Distinct Populations of Presympathetic-Premotor Neurons Express Orexin or Melanin-Concentrating Hormone in the Rat Lateral Hypothalamus

ILAN A. KERMAN, RENÉ BERNARD, DEVIN ROSENTHAL, JAMES BEALS, HUDA AKIL, AND STANLEY J. WATSON

Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109

ABSTRACT

Orexin and melanin-concentrating hormone (MCH) have been implicated in mediating a variety of different behaviors. These include sleep and wakefulness, locomotion, ingestive behaviors, and fight-or-flight response, as well as anxiety- and panic-like behaviors in rodents. Despite such diversity, all these processes require coordinated recruitment of the autonomic and somatomotor efferents. We have previously mapped the locations of presympathetic-premotor neurons (PSPMNs) in the rat brain. These putative dual-function neurons send trans-synaptic projections to somatomotor and sympathetic targets and likely participate in somatomotor-sympathetic integration. A significant portion of these neurons is found within the dorsomedial (DMH) and lateral hypothalamus (LH), areas of the brain that contain MCH- and orexin-synthesizing neurons in the central nervous system. Thus, we hypothesized that hypothalamic PSPMNs utilize MCH or orexin as their neurotransmitter. To test this hypothesis, we identified PSPMNs by using recombinant strains of the pseudorabies virus (PRV) for trans-synaptic tract tracing. PRV-152, a strain that expresses enhanced green fluorescent protein, was injected into sympathectomized gastrocnemius muscle, whereas PRV-BaBlu, which expresses β-galactosidase, was injected into the adrenal gland in the same animals. By using immunofluorescent methods, we determined whether co-infected neurons express MCH or orexin. Our findings demonstrate that PSPMNs synthesizing either MCH or orexin are present within LH, where they form two separate populations. PSPMNs located around the fornix express orexin, whereas those located around the cerebral peduncle are more likely to express MCH. These two clusters of PSPMNs within LH likely play distinct functional roles in autonomic homeostasis and stress coping mechanisms. J. Comp. Neurol. 505:586–601, 2007.

© 2007 Wiley-Liss, Inc.

Indexing terms: somatomotor-sympathetic integration; somatomotor control; central autonomic circuits; pseudorabies virus; peptides; transneuronal tracing

Orexins (orexin-A and orexin-B; also known as hypocretin 1 and hypocretin 2, respectively) were initially discovered as ligands for two orphan G-protein-coupled receptors (de Lecea et al., 1998; Sakurai et al., 1998). These peptides are derived from a common precursor molecule, prepro-orexin, which is cleaved to form orexin-A (33 amino acids long) and orexin-B (28 amino acids) (Sakurai et al., 1998; Willie et al., 2001). In their initial report Sakurai et al. (1998) described the structure of these peptides and demonstrated that they stimulate short-term food intake. Subsequent investigations have confirmed that these peptides stimulate arousal and feeding behavior in rats and mice (Edwards et al., 1999; Haynes et al., 2000, 2002) and have also implicated them in the regulation of emotion, energy homeostasis, reward, and drug addiction (Yamanaka et al., 2003; Akiyama et al., 2004; Boutrel et al., 2005; Harris et al., 2005; Narita et al., 2006; Sakurai, 2007).
PSPMNs AND HYPOTHALAMIC PEPTIDES

2007). It has also been demonstrated that the orexins participate in regulating locomotor activity as part of motivated behaviors, such as foraging for food following fasting (Yamanaka et al., 2003) and that they are part of an integrated cardiovascular and locomotor response to acute stress (Zhang et al., 2006). In addition, intracerebroventricular administration of orexin-A leads to increases in mean arterial pressure and heart rate in awake behaving rats (Samson et al., 2007).

Orexin-synthesizing neurons in the central nervous system are found exclusively within the lateral (LH) and dorsomedial (DMH) hypothalamic nuclei (Sakurai et al., 1998; Swanson et al., 2005). Within these regions, orexin-synthesizing neurons are intermingled with those neurons that synthesize melanin-concentrating hormone (MCH). Although these two populations of hypothalamic neurons are located within the same areas, they are neurochemically distinct, as MCH-positive cells do not synthesize orexins and vice versa (Bayer et al., 2002; Swanson et al., 2005).

MCH is also located in the lateral hypothalamus and is a 19-amino-acid-long neuroactive peptide that is derived from the precursor prepro-MCH (Bittencourt et al., 1992). MCH was originally discovered in fish but has subsequently been identified in mammals, in whom it is thought to regulate energy balance (Pissios et al., 2006). In addition to energy balance, MCH neurotransmission has also been implicated in regulating locomotor activity (Marsh et al., 2002; Segal-Lieberman et al., 2003), and inactivation of the MCH receptor 1 leads to increased wheel running (Zhou et al., 2005). MCH neurotransmission is also thought to play a role in mediating anxiety- and depression-like behaviors in rodents (Borowsky et al., 2002; Segal-Lieberman et al., 2003), and inactivation of the MCH receptor 1 has been implicated in regulating locomotor activity (Marsh et al., 2002; Segal-Lieberman et al., 2003), and inactivation of the MCH receptor 1 leads to increased wheel running (Zhou et al., 2005). MCH neurotransmission is also thought to play a role in mediating anxiety- and depression-like behaviors in rodents (Borowsky et al., 2002; Segal-Lieberman et al., 2003), and inactivation of the MCH receptor 1 has been implicated in regulating locomotor activity (Marsh et al., 2002; Segal-Lieberman et al., 2003), and inactivation of the MCH receptor 1 leads to increased wheel running (Zhou et al., 2005).

MCH increase rapid eye movement sleep (Verret et al., 2002). Furthermore, intracerebroventricular infusions of MCH have 100% cross-reactivity against MCH and 0% cross-reactivity against agouti-related peptide, leptin, and orexins or MCH.

To test this hypothesis we identified PSPMNs by using our previously developed retrograde trans-synaptic tract-tracing paradigm and then used triple-label immunofluorescence to determine whether these cells synthesize orexins or MCH.

MATERIALS AND METHODS

All the procedures regarding animal use in this study conformed to the Guide for the Care and Use of Laboratory Animals of the NIH and were approved by the University of Michigan’s University Committee on Use and Care of Animals.

