUBROUTINE & RETURN
$DC WAIT SUBROUTINE ENTRY POINT

3.3 Format Conversions

Characters are represented internally in the System
by 6-bit codes to facilitate storage of three characters per
word. Since ASCII character codes must be available for tele-
type, paper tape, and dataphone I/0, conversions between ASCII
and 6-bit codes must be frequently performed. In addition,
the 11-bit sign-magnitude coordinates required by the display
control's vector mode must often be converted to and from 18-
bit two's complement representation. To satisfy these require-

ments, the following system subroutines have been defined:

C.B6 - The binary number given in the AC is converted

to its corresponding 6-bit octal representation,

which is returned in the AC and MQ (high-order
digits in AC, low-order digits in MQ).

C.6A - The 6-bit code given in bits 12-17 of the AC
is converted to the corresponding ASCII code,
which is returned in bits 10-17 of the AC, with
bits 0-9 cleared and the parity bit of the
ASCII code (i.e., bit 10 of the AC) set, re-
gardless of the parity. Bits 0-11 of the AC
are ignored on entry.

C.A6 - The ASCII code given in bits 10-17 of the AC
is converted to the corresponding 6-bit code,
which is returned in bits 12-17 of the AC,
with bits 0-11 cleared. Bits 0-9 of the AC
and the parity bit of the ASCII code (i.e.,
bit 10 of the AC) are ignored on entry.

-17-

C.CB - The vector mode sign-magnitude display coordi-
nate given in bits 7-17 of the AC is converted
to the corresponding two's complement represen-
tation, which is returned in the AC. Bits 0-6
of the AC are ignored on entry.

C.BC - The two's complement number in the AC is con-

10 to the corresponding vector

verted modulo 2
mode sign-magnitude display coordinate repre-
sentation, which is returned in bits 7-17 of

the AC with bits 0-6 cleared.

The 6-bit codes used by the System may each be repre-
sented by two octal digits as shown by the following table:

Second Octal Digit

0 1 2 3 4 5 6 7
ﬂ 010 1 2 3 4 5 6 7
9‘189ABCDEF
A 21¢ H I J X L M N
—
33OPQRSTUV
g 4|lw x Y z * /J + =
£ 5]) [] < = > 4
0
Hoe |« ; ? ! !
3
71" $ # & cr /&f sp

cr = carriage return

2f = line feed

sp = space

All ASCII characters which do not appear in the table
are mapped into 778 . The only printing characters which are

treated in this manner are "%", "@", and "

3.4 Buffered I/0O

Input data from the dataphone, the paper tape reader,
and the keyboard, as well as output data to the dataphone,

-18-

paper tape punch, and teleprinter, are buffered by the System.
In the event that an input buffer is empty or an output buffer
is full and the system subroutine which transfers data between
the buffer and a task is called, the return from the subroutine
is scheduled as a task to be executed only after the state of
the buffer changes, and execution of the calling task is termi-

nated.

3.4.1 Dataphone I/0
The following system subroutines have been defined

for managing the 201 dataphone buffers:

B.FI* - An image is fetched from the 201 dataphone
input buffer and is returned in bits 10-17
of the AC. Bits 0-9 of the AC are cleared,
unless the image is an end-of-record charac-
ter in which case bits 0-4 are set and bits
5-9 are cleared. A failure return is made
if the data set is not connected.

B.FO* - The image in bits 10-17 of the AC is sent to
the 201 dataphone output buffer. If bit 0
of the AC is set, the image is interpreted
as an end-of-record character, and transmis-
sion is begun. A failure return is made
before the image is buffered if the data set

is not connected.

Since actual dataphone transmission is record-oriented
(although transfer of data between the dataphone buffers and
tasks is not), the return from B.FI to the calling task is de-
layed until the dataphone input buffer contains a complete re-
cord, and the return from B.FO is delayed until the last record
transmitted has been affirmatively acknowledged by the other
party. In simpler terms, the dataphone input buffer is con-
sidered to be empty whenever it does not contain a complete
record, and the dataphone output buffer is considered to be
full whenever the last transmitted record has not been affirma-

tively acknowledged.

-19-

Dataphone records are formatted according to the
conventions adopted by The University of Michigan Computing
Center at the time of this report. Each record is formatted
(1f transmitted) or interpreted (if received) by the System

and consists of the following sections:

1. Several synchronous idle (SYN) characters (0268).
(At least two are required when receiving; eight are trans-
mitted.)

2. A data link escape (DLE) character (2208).

3. Data. The 8-bit images in this section are arbi-
trary binary, with the exception that a DLE character (with
either parity) is preceded by a DLE. The first DLE is ignored
when the record is received, and serves only to cause the second
one to be interpreted as data. (A pair of characters consisting
of a DLE followed by a SYN is ignored when receiving, although
this sequence is never transmitted.)

4. A DLE character.

5. An end-of-record character.

6. The high-order 8 bits of the block check (des-
cribed below).

7. The low-order 8 bits of the block check (des-
cribed below).

8. A pad character (3778).

In order to facilitate detection of burst errors, a
16-bit cyclic block check is included in each dataphone record.
For purposes of computing this block check, the data sequence
(consisting of the concatenation of the second through the
last data images, plus the end-of-record character) is regarded
as a cyclic polynomial code. The block check is obtained by
simultaneously multiplying the polynomial representation of
the data sequence by X16 and dividing it by X16 + X15 + X2 + 1
(where the coefficients of the polynomials are taken from the
field of two elements). The following diagram illustrates this

operation:

——’0——’1;\%\/ 2 eeﬁ—»l4—’é—’15ﬁ’?
A _~

16-bit block check at end of operation (shift
register initially clear)

end-of-record last data third data second
character image image data image

N -

~

Data Sequence
(low-order bits of each image used first)

Whenever a dataphone record is received by either
party, the block check is computed and compared with the re-
ceived block check. If the two block checks match, the data-
phone record is assumed to have been received correctly, and
an affirmative acknowledgment is returned when the receiving
party is ready for the next record. However, if the two block
checks do not match, a negative acknowledgment, which is a
request for the record to be retransmitted, is returned, and
the incorrectly received record is discarded. The System
assumes complete responsibility for managing acknowledgments
and retransmissions for the 339.

Whenever a dataphone record is received with a cor-
rect block check, the first data image is examined. If it is
zero, user tasks are given access to it via the system subrou-
tine B.FI. Otherwise, a special 20l-to-teleprinter task is
scheduled to type the record (interpreting it as a sequence of

ASCII codes) as soon as the teleprinter becomes available. 1In

-21-

this way, unsolicited messages from the remote party are typed
and routed clear of tasks which are using the dataphone.

Whenever the end-of-record character for either a
transmitted or received record is an enquiry (0058) or an end-
of-transmission (2048), both dataphone buffers (input and out-
put) are cleared, and the last record transmitted is considered
to have been affirmatively acknowledged. Note that transmitted
records of this form will be processed normally by the System
(except that immediate acknowledgment will be assumed), but
received records of this form will be discarded once the end-
of-record character is detected.

As an example of the use of B.FI and B.FO, consider
the task MIRROR which receives 64 dataphone images in an arbi-
trary number of records (not including the zero images required
to route records to tasks), transmits all of them in one data-
phone output record, and ignores the remainder of the last data-
phone input record which it examined. An algorithm for this

task is the following (L.T is described in Section 3.11):

MIRROR LAW 600 GET ALLOCATION MASK

JMS* =T.A ALLOCATE 201 INPUT & OUTPUT

LAW 17700 LOAD AC WITH -64

DAC COUNT INITIALIZE IMAGE COUNT
START JMS* =B.FI GET REDUNDANT IMAGE

JMP HELP DATA SET NOT CONNECTED
READ JMS* =B.FI GET INPUT IMAGE

JMP HELP DATA SET NOT CONNECTED

SPA SKIP IF NOT END OF RECORD

JMP START READ NEXT RECORD

JMS* =B.FO PUT IN OUTPUT BUFFER

JMP HELP DATA SET NOT CONNECTED

ISZ COUNT SKIP IF RECORD LONG ENOUGH

JMP READ READ NEXT IMAGE

JMS* =B.FI GET INPUT IMAGE

JMP HELP DATA SET NOT CONNECTED

SMA
JMP
JMS*
JMP
LAW
JMS*
JMS*
HELP LAW
JMS*
LAW
JMS*
LAC
JMS*
LAW
JMS*
JMS*
TEXT $DC
STEXT
$DC

-22=

SKIP IF END OF RECORD

*~3 READ ANOTHER IMAGE
=B.FO TERMINATE OUTPUT RECORD

HELP DATA SET NOT CONNECTED

600 GET ALLOCATION MASK

=T.R RELEASE 201 INPUT & OUTPUT

=T.F TERMINATE TASK

600 GET ALLOCATION MASK

=T.R RELEASE 201 INPUT & OUTPUT

10 GET ALLOCATION MASK

=T.A ALLOCATE TELEPRINTER

=TEXT GET ADDRESS OF TEXT LIST

=L.T TYPE TEXT LIST

10 GET ALLOCATION MASK

=T.R RELEASE TELEPRINTER

=T.F TERMINATE TASK

20

"DATA SET NOT CONNECTED. 'MIRROR' TERMINATED."
747577

3.4.2 Paper Tape I/0

The following system subroutines have been defined

for managing the

B.R* -

B.p* -

paper tape reader and punch buffers:

An image is fetched from the reader buffer and
returned in bits 10-17 of the AC. Bits 0-9 of
the AC are cleared. Only one end-of-record
character (zero) may be returned by two succes-
sive calls to B.R. A failure return is made
if the reader is out of tape and the reader
buffer is empty.

The image in bits 10-17 in the AC is sent to
the punch buffer. A failure return is made

if the punch is out of tape and the punch
buffer is full.

-23-

Paper tape formats are arbitrary, subject to the re-
striction that a zero image (i.e., a line of blank tape) which
immediately follows a nonzero image is interpreted as an end-of-
record character and all other zero images are ignored. However,
the format which is read and punched by the data transfers of
the idle-time task (Section 4.1) is recommended for compatibil-
ity reasons. 1In this format, the two high-order bits of each
8-bit tape image are interpreted as control information, and
the remaining 6 bits are interpreted as data. The two control

bits are interpreted as follows:

00 mode change

01l binary origin

10 binary data

11 alphanumeric data

There are 64 possible mode changes (designated by
the low-order 6 bits of a mode change tape image), only one of
which has been defined at the time of this writing, i.e., the
end-of-record character 0008. (An example of possible future
mode change assignments is a set of relocation modes for relo-
catable binary records.)

A binary block consists of three binary origin images
followed by a multiple of three binary data images. The block
represents a set of 18-bit words to be loaded starting at the
address indicated by the data bits of the three origin images.
For example, the binary block which indicates that location
235728 should contain 6213658 and that location 235738 should
contain 1762348 is the following:

102

135 origin 23572
172

262

213 data 621365

265

217

262 data 176234

234

~24-

A binary record is a concatenation of binary blocks, followed
by the end-of-record character (0008).

An alphanumeric record consists of an arbitrary
number of alphanumeric tape images (where the 6 data bits in
each image represent a 6-bit character code), followed by an
end-of-record character (0008).

As an example of the use of the paper tape I/0O system

subroutines, consider a task COPY which copies one record of

paper tape:

COoPY LAW 140 GET ALLOCATION MASK
JMS* =T.A ALLOCATE READER & PUNCH
JMS* =B.R GET IMAGE FROM READER
JMP RERR READER OUT OF TAPE
SNA SKIP IF NOT END OF RECORD
JMP *+4 END OF RECORD
JMS* =B.P PUNCH IMAGE
JMP PERR PUNCH OUT OF TAPE
JMP COPY+2 READ NEXT IMAGE
JMS * =B.P PUNCH END OF RECORD
JMP PERR PUNCH OUT OF TAPE
LAW 140 GET ALLOCATION MASK
JMS* =T.R RELEASE READER & PUNCH
JMS* =T.F TERMINATE TASK

RERR LAC =RERRT GET ADDRESS OF TEXT LIST
SKP TYPE DIAGNOSTIC

PERR LAC =PERRT GET ADDRESS OF TEXT LIST
DAC TEXT SAVE ADDRESS OF TEXT LIST
LAW 140 GET ALLOCATION MASK
JMS* =T.R RELEASE READER & PUNCH
LAW 10 GET ALLOCATION MASK
JMS* =T.A ALLOCATE TELEPRINTER
LAC TEXT GET ADDRESS OF TEXT LIST
JMS * =L.T TYPE DIAGNOSTIC

LAC =END GET ADDRESS OF TEXT LIST

JMS *
LAW
JMS *
JMS*
RERRT $DC
STEXT
PERRT $DC
$TEXT
END $DC
STEXT
$DC
STEXT
$DC

-25-

=L.T TYPE TEXT LIST

10 GET ALLOCATION MASK
=T.R RELEASE TELEPRINTER
=T.F TERMINATE TASK
"READER"

2

"PUNCH"

15

"OUT OF TAPE"

747577

"COPY TASK TERMINATED"
747577

3.4.3 Teletype I/0

The following system subroutines have been defined

for managing the keyboard and teleprinter buffers:

B.K -

As an

A 6-bit character is fetched from the keyboard
buffer and returned in bits 12-17 of the AC.
Bits 0-11 of the AC are cleared.

The three six-bit characters in bits 0-5, 6-11,
and 12-17 of the AC are sent to the teleprinter
buffer to be typed in respective order. (The
null character 778 will not be typed, even as

a non-printing character.)

example of the use of these subroutines, con-

sider the task ENCODE which accepts characters from the key-

board and types

the octal representation of the corresponding

6-bit codes. When a null character is typed, the task is

terminated. An

ENCODE LAW
JMS*
JMS*
SAD
JMP

algorithm for this task is the following:

30 GET ALLOCATION MASK

=T.A ALLOCATE KEYBOARD & TELEPRINTER
=B.K GET CHARACTER FROM KEYBOARD

=77 SKIP IF NOT NULL CHARACTER

END TERMINATE TASK

-26-

JMS* =C.B6 CONVERT TO 6-BIT OCTAL CODE
LACQ GET LOW-ORDER DIGITS
XOR =770000 REMOVE HIGH-ORDER ZERO
JMS* =B.T TYPE ENCODED CHARACTER
LAW 17475 GET CARRIAGE RETURN, LINE FEED CODE
JMS* =B.T TYPE CARRIAGE RETURN, LINE FEED
JMP ENCODE+2 PROCESS NEXT CHARACTER
END LAW 30 GET ALLOCATION MASK
JMS* =T.R RELEASE KEYBOARD & TELEPRINTER
JMS* =T.F TERMINATE TASK

3.5 Nonbuffered I/0

Three devices which might appear to require buffering
are not buffered: the clock, the A/D converter, and the D/A
converter. The clock, which is normally used in an interactive
system to check for the occurrence of certain events within
specified time intervals, is often programmed in a multiprogram-
ming system such that any task may use it at any time. This
is accomplished through the use of a buffer into which entries
(each consisting of a return pointer and a time interval) may
be inserted at arbitrary points. Since the buffer required is
considerably more complicated than those used by other devices,
the cost of programming the clock in this manner was found to
be excessive.

Since A/D converter data should be interpreted in
real time, these data are not buffered. Instead, whenever a
task calls the system subroutine to obtain data from the A/D
converter, the device is selected, the return from the subrou-
tine is scheduled as a task to be executed after the conversion
is complete, and execution of the calling task is terminated.

The D/A converter requires only two microseconds to
produce an output after it is selected, whereas the minimum
time between selections of a particular D/A channel is four
microseconds. Consequently, the System does not buffer D/A

converter data.

-27-

The following system subroutines have been defined
for nonbuffered I/0:

N.C - Execution of the calling task is terminated and
the return from N.C is scheduled as a task to
be executed at least the number of sixtieths
of a second later which is the two's complement
of the number given in the AC.

N.A - The channel of the A/D converter specified in
bits 12-17 of the AC is selected, and the con-
verted value, when obtained, is returned in
bits 0-11] of the AC. Bits 12-17 of the AC are
cleared. The returned value, if interpreted as

Mi+vys),

an ordinary two's complement number, is -2
where V is the applied input voltage (which
ranges from 0 to -10 volts).

N.D1- D/A converter channel #1 is selected. The out-
put of the channel is set to —5(l+2—l7A) volts,
where A is the content of the AC.

N.D2- D/A converter channel #2 is selected. The out-
put of the channel is set to —5(l+2—l7A) volts,
where A is the content of the AC.

N.D3- D/A converter channel #3 is selected. The out-
put of the channel is set to —5(l+2_l7A) volts,

where A is the content of the AC.

As an example of a use of N.C, consider the task
PROMPT which types "PLEASE TYPE NOW" once about every eight
seconds until the operator types something on the keyboard,
and types "THANK YOU" when the operator finishes typing a line.
An algorithm for this task is the following:

PROMPT LAW 30 GET ALLOCATION MASK
JMS* =T.A ALLOCATE KEYBOARD & TELEPRINTER
DZM DONE INDICATE NO KEYBOARD RESPONSE

LAC =POLITE GET ADDRESS OF KEYBOARD CHECKER

JMS*
LAC
JMS*
LAW
JMS*
LAC
SNA
JMP
JMS*
JMS*
XOR
DAC
SAD
JMP
JMS*
JMP
LAC
JMS*
LAW
JMS*
JMS*
$DC
STEXT
$DC
$DC
$DC
STEXT
S$DC

POLITE

TXT1

TXT2

=T.S
=TXT1
=L.T
-1000
=N.C
DONE

PROMPT+5
=T.F
=B.K
=777700
DONE
=777774
*+3
=B.T
POLITE
=TXT2
=L.T

30

-28-

SCHEDULE KEYBOARD CHECKER
GET ADDRESS OF TEXT LIST
TYPE "PLEASE TYPE NOW"

GET TIME PARAMETER

WAIT ABOUT 8 SECONDS

GET KEYBOARD RESPONSE SWITCH
SKIP IF RESPONSE OBTAINED
PROMPT OPERATOR AGAIN
TERMINATE EXECUTION

GET KEYBOARD CHARACTER
PRECEDE WITH NULL CHARACTERS
SET KEYBOARD RESPONSE SWITCH
SKIP IF NOT CARRIAGE RETURN
END OF INPUT LINE

ECHO CHARACTER ON TELEPRINTER
GET ANOTHER CHARACTER

GET ADDRESS OF TEXT LIST
TYPE "THANK YOU"

GET ALLOCATION MASK

RELEASE KEYBOARD AND TELEPRINTER
TERMINATE EXECUTION

"PLEASE TYPE NOW"

747577
5
747577

"THANK YOU"

747577

As an example of the use of N.A, consider the task

COMPAR which samples channels 0 and 1 of the A/D converter until

the inputs on the two channels are close enough to each other

that the same value is read from each channel.

When this condi-

tion is satisfied, the comment "ANALOG INPUTS MATCH" is typed
An algorithm for this task is the following:

on the teletype.

~29-

COMPAR CLA GET CHANNEL O PARAMETER
JMS* =N.A CONVERT CHANNEL 0 VALUE
DAC VALUE SAVE CHANNEL 0 VALUE
LAW 1 GET CHANNEL 1 PARAMETER
JMS* =N.A CONVERT CHANNEL 1 VALUE
CMA FORM 1 COMPLEMENT
TAD VALUE ADD CHANNEL 0 VALUE
CMA FORM DIFFERENCE IN VALUES
SZA SKIP IF VALUES EQUAL
JMP COMPAR OBTAIN NEW SAMPLES
LAW 10 GET ALLOCATION MASK
JMS* =T.A ALLOCATE TELEPRINTER
LAC FOUND GET ADDRESS OF TEXT LIST
JMS* =L.T TYPE "ANALOG INPUTS MATCH"
LAW 10 GET ALLOCATION MASK
JMS* =T.R RELEASE TELEPRINTER
JMS* =T.F TERMINATE EXECUTION

FOUND $DC 10

STEXT "ANALOG INPUTS MATCH"
$DC 747577

3.6 Push-Button Processing

The following system subroutines have been defined
for managing the push buttons which are associated with the

display control:

P.T - The task whose address is given in bits 3-17 of
the AC is declared to be the service task for
manual operation of the push buttons (i.e.,
this task is scheduled whenever the state of
the push buttons is altered by the operator).
If the AC contains zero when P.T is called, a
null service task (i.e., one which calls P.E
and terminates) is used.

P.E - Manual operation of the push buttons is enabled
(i.e., the state of the push buttons may be
changed by the operator).

-30-

P.D - Manual operation of the push buttons is dis-
abled (i.e., the state of the push buttons may
not be changed by the operator). A call to P.D
is effected whenever the operator changes the
state of the push buttons.

P.R - Push buttons 0-1ll are read into bits 6-17 of
the AC, and bits 0-5 of the AC are cleared.

P.S - Push buttons 0-11 are set according to bits
6-17 of the AC.

As an example of the use of these subroutines, consider
the task BUTTON which enables manual operation of the push but-
tons and sets the button numbered one greater (modulo 12) than
the number of the one pushed by the operator. The procedure is
terminated and all push buttons are cleared when a keyboard

character is struck. An algorithm for this task is the follow-

ing:

BUTTON LAW 22 GET ALLOCATION MASK
JMS* =T.A ALLOCATE KEYBOARD & PUSH BUTTONS
LAC =SERV GET ADDRESS OF SERVICE TASK
JMS* =P.T DECLARE SERVICE TASK
CLA GET INITIAL PUSH BUTTON STATE
DAC STATE SAVE FOR USE BY SERV
JMS* =P.S SET INITIAL PUSH BUTTON STATE
JMS* =P.E ENABLE MANUAL OPERATION
JMS* =B.K GET KEYBOARD CHARACTER
JMS* =P.D DISABLE MANUAL OPERATION
CLA GET FINAL PUSH BUTTON STATE
JMS* =P.S CLEAR PUSH BUTTONS
CLA GET NULL SERVICE PARAMETER
JMS* =p.T DECLARE NULL SERVICE TASK
LAW 22 GET ALLOCATION MASK
JMS* =T.R RELEASE KEYBOARD & PUSH BUTTONS
JMS* =T.F TERMINATE TASK

SERV JMS* =P.R READ PUSH BUTTONS

-31-

XOR STATE ISOLATE LAST BUTTON PUSHED
RCR FORM MASK FOR SETTING BUTTONS
SNA SKIP IF NOT BUTTON #l11

LAC =4000 SET BI'TTON #0 BIT

NAC STATE SAVE NEW PUSH BUTTON STATE
JMS* =D, S SET NEW PUSH BUTTON STATE

JMS * =p.F ENAGLE MANUAL OPERATION

JMS* =T, F TERMINATE TASK

3.7 Display Control Communication

The following system subroutines have been defined

for communicating with the display control:

D.E - Display interrupts are enabled (i.e., a light
pen flag interrupt or an internal stop inter-
rupt will cause the System to read the display
status information required for D.A, D.Y, D.X,
and D.O and to schedule the appropriate ser-
vice task).

D.D - Display interrupts are disabled (i.e., the
System will ignore light pen flag and internal
stop interrupts). A call to D.D is effected
whenever a display interrupt occurs.

D.P - The task whose address is given in bits 3-17
of the AC is declared to be the service task
for light pen flags. This task is scheduled
whenever the light pen sees an intensified
portion of the display on which the light pen
is enabled (see Section 3.10), providing that
display interrupts are enabled (via D.E). If
the AC contains zero when D.P is called, a
null service task (i.e., one which calls D.E
and terminates) is used.

D.A - The address of the display on the last display
interrupt is returned in bits 3-17 of the AC
with bits 0-2 clear.

-32-

D.Y - The y coordinate of the display (measured
relative to the center of the screen in scale
x1l) on the last display interrupt is returned
in the AC as a two's complement number.

D.X - The x coordinate of the display (measured
relative to the center of the screen in scale
x1l) on the last display interrupt is returned
in the AC as a two's complement number.

D.0O*- The address which is the operand of the push
jump instruction which was the number of entries
given in bits 12-17 of the AC above the last
entry in the display control's push-down list on
the last display interrupt is returned in bits
3-17 of the AC with bits 0-2 clear. (A more
meaningful interpretation of this subroutine
may be obtained from the examples in Section
3.10.) A failure return is made if the indicated

push jump instruction does not exist.

The external stop interrupt and the edge flag inter-
rupt are not used. The function of the external stop interrupt
may be performed via an unconditional internal stop interrupt
(via S.LU, which is described in Section 3.10). Since the
virtual display area established by the System is 75 inches by
75 inches, the edge flags, if used, would occur on the left
and lower edges of the screen, but not on the upper or right
edges. Because of this inconsistency, the edge flags are not

used.

3.8 Light Pen Tracking
A light pen tracking algorithm is supplied with the

System to enable user tasks to follow the motion of the light
pen. This algorithm has been empirically determined to track
the light pen at any attainable speed, and it is insensitive

to changes in direction because it does not involve prediction.

-33-

The tracking algorithm may be described with the aid

of the following diagram:

%m

ACO

A\l

AO‘)

w |- Am

[}

When the display for the tracking algorithm is begun,
strokes 1 and 2 are drawn. (Strokes 1l and 2 are actually coin-
cident.) The x coordinate of the first light pen hit on each
stroke is recorded. If both x coordinates are obtained, a new
x coordinate for the tracking cross is computed as their aver-
age. Strokes 3 and 4 are then drawn, and a new y coordinate
for the tracking cross is computed in similar manner if both

y coordinates are obtained.

-34-

If any one of the four coordinates required to com-
pute a new position of the tracking cross is not obtained, a
search pattern consisting of concentric squares 5 through 12
is drawn. When a light pen hit is detected on any one of these
squares, the search pattern is terminated, and the tracking
cross is placed at the coordinates of the hit. If square 12
is completed and no light pen hit is detected, the tracking
process 1is terminated.

Whenever the tracking cross is positioned via the
search pattern, rather than by averaging coordinates, the
tracking display is immediately repeated. The remainder of the
active display structure (Section 3.9) is not displayed until
the tracking cross can be positioned by averaging coordinates.
In this way, the tracking display is given priority over all
other displays whenever the light pen is being moved rapidly
and tracking is in process.

The following system subroutines have been defined

for controlling the tracking process:

X.I - The tracking cross is placed at the y coordinate
given in the AC and the x coordinate given in
the MQ, and the tracking process is begun. The
coordinates, which are given as two's complement
numbers, are interpreted modulo 2lo measured
in scale xl1 relative to the center of the screen.

X.R - The tracking process is resumed with the track-
ing cross at the coordinates where tracking was
last terminated (by X.T or by completion of
square 12).

X.T - The tracking process is terminated. (The track-
ing cross is removed from the screen.)

X.S*- A failure return is made if tracking is in
process.

X.Y - The y tracking coordinate is returned in the AC
as a two's complement number measured in scale x1

relative to the center of the screen. If tracking

-35-

is not in process, the y coordinate where track-
ing was last terminated is returned.

X.X - The x tracking coordinate is returned in the
AC as a two's complement number measured in
scale x1 relative to the center of the screen.
If tracking is not in process, the x coordinate

where tracking was last terminated is returned.

The tracking algorithm is independent of D.E and D.D.

3.9 Display Structure Topology

Each entity to be displayed is represented in the
display structure provided by the System as a position in the
hierarchy of the entities which constitute the picture. Each
position in the hierarchy is implemented as a display subrou-
tine which is called a level. A level which is being executed
by the display control at least once on every frame is called
an active level. One particular level, which is always active
and is an integral part of the system, represents the 75 inch
by 75 inch virtual display area of the display control and is
called the highest active level.

A display subroutine which is not itself a level and
which contains no calls to levels is called a leaf. All of
the drawing of visible portions of the picture is accomplished
by leaves. A leaf is subject to the restriction that the state
of the display (coordinates, light pen status, scale, intensity,
blink status, light pen sense indicator) must be the same when
the subroutine returns as when it is entered. Consequently,
because the display control's POP instruction does not restore
coordinates, the only data modes which are useful in leaves
are vector mode, short vector mode, and increment mode.

The set L of all levels and leaves (both active and
non-active) is partially ordered, i.e., there exists a relation

"i" defined on I such that

-36-

(1) VxelL < X
(2) Vx, yeL <y and y < x = > =y
(3) Vx, y, zeL Xx <y and y <z =>x <2

The semantic interpretation of the expression x <y is that
any modification of the entity represented by the level x (or
in the drawing produced by the leaf x, if x 1is a leaf) will
effect a corresponding modification in the entity represented
by the level y. When x <y , the level y is said to own the
level or leaf x. An attribute of a level y is a level or
leaf x such that x <y and there does not exist a level z
different from x and y such that x <z and z <y

As an example of this interpretation of the relation
"<", consider a triangle which is to be represented internally

as a set of three lines:

a

A display structure for this triangle may be represented by
the following diagram. (In the diagram, x <y 1is represented
by a line joining x and y such that y appears above x

in the diagram.) triangle

line a line b 1line c

Note from the diagram that the triangle owns each of its
sides (lines a, b, and c¢). If line b is now deleted, the

display structure assumes the following form:

triangle

. line c¢
line a

-37-

The triangle is obviously modified by this operation (in fact,

it is no longer a triangle). However, the fact that the tri-
angle has been modified does not imply that all of its attributes
have been modified. 1In this example, lines a and c remain un-
changed.

The set X of all active levels and the leaves which
they own is also partially ordered, since X <L and L is
partially ordered. Because the highest active level represents
the virtual display area of the display control, it owns every
element of X. Consequently, if the operator "+" is defined

by the conditions

(1) Vvx, yeX
(2) Ww¥x, yeX
and (3) vx, y, zeX X

yeX
Xx+y and y < x +y

A A +

z and y < z== X +y < 2z,

the pair (X,+) is a semilattice. The semantic interpretation
of the expression x+y is that x+y is a level which repre-
sents the most primitive entity which owns both of the entities
represented by the levels x and vy

As an example of the interpretation of the operator
"+", consider the following drawing of one exterior wall of a

house:

For purposes of illustration, assume that all three windows in
the picture are identical, each instance of each entity in the
drawing is represented by a separate level, and the drawing

shown is the only one being displayed. The display structure,

then, assumes the following form:

-38-

highest active level

wall of house

perimeter
of wall

window in
door

window drawing

Assume that a task which records two references to
with the light pen is being executed, and that the
tive entity which owns both items referenced is to
Clearly, the portion of the structure which should

consists of everything which x+y owns, where x

perimeter
of door

the picture
most primi-
be deleted.
be removed

and y are

the two levels which represent the entities referenced with

the light pen. For example, if the door perimeter

and a win-

dow in the wall of the house are referenced, the entire wall

of the house is deleted, but if the door perimeter

and the

window in the door are referenced, only the door is deleted.

A level is implemented as the data structure shown

by the following diagram (all numbers are octal):

-39-

—_—

[clear LPSI or no operation 76----
count parameters or no operation = | —-=-----
set parameters -=0=--

Head < enter vector mode 761121
y coordinate (no intensity bit) = | ===-—--
x coordinate and escape bit = | ====—-
jump instruction 762001

\'pointer to first node or tail 0====-

push jump instruction 76201~
Node pointer to attribute O=m=--

jump instruction 762001 RN

pointer to next node or tail 0-—---

(" conditional skip 76===- J
internal stop 761400
address of service task 0-----

Tail blink off or no operation | ====--
enter vector mode 761121
-y coordinate (no intensity bit) | -=-——--
-x coordinate and escape bit = = | --——--

_pop instruction 763000
The following system subroutines have been defined

for managing the display structure topology. (Examples of

their use are given in Section 3.10.)

S.TL*- A level is created and its address (i.e., the
address of the first location in its head) is
returned in bits 3-17 of the AC with bits 0-2
clear. A failure return is made if the level
cannot be created because of insufficient free
display storage.

