ERRATA

Jackson, James H., SELMA: A Conversational System for the
Graphical Specification of Markovian Queueing Networks.

Page 18, 9th line from bottom should read:
which are associated with the merge. Whenever an item
is available...

Page 19, 8th line through 5th line from bottom should read:
probability 0.3. Whenever the server in Figure 8d is
not full, an item is placed in it from the bottom queue
1f the bottom queue is not empty, or from the top queue
if this queue is not empty and the bottom queue is empty.

Page 24: Replace with Corrected Figure 10 (see next page).

Page 29, Line 3 should read:
phase and results phase to provide this function. When
this light button is referenced with...

Page 32, 8th line from the bottom should read:
For the example in Figure 13, this result is shown in
Figure 14a. QAS then returns the information necessary
to display the graph, and SELMA generates the graph and
displays it on these axes, as shown in Figure 14b.

Page 34, 7th line from the bottom should read:
DETAIL light button allows the user to specify the
maximum and minimum...

Page 37, 12th line from the bottom should read:
are used to save the current model on a file at the
IBM 360/67 and to retrieve...

6th line from the bottom should read:
command is terminated by a carriage return from the
keyboard.)

Page 40, 4th line from the bottom should read:
the SEL Executive System until the command exchanger
has removed...

Page 44, Line 8 should read:
01 02 T,T2 Display single value

Footnote 2 should appear as follows:
2Abscissa value, ordinate value

Footnote 4 should not appear.

Page 65:
The word "EXIT" in the figure should be written "Exit".

24

? = . — et . <) ° S
|
|
|
1
V \
\
———1 q —— \-————-—- eresem—— * p—
(1) (2)
eemend [} : > [] rre——
(3) e BRI
a. Random Branch
/—-‘\\
(‘~‘J) . T —d . /\ ° S
\\
i
)
| |
V \
[— ° N ___> pu— —
(1) (2)
— 4 /\ - . pro——
4 —Zp]
(3) . L] e —
b. Priocrity Branch

Corrected Figure 10.

Generation of Branches

THE UNIVERSITY OF MICHIGAN

Technical Report 23

SELMA: A Conversational System for the

Graphical Specification of Markovian Queueing Networks

James H. Jackson

CONCOMP: Research in Conversational Use of Computers
F. H. Westervelt, Director
ORA Project 07449

supported by:
ADVANCED RESEARCH PROJECTS AGENCY

DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

October 1969

ABSTRACT

This report discusses the design and use of the Systems Engin-
eering Laboratory's Markovian Analyzer (SELMA) system for a DEC
339 computer display terminal. This system provides interactive
graphics support for a program which was developed concurrently for
the IBM 360/67 to analyze a class of Markovian queueing networks.
Special features of the system include handling of all graphic opera-
tions at the terminal and recognition of patterns of motion of the

light pen to provide a human-oriented drawing capability.

TABLE OF CONTENTS

Abstract iii
1. Introduction o oo o s 1
2. Usage of SELMA and QAS. 5
3. The Command Exchanger 40
4, The Display Structure.00 61
5. Special Command Exchanger Feature 69
6. Foreseeable Modifications 71

References

Figure 1.

Figure 2.

Figure 3.
Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

LIST OF FIGURES

Simplified SELMA Structure.
SELMA Phases. v v v v v v v v o v v v v

a. Construction Phase.
b. ResultsPhase. ¢ ...
c. PlotPhase

Phase Transitions
Element Symbols.

Threshold Pattern for Light Pen
Motion Recognition.

Light Pen Motion on Unconnected
Element Symbols

a. Threshold Patterns About a Symbol
b. Deleting a Symbol
¢c. MovingaSymbol

Drawing a Connection Line.

a. Start of Connection Line at Output Port
b. After FirstCorner« « v o« « ..
c. After SecondCorner«

Examples of Branches and Merges

Random Branch.
Priority Branch.
Random Merge,
Priority Merge « . oo .

aooe

Threshold Patterns for Generating Branches

Generationof Branches.
a. Random Branch.«
b. Priority Branch.

vii

Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure

Figure

Figure

Figure

Figure

11.

12.

13.

14.

15.

16.
17.
18.

19.

20.

21.

22.

Threshold Patterns for Generating Merges 26
Generation of Merges 27
a. Random Merge 27
b. Priority Merge. 27
Identification of an Element 31
Result Plot for Model in Figure 13 33
a. Before Graph is Returned from QAS 33
b. After Graph is Returned from QAS 33
Modification of a Result Plot. 35
a. Display of Numerical Values 35
b. Expansion of a Section of the Graph. 35
Command Format 42
Commands Accepted by QAS. 43
Commands Accepted by SELMA. 44
Typical Construction of a Model. 50
a. Creation of Elements 50
b. Addition of Simple Connections 50
c. Generation of Priority Branch 51
d. Assignment of Parameters 51
An Incomplete Network Diagram. 64
Display Structure for Diagram in

Figure 20. o e e e e 65
Construction Phase Display Structure. 68

viii

1. Introduction

This report discusses the design and use of the Systems Engineering
Laboratory's Markovian Analyzer (SELMA) system for a DEC 339 [1]
computer display terminal. The purpose of this system is to provide
interactive graphic support for the QAS program |2], which was developed
concurrently for the IBM 360/67 to analyze a class of Markovian queueing
models. SELMA consists of a set of user tasks which are executed in
a multiprogrammed fashion under the control of the SEL Executive
System [3].

A simplified representation of the tasks which comprise SELMA
is shown in Figure 1. Each task is represented by a rectangle, whereas
each of the major display structures is represented by a circle. FEach
directed path on the diagram represents a flow of information from one
unit to another.

Whenever SELMA is operating, both the command exchanger task
and the keyboard interpreter task are continuously executed. The
function of the command exchanger is to communicate with the QAS
program in the IBM 360/67 via a 201A dataphone. Because the band-
width of this dataphone is somewhat limited (2000 bits/sec), all
graphic operations are performed locally in the display terminal,
and all data sent to QAS or received from QAS are formatted into
blocks called commands. Each command represents a macroscopic
operation, such as creating or destroying an element, and it con-

tains only the required control information, rather than an excessive

Keyboard Result
Interpreter Plot I
TYPE l
PLOT ———————= Command | > QAS
Exchanger

CREATE

User

Light Pen
Interpreter

TRANSLATE

Push Button ‘
Interpreter ‘

DEC 339 <§——r—-;>IBM 360/6"

Figure 1
Simplified SELMA Structure

amount of graphic information. The basic function of the kevboard
interpreter is to provide a direct path between the user and the
command exchanger for certain relatively infrequent operations such
as destroying the current model or terminating execution.

The other tasks which are shown in Figure 1 are scheduled for
execution in response to user inputs. Tae TYPE and PLOT tasks are
scheduled in response to references to light buttons whose function
is to request results from QAS. These tasks do not modify the
diagram of the current model; they merely instruct the command
exchanger to send appropriate commands to QAS. The CREATE task
is scheduled in response to a reference to any one of several light
buttons, each of which is used to create an element of a particular
type. This task must both give the command exchanger information
to send to QAS and modify the diagram to include the symbolfor the
created element. The other functions which are required in order to
draw the network are handled by the light pen interpreter task. This
task is scheduled in response to a reference to any part of the diagram
with the light pen. The function which it performs is determined by
the part of the diagram which is referenced, and, in many cases, by
recognition of subsequent patterns of light pen motion. This recog-
nition of patterns of light pen motion allows the user to express his
intentions in a human-oriented fashion .and it eliminates the need to
clutter the screen with other light buttons or to sequence through a

large set of light button menus. The TRANSLATE task and the push

4

button interpreter task are used to modify the behavior of the light pen
interpreter. The TRANSLATE task, which is invoked by a light button,
modifies the behavior of the light pen interpreter so that the entire
75"% 75" "paper' on which the diagram is drawn may be moved under
the display screen. In this way, a diagram which is larger then the
display screen may be drawn. The push button interpreter accepts
numerical parameter values from the push buttons and modifies the
behavior of the light pen interpreter so that these values may be
assigned at various attachment points on the diagram.

In the sections which follow, usage of the system, as well as the
operations performed by the various tasks, is described. In Section
2, usage of the system is described, together with the operation of
the light pen interpreter. The command exchanger is described in
detail in Section 3, and, in Section 4, the display structure which is
interrogated in order to form many of the commands which are sent
to QAS is described. In Section 5, a feature of the command exchanger
which should be useful while implementing future modifications of
SELMA and/or QAS is described, and some forseeable modifications
are discussed in Section 6. A listing of SELMA is supplied as an

appendix.

2. Usage of SELMA and QAS

Whenever SELMA is to be used in conjunction with QAS, the
command to run QAS must be given to the central time-sharing system
before SELMA is started. This restriction is necessary because the
SELMA command exchanger contains no provision for communicating
with the command language interpreter of the time-sharing system.
SELMA may then be started by scheduling and running the single task
at the location whose address appears on the SELMA binary tape.
(This address is not specified here because it is subject to change
without notice.)

Just after SELMA is started, the light buttons shown in Figure
2a appear on the screen. When these light buttons are present,

SELMA is said to be in the construction phase, and the light pen

interpreter is adjusted so that a diagram of a queueing model may be
drawn or modified. The other two phases indicated in Figure 2 are
the results phase (Figure 2b) and the plot phase (Figure 2¢). The
results phase allows the user to request results, whereas the plot
phase displays a graph of the last requested result and allows the
user to expand sections of the graph and to request labels for points
of interest on the graph.

Transitions between SELMA phases are depicted by Figure 3.
In this figure, each phase is represented by a circle, and the light

buttons which produce transitions between phases are indicated by

QUEUE

SERVER

SOURCE

EXIT

TRANSLATE RESULTS

a. Construction Phase

TRANSLATE CONSTRUCT

b. Results Phase

Figure 2
SELMA Phases

SELNA-3

RIGHT

LEFT

DETRIL

STATE OF ELENENT A

DIRGRAN

c. Plot Phase

Figure 2
SELMA Phases (cont.)

Construction
Phase

RESULTS CONSTRUCT

PLOT
Results Plot
Phase Phase
DIAGRAM
Figure 3

Phase Transitions

labels on directed vaths between phases.

SELMA is placed in the construction phase when it is started so
that the user may begin the construction of a new model. Before any
other steps in the construction can be performed, at least one element
must be created. An element is created by selecting the light button
in the upper right-hand corner of the screen (Figure 2a) which
denotes its type. A tracking cross appears with the element so that
the element may be moved to any desired position on the screen.