Antibody specificity and distribution of MCH- and orexin-synthesizing neurons

In our initial experiments we sought to compare the distribution of MCH- and orexin-synthesizing neurons in the rat brain. Adult male Sprague-Dawley rats (n = 2; Charles River, Wilmington, MA) were used in these studies. Animals were deeply anesthetized with 1 ml i.p. of 50 mg/ml pentobarbital sodium solution and transcardially perfused with 100–150 ml of physiological saline followed by 400–500 ml of a 4% paraformaldehyde solution containing 1.4% l-lysine and 0.2% sodium meta-periodate (PLP) (McLean and Nakane, 1974). Brains were then extracted, postfixed in PLP overnight, and immersed in 20% sucrose until they sank to the bottom of the container. Tissue was then sectioned coronally on a freezing microtome at a thickness of 40 μm and collected into six adjacent bins. Tissue was then stored at −20°C in cryoprotectant (30% sucrose, 30% ethylene glycol, 1% polyvinyl-pyrrolidone [PVP-40]) until immunohistochemical processing was conducted.

To study the distribution of MCH-positive neurons, we used rabbit anti-MCH serum (Phoenix Pharmaceuticals, Burlingame, CA, cat. #: H-070-47, lot #: 00606). This antibody was raised against full-length peptide (sequence: Asp-Phe-Asp-Met-Leu-Arg-Cys-Met-Leu-Gly-Arg-Val-Tyr-Arg-Pro-Cys-Trp-Gln-Val) and has been shown to have 100% cross-reactivity against MCH and 0% cross-reactivity against orexins, agouti-related peptide, leptin, α-melanocyte-stimulating hormone, and neuropeptide Y (manufacturer’s technical information).

To prevent nonspecific binding, tissue was first soaked in blocking solution that consisted of 0.3% Triton X-100 (TX-100), 1% normal goat serum (NGS), and 1% bovine serum albumin (BSA) in 0.1 M phosphate buffer (PB; pH 7.4). The antibody was then dissolved in the same blocking mix and reacted with tissue at 1:10,000 or 1:15,000 for 1 hour at room temperature followed by 48 hours at 4°C. The tissue was then reacted with biotinylated goat anti-rabbit IgG (Vector, Burlingame, CA) at 1:200 in blocking solution for 2 hours at room temperature. Following a brief rinse in 0.1 M PB, the tissue was then reacted with the VectaStain ABC System (Vector), with A and B reagents dissolved at 1:200 each in blocking solution. The reaction was then visualized with 0.04% diaminobenzidine (DAB) as chromogen and 2 × 10⁻⁵ % H₂O₂ in 0.1 M sodium acetate.

To verify the specificity of this antibody further, we performed a blocking study in which adjacent sections were incubated with the rabbit anti-MCH serum (as described above) and with rabbit anti-MCH serum preincu-
bated with 50 μM of the MCH peptide (Phoenix Pharmaceu-
ticals, cat. #: 070-47, lot #: 424859).

To study the distribution of orexin-synthesizing neu-
rons, we used an antibody raised against orexin-A. We
used rabbit polyclonal antibody (Abcam, Cambridge, MA,
cat. #: ab6214, lot #: 38610), which was raised against a
synthetic peptide (sequence: Cys-Arg-Leu-Tyr-Glu-Leu-
Leu-His-Gly-Ala-Gly-Asn-His-Ala-Ala-Gly-Ile-Leu-Thr-
Leu), corresponding to amino acids 14–33 of cow orexin-A,
and conjugated to Lys-Leu-His by a glutaraldehyde linker
(manufacturer’s technical information). This peptide has
100% amino acid identity with rat orexin-A, and it con-
tains three regions of identity with orexin-B for a total of
13 identical amino acid residues between orexin-A and
orexin-B (Sakurai et al., 1998). This antibody has been
extensively tested to show that it cross-reacts to detect
orexin-B (Sakurai et al., 1998). This antibody has been
incubated with this antibody diluted to 1:5,000 and then
processed and visualized as described above.

Overview of tract-tracing studies

Male Sprague-Dawley rats (n = 11; Charles River) were
used in tract-tracing studies. In these experiments we
employed transgenic recombinants of an attenuated pseudo-
dorabies virus (PRV) strain, PRV-Bartha, for transneuro-
nal tracing of multisynaptic pathways innervating adre-
nal gland and gastrocnemius muscle. PRV has
preferential tropism for axonal terminals (Vahle et al.,
1978, 1980). It is transported in the retrograde direction
from the terminals to the cell body where the viral genome
is replicated in the nucleus (Enquist et al., 1998). Capsids
are assembled and filled with viral DNA in the nucleus,
acquire the mature envelope from a late Golgi compart-
ment, and are transported to sites of afferent synaptic
contact, where cell-to-cell retrograde transneuronal trans-
mission of infection occurs (Card et al., 1993; Enquist et
al., 1998). The two viral recombinants that we employed
were PRV-152 and PRV-BaBlu. Both are derived from
PRV-Bartha, which is an attenuated form of the parental
strain, PRV-Becker. PRV-BaBlu contains the lac Z gene at
the gG locus and produces β-galactosidase (β-gal) under
the control of the viral gG promoter (Kim et al., 1999).
PRV-152 carries the gene coding for enhanced green fluo-
rescent protein (eGFP) at the gG locus, which is constit-
tively expressed under control of the cytomegalovirus
immediate early promoter (Smith et al., 2000). Previous
studies have demonstrated that PRV-152 and PRV-BaBlu
are transported transsynaptically in a retrograde manner,
similarly to PRV-Bartha and that the two recombinants
are capable of simultaneously co-infecting the same neu-
ronal population (Standish et al., 1995; Billig et al., 1999,
2000, 2001; Smith et al., 2000; Kerman et al., 2003,
2006a).