S.TD*- The non-active level whose address is given in
bits 3-17 of the AC is destroyed. A failure
return is made if the level has attributes.

S.TI*~ The level or leaf whose address is given in
bits 3-17 of the MQ is inserted into (i.e.,
made an attribute of) the level whose address
is given in bits 3-17 of the AC. The created

node is inserted immediately after the head

S.TR*-

-40-

in the level data structure. A failure re-
turn is made if the required node cannot be
created because of insufficient free display
storage.

The attribute whose address is given in bits
3-17 of the MQ is removed from the level

whose address is given in bits 3-17 of the

AC. This subroutine does not return until

the display control has completed the current
frame. (Tasks other than the calling task are
executed during this delay.) A failure return
is made if the specified attribute is not

found in the specified level.

3.10 Level Modification

The following system subroutines have been defined

for modifying existing levels:

S.LH -

S.LY -

S.LX -

The address of the highest active level is
returned in bits 3-17 of the AC with bits 0-2
clear.

The y coordinate of the level whose address

is given in bits 3-17 of the AC is set to the
value given in the MQ. The given coordinate
is interpreted as a two's complement number in
the scale of the specified level, measured
relative to the y coordinate of each level of
which the specified level is an attribute.
This subroutine has no effect on the highest
active level, where the coordinates are at

the center of the screen.

The x coordinate of the level whose address is
given in bits 3-17 of the AC is set to the
value given in the MQ. The given coordinate

is interpreted as a two's complement number in

S.LP -

Bits

9

10-11

12

13

14

15-17
S.LBE-
S.LBD-

-41-

the scale of the specified level, measured
relative to the x coordinate of each level

of which the specified level is an attribute.
This subroutine has no effect on the highest
active level, where the coordinates are at the
center of the screen.

The scale, intensity, and light pen status are
set on the level whose address is given in bits
3-17 of the AC according to bits 9-17 of the MQ.
The content of the MQ is interpreted as follows:

Interpretation

set scale according to bits 10-11
n, where scale is x2"
set light pen status according to bit 13
light pen status (1 = enabled, 0 = disabled)
set intensity according to bits 15-17

intensity value

This subroutine has no effect on the highest
active level, where the scale is x8, the
intensity is 7, and the light pen is disabled.
The displays generated by calls (either direct
or indirect) to leaves from the level whose
address is given in bits 3-17 of the AC are
caused to blink with a 0.5-second period. Be-
cause the 339 POP instruction does not restore
the blink status, care must be taken to insure
that this blink is not simultaneously effec-
tive on any level of which the given level is
an owner. This subroutine has no effect on
the highest active level, where blink is dis-
abled.

Blinking of the level whose address is given
in bits 3-17 of the AC is disabled (i.e., the

effect of a call to S.LBE is removed).

Bit
12
13

14
15

-4~

S.LC - The scale and/or intensity is counted up or
down one unit on the level whose address 1is
given in bits 3-17 of the AC according to bits
12-15 of the MQ, which are interpreted as
follows:

Interpretation

Count scale according to bit 13

1l =

multiply scale by 2, 0 = divide scale by 2

Count intensity according to bit 15

1 =
0 =

S.LS -

S.LL -

increment intensity by unity,

decrement intensity by unity.

This subroutine has no effect on the highest
active level.

An unconditional scheduling of the task whose
address 1s given in bits 3-17 of the MQ is
effected whenever display interrupts are en-
abled (via D.E) and the tail of the level whose
address is given in bits 3-17 of the AC is
executed. This subroutine has no effect on

the highest active level.

The task whose address is given in bits 3-17 of
the MQ is scheduled whenever display interrupts
are enabled (via D.E), the tail of the level
whose address 1s given in bits 3-17 of the AC
is executed, and the coordinates of that level
are on the screen. This subroutine has no
effect on the highest active level.

The task whose address is given in bits 3-17

of the MQ is scheduled whenever display inter-
rupts are enabled (via D.E), the tail of the
level whose address is given in bits 3-17 of
the AC is executed, and the light pen sense
indicator has been set during execution of that
level. This subroutine has no effect on the

highest active level.

-43-

S.LN - The effect of S.LU, S.LS, or S.LL is removed
from the level whose address is given in bits
3-17 of the AC.

Whenever the scale, light pen status, intensity, blink
status, or coordinates are not set on a level, the quantities
which are not set on that level are the same as those on the
level of which it is an attribute.

Some user subroutines which call these system subrou-
tines, as well as those in Section 3.9, are given below. LVL
generates a level, inserts a specified attribute into it, sets
the x and y coordinates and display parameters on the generated
level, and inserts the generated level into a specified owner
level. BUTN calls on LVL, and then establishes a task to be
scheduled whenever the light pen sense indicator is set while
the display control is executing the generated level. BUTX
generates a text leaf from a specified text list, and then calls
on BUTN, using the generated text leaf as the attribute para-
meter. CHEW (which calls on ATTR to find the first attribute
of a level) destroys a given display structure, and salvages
all storage from the destroyed levels and text leaves. The
display structure on which CHEW operates must satisfy two con-
ditions:

(1) It must assume the form of a semilattice.

(2) The maximum element of the display structure must
not be owned by any level (other than itself, if it itself

is a level). (L.D and L.L are described in Section 3.11.)

*CALLING SEQUENCE:

* JMS LVL
* $DC -——— (LOC CONTAINING POINTER TO OWNER)

* $DC ———- (Y COORDINATE)

* $DC —_—— (X COORDINATE)

* $DC ———— (DISPLAY PARAMETER)

* —— (RETURN IF DISPLAY STORAGE EXCEEDED)

* -—-= (RETURN)

*AC CONTENT ON ENTRY:

-44-

* POINTER TO ATTRIBUTE
*AC CONTENT ON RETURN:
* POINTER TO CREATED LEVEL
LVL $DC 0
JMS* =T.L SET REENTRY LOCK
$DC 0
DAC LVL4 SAVE POINTER TO ATTRIBUTE
JMS* =S.TL CREATE A LEVEL
JMP LVL3 DISPLAY STORAGE EXCEEDED
DAC LVL5 SAVE POINTER TO LEVEL
LAC LVL4 GET POINTER TO ATTRIBUTE
LMQ SET UP PARAMETER
LAC LVL5 GET POINTER TO LEVEL
JMS* =S5.TI INSERT ATTRIBUTE
JMP LVL2 DISPLAY STORAGE EXCEEDED
LAC* LVL+2 GET FIRST PARAMETER
DAC LVL4 SAVE FIRST PARAMETER
1SZ LVL+2 ADVANCE TO NEXT PARAMETER
LAC* = LVL+2 GET Y COORDINATE
LMQ SET UP PARAMETER
LAC LVL5 GET POINTER TO LEVEL
JMS* =S.LY SET Y COORDINATE
ISZ LVL+2 ADVANCE TO NEXT PARAMETER
LAC* LVL+2 GET X COORDINATE
LMQ SET UP PARAMETER
LAC LVL5 GET POINTER TO LEVEL
JMS* =S.LX SET X COORDINATE
1SZ LVL+2 ADVANCE TO NEXT PARAMETER
LAC* LVL+2 GET DISPLAY PARAMETER
LMQ SET UP PARAMETER
LAC LVL5 GET POINTER TO LEVEL
JMS* =S.LP SET DISPLAY PARAMETER
LAC LVL5 GET POINTER TO LEVEL

LMQ

SET UP PARAMETER

LVL1

LVL2

LVL3

LAC*
JMS*
JMP
LAC
JMP
LAC
JMS
$DC
LMQ
LAC
JMS*
$DC
LAC
JMS*
$DC
JMP
LAC
JMS*
SDC
ISZ
ISZ
ISZ
ISZ
JMS*
$DC

LVL4
=S.TI
LVL1
LVL5
LVL3+2
LVL5
ATTR

0

LVL5
=S5.TR
0
LVL5
=5.TD
0
LVL3+3
LVL5
=S.TD
0
LVL+2
LVL+2
LVL+2
LVL+2
=T.U
LVL

*CALLING SEQUENCE:

*

*

*

*

JMS
$DC
$DC
SDC
S$DC
$DC

BUTN

*AC CONTENT ON ENTRY:

-45-

GET POINTER TO OWNER
INSERT CREATED LEVEL
DISPLAY STORAGE EXCEEDED
GET POINTER TO CREATED LEVEL
RETURN

GET POINTER TO LEVEL

GET FIRST ATTRIBUTE

LVL PROGRAMMING ERROR
SET UP PARAMETER

GET POINTER TO LEVEL
REMOVE ATTRIBUTE

LVL. PROGRAMMING ERROR
GET POINTER TO LEVEL
DESTROY LEVEL

LVL PROGRAMMING ERROR
RETURN

GET POINTER TO LEVEL
DESTROY LEVEL

LVL PROGRAMMING ERROR
INCREMENT RETURN POINTER
INCREMENT RETURN POINTER
INCREMENT RETURN POINTER
INCREMENT RETURN POINTER
UNLOCK LVL & RETURN

(LOC CONTAINING POINTER TO OWNER)

(Y COORDINATE)

(X COORDINATE)

(DISPLAY PARAMETER)

(SERVICE TASK ADDRESS)

(RETURN IF DISPLAY STORAGE EXCEEDED)
(RETURN IF SUCCESSFUL)

-46-

* POINTER TO STRUCTURE FOR BUTTON DISPLAY
*AC CONTENT ON RETURN :
* POINTER TO LIGHT BUTTON LEVEL
BUTN $DC 0
JMs* =T.L SET REENTRY LOCK
$DC 0
DAC BUTN3 SAVE POINTER TO STRUCTURE
LAW -4 GET LVL PARAMETER COUNT
DAC BUTN4 INITIALIZE COUNTER
LAC =BUTN1 GET ADDRESS OF FIRST LVL PARAMETER
DAC BUTN5 INITIALIZE POINTER
LAC* BUTN+2 GET BUTN PARAMETER
DAC* BUTN5 STORE AS LVL PARAMETER
1SZ BUTN+2 INCREMENT BUTN PARAMETER POINTER
ISZ BUTN5 INCREMENT LVL PARAMETER POINTER
1S% BUTN4 INCREMENT COUNTER & SKIP IF DONE
JMP *-5 COPY NEXT PARAMETER
LAC BUTN3 GET POINTER TO STRUCTURE
JMS LVL GENERATE INTERMEDIATE LEVEL
BUTN1 $DC 0 LOC CONTAINING POINTER TO OWNER
$DC 0 Y COORDINATE
$DC 0 X COORDINATE
$DC 0 DISPLAY PARAMETER
JMP BUTN2 DISPLAY STORAGE EXCEEDED
DAC BUTN3 SAVE POINTER TO LEVEL
LAC* BUTN+2 GET ADDRESS OF SERVICE TASK
LMQ SET UP PARAMETER
LAC BUTN3 GET POINTER TO LEVEL
JMS* =S.LL SENSITIZE LEVEL TO LPSI
LAC BUTN3 GET POINTER TO LEVEL
ISz BUTN+2 INCREMENT RETURN POINTER
BUTN?2 ISZ BUTN+2 INCREMENT RETURN POINTER
JMs* =T.U UNLOCK BUTN & RETURN

$DC BUTN

-477—-

*CALLING SEQUENCE:

* JMS BUTX
* $DC ———- (ADDRESS OF TEXT LIST)
* $DC ———— (LOC CONTAINING POINTER TO OWNER)
* $DC ———- (Y COORDINATE)
* $DC -—— (X COORDINATE)
* $DC ———- (DISPLAY PARAMETER)
* $DC ———- (SERVICE TASK ADDRESS)
* -——- (RETURN IF DISPLAY STORAGE EXCEEDED)
* ———- (RETURN IF SUCCESSFUL)
*AC CONTENT ON RETURN:
* | POINTER TO LIGHT BUTTON LEVEL
BUTX $DC 0
JMS* =T.L SET REENTRY LOCK
$DC 0
LAC* BUTX+2 GET ADDRESS OF TEXT LIST
JMS* =L.D CREATE TEXT LEAF
JMP BUTX4 DISPLAY STORAGE EXCEEDED
DAC BUTX7 SAVE POINTER TEXT LEAF
LAW -6 LOAD AC WITH -6
DAC BUTX5 SET PARAMETER COUNTER
LAC =BUTX2 GET ADDRESS OF BUTN CALL
DAC BUTX6 SET PARAMETER POINTER
BUTX1 1SZ BUTX+2 ADVANCE TO NEXT PARAMETER
1SZ BUTX6 INCREMENT PARAMETER POINTER
I1S2Z BUTX5 SKIP IF NOT PARAMETER
SKP MOVE PARAMETER
JMP BUTX2-1 CALL BUTN
LAC* BUTX+2 GET PARAMETER
DAC* BUTX6 STORE PARAMETER
JMP BUTX1 MOVE NEXT PARAMETER
LAC BUTX7 GET POINTER TO TEXT LEAF
BUTX2 JMS BUTN CREATE LIGHT BUTTON
$DC 0 LOC CONTAINING POINTER TO OWNER

$DC 0 Y COORDINATE

$DC 0 X COORDINATE
$DC 0 DISPLAY PARAMETEx
$DC 0 SERVICE TASK ADDRESS
JMP BUTX3+2 DISPLAY STORAGE EXCEEDED
1Sz BUTX+2 INDICATE SUCCESS

BUTX3 JMS* =T.U UNLOCK BUTX & RETURN
$DC BUTX
LAC BUTX7 GET POINTER TO TEXT LEAF
JMS* =S.LL DESTROY TEXT LEAF
JMP BUTX3 RETURN

BUTX4 LAC BUTX+2 GET RETURN POINTER
TAD =6 ADVANCE PAST PARAMETER LIST
DAC BUTX+2 SET FAILURE RETURN POINTER
JMP BUTX3 RETURN

*CALLING SEQUENCE:

* JMS CHEW

* —— (RETURN)

*AC CONTENT ON ENTRY:

* POINTER TO MAXIMUM ELEMENT IN THE STRUCTURE

*T0 BE CHEWED

-48-

*THE MAXIMUM ELEMENT SPECIFIED MUST OWN ALL LEVELS
*WHICH OWN ELEMENTS OF THE STRUCTURE.

CHEW $DC 0
JMS* =T.L
$DC 0
DAC CHEW6
LAC =CHEWQ
JMS* =Q.C

CHEW1 LAC* CHEW6
SNA
JIMP CHEWS5
SAD =762010
JMP CHEW4
LAC CHEW6
AND =70000

SAD =10000

SET REENTRY LOCK

SAVE POINTER TO STRUCTURE
GET ADDRESS OF WORD QUEUE
CLEAR WORD QUEUE

GET FIRST WORD FROM STRUCTURE
SKIP IF ITEM NOT ALREADY DELETED

GET NEXT ITEM FROM QUEUE
SKIP IF NOT TEXT LEAF
DESTROY TEXT LEAF

GET POINTER TO STRUCTURE
GET BREAK FIELD BITS
SKIP IF NOT LEVEL

-49-

SKP DESTROY LEVEL
JMP CHEW5 GET NEXT ITEM FROM QUEUE
CHEW2 LAC CHEW6 GET POINTER TO LEVEL
JMS ATTR GET FIRST ATTRIBUTE FROM LEVEL
JMP CHEW3 LEVEL IS EMPTY
DAC CHEW7 SAVE POINTER TO ATTRIBUTE
LMQ SET UP PARAMETER
LAC CHEW6 GET POINTER TO LEVEL
JMS* =S.TR REMOVE ATTRIBUTE
$DC 0 CHEW PROGRAMMING ERROR
LAC CHEW7 GET POINTER TO ATTRIBUTE
LMQ SET UP PARAMETER
LAC =CHEWQ GET ADDRESS OF WORD QUEUE
JMS* =Q.A ADD ATTRIBUTE TO QUEUE
$DC 0 WORD QUEUE NOT LARGE ENOUGH
JMP CHEW2 PUT NEXT ATTRIBUTE IN QUEUE
CHEW3 LAC CHEW6 GET POINTER TO LEVEL
JMS* =S.TD DESTROY LEVEL
$DC 0 CHEW PROGRAMMING ERROR
JMP CHEW5 CHEW UP NEXT ITEM
CHEW4 LAC CHEW6 GET POINTER TO TEXT LEAF
JMS* =L.L DESTROY TEXT LEAF
CHEW5 LAC =CHEW(C GET ADDRESS OF WORD QUEUE
JMS* =Q.F GET NEXT ITEM FROM QUEUE
JMP *+3 QUEUE EMPTY
DAC CHEWG6 SAVE POINTER TO ITEM
JMP CHEW1 CHEW UP ITEM FROM QUEUE
JMS* =T.U UNLOCK CHEW & RETURN
$DC CHEW
CHEWQ S$DC *+200
$DC 200
*CALLING SEQUENCE:
* JMS ATTR
* —-———- (RETURN IF NO MORE ATTRIBUTES)

* _—— (RETURN IF ATTRIBUTE FOUND)

-50-

*AC CONTENTS ON ENTRY:

* ADDRESS OF LEVEL

ATTR $DC 0
TAD =7 FORM POINTER TO POINTER TO NODE
DAC ATTR2 SAVE POINTER TO POINTER TO NODE
LAC* ATTR2 GET POINTER TO NODE (OR TAIL)
DAC ATTR2 SAVE POINTER TO NODE (OR TAIL)
LAC* ATTR2 GET FIRST WORD FROM NODE (OR TAIL)
AND =777770 TRUNCATE BREAK FIELD
SAD =762010 SKIP IF NOT NODE
SKP NODE FOUND
JMP* ATTR NO MORE ATTRIBUTES
ISZ ATTR2 FORM POINTER TO SECOND LOC IN NODE
LAC¥* ATTR2 GET POINTER TO ATTRIBUTE
ISz ATTR INDICATE SUCCESS
JMP* ATTR RETURN

As an example of how these subroutines might be used,
consider a task called SELGI which allows the operator to draw
unrelated straight lines on the display with the light pen.
More specifically, when the task is begun, it allocates the

display and displays the following:

.
SELGI A title

(insensitive
to light pen)

/////threshold

(imaginary
‘r///fZ////// line)

DRAW ERASE ESCAPE

‘“2__\\ f 7

light buttons

-51-

The elements of this display are arranged in the following

structure:

highest active level

SELGI display level
line draw erase escape title
level level level level leaf

draw leaf erase leaf escape leaf

The SELGI display level is set to scale x2, each light button
level is sensitized to the light pen sense indicator, and the
line level (into which all lines drawn by the operator will be
inserted) has coordinates at the center of the screen.

When the light pen is pointed at the DRAW light
button, the task DRAW is scheduled. The task DRAW then starts
tracking on the DRAW light button, and waits (through the use
of T.P) until the operator loses tracking. Then, if the Y
tracking coordinate is above the threshold line, a line of
length one point (which appears as a point on the display) is
inserted into the line level such that it appears at the coor-
dinates where tracking was lost. Otherwise, no line is gener-
ated. (The DRAW light button blinks while tracking is in
process for this operation.) Up to 64 lines may be created
in this manner.

If the light pen is now pointed at any of the unit-
length lines (points) on the screen, tracking is started, and
one end of the line is. affixed to the tracking cross. The line

-52~

then may be stretched by moving the affixed end point to some
other position on the screen. If the light pen is now pointed
at any line which is longer than one point, tracking is started,
and the end point of the line which is closer to the tracking
cross is affixed to the tracking cross and may be moved to any
position on the screen.

If the light pen is pointed at the ERASE light button,
this light button starts blinking. If, while the ERASE light
button is blinking, the light pen is pointed at some line on
the screen, the line is removed from the line level, the stor-
age which it occupied is salvaged, and the blinking of the
ERASE light button is stopped.

If the light pen is pointed at the ESCAPE light but-
ton, the entire display structure created by SELGI is destroyed
via the subroutine CHEW. The task SELGI then releases the
display and terminates.

Lines are represented internally in this program by
leaves which have the following format:

VEC ENTER VECTOR MODE

———— Y DISPLACEMENT (NONINTENSIFIED)
——— X DISPLACEMENT (NO ESCAPE)

——— Y DISPLACEMENT (INTENSIFIED)
——— X DISPLACEMENT (NO ESCAPE)

——— Y DISPLACEMENT (NONINTENSIFIED)
—-——— X DISPLACEMENT (ESCAPE)

POP END OF LEAF

Each leaf actually represents a triangle with two nonintensified
sides. This scheme permits the end points of the line to occur

anywhere on the screen:

/
first vector)//
2
Ve
/

/

(0,0) “~—

ST
third vector T

second vector

-53-

SELGI LAW 1 GET DISPLAY ALLOCATION MASK
JMS* =T.A ALLOCATE DISPLAY
LAC =LINES GET ADDRESS OF LINE STORAGE AREA
DAC DIS SET STORAGE POINTER
LAW -1.000 LOAD AC WITH -512
DAC FRM SET STORAGE COUNTER
DZM* DIS CLEAR STORAGE LOCATION
I1SZ DIS INCREMENT STORAGE POINTER
IS7Z FRM SKIP IF STORAGE AREA CLEARED
JMF *-3 CLEAR NEXT STORAGE LOCATION
JMS* =S.LH GET ADDRESS OF HIGHEST ACTIVE LEVEL
DAC HAL SAVE ADDRESS OF HIGHEST ACTIVE LEVEL
LAC =TXT GET ADDRESS OF TITLE TEXT LIST
JMS* =L.D CREATE TEXT LEAF
JMP END DISPLAY STORAGE EXCEEDED
DAC DIS SAVE POINTER TO TITLE LEAF
JMS LVL GENERATE SELGI DISPLAY LEVEL
$DC HAL POINTER TO HIGHEST ACTIVE LEVEL
$DC 360 Y COORDINATE
$DC -34 X COORDINATE
$DC 500 SCALE X2
JMP FAIL DISPLAY STORAGE EXCEEDED
DAC FRM SAVE POINTER TO SELGI DISPLAY LEVEL
JMS BUTX GENERATE DRAW LIGHT BUTTON
$DC TXT1 DRAW TEXT LIST
$DC FRM POINTER TO SELGI DISPLAY LEVEL
$DC -750 Y COORDINATE
$DC -344 X COORDINATE
$DC 0 NULL DISPLAY PARAMETER
$DC DRAW DRAW SERVICE TASK
JMP END DISPLAY STORAGE EXCEEDED
JMS BUTX GENERATE ERASE LIGHT BUTTON
$DC TXT2 - ERASE TEXT LIST
$DC FRM POINTER TO SELGI DISPLAY LEVEL

$DC -750 Y COORDINATE

$DC
$DC
$DC
JMP
JMS
$DC
$DC
$DC
$DC
S$DC
$DC
JMP
JMS*
JMP
DAC
LMQ
LAC
JMS*
JMP
LAW
LMQ
LAC
JMS*
LAW
LMQ
LAC
JMS *
LAC
LMQ
LAC
JMS*
LAC
JMS*
JMS *
DZM

10

0
ERASE
END
BUTX
TXT3
FRM
~750
354

0
ESCAPE
END
=5.TL
END
DIS

FRM
=S.TI
FAIL
60

DIS
=S.LX
=MCVE
=D.P
=D.E
ESCAPE+1

X COORDINATE

NULL DISPLAY PARAMETER

ERASE SERVICE TASK

DISPLAY STORAGE EXCEEDED
GENERATE ESCAPE LIGHT BUTTON
ESCAPE TEXT LIST

POINTER TO SELGI DISPLAY LEVEL
Y COORDINATE

X COORDINATE

NULL DISPLAY PARAMETER
ESCAPE SERVICE TASK

DISPLAY STORAGE EXCEEDED
CREATE LINE LEVEL

DISPLAY STORAGE EXCEEDED
SAVE POINTER TO LINE LEVEL
SET UP PARAMETER

GET POINTER TO SELGI DISPLAY LEVEL

INSERT LINE LEVEL
DISPLAY STORAGE EXCEEDED

GET LIGHT PEN ON PARAMETER

SET UP PARAMETER

GET POINTER TO LINE LEVEL
ENABLE LIGHT PEN ON LINE LEVEL
GET Y COORDINATE

SET UP PARAMETER

GET POINTER TO LINE LEVEL

SET Y COORDINATE OF LINE LEVEL
GET X COORDINATE

SET UP PARAMETER

GET POINTER TO LINE LEVEL

SET X COORDINATE OF LINE LEVEL
GET ADDRESS OF LINE MOVING TASK
SET LIGHT PEN FLAG SERVICE
ENABLE DISPLAY INTERRUPTS

CLEAR ESCAPE SWITCH

FAIL

END

DRAW

LAC
SZA
JMP
SKP
JMP
JMS*
LAC
JMS
LAC
JMS
CLA
JMS*
LAW
JMS*
JMA*
LAW
LMQ
LAW
JMS*
CLA
JMS*
$DC
JMS*
JMS*
JMS*
JMS*
TAD
SPA
JMP
LAC
DAC
LAW
DAC
LAC¥*
SNA

ESCAPE+1

END

*-4

DIS
CHEW
HAL
CHEW

=S.LBE
=X.5

=XOY
=700

DRAW1

=LINES
FRM

-100
CNT
FRM

-55-

GET ESCAPE SWITCH

SKIP IF ESCAPE NOT PENDING
TERMINATE SELGI

PREPARE TO SCHEDULE NEXT LOCATION
CHECK ESCAPE SWITCH

SCHEDULE PREVIOUS LOCATION

GET POINTER TO NONACTIVE STRUCTURE
DESTROY NONACTIVE STRUCTURE

GET POINTER TO HIGHEST ACTIVE LEVEL
DESTROY ACTIVE STRUCTURE

GET NULL LIGHT PEN FLAG SERVICE
SET NULL LIGHT PEN SERVICE

GET DISPLAY ALLOCATION MASK
RELEASE DISPLAY

TERMINATE

GET INITIAL X TRACKING COORDINATE
SET UP PARAMETER

GET INITIAL Y TRACKING COORDINATE
INITIALIZE TRACKING

PREPARE TO READ OWNER 0 LEVELS BACK
READ ADDRESS OF DRAW LEVEL
PROGRAMMING ERROR IF D.O FAILS
ENABLE BLINK ON DRAW LIGHT BUTTON
SKIP IF TRACKING HAS BEEN LOST
CHECK TRACKING AGAIN

READ Y TRACKING COORDINATE

FORM THRESHOLD CHECK

SKIP IF LINE IS TO BE CREATED
IGNORE ATTEMPT TO CREATE LINE

GET POINTER TO LINE STORAGE

SET STORAGE POINTER

GET MAXIMUM LINE COUNT

SET LINE COUNTER

GET FIRST WORD OF LINE BLOCK

SKIP IF LINE BLOCK IN USE

-56-

JMP *+7 LINE BLOCK IS AVAILABLE
LAC FRM GET STORAGE POINTER
TAD =10 FORM ADDRESS OF NEXT LINE BLOCK
DAC FRM SET STORAGE POINTER TO NEXT BLOCK
ISZ CNT SKIP IF NO MORE LINE STORAGE
JMP *-7 CHECK AVAILABILITY OF LINE BLOCK
JMP DRAW1 IGNORE ATTEMPT TO CREATE LINE
LAW 1121 GET VEC INSTRUCTION
DAC* FRM STORE IN FIRST LOCATION OF LINE BLOCK
LAC FRM GET POINTER TO LINE BLOCK
TAD = FORM POINTER TO LAST WORD IN BLOCK
DAC CNT SAVE POINTER TO LAST WORD IN BLOCK
LAW 3000 GET POP INSTRUCTION
DAC¥* CNT STORE IN LAST WORD IN BLOCK
LAC FRM GET POINTER TO LINE BLOCK
JMS FIXBGN SET 1ST END POINT TO TRACKING COORD
LAC FRM GET POINTER TO LINE BLOCK
JMS FIXEND SET 2ND END POINT TO TRACKING COORD
LAC FRM GET POINTER TO LINE BLOCK
LMQ SET UP PARAMETER
LAC DIS GET POINTER TO LINE LEVEL
JMS* =S5.TI INSERT LINE BLOCK
NOP DISPLAY STORAGE EXCEEDED

DRAW1 CLA PREPARE TO READ OWNER 0 LEVELS BACK
JMS* =D.0O READ ADDRESS OF DRAW LEVEL
$DC 0 PROGRAMMING ERROR IF D.O FAILS
JMS * =S.LBD STOP BLINK OF DRAW LIGHT BUTTON
JMS* =D.E ENABLE DISPLAY INTERRUPTS
JMS* =T.F TERMINATE

MOVE JMS* =D.Y READ Y DISPLAY COORDINATE
DAC MOVEY SAVE Y DISPLAY COORDINATE
JMS* =D.X READ X DISPLAY COORDINATE
LMQ SET UP PARAMETER
LAC MOVEY GET Y DISPLAY COORDINATE

JMS* =X.I INITIALIZE TRACKING

-57-

CLA PREPARE TO READ OWNER 0 LEVELS BACK
JMS* =D.0 READ ADDRESS OF LINE LEAF
$DC 0 PROGRAMMING ERROR IF D.O FAILS
DAC MOVE1 SAVE POINTER TO LINE LEAF
DAC MOVE2 SAVE COPY OF POINTER TO LINE LEAF
ISZ MOVE2 FORM POINTER TO FIRST Y DISPLACEMENT
TAD =5 FORM POINTER TO THIRD Y DISPLACEMENT
DAC MOVE3 SAVE POINTER TO THIRD Y DISPLACEMENT
LAC* MOVE2 GET FIRST Y DISPLACEMENT
XOR =2000 INVERT SIGN BIT
JMS* =C.CB CONVERT TO TWO'S COMPLEMENT
LLSS 1 MULTIPLY BY 2
TAD MOVEY ADD Y DISPLAY COORDINATE
GSM FORM ABSOLUTE VALUE
DAC MOVE4 SAVE FOR LATER COMPARISON
LAC* MOVE3 GET THIRD Y DISPLACEMENT
JMS* =C.CB CONVERT TC TWO'S COMPLEMENT
LLSS 1 MULTIPLY BY 2
TAD MOVEY ADD Y DISPLAY COORDINATE
GSM FORM ABSOLUTE VALUE
CMA FORM NEGATIVE OF ABSOLUTE VALUE
TAD MOVE4 ADD DISPLACEMENT FROM OTHER END
SMA SKIP IF CLOSER TO FIRST Y DISPLACEMENT
JMP *+3 CLOSER TO SECOND Y DISPLACEMENT
JMS WATCH ENTER UPDATING TASK
JMS FIXBGN PARAMETER FOR UPDATING TASK
JMS WATCH ENTER UPDATING TASK
JMS FIXEND PARAMETER FOR UPDATING TASK
WATCH $DC 0
LAC MOVE1 GET POINTER TO LINE LEAF
XCT* WATCH UPDATE AFFIXED END POINT
JMS * =X.5 SKIP IF TRACKING NOT IN PROCESS
JMP *+6 SCHEDULE NEXT UPDATING
LAW -40 LOAD AC WITH -32

JMS* =N.C WAIT ABOUT HALF A SECOND

ERASE

DELETE

ESCAPE

FIXBGN

JMS*
JMS*
JMP
JMS*
LAC
JMS*
CLA
JMS*
$DC
DAC
JMS*
JMS*
JMS*
LAC
JMS*
CLA
JMS*
$DC
DAC
LMQ
LAC
JMS*
$DC
DZM*
LAC
JMS*
LAW
JMS*
JMS*
JMS*
JMS
$DC
JMS*
$DC
JMS