The various elements which may be created are shown in Figure
4, The interpretation of each of these elements has been described
previously [4,5]. Each element symbol includes one or more ports,
i.e., attachment points for connections to other elements. In addition,
an element symbol may have a body and one or more numerical
parameters. Since no value is assumed for the parameter of an
element when the element is created, the position of each parameter
in a newly created symbol is indicated by a dot, called a parameter
dot.

The creation of new symbols is the only operation required for
the construction of a model which requires the use of light buttons.

All other operations are performed with the aid of the light pen
interpreter. As mentioned in the introduction, the action to be taken
by the light pen interpreter is determined from the part of the diagram

which is referenced and often from a recognition of subsequent

patterns of motion of the light pen. The part of the diagram which is

10

Input Port Output Port
Body Parameter Dot
QUEUE
Input Port Output Port

AN

A

Body Parameter Dot
SERVER
Body Output Port Input Port
SOURCE EXIT
Figure 4

Element Symbols

11

referenced is easily determined from the display structure (Section 4)
through the use of subroutines available in the executive system.
However, since the executive system provides no facility for recog-
nizing patterns of light pen motion, this latter determination is made
completely within SELMA.

The method employed by SELMA to recognize patterns of light pen
motion may be described with the aid of Figure 5. Whenever a light pen
reference is made to a part of the diagram which requires that subse-
quent patterns of motion of the light pen be recognized, tracking is
started at the coordinates of the light pen, and one or more threshold
patterns, i.e., patterns of imaginary lines of the form shown in
Figure 5, are placed on the screen, The number of patterns and the
coordinates and size of each pattern are determined by the part of the
diagram which is referenced. (The size of each pattern is specified
by a parameter d.)

Whenever an element symbol is referenced with the light pen while
SELMA is in the construction phase (and the light pen interpreter has
not been modified by the TRANSLATE task or the push button
interpreter), two threshold patterns are placed at the coordinates of
the symbol as shown in Figure 8a, and a tracking cross is placed at
the coordinates of the light pen. If the symbol has connected ports,
the fragment of the diagram which consists of this symbol and all
connections and symbols associated with it are moved with the

tracking cross. Otherwise, the symbol may be either moved or deleted,

12

Coordinates
of pattern

e d
| | d/2

|
| f v

Figure 5

Threshold Pattern for Light Pen Motion Recognition

13

M c;{,’-‘v”/6/h &7"/2/'”

M B M
_ | v
M M M M M

Threshold Patterns About a Symbol

7
’n /IA

~

b. Deleting a Symbol

c. Moving a Symbol

Figure 6

Light Pen Motion on Unconnected Element Symbols

14
depending on subsequent motion of the light pen. In Figure 6a, the
significant regions of the screen which are bounded by the lines of the
threshold pattern and/or the edge of the screen are labeled A, B, or M.
The decision to delete or move the symbol is made by recognizing
transitions among these regions. The symbol is deleted if the pen is
stroked vertically across the symbol as shown in Figure 6b. This
motion is recognized as a sequence of five transitions between the A
and B regions without entering an M region. The symbol is moved with
the light pen if the light pen is moved into a M region. This latter
motion is depicted in Figure 3c.

In the above discussion of deleting and moving symbols, a reference
to a symbol with the light pen was assumed to be a reference to any
part of the symbol other than an output port. When an unconnected
output port is referenced on any symbol (regardless of whether or not
the symbol has connected ports), the drawing of a connection line is
begun as shown in Figure T7a. A threshold pattern is established at the
coordinates of the output port. The connection line is continuously
updated as shown until the light pen is moved into either a U or D
region, at which time a new vertical segment is added to the connection
line (Figure Tb). A smaller threshold pattern is then established at
the coordinates of the output port. The original threshold pattern is
moved to the newly created corner of the connection line. If the
light pen is now moved into the E region, the vertical segment of the

connection line is deleted, the smaller threshold pattern is deleted,

15

=

Connection line
(x coordinate same
as x tracking coordinate)

«<—___Tracking cross
d ® 1 inch

|
|
|
|
|
|
|
|

|

!

|

|

|

l

o 1 o
™D | D

ol

a. Start of Connection Line at Output Port

I 1
_____{l____{'____.__r.___
! |

|

%

|

|
L l l d= J inch
B S
| L

| |
R AR
L R

| l
I :
Connection line Tracking Cross

(y coordinate same as
y tracking coordinate)

— — — t——

I

l
|
I

|
!
l
|
|
|

amp— s

b. After First Corner

Figure 7

Drawing a Connection Line

16

Tracking
Cross

l.

—— it —

Connection line
(x coordinate same as
x tracking coordinate)

c. After Second Corner

Figure 7

Drawing a Connection Line (Cont.)

17

the larger threshold pattern is moved to the coordinates of the output port,
and action proceeds again as depicted in Figure 7a. If the light pen is
moved into an L. or R region, a second horizontal segment is added to
the connection line as shown in Figure 7c. The small threshold pattern
is moved to the next to last corner, and the larger threshold pattern is
moved to the newly created corner. Again, if the light pen is moved into
the E region, the last segment of the connection line is deleted and
action proceeds according to Figure Tb. If the light pen is moved into
a U or D region, a second vertical segment is added to the connection
line. The operation proceeds in this manner until the drawing of the
connection line is terminated by either of the following events:

1. The connection line is deleted by loss of tracking,

2. The connection line is used to form or modify a connection.

Connection lines may be used to form the following five types of
connections:

1. Simple connection,

2. Random branch,

3. Priority branch,

4. Random merge, and

5. Priority merge.
The first of these, the simple connection, associates an output port
of an element with an input port of either the same or another element.
An item flows from the output port through the connection to the input

port whenever an item is available at the output port and the input port

18

can accept it. A branch associates one output port with several input
ports. Whenever an item is available at the output vort and atleast one
input port can accept it, it flows through the branch to one of the input
ports which can accept it, If the branch is a random branch, no input
port can accept the item unless all input ports associated with the branch
can accept it. Whenever all of these ports can accept the item, one of
them is selected randomly in accordance with probabilities assigned
to each of them. If the branch is a oriority branch, an available item
flows through the branch if any input port can accept it, and priorities
assigned to the input ports determine which port receives the item. A
merge associates several output ports with one input port. Whenever
the input port can accept an item and an item becomes available at
at least one output port, one of the available items flows through the merge
to the input port. If the merge is a random merge, an item is not
available at an output port unless items are available at all output ports
which are associated with the branch. Whenever an item is available
at all of these output ports and the input port can accept an item, one
of the availableitemsis selected randomly in accordance with probabili-
ties assigned to each output port. If the merge is a priority merge, an
available item flows through the merge if the input port can accept it,
and priorities assigned to each output port determine which item is
selected.

For both branches and merges, selection of ports on the basis of

probability is indicated in a SELMA diagram by a dot (-), and selection

19

of ports on the basis of priority is indicated by a diamond (<>). Some
examples of branches and merges which are drawn with these symbols are
shown in Figure 8. (The arrowheads on each branch are actually con-
nected input ports, which differ in appearance from unconnevcted input
ports.) In Figure 8a, whenever the server has finished servicing an
item and neither of the queues is full, the item from the server is
placed in the top queue with probability 0.3 or in the bottom queue with
probability 0.7. The server in Figure 8b cannot hold an item after it has
been serviced, for there is always an input port which can accept it. If
the top queue is not full and the server finishes servicing an item, the
item is placed in the top queue. Otherwise, if the top queue is full and
the bottom queue is not, the item is placed in the bottom queue. If both
queues are full, the item leaves the system through the sink. In Figure
8c, whenever the server is empty and no queue is empty, an item is
placed in the server from the top queue with probability 0. 2, from the
middle queue with probability 0.5, or from the bottom queue with
probability 0.3. Whenever the right-hand queue in Figure 8d is not
full, an item is placed in it from the bottom left-hand queue if the bot-
tom left-hand queue is not empty, or from the top left-hand queue if this
queue is not empty and the bottom left-hand queue is empty.

All connections which are drawn with SELMA are originally
generated as simple connections, which later may be extended to form
branches or merges. A simple connection is drawn by starting a connec-

tion line at an unconnected output port and terminating it at an unconnected

20

a. Random Branch

b. Priority Branch

Figure 8

Examples of Branches and Merges

21

c. Random Merge

d. Priority Merge

Figure 8 (Cont.)

22
input port by passing the light pen over the input port while drawing the
connection line. SELMA will then stop tracking the light pen and will
convert the connection line to a simple connection.

Whenever a simple connection is to be converted to a branch, the
type of branch (i.e., random or priority) must be established. This is
accomplished by recognizing a pattern of light pen motion. Inaddition,
a simple connection may be deleted by stroking vertically across it in
the same manner that one would use to delete an element symbol. The
threshold patterns which are involved are shown in Figure 9. When
the light pen is aimed at a connection, a dot appears on the connection
at the coordinates at which the light pen was detected. If the connection
is a simple connection and the light pen is then moved into an M region
without entering a W, an X, aY, and a Z region or moving back and
forth five times between A and B regions, a connection line is started
at this point, and the dot remains to indicate that the connection is to be
converted to a random branch. The conversion is performed when the
connection line is completed by passing the pen over an unconnected
input port. This operation is shown in Figure 10a. If the light pen enters
aW, an X, aY, and a Z region without entering an M region or moving
back and forth five times between A and B regions, the dot is converted
to a diamond to indicate that the connection is to be converted to
a priority branch. When the light pen is subsequently moved into an M
region, a connection line is started in the center of the diamond. This

operation is indicated in Figure 10b. If the light pen is moved back and

23

Coordinates at which light pen was
detected on simple connection

Figure 9

Threshold Patterns for Generating Branches

__/\4,r M IIM M ‘M M M
M A AW A M
M Moy T
M X |X|¢+ Y Y M d%1/4in d¥2/Sin
M /l/[M) \l/
d*2 in
M B'BZ | B
— I v
M M MM M M M

24

—— . ? L] e) L]
|
|
|
!
V \
\
« — | —
(1) (2)
— —= .
(3) L . =
a. Random Branch
/—~\
—) J\‘_.‘ > ° b —_— - /\ >
\l
' \
v \
— ¢ ___;> —
(1) (2)
— ., O\ .
(3) S S
b. Priority Branch

Figure 10

Generation of Branches

25

forth five times between A and B regions without entering an M region
oraW, anX, aY, and a Z region, the connection is deleted. This
action for deleting simple connections is the same as that for deleting
symbols, and it applies to branches and merges as well.