We previously reported a robust negative correlation
between the animal’s weight and efficiency of infection of
gastrocnemius motoneurons, with the largest rate of mo-
toneuron infection in rats of intermediate size that weigh
approximately 200 g (Kerman et al., 2003). Thus, animals
in the current study were selected to weigh between 163
and 254 g for an average of 197 ± 8 g (mean ± SEM).
Animals were anesthetized with either an inhalable or an
injectable anesthetic protocol. In the former case anesthe-
sia was induced with 5% isoflurane vaporized in 1–1.5
L/min of O₂ and maintained with a 1.5–2.5% concentra-
tion. Alternatively, animals were injected i.p. with a mix
of ketamine and xylazine (60 mg/kg ketamine and 7 mg/kg
xylazine). Once a surgical plane of anesthesia was
achieved such that there was no spontaneous movement
and there were no withdrawal responses to tail and/or foot
pinch, hindlimb sympathectomy was performed.

In addition to somatic motor efferents, the hindlimb is
also innervated by sympathetic efferents that project to
blood vessels, sweat glands, and other smooth muscle
targets (Jäniq and McTavish, 1992). To prevent infection
of sympathetic pathways following injection of PRV-152
into the gastrocnemius muscle, the hindlimb was surgi-
cally sympathectomized in all animals by using a previ-
ously described approach (Kerman et al., 2003). Briefly,
the lumbar sympathetic nerve was dissected via a ventral
laparotomy and was extirpated from the level of the renal
artery caudal to the bifurcation of the abdominal aorta.
Neural plexuses running along the descending aorta and
inferior vena cava were also stripped off under microscopic
observation by using fine forcesps. The abdominal aorta
and the inferior vena cava were then swabbed with 10–
20% phenol dissolved in ethylene glycol. The abdominal
musculature was closed with sutures, and the overlying
skin was closed with surgical staples. This procedure is
effective at removing the large majority of sympathetic
efferents to the hindlimb, as evidenced by the lack of
infection in the intermediolateral cell column in the same
animals that exhibited robust infections of lumbar mo-
toneurons (Kerman et al., 2003, 2006a,b).

Following sympathectomy and a 2–10-day recovery pe-
riod, the animals were reanesthetized and injected with
PRV-152 into either their right (n = 2) or left (n = 9)
gastrocnemius muscle. Following a 24–32-hour recovery
period, the same rats were reanesthetized and were in-
jected with PRV-BaBlu into their left adrenal glands.
Choice of anesthetic regime had no effect on viral infection
or transport.

At the conclusion of the survival period following trans-
port of viral tracers, animals were deeply anesthetized
with 1 ml i.p. of 50 mg/ml pentobarbital sodium solution
and transcardially perfused with 100–150 ml of physiolo-
gical saline followed by 400–500 ml of a 4% parafor-
maldehyde solution containing 1.4% l-lysine and 0.2% sodium
meta-periodate (PLP) (McLean and Nakane, 1974).

Double-virus injections

Viral recombinants used in the present studies were
harvested from pig kidney cell cultures at a titer of 10⁶ to
10⁸ pfu/ml. Viral stocks were aliquoted in 50-μl volumes
and stored at −80°C. At the times of injection viral ali-
quot were removed from the freezer and kept on ice until
immediately before injections.

To determine the location of neurons coordinating mus-
cle contraction and autonomic activity, rats received injec-
tions of PRV-152 into their gastrocnemius muscles and
injections of PRV-BaBlu into their adrenal glands. In each
animal the gastrocnemius muscle was injected with 30 μl
of PRV-152, which was divided into multiple injections of
1.0 μl. The adrenal gland was dissected via a left flank
incision and gently separated from surrounding viscera
and fat; the adjacent connective tissue was then retracted
to facilitate access to the gland. Two or three injections
of PRV-BaBlu were then made into the gland through a
glass pipette attached to a 10-μl Hamilton syringe; the
total volume of virus injected was 2–4 μl. Following each
injected the gland was swabbed with a cotton-tip applicator to decrease nontarget viral spread. We previously demonstrated that this injection protocol produces an efficient infection of target neurons and does not result in spread of virus to non-target tissues (Kerman et al., 2003).

Injected animals were assigned to one of three groups: short, intermediate, and long survival times. In the short survival group (n = 3) rats survived for 121–122 hours following injection with PRV-152 and for 96–97 hours following PRV-BaBlu injection. We chose this survival time point because this is the earliest time point at which appreciable numbers of double-infected neurons are detected in the rat hypothalamus (Kerman et al., 2006a). Because a single replication cycle of the virus is 10–12 hours (Demmin et al., 2001), we therefore decided to extend the survival times by 10–12 hours to determine the maximal number of double-infected neurons that express MCH and orexins. Accordingly, in the intermediate survival group (n = 4) the animals survived for 132 or 136 and 108 or 112 hours following injections with PRV-152 and PRV-BaBlu, respectively. In the late survival group (n = 4) the animals survived for 143–144 and 111–120 hours following injections with PRV-152 and PRV-BaBlu, respectively.

Tissue processing

Following transcardial perfusion with PLP (see above), the entire brain was extracted and postfixed in PLP overnight. Brains were then immersed in 20% sucrose until they sank to the bottom of the container; they were sectioned coronally on a freezing microtome at a thickness of 35 or 40 μm and collected into six bins. Tissue was stored at −20°C in cryoprotectant until immunohistochemical processing was conducted.

For immunofluorescent detection in the brain, tissue was initially rinsed with 0.1 M PB several times at room temperature. It was then incubated for 1 hour in the blocking solution (1% NGS, 1% BSA, and 0.3% TX-100 in 0.1 M PB). Sections were then reacted with a cocktail of primary antibodies—chicken anti-GFP IgY (Abcam, product # 13970) at 1:2,000, mouse anti-MCH at 1:10,000 or rabbit anti-orexin at 1:500 —diluted in the above blocking solution. In each animal adjacent tissue bins were processed for orexin, GFP, β-gal triple-labeling and for MCH, GFP, β-gal triple-labeling. The chicken anti-GFP antibody was raised against recombinant full-length protein. This antibody yields a single band on Western blot and detects GFP in transgenic mice expressing GFP in lamina II of the spinal cord (manufacturer’s technical information). We have previously determined absence of staining with this antibody in uninfected rat tissue sections (Kerman et al., 2006b). Mouse anti-β-gal antibody was developed in mouse peritoneal cavities by using β-gal purified from E. coli as the immunogen. Using Western blot, this antibody was shown to be specific for β-gal in its native form (116 kDa), and it reacts only with β-gal from E. coli (manufacturer’s technical information). The specificity of this antibody in immunofluorescent experiments has been previously documented (Kerman et al., 2003).