=D.E
=T.F
WATCH+1
=T.P
=DELETE
=D.P

=D.O
0

ERS
=5.LBE
=D.E
=T.F
ERS
=S.LBD

FRM

DIS

FRM
=MOVE

-58~

ENABLE DISPLAY INTERRUPTS
TERMINATE

UPDATE END POINT

SCHEDULE PREVIOUS LOCATION

GET ADDRESS OF LINE DELETE TASK
SET LIGHT PEN FLAG SERVICE
PREPARE TO READ OWNER 0 LEVELS BACK
GET POINTER TO ERASE LEVEL
PROGRAMMING ERROR IF D.O FAILS
SAVE POINTER TO ERASE LEVEL
START BLINKING ERASE LIGHT BUTTON
ENABLE DISPLAY INTERRUPTS
TERMINATE

GET POINTER TO ERASE LEVEL

STOP BLINKING ERASE LIGHT BUTTON
PREPARE TO READ OWNER (0 LEVELS BACK
GET POINTER TO LINE LEAF
PROGRAMMING ERROR IF D.O FAILS
SAVE POINTER TO LINE LEAF

SET UP PARAMETER

GET POINTER TO LINE LEVEL

REMOVE LINE LEAF

PROGRAMMING ERROR IF S.TR FAILS
DESTROY LINE LEAF

GET ADDRESS OF LINE MOVING TASK
SET LIGHT PEN SERVICE

LOAD AC WITH -32

WAIT ABOUT HALF A SECOND

ENABLE DISPLAY INTERRUPTS
TERMINATE

SET ESCAPE SWITCH

ESCAPE SWITCH

TERMINATE

SET UP POINTERS FOR FIXING LEAF

-590-

LAC FIXY GET Y TRACKING COORDINATE
DAC* FIX1 SET FIRST Y DISPLACEMENT
LAC FIXX GET X TRACKING COORDINATE
DAC¥* FIX2 SET FIRST X DISPLACEMENT

JMS FIXFIX CORRECT INTENSIFIED VECTOR
JMP¥* FIXBGN RETURN

FIXEND $DC 0
JMS FIXRD SET UP POINTERS FOR FIXING LEAF
LAC FIXY GET Y TRACKING COORDINATE
XOR =2000 INVERT SIGN BIT
DAC* FIX5 SET THIRD Y DISPLACEMENT
LAC FIXX GET X TRACKING COORDINATE
XOR =6000 INVERT SIGN BIT, SET ESCAPE BIT
DAC* FIX6 SET THIRD X DISPLACEMENT
JMS FIXFIX CORRECT INTENSIFIED VECTOR
JMP* FIXEND RETURN
FIXRD $DC 0
TAD =1 FORM POINTER TO FIRST Y DISPLACEMENT
DAC FIX1 SAVE
TAD =1 FORM POINTER TO FIRST X DISPLACEMENT
DAC FIX2 SAVE
TAD =1 FORM POINTER TO SECOND Y DISPLACEMENT
DAC FIX3 SAVE
TAD =1 FORM POINTER TO SECOND X DISPLACEMENT
DAC FIX4 SAVE
TAD =1 FORM POINTER TO THIRD Y DISPLACEMENT
DAC FIX5 SAVE
TAD =1 FORM POINTER TO THIRD X DISPLACEMENT
DAC FIX6 SAVE
JMS* =X.Y READ Y TRACKING COORDINATE
LRSS 1 DIVIDE BY 2
JMS* =C.BC CONVERT TO DISPLAY COORDINATE
DAC FIXY SAVE
JMS* =X.X READ X TRACKING COORDINATE

LRSS 1 DIVIDE BY 2

-60-—-

JMS* =C.BC CONVERT TO DISPLAY COORDINATE
DAC FIXX SAVE
JMP* FIXRD RETURN
FIXFIX $DC 0
LAC* FIX1 GET FIRST Y DISPLACEMENT
JMS* =C.CB CONVERT TO TWOS COMPLEMENT
DAC FIXY SAVE
LAC* FIX5 GET THIRD Y DISPLACEMENT
JMS* =C.CB CONVERT TO TWOS COMPLEMENT
TAD FIXY ADD FIRST Y DISPLACEMENT
JMS* =C.BC CONVERT TO DISPLAY COORDINATE
SZA SKIP IF Y DISPLACEMENTS WERE EQUAL
JMP *+7 CONVERTED VALUE IS NONZERO
LAC* FIX5 GET THIRD Y DISPLACEMENT
JMS * =C.CB CONVERT TO TWOS COMPLEMENT
TAD =1 MAKE DIFFERENT FROM 1ST Y DISPLACEMENT
JMS* =C.BC CONVERT TO DISPLAY COORDINATE
DAC* FIX5 STORE MODIFIED THIRD Y DISPLACEMENT
LAW 1 GET DISPLACEMENT OF 1
XOR =6000 SET ESCAPE BIT, INVERT SIGN BIT
DAC* FIX3 STORE SECOND Y DISPLACEMENT
LAC* FIX2 GET FIRST X DISPLACEMENT
JMS* =C.CB CONVERT TO TWOS COMPLEMENT
DAC FIXX SAVE
LAC* FIX6 GET THIRD X DISPLACEMENT
JMS* =C.CB CONVERT TO TWOS COMPLEMENT
TAD FIXX ADD FIRST X DISPLACEMENT
JMS* =C.BC CONVERT TO DISPLAY COORDINATE
XOR =2000 INVERT SIGN BIT
DAC* FIX4 SET SECOND X DISPLACEMENT
JMP* FIXFIX RETURN
TXT $DC 2
STEXT "SELGI"
TXT1 $DC 2

STEXT "DRAW"

-61-

TXT2 $DC 2

$TEXT "ERASE"
TXT3 $DC 2

STEXT "ESCAPE"
LINES $DS 1000

SEND

3.11 Text List Manipulation

» A structure which may be used to represent efficiently
strings of text in core is called a "text list." A text list
consists of a word which contains a number m which represents
the length of the list, followed by m words, each of which
contains three 6-bit characters. As an example, a text list

which represents the string
A SIMPLE EXAMPLE
is the following (in octal form):

000006
127634
222631
251676
164112
263125
167777

This text list may easily be represented in assembly language

via the TEXT pseudo-op:

LIST $DC 6
STEXT "A SIMPLE EXAMPLE"

The address of the text list is the address of its first word.
In this example, LIST is a symbol whose value is the address
of the text list.
A "text leaf" is a representation of a text list as
a display leaf. The leaf is composed of a series of push jumps

to various character generation subroutines within the System.

-62-

A carriage return, however, is represented explicitly in the
text leaf by three words which generate a vector which restores
the X coordinate to its value just before the display control
enters the text leaf. An additional vector is included at the
end of the text leaf to restore both the X and Y coordinates.
The high-order six bits of the second word of each push jump
contain the 6-bit code for the character which the push jump
represents. Each character is drawn in increment mode and is

7 points high by 5 points wide. The ﬁrailing space, which is
produced by each character generation subroutine, is 3 points

wide.
As an example of a text leaf, consider the following

text list:

LEAF $DC 10
$TEXT "EXAMPLE OF"
$DC 747577
$TEXT "2 LINES"

The text leaf which would be produced from this text list is

the following:

762010
16----
762010
41----
762010
12--=-
762010
26---~-
762010
31----
762010
25~mm=
762010
16----
762010
76-=--
762010
30----
762010
17----
761121
400000
006120

-63-

762010
75-=—-
762010
02=wn-
762010
76==--
762010
25=mmm
762010
22-—--
762010
27 ==~
762010
16-——-
762010
34-—m-
761121
400020
006070
763000

The following system subroutines have been defined

for manipulating text lists and text leaves:

L.T -

L.D*-

The text list whose address is given in bits
3-17 of the AC is typed on the teletype.

A text leaf is generated from the text list
whose address is given in bits 3-17 of the AC.
The address of the generated text leaf is re-
turned in bits 3-17 of the AC. A failure re-
turn is made if the text leaf cannot be gener-
ated because of insufficient free display
storage.

The text leaf whose address is given in bits
3-17 of the AC is destroyed, and the storage
which it occupied is salvaged by the System.

4., IDLE-TIME TASK

The idle-time task, which is executed whenever the
System is in system state (Section 2.3), interprets various
keyboard commands which provide some functions which are useful
for testing and modifying user tasks. These commands are des-
cribed in Sections 4.1 through 4.5. Each command is given by
typing only the underlined characters; the System will type all

other characters shown.

4.1 Copy Functions.

The command

TELETYPE TELETYPE
FROM PAPER TAPE TO PAPER TAPE
CORE CORE
\ DISPLAY

allows the operator to transfer data from teletype, paper tape,
or core to teletype, paper tape, core, or the display. Many
of these copy functions normally are specified by other names.
For example, a copy from paper tape to core is called loading,
a copy from core to teletype or from core to display is called
a dump, a copy from teletype to core is called altering, etc.
When a transfer from teletype to any device other
than core is specified, everything typed on the teletype up to
the next character which maps into a 6-bit null character (Sec-
tion 3.3) is transferred to the device specified. After a null
character is typed, the idle-time task is ready for a new
command. When copying from teletype to core, the following

sequence of events occurs:

(1) The operator types a 5-digit octal address on the.
keyboard. If one character which he types is not an octal
digit, it is interpreted as the first character of a new com-

mand, and the copy from teletype to core is terminated.

-64-

-65-

(2) The idle-time task types the content of the loca-
tion specified on the current line of text.

(3) The operator types a 6-digit octal content to
replace the content of the location specified on the current
line of text. 1If he types a carriage return in place of one
of the octal digits, the content of the location is left un-
changed. If he types a character which is neither an octal
digit nor a carriage return, the copy task proceeds with Step 1.

(4) The address of the location which immediately
follows the one which was just examined (and perhaps modified)

is typed. The copy task then proceeds with Step 2.

As an example of a copy from teletype to core, con-
sider setting the content of location 235718 to 5475218 and
the content of location 235748 to 6072138. This may be accom-
plished by either of the following procedures:

FROM TELETYPE TO CORE

23571 172356 547521

23572 543125 (carriage return)
23573 601241 (carriage return)
23574 760001 607213

23575 127123 (rubout)

FROM ---- (new command)

FROM TELETYPE TO CORE

23571 172356 547521
23572 543125 (rubout)
23574 760001 607213

23575 127123 (rubout)

FROM ---- (new command)

When a copy from paper tape to any device other than
core is specified, the next alphanumeric record (Section 3.4.2)
is read, and all binary records which are encountered before it

-66—

are ignored. (However, if the alphanumeric record is too long
for the display, and a copy from paper tape to display is speci-
fied, only part of the alphanumeric record is read. The next
part of the record may be displayed by another copy from paper
tape to display.) Similarly, whenever a copy from paper tape
to core is specified, the next binary record is read, and all
alphanumeric records which are encountered before it are ignored.
When a copy from core to any device is specified, the
specification of a block of core locations is requested from
the operator. For example, the operator may dump locations

235718 through 236028

FROM CORE TO TELETYPE

on the teletype as follows:

BLOCK (23571, 23602)

23571 172356 543125 601241 760001 127123 127124 000200 000001
23601 000236 777777

A copy from core to core will also request the address of the
first location in the block into which the information is to be
moved. For example, locations 200528 through 200568 may be
moved into locations 215218 through 215258 by the following

command :

FROM CORE TO CORE

Since the words in a block to be moved by a copy from core to
core are moved one at a time, starting with the lowest address
of the specified block, the following sequence of commands may
be used to store zeros in all of core bank 1. (This is some-
times a useful operation to perform before loading a program
to be debugged, since it stores illegal instructions througout

core bank 1.)
EROM EELETYPE TO EORE

20000 172132 000000

20001 172312 (rubout)

-67-

FROM CORE TO CORE
BLOCK (20000, 37776) TO 20001

The copy from core to core in this example moves the zero from

location 200008 into location 200018,

from location 200018 into location 200028, etc.

then it moves the zero

Copy functions to the display are constrained to a
maximum of 64 characters per line and to 10 lines. For this
reason, a maximum of lOO8 locations may be dumped on the screen
at one time, and a copy from paper tape or teletype to display

will be terminated at the end of 10 lines.

4.2 Scheduling of User Tasks

User tasks may be scheduled while in system state,
but they will not be executed until user state is entered (Sec-

tion 4.5). The command which accomplishes this is the following:

SCHEDULE

In the blanks after the word "schedule" the operator should type
a 5-digit octal address where the task which he is scheduling
begins. For example, a user task which starts at location

205718 may be scheduled by the following command:

4.3 Clearing the Task Queue or Display Storage

The command

CLEAR TASK QUEUE
DISPLAY STORAGE

allows the operator to remove all user tasks scheduled by the
command described in Section 4.2 from the task queue, or to
clear the display storage area. When a copy function to the

display is performed, the comment

NOT ENOUGH DISPLAY STORAGE

-68-

may be printed on the teletype, and the copy function will not
be completed. The facility of clearing the display storage
area is provided to allow the operator to destroy all display
structures to provide display storage for copy functions to

the display.

4.4 Teletype to Dataphone Transmission

Since most messages to be sent over the 201A data-
phone to a remote computer from the teletype are record-oriented,
rather than character-oriented, and since ASCII codes are ac-
cepted as standards for this type of communication, a copy from
the teletype to the dataphone is handled in a different manner
from other copy functions. If the command "#" is typed, all
succeeding characters typed on the keyboard, up to the first
carriage return, are sent over the dataphone as one record of
ASCII characters. (0Of course, any response to such a record
which does not begin with the 8-bit character OOO8 will be typed
by the 20l-to-teleprinter task.) However, a rubout will delete
a partially typed line, and the character "<«" will delete the
previous character on the line,if it exists. This command is
terminated when the line is terminated or deleted. A record
consisting of an engquiry (used as an end-of-record character)
may be sent from the teletype by striking the "WRU" key when

the idle-time task is expecting a new command.

4.5 Entering User State

The command

RUN

causes all user tasks which have been scheduled by the command
described in Section 4.2 to become eligible for execution, and
the idle-time task to be terminated. This causes the System

to enter user state (Section 2.3).

5. SYSTEM CAPABILITY

The System was designed primarily to support user
tasks which provide communication between the operator and the
339 via network diagrams and between the 339 and a large time-
sharing system. As can be determined by examination of the dis-
play structure, the display support provided by the System is
easily applied to almost any display-oriented task which is two-
dimensional in nature (e.g., network diagrams, two-dimensional
Sketchpad programs, line-oriented text editing, etc.). The
System offers no support for tasks which involve three-dimen-
sional projection in that: (1) floating point arithmetic (which
is almost essential for this type of task) is not provided, and
(2) the display structure has no provision for storing the extra
information required for three-dimensional projection.

Because a timesharing system is not always available
to support preparation and testing of remote terminal programs,
the philosophy behind the design of the system was to consider
the remote terminal as an independent unit which considers the
large timesharing system to be an I/0 device. This differs
from the philosophy, which is commonly applied to the design
of remote terminal software systems, that the large timesharing
system must be available to support the remote terminal system

whenever the remote system is operating.

-69-

BIBLIOGRAPHY

339 Programmed Buffered Display, DEC-09-I6FA-D, Digital
Equipment Corporation, Maynard, Massachusetts, May 1968.

Mills, David L., I/0 Extensions to RAMP, Memorandum 11, Concomp

Project, University of Michigan, Ann Arbor, October 1967.

Mills, David L., RAMP: A PDP-8 Multiprogramming System
for Real-Time Device Control, Memorandum, Concomp Project,
University of Michigan, Ann Arbor, May 1967.

Mills, David L., The Data Concentrator, Technical Report
No. 8, Concomp Project, University of Michigan, Ann Arbor,
May 1968.

PDP-9 User Handbook, F-95, Digital Equipment Corporation,
Maynard, Massachusetts, January 1968.

Wood, David E., A 201A Data Communication Adapter for the
PDP-8: Preliminary Engineering Design Report, Memorandum
15, Concomp Project, University of Michigan, Ann Arbor,
February 1968.

~70-

APPENDIX A -- LISTING OF THE EXECUTIVE SYSTEM

$ORG 17732

$STITLE SEL EXECUTIVE SYSTEM LOADER
10T $OPDM 700000
HLT $OPD 740040

10T 3302 CLEAR ALL FLAGS
JMP SYSTEM START SYSTEM
el JMS .4 READ FIRST LINE OF 3-LINE BLOCK
SNA SKIP IF NONBLANK TAPE
JMP %-2 BLANK TAPE -- TRY AGAIN
PAC .5 SAVE FIRST LINE IMAGE
AND .7 REMOVE DATA BITS
SAD .8 SKIP IF DATA LINE
SKP ORIGIN LINE
JMP .2 DATA LINE
JMS .3 FINISH ORIGIN WORD
DAC .6 SET LOCATION COUNTER
JMP .1 READ NEXT BLOCK
o2 JMS .3 FINISH DATA WORD
DAC* .6 LOAD DATA WORD
ISZ +6 INCREMENT LOCATION COUNTER
JMP .1 READ NEXT BLOCK
«3 $DC @
JMS .4 READ SECOND LINE
LRS 6 SHIFT DATA BITS INTO M@
LAC .S LOAD AC WITH FIRST LINE IMAGE
LLS 6 SHIFT CONCATENATED IMAGE INTO AC
DAC .S SAVE CONCATENATED FIRST TWO LINE
JMS .4 READ THIRD LINE
LRS 6 SHIFT DATA BITS INTO M@
LAC 5 LOAD AC WITH CONCATENATED IMAGE
LLS 6 SHIFT COMPLETED WORD INTO AC
JMP* 3 RETURN
4 $DC o
10T 104 SELECT READER
I0T 101 SKIP IF LINE READY

5
b
7
8

JMP *%x-1
10T 112
JMP% .4

$DC o
$DC @
$DC 309
$DC 100

JMP .1

WAIT FOR FLAG
OVERRIDDEN "JMP .1-2" WHEN LOADED
RETURN

OVERRIDES BOOTSTRAP LOCATION @

8.C
Q.A
Q.1
Q.F
TeS
TP
TeF
Te.A
T«R
T.L
T.U
C.Bé6
C.6A
C.Ab

c.CB

STITLE

$ORG 1

JMP

I

$ORG 21

JMP
JMP

ET
ES

$SORG 100

$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
sDC
JMP
$DC
JMpP
$DC
JMP
$DC
JMP
$DC
JMP

)
QcC
)
QA
")
QI
'/
QF
2
TS
0
TP
0
TF
2
TA
2
TR
%
TL
0
TU
0
CBé6
0
CéA
0
CAé
%]
ccB

CONTROL DISPATCHER
INTERRUPT TRAP

ILLEGAL INSTRUCTION TRAP
SYSTEM RESTART

CLEAR QUEUE

ADD WORD TO BOTTOM OF QUEUE (F)
INSERT WORD ON TOP OF QUEUE (F)
FETCH WORD FROM TOP OF QUEUE (F)
SCHEDULE TASK

SCHEDULE PREVIOUS LOC & TERMINATE
TERMINATE CURRENT TASK

ALLOCATE 170 DEVICES UNDER MASK
RELEASE I/0 DEVICES WNDER MASK
LOCK REENTRABLE SUBROUTINE
UNLOCK REENTRABLE SUBROUTINE
CONVERT BINARY TO 6-BIT OCTAL
CONVERT 6-BIT TO ASCII |
CONVERT ASCII TO 6-BIT

CONVERT DISPLAY COORDINATE TO BINARY

C.BC
B.FI
B.FO
BeR
B.P
BeK
BeT
N.A
NeC
N.D1
N.D2
N.D3
PeT
P.E
P.D
PeR
PeS
D.E
D.D

DeP

$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP

cBC
BFI
BFO
BR
BP
BK
BT
NA
NC
ND1
ND2
ND3
PT
PE
PD
PR
PS
DE
DD

DP

CONVERT BINARY TO DISPLAY COORDINATE
GET IMAGE FROM 201 INPUT BUFFER (F)
SEND IMAGE TO 201 OUTPUT BUFFER (F)
GET IMAGE FROM READER BUFFER (F)
SEND IMAGE TO PUNCH BUFFER (F)

GET 6-BIT CHAR FROM KEYBOARD BUFFER
SEND 3 PACKED 6~-BIT CHARS TO TP BUF
CONVERT ANALOG TO DIGITAL

SET CLOCK INTERVAL & SERVICE TASK
SELECT D/A CONVERTER #1

SELECT D/A CONVERTER #2

SELECT D/A CONVERTER #3

SET PUSH BUTTON SERVICE TASK

ENABLE MANUAL OPN OF PUSH BUTTONS
DISABLE MANUAL OPN OF PUSH BUTTONS
READ PUSH BUTTONS

SET PUSH BUTTONS

ENABLE DISPLAY INTERRUPTS

DI SABLE DISPLAY INTERRUPTS

SET LIGHT PEN FLAG SERVICE TASK

D.A
D.Y
DeX
D.O
Xel
X+R
XeT
XeS
XeY
XeX
S.TL
S.TD
S.TI
S«TR
SeLH
S.LY
S.LX
S.LP
S.LBE

S.LBD

$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMpP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP

2
DA

DY
DX
DO
X1
XR
XT
XS
XY
XX
STL
STD
STI
STR
SLH
SLY
SLX
SLP
0
SLBE

0
SLBD

READ DISPLAY ADR ON LAST INTERRUPT
READ Y DPY COORD ON LAST INTERRUPT
READ X DPY COORD ON LAST INTERRUPT
READ OWNER ON LAST INTERRUPT (F)
INITIALIZE TRACKING AT GIVEN COORDS
RESUME TRACKING

TERMINATE TRACKING

SKIP IF TRACKING NOT IN PROCESS (F)
READ Y TRACKING COORDINATE

READ X TRACKING COORDINATE

CREATE A LEVEL (F)

DESTROY A LEVEL (F)

INSERT SUBSTRUCTURE INTO LEVEL (F)
REMOVE SUBSTRUCTURE FROM LEVEL (F)
GET ADDRESS OF HIGHEST ACTIVE LEVEL
TRANSLATE LEVEL IN Y DIRECTION
TRANSLATE LEVEL IN X DIRECTION

SET LEVEL PARAMETERS

ENABLE BLINK ON LEVEL

DISABLE BLINK ON LEVEL

S.LC
Se.LU
S.LS
S.LL
S.LN
LT

LeD

Le.L

PDP1

PDP2

$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
$DC
JMP
sDC
JMP

$DS

$DS

0
SLC

SLU
SLS
SLL
SLN
LT
LD
LL
204

204

COUNT SCALE AND/OR INTENSITY
INTERRUPT UNCONDITIONALLY ON LEVEL
INTERRUPT ON LEVEL IF ON SCREEN
INTERRUPT ON LEVEL IF LPSI SET
DISABLE INTERRUPT ON LEVEL

SEND TEXT LIST TO TP BUFFER
GENERATE TEXT LEAF (F)

DESTROY TEXT LEAF

Doo

D@2

Da3

STITLE DISPLAY CHARACTER GENERATOR

INCR

$DC 1272
$DC 6251
$DC 6057
$DC 7516
$DC 1570
$DC S172
$DC 3726
$DC 0
POP

INCR

$DC 5169
$DC 1472
$DC 7255
$DC 3737
$DC 0
POP

INCR

$DC 5271
$DC 5152
$DC 5364
$DC S537
$DC 2774
$DC 5417
$DC 3020
$DC 0
POP

INCR

$DC 1252
$DC 5769
$DC 5152
$DC 5354
$DC 1051
$DC 5253
$DC 6455
$DC 3737
$DC 1000
POP

Do 4

Des

DO6

De7

D1o

INCR

$DC 1110
SDC 5072
$DC 7275
$DC 6010
$DC 5837
$DC 1600
POP

INCR

$DC 1252
$DC 5760
$DC 5162
$DC 5374
$DC 6270
$DC 5837
$DC 3616
$DC 8
POP

INCR

$DC 1252
$DC 5760
$DC 5152
$DC 5364
$DC 5572
$DC 5170
$DC 3736
$DC 1600
POP
INCR

$DC 5271
$DC 5162
$DC 7454
$DC 5637
$DC 3710
$DC @
POP

INCR

$DC 1252
$DC 5760
$DC 5152

D11t

Dt2

D13

D14

$DC
$DC
$DC
$DC
$DC
$DC
POP

INCR

$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP

INCR

$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP

INCR

$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP

INCR

$DC
$DC
$DC

5364
5512
6251
6057
5637
2600

5279
5162
7453
5251
68517
5637
2600

7272
5160
5766
7632
74317
1720
0

7272
52170
5756
5564
2057
5655
6430
1720
%

1272
6251
6057

D15

D16

D17

D29

$DC 3656
$DC 5564
$DC 3020
$DC 1700
POP

INCR

$DC 7272
$DC S260
$DC 6766
$DC 6554
$DC 30280
$DC 1700
POP

INCR

$DC 7272
$DC 5270
$DC S@25
$DC 5550
$DC 2516
$DC 7050
$DC 1720
$DC 0
POP

INCR

$DC 7272
$DC 5270
$DC 5025
$DC 5550
$DC 3717
$DC 1008
POP

INCR

$DC 1272
$DC 6251
$DC 6057
$DC 3570
$DC 5655
$DC 6430
$DC 1720
$DC @

D22

D23

D24

D25

POP
INCR

$DC 7272
$DC 5236
SDC 7050
$DC 7236
$DC 7620
$DC 1700
POP

INCR

$DC 5160
$DC 1472
$DC 7254
$DC 1050
$DC 3736
$DC 1709
POP

INCR

$DC 2252
$DC 5657
$DC 6851
$DC 7262
$DC 3636
$DC 1720
$DC 0
POP

INCR

$DC 7272
$DC 5230
$DC 5075
$DC 7720
$DC 1708
POP

INCR

$DC 7272
$DC 5236
$DC 3670
$DC 5020
$DC 1700
POP

D26

D30

D31

D32

INCR
$DC 7272
$DC 5267
$DC 6176
$DC 7629
$DC 1700
POP

INCR

$DC 7272
$DC 5277
$DC 3250
$DC 7676
$DC 1720
sDC 0
POP

INCR

$DC 1272
$DC 6251
$DC 6057
$DC 7656
$DC 5564
$DC 3020
$DC 17080
POP

INCR

$DC 7272
$DC 5270
$DC 5756
$DC 5564
$DC 3720
$DC 1700
POP

INCR

$DC 1272
$DC 6251
$DC 6857
$DC 7656
$DC 5564
$DC 1822
$DC 7720

A-12

D33

D34

D35

D36

D37

$DC @
POP

INCR

$DC 7272
$DC 5270
$DC 5756
$DC 5564
$DC 7720
$DC 1700
POP

INCR

$DC 1252
$DC 5760
$DC S152
$DC S364
$DC 5352
$DC 5160
$DC 5737
$DC 3600
POP

INCR

$DC 1150
$DC 7272
$DC 6420
$DC 6636
$DC 1637
$DC 0@
POP

INCR

$DC 1272
$DC 7230
$DC 5076
$DC 6655
$DC 6430
$DC 1720
$DC @
POP

INCR

$DC 2272
$DC 6230

A-13

Dao

D41

D42

D43

$DC
$DC
$DC
$DC
$DC
POP

INCR

$DC
$DC
$bC
$DC
$DC
$DC
$DC
POP

INCR

$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP

INCR

$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP

5076
5665
5327
3010

7272
5230
50876
7663
5527
3010

6271
5152
3454
5657
1767
S617
2000

1150
7261
5234
5456
5737
2710

INCR

$DC
$DC
$DC
$DC
$DC
$DC

6271
5152
7454
37217
5574
3020

A-14

Da4

D45

D46

D47

DS@

D51

$DC 1700
POP

INCR

$DC 1251
$DC 7151
$DC 3454
$DC 5717
$DC 6727
$DC @
POP

INCR

$DC 1252
$DC 7151
$DC 3736
$DC @
POP

INCR

$DC 1151
$DC 7252
$DC 1555
$DC 5010
$DC 6037
SDC 1600
POP

INCR

$DC 3252
$DC 7850
$DC 3716
$DC @
POP

INCR

$DC 1150
$DC 5372
$DC 5251
$DC 3727
$DC 2600
POP

INCR

$DC 1150
$DC 5172

A-15

DS2

DS3

D54

DSS

DSé

DS7

$DC 5253
$DC 3727
$DC 2600
POP

INCR

$DC 5172
$DC 7260
$DC 3636
$DC 5459
$DC 1730
$DC @
POP

INCR

$DC 5160
$DC 7272
$DC 6437
$DC 3716
$DC 0
POP

INCR

$DC 3051
$DC 7371
$DC 3736
$DC 1600
POP

INCR

$DC 3150
$DC 7454
$DC 1252
$DC 7050
$DC 3726
$DC @
POP

INCR

$DC 5271
$DC 7337
$DC 3717
$DC 0
POP

INCR

A-16

D60

Dé1

D62

D63

Dé64

$DC 1150
$DC 7272
$DC 6520
$DC 5157
$DC 3726
$DC ©
POP

INCR

$DC 1151
$DC 6361
$DC 1655
$DC 7837
$DC 1600
POP

INCR

$DC 6250
$DC 5630
$DC 1720
$DC @
POP

INCR

$DC 6250
$DC 6655
$DC 1130
$DC 3009
POP

INCR

$DC 1262
$DC 1262
$DC 5056
$DC 1666
$DC 2710
$DC 3000
POP

INCR

$DC 1262
$DC 1262
$DC 5056
$DC 1676
$DC 5530

D65

D66

D67

D70

D71

$DC 3010
$DC 0
POP

INCR

$DC 1150
$DC 1262
$DC 5051
$DC 5253
$DC 6455
$DC 3737
$DC 1000
POP

INCR

$DC 1150
$DC 1272
$DC 6237
$DC 2726
$DC 0
POP

INCR

$DC 2122
$DC 7237
$DC 2726
$DC @
POP

INCR

$DC 1132
$DC 72180
$DC 5066
$DC 3717
$DC 1600
POP

INCR

$DC 1252
$DC 5760
$DC 5152
$DC 5364
$DC 5352
$DC 5160
$DC 5714

A-18

D72

D73

D75

D76

$DC 5456
$DC 1666
$DC 2730
$DC @
POP

INCR

$DC 5172
$DC 7210
$DC 5076
$DC 7612
$DC 5314
$DC 5412
$DC 5210
$DC S5S010
$DC 5016
$DC 5637
$DC @
POP

INCR

$DC 5153
$DC 5261
$DC 5355
$DC 1777
$DC 1454
$DC 1151
$DC 37009
POP

VEC

$DC 2020
$DC 4000
POP

SVEC

$DC 50
POP

A-19

A-20

$TITLE TRACKING PATTERN GENERATOR

XP LAW 3000
$DC 1105
XPY $DC 1000
XPX $DC S000
$DC 1400
$DC X1
$DC 60
SVEC
$DC 24
$DC 4047
$DC 1400
$DC X2
$DC 60
SVEC
$DC 1
$DC 4067
$DC 1400
$DC X3
$DC 60
SVEC
$DC 2403
$DC 4749
$DC 1400
$DC X2
$DC 60
SVEC
$DC 100
$DC 6700
$DC 349
$DC 1400
$DC X4
XPS POP
SVEC
$DC 404
$DC 40630
$DC 7000
$DC 4010
$DC 5040

VEC
$DC
$DC
$DC
$DC
$DC
$DC
$DC

4000
2020
6020

4000

A-21

$DC
$DC
$DC
$DC
s$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP

4

4000
2069
6060

4000
60
4060

4000
20170
6070

4000
70
4070

4000
2100
6100

4000
100
4100
4000
1400
X5

A-22

$TIT

DAC
LACO
DAC
LACS
DAC
10T
SKP
JMP
10T
SKP
JMP
10T
SKP
JMP
10T
SKP
JMP
I0T
SKP
JMP
I0T
SKP
JMP
10T
SKP
JMP
10T
SKP
JMP
10T
DAC
AND
SZA
JMP
10T
JMP
I0T
JMP

LE
6
3

2
1441

IFI
1401

IFO
101

IRD
1301

IAD
301

IKB
201

IPC
401

ITP
1

ICK
612
DSS
=20

IPB
702
*+3
724
IR

INTERRUPT DISPATCHER

SAVE AC CONTENTS

GET MQ CONTENTS

SAVE MQ CONTENTS

GET SC CONTENTS

SAVE SC CONTENTS

SKIP ON DATAPHONE RECEIVE FLAG
TEST NEXT FLAG

SERVICE DATAPHONE INPUT INTERRUPT
SKIP ON DATAPHONE TRANSMIT FLAG
TEST NEXT FLAG

SERVICE DATAPHONE OUTPUT INTERRUPT
SKIP ON READER FLAG

TEST NEXT FLAG

SERVICE READER INTERRUPT

SKIP ON A/D CONVERTER FLAG
TEST NEXT FLAG

SERVICE A/D CONVERTER INTERRUPT
SKIP ON KEYBOARD FLAG

TEST NEXT FLAG

SERVICE KEYBOARD INTERRUPT

SKIP ON PUNCH FLAG

TEST NEXT FLAG

SERVICE PUNCH INTERRUPT

SKIP ON TELEPRINTER FLAG

TEST NEXT FLAG

SERVICE TELEPRINTER INTERRUPT
SKIP ON CLOCK FLAG

TEST NEXT FLAG

SERVICE CLOCK INTERRUPT

READ DISPLAY STATUS

SAVE DISPLAY STATUS WORD 1

GET PUSH BUTTON FLAG

SKIP ON NO PUSH BUTTON FLAG
SERVICE PUSH BUTTON INTERRUPT
SKIP ON EDGE FLAG

TEST NEXT FLAG

RESWE DISPLAY

RETURN FROM INTERRUPT

IR

10T
SKP
JMP
10T
SKP
JMP
10T
JMP
JMP
LAC
XOR
TAD
AND
DAC
HLT
LAC
LMQ
LAC
10T
10T

642

ILP
721

11S

722

El

EM

2

=77
=640 402
=640477
*+ 1

3
(]

42
3344

JMP%x @

A-24

SKIP ON LIGHT PEN FLAG

TEST NEXT FLAG

SERVICE LIGHT PEN INTERRUPT
SKIP ON INTERNAL STOP FLAG
TEST NEXT FLAG

SERVICE INTERNAL STOP INTERRUPT
SKIP ON MANUAL INTERRUPT FLAG
INVALID INTERRUPT

EMERGENCY REINITIALIZATION
GET SC CONTENTS

COMPLEMENT SHIFT COUNT

FORM NORM INSTRUCTION
TRUNCATE CARRY

STORE NORM INSTRUCTION
RESTORE SC CONTENTS

GET MQ CONTENTS

RESTORE M@ CONTENTS

RESTORE AC CONTENTS

ENABLE INTERRUPTS

DEBREAK AND RESTORE

RETURN TO INTERRUPTED PROGRAM

SYSTEM

EE

El

EM

EQ

$TITLE

LAW
I0T
LAW

I0T

LAC
JMP
$DC

4400
785
=1400
1605
=%+2
E

S

SYSTEM DIAGNOSTICS

GET BREAK FIELD 1 PARAMETER
LOAD BREAK FIELD

GET ADDRESS OF INTERNAL STOP
INITIALIZE DISPLAY

GET ADDRESS OF TEXT LIST
INITIALIZE SYSTEM

$TEXT ""SYSTEM RELOADED"

10T
LAC
SzZA
JMP
LAC
SZA
JMP
I0T
AND
SZA
JMP
10T
LAC
JMP
$DC

LAC
JMP
$DC

42
BP3

*-2
BT1

=k+2
E
6

ENABLE INTERRUPTS

GET PUNCH STATUS SWITCH .