A merge, like a branch, is also formed by adding a connection line
to a simple connection. However, the connection line to be added is
drawn from an output port to the simple connection, rather than from
the simple connection to an input port. The type of merge (i.e., random
or vriority) is determined by recognizing light pen motion as the connect-
ion line is terminated. The thresholds involved in this operation are
shown in Figure 11. If the light pen enters the W, X, Y, and Z regions
without entering an M region, tracking of the light pen is terminated by
SELMA, and a priority merge is formed. If the user removes the light
pen near the simple connection without entering an M region, a randorm
merge is formed. These operations are shown in Figure 12. If the
light pen is moved into an M region, the threshold pattern is removed,
and drawing of the connection line continues as through no simple
connection had been encountered.

Once a branch or a merge is formed, more element ports may be
associated with it by drawing additional connection lines. A connection
line to be added to a branch is drawn from the branch to an input port,
whereas a connection line to be added to a merge is drawn from an
output port to the merge. No threshold pattern is required to determine

whether a dot or diamond is to be placed at the intersection of the new

26

Coordinates at which light pen was
detected on simple connection

Figure 11

Threshold Patterns for Generating Merges

27

(1) (2

R

S~

Light pen
removed here

(3)

a. Random Merge

(1) (2)

(3)

b. Priority Merge

Figure 12

Generation of Merges

28

connection line with the branch or merge, since the type of branch or
merge is already established.

The values of the probabilities and priorities which are associated with
branches and merges, as well as the values of the parameters which are
associated with certain symbols, are assigned through the use of push
buttons. Push buttons ¢ through 9 represent the decimal digits ¢
through 9, respectively. Push button 10 represents a decimal point,
and push button 11 is used to delete erroneous parameter values. A
parameter value is specified by supplying a sequence of from one to
four characters. The value is displayed in the lower right-hand corner
of the screen as it is inputted, and the light pen interpreter is modified
so that all parameter dots and parameter values, but no other parts of
the diagram, are sensitive to the light pen. If the light pen isnow aimed
at a parameter dot or parameter value, the narameter dot or parameter
value is replaced with the new parameter value which was obtained from

the push buttons, and the light pen interpreter is restored to its original state.

Two modes of parameter values may be assigned: integer and real.
The function of each parameter value in the diagram determines its
mode, e.g., a queue length must be an integer, a probability must be a
real parameter, etc. SELMA refuses to accept a parameter value of
the wrong mode.

Occasionally, a model will be so complex that its diagram will not
fit onto the display screen. For this reason, the diagram is considered

to be drawn on a 75" x 75" piece of "paper' which may be moved to

29

various positions under the screen. The TRANSLATE light button is
provided in the lower left-hand corner of the screen in the construction
phase to provide this function. When this light button is referenced with

the light pen, the light pen interpreter is put into a translate mode, and

the TRANSLATE light button is modified to indicate this fact. A sub-
sequent reference to this light button will restore the light pen inter-
preter and the TRANSLATE light button to their original states.
(The creation of a new element will also produce this effect.) When
the light pen interpreter is in the translate mode, a subsequent reference
to a point on the diagram causes tracking to be started and the cor-
responding point on the "paper" to be affixed to the tracking cross.
The "paper' may then be moved by moving the light pen.

When a diagram is thought to be complete, SELMA may be put
into the results phase (Figure 2b) via a reference to the RESULTS
light button. When SELMA is in this phase, the user may request a
steady-state probability density function either for any single element
or for the entire model. The light pen interpreter is modified when
this phase is entered so that the only function which can be performed
by referencing the diagram without further modifying the light pen
interpreter (via the TRANSLATE light button or by assignment of
parameter values) is the identification of elements.

When a density function is to be requested for a particular element,
that element may be identified by referencing it with the light pen. A box

of dotted lines is placed around the element and a one-character alphabetic

30

name is assigned to the element as shown in Figure 13. 1lfa different
element is subsequently selected before the result request is completed
by referencing either the PLOT or TYPE light button (described below),
the box is moved to that element, and the name associated with the box
is changed to the name of the new element. A reference to the box with
the light pen will remove it from the diagram. When no box appears
around any element, the entire model, rather than any particular ele-
ment, is identified.

The probability density function for the item (i. e., either the entire
model or a particular element) identified in this manner may be obtained
in either of two forms: (1) as a histogram on the display screen, or
(2) as a table on the teletype. A histogram is obtained through a
reference to the PLOT light button, and a typed table is obtained
through a reference to the TYPE light button.

When a result is requested, it will not be returned if the diagram
is not complete or if contradictory parameter values exist. The
diagram is not complete under either of the following conditions:

(1) At least one port in the diagram is not connected, or

(2) At least one parameter dot remains on the diagram.
Contradictory parameter values exist if either of the following con-
ditions is true:

(1) Two equal priorities are assigned to one priority branch

or merge, or

31

SELNA-3

TRANSLATE CONSTRUCT

Figure 13

Identification of an Element

32
(2) The probabilities assigned to a random branch or merge
do not sum to 1.0.

If any of these four conditions is true, SELMA is forced into the
construction phase, a large flashing arrow is placed on the screen
to indicate the location of the error, and an appropriate comment is
typed on the teletype. The flashing arrow disappears from the screen
when the error is corrected. However, if the error involves con-
tradictory parameter values, the arrow may not point to the value
which the user decides to change to correct the problem. In this
event, the parameter which is being indicated should be reassigned
the same value to delete the arrow and thus avoid confusion on sub-
sequent errors.

If the result which was requested was a histogram and none of
the above errors is present in the diagram, SELMA enters the plot
phase (Figure 2c). The diagram is removed from the screen, and
axes for the graph are displayed, together with a label for the abscissa.
For the example in Figure 13, this result is shown in Figure 14b.

Only the maximum and minimum values of the abscissa and
ordinate which could be represented without scaling the graph are
represented on the final plot. However, the user may request numeri-
cal values from QAS for any particular bar in the histogram by pointing
to that bar with the light pen. (Subsequent references to other bars
will erase previous values so that only the last one is displayed.) The

result of pointing to the fourth bar in Figure 14b is shown in Figure 15a.

33

SELNA-3

RIGHT

LEFTY

DETAIL

STATE OF ELENENT C

OIASRAN

a. Before Graph Is Returned from QAS

SELNA-2

PROBABILITY
.3 RIGHT

LEFT

DETAIL

STATE OF ELENENT C

OIAGRAR

b. After Graph Is Returned from QAS

Figure 14

Result Plot For Model in Figure 13

34

In addition to facility for obtaining numerical values for points on
the graph, facility is also provided for looking at various sections of the
graph. This facility is necessary because a maximum of 50 abscissa
values may appear in one graph (limited by local storage and resolution
of the display) and some results require more than 50 abscissa values to
plot in their entirety. It is also a convenience, since detailed examination
of a graph with a wide range of ordinate values or a large number of
abscissa values is more difficult without it. Various sections of the
graph may be displayed through the use of the RIGHT, LEFT, and
DETAIL light buttons. If the RIGHT light button is referenced, and
then the bar at a particular abscissa is referenced, the plot is modi-
fied so that that abscissa, together with all abscissas of greater value
(up to a total of 50 abscissa values) is plotted. In similar manner, a
plot involving an abscissa, together with all abscissas of smaller value
(up to a total of 50 values) may be obtained through the use of the LEFT
light button. For example, the graph obtained by applying the LEFT
light button to the abscissa 2 in Figure 15a is shown in Figure 15b. The
DETAIL light allows the user to specify the maximum and minimum
abscissas he wishes to plot. After the DETAIL light button is referenced,
these two abscissas are specified by referencing the two bars of the graph
which correspond to them. For all of these operations, the fact that a
particular light button has been selected is indicated by the removal of
all other light buttons from the screen until the new graph is completely

specified.

35

SELNA-3

PROBABILITY
.3

OETRIL

.14160123

STATE OF ELENENT C
3
DIAGRAN

a. Display of Numerical Values

SELNA-3

PROBRBILITY
. 123

DETAIL

STATE OF ELENENT C

DIAGRAN

b. Expansion of a Section of the Graph

Figure 15

Modifications of a Result Plot

36

As indicated by the above discussion, all of the very common
operations which are involved in the specification of a queueing model,
with the exception of parameter value input, are performed with the
light pen only. This type of operation was chosen because the user
can usually generate faster input with the light pen than with any other
input device. (Input of parameter values with the light pen was found
to be awkward, so push buttons were used for this purpose.) However,
there are some operations which are performed very infrequently, and,
should they be performed accidentally, compensating for their effect
would be difficult. In particular, destroying the current model in order
to begin a new model, and terminating SELMA are such operations.
These operations are performed through the use of the teyboard, which
is a relatively inaccessable device to the user. In this way, accidental
performance of these operations is less likely than it would be if these
operations were invoked with the light pen.

All operations performed from the keyboard are initiated by
commands which are invoked by a single character. The keyboard
interpreter responds to each command by typing a word or phrase which
is a more complete description of the command. A command may be
deleted before it is effective by typing a rubout in place of any sub-
sequent character. The command which destroys the current model
in preparation for beginning a new one is the following:

CLEAR? OK

37
(The underlined characters are those typed by the user.) Although the

character "C'" would be sufficient for specifying this operation, a con-
firmation (accomplished by typing "O") is required to help avoid
accidental performance of this operation. The fact that the confir-
mation is required is indicated by the question mark (?). If the user
wishes not to confirm the operation, he may type "N'" for "NO".
Similarly, the following command, which terminates SELMA (and
QAS), requires confirmation:
ESCAPE? OK

Two other keyboard commands which represent infrequent
operations which cannot easily be reversed once they are performed
are saving the current model on a file at the IBM 360/67 and retrieving
a queueing model from a file. These two commands are the following:
SAVE ON FILE

GET FILE
Fach command is completed by typing a file name,or a file name
followed by a space, in turn followed by the word "ALL'". (The
command is terminated by a carriage-return typed on the keyboard.)
In the former case, any results which have been computed are not
saved, but in the latter case they are saved. The user is prevented
from performing any other operations while a model is being saved or

retrieved. Retrieval of a model effects a "CLEAR'" command before the

model is actually retrieved.

38

Although saving or retrieving a model is costly to perform
accidentally, no provision for explicit confirmation is provided. The
file name which is required to complete each command serves as a
confirmation. If an illegal file name is specified, a comment to this
effect will be typed, and QAS will ignore the command.