Following 48-hour incubation at 4°C in the primary antibody solution, the tissue was rinsed several times with 0.1 M PB and then reacted with a secondary antibody solution, which consisted of donkey anti-mouse IgG conjugated to CY3 (1:200; Jackson ImmunoResearch, West Grove, PA), goat anti-chicken IgG conjugated to Alexa Fluor 488 (1:200; Molecular Probes Invitrogen, Carlsbad, CA), and goat anti-rabbit IgG conjugated to Alexa Fluor 647 (1:200; Molecular Probes Invitrogen) dissolved in the blocking solution (1% NGS, 1% BSA, and 0.3% TX-100). Following processing, tissue sections were mounted on glass slides and coverslipped with Aqua Poly/Mount (Polysciences, Warrington, PA).

Tissue analysis

Images of antibody-labeled MCH and orexin-synthesizing neurons were taken at 10× magnification with a flat-field correction by using a Zeiss Axioptip upright light microscope (Carl Zeiss MicroImaging, Thornwood, NY), operated by a Ludl motorized stage that was connected to a Ludd MAC2000 XYZ controller module (Ludl Electronic Products, Hawthorne, NY). Images of individual fields of view were stitched together by using the virtual slice tool in Stereo Investigator software (MicroBrightField, Williston, VT) on a Dell PC.

Immunofluorescently labeled tissue was examined by using a Leica DMR photomicroscope (Wetzlar, Germany) and with an Olympus Fluoview 1000 laser scanning confocal microscope (http://www.olympusfluvview.com/). Swanson’s (2004) rat atlas was used as a reference for anatomical classification. When using Leica DMR microscope, the presence of each fluorophore was detected by using specific filter sets (Chroma Technology, Brattleboro, VT) with the following respective excitation and emission ranges: Alexa Fluor 488, 440–520 nm and 500–555 nm (green fluorescence); CY3, 535–560 nm and 545–625 nm (red fluorescence); and Alexa Fluor 647, 560–680 nm and 625–775 nm (far red fluorescence).

Adjacent black-and-white images of the LH were digitized under a 20× objective; images were then stitched together by using the Photomerge function in Adobe Photoshop CS (Adobe Systems, San Jose, CA). Each of these large stitched images corresponded to a different fluorescent filter set and was pseudocolored as follows: GFP-positive neurons, green; β-gal-containing cells, red; and MCH- or orexin-positive neurons, blue or cyan. These pseudocolored images were then overlaid, and colocalization of two or three fluorophores was determined by turning each layer on and off to determine location and color of each cell. Brightness and contrast of images were optimized for presentation purposes, and figures were prepared in Photoshop.

Statistical analyses

Potential differences in distribution of labeled neurons between perifornical and peripeduncular regions were evaluated with repeated measures ANOVA with region (perifornical vs. peripeduncular) and anatomical level as independent variables and percentage of cells that were double-infected as the dependent variable. Statistical analyses were carried out in StatView 5.0 (SAS Institute, Cary, NC), and significance was set as P < 0.05.

RESULTS

Specificity of the MCH antibody

To confirm the specificity of the MCH antibody, we performed a blocking study with the specific MCH peptide.
In this experiment, sections through the LH were reacted with the anti-MCH antibody with and without preincubation of MCH peptide. Under control conditions we detected robust labeling in LH around the cerebral peduncle (Fig. 1A). The observed MCH antibody labeling was completely abolished by preincubation with the MCH peptide (Fig. 1B), thus confirming the specificity of this antibody for MCH.

Distribution of MCH- and orexin-synthesizing neurons

Distribution of MCH- and orexin-synthesizing neurons was studied in sections from adjacent (1 in 6 series) bins that were visualized by using DAB as the chromogen. These studies demonstrated that although MCH-positive neurons were distributed throughout LH, they formed two clear groupings. The first cluster of MCH neurons was located around the fornix (perifornical region), whereas the second cluster of these cells was found around the cerebral peduncle (peripeduncular region). Figure 2A–C demonstrates this distribution pattern of MCH-positive neurons in LH. Note the clustering of neurons in the perifornical and peripeduncular regions, which is especially prominent at the caudal level that we examined (Fig. 2A).

Although orexin-positive neurons occupied a similar area within LH, it was apparent that the bulk of these neurons was located more medially than the MCH-positive cells. Figure 2D–F illustrates the distribution of orexin-positive cells; note that these neurons are preferentially distributed within the perifornical region compared with the peripeduncular region. Within the perifornical region, orexin-positive cells also appeared to be more prevalent than the MCH-positive cells (compare the labeling in Fig. 2F with that in Fig. 2C).

Expression of MCH within PSPMNs

In line with our previous observations (Kerman et al., 2006a), we detected considerable numbers of double-infected neurons within LH and DMH across all three survival groups. Within LH these neurons were equally distributed throughout the nucleus and were as likely to be located in the perifornical region as in the peripeduncular region.

We conducted triple-labeling experiments aimed at determining whether hypothalamic PSPMNs expressed MCH. In these experiments MCH-positive neurons were tagged with a far red fluorophore and were pseudocolored cyan. Cells that send polysynaptic projections to hindlimb muscle were tagged with a green fluorophore, and those that send polysynaptic projections to the adrenal gland were tagged with a red fluorophore. Thus, double-infected neurons appeared yellow, whereas triple-labeled neurons appeared as a mixture of all three colors.

Figure 3 illustrates examples of neurons infected with PRV-152 (green), or PRV-BaBlu (red), or both (yellow) and their relationship to the MCH-synthesizing neurons (cyan). We detected MCH within PSPMNs throughout LH; however, these triple-labeled cells appeared to be more numerous within the peripeduncular region (Fig. 3D2) than within the perifornical region (Fig. 3D1).

We then mapped the locations of MCH-positive PSPMNs, as well as the locations of neurons that were infected with only one PRV strain but also expressed MCH. These maps were created at three different rostro-caudal levels of the rat hypothalamus and across the three different survival periods used in the current study. Figure 4 illustrates the distributions of these cells at different survival times. Note that at the earliest survival time there are considerable numbers of PSPMNs in LH and DMH (Fig. 4A). Some of these neurons express MCH (black circles) and are intermingled with MCH-negative PSPMNs (yellow squares). Furthermore, these neurons are present around the fornix (in the perifornical region) and around the cerebral peduncle (in the peripeduncular region).