SKIP IF PUNCH IS IDLE

WAIT FOR PUNCH TO FINISH

GET TELEPRINTER STATUS SWITCH
SKIP IF TELEPRINTER IS IDLE
WAIT FOR TELEPRINTER TO FINISH
READ 201 STATUS

GET TRANSMIT STATE BIT

SKIP IF NOT TRANSMITTING
WAIT FOR END OF TRANSMISSION
DISABLE INTERRUPTS

GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

 STEXT "TASK QUEUE EMPTY"

GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

$TEXT "INVALID INTERRUPT"

LAC
Jmp
$DC

=k+2
E
6

GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

$TEXT *"MANUAL INTERRUPT"

LAC
JMP

=%+2
E

GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

ES

ET

ET1
ET2

$DC 7

A-26

$TEXT "TASK QUEUE OVERFLOW"

DZM BP3
DzM BTI1
LAW 4400
10T 705
LAW =1400
I0OT 1605
LAC =%+2
JMP E

$DC S

CLEAR PUNCH STATUS SWITCH

CLEAR TELEPRINTER STATUS SWITCH
GET BREAK FIELD 1 PARAMETER
LOAD BREAK FIELD

GET ADDRESS OF INTERNAL STOP
INITIALIZE DISPLAY

GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

$TEXT "PANEL RECOVERY"

I0T 2

CLC

TAD 20
JMS C.Bé6
AND =7777
TAD =760000
DAC ET1
LACQ

DAC ET2
LAC =%x+2
JMP E

$DC 13

DISABLE INTERRUPTS

LOAD AC WITH -1

ADD PROGRAM COUNTER DURING TRAP
CONVERT TO 6-BIT CODE

TRUNCATE HIGH ORDER DIGIT

USE BLANK AS HIGH ORDER CHARACTER
STORE HIGH ORDER CHARACTERS

GET LOW ORDER DIGITS

STORE LOW ORDER DIGITS

GET ADDRESS OF TEXT LIST
REINITIALIZE SYSTEM

STEXT "ILLEGAL INSTRUCTION AT LOC"

$DC @
$DC o

$STITLE

DAC
I0T
I0T
AND
SZA
JMp
10T
LAC
10T
LAC
SNA
JMP
10T
JMP
LAC
SNA
JMP
I0T
JMP
I0T
AND

25
7702
1412
=1

*-3
1444
=440
1404
BP3

*+3
201
*- 1
BT1

*+3
401
*= |
612
= 7460

SNA+CLA

JMP
JMS
I0T
10T
DZM
DZM
DZM
DZM
DZM
DZM
DZM
DZM
DZM
DZM
DZM
LAW

*-3
PS1

4

3302
BP3
BT1
PE+1
DE+1
Dwv
NA+2
NC+2
STRD+2
STRR+2
SLY+2
SLX+2
10

A-27

SYSTEM INITIALIZER

SAVE ADDRESS OF DIAGNOSTIC
ENTER EXTEND MODE

READ 201 STATUS

GET RECEIVE STATE BIT

SKIP IF NOT RECEIVING

WAIT FOR END OF RECORD

CLEAR 201 INTERFACE

GET TERM RDY BIT & FRAME SIZE 8
SET INITIAL 201 INTERFACE STATE
GET PUNCH STATUS SWITCH

SKIP IF PUNCH ACTIVE

PUNCH NOT ACTIVE

SKIP ON PUNCH FLAG

WAIT FOR PUNCH FLAG

GET TELEPRINTER STATUS SWITCH
SKIP IF TELEPRINTER ACTIVE
TELEPRINTER NOT ACTIVE

SKIP ON TELEPRINTER FLAG

WAIT FOR TELEPRINTER FLAG
READ DISPLAY STATUS

GET DISPLAY FLAG BITS

SKIP IF DISPLAY STOPPED

WAIT FOR DISPLAY TO STOP
CLEAR PUSH BUTTONS

DISABLE CLOCK

CLEAR ALL FLAGS

INDICATE PUNCH IDLE

INDICATE TELEPRINTER IDLE
DISABLE OPERATION OF PUSH BUTTON
DISABLE DISPLAY INTERRUPTS
CLEAR TRANSLATION VALUE
UNLOCK N.A

UNLOCK N.C

UNLOCK S.TRD

UNLOCK S.TRR

UNLOCK S.LY

UNLOCK S.LX

GET TELEPRINTER MASK

E1

DAC
DAC
LAC
DAC
DAC
DAC
DzZM
LAC
DAC
DAC
LAC
DAC
DAC
LAC
DAC
bAC
LAC
DAC
LAC
DAC
LAW
DAC
LAC
DAC
LAW
I0T
LAW
I0T
LAW
I0T
LAW
I0T
LAC
JMS
10T
LAW
JMS
NOP
DZM
Dzm

STATUS
BFTTY2
TG
TQ+1
Ta+2
BRS
BRO
BPQ
BPQ+1
BPQ+2
BK@
BK@+1
BK@+2
BTG
BTA+1
BTQ@+2
=DN
DPT
=PN
PTT
3000
XP

=D
DHAL+7
PDP1
645
7763
665
4400
705

D

1605
=BFENG@
BFENGS
42
BFENG®
B.FO

26
27

A-28

ALLOCATE TELEPRINTER ONLY

SET BFTTY ALLOCATION MASK

GET POINTER TO END OF TASK QUEUE
RESET INPUT POINTER

RESET OUTPUT POINTER

SET RECORD SEEK SWITCH

INDICATE NEW RECORD NEEDED

GET POINTER TO END OF PUNCH BUFFER
RESET INPUT POINTER

RESET OUTPUT POINTER

GET POINTER TO END OF KB BUFFER
RESET INPUT POINTER

RESET OUTPUT POINTER

GET POINTER TO END OF TP BUFFER
RESET INPUT POINTER

RESET OUTPUT POINTER

GET ADDRESS OF NULL DISPLAY SERVICE
SET NULL LIGHT PEN SERVICE

GET ADDRESS OF NULL PB SERVICE

SET NULL PUSH BUTTON SERVICE

GET POP INSTRUCTION

INHIBIT TRACKING PROCESS

GET ADDRESS OF HIGHEST ACTIVE LEVEL
REMOVE EVERYTHING FROM HAL

GET ADDRESS OF PUSH DOWN LIST

SET PUSH DOWN POINTER

GET INITIAL DISPLAY CONDITIONS

SET INITIAL DISPLAY CONDITIONS

GET BREAK FIELD 1 PARAMETER

LOAD BREAK FIELD

GET ADDRESS OF SYSTEM DISPLAY FILE
START DISPLAY

GET ENQUIRY CHARACTER

INITIALIZE 201 TASKS

ENABLE INTERRUPTS

GET ENQUIRY CHARACTER

SEND ATTENTION INTERRUPT

DATA SET NOT CONNECTED

CLEAR POINTER TO DIAGNOSTIC LEVEL
CLEAR POINTER TO DIAGNOSTIC LEAF

JMS
JMP
DAC
LAC
JMS
JMP
LMa
LAC
JMS
JMP
LAC
LMe
LAC
JMS
LAW
LMe
LAaC
JMS
LAW
LMe
LAC
JMS
LAC
LM@
LAC
JMS
JMP
JMS
JMP
DAC
LAC
LMe
LAC
JMS
LAW
LMa
LAC
JMS
LAW
LMQ

S.TL
E2
E3
=EF
LD
E2

E3
SeTI
E2
=370

E3
S.LY
-144

E3
S.LX
500

E3
S.LP
E3

=DHAL
SeTI
E2
S.TL
E2
26
=200

26
S.LY
- 400

26
S.LX
500

CREATE TITLE LEAF

USE TELETYPE ONLY

SAVE POINTER TO TITLE LEAF
GET ADDRESS OF TEXT LIST
CREATE TITLE LEAF

USE TELETYPE ONLY

SET UP PARAMETER

GET POINTER TO TITLE LEVEL
INSERT TITLE LEAF

USE TELETYPE ONLY

GET Y TITLE COORDINATE

SET UP PARAMETER

GET POINTER TO TITLE LEVEL
SET Y TITLE COORDINATE

GET X TITLE COORDINATE

SET UP PARAMETER

GET POINTER TO TITLE LEVEL
SET X TITLE COORDINATE

GET SCALE X2 PARAMETER

SET UP PARAMETER

GET POINTER TO TITLE LEVEL
SET TITLE SCALE

GET POINTER TO TITLE LEVEL
SET UP PARAMETER

GET ADDRESS OF HIGHEST ACTIVE LEVEL

INSERT TITLE LEVEL

USE TELETYPE ONLY

CREATE DIAGNOSTIC LEVEL

USE TELETYPE ONLY

SET POINTER TO DIAGNOSTIC LEVEL
GET Y DIAGNOSTIC DISPLACEMENT
SET UP PARAMETER

GET ADDRESS OF DIAGNOSTIC LEVEL
TRANSLATE LEVEL IN Y DIRECTION
GET X DIAGNOSTIC DISPLACEMENT
SET UP PARAMETER

GET ADDRESS OF DIAGNOSTIC LEVEL
TRANSLATE LEVEL IN X DIRECTION
GET SCALE X2 PARAMETER

SET UP PARAMETER

E2

EF

A-30

LAC 26 GET ADDRESS OF DIAGNOSTIC LEVEL
JMS S.LP SET DIAGNOSTIC SCALE

LAC 26 GET ADDRESS OF DIAGNOSTIC LEVEL
LM SET UP PARAMETER

LAC =DHAL GET ADDRESS OF HIGHEST ACTIVE LEVEL
JMS S.Tl INSERT DIAGNOSTIC LEVEL

JMP E2 DISPLAY STORAGE EXCEEDED

LAC 25 GET ADDRESS OF TEXT LIST

SZA SKIP IF DISP STORAGE BEING CLEARED
JMS L.D CREATE DIAGNOSTIC LEAF

JMP E2 USE TELETYPE ONLY

DAC 27 SET POINTER TO DIAGNOSTIC LEAF
Lmae SET UP PARAMETER

LAC 26 GET ADDRESS OF DIAGNOSTIC LEVEL
JMS S.TI INSERT DIAGNOSTIC LEAF

NOP USE TELETYPE ONLY

LAC 25 GET POINTER TO TEXT LIST

SNA SKIP 1F COMMENT TO BE TYPED

JMP 1DLE BEGIN IDLE-TIME TASK

LAC =747575 GET TELEPRINTER POSITIONING CODE
JMS BeT POSITION TELEPRINTER

LAC 25 GET ADDRESS OF TEXT LIST

JMS L.T TYPE DIAGNOSTIC

LAC =74757S GET TELEPRINTER POSITIONING CODE
JMS BeT POSITION TELEPRINTER

JMP IDLE BEGIN IDLE-TIME TASK

$DC 11

STEXT **SEL EXECUTIVE SYSTEM (@1)"

STORE

B1

B2

B3

B4

STITLE
SEQU 12000

$DC @
cMA

TAD =1
DAC Ti1
DAC T2
LAC =STORE
DAC T3
DAC T4
SAD =20000
JMP* B
LAC*x T4
SNA

JMP B2
LAC T2
DAC Ti
LAC T4
TAD =4
JMP Bl
ISZ T1
JMP *+4
LAC T3
ISz B
JMP*+ B
LAC T4
TAD =4
JMP Bl+1l

$DC
LAC
JMS
JMP*x B3
1SZ B3
JMPx B3

1

TS

$DC 92
LAC =2

A-31

DISPLAY STRUCTURE STORAGE MANAGER

LOWER LIMIT OF DISPLAY STORAGE

FORM 1°'S COMP OF NUMBER OF BLOCKS
FORM 2°'S COMP OF NUMBER OF BLOCKS
INITIALIZE COUNTER

STORE VALUE FOR RESETTING COUNTER
GET LOWER LIMIT OF DISPLAY STORAGE
SET POINTER TO CANDIDATE

SET POINTER TO NEW BLOCK

SKIP IF STORAGE NOT EXCEEDED
NOT ENOUGH FREE STORAGE

GET FIRST WORD FROM BLOCK

SKIP IF BLOCK NOT AVAILABLE

ADD BLOCK TO CANDIDATE

GET INITIAL VALUE OF COUNTER
REINITIALIZE COUNTER

GET ADDRESS OF UNAVAILABLE BLOCK
FORM ADDRESS OF NEXT BLOCK
PROCEED WITH NEXT CANDIDATE
INCREMENT COUNTER & SKIP IF DONE
PREPARE TO ADD ANOTHER BLOCK

GET ADDRESS OF ACQUIRED STORAGE
INDICATE SUCCESS

RETURN

GET ADDRESS OF BLOCK JUST ADDED
FORM ADDRESS OF NEXT BLOCK

ADD ANOTHER BLOCK

GET SINGLE BLOCK PARAMETER
FIND SINGLE BLOCK

NO SINGLE BLOCK AVAILABLE
INDICATE SUCCESS

RETURN

GET DOUBLE BLOCK PARAMETER

JuS B

JMP» B4
1SZ B4
JMP* B4

A-32

FIND DOUBLE BLOCK

NO DOUBLE BLOCK AVAILABLE
INDICATE SUCCESS '
RETURN

QA

ol

QF

$STITLE

I0T 2
JMS QS
LAC* QP
DAC* QIP
DAC* QOP
IOT 42
JMPx Q.C

I0T 2
JMS QA1
SKP

ISZ Q.A
I0OT 42
JMP* Q.A

I0T 2
JMS QS
LAC* QOP
DAC 23
TAD =-3
SAD QP
LAC* @P
SAD*x QP
SKP

TAD =2
SADx QIP
JMP %*+5
DAC* QOP
LACQ
DACx 23
ISZ Q.1
I0T 42
JMPx Q.1

IOT 2
JMS QF1
SKP

ISZ Q.F

A-33

WORD QUEUE MANAGER

DISABLE INTERRUPTS

SET CONTROL POINTERS

GET POINTER TO END OF QUEUE
SET INPUT POINTER

SET OUTPUT POINTER

ENABLE INTERRUPTS

RETURN

DISABLE INTERRUPTS
ADD WORD TO QUEUE
OVERFLOW

INDICATE SUCCESS
ENABLE INTERRUPTS
RETURN

DISABLE INTERRUPTS

SET CONTROL POINTERS
GET OUTPUT POINTER

SAVE OUTPUT POINTER
SUBTRACT 3

SKIP IF NO WRAP-AROUND
GET POINTER TO END OF QUEUE
SKIP IF NO WRAP-AROUND
CHECK FOR OVERFLOW

FORM NEW OUTPUT POINTER
SKIP IF NO OVERFLOW
OVERFLOW

SET NEW OUTPUT POINTER
GET VALUE TO BE STORED
STORE VALUE IN QUEUE
INDICATE SUCCESS

ENABLE INTERRUPTS
RETURN

DISABLE INTERRUPTS
FETCH WORD FROM QUEUE
QUEUE EMPTY

INDICATE SUCCESS

QA1

QF1

QS

QINC

I0T 42
JMPx Q.F

$DC @
JMS QS
LAC* QIP
JMS QINC
SAD* QOP
JMPx QA1
DAC*x QIP
DAC 23
LACO
DAC*x 23
1SZ QA1
JMP*x QA1

$DC @
JMS Q@S
LAC* QOP
SAD* QIP
JMPx QF1
JMS QINC
DAC* QOP
DAC 23
LAC* 23
ISZ QF1
JMPx QF1

$DC @
DAC QP
TAD =1
DAC QIP
TAD =1
DAC QOP
JMPx Q@S

$DC @
SAD*x QP
LAC QOP
TAD =1

ENABLE INTERRUPTS
RETURN

SET CONTROL POINTERS
GET INPUT POINTER
INCREMENT

SKIP IF NO OVERFLOW
OVERFLOW

SET NEW INPUT POINTER
SAVE COPY OF POINTER
GET WORD TO BE STORED
STORE WORD IN QUEUE
INDICATE SUCCESS
RETURN

SET CONTROL POINTERS
GET OUTPUT POINTER

SKIP IF QUEUE NOT EMPTY
QUEUE EMPTY

INCREMENT

SET NEW OUTPUT POINTER
SAVE COPY OF POINTER
GET WORD FROM QUEUE
INDICATE SUCCESS

RETURN

SET POINTER TO QUEUE

COMPUTE ADDRESS OF NEXT LOCAT
SET POINTER TO INPUT POINTER
COMPUTE ADDRESS OF NEXT LOCATION
SET POINTER TO OUTPUT POINTER
RETURN

SKIP IF NOT END OF QUEUE
WRAP AROUND TO BEGINNING OF QUEUE
INCREMENT

A-35

JMP* QINC RETURN

TS

TP

TF

TF1

TF2

TF3

$TITLE

I0T 2

AND =777717
JMS TII
I0T 42
JMPx T.S

LAW 17776
TAD T.P
JMS T.S
10T 2

JMS TIO
pac 23
RAL

SZL

JMP TF1
SPA

JMP TF2
IOT 42
JMP* 23
JMS TIO
LM@

JMS TIO
JMP TF1-2
JMS TIO
AND STATUS
SNA

JMP TF3
LAC 23
JMS TII
LAC* TQ+2
JMS TII
I0T 42
JMP TF
LAC* TQ+2
XOR STATUS
DAC STATUS
JMP TFi1-2

A-36

TASK SCHEDULER

DISABLE INTERRUPTS
TRUNCATE HIGH ORDER BITS
PUT TASK ADDRESS ON QUEUE
ENABLE INTERRUPTS

RETURN

LOAD AC WITH -2

FORM ADDRESS OF NEW TASK
SCHEDULE NEW TASK

DISABLE INTERRUPTS

READ WORD FROM TASK QUEUE
SAVE TASK ADDRESS

SHIFT TYPE BITS INTO LINK & SIGN
SKIP IF NOT REENTRY DELAY
RESTORE M@ & AC AND EXECUTE
SKIP IF NOT ALLOCATION DELAY
CHECK ELIGIBILITY

ENABLE INTERRUPTS

EXECUTE TASK

READ WORD FROM TASK QUEUE
RESTORE M@

READ WORD FROM TASK QUEUE
EXECUTE TASK

READ WORD FROM TASK QUEUE
FORM ELIGIBILITY CHECK
SKIP IF TASK NOT ELIGIBLE
MODIFY STATUS & EXECUTE
GET ADDRESS OF TASK

PUT BACK ON TASK QUEUE
GET ALLOCATION MASK

PUT BACK ‘ON TASK QUEUE
ENABLE INTERRUPTS

GET ANOTHER TASK

GET ALLOCATION MASK

OR WITH STATUS WORD

STORE NEW STATUS WORD
EXECUTE TASK

TA

TR

AND =17777
10T 2

DAC 23

LAC T.A
AND =77777

XOR =200000

JMS TII
LAC 23

JMS TII
JMP TF+1

cMA

AND STATUS
DAC STATUS
JMP* TR

DAC T1
LAW 17776
TAD T.L
DAC T2
LAC* T.L
SZA

JMP TLI1
LAC* T2
DAC* Te.L
LAC T1

IsZ T.L
JMP%x T.L
CLC

TAD*x T2
AND =77777

XOR =400000

10T 2
JMS TIl
LACAQ
JMS T11
LAC T1
JMS TI1
JMP TF+1

A-37

TRUNCATE HIGH ORDER BITS
DISABLE INTERRUPTS

SAVE ALLOCATION MASK

GET ADDRESS OF RETURN
TRUNCATE HIGH ORDER BITS
INDICATE ALLOCATION DELAY
PUT TASK ADDRESS ON QUEUE
GET ALLOCATION MASK '
PUT ALLOCATION MASK ON QUEUE
GET ANOTHER TASK

COMPLEMENT RELEASE MASK
MODIFY ALLOCATION STATUS
STORE NEW ALLOCATION STATUS
RETURN

SAVE AC CONTENTS

LOAD AC WITH -2

FORM ADDRESS OF SUBROUTINE ENTRY
SAVE ADDRESS OF SUBROUTINE ENTRY
GET SAVED RETURN POINTER

SKIP IF SUBROUTINE ENTERABLE
RESCHEDULE SUBROUTINE CALL

GET RETURN POINTER

SAVE AND LOCK SUBROUTINE

RESTORE AC CONTENTS

ADVANCE PAST SAVED RETURN POINTER
RETURN

LOAD AC WITH -1

FORM ADDRESS OF SUBROUTINE CALL
TRUNCATE HIGH ORDER BITS
INDICATE REENTRY DELAY

DISABLE INTERRUPTS

PUT TASK ADDRESS ON QUEUE

GET CONTENTS OF M@

PUT ON TASK QUEUE

RESTORE AC CONTENTS

PUT ON TASK QUEUE

GET A NEW TASK

TU

TV

TIiO

TII

TI

DAC T1
LAC*x T.U
TAD =2
DAC T2
LAC* T2
DAC T3
DZM* T2
LAC Ti
JMPx T3

$DC 0@
DAC T1
LACx TV
DAC T2
ISZ TV
LAC TV
DAC T.L
JMP TL+4

$DC 0
LAC TQ+2
SAD TaQ+1
JMP EE
JMS TI
DAC Ta+2

LAC* TQ+2

JMPx TIO

$DC ©
DAC 24
LAC To+1
JMS TI
DAC TQ+1
SAD TQ+2
JMP EQ
LAC 24

DACx* TQ+1

JMPx TII

$DC ©

A-38

SAVE AC CONTENTS

GET ADDRESS OF SUBROUTINE
FORM ADDRESS OF SAVED RETURN
SAVE ADDRESS OF SAVED RETURN
GET SAVED RETURN

SAVE TEMPORARILY

UNLOCK SUBROUTINE

RESTORE AC CONTENTS

RETURN FROM SUBROUTINE

SAVE AC CONTENTS

GET POINTER TO SUBROUTINE
SAVE POINTER TO SUBROUTINE
FORM POINTER TO SAVED RETURN
GET POINTER TO SAVED RETURN
SIMULATE CALL TO T.L

FAKE AN ENTRY TO T.L

GET OUTPUT POINTER

SKIP IF TASK QUEUE NOT EMPTY
TASK QUEUE EMPTY

INCREMENT

STORE NEW OUTPUT POINTER

GET WORD FROM TASK QUEUE
RETURN

SAVE VALUE TO BE STORED

GET INPUT POINTER

INCREMENT

STORE NEW INPUT POINTER

SKIP IF NO TASK QUEUE OVERFLOW
TASK QUEUE OVERFLOW

GET VALUE TO BE STORED

PUT IN TASK QUEUE

RETURN

TQ

SAD TaQ
LAC =TQ+2
TAD =1
JMPx TI

$DC *+200
$DS 2090

A-39

SKIP 1F NO WRAP-AROCUND

GET ADDRESS BEFORE FIRST DATA WORD
INCREMENT POINTER

RETURN

CBé

céA

céAl

A-40

STITLE FORMAT CONVERTER

CLL

USE ZEROS TO FILL HOLES

LRS 14 SHIFT DIGITS 2, 35 4, & 5 INTO MQ
ALS 3 CONVERT DIGIT 2

LRS 6 SHIFT DIGIT 2 INTO M@

ALS 3 CONVERT DIGIT 1

LLS 11 SHIFT DIGITS @, 15 & 2 INTO AC
DAC TI STORE HIGH ORDER DIGITS
LLS 6 SHIFT DIGITS 3 & 4 INTO AC
ALS 3 CONVERT DIGIT S

LRS 6 SHIFT DIGIT 4 INTO M@

ALS 3 CONVERT DIGIT 4

AND =77 CONVERT DIGIT 3

LRS 11 SHIFT LOW ORDER DIGITS INTO M@
LAC Ti GET HIGH ORDER DIGITS

JMP* C.Bé& RETURN

AND =77 TRUNCATE HIGH ORDER BITS
TAD =C6A1 ADD ADDRESS OF TABLE

DAC TI1 SAVE TEMPORARILY

LAC* Ti1 GET CONVERTED VALUE

JMP% C.6A RETLURN

$DC 268

$DC 261

$DC 262

$DC 263

$DC 264

$DC 265

$DC 266

$DC 267

$SDC 270

$DC 271

$DC 301

$DC 302

$DC 303

$DC 304

$DC 305

$DC 306

$DC
$DC
$DC
$DC
s$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC

307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
252
257
253
255
250
251
333
335
274
275
276
336
337
256
254
272
2173
2717
241
247

A-41

A-42

$DC 242
$DC 244
$DC 243
$DC 246
$DC 215
$DC 212
$DC 240
$DC 377

CA6 AND =177 TRUNCATE HIGH ORDER BITS
TAD =CAé61 ADD ADDRESS OF TABLE
DAC Ti SAVE TEMPORARILY
LAC* TI1 GET CONVERTED VALUE
JMPx C.A6 RETURN

CAs1 $DC 177
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 75
$DC 77
$DC 77
$DC 74
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
$DC 77
s$DC 77
$DC 177

$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC

77
77
11
17
17
71
77
76
66
190
72
7
17
73
67
50
51
44
46
62
47
61
45
09
a1
92
23
04
a5
b6
07
10
11
63
64
S4
55
56
65
17

$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC

12
13
14
15
16
17
20
21
22
23
24
25
26
217
30
31
32
33
34
35
36
37
40
41
42
43
52
77
53
57
60
77
17
77
77
117
77
77
17
77

A-44

ccB

CCB1

cBC

$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC

DAC
AND
DAC
LAC
AND
SNA
JMP
LAC
cMA
TAD

17
71
17
77
77
1
117
17
77
117
17
17
77
1
77
77
17
717
17
77
717
717
77

T1
21777
T2
T1
=2000

CcCB1
T2

=1

JMP* C.CB

LAC

T2

JMPx C.CB

SMA

JMP CBC1

SAVE VALUE TO BE CONVERTED
GET MAGNITUDE

SAVE MAGNI TUDE

GET VALUE TO BE CONVERTED
GET SIGN BIT

SKIP IF NEGATIVE

DO NOT MODIFY MAGNITUDE
GET MAGNI TUDE

FORM 1°'S COMPLEMENT

FORM 2°'S COMPLEMENT
RETURN

GET CONVERTED VALUE
RETURN

SKIP IF NEGATIVE
DO NOT FORM NEGATIVE

CBC1

cMA

AND =1777
TAD =2001
AND =3777
JMP* C.BC
AND =1777
JMP* C.BC

A-46

FORM 1°'S COMPLEMENT

GET MAGNI TUDE

SET SIGN BIT & FORM 2°'S COMPLEMENT
CLEAR ESCAPE/INTENSITY BIT

RETURN

CONVERT TO MODULO 2t10

RETURN

BFDLE
BFSYN
BFACK
BFNAK
BFEOT
BFENQ
BFETB
BFETX

A-47

STITLE 201 DATAPHONE BUFFER MANAGER
$EQU 220 DATA LINK ESCAPE

$EQU 26 SYNCHRONOUS IDLE

$EQU 6 POSITIVE ACKNOWLEDGEMENT
$EQU 225 NEGATIVE ACKNOWLEDGEMENT
$EQU 204 END OF TRANSMISSION

$EQU S ENQUIRY

$EQU 27 END OF TEXT BLOCK

$EQU 3 END OF TEXT

* STATE BITS (LOW ORDER S BITS OF BFS):

21
g2
04
10
20

* % * X *

BFI

ACK OUTSTANDING

LAST INPUT RECORD COMPLETELY RECEIVED

ACK OUTPUT PENDING

NAK OUTPUT PENDING

DATA OUTPUT PENDING
I0T 1412 READ 201 STATUS
AND =1000 GET SET READY BIT
SNA SKIP IF DATA SET CONNECTED
JMP* Be.FI DATA SET NOT CONNECTED
LAC BFS GET 201 TASK STATE
AND =2 GET INPUT RECORD AVAILABLE BIT
SNA SKIP IF INPUT RECORD AVAILABLE
JMP BFIZ2 WAIT FOR INPUT RECORD
LAC BFIB GET FIRST RECEIVED CHARACTER
SZA SKIP IF USER RECORD
JMP BFI2 WAIT FOR RECORD TO BE TYPED
LACx BFIO GET CHARACTER FROM INPUT BUFFER
DAC BFI3 SAVE INPUT CHARACTER
ISZ BFIO INCREMENT INPUT POINTER
SMA SKIP IF END OF RECORD
JMP BFI1 RETURN
LAC BFS GET 201 TASK STATE
XOR =6 FORM ACK PENDING STATE
DAC BFS SET NEW STATE
LAC =BFXMT GET ADDRESS OF TRANSMISSION TASK
JMS T.S SCHEDULE TRANSMISSION TASK