Some users have found the keyboard, rather than the push buttons,
to be a more suitable device for inputting parameter values. For this
reason, a command to substitute the teletype for the push buttons and
a command to specify a parameter value from the keyboard are provided.
The device from which parameter values are to be obtained is specified

by the command
PUSH BUTTONS

VALUES FROM

TELETYPE
(The default device is the push buttons.) While the teletype is the input
device for parameter values, the following command may be given to
specify a parameter value:
This command is completed by typing a number which consists of from
one to eight characters, followed by a carriage return. All of the charac-
ters are sent to QAS, but only the first four are displayed if more than
four are specified. Real values are restricted to be less than or equal to
999.9999 to avoid misrepresentation of the decimal point on the display.

Two other keyboard commands are provided for purposes of

debugging SELMA and/or CAS. However, these commands are not

39

normally available to the user, since they deal with dataphone commands
between SELMA and QAS. They are described in Section 5, following

a detailed description of the command exchanger in Section 3 and a
description of the data structure used to represent the topology of the

network in Section 4.

3. The Command Exchanger

In order to be effective, the frequently used operations described
in the previous section must provide rapid response to user inputs.

If all programmed operations were performed in sequence, the low
data rate of the dataphone would pose a threat to this response time in
that the transmission of commands to inform QAS of certain inputs
might delay responses to subsequent inputs. For this reason, the
response task for each user input which requires communication with
QAS merely places the commands to be sent to QAS into a buffer. A
separate task, the command exchanger, then reads commands from
this buffer and sends them to QAS. Since the command exchanger
and response tasks for user inputs are executed asynchronously, the
rate of dataphone transmission does not seriously affect the rate of
response to user inputs.

Since the dataphone under consideration is a half-duplex data-
phone, SELMA and CAS must not transmit simultaneously. For this
reason, SELMA and QAS alternately transmit records, with QAS
sending the first record. Since @AS sends the first record, QAS
need not be executing before SELMA is started. Since a record
directed to the SELMA command exchanger is not acknowledged by
the SEL executive system until the command exchanger has removed
it from the dataphone input buffer, SELMA need not be executing
before execution of QAS begins.

Each dataphone record which is sent from SELMA to QAS or

40

41
from QAS to SELMA contains exactly one command. The general
format of a command is shown in Figure 16. The command is delimited

by bytes whose value is FF and all other bytes in the command have

16’
values less than FF, .. (Although the beginning and end of the record

16
are sufficient to delimit the command, the two delimiting bytes were in-
cluded in the format to facilitate a possible future program modification
to permit transmission of multiple commands per record.) The first
byte after the initial delimiter specifies the '"phase' of the command,
and the byte which follows it identifies the command within that phase.
(The command phase is not related to the phase of SELMA.) The
combination of the phase and command bytes identifies the command,
and, consequently, specifies the format of the data bytes.

The formats of the commands which are accepted by QAS are
indicated by Figure 17, and the formats of the commands which are
accepted by SELMA are indicated by Figure 18. The abbreviations
for various groups of data bytes are interpreted as follows:

CN Connection name. A number between 129 and 254

which identifies a particular connection. (1 byte)
CPN Connection port number. A number between 1 and
254 which specifies a particular port of the con-
nection specified by an associated connection name.
(1 byte)
CT Connection type. A number between 129 and 254

which specifies the type of connection (e.g., simple

42

Initial delimiter Final delimiter
FF16 voa
\
\
\
\
Phase byte Command byte Data bytes
(0%6-FE16) (Oolé_FEl6) (0016-FE16)
Figure 16

Command Format

Command

Phase
Byte Byte
00 00
00 01
00 02
00 03
00 04
00 05
00 0€
01 00
01 01
01 02
01 03
01 04
01 05
02 00
03 00
03 01
03 02
03 03
04 00
04 01
04 02
04 03

43

Data Bytes

ENor CN,ET or CT,GPV
EN or CN

EN or CN, PN, PV
CN, CPN, EN, EPN
EN, EPN

EN or CN, GPN, GPV

IL, PV

ENS

SN, SC
SN
EN
FN

3

FN

SELMA phase 02 command

Figure 17

Commands Accepted by QAS

Function
Null
Patch-upl
Call system
Call error!
call MTS!
Initialize
Wipe out QAS output
bufferl

Create element

Destroy element or
connection

Assign parameter value
Connect
Disconnect

Alter generation para-
meter value

Compile and solve1

Plot results

Modify plot

Get value for graph
Type results

Begin saving model
Terminate saving model

Retrieve model from
file

Save command to be
returned

1This command is not currently generated by SELMA.

2Parameter value specifies convergence factor (see QAS report) .

3An element name 00 specifies the entire model.

Phase
Byte
00
00
00
01
01
01
02
02
02
02
02
02
02
03

Command

Byte
00
01
02
00
01
02
00
01
01
02
03
04
05
00

44

Data Bytes

(See text)

XC,T, T, T, T, T

YC,YC,...,YC
T, T

YC,XC

YC,XC,EN, 00, LET
YC,XC, CN, 00, WC
DW, DW, ..., DW

YC,XC, PV°

EN, EPN

Figure 18

Function

Null

Patch-up

End of file

Setup graph

Plot values

Display single value
Create fragment
Create element
Create connection
Load connection segment
Insert connection leaf
Assign parameter
Connect

Send model to be saved

Commands Accepted by SELMA

1Distance between abscissas, minimum x label, maximum x label,
minimum y label, maximum y label, y axis label.

2

Ordinate label.

3Missing parameter value indicates unassigned parameter.

4Abscissa value, ordinate value.

DW

EN

EPN

ET

FN

45
connection, random branch or merge, priority branch
or merge). (1 byte)
Display file word. Two bytes, each of which has a
value from 0 through 127. These two bytes are
decoded to form an 18-bit word to be loaded into core
by SELMA according to the following scheme:
(1) The low-order 7 bits of each byte are con-
catenated to form a 14-bit number.
(2) The two high-order bits of the 14-bit
number are placed into positions 0 and
1 of the 18-bit word, and the remaining 12
bits are placed into positions 6-17 of the
18-bit word. Positions 2-5 of the 18-bit
word are set to zero.
Element name. A number between 1 and 127 which
identifies a particular element. (1 byte)
Element port number. A number between 1 and 254
which specifies a particular port of the element
specified by an associated element name. (1 byte)
Element type. A number between 1 and 127 which
specifies the type of element (e.g., queue, server,
or source or exit). (1 byte)
File name. A sequence of bytes whose values are
6-bit character codes [3 p. 17] which represent a file

name. (1 to 16 bytes)

46

GPN Generation parameter number. A number between
1 and 254 which identifies a particular generation
parameter (i.e., parameter which modifies an
element or connection type). (1 byte)

GPV Generation parameter value. A number between
1 and 254 which represents the value of a generation
parameter. (1 byte)

IL Iteration limit. Two bytes, each of which has a value
between 0 and 127. A number between 1 and 16, 383
which represents the maximum number of iterations
which will be performed whenever a model is solved
is obtained by concatenating the low-order 7 bits
of the two bytes.

LET Local element type. A number between 1 and 254
which identifies a graphical symbol for an element
type. This number is not necessarily the same as
the corresponding element type, for several graphi-
cal symbols may be associated with one element
type (e.g., source and exit represent the same
element type). (1 byte)

PN Parameter number. A number between 1 and 254
which identifies a parameter for an element or

connection. (1 byte)

PV

SC

SN

WC

XC

47
Parameter value. A sequence of bytes whose values
are 6-bit character codes which represent a non-
negative real or integer number. (1 to 8 bytes)
State count. A number between 1 and 254 which
represents the number of points to be plotted on a
graph by QAS. Fifty points are plotted if this
number is either zero or greater than 50. (1 byte)
State number. A number between 0 and 16, 383
which represents an abscissa on a graph plotted by
QAS. This number is coded in the same way that an
iteration limit (IL) is coded. (2 bytes)
Text item. A sequence of bytes, the first of which
has a value which is the number of bytes which follow
it, and the remainder of which are 6-bit character
codes. (2-16 bytes)
Word count. A number between 1 and 16, 383 which
represents the size of storage block required to
load a connection leaf when retrieving a model
from a file. This number is coded in the same
way that an iteration limit (IL) is coded. (2 bytes)
An abscissa between -8192 and 8191. This coor-
dinate is coded in the same way that an iteration
limit (IL) is coded. However, the 14-bit number

represented is interpreted as a two's complement

48
number, rather than as an unsigned positive number.
(2 bytes)

YC An ordinate between -8192 and 8191. This number

is coded in the same way an abscissa is coded.
(2 bytes)

Several of the commands described in Figure 17 and Figure 18
affect the exchange of other commands. The null command (which
may be sent in either direction) is provided so that one party can
allow the other to transmit without directing it to perform any other
function. However, if each party were to send null commands
whenever it had nothing else to send, the maximum dataphone
traffic would occur when both SELMA and QAS were idle. Since
all external inputs are directed to SELMA, rather than to both
SELMA and QAS, this redundant dataphone traffic is eliminated by
having SELMA not send a null command unless it expects a non-null
reply from QAS. In this way, no communication takes place when
both parties are idle, and SELMA is the next party to transmit
whenever both parties are idle.

The patch-up command which is generated by QAS is trans-
mitted to SELMA in response to receiving a command from SELMA
which cannot be performed. The data bytes for the patch-up command
form a command (except for delimiter bytes) to be returned to QAS
to replace the offensive command. Some of the data bytes for the

replacement command are set to zero or are not present to indicate

49

to SELMA that these are to be filled in before the replacement
command is sent. SELMA may then either complete the replacement
command and send it to QAS, or it may send an entirely different
command, as though it had never sent the illegal command.

Currently, SELMA responds to all patch-up commands by
informing the user of the error which has occurred, and not res-
ponding to QAS. The user is then free to correct the error in any
way he desires. In order to prevent one such error from being
diagnosed as a series of errors, the user is prevented from pro-
ceeding whenever his activity generates a command to be sent to
QAS which could result in a patch-up. (Such a command is generated
whenever a model is saved or retrieved or whenever a result is
requested.) This is accomplished by setting an "end-of-file switch"
in SELMA and disabling all inputs until it is reset. This switch is
then reset by either an end-of-file command from QAS (indicating the
end of a successful series of transmissions) or by a patch-up command
(indicating that the operation could not be performed).

As an example of a typical exchange of commands between SELMA
and QAS, consider the operations depicted by Figure 19. Before any
of these operations are performed, SELMA and QAS are started.
Since QAS must send the first command, but it has no operation to
perform (since SELMA has not informed it of any input), QAS initially

sends a null command to SELMA. SELMA then initializes QAS, and

50

a. Creation of Elements

b. Addition of Simple Connections

Figure 19

Typical Construction of a Model

51

c. Generation of Priority Branch

d. Assignment of Parameters

Figure 19 (Cont.)