With increased survival time, the numbers of detected double-infected neurons increased and these cells were present throughout LH and DMH. However, with these longer survival times MCH-positive PSPMNs (black circles) segregated preferentially toward the peripeduncular region (Fig. 4B,C).

Expression of orexins within PSPMNs

We conducted triple-labeling experiments to determine whether hypothalamic PSPMNs are orexinergic. In these
experiments orexin-positive neurons were tagged with a far red fluorophore and pseudocolored cyan. Neurons that send polysynaptic projections to hindlimb muscle were tagged with a green fluorophore, whereas those sending polysynaptic projections to the adrenal gland were tagged with a red fluorophore. Figure 5 illustrates data from these experiments; note that in these examples the numbers of orexin-positive PSPMNs are greater within the perifornical area (Fig. 5D1) compared with the peripeduncular area (Fig. 5D2).

As with the MCH-positive neurons, we mapped the locations of orexin-positive PSPMNs in relation to the orexin-negative double-infected neurons as well as to orexin-positive single-infected neurons (Fig. 6). This mapping revealed that orexin-positive PSPMNs were detected even at the earliest survival time point and that the numbers of double-infected cells increased with longer survival times. Furthermore, as the numbers of PRV-infected neurons increased with increasing survival, orexin-positive
Fig. 3. Co-localization of viral reporter genes with melanin-concentrating hormone (MCH) in neurons of the lateral hypothalamus. Triple-labeled sections were imaged with a laser-scanning confocal microscope taking 40–60 optical sections per field of view. For each image the z-stack was compressed, and images were rendered for three-dimensional representation. A1,A2: MCH-positive neurons were tagged with Alexa Fluor 647 and pseudocolored with cyan. B1,B2,C1,C2: Hypothalamic neurons that send polysynaptic projections to hindlimb muscle were infected with pseudorabies virus (PRV)-152, tagged with Alexa Fluor 488, and pseudocolored with green (B1,B2); neurons with polysynaptic projections to the adrenal gland were infected with PRV-BaBlu, tagged with CY3, and pseudocolored with red (C1,C2). D1,D2: Merged images of A1–C2. A1–D1: Images from the perifornical region (note the edge of the fornix outlined with a dashed line). A2–D2: Images from the peripeduncular region. Triple-labeled neurons (MCH-positive PSPMNs) are shown with arrows. An MCH-positive neuron that was infected only with PRV-BaBlu is shown with thick arrows in A2–D2, and an MCH-positive neuron that was infected only with PRV-152 is shown with long narrow arrows in A2–D2. Double-infected neurons that are MCH-negative are shown with arrowheads. Note greater numbers of triple-labeled neurons in the peripeduncular region (2) compared with the perifornical region (1). Abbreviation as in Figure 2. Each box of the grid is 32 μm.
PSPMNs preferentially clustered within the perifornical region of LH (Fig. 6B,C).

Comparison of the distribution of MCH- and orexin-positive PSPMNs

To compare the distribution of MCH- and orexin-positive PSPMNs directly, double-infected neurons that were positive for each of these peptides were mapped onto corresponding atlas plates from Swanson’s (2004) rat brain atlas. Figure 7 illustrates data from this mapping study; at each survival time point MCH- and orexin-positive PSPMNs were projected onto the same atlas plate (plate #30 in Swanson’s (2004) rat brain atlas. These data demonstrate a clear segregation of MCH- (red dots) and orexin- (blue dots) synthesizing PSPMNs into lateral and medial clusters, respectively. This clustering is apparent at intermediate (Fig. 7B) and long (Fig. 7C) survival time points.

To determine whether this segregation into medial and lateral groups of orexin- and MCH-positive PSPMNs is true throughout the rostrocaudal extent of LH, we performed the same mapping procedure at three different rostrocaudal levels for data collected from two of the long-surviving animals. Figure 8 illustrates results from this study; these data also indicate segregation of MCH- and orexin-positive PSPMNs into lateral and medial groups within LH.

Quantification

To determine regional differences in the distribution of PRV-infected neurons, we quantified the numbers of: 1)
Fig. 5. Co-localization of viral reporter genes with orexin in neurons of the lateral hypothalamus. Triple-labeled sections were imaged with a laser-scanning confocal microscope taking 40–60 optical sections per field of view. For each image the z-stack was compressed, and images were rendered for three-dimensional representation. **A1,A2:** Orexin-positive neurons were tagged with Alexa Fluor 647 and pseudocolored with cyan. **B1,B2,C1,C2:** Hypothalamic neurons that send polysynaptic projections to hindlimb muscle were infected with pseudorabies virus (PRV)-152, tagged with Alexa Fluor 488, and pseudocolored with green (B1,B2); neurons with polysynaptic projections to the adrenal gland were infected with PRV-BaBlu, tagged with CY3, and pseudocolored with red (C1,C2). **D1,D2:** Merged images of A1–C2. **A1–D1:** Images from the perifornical region (note the edge of the fornix outlined with a dashed line). **A2–D2:** Images from the peripeduncular region. Triple-labeled neurons (orexin-positive PSPMNs) are shown with arrows. Double-infected neurons that are orexin-negative are shown with arrowheads. Thick arrows in A1–D1 and A2–D2 show orexin-positive neurons that were infected only with PRV-BaBlu. Note greater numbers of triple-labeled neurons in the perifornical region (1) compared with the peripeduncular region (2). Images were taken from the same animal as shown in Figure 4. Abbreviation as in Figure 2. Each box of the grid is 32 μm.
double-infected neurons that were MCH- or orexin-negative; 2) double-infected neurons that were MCH- or orexin-positive; and 3) neurons that were infected with only one of the PRV strains and were either MCH- or orexin-positive. This procedure was carried out in tissue obtained from three rats from the intermediate survival time point. This survival time was chosen because it is the first time point at which appreciable numbers of double-infected neurons are detected that probably send direct projections to the spinal cord. Quantification was performed on sections from three different anatomical levels, as illustrated in Figure 2.