LAC BFI3 GET END OF RECORD CHARACTER

BFI1

BFI2

BFO

BFOI1

BFO02

BFXMT

ISZ B.FI
JMP%® B.FI
JMP BF1
JMS TP

DAC BFO03
IOT 1412
AND =1000
SNA

JMP* B.FO
LAC BFS
AND =21
Sza

JMP BF02
LAC BFO3
DAC* BFOI
1SZ BFOl
SMA

JMP BFO1
LAC BFS
XOR =29
DAC BFS
LAC =BFXMT
JMS T.S
ISZ B.FO
JMP* B.FO
JMP BFO+1
JMS T.P

I0T 1412
AND =60100
SZA

JMP BFXMT4
LAC BFS
RAR
SZL+RAR
JMP BFXMT4
SZL+RAR
JMP BFXMT4
SNL+RAR

A-438

INDICATE SUCCESS

RETURN

GET CHARACTER FROM INPUT BUFFER
SCHEDULE PREVIOUS LOC & TERMINATE

SAVE CHARACTER TO BE BUFFERED
READ 201 STATUS

GET SET READY BIT

SKIP IF DATA SET CONNECTED
DATA SET NOT CONNECTED

GET 281 TASK STATE

GET DATA OUTPUT & ACK EXP BITS
SKIP IF OUTPUT BUFFER IS FREE
PUT CHARACTER INTO BUFFER LATER
GET CHARACTER TO BE BUFFERED
PUT CHARACTER IN OUTPUT BUFFER
INCREMENT INPUT POINTER

SKIP IF END-OF-RECORD CHARACTER
RETURN

GET 2081 TASK STATE

SET DATA OUTPUT PENDING BIT

SET NEW 201 TASK STATE

GET ADDRESS OF TRANSMISSION TASK
SCHEDULE TRANSMISSION TASK
INDICATE SUCCESS

RETURN

PUT CHARACTER IN BUFFER
SCHEDULE PREVIOUS LOC & TERMINATE

READ 281 STATUS

GET CAR DET» XMT RE@» CLR SEND BITS

SKIP IF ABLE TO TRANSMIT
RESCHEDULE BFXMT

GET 201 TASK STATE

SHIFT ACK EXPECTED BIT INTO LINK
SKIP IF ACK NOT EXFECTED
RESCHEDULE BFXMT

SKIP IF INPUT BUFFER EMPTY
RESCHEDULE BFXMT

SKIP IF ACK OUTPUT PENDING

BFXMT1

BFXMT2

BFXMT3

BFXMT4

BFACKR
BFNAKR

BFTTY

JMP BFXMT1
LAC BFS
AND =33
DAC BFS
LAC =BFIB
DAC BF1II
DAC BFIO
LAC =BFACKR
JMP BFXMT3
SNL+RAR
JMP BFXMT2
LAC BFS
AND =27
DAC BFS
LAC =BFNAKR
JMP BFXMT3
SNL

JMS T.F
LAC BFS
XOR =21
DAC BFS
LAC =BFOB
DAC BFOO
LAW ~-10
DAC BFC
LAW BFSYN
DAC 5

-LAC =200005

DAC IFO
LAC =20009
I0T 1404
JMS TeF
JMP BFXMT
JMS TeP

LAW BFACK
LAW BFNAK

LAC BFTTY2
JMS T.A

CHECK FOR NAK OUTPUT PENDING
GET 201 TASK STATE

CLEAR ACK OUTPUT PENDING BIT
SET NEW 201 TASK STATE

GET ADDRESS OF INPUT BUFFER
RESET INPUT POINTER

RESET OUTPUT POINTER

GET POINTER TO ACK RECORD
TRANSMIT ACK

SKIP IF NAK OUTPUT PENDING
CHECK FOR DATA OUTPUT PENDING
GET 201 TASK STATE

CLEAR NAK OUTPUT PENDING BIT
SET NEW 201 TASK STATE

GET POINTER TO NAK RECORD
TRANSMIT NAK

SKIP IF DATA OUTPUT PENDING

NO OUTPUT PENDING

GET 201 TASK STATE

CLEAR DATA BITs SET ACK EXP BIT
SET NEW 201 TASK STATE

GET POINTER TO OUTPUT BUFFER
SET OUTPUT POINTER

LOAD AC WITH -8

SET SYN COUNT

GET SYN CHARACTER

SET TRANSMIT IMAGE

GET LAC 5 INSTRUCTION
INITIALIZE XMT INTERRUPT SERVICE
GET XMT REQ BIT MASK

SET XMT REQ BIT

TERMINATE

START TRANSMISSION, IF APPLICABLE
SCHEDULE PREVIOUS LOC & TERMINATE

ACK RECORD
NAK RECORD

GET CONDITIONAL TELEPRINTER MASK
ALLOCATE TELEPRINTERs IF NECESSARY

BFTTY1

IFI

IFI1

DZM

BFTTY2

LAC* BFIO

SPA
JMP
JMS
XOR
JMS
ISZ
JMP
LAW
JMS
LAC
XOR
DAC
LAW
DAC
JMS
JMP

LAC
LRS
AND
HLT
SAD
SKP
JMP
10T
AND
I0T
LAC
DAC
10T
JMP
SAD
JMP
SAD
JMP
LAC
JMP
LAC

BFTTY1
Ce.A6
=777700
BeT
BFIO
BFTTY+3
17475
B.T

BFS

=6

BFS

10
BFTTY2
TeR
BFXMT

U abh

377
=BFSYN

IF16

1412

=2009

1464
=600000+1F11
IFI+3

1442

IR

=BFSYN
IFI1-2
=BFDLE

*+3

=740000
IFI1-3
=600000+]1F12

A-50

PREPARE FOR POSSIBLE ENQUIRY

GET CHARACTER FROM BUFFER

SKIP IF NOT END-OF~RECORD CHARACTER
TERMINATE LINE

CONVERT TO 6~BIT CODE

PRECEDE WITH NULL CHARACTERS

TYPE CHARACTER

INCREMENT INPUT POINTER

TYPE NEXT CHARACTER
GET CARRIAGE RETURN,
TYPE CARRIAGE RETURN,
GET 201 TASK STATE
FORM ACK PENDING STATE
SET NEW 281 TASK STATE
GET ALLOCATION MASK

SET BFTTY ALLOACTION MASK
RELEASE TELEPRINTER
ACKNOWLEDGE RECORD

LINE FEED CODE
LINE FEED

GET RECEIVED CHARACTER
SHIFT INTO POSITION
TRUNCATE HIGH ORDER BITS
STATE VARIABLE

SKIP IF NOT SYN

FIND NEXT SYN & CHANGE STATE
IGNORE CHARACTER

READ 201 STATUS

GET TEXT BIT

CLEAR TEXT BIT

GET JMP IFI1 INSTRUCTION
MODIFY INTERRUPT SERVICE
CLEAR 281 FLAGS

RETURN FROM INTERRUPT
SKIP 1IF NOT SYN

IGNORE SYN

SKIP IF NOT DLE (EVEN PARITY)
BUFFER RECEIVED RECORD
GET NOP INSTRUCTION
MODIFY INTERRUPT SERVICE
GET JMP IFI2 INSTRUCTION

IFl2

IFI3

IFI31

IFI 32

JMP
SAD
JMP
SAD
JMP
JMS
JMP
LAC
JMP
SAD
JMP
SAD
JMP
SAD
JMP
DAC
SAD
JMP
SAD
JMP
XOR
JMS
LAC
JMP
JMS
LAC
JMP
LAC
DAC
LAC
AND
DAC
LAC
JMP
LAC
XOR
DAC
LAC
JMS
JMP

IFI1-3
=BFDLE
IF13-2
=BFDLE-200
IFI3-2
BFIS
IFIl-2
=600PPO+1F13
IFI1-3
=BFDLE
IFI31-3
=BFDLE~-200
IFI31-3
=BFSYN
IF131-2
BFEOR
=BFACK
IFI31
=BFNAK
IF132
=760000
BFIS
=600000+1F1 4
IFI11-3
BFIS

= 600000+1FI2
IFI1=-3
=BFOB

BFOI

BFS

=36

BFS

=7 40000
IF11-3

BFS

=21

BFS

=BFXMT

TII
IFI32-2

MODIFY INTERRUPT SERVICE

SKIP IF NOT DLE (EVEN PARITY)
CHANGE STATE FOR NEXT CHARACTER
SKIP IF NOT DLE (ODD PARITY)
CHANGE STATE FOR NEXT CHARACTER
PUT CHARACTER IN BUFFER

CLEAR FLAGS AND RETURN

GET JMP IFI3 INSTRUCTION

MODIFY INTERRUPT SERVICE

SKIP IF NOT DLE (EVEN PARITY)
PUT DLE IN BUFFER

SKIP IF NOT DLE (ODD PARITY)
PUT DLE IN BUFFER

SKIP IF NOT SYN

IGNORE SYN

SAVE END~OF-RECORD CHARACTER
SKIP IF NOT ACK

CLEAR OUTPUT BUFFER

SKIP IF NOT NAK

RETRANSMIT LAST DATA RECORD
INDICATE END-OF-RECORD CHARACTER
PUT CHARACTER IN BUFFER

GET JMP IFI4 INSTRUCTION

MODIFY INTERRUPT SERVICE

PUT DLE CHARACTER IN BUFFER

GET JMP IFI2 INSTRUCTION

MODIFY INTERRUPT SERVICE

GET ADDRESS OF OUTPUT BUFFER
RESET INPUT POINTER

GET 201 TASK STATE

INDICATE ACK NOT EXPECTED

STORE NEW TASK STATE

GET NOP INSTRUCTION

MODIFY INTERRUPT SERVICE

GET 201 TASK STATE

FORM STATE FOR RETRANSMISSION
STORE NEW TASK STATE

GET ADDRESS OF TRANSMISSION TASK
SCHEDULE TRANSMISSION

MODIFY INTERRUPT SERVICE

IFIA4 CLL PREPARE TO SHIFT ZEROS INTO AC
ALS 19 SHIFT HIGH ORDER CHECK INTO POSITION
DAC BFCKR SAVE HIGH ORDER BLOCK CHECK
LAC =600000+IF1S5 GET JMP IFIS INSTRUCTION
JMP IFI1-3 MODIFY INTERRUPT SERVICE
IFIS XOR BFCKR FORM COMPLETE BLOCK CHECK
SAD BFCK SKIP IF BAD RECORD
JMP IFIS1 INDICATE INPUT BUFFER FULL
LAC =BFIB GET ADDRESS OF INPUT BUFFER
DAC BFll RESET INPUT POINTER
DAC BFIO RESET OUTPUT POINTER
LAC BFS GET 201 TASK STATE
XOR =10 INDICATE NAK PENDING
DAC BFS SET NEW 201 TASK STATE
JMP IFI14-3 SCHEDULE TRANSMISSION TASK
IFIS1 LAC BFS GET 201 TASK STATE
XOR =2 INDICATE INPUT BUFFER FULL
DAC BFS SET NEW 281 TASK STATE
LAC BFEOR GET END-OF-RECORD CHARACTER
JMS BFEN@S PROCESS ENRBUIRY, IF PRESENT
LAC BFIB GET FIRST RECEIVED CHARACTER
SNA SKIP IF UNSOLICITED RECORD
JMP IFI32-2 MODIFY INTERRUPT SERVICE
LAC =BFTTY GET ADDRESS OF BYPASS TASK
JMP IFI4-2 SCHEDULE BYPASS TASK
IFI 6 10T 1412 READ 201 STATUS
AND =2080 GET TEXT BIT
I0OT 1404 CLEAR TEXT BIT
JMP IFIl-2 CLEAR FLAGS AND RETURN
I1FO HLT STATE VARIABLE
SAD =760000+BFSYN SKIP IF NOT SYN
JMP 1IFO1 SYN SENT LAST TIME
SAD =760000+BFDLE SKIP IF NOT DLE
JMP 1FO03 DLE SENT LAST TIME
SMA SKIP IF END-OF-RECORD CHARACTER
JMP IFO4 TEXT CHARACTER SENT LAST TIME
JMP IFQS ENTER BLOCK CHECK PROCEDURE
IFO1 I1SZ BFC SKIP IF LAST SYN SENT
JMP IF02+2 CLEAR FLAGS AND RETURN

1F02

IFO3

IF04

IFOS

IFO6

IF07

1FO08

LAC
SKP
LAW
DAC
10T
JMP

LAC*

JMS
LAC
SAD
DZM

=BFDLE

BFDLE
5
1442
IR
BFOO
BFCKS
BFOO
=BFOB
BFCK

LAC* BFOO

152
JMP

BFOO
IF02+1

LAC* BFO0O

SAD
JMP
SAD
JMP
SMA
JMP
AND
JMS
JMP
LAC
DAC
LAC
LRS
JMP
LAC
DAC
LAC
JMP
LAC
DAC
CLC
JMP
10T
AND
10T

=BFDLE
I1Fo2
=BFDLE-200
1Fo2

IFO3+1

=377

BFENGQS

I1Fo2
=600000+1F06
IFO

BFCK

1@

1F02+1
=600000+1F07
IFO

BFCK

IFO2+1
=600000+1FO8
IFO

1F02+1
1412
=20000
1404

GET INITIAL DLE

SET TRANSMIT IMAGE

GET DLE CHARACTER

SET TRANSMIT IMAGE

CLEAR 2801 FLAGS

RETURN FROM INTERRUPT

GET CHARACTER FROM BUFFER
UPDATE BLOCK CHECK

GET OUTPUT POINTER

SKIP IF NOT FIRST CHARACTER
CLEAR BLOCK CHECK

GET CHARACTER FROM OUTPUT BUFFER
INCREMENT QUTPUT POINTER
TRANSMIT CHARACTER

GET CHARACTER FROM BUFFER
SKIP IF NOT DLE (EVEN PARITY)
PRECEDE WITH DLE

SKIP IF NOT DLE (ODD PARITY)
PRECEDE WITH DLE

SKIP IF END OF RECORD

SEND CHARACTER FROM BUFFER
TRUNCATE HIGH ORDER BITS
PROCESS ENQUIRY», IF PRESENT
PRECEDE WITH DLE

GET JMP IF06 INSTRUCTION
MODIFY INTERRUPT SERVICE

GET BLOCK CHECK

SHIFT HIGH ORDER PART INTO POSITI
TRANSMIT HIGH ORDER BLOCK CHECK
GET JMP INSTRUCTION

MODIFY INTERRUPT SERVICE

GET BLOCK CHECK

TRANSMIT LOW ORDER PART

GET JMP IFO08 INSTRUCTION
MODIFY INTERRUPT SERVICE

GET PAD CHARACTER

TRANSMIT PAD

READ 281 STATUS

GET XMT RE€ BIT

CLEAR XMT RE@ BIT

BFENGS

BFIS

BFCKS

BFCKS1

JMP

$DC
SAD
JMP
SAD
SKP

IF02+2

")
=BFEN@
x4+ 4
=BFEOT

JMP* BFENGS

LAC
DAC
LAC
DAC
DAC
DZM
DZM
LAC
DAC

=BFOB
BFOl
=BFIB
BF11
BFIO
BFIB
BFS
=740000
IFI+3

JMP* BFENGS

$DC

")

DAC* BFIl1

JMS
LAC
SAD
DZM
182

JMPx*»

$DC
DAC
LAW
DAC
LAC
RCR
DAC
cLe
LAC
LRS
DAC

LACA

BFCKS
BFII
=BFIB
BFCK
BFII
BFIS

(%)

23
-10
24
BFCK

BFCK
23

1
23

CLEAR 201 FLAGS AND RETURN

SKIP IF NOT ENQUIRY

PROCESS ENQUIRY

SKIP IF NOT END-OF-TRANSMISSION
REGARD AS ENGQUIRY

RETURN

GET ADDRESS OF OUTPUT BUFFER
RESET INPUT POINTER

GET ADDRESS OF INPUT BUFFER
RESET INPUT POINTER

RESET OUTPUT POINTER

DO NOT SCHEDULE BYPASS TASK
STOP 201 TASK ACTIVITY

GET NOP INSTRUCTION

MODIFY INTERRUPT SERVICE
RETURN

PUT CHARACTER IN INPUT BUFFER
UPDATE BLOCK CHECK

GET INPUT POINTER

SKIP 1IF INPUT BUFFER NON-EMPTY
CLEAR BLOCK CHECK

INCREMENT INPUT POINTER
RETURN

SAVE CHARACTER

LOAD AC WITH -8

SET COUNTER

GET FORMER BLOCK CHECK

ROTATE LOW ORDER BIT INTO LINK
STORE NEW LOW ORDER 15 BITS

PREPARE TO GET LOW ORDER CHAR BIT

GET CHARACTER REMAINS

SHIFT LOW ORDER BIT INTO M@
STORE CHARACTER REMAINS

GET LOW ORDER CHARACTER BIT

BFIB

BFOB

SZA

cML

LAC BFCK
SZL

XOR =120001
ISZ 24

JMP BFCKS1
DAC BFCK
JMP* BFCKS

$DS 200

$DS 200

A-55

SKIP IF NOT SET

OR CHECK BIT WITH CHARACTER BIT
GET LOW ORDER 15 BITS OF CHECK
SKIP IF LOW ORDER BIT WAS 0@
INVERT FEEDBACK BITS

INCREMENT COUNT & SKIP IF DONE
PROCESS NEXT CHARACTER BIT
STORE NEW BLOCK CHECK

RETURN

BR

BR1

BR2

IRD

STITLE

LAC BRO
SNA

JMP BR2
SAD BRI
JMP BRI
LAC* BRO
ISZ BRO
SNA

DZM BRO
ISZ B«R
JMP*x B.R
SAD =BRQ+200
JMP BR2
10T 314
AND =1000
SNA

JMP BR2-1
DZM BRO
JMP* BeR
JMP BR
JMS T.P
LAC =BRQ
DAC BRI
DAC BRO
IOT 104
JMP BR2-1

10T 314
AND =1000
SZA

JMP IRD1
IOT 112
SzZA

JMP IRD2
LAC BRS
SZA

JMP IRD3
JMS BRS

READER BUFFER MANAGER

GET OUTPUT POINTER

SKIP IF NOT START OF NEW RECORD

CLEAR BUFFER & START READER
SKIP IF BUFFER NOT EMPTY
WAIT FOR MORE INPUT

GET IMAGE FROM BUFFER
INCREMENT OUTPUT POINTER
SKIP IF NOT END OF RECORD
INDICATE NEW RECORD NEEDED
INDICATE SUCCESS

RETURN

SKIP IF NOT END OF BUFFER
CLEAR BUFFER & START READER
READ STATUS

GET READER OUT-OF-TAPE FLAG
SKIP IF READER OUT OF TAPE
SCHEDULE NEW ATTEMPT
INDICATE NEW RECORD NEEDED
RETURN

TRY AGAIN TO GET IMAGE
SCHEDULE NEW ATTEMPT

GET ADDRESS OF READER BUFFER
SET INPUT POINTER

SET OUTPUT POINTER

SELECT READER

SCHEDULE NEW ATTEMPT

READ STATUS

GET READER OUT-OF-TAPE FLAG
SKIP IF TAPE IS IN READER
READER OUT OF TAPE

READ READER BUFFER

SKIP IF BLANK TAPE

PUT IMAGE IN BUFFER

GET RECORD SEEK SWITCH
SKIP IF END OF RECORD

I GNORE BLANK TAPE

SET RECORD SEEK SWITCH

BRS

IRD1

IRD2

IRD3

BRQ

$DC

0

DZM* BRI

1SZ
JMP

BRI
IR

I0T 102

JMP

IR

DAC* BRI

1SZ
DzZM
LAC
SAD
JMP
I0T
JMP

$DS

BRI

BRS

BRI
=BRQ+200
IR

104

IR

200

A-57

RECORD SEEK SWITCH

STORE END-QF-RECORD IMAGE
INCREMENT INPUT POINTER
RETURN FROM INTERRUPT
CLEAR READER FLAG

RETURN FROM INTERRUPT
STORE IN READER BUFFER
INCREMENT INPUT POINTER
CLEAR RECORD SEEK SWITCH
GET INPUT POINTER

SKIP IF NOT END OF BUFFER
RETURN FROM INTERRUPT
SELECT READER

RETURN FROM INTERRUPT

STITLE PUNCH BUFFER MANAGER
BP DAC BP4 SAVE PUNCH IMAGE
JMS BpP2 START PUNCH, IF POSSIBLE
LAC BP4 GET PUNCH IMAGE
LMa SET UP PUNCH IMAGE AS PARAMETER
LAC =BPQ GET ADDRESS OF PUNCH BUFFER
JMS Q.A PUT PUNCH IMAGE IN BUFFER
JMP BP1 PUNCH BUFFER FULL
JMS BP2 START PUNCH, IF POSSIBLE
ISZ B.P INDICATE SUCCESS
JMPx B.P RETURN
BP1 IOT 314 READ STATUS
AND =400 GET PUNCH OUT-OF~-TAPE FLAG
SZA SKIP IF PUNCH CONTAINS TAPE
JMP* B.P PUNCH OUT OF TAPE
SKP PREPARE TO SCHEDULE NEXT LOCATION
JMP BP+2 TRY AGAIN TO PUT IMAGE IN BUFFER
JMS Te.P SCHEDULE PREVIOUS LOC & TERMINATE
BP2 $DC o
LAC BP3 GET PUNCH STATUS SWITCH
SZA SKIP IF PUNCH IS IDLE
JMP*x BP2 PUNCH IS ACTIVE
LAC =BP@ GET ADDRESS OF PUNCH BUFFER
JMS Q.F FETCH IMAGE FROM BUFFER
JMPx BP2 PUNCH BUFFER EMPTY
I0T 204 SELECT PUNCH
JMS BP3 SET PUNCH STATUS SWITCH
BP3 $DC @ PUNCH STATUS SWITCH
JMP¥* BP2 RETURN
IPC IOT 314 READ STATUS
AND =400 GET PUNCH OUT-OF-TAPE FLAG
SZA SKIP IF PUNCH CONTAINS TAPE
JMP IPC1 PUNCH OUT OF TAPE
LAC =BP@Q GET ADDRESS OF PUNCH BUFFER
JMS QF1 GET IMAGE FROM PUNCH BUFFER
JMP IPC1 PUNCH BUFFER EMPTY

I0T 284

A-58

SELECT PUNCH

IPC1

BPO

JMP
I0T
DZM
JUP

$DC
$DS

IR
202
BP3
IR

*+100
100

A-59

RETURN FROM INTERRUPT
CLEAR PUNCH FLAG
INDICATE PUNCH IDLE
RETURN FROM INTERRUPT

BK

BK1

IKB

BKE

$TITLE

LAC =BK@
JMS Q.F
JMP BK1
DAC BKF
JMS C.Aé
JMP% BeK
JMP BK
JMS T.P

10T 312
Lme

LAC =BKE
JMS QAL

NOP

JMP IR

$DC *+100
$DS 100

A-60

KEYBOARD BUFFER MANAGER

GET ADDRESS OF KEYBOARD BUFFER

GET CHARACTER FROM KEYBOARD BUFFER

WAIT FOR MORE INPUT

SAVE ASCII FOR SYSTEM USAGE
CONVERT TO 6-BIT CODE

RETURN

TRY AGAIN TO RETURN CHARACTER
SCHEDULE NEW ATTEMPT

READ KEYBOARD BUFFER

SET UP PARAMETER

GET ADDRESS OF KEYBOARD BUFFER
PUT CHARACTER IN BUFFER

BUFFER FULL ~-- IGNORE CHARACTER
RETURN FROM INTERRUPT

BT

BT1

BT2

BT3
BT4

I1TP

ITP1

STITLE

DAC
LAC
LMQ
LAC
JMS
JMP
LAC
SZA

BTS
BTS

=BTQ
Q.A
BT2
BTI

JMPx B.T

10T
LAC
DAC
JMS
$DC
JMP
JMP
JMS

$DC
$DC

LAC
SAD
SKP
JMP
LAC
SAD
SKP
JMP
LAC
JMS
JMP
DAC
LRS
DAC
LRS
AND
SAD

2
BeT
]
BT1
)
ITP

BT+1

T.P

77
77

BT4
=77

ITP3
BT3

A-61

TELEPRINTER BUFFER MANAGER

SAVE TEMPORARILY
GET PACKED WORD TO BE BUFFERED
SET UP PARAMETER

GET ADDRESS OF TELEPRINTER BUFFER
PUT PACKED WORD INTO TP BUFFER
TRY AGAIN LATER

GET TELEPRINTER STATUS SWITCH
SKIP IF TELEPRINTER IDLE

RETURN

DISABLE INTERRUPTS

GET RETURN ADDRESS

STORE INTERRUPT RETURN

SET TELEPRINTER STATUS SWITCH
TELEPRINTER STATUS SWITCH

FAKE A TELEPRINTER INTERRUPT

TRY AGAIN TO PUT CHAR IN BUFFER
SCHEDULE NEW ATTEMPT

GET SECOND CHARACTER

SKIP IF NOT NULL CHARACTER

LOOK AT THIRD CHARACTER

TYPE SECOND CHARACTER

GET THIRD CHARACTER

SKIP IF NOT NULL CHARACTER

TYPE FIRST CHARACTER

TYPE THIRD CHARACTER

GET ADDRESS OF TELEPRINTER BUFFER
GET PACKED WORD FROM TP BUFFER
CLEAR FLAG & RETURN

SET UP THIRD CHARACTER

SHIFT SECOND CHARACTER INTO PLACE
SET UP SECOND CHARACTER

SHIFT FIRST CHARACTER INTO PLACE
TRUNCATE HIGH ORDER BITS

SKIP IF NOT NULL CHARACTER

1TP2

ITP3

ITP4

BTQ

JMP
TAD
DAC

I1TP
=CéAl
23

LACx 23

10T
JMP
I0T
DZM
JmpP
DAC
LAC
DAC
LAC
JMP
DAC
LAC
DAC
LAC
JMP

$DC
$DS

486
IR
402
BT1
IR
23
=77
BT4
23
ITP1
23
=77
BT3
23
ITP1

*+100
100

A-62

TYPE NEXT CHARACTER

ADD ADDRESS OF 6-BIT TO ASCII1 TABLE
SAVE TEMPORARILY

GET CONVERTED ASCII VALUE
SEND CHARACTER TO TELEPRINTER
RETURN FROM INTERRUPT

CLEAR TELEPRINTER FLAG
INDICATE TELEPRINTER IDLE
RETURN FROM INTERRUPT

SAVE TEMPORARILY

GET NULL CHARACTER

STORE AS SECOND CHARACTER

GET CHARACTER TO BE TYPED
TYPE SECOND CHARACTER

SAVE TEMPORARILY

GET NULL CHARACTER

STORE AS THIRD CHARACTER

GET CHARACTER TO BE TYPED
TYPE THIRD CHARACTER

NA

NAl

NA2

NC

NC1

ND1

ND2

ND3

STITLE

JMS
$DC
$DC
AND
10T
10T
DZM
LAC
SNA
JMP
LAC
JMS
$DC
JMP

JMS

JMS
$DC
$DC
DAC
10T
DZM
LAC
SNA
JMP
JMS
$DC
JMP
JMS

10T

TV
NeA
0
=77
1103
1384
1AD}
IAD1

NA2
NA3
TeU
NA

NA1
TP

TV
N.C
0

7

44
ICK+1
ICK+1

NC1
TeU
NC

%5
T.P

S101

JMP* N.Di

10T

Stee

JMPx N.D2

10T

S104

JMP* N.D3

A-63

NONBUFFERED 1/0 MANAGER
PROTECT AGAINST REENTRY
TRUNCATE HIGH ORDER BITS

SELECT A/D CONVERTER CHANNEL
SELECT A/D CONVERTER

- CLEAR CONVERSION SWITCH

GET CONVERSION SWITCH

SKIP IF CONVERSION COMPLETE

WAIT FOR CONVERSION TO BE COMPLETED
GET CONVERTED VALUE

UNLOCK N.A

CHECK FOR CONVERSION COMPLETE
SCHEDULE CONVERSION CHECK

PROTECT AGAINST REENTRY

SET CLOCK INTERVAL

ENABLE CLOCK

CLEAR CLOCK SWITCH

GET CLOCK SWITCH

SKIP 1F TIME INTERVAL HAS ELAPSED
WAIT A LITTLE LONGER

UNLOCK N.C

CHECK ELAPSED TIME
SCHEDULE A LATER CHECK

SELECT DsA CONVERTER #1
RETURN

SELECT D/A CONVERTER #2
RETURN

SELECT D/A CONVERTER #3
RETURN

1AD

1IAD1

ICK

10T
DAC
JMS
$DC
JMP

Jms
$DC
10T
JMP

1312
NA3
IAD1
IR

*+1

4
IR

A-64

READ A/D CONVERTER
STORE CONVERTED VALUE
SET CONVERSION SWITCHM
CONVERSION SWITCH
RETURN FROM INTERRUPT

SET CLOCK SWITCH
CLOCK SWITCH

CLEAR CLOCK FLAG
RETURN FROM INTERRUPT

PT

PE

PD

PR

PS

PN

PS1

IPB

STITLE

SNA

LAC =PN

DAC PTT

JMP%x P.T

JMS =%+
$DC 0
JMP* PJ.E

DZM PE+1
JMP% P.D

10T 631
JMP% PR

I0T 2 :
JMS PS1
10T 42
JMPx P,S

JMS P.E
JMS TeF

$DC 0
DAC PRG
LRS 6
AND =77
TAD =200
10T 7985
LLS 6
AND =77
TAD =300
10T 705
JMPx PS1

LAC PE+1
SNA
JMP IPB1

A-65

PUSH BUTTON PROCESSOR

SKIP IF NOT NULL TASK

GET ADDRESS OF NULL TASK

SAVE ADDRESS OF PUSH BUTTON SERVICE
RETURN

SET PUSH BUTTON ENABLE SWITCH
PUSH BUTTON ENABLE SWI TCH
RETURN '

CLEAR PUSH BUTTON ENABLE SWITCH
RETURN '