52

QAS replies with a second null command. This exchange of com-

mands may be depicted (in hexadecimal notation) as follows:

QAS: 0000 (null)
SELMA: 0005 (initialize QAS)
QAS: 0000 (null)

(The delimiter bytes are not shown.) Then, when the elements
shown in Figure 19a are created, the following commands are
exchanged:

SELMA: 01000103 (create source)

QAS: 0000

SELMA: 01000202 (create server)

QAS: 0000

SELMA: 01000301 (create queue)

QAS: 0000

SELMA: 01000402 (create server)

QAS: 0000

SELMA: 01000503 (create exit)

QAS: 0000

SELMA: 01000603 (create exit)

QAS: 0000
Each of the commands transmitted by SELMA completely specifies the
creation of an element. However, three commands are required to
completely specify the creation of each of the simple connections in

Figure 19b: one to create the connection, and one to connect each

of its ports to element ports.

03

The commands involved when the

simple connections in Figure 19b are created are the following:

SELMA:
QAS:
SELMA:
QAS:
SELMA:
QAS:
SELMA:
QAS:
SELMA:
QAS:
SELMA:
QAS:
SELMA:
QAS:
SELMA:
QAS:
SELMA:
QAS:
SELMA:
QAS:
SELMA:

QAS:

01008181
0000
010381010101
0000
010381020201
0000
01008281
0000
010382010202
0000
010382020301
0000
01008381
0000
010383010302
0000
010383020401
0000
01008481
0000
010384010402

0000

(create connection)

(connect)

(connect)

(create connection)

(connect)

(connect)

(create connection)

(connect)

(connect)

(create connection)

(connect)

54

SELMA: 010384020501 (connect)
QAS: 0000
For purposes of illustration, assume that the user now indicates

that he wants a plot of the probability distribution for the queue in
Figure 19b. Clearly, the diagram in Figure 19b is incomplete, so a
patch-up command will be returned by QAS. Since QAS checks the
structure of the model before it checks its parameters, the patch-up
command will refer to the unconnected exit. The following exchange
of commands results from the user's attempt to obtain this solution:

SELMA: 030003 (plot results)

QAS: 0001010300000601 (patch-up)
The user, upon being requested via a flashing arrow on the screen and
a teletype comment to connect the unconnected port, then draws the
priority branch shown in Figure 19c. Since the former simple con-
nection must be replaced with a new branch connection, the following

commands are exchanged:

SELMA: 01040202 (disconnect)

QAS: 0000

SELMA: 01040301 (disconnect)

QAS: 0000

SELMA: 010182 (destroy connection)
QAS: 0000

SELMA: 0100828202 (create priority branch)

QAS: 0000

55

SELMA: 010382010202 (connect)
QAS: 0000
SELMA: 010382020301 (connect)
QAS: 0000
SELMA: 010382030601 (connect)
QAS: 0000

Now that the request for correction has been satisfied, the

user again requests a probability distribution for the queue. However,
the diagram is still not complete, for not all (in fact, none) of the
parameter values have been assigned. QAS complains about the
parameter in the server which receives inputs from the source.
The following commands are exchanged:

SELMA: 030003 (plot results)

QAS: 000101020201 (patch-up)
In response to this second complaint, the user assigns parameter

values as shown in Figure 19d. The commands involved are the

following:
SELMA: 010202010131 (assign 1.)
QAS: 0000
SELMA: 0102820101 (assign 1)
QAS: 0000
SELMA: 0102820202 (assign 2)
QAS: 0000

SELMA: 0102030105 (assign 5)

o6

QAS: 0000
SELMA: 01020401013102 (assign 1.2)
QAS: 0000

The diagram is now complete, and the user once again requests a
probability distribution for the queue. This time, a plot is returned.

The commands which are involved are the following:

SELMA: 030003 (plot results)

QAS: 0100100001000105030031000231 (set up graph)
050B191B180B0A0B1215121D22

SELMA: 0000 (null)

QAS: 0101510D1E64195B153D1178037C (results)

SELMA: 0000 (null)

QAS: 0002 (end of file)

Now that a solution has been obtained, the user decides to save
both the model and the results of solution on the file S, and then ter-
minate SELMA and QAS with the ESCAPE command. The following

commands are exchanged as a result of these operations:

SELMA: 04001C3E0A1515 (begin saving of file S)
QAS: 0300 (send model to be saved)
SELMA: 04030200000C7F45 (save)

QAS: 00COo (null)

SELMA: 040302017F66002E060004 etc.

QAS: 0000

SELMA: 0403020100000053040002

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:

o7
0000

0403020100000053040002
0000
040302047F7CTF74013102
0000
0403020100000036030001
0000
040302047F7CT7F7C05
000
040302010000006B050004
0000
0403020100000018020002
0000
040302047F7CT7TF780131
0000
0403020100000000010003
0000
040302010000001F82000021

0000

0403020245022240245108001008246100081418
1C181C0814080038245110000000100000001868
0000100000344068083400001808245110000000

10000048400018482C00
0000

04030203

58
QAS: 0000
SELMA: 02040003002301
QAS: 0000
SELMA: 040302047F1C001802
QAS: 0000
SELMA: 040302050202
QAS: 0000
SELMA: 040302050301
QAS: 0000
SELMA: 040302050601
QAS: 0000

SELMA: 040302010000005A8400000A

QAS: 0000

SELMA: 0403020201012240245110000000100000444000
18442C00

QAS: 0000

SELMA: 04030203

QAS: 0000

SELMA: 040302050402

QAS: 0000

SELMA: 040302050501

QAS: 0000

SELMA: 040302010000003D8300000A

QAS: 0000

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:

QAS:

SELMA:
The command which terminates the save operation (0401 from SELMA)

resets the end-of-file switch in SELMA which is set by the initial save

59

0403020201012240245110000000100000444
00018442C00

0000

04030203

0000

040302050302

0000

040302050401

0000
04030201000000028100000A
0000

0403020201012240245110000000100000444
00018442C00

0000
04030203
0000
040302050101
0000
040302050201

0000

0401 (terminate saving)

0000

0002 (call system)

60
command (0400 from SELMA). Consequently, no end-of-file command
(0002 from QAS) is needed from QAS. This special condition is con-
sistent with the design of QAS, for QAS produces no non-null output |
and therefore does not generate the end-of-file command.

The reader should note that some of the commands which are
saved when a model is saved on a file do not contain all of the infor-
mation necessary to reconstruct the model. For example, the "assign
parameter' command (0204) which is saved does not specify to which
element it refers or which parameter of that element is being assigned.
Such information however, may be derived from the order in which
commands are saved in the file. The process of obtaining this
information is described in the following section, following a
description of the display structure which is used to represent the

topology of the network.

4, The Display Structure

In order that SELMA be able to generate the commands
described in the previous section or to interpret those received
from QAS, the topology of the network diagram must be known to
SELMA at all stages of its construction. This topology is stored in
a display structure consisting of levels and leaves maintained by the
executive system [3 p. 35]. The arrangement of these levels and
leaves for this application may be described in terms of sets.

A set of element symbols which are connected to each other,
together with the symbols for the connections which connect them,
is treated as a unit, called a fragment. A completed diagram of a
queueing network consists of exactly one fragment. However, the
diagram may consist of several fragments before it has been com-
pleted. The diagram, then, is considered to be a set of fragments,

or
D = {Fi}’
where D denotes the diagram and Fi denotes the ith fragment in the

diagram. Each fragment, in turn, consists of symbols for elements

and connections, or
Fi = {Sij}’
.th . .th
where Sij denotes the j symbol in the i fragment. The reader

should note that, for topological purposes, the symbol for an

element is no different than a symbol for a connection.

61

62

Each symbol is defined by a 3-tuple which consists of a leaf,

a set of ports, and a set of parameters, i.e.,
Sij = (ﬁij, Pij, Qij)’

where ﬁij is the leaf which draws the symbol Sij (except for its ports
and parameters), Pij is an ordered set of ports, and Qij is an ordered
set of parameters. If Sij is the symbol for an element, lzij represents
a leaf which may be used to help define other element symbols,
whereas, if Sij is the symbol for a connection, Qij is used to help
define only Sij' The reason for this condition is that all elements of
the same type have identical appearance, whereas connections of the
same type almost always do not have the same appearance.

The set of ports for the symbol Sij may be represented by the

mij -tuple

m,

1 2 1j>

Pij = (pij’ pij’ s e ?plj
and the set of parameters for Sij may be represented by the nij-tuple

12 %
Ql] - (qu’qu’ t e ’ql]

).
Since every element and connection must have at least one port, mij
is a positive integer, whereas, since some elements and connections
have no parameters, nij is a non-negative integer. Even if ni]. =0,
Qij is considered to exist, but with dimension zero.

The only items in the topology which may be used in more than

one place in the diagram are the leaves which draw element symbols

and ports. Multiple uses of leaves which draw element symbols have

63

been described above. When a port is used as part of more than one
symbol, one of the symbols represents an element, and one of the
symbols represents the connection which associates that port with
other element ports. Clearly, both the connection symbol and the

element symbol must be in the same fragment. To summarize,

r S .
p1] - pkﬁé k"1>
and either (1) Sij is an element symbol and Si is a connection

£

symbol, or (2) Sij is a connection symbol and Siﬂ is an element
symbol.

In order to illustrate a typical display structure for a network
diagram, Figure 20 shows an incomplete network diagram and Figure 21
shows the display structure for that diagram. (All rectangles in the
display structure diagram represent leaves, and all other symbols
represent levels. The ordering of the attributes of each level is
indicated by arranging these attributes in order from left to right in
the display structure diagram.) Different leaves are used for con-
nected and unconnected ports so that SELMA may easily ignore
connected ports while connections are being drawn. Except for the
leaves which display connection symbols and the leaves which display
parameter values, only one copy of each leaf which displays a particular
graphic element exists in the structure. This leaf is then inserted into

as many levels as required to represent all of the occurrences of the

graphic element which it displays.

11

64

21

pd
\

Figure 20

An Incomplete Network Diagram

v

16

65

0z 2andtg ut weaideTq IX0F oinidoniigs Aerdsiq

10Q I93suwei®R(g
x1o303u7

91

OHO

92IN0g

LI XH]

3104 3Indang

<

7104 3andug

*1z 2an8ty4

3104 3nding

jx0d 1ndufg
peidsuuoduq

po3122uuoduq po31o2duuo) anan) pP23122uuo)
“S1 ST TVINET bT . _CT SR AR
= 24 195 24\ 24 4= ¢d 197.z4 1 zd
4 M A mwu)
mH& 174 b .VH& m,:u ¢TI N,:u NHU H.:u
1 1 z 1 1
mﬁm/ ST qﬁm/ mﬁo///// ZTy A 1Ty

O

I9AXDG

66
As mentioned in the previous section, one of the many uses of
the display structure for the network diagram is the interpretation of
commands received by SELMA during the retrieval of a saved model.
In general, the following information is not explicit in these commands,
but is implied by the order in which they are received:

(1) The command which creates an element or connection
symbol does not specify to which fragment that symbol
belongs.