Digitized tissue sections were marked up with different symbols representing these combinations of markers (see Figs. 4 and 6 for examples). These maps were then projected onto digital plates from the Swanson’s (2004) rat atlas, and symbols were counted within the different hypothalamic nuclei (Tables 1, 2). Based on Swanson’s atlas, the following LH subnuclei were grouped together to represent the peripeduncular region: dorsal region; ventral region, lateral zone; ventral region, medial zone; magnocellular nucleus; and parvicellular region. In addition, the prefrontal region was also included in the peripeduncular region. For the perifornical region, the posterior hypothalamus was included as well as the following LH subnuclei: juxtadorsomedial; suprafornical; juxtaventromedial region, dorsal zone; and juxtaventromedial region, ventral zone.

To evaluate potential differences in the distribution of MCH-positive PSPMN s between perifornical and peripeduncular regions, cell counts for each anatomical level in each animal were expressed as percentage of total neurons.
rons that were detected (these included MCH-positive PSPMNs, MCH-negative PSPMNs, and neurons that were infected with only one of the PRV strains and expressed MCH). Figure 9A illustrates these data. Potential differences in the distribution of MCH-positive PSPMNs between perifornical and peripeduncular subdivisions were evaluated with repeated measures ANOVA with region (peripeduncular vs. perifornical) and anatomical level as independent variables and percentage of cells as a dependent variable. The ANOVA revealed significant differences in distribution of cells by region ($F = 16.414$, df 1, 8, $P < 0.05$), and no effects of level ($P > 0.1$) or level by region interaction ($P > 0.1$).

To evaluate potential differences in the distribution of orexin-positive PSPMNs between perifornical and peripeduncular regions, cell counts for each anatomical level in each animal were expressed as percentage of total neurons that were detected (these included orexin-positive PSPMNs, orexin-negative PSPMNs, and neurons that were infected with only one of the PRV strains and expressed orexin). Figure 9B illustrates these data. Potential differences in the distribution of orexin-positive PSPMNs between perifornical and peripeduncular subdivisions were evaluated with repeated measures ANOVA with region (peripeduncular vs. perifornical) and anatomical level as independent variables and percentage of cells as a dependent variable. The ANOVA revealed significant differences in distribution of cells by region ($F = 23.390$, df 1, 8, $P < 0.01$), and no effects of level ($P > 0.1$) or level by region interaction ($P > 0.1$).

DISCUSSION

In the current paper we focused our attention on hypothalamic PSPMNs. Neurons with putative dual (sympathetic and somatomotor) functions were identified by injecting distinct PRV recombinants into hindlimb muscle and the adrenal gland. Based on our previous reports on the anatomical distribution of the hypothalamic PSPMNs, we hypothesized that a subset of these neurons would be MCH- or orexin-positive. To test this hypothesis, we carried out triple-labeling experiments in which we combined immunofluorescent detection of viral reporter genes with that of orexins and MCH. Our results demonstrate that dual-infected neurons synthesize both orexins (Figs. 5, 6) and MCH (Figs. 3, 4). Previous studies have demonstrated that orexin- and MCH-positive neurons constitute separate but intermixed populations (Broberger et al., 1998; Elias et al., 1998; Swanson et al., 2005); thus MCH- and orexin-positive PSPMNs comprise separate neuronal pop-

Fig. 7. Spatial segregation of melanin-concentrating hormone (MCH)- (red) and orexin- (blue) positive presympathetic-premotor neurons (PSPMNs). Each dot represents one neuron. Dual-infected neurons that were also MCH- or orexin-positive from adjacent sections were projected onto the same section taken from Swanson’s rat brain atlas (plate #30, Swanson, 2000). A: Data taken from one animal in the short survival group. B: Data from two animals in the intermediate survival group. C: Data from two animals in the long survival group. Note that although there is some intermixing between the two populations, the majority of the two types of neurons are spatially segregated. Melanin-concentrating hormone (MCH)-positive presympathetic-premotor neurons (PSPMNs) are distributed more laterally and closer to the medial edge of the cerebral peduncle, whereas orexin-positive PSPMNs are distributed more medially around the fornix and in the dorsomedial hypothalamus. Abbreviations: ABH, arcuate hypothalamic nucleus; COApm, cortical amygdalar nucleus, posterior part, medial zone; DMHa, dorsomedial hypothalamic nucleus, anterior part; DMHv, dorsomedial hypothalamic nucleus, posterior part; DMHvp, dorsomedial hypothalamic nucleus, ventral part; fx, fornix; l, intermediate survival group.

I.A. KERMAN ET AL.
1 Data are totals from three animals sacrificed at the intermediate survival time point. Anatomical levels 1, 2, and 3 refer to anatomical levels illustrated in Figure 2. Data are presented as mean ± SEM. See text for additional details. Abbreviations: MCH, melanin-concentrating hormone; PRV, pseudorabies virus.

TABLE 2. Number of Neurons Infected with PRV and Their Co-Localization With Orexin at the Intermediate Survival Time Point Within the Peripeduncular and Perifornical Regions of the Lateral Hypothalamus

<table>
<thead>
<tr>
<th>Anatomical level</th>
<th>Label</th>
<th>Peripeduncular</th>
<th>Perifornical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Orexin+PRV-152+PRV-BaBlu</td>
<td>27.0 ± 1.8</td>
<td>67.0 ± 2.7</td>
</tr>
<tr>
<td></td>
<td>PRV-152+PRV-BaBlu</td>
<td>18.0 ± 7.6</td>
<td>10.7 ± 6.2</td>
</tr>
<tr>
<td></td>
<td>Orexin+PRV-152</td>
<td>0.7 ± 0.7</td>
<td>1.0 ± 0.8</td>
</tr>
<tr>
<td>2</td>
<td>Orexin+PRV-152+PRV-BaBlu</td>
<td>4.3 ± 3.0</td>
<td>16.0 ± 2.9</td>
</tr>
<tr>
<td></td>
<td>PRV-152+PRV-BaBlu</td>
<td>14.0 ± 10.0</td>
<td>19.0 ± 4.0</td>
</tr>
<tr>
<td></td>
<td>Orexin+PRV-BaBlu</td>
<td>0.3 ± 0.3</td>
<td>4.7 ± 1.3</td>
</tr>
<tr>
<td></td>
<td>Orexin+PRV-152</td>
<td>5.7 ± 3.3</td>
<td>2.3 ± 0.3</td>
</tr>
<tr>
<td>3</td>
<td>Orexin+PRV-152+PRV-BaBlu</td>
<td>1.7 ± 1.2</td>
<td>7.0 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>PRV-152+PRV-BaBlu</td>
<td>6.0 ± 3.1</td>
<td>6.7 ± 1.2</td>
</tr>
<tr>
<td></td>
<td>Orexin+PRV-BaBlu</td>
<td>0.7 ± 0.3</td>
<td>1.3 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>Orexin+PRV-152</td>
<td>1.7 ± 0.7</td>
<td>5.7 ± 3.7</td>
</tr>
</tbody>
</table>