READ PUSH BUTTONS
RETURN

DISABLE INTERRUPTS
SET PUSH BUTTONS
ENABLE INTERRUFPTS
RETURN

ENABLE MANUAL OPN OF PUSH BUTTONS
TERMINATE TASK

STORE NEW PUSH BUTTON STATUS
SHIFT BITS 8-S INTO POSITION
TRUNCATE HIGH ORDER BITS

SET BITS 8-5 ENABLE BIT

SET PUSH BUTTONS 8-5

SHIFT BITS 6-11 INTO POSITION
TRUNCATE HIGH ORDER BITS

SET BITS 6~11 ENABLE BITS

SET PUSH BUTTONS 6~11

RETURN

GET PUSH BUTTON ENABLE SWITCH
SKIP IF PUSH BUTTONS ARE ENABLED
RESTORE PUSH BUTTON STATUS

IPB1

LAC
AND
JMS
10T
DAC
DZM
JMP
LAC
JMS
JMP

PTT
=77777
T11
631
PRG
PE+1
IR
PRG
PS1

IR

A-66

GET ADDRESS OF PUSH BUTTON SERVICE
TRUNCATE HIGH ORDER BITS

SCHEDULE PUSH BUTTON SERVICE

READ PUSH BUTTONS

MODIFY PUSH BUTTON STATUS WORD
DISABLE PUSH BUTTONS

RETURN FROM INTERRUPT

GET FORMER PUSH BUTTON STATUS

SET PUSH BUTTONS

RETURN FROM INTERRUPT

DE

DD

bp

DA

DY

DX

$TITLE

JMS *+1
$DC @
JMP%x D.E

DZM DE+1
JMP* D.D

SNA

LAC =DN
DAC DPT
JMP* D.P

LAC DS1
LLS 14
AND =170000
XOR DSA
JMP¥x D.A

LAC DS2
LLS 3

AND =10000
XOR DSY
TAD =-1000
JMP*x D.Y

LAC DS2
LLS 4

AND =10000
XOR DSX
TAD =-1000
JMPx DX

AND =77

RCL

CMA

TAD DSP

TAD =PDP2-PDP1-1
DAC Ti

A-67

DISPLAY COMMUNICATOR

SET DISPLAY INT ENABLE SWITCH
DISPLAY INT ENABLE SWITCH
RETURN

CLEAR INT ENABLE SWITCH
RETURN

SKIP IF NOT NULL SERVICE

GET ADDRESS OF NULL SERVICE
STORE ADDRESS OF SERVICE TASK
RETURN

GET STATUS WORD 1

SHIFT BREAK FIELD INTO POSITION
REMOVE ALL BUT BREAK FIELD

FORM 15-BIT ADDRESS

RETURN

GET STATUS WORD 2

SHIFT HIGH ORDER BIT INTO POSITION
REMOVE OTHER BITS

FORM 13-BIT Y COORDINATE

CONVERT RELATIVE TO SCREEN CENTER
RETURN

GET STATUS WORD 2

SHIFT HIGH ORDER BIT INTO POSITION
REMOVE OTHER BITS

FORM 13-BIT X COORDINATE

CONVERT RELATIVE TO SCREEN CENTER
RETURN

TRUNCATE HIGH ORDER BITS

MULTIPLY PARAMETER BY 2

FORM 1°'S COMPLEMENT

ADD PUSH DOWN POINTER

COMPUTE ADDRESS OF PUSH DOWN ENTRY
SAVE TEMPORARILY

Dw

DWT

ILP

TAD =-PDP2
SPA

JMPx D.O
LACx T1
LLS 3

AND =70000
152 Ti
TAD* Ti
TAD =7777
DAC Ti
LAC* T}
ISZ D.O
JMPx D.O

JMS

«E
JMS TeF

] - O

$DC
DZM DWT
LAC DWT
SNA '
JMP *+3
JMP%x DW
JMP DW+2
JMS T.P
$DC @

LAC DWWV
SNA '
JMP XIS1
DAC* DWHD
XOR =2000
DAC* DWTL
DzZM DWV
JMP XIS1

LAC DSS
AND =7
SzaAa

JMP *+§
10T 611

A-68

FORM VALIDITY CHECK

SKIP IF PARAMETER VALID

NOT ENOUGH OWNERS

GET FIRST PUSH DOWN WORD

SHIFT BREAK FIELD INTO POSITION
REMOVE ALL BUT BREAK FIELD

SET POINTER TO SECOND PD ENTRY
COMBINE FIRST & SECOND ENTRIES
FORM ADDRESS IN OWNER OF OWNER
SAVE TEMPORARILY

GET ADDRESS OF DESIRED OWNER
INDICATE SUCCESS

RETURN

ENABLE DISPLAY INTERRUPTS
TERMINATE TASK

CLEAR DISPLAY READY SWITCH
GET DISPLAY READY SWITCH

SKIP IF SET
WAIT FOR DISPLAY TO FINISH FRAME
RETURN

CHECK DISPLAY READY SWITCH
SCHEDULE NEW SWITCH CHECK
DISPLAY READY SWITCH

GET TRANSLATION VALUE

SKIP IF TRANSLATION PENDING
RESUWME DISPLAY & RETURN
STORE DISPLACEMENT

INVERT SIGN BIT

STORE COUNTERDISPLACEMENT
INDICATE TRANSLATION PERFORMED
RESUME DISPLAY & RETURN

GET DISPLAY STATUS WORD 1
GET BREAK FIELD

SKIP IF ZERO BREAK FIELD
USER FILE INTERRUPT

READ DISPLAY ADDRESS

IIS

DS

TAD
SMA
JMP
LAC
SzZA
JMP
I0T
JMP
LAC
JMS
JUP

LAC
AND
SNA
JMP
10T

“XOR

SAD
JMS
LAC
SZA
JMP
10T
TAD
10T
JMP
LAC
LLS
AND
10T
DAC

=-XP

XLP
DE+1

*x+3
724
IR
DPT
DS
*-4

DSS
=7

XIS
611 .
=10000
=D+ 4
DWT
DE+1

*+5
611

=1
1605
IR

DSS

14
=70000
601

23

LAC* 23

JMS
JMP

$DC
AND
JMS
DZM

DS
*~-13

)
=77711
TII
DE+1

A-69

FORM ADDRESS CHECK

SKIP IF USER FILE INTERRUPT
TRACKING INTERRUPT

GET DISPLAY INT ENABLE SWITCH
SKIP IF DISPLAY INTERRUPTS DISABLED
GET STATUS FOR USER

RESUME DISPLAY

RETURN FROM INTERRUPT

GET ADDRESS OF SERVICE TASK
SCHEDULE SERVICE & READ STATUS
RESUME DISPLAY & RETURN

GET DISPLAY STATUS WORD 1

GET BREAK FIELD

SKIP IF USER FILE INTERRUPT
TRACKING INTERRUPT

READ DISPLAY ADDRESS

INTERPRET WITH BREAK FIELD 1
SKIP IF NOT DISPLAY SYNC INTERRUPT
SET DISPLAY READY SWITCH

GET DISPLAY INT ENABLE SWITCH
SKIP IF DISPLAY INTERRUPTS DI SABLED
GET STATUS FOR USER

READ DISPLAY ADDRESS

FORM RESUME ADDRESS

RESUME DI SPLAY

RETURN FROM INTERRUPT

GET DISPLAY STATUS WORD 1

SHIFT BREAK FIELD INTO POSITION
REMOVE ALL BUT BREAK FIELD

FORM DISPLAY ADDRESS

SAVE TEMPORARILY

GET ADDRESS OF SERVICE TASK
SCHEDULE SERVICE & READ STATUS
RESUME DISPLAY & RETURN

TRUNCATE HIGH ORDER BITS
SCHEDULE SERVICE TASK
DISABLE DISPLAY INTERRUPTS

A-70

LAC DSS GET DISPLAY STATUS WORD 1
DAC DS1 SAVE

IOT 1632 READ STATUS WORD 2

DAC DS2 SAVE

IOT 611 READ DISPLAY ADDRESS

DAC DSA SAVE

I0T 1612 READ Y DISPLAY COORDINATE
DAC DSY SAVE

I0OT 512 READ X DISPLAY COORDINATE
DAC DSX SAVE

I0OT 511 READ PUSH DOWN POINTER

DAC DSP SAVE

LAC =PDPt~-1 GET ADDRESS OF PUSH DOWN LIST
DAC 1@ SET AUTOINDEX REGISTER

LAC =PDP2-1 GET ADDRESS OF PUSH DOWN SAVE AREA
DAC 11 SET AUTOINDEX REGISTER

LAC* 10 GET WORD FROM PUSH DOWN LIST
DAC* 11 STORE IN PUSH-DOWN SAVE AREA
LAC 10 GET SOURCE POINTER

SAD DSP SKIP IF NOT END OF LIST

JMPx DS RETURN

JMP *-5 COPY NEXT WORD

X1

XR

XT

XS

XY

XX

XLP

$STITLE

TAD =1000
AND =1777
DAC XPY
LACe

TAD =1000
AND =1777
XOR =4000
DAC XPX
DZM XP
JMPx Xel

DZM XP
JMP* XeR

LAW 3000
DAC XP
JMP*x X.T

LAW 3000
SAD XP

ISZ X«S
JMP*x XS

LAC XPY
TAD =-1000
JMP* X.Y

LAC XPX
AND =1777
TAD =-1000
JMP*x XX

HLT

HLT

HLT

JMP *+3
AND =1777
DAC XPY

A-71

TRACKING CONTROLLER

CONVERT RELATIVE TO ORIGIN
CONVERT MODULO 2t14@

SET Y TRACKING COORDINATE
GET X COORDINATE

CONVERT RELATIVE TO ORIGIN
CONVERT MODULO 2110

SET ESCAPE BIT

SET X TRACKING COORDINATE
ENABLE TRACKING

RETURN

ENABLE TRACKING
RETURN

GET POP INSTRUCTION-
TERMINATE TRACKING
RETURN

GET POP INSTRUCTION

SKIP IF TRACKING ENABLED
INDICATE SUCCESS

RETURN

GET Y TRACKING COORDINATE
CONVERT RELATIVE TO SCREEN CENTER
RETURN

GET X TRACKING COORDINATE
TRUNCATE ESCAPE

CONVERT RELATIVE TO SCREEN CENTER
RETURN

STATE VARIABLE

STATE VARIABLE

STATE VARIABLE

DO NOT CHANGE Y TRACKING COORDINATE
TRUNCATE HIGH ORDER BITS

SET Y TRACKING COORDINATE

XLP1

XIS

XIS1

X1

X2

X3

10T
TAD
SMA
JMP
AND
XOR
DAC
LAW
10T
JMP
10T
JMP

10T
DAC

512
=-2000

*+4
=1777
=4000
XPX
XP
1605
IR
724
IR

611
23

LAC* 23

DAC

23

JMP* 23

I0T
TAD
I0T
JMP

LAW
DAC
LAC
DAC
LAC
DAC
LAC
DAC
DZM
DZM
JMP

LAC
DAC
JMP

LAC

611
=1
1605
IR

3000

XPS
=780512
XLP

= 40000+ XL
XLP+1}
=6000900+XLP1
XLP+2

XL

XH

XISt

=40000+XH
XLP+1
X1S1

XH

A-72

READ X COORDINATE

SUBTRACT 1024

SKIP IF COORDINATE ON SCREEN
DO NOT CHANGE X COORDINATE
TRUNCATE HIGH ORDER BITS

SET ESCAPE BIT

SET X TRACKING COORDINATE
GET ADDRESS OF TRACKING PATTERN
RESTART TRACKING PROCESS
RETURN FROM INTERRUPT

RESUME DISPLAY

RETURN

READ DISPLAY ADDRESS
SAVE TEMPORARILY

GET ADDRESS OF SERVICE
SAVE TEMPORARILY
SERVICE INTERRUPT

READ DISPLAY ADDRESS
FORM RESWME ADDRESS
RESUME DI SPLAY

RETURN FROM INTERRUPT

GET POP INSTRUCTION
INHIBIT SEARCH PATTERN
GET IOT 512 INSTRUCTION
MODIFY INTERRUPT SERVICE
GET DAC XL INSTRUCTION
MODIFY INTERRUPT SERVICE
GET JMP XLP1 INSTRUCTION
MODIFY INTERRUPT SERVICE
CLEAR LOW COORDINATE
CLEAR HIGH COORDINATE
RESUME DISPLAY & RETURN

GET DAC XH INSTRUCTION
MODIFY INTERRUPT SERVICE
RESUME DISPLAY & RETURN

GET HIGH COORDINATE

X31

X4

X41

SNA
JMP
TAD
SAD
JMP
RCR
TAD
SMA
JMP
AND
XOR
DAC
JMP
LAW
DAC
DZM
DZ™
LAC
DAC
LAC
DAC
JMP

LAC
SNA
JMP
TAD
SAD
JMP
RCR
TAD
SMA
JMP
AND
DAC
JMP
LAW
DAC
LAC
DAC

X31
XL
XH
X31

=-2000

X31+2
=17717

= 4000
XPX
X31+2
777

XPS

XL

XH
=701612
XLP
s40000+XL
XLP+1
XIS1

XH

X4a1
XL
XH
X41

=-2000

Xa41+2
=17717
XPY
Xa1+2
1717
XPS
XLP+7
XLP+1}

A-73

SKIP IF VALID

ENABLE SEARCH PATTERN

ADD LOW COORDINATE

SKIP IF VALID

ENABLE SEARCH PATTERN
DIVIDE BY 2

SUBTRACT 1024

SKIP IF COORDINATE ON SCREEN
DO NOT CHANGE X COORDINATE
CONVERT MODULO 2110

SET ESCAPE BIT

SET X TRACKING COORDINATE
LEAVE SEARCH PATTERN INHIBITED
GET SEARCH ENABLE WORD
ENABLE SEARCH PATTERN
CLEAR LOW COORDINATE

CLEAR HIGH COORDINATE

GET I0T 1612 INSTRUCTION
MODIFY INTERRUPT SERVICF
GET DAC XL INSTRUCTION
MODIFY INTERRUPT SERVICE
RESUME DISPLAY & RETURN

GET HIGH COORDINATE

SKIP IF NOT VALID

ENABLE SEARCH PATTERN

ADD LOW COORDINATE

SKIP IF VALID

ENABLE SEARCH PATTERN

DIVIDE BY 2

SUBTRACT 1024

SKIP IF COORDINATE ON SCREEN
DO NOT CHANGE Y TRACKING COORDINATE
CONVERT MODULO 2t10

SET Y TRACKING COORDINATE
LEAVE SEARCH PATTERN INHIBITED
GET SEARCH ENABLE WORD

ENABLE SEARCH PATTERN

GET TAD =-2000 INSTRUCTION
MODIFY INTERRUPT SERVICE

X5

LAC =740100
DAC XLP+2
JMP XISt

LAW 3000
DAC XP
JMP XISt

A-74

GET SMA INSTRUCTION
MODIFY INTERRUPT SERVICE
RESUME DISPLAY & RETURN

GET POP INSTRUCTION
DISABLE TRACKING
RESUME DISPLAY & RETURN

STL

STITLE

JMS B4
JMP* S.TL
DAC TS
TAD =-1
DAC 12
LAW @
DAC* 12
DAC* 12
DAC* 12
LAW 1121
DAC* 12
LAW @
DAC* 12
LAW 4000
DAC* 12
LAW 2001
DAC* 12
JMS B4
JMP STLI
DAC* 12
TAD =-1
DAC 12
LAW 6248
DACx 12
LAW 1400
DACx* 12
DZM* 12
DZMx 12
LAW 1121
DAC* 12
DZM* 12
LAW 4000
DAC* 12
LAW 30009
DAC=* 12
LAC TS
ISZ S.TL
JMP%x S.TL

A-75

STRUCTURE TOPOLOGY OPERATORS

GET 8-WORD BLOCK

NOT ENOUGH STORAGE

SAVE ADDRESS FOR RETURN

COMPUTE INITIAL INDEX VALUE

SET AUTOINDEX REGISTER

GET DISPLAY NOP INSTRUCTION
STORE IN FIRST LOCATION IN HEAD
STORE IN SECOND LOCATION IN HEAD
STORE IN THIRD LOCATION IN HEAD
GET VEC INSTRUCTION

STORE IN FOURTH LOCATION IN HEAD
GET DISPLAY NOP INSTRUCTION
STORE IN FIFTH LOCATION IN HEAD
GET ZERO X COORD WITH ESCAPE BIT
STORE IN SIXTH LOCATION IN HEAD
GET JUMP1 INSTRUCTION

STORE IN SEVENTH LOCATION IN HEAD
GET 8-WORD BLOCK

NOT ENOUGH STORAGE

STORE ADDRESS OF TAIL IN HEAD
COMPUTE INITIAL INDEX VALUE

SET AUTOINDEX REGISTER

GET UNCONDI TIONAL DISPLAY SKIP
STORE IN FIRST LOCATION IN TAIL
GET INTERNAL STOP INSTRUCTION
STORE IN SECOND LOCATION IN TAIL
ZERO IN THIRD LOCATION IN TAIL

STORE DISPLAY NOP IN FOURTH LOCATION

GET VEC INSTRUCTION

STORE IN FIFTH LOC IN TAIL

STORE IN SIXTH LOC IN TAIL

GET ZERO X COORD WITH ESCAPE BIT
STORE IN SEVENTH LOCATION IN TAIL
GET POP INSTRUCTION

STORE IN EIGHTH LOC IN TAIL

GET ADDRESS OF CREATED LEVEL
INDICATE SUCCESS

RETURN

STL1

STD

STD1

STI

DZMx TS
LAC TS5
TAD =4
DAC TS
DZMx TS
JMP%x S.TL
SAD =DHAL
JMP STD1
DAC Ti1
TAD =4
DAC T2
TAD =3
DAC T3
LAC* T3
DAC T3
TAD =4
DAC T4
LACx T3
AND =777770
SAD =762010
JMP* S.TD
DZMx Ti
DZM* T2
DZM* T3
DZMx T4
1SZ S.TD
JMPx S.TD
TAD =7
DAC TS
JMS B3
JMPx S.TI
DAC Ti
TAD =-1
DAC 12
LLS 6

AND =7
X0OR =762010

DACx 12

FREE FIRST 4-WORD BLOCK IN HEAD

GET ADDRESS OF 8- WORD BLOCK

FORM ADDRESS OF SECOND 4-WORD BLOCK
SAVE TEMPORARILY

FREE SECOND 4-WORD BLOCK IN HEAD
FAILURE RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
HIGHEST ACTIVE LEVEL

SAVE ADDRESS OF FIRST HEAD BLOCK
FORM ADDRESS OF SECOND HEAD BLOCK
SAVE ADDRESS OF SECOND HEAD BLOCK
FORM POINTER TO LAST LOC IN HEAD
SAVE TEMPORARILY

GET ADDRESS OF TAIL (OR NODE)
SAVE ADDRESS OF TAIL (OR NODE)
FORM ADDRESS OF SECOND TAIL BLOCK
SAVE

GET FIRST WORD OF TAIL (OR NODE)
TRUNCATE BREAK FIELD

SKIP IF NOT NODE

LEVEL NOT EMPTY

RELEASE FIRST HEAD BLOCK

RELEASE SECOND HEAD BLOCK

RELEASE FIRST TAIL BLOCK

RELEASE SECOND TAIL BLOCK
INDICATE SUCCESS

RETURN

FORM POINTER TO LAST LOC IN HEAD
SAVE

CREATE 4-WORD BLOCK

NOT ENOUGH STORAGE

SET POINTER TO BLOCK
COMPUTE INITIAL INDEX VALUE
SET AUTOINDEX REGISTER
SHIFT BREAK FIELD INTO AC
TRUNCATE HIGH ORDER BITS
FORM PUSH JUMP INSTRUCTION
STORE IN FIRST LOC IN BLOCK

A-77

AND =7 TRUNCATE HIGH ORDER BITS
LLS 14 GET COMPLETE ADDRESS
DACx 12 STORE IN SECOND LOC IN BLOCK
LAW 2001 GET JUMP1 INSTRUCTION
DAC* 12 STORE IN THIRD LOC IN BLOCK
LAC* TS GET ADR OF FIRST ELEMENT IN LEVEL
DACx 12 STORE AS SUCCESSOR TO NEW NODE
LAC Ti GET ADDRESS OF NEW NODE
DAC* TS INSERT NEW NODE INTO LEVEL
ISZ S.TI INDICATE SUCCESS
JMPx S.TI RETURN

STR JMS TV PROTECT AGAINST REENTRY
$DC S.TR
$DC 9
TAD =7 GET POINTER TO END OF HEAD
DAC T1 SAVE TEMPORARILY
LAC* TI1 GET ADDRESS OF FIRST ELEMENT
DAC T2 SAVE TEMPORARILY
DAC STR2 SAVE ADDRESS FOR REMOVAL
LAC*x T2 GET FIRST WORD OF FIRST ELEMENT
AND =7777170 TRUNCATE BREAK FIELD
SAD =762010 SKIP IF NOT NODE
SKP NODE
JMP STR1+7 SUBSTRUCTURE NOT IN LEVEL
1SZ T2 FORM POINTER TO ADR OF SUBSTRUCTURE
LACQ GET ADDRESS OF GIVEN SUBSTRUCTURE
SAD* T2 SKIP IF NO MATCH
JMP STR1 SUBSTRUCTURE FOUND
LAC T2 GET POINTER TO ADR OF SUBSTRUCTURE
TAD =2 FORM POINTER TO END OF NODE
JMP STR+4 TRY NEXT NODE

STR1 ISz T2 INCREMENT POINTER TO LOC IN NODE
ISZ T2 INCREMENT POINTER TO LOC IN NODE
LAC*x T2 GET ADR OF SUCCESSOR TO NODE
DAC* T1 STORE IN PREVIOUS NODE (OR HEAD)
JMS DW WAIT FOR DISPLAY TO SETTLE DOWN
DzZm%x STR2 RELEASE NODE TO FREE STORAGE
1SZ STR+2 INDICATE SUCCESS

JMS T.U

UNLOCK S.TRD

A-78

$DC STR

SLH

SLY

SLY1

SLX

$TITLE

LAC =DHAL
JMP* S.LH

JMS TV
$DC S.LY
$DC B

SAD =DHAL
JMP SLY1+3
TAD =4
DAC DWHD
TAD =3
JMS SLT
TAD =5
DAC DWTL
LACE

JMS C.BC
XOR =760000
DAC DWV
LAC DWV
Sza

JMP %+4
JMS T.U
$DC SLY
JMP SLY1
JMS TP

JMS TV
$DC S.LX
$DC ©

SAD =DHAL.
JMP SLX1+3
TAD =5
DAC DWHD
TAD =2
JMS SLT
TAD =6
DAC DWTL
LACQ

A-79

LEVEL MODIFICATION OPERATORS

GET ADDRESS OF HIGHEST ACTIVE LEVEL

RETURN

PROTECT AGAINST REENTRY

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN ’
FORM POINTER TO Y COORD IN HEAD
SAVE

FORM POINTER TO END OF MEAD

GET ADDRESS OF TAIL

FORM POINTER TO Y COORD IN TAIL
SAVE

GET Y INCREMENT :

CONVERT TO DISPLAY COORDINATE
INDICATE STORAGE OCCUPIED

SAVE TRANSLATION VALUE

GET TRANSLATION VALUE

SKIP IF TRANSLATION COMPLETE
RESCHEDULE COMPLETION CHECK
UNLOCK S.LY

CHECK FOR TRANSLATION COMPLETE
SCHEDULE COMPLETION CHECK

PROTECT AGAINST REENTRY

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN

FORM POINTER TO X COORD IN HEAD

SAVE

FORM POINTER TO END OF HEAD

GET ADDRESS OF TAIL

FORM POINTER TO X COORE IN TAIL

SAVE

GET X INCREMENT

SLX1

SLP

SLBE

SLBD

JMS C.BC
XOR = 4900
DAC DWV
LAC DWV
SZa

JMP %+ 4
JMS Te.U
$DC SLX
JMP SLX1
JMS T.P

SAD =DHAL
JMP* S.LP
TAD =2
DAC T1
LACQ

AND =777
DACx* Ti
JMP* S.LP

SAD =DHAL
JMP* S.LBE
TAD =1

DAC T2

TAD =6

JMS SLT
TAD =3

DAC T1
LAW 6301
DAC* TI
LAC* T2
AND =74
TAD =6302
DAC* T2
JMPx S.LBE

SAD =DHAL
JMP* S.LBD
TAD =1

DAC T2

A-80

CONVERT TO DISPLAY COORDINATE
SET ESCAPE BIT

SAVE TRANSLATION VALUE

GET TRANSLATION VALUE

SKIP 1IF TRANSLATION COMPLETE
RESCHEDULE COMPLETION CHECK
UNLOCK SeLX

CHECK FOR TRANSLATION COMPLETE
SCHEDULE COMPLETION CHECK

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN

GET ADDRESS OF PARAMETER SLOT
SAVE TEMPORARILY

GET PARAMETERS

TRUNCATE HIGH ORDER BITS

STORE PARAMETERS IN LEVEL

RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN

FORM POINTER TO COUNT SLOT
SAVE TEMPORARILY

FORM POINTER TO END OF HEAD
GET ADDRESS OF TAIL

FORM POINTER TO BLINK OFF SLOT
SAVE TEMPORARILY

GET BLINK OFF INSTRUCTION
STORE IN TAIL

GET COUNT INSTRUCTION

GET COUNT BITS

FORM NEW COUNT INSTRUCTION
STORE NEW COUNT INSTRUCTION
RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN

FORM POINTER TQO COUNT SLOT

SAVE TEMPORARILY '

SLC

SLU

SLS

SLL

TAD =6
JMS SLT
TAD =3
DAC Ti
LAC* T2

AND =777774

DAC* T2
DZMx T1
JMP* S.LBD

SAD =DHAL
JMPx S.LC
TAD =1
DAC Ti
LAC* Ti
AND =2
DAC T2
LACS

AND =74
XOR T2
XOR =6309
DAC* TI
JMPx S.LC

SAD =DHAL
JMP%x S.LU
JMS S.LN
DACx* T}
JMP®x S.LU

SAD =DHAL
JMP% S.LS
JMS S.LN
LAW 6220
DAC* Ti

JMPx S.LS

SAD =DHAL
JMP* S.LL
JMS SLSP

A-81

FORM POINTER TO END OF HEAD
GET ADDRESS OF TAIL

FORM POINTER TO BLINK OFF SLOT
SAVE TEMPORARILY

GET COUNT INSTRUCTION

FORM NEW COUNT INSTRUCTION
STORE NEW COUNT INSTRUCTION
REMOVE BLINK OFF INSTRUCTION
RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN

FORM POINTER TO COUNT SLOT

SAVE TEMPORARILY

GET COUNT INSTRUCTION

GET BLINK BIT

SAVE TEMPORARILY

GET COUNT BITS

TRUNCATE OTHER BITS

CONCATENATE COUNT BITS & BLINK BIT
FORM NEW COUNT INSTRUCTION

STORE NEW COUNT INSTRUCTION
RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN
REMOVE INTERRUPT AT END OF LEVEL
REMOVE SKIP INSTRUCTION FROM TAIL
RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN

REMOVE INTERRUPT AT END OF LEVEL
GET SKIP-1F-OFF-SCREEN INSTRUCTION
STORE IN TAIL

RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN
REMOVE INTERRUPT FROM END OF LEVEL

SLN

SLT

SLSP

LAW 6201
DAC* T2
LAW 6202
DAC* Ti
JMP* S.LL

SAD =DHAL
JMP* S.LN
JMS SLSP
LAW ©
DAC* T2
JMP* S.LN

$DC 0

DAC T1

LACx* TI

DAC Ti

LAC* TI

AND =7777179
SAD =762010
JMP %43

LAC TI

JMP* SLT
LAC Ti

TAD =3

JMP SLT+1

$DC ©
DAC T2
TAD =7
JMS SLT
TAD =2
DAC T3
LAW 6248
DAC* T1
LACS
DAC* T3
JMP* SLSP

A-82

GET LPSI CLEAR INSTRUCTION
STORE IN HEAD

GET SKIP-ON-NO-LPSI INSTRUCTION
STORE IN TAIL

RETURN

SKIP IF NOT HIGHEST ACTIVE LEVEL
RETURN

REMOVE INTERRUPT AT END OF LEVEL
GET DISPLAY NOP INSTRUCTION
REMOVE LPSI CLEAR

RETURN

STORE POINTER TO END OF BLOCK

GET POINTER TO NEXT NODE <(OR TAIL)
SAVE TEMPORARILY

GET FIRST WORD FROM NODE (OR TAIL)
TRUNCATE BREAK FIELD

SKIP IF NOT NODE

TAIL NOT FOUND

GET ADDRESS OF TAIL

RETURN

GET POINTER TO NODE

FORM POINTER TO END OF NODE

LOOK AT NEXT NODE (OR TAIL)

SAVE ADDRESS OF LEVEL

FORM POINTER TO END OF HEAD
GET ADDRESS OF TAIL

FORM POINTER TO TASK ADDRESS
SAVE TEMPORARILY

GET SKIP INSTRUCTION

STORE IN TAIL

GET NEW SERVICE TASK ADDRESS
STORE IN TAIL

RETURN

LT

LT1

LD

LD1

$STITLE

DAC LT2

LAC* LT2
CMA

DAC LT3

ISZ LT3

SKP

JMPx LT
ISZ LT2

LAC* LT2
JMS B.T

ISZ LT3

JMP LTI

JMP* L.T

DAC TS
DAC Ti
LAC* T1
CMA

DAC T2
LAC =7
DAC T3
1SZ T2
SKP

JMP LD4
I1SZ T1
LAC* T1i
LRS 14
JMS LDS
JMS LDS
JMS LDS
ISZ T2
JMP LD1
LAC T3
RCR

RCR

JMS B
JMP%* L.D
DAC Ti

A-83

TEXT OPERATORS

SAVE ADDRESS OF TEXT LIST

GET TEXT WORD COUNT

FORM 1°S COMPLEMENT

STORE COMPLEMENTED WORD COUNT
FORM 2°S COMPLEMENT OF WORD COUNT
WORD COUNT NOT ZERO

RETURN

SET POINTER TO NEXT TEXT WORD
GET TEXT WORD

SEND TO TELEPRINTER BUFFER
INCREMENT COUNT & SKIP IF DONE
PROCESS NEXT TEXT WORD

RETURN

SAVE ADDRESS OF TEXT LIST

SET POINTER TO TEXT LIST

GET WORD COUNT

FORM 1°S COMPLEMENT

STORE COMPLEMENTED WORD COUNT
GET INITIAL VALUE OF LEAF LENGTH
SET INITIAL VALUE OF LEAF LENGTH
FORM 2°S COMPLEMENT OF WORD COUNT
WORD COUNT NOT ZERO

RETURN NULL TEXT LEAF

SET POINTER TO NEXT TEXT WORD
GET TEXT WORD

SHIFT FIRST CHARACTER INTO POSITION

MODIFY LEAF LENGTH COUNT
MODIFY LEAF LENGTH COUNT
MODIFY LEAF LENGTH COUNT

INCREMENT WORD COUNT & SKIP IF DONE

PROCESS NEXT TEXT WORD

GET SIZE OF TEXT LEAF

DIVIDE BY 2

DIVIDE BY 2

GET STORAGE FOR TEXT LEAF

NOT ENOUGH STORAGE

SAVE ADDRESS OF TEXT LEAF AREA

LD2

LD3

LD4

LDS

DAC Té
LAC* TS
CMA

TAD =1
DAC T2
DZm T3
DZM T4
ISZ TS
LAC* TS
LRS 14
JMS LD6
JMS LD6
JMS LD6
ISZ T2
JMP LD2
LAW 1121
DACx T1
ISZ Ti
LAC T4
cLe

LLS 4
XOR =400000
DAC* T1
ISZ T
LAC T3
LLS 3
AND =1777
XOR =6000
DAC* T1i
ISZ Tt
LAW 3000
DAC* Ti
LAC Té
ISZ L.D
JMP% LoD
LAC =LD3
JMP *-3

$DC 0
AND =77

SAVE ADDRESS FOR RETURN

GET WORD COUNT

FORM 1°'S COMPLEMENT

FORM 2°S COMPLEMENT

STORE COMPLEMENTED WORD COUNT
CLEAR HORIZONTAL COUNT

CLEAR VERTICAL COUNT

SET POINTER TO NEXT TEXT WORD
GET NEXT TEXT WORD

SHIFT FIRST CHARACTER INTO POSITION

PUT FIRST CHARACTER INTO LEAF
PUT SECOND CHARACTER INTO LEAF
PUT THIRD CHARACTER INTO LEAF
INCREMENT COUNT & SKIP IF DONE
PROCESS NEXT TEXT WORD