(2) The command which inserts a connection leaf does not
specify into which symbol level that leaf should be
inserted.

(3) The command which assigns a parameter value does not
specify which parameter of which symbol is being assigned.

(4) The command which connects a connection port to an
element port does not specify which port of which
connection is being connected.

The information which is missing from these four commands is obtained
from the order in which the commands are received as follows:

(1) A newly created symbol is inserted into the last fragment
which was created.

(2) A connection leaf is inserted into the last symbol which
was created.

(3) A parameter is assigned to the last symbol which was
created. Parameters are received in their reverse

order, so inserting them successively into a Qij level

67
will order them properly.

(4) A connection is made between a port of the last symbol
created (which must represent a connection) and the
element port specified by the command. Connect
commands are received in the reverse order that
connection ports are to assume, so inserting element
ports successively into a Pij level to generate con-
nection ports will order the connection ports properly.

The display structure which represents the network diagram

is part of another display structure whenever it is active (i.e., in
the construction phase and results phase). The form of this display
structure for the construction phase is shown in Figure 22. Each
light button consists of a leaf inserted into a level (denoted by LB).
All of.the LB levels are, in turn, inserted into a single level to
facilitate destroying all of them when SELMA changes phases.

The scratch level is used for highly temporary displays such as
connection lines while they are being drawn, arrows to identify
patch-up errors, etc. Whenever the plot phase is entered, the
diagram level (D) is removed from the highest active level [3 p. 35]
and replaced with a level into which are inserted the display struc-
ture components necessary to display a graph on the screen. This
level is then again replaced with the diagram level when SELMA

enters the construction or results phase.

68

Highest Active Level

D Title Scratch

LB LB LB LB LB LB SELMA-3

|TRANSLATE|| [ExiT] |[|SERVER]

| REsuLTs| |sourcil QUEUE |

Figure 22

Construction Phase Display Structure

5. Special Command Exchanger Feature

In addition to those features described in Section 3, a special
feature is included in the command exchanger to facilitate testing of
future modifications to SELMA which affect the command repertoire.
Whenever SELMA is started, but the dataphone is not connected to
another party, the teletype is substituted for the QAS program. This
is accomplished by the addition of a command to the keyboard inter-
preter to permit simulated input from QAS and by the routing of all
command output to the teleprinter (to be typed in hexadecimal format).

The command which is added to the keyboard interpreter is of
the following form:
Qas: [|
The command is begun by typing the letter "Q'" on the keyboard. A
command is then typed (except for delimiter bytes) on the keyboard
in hexadecimal notation. If a carriage return is typed instead of the
command, a null command is assumed. Otherwise, an even number
of hexadecimal digits must be typed, followed by the carriage return.
(In all cases, the right bracket is typed in response to the carriage
return.) If a phase byte is explicitly inputted, a carriage return will
be ignored until the command byte is inputted. The command may be
deleted at any time before it is completed by typing a null character
[3 p. 17].

Because the command exchanger actually interprets the QAS

keyboard command, commands between the user and SELMA via

teletype are subject to the same restrictions that govern commands

69

70

between QAS and SELMA. The first command via teletype must be

inputted by the user, and only one command is typed by SELMA until

the next command is inputted via keyboard. For example, assume that

SELMA is started with the data set disconnected. Only after the user

supplies the command

QAS: [0000]

does SELMA respond by typing

SELMA: [0005]

to indicate that QAS should be initialized. (The zeros in the QAS key-

board command were not underlined here because it is assumed that

all null commands are inputted simply by typing a carriage return.)

If the user then again inputs a null command, no response from SE LMA

is produced until the user performs some action which generates one or

more commands. The first of these generated commands is then typed,

and the others are retained until more QAS commands are inputted.
Since the only communication between SELMA and QAS is in the

form of commands, the feature described above permits complete

testing of new versions of SELMA without the use of the IBM 360/6%.

This feature of the command exchanger is intended only for this

purpose, and should not be used by users who are attempting to

solve queueing models.

6. Foreseeable Modifications

The system described in this report was designed to demonstrate
the usefulness of graphical input for the specification of queueing networks
to a computer. It was not intended to be a tool for the queueing analyst.
However, with a few modifications, the system could serve the latter
purpose as well.

The elements which are available in SELMA (i.e., queue, server,
source, and exit) may not be sufficient for the specification of many
models. In fact, various users may disagree on what elements are
sufficient. Since a universally acceptable set of elements is difficult,
if not impossible, to derive, a definition capability for elements is
desirable in SELMA. Since the ""menu' of elements in SELMA is
table-driven, the inclusion of this facility in SELMA would not be
difficult. However, a corresponding definition facility for QA S might
be difficult to implement.

Another type of definition facility could allow definition of
elements which would be equivalent to existing fragments. This
definition facility could be supported exclusively by the display ter-
minal, since the creation of a copy of such an element could be
described to QA S by the sequence of commands required to generate
the corresponding fragment. Each element defined in this way could
be represented by a symbol such as one which is used to represent an
element in the current version of SELMA. Much larger models than

can presently be accommodated inthe display terminal could then be

71

72

accommodated because the detail of each fragment which represents a
composite element would not have to be stored locally once the equivalent
element was defined.

For SELMA/QAS to be a useful tool, results should be available
in forms other than probability distributions for individual state
variables. A suitable generalization of this type of result might be
a conditional probability distribution for an algebraic function of state
variables, where the algebraic function and the conditions which affect
the distribution are specified by the user. Such distributions could be
further processed by QAS to produce conditional expectations of func-

tions of state variables.

73

References

339 Programmed Buffered Display User's Handbook, DEC-09-
I6FA-D, Digital Equipment Corporation, Maynard, Massachusetts,
May 1968.

Randall, L. S., I. S. Uppal, G. A. Mc Clain, and J. F. Blinn,
Implementation of the Queue Analyzer System (QAS) on the IBM
360/67, Technical Report 22, Concomp Project; also SEL 43,
Systems Engineering Laboratory, University of Michigan,

Ann Arbor, Michigan, to be published.

Jackson, James H., An Executive System for a DEC 339 Com-
puter Display Terminal, Technical Report 15, Concomp Project;
also SEL-32, Systems Engineering Laboratory, University of
Michigan, Ann Arbor, December 1968.

Wallace, V. L., and K. B. Irani, Network Models for the
Conversational Design of Stochastic Service Systems, Technical
Report 13, Concomp Project; also SEL-30, Systems Engineering
Laboratory, University of Michigan, Ann Arbor, November 1968.

Wallace, V. L., and K. B. Irani, A System for the Solution of
Simple Stochastic Networks, Technical Report 14, Concomp
Project; also SEL 31, Systems Engineering Laboratory,
University of Michigan, Ann Arbor, to be published.

Appendix

Program Listing

STITLE SELMA/QAS COMMAND EXCHANGER
QASEOR $EQU 27 END OF RECORD
* QAS IS A TASK WHICH COMMUNICATES WITH THE /360 QAS PROGRAM,

QAS DZM QASCM+2
DZM QASCMR+2
DZM QASCMS
LAC :=QASQ
JMSx =Q,C
LAC =QASTA4
DAC QASB
LAC =740000
DAC QASR+1
LAV 610
JUSk =T A
LAW 10
JMS*x =T R

QASCMD JMS QASR
SAD =377
SKP
JMP QASCMD
JMS QASR
DAC QASP
JMS QASR
DAC QASC
LAC QASPHS

TAD QASP
SMA

JWP QASE

LAC =QASPHS+]
TAD QASP

DAC QAST
LACx QAST

DAC QAST

LAC* QAST
TAD QASC

SMA

JMP QASE

QASE

Q0000

LAC QAST
TAD QASC
TAD =1
DAC QAST
XCT*x QAST

LAW 10
JMSx =T,A
LAC =QAST!
JMSx =L,T
LAC QASP
SAD =377
XOR =400
SPA

JMP KBDRPY
JMS QASBYT
LAC QASC
SAD =377
XOR =400
SPA

JMP KBDRPY
JMS QASBYT
JMS QASR
SAD =377
JMP %2
SPA

JMP KBDRPY
JMS QASBYT
JMP *-§

JMS QASR
SMA

JMP Q0000
LAC QASQ+1
SAD QASQ+2
JMP Q00002
LAC =377
JMS QASS
DzMm Q00004
LAC =QASQ

Q00001

JMP %43
LAC =QASAQ
DAC Q00004
JMSx =Q,.F
JMP Q00003
DAC Q00005
LRS 11

AND =377
JMS QASS
LAC Q00005
LRS 11

AND =400
SZA

JMP *x+22
LAC Q00005
AND =377
JMS QASS
LAC Q00004
SZA

JMP %410
LAC Q00005
SAD S0002
JMP x+14
SAD S0003
JUP %412
SAD S0004
JMP %x+10
LAC Q00005
AND =400
SNA

JMP QO0000!
LAC =377
JMS QASS
JMP QASCMD
LAC =377
JMS QASS
LAC QASR+!
SAD =740000
LAW 600
SAD *=|

JMSx =T,
JMSx =T ,F
JMP QO0000+3
Q00002 JMSx =T,P
JMP Q00001
Q00003 JMSx =T,P

Q0002 DzZM QASCMS
JMP Q0000

*
*
*
*
*
*

QASR

QASR 1

JMS QASR

AC CONTENT ON RETURN:
BYTE FROM COMMAND SOURCE

$DC O

$DC O

JMSx =B ,FI
SKP

JMPx QASR
LAW 10
JMSx =T,.A
LAC =QAST2
JMS%k zL.T
LAW 610
JMSx =T.R
LAC =560000+QASR 1
DAC QASR+1
JMS KBDBYT
JMPx QASR

READ BYTE FROM COMMAND SOURCE
CALLING SEQUENCE:

(RETURN)

* SEND BYTE TO COMMAND SINK
* CALLING SEQUENCE:

* JMS QASS

* oeoee

* AC CONTENT ON ENTRY:

* BYTE TO BE SENT

QASS $DC O
DAC QASS2
JMSx =B,FO
JMP QASSI
LAC QASS2
JMS QASBRK
SAD =QASTA4
LAW QASEOR
SAD xe]
JMSx =B ,.FO
NOP
JMP*x QASS

QASS1 LAC QASS2
JMS QASBYT
JMPx QASS

(RETURN)

GET BRACKET TEXT
CALLING SEQUENCE:
JMS QASBRK
e (RETURN)
AC CONTENT ON ENTRY?
BYTE TO BE TESTED
AC CONTENT ON RETURNS
GIVEN BYTE IF GIVEN BYTE WAS NOT °FF°
POINTER TO BRACKET TEXT LIST IF GIVEN BYTE WAS °FF’

3 % W M R AR R

QASBRK $DC O
saD =377
SKP
JMPx QASBRK
LAC QASB
SAD =QASTA4
JMP %43
LAC =QASTA
SKP
LAC =QAST3
DAC QASB
JMPx QASBRK

* TYPE BYTE ON TELEPRINTER
* CALLING SEQUENCE:

% JMS QASBYT

3 weone

* AC CONTENT ON ENTRY:

* BYTE TO BE TYPED

QASBYT $DC O
SAD =377
JMP %x+10
AND 2377
LRS 4
ALSS 2
LLS 4
XO0R =770000
JMSx =B,.T
JMPx QASBYT
JMS QASBRK
SAD =QASTA
JMP *+4
LAW 10
JMSx =T A
LAC =QAST3
JMS% =L ,.T
LAC QASB
SAD =QAST3
JMPx QASBYT
LAW 10
JMSx =T R
JMPx QASBYT

(RETURN)

* PUT OUTPUT COMMAND ON QUEUE

* CALLING SEQUENCE:

* JMS QASCM

* coaee

* AC CONTENT ON ENTRYS
* POINTER TO COMMAND

QASCM S$DC O
JMSx =T,L
$DC O
DAC QASCM3
QASCMI LACx QASCM3
LM
LAC =QASQ
JMSk =Q,A
JMP QASCM2
LACx QASCM3
1SZ QASCM3
AND =400400
SNA
JMP QASCM!
JMSx =T .U
$DC QASCM
JMP QASCMI
QASCMZ JMS* =T,.,P

(RETURN)

* REQUEST QAS OUTPUT
* CALLING SEQUENCE:

* JMS QASCMR

b 3 LY

* AC CONTENT ON ENTRY:
* POINTER TO COMMAND

QASCMR $DC ©
JMSx% =T,L
$DC O
DAC QASCMA4
LAC QASCMS
SZA+CLC
JMP *+7
DAC QASCMS
LAC QASCMA
JMS QASCHM
JMSx =T, U
$DC QASCMR
JMP QASCMR+4
JMSx =T,.P

(RETURN)D

A-10

* TEXT LISTS

QAST! $DC 7
$TEXT “*%x ILLEGAL COMMAND ("

QAST2 $DC 31!
$TEXT "*xx DATA SET DISCONNECTE"
$DC 157475
$TEXT “%k* COMMAND SOURCE & SINK SWITCHED TO TELETYP"

$DC 167475

QAST3 $DC 3
$TEXT “SELMAs (7

QASTA $DC |
$DC 537475

QASQ $DC %4400
$DS 400

* RECEIVED

QASPHS

QAS00

QASO!

QAS02

QAS03

$DC
$0C
$DC
$DC
$DC

$DC
JMP
JMP
JMP

$DC
JMP
JMP
JMP

$DC
JMP
JWP
JMP
JMP
JMP
JMP

$DC
JMP

COMMAND DECODING TABLES

-4

QASQO
QASO!
QAS02
QAS03

-3

Q0000
Q000!
Q0002

-3

Q0100
Q010!
Q0102

-§

Q0200
Q0201
Q0202
Q0203
Q0204
Q0205

-1
Q0300

CONTROL PHASE

DISPLAY RESULTS PHASE
REGENERATION PHASE
SAVE PHASE

NULL
PATCH-UP
END OF FILE

SET UP GRAPH
PLOT VALUES
DISPLAY SINGLE VALUE

CREATE FRAGMENT

CREATE ELEMENT OR CONNECTION
LOAD CONNECTION SEGMENT
INSERT CONNECTION LEAF
ASSIGN PARAMETER

CONNECT

SEND MODEL TO BE SAVED

A-12

* TRANSMITTED COMMAND TABLES

* CONTROL PHASE
S0000 $DC 400
§0001 $DC 40!
$0002 $DC 402
$0003 $DC 403
S0004 $DC 404
S0005 $DC 405
S0006 $DC 406

* GENERATION PHASE

$0100 $DC 1000
$DC O
$DC O

soi0l $DC 100!
$DC O

s0102 $DC 1002
$DC O
$DS 4

S0103 $DC 1003
$DC O
$DC O

S0104 $DC !
$DC O

S0105 $DC 1!
$DC O
$DC O

* SOLVE PHASE

$0200 $DC 2000
$DC O
$DS 4

* RESULTS PHASE
S0300 $DC 3000
$DC O

S0301 $DC 3001
$DC O

NULL COMMAND

PATCH-UP

CALL SYSTEM

CALL ERROR

CALL MTIS

INITIALIZE

WIPE OUT /360 OUTPUT BUFFER

CREATE ELEMENT OR CONNECTION
NAME/TYPE

GEN PAR VALUES (NO, | & 2)
DESTROY ELEMENT OR CONNECTION
NAME (HIGH ORDER)

ASSIGN PARAMETER VALUE
NAME/PARAMETER NUMBER

PARAMETER VALUE (6-BIT CODE)
CONNECT

CON NAME/CON PORT NUMBER

ELEMENT NAME/ELEMENT PORT NUMBER
DISCONNECT

ELEMENT NAME/ELEMENT PORT NUMBER
ALTER GENERATION PARAMETER
NAME/GENERATION PARAMETER NUMBER
GEN PAR VALUE (HIGH ORDER)

COMPILE & SOLVE
NUMBER OF ITERATIONS
CONVERGENCE FACTOR (6-BIT CODE)

PLOT RESULTS
ELT NO. (O=ALL) (HIGH ORDER)

MODIFY PLOT
FIRST STATE NUMBER

A-13

$0C
s0302 $DC

0
3002

$DC O

$0303 $DC
$DC

3003

0

* DOCUMENTATION

$0400 $DC
$DS
$0401 SDC
S0402 $DC
$DS
S0403 $DC
$DS

4000
14
4401
4002
14
4003
42

PHASE

COUNT (HIGH ORDER)

GET SINGLE VALUE
STATE NUMBER

TYPE RESULTS
ELT NO, (0=ALL) (HIGH ORDER)

BEGIN SAVE

FILE NAME

END SAVE

RETRIEVE

FILE NAME

SAVE RETURN COMMAND
RETURN COMMAND

Q000!

Q00011

Q00012

STITLE

DZM QASCMS
JMS QASR
SAD =1

JMP Q00011
SAD =4
SKP

JMP QASE
LAC =QO0001F
JMSk =) ,T
JMS QASR
SNA

JMP %43

LAC =Q0001G
JMS% =L ,T
JMP Q0000
LAC =Q0001S
JMP %3

LAC =XBD!
DAC KBDTBL
LAC =PBT
JMSx% =P,T
JMS QASR
SAD =2

JMP Q00012
JMS QASR
JMS QASR
LAC =Q0001C
SKP

LAC =Q0001P
DAC QO00LT
JMS QASR
TAD =NAME
DAC QOOOLN
LACx QOOOIN
JMS ATIR
$DC O

CLA

JMS ATIR

SELMA RESPONSE TO QAS COMMANDS

A-15

$DC
DAC

LAC
SAD
JMP
CLA
JMS
$DC
DAC
JMS
SZA
JMP
LAC
DAC
LAC
DAC
LAC
JMS
$DC
LM
LAC
JMS
CMA
TAD
DAC
LAC
SKP
CLA
JIMS
$DC
1SZ
JMP
DAC
LAC

0
Qo001L
Q0001T
=Q0001C
*+5

ATTR

0
Qo0001L
QASR

*+4
=QO000!R
QO000!IT
=1
QOO0 N
Qo000!L
ATIR

0

QO00!IL
PENCNT

QOO0O0I N
Q0001 N
QO000!L

ATTR

(4]
Q0001 N
L Y |
Q000IL
Q0001 T

JMSxk =L,T

LAC
JMS
$DC
DAC

LMQ

QO001L
ATTR

0
Q000IT

A-16

LAC QO00!IL
JMSx =5 ,TR
$DC ©

LAC =QO0001!A

LMa

LAC QO0001L
JMSx =S oTl
$DC O

LAC Q000IT
LMa

LAC QO000tL
JmSx =5 ,T1
$DC O

LAC =QOO00IE
JMSx =L ,T
LAC =CON
JMS% =T,S
JMP Q0000

A-17

* SET WP GRAPH
Q0100 JMS PLOCLR

Q01001

JMS

QASR

ALSS 7

DAC
JMS
XOR

PLOINC
QASR
PLOINC

LRSS 5

DAC
JMS
$DC
$DC
J¥S
$DC
$DC
JMS
$DC
$DC
JMS
$DC
$DC
JMS
$DC
$DC
LAC
JMS
JMP

PLOINC
PLOLBL
-320
«250
PLOLBL
«320
250
PLOLBL
«310
=340
PLOLBL
310
-340
PLOLBL
330
=300
=50000
QASCHM
Q0000

A-18

* PLOT WALUES

Q0101 JMS QASR
SAD =377
JMP Q01001}
ALSS 7
DAC Q01011
JMS QASR
XOR Q01011
LRSS 5
XOR =4000
DAC Q01011
LAC =1
DAC* PLOPTR
182 PLOPIR
LAC Q01011
DACx PLOPTR
1SzZ PLOPIR
1SZ PLOPTR
LAW 4000
DACx PLOPTR
1Sz PLOPTR
CLC
TAD PLOINC
DAC* PLOPTIR
ISz PLOPIR
LAC QO0101!}
XOR =2000
DAC* PLOPTR
LAC PLOPTR
TAD =3
DAC PLOPTR
JMP Q0101

A-19

* DISPLAY SINGLE VALUE

Q0102 LAC LVLVX
LM
LAC LVLSCR
JMSx =S ,TR
JMP %43
LAC LVLVX
JMS CHEW
LAC LVLWY
LM
LAC LVLSCR
JMS* =S .TR
JMP %43
LAC LVLVY
JMS CHEW
LAC PENGP!
LRS 3
AND =77
MUL