2 Data are totals from three animals sacrificed at the intermediate survival time point. Anatomical levels 1, 2, and 3 refer to anatomical levels illustrated in Figure 2. Data are presented as mean ± SEM. See text for additional details. Abbreviation: PRV, pseudorabies virus.

In the study, we demonstrated that orexin-positive neurons are distributed mainly within the peripeduncular region of the lateral hypothalamus, whereas MCH-positive PSPMNs are found primarily within its peripenduncular subdivision.

Antibody specificity

For data interpretation it is important to consider first the specificity of the antibodies that were used in the current study. In regard to the antibodies used to detect viral reporter genes, we have previously confirmed their specificities by demonstrating absence of staining in non-infected rat brain tissue (Kerman et al., 2003, 2006a). Furthermore, the orexin antiserum employed in this current study has been extensively characterized by Nambu and co-workers (1999). As part of their study these authors demonstrated that preincubation of the serum with orexins, but not with neuropeptide Y or angiotensin, abolishes the signal (Nambu et al., 1999). Furthermore, they demonstrated staining with this antibody in cells transfected with prepro-orexin cDNA but not in the mock transfected cells (Nambu et al., 1999). Although we did not carry out such controls in our study, the pattern of distribution of orexinergetic neurons that we observed in our material (Fig. 2D–F) was consistent with a previous description using both immunocytochemistry and in situ hybridization (Elias et al., 1998; Sakurai et al., 1998; Nambu et al., 1999; Swanson et al., 2005); thus we can be...
repeated measures ANOVA. See text for additional details.

The pattern of labeling that we observed with the MCH antibody used in the current study (Fig. 2A–C) was likewise similar to the pattern of distribution of this peptide that was previously described (Bittencourt et al., 1992; Elias et al., 1998; Swanson et al., 2005). We further verified the specificity of this antibody by performing a blocking study (Fig. 1) in which the antiserum was preincubated with the MCH peptide. Data from this experiment demonstrated the specificity of this antibody as the staining was completely abolished by the preincubation. Thus, we are also confident of the specificity of the MCH antiserum used in the present study.

Confident of the specificity of the MCH antiserum used in the present study, we are also confident of the specificity of the orexin antiserum used in the current study. Previous studies have also demonstrated that LH neurons express neuropeptide-3 receptor and cocaine- and amphetamine-regulated transcript (CART). However, a distinct cluster of MCH neurons just medial to the cerebral peduncle does not express these markers (Cvetkovic et al., 2004). Based on their previous observations that neuropeptide-3 receptor-negative MCH neurons send descending projections to the spinal cord, whereas neuropeptide-3 receptor-positive neurons send ascending projections (Brischoux et al., 2002), these authors proposed parcellation of MCH neurons into two categories. According to this scheme, class A neurons are neuropeptide-3 receptor- and CART-negative and have descending projections, whereas class B neurons are neuropeptide-3 receptor- and CART-positive and have ascending projections (Cvetkovic et al., 2004). The finding that spinally projecting class A MCH neurons are located just medial to the cerebral peduncle strongly supports our current observation of clustering of MCH-positive PSPMNs in the peripeduncular LH.

Porter and Brody, 1986). Therefore, it seems feasible that such hypothalamospinal neurons collateralize to innervate simultaneously adrenal sympathetic preganglionic neurons and lumbar motoneurons. This hypothesis is supported by anatomical investigations that demonstrated the existence of heavy density of orexinergic fibers in the intermediolateral column of the spinal cord and moderate density of these fibers in the ventral horn (van den Pol, 1999). The presence of MCH-immunoreactive fibers in the intermediolateral cell column and the lumbar ventral horn of the spinal cord has also been demonstrated (Bittencourt and Elias, 1998). Nonetheless, definitive demonstration of such collateralized projections directly from LH to the spinal cord requires further investigation.

In addition to the direct projections to the spinal cord, LH also contains neurons with projections to the lower brainstem. Among them are neurons that innervate the ventromedial medulla (Hosoya, 1985), which is the most likely site of this relay because this area contains the greatest numbers of the caudally located PSPMNs (Kerman et al., 2003, 2006b). Thus, it is likely that at least some of the double-infected neurons that we observed at longer survival times synapse on neurons in the ventromedial medulla, which turn send descending projections to the spinal cord.

One of the major findings of the present study is the spatial separation of orexin- and MCH-positive PSPMNs. The orexinergic dual-infected neurons were more likely to be distributed medially within LH in the perifornical region, whereas MCH-positive PSPMNs were more likely to be found closer to the medial edge of the cerebral peduncle (see Figs. 7 and 8). This finding is supported by traditional tract-tracing approaches using retrogradely transported fluorescent dyes to study ascending and descending projections from LH (Bittencourt and Elias, 1998). Bittencourt and Elias (1998) showed that descending MCH-positive neurons were distributed laterally within LH along the medial edge of the cerebral peduncle, whereas the ascending neurons were distributed more medially within the perifornical region (see Fig. 6 of their paper). Cvetkovic and colleagues (2004) have also demonstrated that MCH neurons express neuropeptide-3 receptor and cocaine- and amphetamine-regulated transcript (CART). However, a distinct cluster of MCH neurons just medial to the cerebral peduncle does not express these markers (Cvetkovic et al., 2004). Based on their previous observations that neuropeptide-3 receptor-negative MCH neurons send descending projections to the spinal cord, whereas neuropeptide-3 receptor-positive neurons send ascending projections (Brischoux et al., 2002), these authors proposed parcellation of MCH neurons into two categories. According to this scheme, class A neurons are neuropeptide-3 receptor- and CART-negative and have descending projections, whereas class B neurons are neuropeptide-3 receptor- and CART-positive and have ascending projections (Cvetkovic et al., 2004). The finding that spinally projecting class A MCH neurons are located just medial to the cerebral peduncle strongly supports our current observation of clustering of MCH-positive PSPMNs in the peripeduncular LH.