GET VEC INSTRUCTION

STORE IN TEXT LEAF

INCREMENT POINTER TO LOC IN LEAF
GET VERTICAL COUNT

PREPARE TO SHIFT ZEROS INTO AC
MULTIPLY BY 16

SET TO NONZERO VALUE

STORE IN TEXT LEAF

INCREMENT POINTER TO LOC IN LEAF
GET HORIZONTAL COUNT

MULTIPLY BY 8

CONVERT MODULO 2119

SET ESCAPE BIT & MINUS SIGN
STORE IN TEXT LEAF

INCREMENT POINTER TO LOC IN LEAF
GET POP INSTRUCTION

STORE IN TEXT LEAF

GET ADDRESS OF TEXT LEAF
INDICATE SUCCESS

RETURN

GET ADDRESS OF POP INSTRUCTION
INDICATE SUCCESS & RETURN

TRUNCATE HIGH ORDER BITS

LDé6

LD7

SAD =77
JMP %+5
SAD =274
ISZ T3
ISZ T3
1SZ T3
LLS 6
JMPx%x LDS

$DC 0
AND =77
SAD =77
JMP LD7=-2
SAD =74
JMP LD7
SAD =75
SKP

JMP *%+3
I1SZ Ta
SKP

1SZ T3
TAD =LD8
DAC T7
LAW 2010
DAC* TI
ISZ Tt
LAC* T7
DAC* T1
ISZ Ti
LLS 6
JMP%x LD6
LACA

DAC T7
LAW 1121
DAC* Ti
ISZ T1
LAW @
DAC* Ti}
I1SZ Ti
LAC T3

SKIP IF NOT NULL CHARACTER
NULL CHARACTER -- RETURN

SKIP 1F NOT CARRIAGE RETURN
INCREMENT LEAF SIZE EXTRA TIME

- INCREMENT LEAF SIZE

INCREMENT LEAF SIZE
SHIFT NEXT CHARACTER INTO POSITION
RETURN

TRUNCATE HIGH ORDER BITS

SKIP IF NOT NULL CHARACTER

NULL CHARACTER -- RETURN

SKIP IF NOT CARRIAGE RETURN

PUT CARRIAGE RETURN INTO LEAF
SKIP IF NOT LINE FEED

LINE FEED =-- INCREMENT VERT COUNT
NORMAL CHARACTER

INCREMENT VERTICAL COUNT

LEAVE HORIZONTAL COUNT ALONE
INCREMENT HORIZONTAL COUNT

ADD ADDRESS OF CONVERSION TABLE
SAVE TEMPORARILY

GET PUSH JUMP INSTRUCTION

STORE IN TEXT LEAF

INCREMENT POINTER TO LOC IN LEAF
GET ADDRESS OF DISPLAY FOR CHAR
STORE IN TEXT LEAF

INCREMENT POINTER TO LOC IN LEAF
SHIFT NEXT CHARACTER INTO POSITION
RETURN

GET M@ CONTENTS

SAVE TEMPORARILY

GET VEC INSTRUCTION

STORE IN TEXT LEAF

INCREMENT POINTER TO LOC IN LEAF
GET ZERO Y DISPLACEMENT

STORE ZERO Y DISPLACEMENT IN LEAF
INCREMENT POINTER TO LOC IN LEAF
GET HORIZONTAL DI SPLACEMENT

LL

LD8

cLe
LLS

3

AND =1777

XOR

= 6000

DAC* Ti

1SZ

Tl

DZM T3

LAC
LRS

T7
14

JMP* LDé6

DAC

T1

LACx* T1
DZMx* T}

SAD =763000
JMPx L oL

1SZ
JMP

$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC

T1
LL+1

Doo
DO1+10000
DB2+20000
D@ 3+300800
DO 4+ 40000
DB5+50000
DO 6+ 60000
De7+70000
D10+100000
D11+110000
D12+120000
D13+130000
D14+140000
D15+150000
D1 6+160000
D17+170000
D20+200000
D21+210000
D22+220000
D23+230000
D2 4+2 40000

A-86

PREPARE TO SHIFT ZEROS INTO AC
MULTIPLY BY 8

CONVERT MODULO 2t18

SET ESCAPE BIT & MINUS SIGN

STORE IN TEXT LEAF

INCREMENT POINTER TO LOC IN LEAF
CLEAR HORIZONTAL COUNT

GET PREVIOUS M@ CONTENTS

SHIFT NEXT CHARACTER INTO POSITION
RETURN

STORE ADDRESS OF TEXT LEAF

GET VALUE FROM LEAF

FREE STORAGE LOCATION

SKIP 1F NOT END OF TEXT LEAF
RETURN

SET POINTER TO NEXT LOC IN LEAF
FREE NEXT LOCATION

$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
NOP

D25+250000
D26+260000
D27+270000
D38 +300000
D31+3100060
D32+320000
D33+3308080
D34+349000
D35+350000
D3 6+360000
D37+370000
D40+ 400000
DA1+410000
D42+ 420000
D43+430000
D44+ 440000
D45+ 450000
D46+460000
D47+ 470000
D58+500000
DS1+5100060
D52+520000
D53+530080
D54+540000
D55+550000
DS6+560000
D57+570000
Déd+ 600000
D61+610000
D62+620000
D63+630000
D64+ 640000
D65+ 650000
D66+ 660000
D67+ 670000
D70+7009000
D71+710000
D72+ 720000
D73+730000

A~87

$DC D75+750000
$DC D76+7600008

A-89

S$TITLE IDLE-TIME TASK

IDLE LAW 17475 GET CARRIAGE RETURNs LINE FEED CODE
JMS BT TYPE CARRIAGE RETURN, LINE FEED
LAW 10 GET TELEPRINTER ALLOCATION MASK
JMS T.R RELEASE TELEPRINTER
JMS B.«K GET KEYBOARD CHARACTER
DAC T3 SAVE KEYBOARD CHARACTER
LAW 10 GET TELEPRINTER ALLOCATION MASK
JMS TeA ALLOCATE TELEPRINTER
LAC BKF GET ASCII FORM OF CHARACTER
SAD =285 SKIP IF NOT ENQUIRY
JMP TTY4 SEND ENQUIRY RECORD
LAC T3 GET KEYBOARD CHARACTER
SAD =14 SKIP IF NOT C
LAC =IDLEC GET “CLEAR" RESPONSE POINTER
SAD =33 SKIP IF NOT R
LAC =IDLER GET "RUN* RESPONSE POINTER
SAD =34 SKIP IF NOT S
LAC =IDLES GET " SCHEDULE"™ RESPONSE POINTER
SAD =72 SKIP IF NOT #
LAC =]DLE1 GET TTY/201 RESPONSE POINTER
SAD =17 SKIP IF NOT F
LAC =IDLEF GET "“FROM'"™ RESPONSE POINTER
DAC T3 SAVE SELECTED RESPONSE POINTER
AND =777709 TRUNCATE LOW ORDER BITS
SNA SKIP IF LEGAL COMMAND
JMP IDLE® CANCEL COMMAND
LAC T3 GET RESPONSE POINTER
TAD =1 COMPUTE ADDRESS OF TEXT LIST
JMS LeT TYPE TEXT LIST
LAC* T3 GET ADDRESS OF RESPONSE
DAC T3 SAVE TEMPORARILY
JMP* T3 EXECUTE RESPONSE

IDLEQ@ LAC =657475 GET QUESTION MARK CODE
JMP IDLE+1 TYPE & GET NEW COMMAND

IDLEC $DC CLEAR
$DC 2

IDLER

IDLES

IDLE1

IDLEF

CLEAR

CLEAR1

CLEARD

CLEART

RUN

$TEXT '""CLEAR "

$DC
$DC

RUN
2

STEXT '""RUN"

$DC
$DC
$DC

$DC
$DC
$DC
$DC

STEXT *"FROM **

JMS
SAD
JMP
SAD
SKP
JMP
LAC
JMS
LAC
JMS
JMP
LAC
JMS
JMS
Dzm
JMP

$DC

747575
SCHED

3
$TEXT '"SCHEDULE '

TTY201
o
FROM
2

BeK
=15
CLEAR1
=35

IDLEQ
=CLEART
LT
=SCHED@
Q.C
IDLE
=CLEARD
LeT

STC

25

E1l

5

GET KEYBOARD CHARACTER

SKIP IF NOT D

CLEAR DISPLAY STORAGE

SKIP IF NOT T

CLEAR TASK QUEUE

CANCEL. COMMAND

GET ADDRESS OF TEXT LIST
TYPE TEXT LIST

GET ADDRESS OF FROZEN TASK QUEUE
CLEAR FROZEN TASK QUEUE

GET NEW COMMAND

GET ADDRESS OF TEXT LIST
TYPE TEXT LIST

CLEAR DISPLAY STORAGE
INDICATE NO DIAGNOSTIC
RE-ESTABLISH DISPLAYED TITLE

$TEXT "*DISPLAY STORAGE™

$DC

$TEXT '"TASK QUEUE"

4

LAW 10

JMS
JMS

TeR
STC

GET TELEPRINTER MASK
RELEASE TELEPRINTER
CLEAR DISPLAY STORAGE

RUN1

SCHED

SCHED1

SCHED@Q

TTY201

LAC
JMS
JMS
JMS
JMP

JMS
JMP
LMQ
LAC
JMS
SKP
JMP
LAC
JMS
JMP

$DC

STEXT *

$DC
$DC
$DC

=SCHEDAQ
Q.F

T.F

T.S
RUN1

OCTALS
IDLEQ

=SCHEDQ
Q.A

IDLE
=SCHED1
LT
IDLE

11
*+37

*+36
*+35

$ORG *+35

LAW
JMS
JMS
LAC
SAD
JMP
SAD
JMP
SAD
JMP
JMS
SKP
JMP
LAC
JMS

17772
B.T
ECHO
BKF
=215
TTY1
=337
TTY2
=377
TTY3
B.FO

TTY201+2

=TTYS
LT

GET ADDRESS OF FROZEN TASK QUEUE
GET TASK FROM FROZEN TASK QUEUE
TERMINATE IDLE-TIME EXECUTION
SCHEDULE TASK FROM FROZEN QUEUE
ENABLE NEXT TASK

GET ADDRESS FROM KEYBOARD

CANCEL COMMAND

SET UP PARAMETER

GET ADDRESS OF FROZEN TASK QUEUE
ADD TASK TO FROZEN QUEUE

TYPE DIAGNOSTIC

GET NEW COMMAND

GET ADDRESS OF TEXT LIST

TYPE TEXT LIST

GET NEW COMMAND

-~ NO ROOM FOR THIS TASK"

GET # CODE

TYPE #

ECHO KEYBOARD CHARACTER

GET ASCII FORM OF CHARACTER
SKIP IF NOT CARRIAGE RETURN
TERMINATE RECORD WITH ETX
SKIP IF NOT BACK ARROW
DELETE CHARACTER

SKIP IF NOT RUBOUT

CLEAR 201 OUTPUT BUFFER

SEND CHARACTER TO 281 OUTPUT BUFFER

DATA SET NOT CONNECTED
PROCESS NEXT CHARACTER
GET ADDRESS OF TEXT LIST
TYPE DIAGNOSTIC

TTY1

TTY2

TTY3

TTY4

TTYS

TTY6

FROM

JMP
LAW
JMS
JMP
JMP
LAC
SAD
JMP
JMS
JMP
LAW
TAD
DAC
JMP
JMS
NOP
LAC
bBAC
LAC
JMS
JMP
LAW
JMP

$DC

$STEXT ™

$DC

$TEXT *

JMS
DZM
SAD
JMP
ISz
SAD
JMP
I1SZ
SAD
JMP
JMP

IDLE
BFETX
B.FO
*=5

IDLE
=BFOB
BFOI
TTY201+2
BeFO
TTY1~-3
-2

BFOI
BFOI
TTY201+2
B«+FO

=BFOB
BF Ol
=TTYé
LeT
IDLE
BFEN®
TTY1+1

11

4

BeK
T3
=14
FROM1
T3
=31
FROM2
T3
=35
FROM3
IDLEQ

-~ DELETED"

A-92

GET NEW COMMAND

GET END OF TEXT CHARACTER
SEND TO 201 OUTPUT BUFFER
DATA SET NOT CONNECTED

GET NEW COMMAND

GET ADDRESS OF OUTPUT BUFFER
SKIP IF BUFFER NON-EMPTY
IGNORE CHARACTER DELETE

WAIT FOR ACK TO LAST RECORD
DATA SET NOT CONNECTED

LOAD AC WITH =2

COMPUTE NEW VALUE OF INPUT POINTER
BACKSPACE QUTPUT BUFFER
PROCESS NEXT CHARACTER

WAIT FOR ACK TO LAST RECORD
DATA SET NOT CONNECTED

GET ADDRESS OF 201 OUTPUT BUFFER
RESET INPUT POINTER

GET ADDRESS OF TEXT LIST
TYPE DIAGNOSTIC

GET NEW COMMAND

GET ENQUIRY

SEND TO 201 OUTPUT BUFFER

-- DATA SET NOT CONNECTED"

GET KEYBOARD CHARACTER

CLEAR DATA TRANSFER POINTER
SKIP 1F NOT C

FROM CORE

INCREMENT DATA TRANSFER POINTER
SKIP IF NOT P

FROM PAPER TAPE

INCREMENT DATA TRANSFER POINTER
SKIP IF NOT T

FROM TELETYPE

CANCEL COMMAND

FROM1
FROM2

FROM3
FROM4

FROMS
FROM6
FROM7

FROM8
FROM9

FROM11

LAC =FROMC
JMP FROM4
LAC =FROMP
SKP

LAC =FROMT
JMS L.T
LAC T3
CLL+RTL
TAD =FROM11
DAC T3

LAC =FROMTO
JMS L.T
JMS B.K
SAD =14
JMP FROMS
1SZ T3

SAD =31
JMP FROMé6
1SZ T3

SAD =35
JMP FROM7
ISZ T3

SAD =15
JMP FROMS
JMP IDLEQ
LAC =FROMC
JMP FROM9
LAC =FROMP
JMP FROM9
LAC =FROMT
SKpP

LAC =FROMD
JMS L.T
LAC* T3
DAC T3
JMP* T3

$DC TRCC
$DC TRCP
$DC TRCT

A-93

GET ADDRESS OF TEXT LIST
TYPE TEXT LIST

GET ADDRESS OF TEXT LIST

TYPE TEXT LIST

GET ADDRESS OF TEXT LIST

TYPE TEXT LIST

GET DATA TRANSFER POINTER
MULTIPLY BY 4

ADD ADDRESS OF TABLE

STORE REFINED DATA TRANSFER POINTER
GET ADDRESS OF TEXT LIST

TYPE TEXT LIST

GET KEYBOARD CHARACTER

SKIP IF NOT C

TO CORE

INCREMENT DATA TRANSFER POINTER
SKIP IF NOT P

TO PAPER TAPE

INCREMENT DATA TRANSFER POINTER
SKIP IF NOT T

TO TELETYPE

INCREMENT DATA TRANSFER POINTER
SKIP IF NOT D

TO DI SPLAY

CANCEL COMMAND

GET ADDRESS OF TEXT LIST

TYPE TEXT LIST

GET ADDRESS OF TEXT LIST

TYPE TEXT LIST

GET ADDRESS OF TEXT LIST

TYPE TEXT LIST

GET ADDRESS OF TEXT LIST

TYPE TEXT LIST

GET ADDRESS OF DATA TRANSFER
SAVE TEMPORARILY

BEGIN DATA TRANSFER

A-94

$DC TRCD
$DC TRPC
$DC TRPP
$DC TRPT
$DC TRPD
$DC TRTC
$DC TRTP
$DC TRTT
$DC TRTD

FROMC 3$DC 2
$TEXT ""CORE"

FROMP $DC 4
$TEXT ""PAPER TAPE"

FROMT $DC 3
$TEXT "TELETYPE"

FROMD $DC 3
$TEXT "DISPLAY"

FROMTO 3$DC 2

$TEXT *™* TO
TRCC JMS TRBK GET CORE BLOCK FROM KEYBOARD
LAC =FROMTO GET ADDRESS OF TEXT LIST
JMS LeT TYPE TEXT LIST
JMS OCTALS GET ADDRESS FROM KEYBOARD
JMP IDLEQ CANCEL COMMAND
DAC TI SAVE ADDRESS
TRCC1 LAC* TRBKL GET WORD TO BE MOVED
DAC* TI1 STORE IN NEW LOCATION
ISZ TRBKL INCREMENT SOURCE POINTER
ISZ Ti INCREMENT SINK POINTER
ISZ TRBKC INCREMENT LOC COUNT & SKIP IF DONE
JMP TRCC1 MOVE NEXT WORD
JMP IDLE GET NEW COMMAND

TRCP JMS TRBK GET CORE BLOCK FROM KEYBOARD

TRCP1

TRCP2

TRCT

LAW
DAC
LAC
JMS
LAW
DAC

100
T3
TRBKL
TRCP2
200
T3

LAC* TRBKL

JMS
ISZ
152
JMP
JMP

$DC
DAC
LRS
AND
XOR
JMS
LAC
LRS
AND
XOR
JMS
LAC
AND
XOR
JMS

TRCP2
TRBKL
TRBKC
TRCP1
IDLE

4]

T4

14
=77
T3
PUNCH
T4

6

=77
T3
PUNCH
T4
=77
T3
PUNCH

JMP* TRCP2

JMS
LAW
JMS
LAC
JMS
TAD
JMS
LAW
JMS
LAW

TRBK
17475
BeT
TRBKL
C.B6
=770000
TRKT
17676
BeT
17770

GET ORIGIN CONTROL BIT
SET CONTROL MASK

GET ORIGIN OF BLOCK
PUNCH ORIGIN

GET DATA CONTROL BIT
SET CONTROL MASK

GET DATA WORD

PUNCH DATA WORD
INCREMENT POINTER
INCREMENT COUNT & SKIP IF DONE
PUNCH NEXT WORD

GET NEW COMMAND

SAVE WORD TO BE PUNCHED

SHIFT HIGH ORDER BITS INTO POSITION
TRUNCATE BITS FROM LINK

SET CONTROL BIT

PUNCH IMAGE

GET WORD TO BE PUNCHED

SHIFT MIDDLE BITS INTO POSITION
TRUNCATE HIGH ORDER BITS

SET CONTROL BIT

PUNCH IMAGE

GET WORD TO BE PUNCHED

TRUNCATE HIGH ORDER BITS

SET CONTROL BIT

PUNCH IMAGE

RETURN

GET CORE BLOCK FROM KEYBOARD

GET CARRIAGE RETURNs LINE FEED CODE
TYPE CARRIAGE RETURN, LINE FEED

GET ADDRESS TO BE TYPED

CONVERT TO 6-BIT CODE

REMOVE HIGH ORDER ZERO

TYPE ADDRESS

GET CODE FOR TWO SPACES

TYPE TWO SPACES

LOAD AC WITH -8

TRCTI1

TRCD

TRCD1

TRCD2

DAC
LAW

T3
17677

JMS BeT

LAC*
JMS
JMS
ISz
1Sz
SKP
JMP
ISz
JMP
JMP

JMS
LAC
TAD
SMA
JMP
LAW
DAC
JMS
LAC
JMS
TAD
JMS
LACQ
JMS
LAW
JMS
LAW
DAC
LAW
JMS
LAC*
JMS
JMS
LACQ
JMS
1SZ

TRBKL
C.B6
TRKT
TRBKL
TRBKC

IDLE
T3
TRCT1
TRCT+1

TRBK
TRBKC
=100

*+3
17700
TRBKC
TRD1
TRBKL
C.B6
=770000
TRD2

TRD2
17676
TRD2
17770
T3
17677
TRD2
TRBKL

C.B6
TRD2

TRD2
TRBKL

SET WORD COUNTER

GET CODE FOR ONE SPACE
TYPE SPACE

GET WORD TO BE TYPED
CONVERT TO 6-BIT CODE

TYPE WORD

INCREMENT LOCATION POINTER
INCREMENT COUNT & SKIP IF DONE
TYPE NEXT WORD

GET NEW COMMAND

SKIP IF END OF LINE

TYPE NEXT WORD

BEGIN NEW LINE

GET CORE BLOCK FROM KEYBOARD

GET WORD COUNT

MAKE POSITIVE IF NOT TOO LARGE
SKIP IF TOO LARGE

WORD COUNT OK

LOAD AC WITH =64

ADJUST WORD COUNT

INITIALIZE TEXT LIST FOR DISPLAY
GET ADDRESS TO BE DISPLAYED
CONVERT TO 6-BIT CODE

REMOVE HIGH ORDER ZERO

PUT HIGH ORDER DIGITS IN TEXT LIST
GET LOW ORDER DIGITS

PUT LOW ORDER DIGITS IN TEXT LIST
GET CODE FOR TWO SPACES

PUT IN TEXT LIST

LOAD AC WITH -8

SET WORD COUNTER

GET CODE FOR ONE SPACE

PUT IN TEXT LIST

GET WORD TO BE DISPLAYED

CONVERT TO 6-BIT CODE

PUT HIGH ORDER DIGITS IN TEXT LIST
GET LOW ORDER DIGITS

PUT LOW ORDER DIGITS IN TEXT LIST
INCREMENT LOCATION POINTER

TRCD3

TRPC

TRPC1

TRPC2

TRPC3

ISZ TRBKC
JMP TRCD3
CcLC

DAC T3
JMS TRD3
JMP IDLE
I1SZ T3
JMP TRCD2
LAC =747575
JMS TRD2
JMP TRCD1

JMS READ
SNA

JMP IDLE
DAC T3
AND =300
SAD =108
JMP TRPC1
SAD =200
JMP TRPC2
JMS READ
SNA

JMP TRPC
JMP %-3
JMS TRPC3
DAC T4
JMP TRPC
JMS TRPC3
DAC*x T4
1SZ T4
JMP TRPC

$DC ©
JMS READ
LRS 6
LAC T3
LLS 6
DAC T3
JMS READ

A-97

INCREMENT COUNT & SKIP IF DONE
PREPARE NEXT WORD

GET THREE NULL CHARACTERS
NULLIFY ACCWULATED CHARACTERS
DISPLAY TEXT LIST

GET NEW COMMAND

SKIP IF END OF LINE

PREPARE NEXT WORD

GET CARRIAGE RETURN, LINE FEED CODE
PUT IN TEXT LIST

BEGIN NEW LINE

READ ONE TAPE IMAGE
SKIP IF NOT END OF RECORD
GET NEW COMMAND

SAVE TAPE LINE

GET CONTROL BITS

SKIP IF NOT ORIGIN
COMPLETE ORI GIN

SKIP IF NOT BINARY DATA
COMPLETE DATA WORD

READ A TAPE IMAGE

SKIP IF NOT END OF RECORD
RESTART DATA TRANSFER
1GNORE TAPE IMAGE

FINISH READING ORIGIN

SET ORIGIN

GET NEXT WORD FROM TAPE
FINISH READING DATA WORD
LOAD DATA WORD

INCREMENT LOCATION COUNTER
GET NEXT WORD FROM TAPE

GET SECOND IMAGE FROM TAPE

SHIFT DATA BITS INTO MQ

GET HIGH ORDER 6 BITS

SHIFT HIGH ORDER 12 BITS INTO AC
SAVE HIGH ORDER 12 BITS

GET THIRD IMAGE FROM TAPE

TRPP

TRPP1

TRPP2

TRPP3

LRS 6
LAC T3
LLS 6
JMPx TRPC3

JMS READ
SAD =377
JMP TRPP
DAC T3
AND =300
SAD =360
JMS TRPP3
LAC T3
JMS PUNCH
JMS READ
SNA

JMP TRPP2
DAC T3
JMP TRPP1
LAC T3
AND =308
SAD =309
JMS TRPP3
JMP IDLE
$DC @

CLA

JMS PUNCH
JMP* TRPP3

A-98

SHIFT DATA BITS INTO M@

GET HIGH ORDER 12 BITS

SHIFT COMPLETED WORD INTO AC
RETURN

GET IMAGE FROM PAPER TAPE

SKIP IF NOT END-QF-TAPE GARBAGE
RESTART DATA TRANSFER

SAVE TEMPORARILY

GET CONTROL BITS :

SKIP IF NOT ALPHANUMERIC

PUNCH END-OF-RECORD MARK

GET IMAGE READ

PUNCH IMAGE

GET IMAGE FROM PAPER TAPE

SKIP IF NOT END OF RECORD

PUNCH END-OF-RECORD IF NECESSARY
SAVE TEMPORARILY

PUNCH IMAGE

GET LAST IMAGE PUNCHED

GET CONTROL BITS

SKIP IF NOT ALPHANUMERIC

PUNCH END-OF-RECORD MARK

GET NEW COMMAND

GET END-OF-RECORD MARK
PUNCH END-~OF-RECORD MARK
RETURN

TRPT

TRPT1

TRPT2

TRPD

TRPD1

STITLE

JMS READ
SAD =377
JMP TRPT
DAC T3
AND =300
SAD =300
JMP TRPTI
JMS READ
SNA

JMP TRPT
JMP %43
LAW 17475
JMS BT
LAC T3
XOR =777400
JMS BeT
JMS READ
SNA

JMP IDLE
JMP TRPT2

JMS READ
SNA

JMP TRPD
SAD =375
JMP TRPD
SAD =377
JMP TRPD
DAC Té
AND =300
SAD =300
JMP TRPD1
JMS READ
SNA

JMP TRPD
JMP »-3
JMS TRDI
LAW 17766

A-99

IDLE-TIME TASK (CONTINUED)

GET IMAGE FKOM PAPER TAPE

SKIP IF NOT END-OF-TAPE GARBAGE
RESTART DATA TRANSFER

SAVE TEMPORARILY

GET CONTROL BITS

SKIP 1F BINARY INFORMATION
RECORD IS ALPHANUMERIC

GET IMAGE FROM PAPER TAPE

SKIP IF NOT END OF RECORD

TRY TRANSFER AGAIN

GET NEXT IMAGE

GET CARRIAGE RETURN, LINE FEED CODE
TYPE CARRIAGE RETURN, LINE FEED
GET FIRST IMAGE FROM TAPE
PRECEDE WITH NULL CHARACTERS
TYPE CHARACTER FROM TAPE

GET IMAGE FROM TAPE

SKIP IF NOT END OF RECORD

GET NEW COMMAND

TYPE CHARACTER

READ IMAGE FROM TAPE

SKIP 1F NOT END-OF-RECORD CHARACTER
RESTART DATA TRANSFER

SKIP IF NOT LINE FEED

RESTART DATA TRANSFER

SKIP IF NOT END-OF-TAPE GARBAGE
RESTART DATA TRANSFER

SAVE TEMPORARILY

GET CONTROL BITS

SKIP IF BINARY

RECORD OK

READ IMAGE FROM TAPE

SKIP IF NOT END OF RECORD

TRY TRANSFER AGAIN

I1GNORE IMAGE

INITIALIZE TEXT LIST
LOAD AC WITH -18

A-100

DAC T4 SET LINE COUNTER
LAW 17676 LOAD AC WITH -66
DAC TS SET CHARACTER COUNTER
LAC Té6 GET FIRST CHARACTER
JMP TRPD2+3 ADD TO TEXT LIST
TRPD2 LAW 17676 LOAD AC WITH =66
DAC TS SET CHARACTER COUNTER
JMS READ READ IMAGE FROM TAPE
SAD =374 SKIP IF NOT CARRIAGE RETURN
JMP TRPD3 TERMINATE LINE
SNA SKIP IF NOT END OF RECORD
JMP TRPD4 TERMINATE TRANSFER
JMS TRD4 ADD CHARACTER TO TEXT LIST
ISZ TS INCREMENT CHAR COUNT & SKIP IF DONE
JMP TRPD2+2 GET NEXT CHARACTER
TRPD3 ISZ T4 INCREMENT COUNTER & SKIP IF DONE
SKP GET ANOTHER LINE
JMP TRPDA4 TERMINATE TRANSFER
LAW 74 GET CARRIAGE RETURN
JMS TRD4 ADD TO TEXT LIST
LAW 75 GET LINE FEED
JMS TRDA4 ADD TO TEXT LIST
JMP TRPD2 BEGIN NEW LINE
TRPD4 JMS TRD3 DISPLAY TEXT LIST
JMP IDLE GET NEW COMMAND
TRTC LAW 17475 GET CARRIAGE RETURN., LINE FEED CODE
JMS BeT TYPE IT
JMS OCTALS GET ADDRESS FROM KEYBOARD
JMP TRTC4 INTERPRET AS COMMAND
DAC TS STORE ADDRESS
TRTC1 LAW 17677 GET CODE FOR ONE SPACE
JMS B.T TYPE IT
LAC* TS GET CURRENT CONTENT OF WORD
JMS CeB6 - CONVERT TO 6-BIT CODE
JMS TRKT TYPE CURRENT CONTENTS
LAW 17677 GET CODE FOR ONE SPACE
JMS BeT TYPE IT
JMS OCTALS6 GET NEW CONTENTS FROM KEYBOARD

JMP TRTC3 DETERMINE NATURE OF FAILURE

TRTC2

TRTC3

TRTC4

TRTP

TRTP1

TRTP2

TRTT

TRTD

DAC* TS
ISZ TS

LAW 17475
JMS BeT
LAC TS

JMS C.Bé
TAD =770000
JMS TRKT
JMP TRTC1
SAD =74
JMP TRTC2
JMP TRTC
DAC T3

LAW 10

JMS T.R
JMP IDLE+6

CLA

JMS PUNCH
LAW 17475
JMS B.T
JMS ECHO
SAD =77
JMP TRTP2
XOR =308
JMS PUNCH
JMP TRTP1
CcLA

JMS PUNCH
JMP IDLE

LAW 17475
JMS BT
JMS ECHO
SAD =77
JMP IDLE
JMP *-3

LAW 17766
DAC T4

A-101

STORE NEW CONTENTS

INCREMENT STORED ADDRESS

GET CARRIAGE RETURN, LINE FEED CODE
TYPE CARRIAGE RETURN, LINE FEED
GET CURRENT ADDRESS

CONVERT TO 6-BIT CODE

REMOVE HIGH ORDER ZERO

TYPE CURRENT ADDRESS

TYPE CONTENTS OF CURRENT LOCATION
SKIP IF NOT CARRIAGE RETURN
LEAVE WORD UNCHANGED

BEGIN INTERPRETATION OF NEW BLOCK
SAVE KEYBOARD CHARACTER

GET TELEPRINTER MASK

RELEASE TELEPRINTER

INTERPRET CHARACTER AS COMMAND

GET END-OF-RECORD MARK

PUNCH IT

GET CARRIAGE RETURN, LINE FEED CODE
TYPE CARRIAGE RETURN, LINE FEED
ECHO KEYBOARD CHARACTER

SKIP IT NOT NULL CHARACTER
TERMINATE TRANSFER

SET ALPHANUMERIC CONTROL BITS
PUNCH CHARACTER

GET NEXT CHARACTER

GET END-OF-RECORD MARK

PUNCH IT

GET NEW COMMAND

GET CARRIAGE RETURN», LINE FEED CODE
TYPE IT

ECHO KEYBOARD CHARACTER

SKIP IF NOT NULL CHARACTER

GET NEW COMMAND

GET NEXT CHARACTER

LOAD AC WITH -18
INITIALIZE LINE COUNTER

TRTD1

TRTD2

TRTD3

TRTD4

ECHO

PUNCH

JMS TRD1
LAW 17475
JMS B.T
LAW 17700
DAC TS
JMS ECHO
SAD =77
JMP TRTDA4
SAD =74
JMP TRTD3
JMS TRD4
1SZ T5
JMP TRTD2
I1SZ TA
SKP

JMP TRTDA4
LAW 74
JMS TRD4
LAW 75
JMS TRDA
LAW 75
JMS TRD4
JMP TRTDI
JMS TRD3
JMP IDLE

$DC 9

JMS BeK

DAC Té

XOR =777700
JMS BeoT
LAC Té6

JMP%* ECHO

$DC 0

JMS B.P

SKP

JMP* PUNCH
LAC =PUNCH1
JMS LT

A-102

INITIALIZE TEXT LIST
GET CARRIAGE RETURN,

LINE FEED CODE

TYPE CARRIAGE RETURN, LINE FEED

LOAD AC WITH

-64

INITIALIZE CHARACTER COUNTER
ECHO KEYBOARD CHARACTER
SKIP IF NOT NULL CHARACTER

DISPLAY TEXT LIST

SKIP IF NOT CARRIAGE RETURN
TERMINATE LINE
ADD CHARACTER TO TEXT LIST

SKIP IF END OF LINE
GET NEXT CHARACTER

INCREMENT LINE COUNT & SKIP IF DONE
TERMINATE LINE

TERMINATE TRANSFER

GET CARRIAGE RETURN CODE

ADD TO TEXT LIST
GET LINE FEED CODE

ADD TO TEXT LIST

GET LINE FEED CODE

ADD TO TEXT LIST
BEGIN NEW LINE

DISPLAY TEXT LIST

GET NEW COMMAND

GET CHARACTER FROM KEYBOARD
SAVE TEMPORARILY
PRECEDE WITH NULL CHARACTERS
ECHO CHARACTER ON TELEPRINTER
GET CHARACTER FOR RETURN

RETURN

SEND IMAGE TO PUNCH
PUNCH OUT OF TAPE

RETURN

GET ADDRESS OF TEXT LIST
TYPE TEXT LIST

PUNCH1

READ

READ!1

TRD1

TRD2

JMP

$DC

$DC 747531

IDLE

7

A-103

GET NEW COMMAND

S$TEXT “UNCH OUT OF TAPE"

$DC
JMS
SKP

JMP* READ
LAC =READI1

JMS
JMP

$DC

$DC 747533

]
B+R

LeT
IDLE

7

GET IMAGE FROM READER BUFFER
READER OUT OF TAPE

RETURN

GET ADDRESS OF TEXT LIST
TYPE TEXT LIST

GET NEW COMMAND

$TEXT “EADER OUT OF TAPE"

$DC
LAC
LMe
LAC
SZA
JMs
NOP
LAC
SZA
JMS
DZiM
DZM
LAC
DAC
CLC
DAC

)

27

26
S«TR
27
L.L
27
TRDT
=TRDT
TRDP

T3

JMP* TRD1

$DC
1SZ
I1SZ

o
TRDT
TRDP

DAC* TRDP

GET POINTER TO LEAF

SET UP PARAMETER

GET POINTER TO LEVEL

SKIP IF NO LEVEL

REMOVE LEAF FROM LEVEL
LEAF OR LEVEL DIDN'T EXIST
GET ADDRESS OF LEAF

SKIP IF NO LEAF

DESTROY LEAF

INDICATE NO LEAF

CLEAR TEXT LIST COUNT

GET ADDRESS OF TEXT LIST
INITIALIZE TEXT LIST POINTER
GET 3 NULL CHARACTERS
STORE NULL CHARACTERS
RETURN

INCREMENT TEXT LIST COUNT
INCREMENT TEXT LIST POINTER
STORE NEW TEXT WORD

A-104

JMP* TRD2 RETURN

TRD3 $DC 2
LAC T3 GET REMAINING CHARACTERS
JMS TRD2 PUT IN TEXT LIST
LAC 26 GET ADDRESS OF LEVEL
SNA SKIP IF LEVEL EXISTS
JMP TRD31 DISPLAY STORAGE EXCEEDED
LAC =TRDT GET ADDRESS OF TEXT LIST
JMS LeD CREATE TEXT LEAF
JMP TRD31 STORAGE EXCEEDED
DAC 27 SAVE ADDRESS OF LEAF
LMe SET UP PARAMETER
LAC 26 GET ADDRESS OF LEVEL
JMS S.TI INSERT LEAF
JMP TRD31 STORAGE EXCEEDED
JMPx TRD3 RETURN

TRD31 LAC =*+3 GET ADDRESS OF TEXT LIST
JMS LT TYPE DIAGNOSTIC
JMP IDLE GET NEW COMMAND
$DC 12
$DC 747577

$TEXT "NOT ENOUGH DISFLAY STORAGE"

TRD4 $DC ©

LRS 6 SHIFT CHARACTER INTO M@
LAC T3 GET PREVIOUS CHARACTERS
LLS 6 SHIFT ALL CHARACTERS INTO AC
DAC T3 SAVE CHARACTERS

AND =770000 GET HIGH ORDER CHARACTER
SAD =770000 SKIP IF NOT NULL

JMP* TRD4 RETURN

LAC T3 GET WORD OF 3 CHARACTERS
JMS TRD2 ADD TO TEXT LIST

CLC GET 3 NULL CHARACTERS
DAC T3 STORE NULL CHARACTERS
JMP*x TRD4 RETURN

TRDT $DS 351

A-105

STC $DC 0

LAC =D GET ADDRESS OF HIGHEST ACTIVE LEVEL
DAC DHAL+7 REMOVE ALL NODES FROM HAL
JMS DW WAIT FOR DISPLAY TO RECOVER
LAW STORE GET INITIAL COUNTER VALUE
DAC T1 SET POINTER & COUNTER
10T 7704 LEAVE EXTEND MODE
DZM* T1 CLEAR STORAGE LOCATION
ISZ Ti INCREMENT POINTER & COUNTER
JMP %*-2 CLEAR NEXT STORAGE LOCATION
10T 7702 ENTER EXTEND MODE
JMPx STC RETURN
OCTAL1 $DC @
JMS B.K GET KEYBOARD CHARACTER
TAD =-10 MAKE NEGATIVE IF OCTAL
SPA SKIP IF NOT OCTAL DIGIT
JMP %43 OCTAL DIGIT TYPED
TAD =10 RESTORE CHARACTER
JMP* OCTAL1 INDICATE FAILURE
DAC T3 SAVE OCTAL INFORMATION
XOR =70 CONVERT TO 6-BIT CODE
JMS BeT TYPE OCTAL DIGIT
LAC T3 GET OCTAL INFORMATION
LRS 3 SHIFT DIGIT INTO M@
LAC T4 GET RECORDED DIGITS
LLS 3 CONCATENATE NEW DIGIT
DAC T4 RECORD NEW WORD
ISZ OCTAL1 INDICATE SUCCESS
JMP* OCTAL1 RETURN
OCTALS $DC @
DZM T4 CLEAR OCTAL RECORDING WORD
JMS OCTAL! GET OCTAL DIGIT FROM KEYBOARD
JMPx OCTALS NON-OCTAL CHARACTER TYPED
JMS OCTALI1 GET OCTAL DIGIT FROM KEYBOARD
JMP* OCTALS NON-OCTAL CHARACTER TYPED
JMS OCTAL1 GET OCTAL DIGIT FROM KEYBOARD
JMP* OCTALS NON-OCTAL CHARACTER TYPED

JMS OCTAL1 GET OCTAL DIGIT FROM KEYBOARD

OCTALS6

TRKT

TRBK

JMP*x OCTALS
JMS OCTAL1
JMPx OCTALS
1SZ OCTALS
JMP* QOCTALS

$DC ©

JMS OCTALS
JMP* OCTAL 6
JMS OCTAL1
JMPx OCTAL 6
ISZ OCTAL 6
JMP* OCTAL 6

$DC @

DAC Ti
LACQ

DAC Té6
LAC Ti1
JMS BeT
LAC Té
JMS B.T
JMPx TRKT

$DC ©

LAC =TRBKF
JMS LT
JMS OCTALS
JMP IDLE@
DAC TRBKL
LAW 16277
JMS B.T
JMS OCTALS
JMP IDLER
CMA

TAD TRBKL
SMA

JMP IDLEG®
DAC TRBKC
LAW 15177

A-106

NON-OCTAL CHARACTER TYPED

GET OCTAL CHARACTER FROM KEYBOARD
NON~-OCTAL CHARACTER TYPED
INDICATE SUCCESS

RETURN

GET S OCTAL DIGITS FROM KEYBOARD
NON-OCTAL CHARACTER TYPED

GET OCTAL DIGIT FROM KEYBOARD
NON-OCTAL CHARACTER TYPED
INDICATE SUCCESS

RETURN

SAVE HIGH ORDER DIGITS
GET LOW ORDER DIGITS
SAVE LOW ORDER DIGITS
GET HIGH ORDER DIGITS
TYPE HIGH ORDER DIGITS
GET LOW ORDER DIGITS
TYPE LOW ORDER DIGITS
RETURN

GET ADDRESS OF TEXT LIST

TYPE TEXT LIST

GET LOW ADDRESS FROM KEYBOARD
CANCEL COMMAND

STORE LOW ADDRESS

GET COMMA CODE

TYPE COMMA

GET HIGH ADDRESS FROM KEYBOARD
CANCEL COMMAND

FORM ONE'S COMPLEMENT

ADD LOW ADDRESS

SKIP IF PROPERLY ORDERED ADDRESSES
CANCEL COMMAND

STORE LOCATION COUNT

GET RIGHT PARENTHESIS CODE

TRBKF

JMS B.T
JMP* TRBK

$DC 3
$DC 747513
STEXT "LOCK(¢*

A-107

TYPE RIGHT PARENTHESIS
RETURN

A-108

STITLE HIGHEST ACTIVE LEVEL

D $DC 757
$DC 6201
$DC 6301
$DC 1408

DHAL $DC DWT
$DC 2010
$DC XP
$DC 1185
$DC 1000
$DC 5000
$DC 2001
$DC D

$END

APPENDIX B -- SUMMARY OF SYSTEM SUBROUTINES

THE FOLLOWING TABLE OF SYSTEM SUBROUTINES IS PROVIDED AS A
REFERENCE TO FACILITATE THE WRITING OF USER PROGRAMS. THE
VARIOUS COLUMNS ARE INTERPRETED AS FOLLOWS:

NAME -~

ENTRY POINT --

SYMBOLIC NAME OF THE SYSTEM SUBROUTINE

ADDRESS AT WHICH THE SUBROUTINE STARTS

SECTION -~ SECTION OF THE REPORT IN WHICH THE
SUBROUTINE IS DESCRIBED
FAILURE RETURN -- WHETHER OR NOT A FAILURE RETURN EXISTS
DELAY POSSIBLE -- WHETHER OR NOT OTHER TASKS MAY BE
EXECUTED BEFORE THE SUBROUTINE RETURNS
NAME ENTRY POINT SECTION FATLURE RETURN DELAY POSSIBLE
Be.F1I 149 3e4d.} YES YES
B.FO 142 3edel YES YES
B.K 150 3¢4.3 NO YES
B.P 146 3¢4.2 YES YES
B.R 144 3.4.2 YES YES
B.T 152 3¢443 NO YES
C.6A 130 3.3 NO NO
C.A6 132 3.3 NO NO
C.B6 126 3.3 NO NO
C.BC 136 3.3 NO NO
c.CB 134 3.3 NO NO
D.A 206 3.7 NO NO
DeD 202 3.7 NO NO
D.E 200 3.7 NO NO
D.0O 214 3.7 YES NO
D.P 204 37 NO NO
DeX 212 3.7 NO NO
D.Y 210 3.7 NO NO

NAME ENTRY POINT SECTION FAILURE RETURN DELAY POSSIBLE
LeD 2172 3.11 YES NO
Le.L 274 3e11 NO NO
LT 270 3.11 NO YES
N.A 154 3¢5 NO YES
N.C 156 3.5 NO YES
NeD1 160 3.5 NO NO
NeD2 162 3.5 NO NOQ
N.D3 164 3.5 NO NO
P.D 172 3.6 NO NO
P.E 170 3.6 NO NO
P.R 174 3.6 NO NO
P«S 176 3.6 NO NO
P.T 166 3.6 NO NO
Q.A 102 3.1 YES NO
Q.C 100 3.1 NO NO
Q. F 106 3.1 YES NO
QeI 104 3.1 YES NO
S.LBD 254 3.10 NO NO
S.LBE 252 3.10 NO NO
S.LC 256 3.10 NO NO
S.LH 242 3.10 NO NO
S.LL 264 3.10 NO NO
SeLN 266 3.10 NO NO
S.LP 250 3.10 NO NO
S.LS 262 3.10 NO NO
S.LU 260 3«10 NO NO
S.LX 246 3.10 NO YES
S.LY 244 3.10 NO YES
S.TD 234 3.9 YES NO
STl 236 3.9 YES NO
S.TL 232 3.9 YES NO
S.TR 240 3.9 YES YES
TeA 116 3.2 NO YES
TeF 114 3.2 - -
T.L 122 3.2 -- --
T.P 112 3.2 -- --
TeR 120 3.2 NO NO

NAME ENTRY POINT SECTION FAILURE RETURN DELAY POSSIBLE
T.S 110 3.2 NO NO
TOU 124 302 .- -
Xel 216 3.8 NO NO
XeR 220 3.8 NO NO
XeS 224 3.8 NO NO
XeT 222 3.8 NO NO
XeX 230 3.8 NO NO
XeY 226 3.8 NO NO

APPENDIX C -- SUMMARY OF IOT INSTRUCTIONS

STATUS WORDS
ALL BITS WHOSE INTERPRETATIONS ARE NOT SPECIFIED BELOW

ARE NOT USED.

PDP-9 170 STATUS

BIT INTERPRETATION

INTERRUPTS ARE ENABLED
READER FLAG

PUNCH FLAG

KEYBOARD FLAG

TELEPRINTER FLAG

CLOCK FLAG

CLOCK ENABLED

READER OUT-OF-TAPE FLAG
PUNCH OUT-0OF-TAPE FLAG

201 DATAPHONE TRANSMIT FLAG
201 DATAPHONE RECEIVE FLAG

NVRXRAODWNO—-e

b Gt
) .

201 DATAPHONE STATUS
BIT INTERPRETATION

a INTERRUPT PENDING

1 DATA LOST

2 PARITY ERROR

3 REQUEST TO SEND

4 TRANSMIT REQUEST

5 CLEAR TO SEND

6 CHECK PARITY

7 TEXT MODE

8 SET READY

9 TERMINAL READY

10 RING

11 CARRIER DETECTED

12 FRAME SIZE REGISTER BIT 0
13 FRAME SIZE REGISTER BIT 1
14 FRAME SIZE REGISTER BIT 2
15 FRAME SIZE REGISTER BIT 3

BIT INTERPRETATION

16 TRANSMIT STATE

17 RECEIVE STATE

DISPLAY STATUS WORD 1
BIT INTERPRETATION

6 LIGHT PEN FLAG

7 VERTICAL EDGE FLAG

8 HORIZONTAL EDGE FLAG

9 INTERNAL STOP FLAG

10 SECTOR @ FLAG (DISPLAY COORDINATES ARE ON SCREEN)
11 CONTROL STATE

12 MANUAL INTERRUPT FLAG

13 PUSH BUTTON FLAG

14 DISPLAY INTERRUPT PENDING
15 BREAK FIELD REGISTDR BIT 0
16 BREAK FIELD REGISTER BIT 1
17 BREAK FIELD REGISTER BIT 2

DISPLAY STATUS WORD 2
BIT INTERPRETATION

6 @ -- LEFT HAND INCREMENT BEING EXECUTED
1 -- RIGHT HAND INCREMENT BEING EXECUTED

7 LIGHT PEN ENABLED

8 BIT @ OF Y POSITION REGISTER

9 BIT @ OF X POSITION REGISTER

10 SCALE BIT @

11 SCALE BIT 1

12 MODE BIT @

13 MODE BIT 1

14 MODE BIT 2

15 INTENSITY BIT 0

16 INTENSITY BIT 1

17 INTENSITY BIT 2

DISPLAY INITIAL CONDITIONS

BIT
6
7
8

9

10
11
12
13
14
15
16
17

INTERPRETATION

ENABLE EDGE FLAG INTERRUPT
ENABLE LIGHT PEN FLAG INTERRUPT

@ ~- DO NOT DISABLE LIGHT PEN AFTER KRESUMING DISFLAY
1 -- ENABLE LIGHT PEN ACCOKRDING TO BIT 9

@ ~- ENABLE LIGHT PEN AFTER FIKST DATA REQUEST AFTER
RESUMING DISPLAY

1 -- DO NOT ENABLE LIGHT FEN AFTEKk RESUMING DISPLAY

BIT © OF Y DIMENSION

BIT 1 OF Y DIMENSION

BIT & OF X DIMENSION

BEIT 1t OF X DIMENSION

INTENSIFY ALL POINTS

INHIBIT EDGE FLAGS

ENABLE PUSH BUTTON INTEKKUPT
ENABLE INTERNAL STOF INTERRUPT

BREAK FIELD LOAD PARAMETER

BIT

Lo BRVe e <EEN Be)

—

13
14
15
16
17

INTERPRETATION

LOAD BREAK FIELD ACCOKRDING TO BITS 7-9
BREAK FIELD BIT @

BREAK FIELD BIT 1

BREAK FI1ELD BIT 2

LOAD PUSH BUTTONS ACCORDING TO BITS 11-17

-- LOAD PUSH BUTTONS @-5
1 -- LOAD PUSH BUTTONS 6-11
PUSH BUTTON © OR 6

PUSH BUTTON 1 OR 7

PUSH BUTTON 2 OK &

PUSH BUTTON 3 OK 9

PUSH BUTTON 4 OR 10

PUSH BUTTON S OR 11

IOT INSTRUCTIONS

EACH IOT INSTRUCTION IS FORMED BY ADDING THE CODE FROM

THE TABLE BELOW TO 700000. THE AC MAY BE CLEARED AT EVENT TIME
1 OF THE IOT INSTRUCTION BY SETTING BIT 14 IN THE INSTRUCTION.

CODE

o002

A0 42

Q001

P00 4

BO44

2101

n102

2104

0144

0201

0202

0286

D244

2301

2302

D304

FUNCTION

ENABLE INTERRUPTS

DISABLE INTERRUPTS

SKIP IF CLOCK FLAG IS SET

CLEAR CLOCK FLAG AND DISABLE CLOCK
CLEAR CLOCK FLAG AND ENABLE CLOCK
SKIP IF READER FLAG IS SET

CLEAR READER FLAG», INCLUSIVE OR CONTENT OF READER BUFFER
INTO AC

SELECT READER IN ALPHANUMERIC MODE

SELECT READER IN BINARY MODE

SKIP IF PUNCH FLAG IS SET

CLEAR PUNCH FLAG

PUNCH TAPE IMAGE FROM BITS 10-17 OF AC

PUNCH TAPE IMAGE IN BINARY MODE FROM BITS 12-17 OF AC
SKIP IF KEYBOARD FLAG IS SET

OR CONTENT OF KEYBOARD BUFFER INTO BITS 10-17 OF AC

OR I/0 STATUS WORD INTO AC

CODE FUNCTION

N401 SKIP IF TELEPRINTER FLAG IS SET

2402 CLEAR TELEPRINTER FLAG

0406 LOAD TELEPRINTER BUFFER FROM BITS 10-17 OF THE AC
2501 OR DISPLAY PUSH-DOWN POINTER INTO BITS 6-17 OF THE AC

2502 OR BITS 1-12 OF THE DISPLAY CONTROL X POSITION REGISTER
INTO BITS 6-17 OF THE AC

2601 OR BITS 3-14 OF THE DISPLAY ADDRESS COUNTER INTO BITS
6-17 OF THE AC

0602 OR DISPLAY STATUS WORD 1 INTO BITS 6-17 OF THE AC

0621 OR PUSH BUTTONS @-11 INTO BITS 6-17 OF THE AC

0642 SKIP IF THE LIGHT PEN FLAG IS SET

P645 SET DISPLAY PUSH DOWN POINTER FROM BITS 6-17 OF THE AC
0665 SET DISPLAY INITIAL CONDITIONS FROM BITS 6-17 OF THE AC
27901 SKIP IF DISPLAY EXTERNAL STOP FLAG IS SET

a792 SKIP IF EITHER THE VERTICAL OR HORIZONTAL EDGE FLAG IS
SET

D704 STOP DISPLAY (EXTERNAL)

B785 LOAD BREAK FIELD AND/OR PUSH BUTTONS FROM THE BREAK FIELD
PARAMETER IN BITS 6-17 OF THE AC

0721 SKIP IF DISPLAY INTERNAL STOP FLAG IS SET

0722 SKIP IF MANUAL INTERRUPT FLAG IS SET

CODE

1103

1201

1202

1301

1302

1304

1491

1402

1404

1424

1441

1442

1444

1601

FUNCTION

SET THE A/D CONVERTER MULTIPLEXOR TO THE CHANNEL
SPECIFIED IN BITS 12-17 OF THE AC

INCREMENT THE A/D CONVERTER MULTIPLEXOR CHANNEL NUMBER
(CHANNEL @ FOLLOWS CHANNEL 77)

OR A/D CONVERTER MULTIPLEXOR CHANNEL NUMBER INTO BITS
12-17 OF THE AC

SKIP IF THE A/D CONVERTER FLAG IS SET

OR A/D CONVERTER BUFFER INTO BITS #-11 OF THE AC
SELECT THE A/D CONVERTER

SKIP IF THE DATAPHONE TRANSMIT FLAG IS SET

OR THE DATAPHONE STATUS WORD INTO THE AC

INVERT THE DATAPHONE STATUS BITS WHEREVER A 1 APPEARS IN
THE CORRESPONDING POSITION IN THE AC

SKIP IF DATAPHONE MASK SKIP FLAG IS SET

'SET THE DATAPHONE MASK SKIP FLAG IF ALL BITS IN THE

DATAPHONE STATUS WORD ARE 1°'S WHEREVER A 1 APPEARS IN THE
CORRESPONDING POSITION IN THE AC

CLEAR DATAPHONE MASK SKIP FLAG

SKIP IF THE DATAPHONE RECEIVE FLAG IS SET
CLEAR THE DATAPHONE TRANSMIT AND RECEIVE FLAGS
CLEAR ALL DATAPHONE FLAGS AND REGISTERS

CLEAR DISPLAY FLAGS

CODE

1602

1604

1605

1622
3301
3302

3344

5101
5102
S104
7701
7702

7784

FUNCTION

- e w-

OR BITS 1-12 OF THE DISPLAY Y POSITION REGISTER INTO BITS
6-17 OF THE AC

RESUME DISPLAY AFTER INTERNAL STOP

INITIALIZE DISPLAY AT ADDRESS GIVEN IN BITS 6~17 OF THE
AC

OR DISPLAY STATUS WORD 2 INTO BITS 6-17 OF THE AC

SKIP IF THE TELETYPE IS CONNECTED

CLEAR ALL FLAGS

RESTORE THE LINK AND EXTEND MODE STATUS FROM INFORMATION
CONTAINED IN THE LOCATION WHOSE ADDRESS IS GIVEN IN BITS
5-17 OF THE FOLLOWING WORD IN MEMORY

LOAD D/A CONVERTER CHANNEL #1 FROM BITS @-11 OF THE AC
LOAD D/A CONVERTER CHANNEL #2 FROM BITS @8-11 OF THE AC
LOAD D/A CONVERTER CHANNEL #3 FROM BITS @-11 OF THE AC
SKIP IF IN EXTEND MODE

ENTER EXTEND MODE

LEAVE EXTEND MODE

APPENDIX D =-- ASSEMBLY LANGUAGE

THE ASSEMBLY LANGUAGE WHICH IS USED IN THE EXAMPLES IN
THE REPORT IS THE SOURCE LANGUAGE FOR THE ASSEMBLER (TO BE
DESCRIBED IN A FORTHCOMING REPORT) WHICH RUNS UNDER THE
EXECUTIVE SYSTEMe THIS LANGUAGE IS DESCRIBED BRIEFLY BELOW.

ALL MNEMONICS ARE. FROM ONE TO SIX CHARACTERS LONGe. THE
FIRST CHARACTER MUST BE AN ALPHABETIC CHARACTER OR A PERIOD (.)»
AND ALL OTHER CHARACTERS MUST BE ALPHANUMERIC OR PERIODS. A
MNEMONIC MAY REPRESENT ANY ONE OF THE FOLLOWING ENTITIES:

(1) A PROGRAM SYMBOL (1. Ee» A SYMBOL WHOSE VALUE 1S USED
TO COMPUTE THE OPERAND OF AN INSTRUCTION),

(2) AN INSTRUCTION CODE, OR
(3) A PSEUDO-OP (I« Ee» AN INSTRUCTION TO THE ASSEMBLER).

IF A MNEMONIC 1S USED TO REPRESENT MORE THAN ONE OF THESE
ENTITIES, THE ASSEMBLER WILL RESOLVE THE AMBIGUITY FROM CONTEXT.

ALL NUMBERS ARE INTERPRETED AS OCTAL NUMBERS. NUMBERS
MAY REPRESENT VALUES OF PROGRAM SYMBOLS ONLY.

A SOURCE LINE IS COMPOSED OF UP TO FOUR FIELDSe. EACH
FIELD IS DELIMITED BY SPACES. (SEVERAL CONSECUTIVE SPACES ARE
INTERPRETED AS A SINGLE SPACE BY THE ASSEMBLER, EXCEPT IN TEXT
PSEUDO-OP OPERANDS.) THE FOUR POSSIBLE FIELDS (FROM LEFT TO
RIGHT ON THE SOURCE LINE) ARE THE FOLLOWING:

(1) LOCATION FIELD

(2) INSTRUCTION FIELD

(3) OPERAND FIELD

(4) COMMENT FIELD

THE LOCATION FIELD CONTAINS A MNEMONIC WHICH IS ASSIGNED

THE VALUE OF THE ADDRESS OF THE LOCATION WHICH THE SOURCE LINE
REPRESENTS (UNLESS THE INSTRUCTION FIELD CONTAINS ONE OF THE
PSEUDO-OPS S$EQU, $OPD» OR $OPDM). IF THE FIRST CHARACTER ON THE
LINE IS A SPACE» THE LOCATION FIELD IS NOT PRESENT.

THE INSTRUCTION FIELD CONTAINS ONE OF THE FOLLOWING:
(1) A PSEUDO-OP SYMBOL.,

(2) A MNEMONIC WHICH REFRESENTS AN INSTRUCTION WHICH
REQUIRES AN OPERAND, Ok

(3) AN OPERANDLESS INSTRUCTION MNEMONIC OR A SET OF THESE
MNEMONICS SEPARATED BY PLUS SIGNS (+), WHICH DENOTE
“INCLUSIVE OR"™ IN THIS FIELD.

IF THE INSTRUCTION FIELD CONTAINS AN OPERANDLESS INSTRUCTION
THE OPERAND FIELD IS NOT PRESENT. INDIRECT ADDRESSING IS
INDICATED BY AN ASTERISK (*) APPENDED T0 THE RIGHT OF A
MNEMONIC WHICH REPRESENTS AN INSTRUCTION WHICH KEGUIRES AN
OPEKRAND.

THE OPERAND FIELD CONTAINS A SET OF FPKOGRAM SYMBOLS
AND/OR NUMBERS SEPARATED BY THE BINARY OFPERATOR SYMBOLS '+
(2°'S COMPLEMENT ADDITION) AND/OR '-' (2°'S COMPLEMENT SUB-
TRACTION). IN ADDITION» THE FIRST FROGRAM SYMBOL OR NUMBER
MAY BE PRECEEDED BY EITHEk OF THE UNARY OPERATORS '"+"
(UNARY PLUS) OR "-*" (2'S COMPLEMENT). LITERALS ARE DENOTED
BY AN EQUAL SIGN (=) APPENDED TO THE LEFT END OF THE OPERAND
FIELD. AN ASTERISK (*) REPRESENTS A MNEMONIC WHOSE VALUE IS THE
ADDRESS OF THE LOCATION WHICH THE SOURCE LINE IN WHICH IT
APPEARS REPRESENTS (IN THE OPERAND FIELD ONLY). THE LOW OKRDEK
13 BITS OF THE VALUE OF THE EXPRESSION IN THE OPERAND FIELD
ARE ADDED TO THE VALUE REPRESENTED BY THE INSTRUCTION
FIELD.

PSEUDO-OP SYMBOLS ARE WRITTEN IN THE INSTKRUCTION
FIELD AND CONSIST OF A DOLLAR SIGN (%) APPENDED TO THE LEFT OF
THE PSEUDO-OP MNEMONIC. THE FOLLOWING SYMBOLS ARE ACCEFPTED BY
THE ASSEMBLER:

$DC

$DS

$SEND

$EQU

$0PD

$0PDM

$ORG

$TEXT

A WORD WHICH CONTAINS THE FULL 18-BIT VALUE OF THE
EXPRESSION IN THE OPERAND FIELD IS PRODUCED.

THE 18-BIT VALUE OF THE EXPRESSION IN THE OPERAND FIELD
IS ADDED INTO THE LOCATION COUNTER WITHIN THE ASSEMBLER
(BY TWO'S COMPLEMENT ADDITION)e (ALL MNEMONICS IN THE
OPERAND FIELD MUST BE PREDEFINEDs)

THE END OF THE SOURCE PROGRAM IS DECLARED.

THE PROGRAM SYMBOL MNEMONIC IN THE LOCATION FIELD IS
ASSIGNED THE 18-BIT VALUE OF THE EXPRESSION IN THE
OPERAND FIELD. C(ALL MNEMONICS IN THE OPERAND FIELD MUST
BE PREDEFINED.)

THE OPERANDLESS INSTRUCTION MNEMONIC IN THE LOCATION
FIELD IS ASSIGNED THE 18-BIT VALUE OF THE EXPRESSION IN
THE OPERAND FIELD. (ALL MNEMONICS IN THE OPERAND FIELD
MUST BE PREDEFINED.)

THE OPERAND-REQUIRING INSTRUCTION MNEMONIC IN THE
LOCATION FIELD IS ASSIGNED THE 18-BIT VALUE OF THE
EXPRESSION IN THE OPERAND FIELDes C(ALL MNEMONICS IN THE
OPERAND FIELD MUST BE PREDEFINED.)

THE LOCATION COUNTER WITHIN THE ASSEMBLER IS SET TO THE
18-BIT VALUE OF THE EXPRESSION IN THE OPERAND FIELD. (ALL
MNEMONICS IN THE OPERAND FIELD MUST BE PREDEFINED.)

THE FIRST CHARACTER IN THE OPERAND FIELD IS TAKEN AS A
BREAK CHARACTER», AND ALL CHARACTERS TO THE RIGHT OF IT
UP TO THE NEXT BREAK CHARACTER ARE PACKED AS 3 6-BIT
CHARACTER CODES PER WORD. 1IF THE NUMBER OF CHARACTERS
BETWEEN THE BREAK CHARACTERS IS NOT A MULTIPLE OF 3, THE
LAST WORD GENERATED IS PADDED WITH NULL CHARACTER CODES
(77>

$TITLE ALL CHARACTERS TO THE RIGHT OF THIS PSEUDO-OP ARE TAKEN

TO BE THE TITLE OF THE CURRENT SECTION OF THE PROGRAM.
(THIS TITLE IS TYPED ON THE TELETYPE DURING PASS 1 OF THE

TN

D-4

A ;
SSEMBLY, BEGINNING WITH THE FIRST NON-BLANK CHARACTER.)

THE AS s o
ASTERI SK (*),Sgggzgg ilsgggsb SOURCE LINES WHICH BEGIN WITH AN
FTELDS. WHICH HAVE NO FIELDS, AND COMMENT