Previous studies have also demonstrated that LH neurons sending polysynaptic projections to a variety of autonomic innervated targets synthesize orexins. For example, Geerling and colleagues (2003) demonstrated the presence of orexin double-labeled neurons within LH fol-
PSPMNS AND HYPOTHALAMIC PEPTIDES

lowing PRV injections into stellate and celiac sympathetic ganglia, as well as following its injection into the adrenal gland and kidney. Closer examination of their data suggests that such double-labeled neurons tend to cluster more around the fornix than other areas in LH (see Figs. 1 and 2 in Geerling et al., 2003), which is consistent with our findings. Furthermore, a study by Krout and coworkers (2003) suggests that orexinergic perifornical neurons send collateralized polysynaptic projections to the motor cortex and to the central autonomic network.

Functional considerations

Previous studies (reviewed above) along with the data presented in the current paper suggest the existence of two distinct cell groups within LH—one located more laterally at the medial edge of the cerebral peduncle and one located more medially around the fornix. Although both of these cell groups contain neurons that send descending polysynaptic projections that collateralize to innervate hindlimb muscle and adrenal gland, the perifornical group is made up predominantly of orexinergic neurons, whereas the peripeduncular group is made up primarily of MCH-positive neurons. Although we cannot directly evaluate the functional role of this separation from the present study, previous anatomical, physiological, and behavioral studies of LH offer some clues on the possible functional roles of these two cell groups. We have previously mapped the locations of PSPMNs throughout the central nervous system (Kerman et al., 2003, 2006a). Their pattern of distribution suggests that one of their possible functions is to coordinate activities of the somatomotor and sympathetic systems in response to stress. For example, a major cluster of such neurons is found within the paraventricular nucleus of the hypothalamus, which is the main neuroendocrine integrator of the stress response (Swanson and Kuypers, 1980; Herman and Cullinan, 1997; Reyes et al., 2003), as well as within the periaqueductal gray, which mediates motor and autonomic components of the “fight-or-flight” response to stress (Bandler et al., 1991; Keay and Bandler, 2004).

In animals, stress responses can generally be classified into either “active coping” or “passive coping” (Bandler et al., 2000). Active coping responses are usually elicited by escapable stressors such as the presence of a rival or a predator, whereas inescapable or uncontrollable stressors, such as deep muscular pain, elicit passive coping responses (Bandler et al., 2000). Active coping is characterized by increased somatomotor activity that is part of escape or fighting behavior, as well as a hypertensive response (Bandler et al., 2000). On the other hand, passive coping is characterized by general quiescence and hypotension (Bandler et al., 2000). Our data, taken together with previous physiological and behavioral studies, suggest that the perifornical orexinergic PSPMNs participate in the expression of the active coping response to stress, whereas the peripeduncular MCH-positive PSPMNs support the passive coping stress response.

The concept that orexin and MCH transmitter systems are involved in mediating stress responses is supported by findings that acute stressors induce Fos expression in orexinergic neurons (Winsky-Sommerer et al., 2004), whereas intracerebroventricular infusions of MCH increase anxiety-like behavior in mice on the elevated plus maze (Smith et al., 2006). Furthermore, chemical disinhibition of the perifornical area leads to increased blood pressure and heart rate, which are hallmarks of the fight-or-flight response; this effect is attenuated in orexin knockout mice (Kayaba et al., 2003). Likewise, awake behaving orexin knockout mice exhibit decreased cardiovascular and behavioral responses to acute social stressors (Kayaba et al., 2003). These data are in agreement with the concept that activity of the perifornical orexinergic PSPMNs participates in the expression of active coping stress responses.

In contrast to orexins, MCH neurotransmission likely plays a role in mediating quiescent or passive stress responses. Support for this notion comes from several lines of investigation. For example, melanin-concentrating hormone 1 receptor-deficient mice are hyperactive in their home-cages across a 24-hour period, suggesting that increased MCH transmission would lead to decreased levels of activity (Marsh et al., 2002). Furthermore, chronic intracerebroventricular administration of MCH leads to hypotension (Messina and Overton, 2007), a response that would be expected as part of a reaction to chronic inescapable stress. MCH neurons also express γ-aminobutyric acid (GABAergic) characteristics, including synthetic enzymes for GABA synthesis and GABAergic receptors (Harthoorn et al., 2005; Hervieu, 2006). Finally, chemical stimulation with excitatory amino acid infusions within the peripeduncular portion of LH leads to hypertensive responses (Allen and Cechetto, 1992; Pajolla and de Aguilar Correa, 2004), whereas similar stimuli in the perifornical region lead to hypertensive responses (Allen and Cechetto, 1992). These stimulation sites correspond closely to the locations of MCH-positive and orexinergic PSPMNs identified in the present study.

CONCLUSIONS

In the current study we used a virally mediated trans-synaptic tract-tracing approach to identify neurons with putative dual somatomotor-sympathetic function. These PSPMNs polysynaptically innervate adrenal gland and hindlimb muscle and likely participate in the expression of responses to stress. Our data indicate that these neurons form two distinct clusters within LH, those that synthesize orexins, which are located medially around the fornix, and those that express MCH, which are located laterally at the medial edge of cerebral peduncle. On the basis of previous studies, we hypothesize that these two groups of neurons are recruited differentially by different stressors. Orexinergic perifornical PSPMNs likely participate in active coping responses and may thus be recruited by escapable stressors, whereas MCH-positive peripeduncular PSPMNs likely participate in passive coping responses and may thus be recruited by inescapable stressors. Future investigations will be required to test this hypothesis.

ACKNOWLEDGMENTS

We are grateful to Mr. Cyrus Shabrang for his expert technical assistance. We also thank Dr. Sarah Clinton for a critical reading of an earlier version of this manuscript and for her help with statistical analysis.