PLOINC $DC O
LACQ
TAD =-300
RAL
TAD PLOINC
RAR
DAC *+3
JMS PLOLBL
$DC -350
$DC O
DAC LVLWX
JMS PLOLBL

Q01021 $DC O
$DC -340
DAC LVLVWY
JMSx =D oE
JMP Q0000

A-20

* CREATE FRAGMENT

Q0200

Q02001

JMSx =S ,TL
$DC O

DAC QO2FRG
Lme

LAC LVLDGM
JMSx =5,T1
$DC ©

LAC QO2FRG
JMS QO2CRD
LAC =S0000
JMS QASCHM
JMP Q0000

A-21

* CREATE ELEMENT OR CONNECTION

Q0201 JMS* =S ,TL
$DC O %*
DAC QOZ2PAR
JMS LVL
$DC QO2FRG
$0C O
$DC ©
$DC O
$DC O *
DAC QO02SYM
JMS QO2CRD
JMSx =8 ,.TL
$DC O *
DAC QO2PRT
LMQ
LAC QO2sYM
JMSx =S,TI
$DC O *
JMS QASR
TAD =NAME
DAC Q02 TMP
LAC QO25YM
DACx Q02 TMP
LAW -NAME
TAD Q02 TMP
AND =200
SZA
JMP Q02013
JMS QASR
JMS QASR
TAD =Q0201T~-1
DAC Q02 TMP
LAC*x Q02 TMP
DAC Q02 TMP
Q02011 LAC* Q02 TMP
SMA
JMP Q02012
ALS 2

A-22

Q02012

Q02013

LRSS 12

DAC

LACQ

*+] 4

LRSS 12

DAC

*+12

LACx Q02 TMP

AND
SAD
LAC

=600000
2400000
=I NP

SAD =600000
LAC =0UT
JMS LVL
$DC QO2PRT
$DC O

$DC O

$DC 500
$DC O

ISZ Q02 TMP
JMP Q02011
LAC Q02 TMP
TAD =1

LMQ

LAC QO02sYM
JMSx =8 ,T1]
$DC O

JMP Q02001
JMS QASR
JMS QASR
ALSS 7
DAC Q02 TMP
JMS QASR
XOR Q02 TMP
JMS CORGET
$DC O

DAC QOZBLK
DAC QO2PTR
LAW 10
Lma

LAC QO2PRT
JMSxk =S ,LP

JMP Q02001

QO020!T $DC DICI1+10
$DC DIC2+10
$DC DIC3+7
$DC DIC4+7

A-24

* LOAD CONNECTION LEAF SEGMENT

Q0202 JMS QASR
SAD =377
JMP Q02001
LRSS 5
ALSS 4
LLS 5
ALSS 7
DAC Q02 TMP
JMS QASR
XOR Q02 TMP
DAC* QO2PTR
1Sz QO2PIR
JMP Q0202

A-25

* INSERT CONNECTION LEAF

Q0203 LAC QO2BLK
TAD =1
LM
LAC QO25YM
JMSx =S5 ,T1
$DC O
JMP Q02001

* ASSIGN PARAMETER

Q0204

Q02041

LAC QO025YM
JMS ATIR
$DC O

TAD =1

DAC Q02 T™MP
LAC* Q02 TP
AND =377
SAD =1|

LAC =PARINT
SAD =202
LAC =PARINT
SAD =PARINT
SKP

LAC =PAR
DAC Q02M0D
JMSxk =S ,TL
$PpC O

DAC Q02 TMP
LMQ

LAC QO2PAR
JMSx =5 ,TI
$DC O

LAC Q02 TMP
JMS QO2CRD
LAW 500

LMa

LAC Q02 TMP
JMS* =S ,LP

LAC =QO02BUF+!

DAC QO2PTR
DzM QO2BUF
JMS QASR
SAD =377
JMP Q02042
XOR =777700
DACx QO2PTR
1SZ QO2BRUF
1SZ QO2PIR

A-27

JMS QASR
SAD =377
SKP
JMP Q02041
LAC =QO02BUF
JMSx =L ,D
$DC O x
DAC QO2BLX
LAC* QO2MOD
AND =400000
XOR =2010
DACx QO2BLX
LAC QO2BUF
ALSS 14
XORx QO2BLK
DACx QO2BLK
LAC QO2BLK
SKP

Q02042 LAC QO02MOD
LMa
LAC Q02 TMP
JmSx =5 ,T1
$DC O %
JMP Q02001

QO02BUF $DS 5

A-28

x CONNECT

Q0205 JMS QASR
TAD =NAME

Q0205 §

DAC

LAC* Q02 TmMP

JMS
$DC
CLA

JMS

Q02 TMP

ATTR
0

ATTR

$DC O

DAC
JMS
$DC
DAC
LMa
LAC
JMS
CMA
DAC
JMS
TAD
DAC
LAC
SKP
CLA
Jms
$DC
DAC
1sz
JMP
LAC
JMs
$DC
DAC
LMQ
LAC

QO2PTR
ATTR

0
Q02 TMP

QO2PTR
PENCNT

QO02BLK
QASR

QO2BLX
QO2BLK
QOZPTR

ATTR

0

Q02 TMP
QO2BLK
Q02051
Q02 TMP
ATTR

0
QO2PTR

Q02 TMP

JMS* =S ,TR

$DC

0

LAC QO2PTR

A-29

SAD
LAC
SAD
LAC
Lma
LAC

I NP
=INPCON
=0uT
sOUTCON

Q02 TP

JMSx =5 ,T1

$DC
LAC
LMQ
LAC

0
Q02 TMP

QO2PRT

JMSk =S ,T1

$DC

0

JMP Q02001

A-30

* SAVE DIAGRAM

Q0300 DZM KBDSS
JMP Q0000

* TRANSLATE LEVEL TO DATAPHONE COORDINATES
* CALLING SEQUENCE:

* JMS QO2CRD

* coon (RETURN)

* AC CONTENT ON ENTRYS

* POINTER TO LEVEL TO BE TRANSLATED

QO2CRD $DC O
DAC QO2CR2
JMS QO2CR|
JI'B* =S OLY
JMS QO2CR!
JMSx =S ,LX
JMPx QO2CRD

QO2CR1 $DC O
JMS QASR
ALSS 7
DAC QO2CR3
JMS QASR
XOR QO2CR3
ALS 4
LRSS 26
LAC QO2CR2
JMPx QO2CR !

A-31

QO0001A $DC
$DC
VEC
$DC
$DC

$DC

$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP

500
6302

2010
10
6020
40
2020
2020
4040
2020
6200
200
210
6210
€301

A-32

QO00LF $DC 7
$STEXT “%*xx BAD FILE NAME"

$DC 747577

Q0001G $DC 1t
$TEXT “*** RETRIEVAL CANCELLED"
$DC 7475717

Q0001S $DC 13
$STEXT “x%* SAVE OPERATION CANCELLED"
$DC 747577

Q000IC $DC 11
$TEXT "*x* PORT NOT CONNECTED"
$DC 747577

wuvuir $DC 7
$TEXT "x%x* BAD PARAMETER"
$DC 747577

QOOOIR $DC 15
$TEXT “*%x PROBABILITIES DO NOT SUM TO 1,0"
$DC 747577

QOOOLE $DC 13

$TEXT “*%* RESULT REQUEST CANCELLED"
$DC 747577

A-33

$STITLE SELMA XEYBOARD INTERPRETER

KBD LAW =7

DAC KBDI

LAC =KBD!

DAC XBDTBL

LAW 30

JMSx =T,A
KBDINT LAW 10

JMSx =T R

JMS KBDXCT

LAC KBDTBL /PAR

A-34

* CLEAR COMMAND

KBDC JMS KBDTP
LAC =KBDCT+400000 /PAR
LAC =KBDCCM
JMSx =T,S
LAC LVLDGM
JMS CHEWA
JPB* =X .T
LAW =400
JMS CORZRO
LAC =NAME /PAR
JMP KBDINT

KBDCCM LAC =S0005
JMS QASCHM
JMSx =T,F

* ESCAPE COMMAND

KBDE JMS KBDTP
LAC =KBDET+400000 /PAR
LAC LVLHAL
JMS CHEWA
CLA
JMS* =D.P
JMS% =X T
LAC =KBDECM
Jm* :T.S
LAC QASR+!
SAD =740000
JMP %412
LAC QASQ+!
SAD QASQ+2
LAC QASR
AND =77777
SAD =Q0000+1
JMP *+4
LAC =KBD3
DAC KBDTBL
JMP KBDINT
CLA
JMSx =P,T
LAW 33
JMSx =T,
JMSk =T,F

KBDECM LAC =50002

JMS QASCHM
JMSx =T ,F

A-36

* GET COMMAND

KBDG

KBDG!

JMS KBDTP

LAC =KBDGT /PAR

JMS KBDFL
$DC S0402+!
LAC =PBTR+2
JMSx =P ,.T
CLA

JMSx =D,P
LAW 10

LM

LAC LVLBUT
JMS%x =S ,LP
JMSx =X .S
JMSx =T,P
LAC LVLDGM
JMS CHEWA
LAW ~-400
JMS CORZRO

LAC =NAME /PAR

LAC =S0005
JMS QASCM
LAC =KBDINT
JMSx =T,S
LAC =S0402
JMS QASCMR
LAC QASCMS
SZA

JMP KBDG2
LAC TRAPEN
JMS PENSET
LAC =PBT
JMSx% :POT
LAC LVLBUT
cLQ

JMSk 2§ ,LP
LAC KBDFSV
DAC XBDTBL
JMSx =T,F

A-37

JMP KBDGI
KBDGZ JMSx =T,P

A-38

* PARAMETER COMMAND

KBDP

KBDP |

KBDP2

LAC
SNA
JMP
JMs
LAC
DZM
LAC
DAC
LAC
DAC

SNA
JMP
JMs
JMs
JMS
JMS
LAC
DAC
JMS

$DC
JMs
LAC

XOR
182

KBDVSW

KBDINT+2
KBDTP
=KBDPT /PAR
KBDPM
KBDTBL
KBDPSV
=KBDS
KBDTBL
TRAPEN
KBDPLP
sPENPAR
PENSET
KBDP1!
KBDP1
XKBDP1
KBDP1
XBDPM

*45
KBDP1
KBDP!
XKBDP}
KBDP!
=KBD6
KBDTBL
KBDP!

0
KBDXCT
KBDTBL /PAR

=777700
KBDPP

DAC* XBDPP

182

KBDPB

JMS* =B,.T

A-39

KBDP3

KBRDP 4

KEDPB

JMP%x KBDPI

LAC

KBDPM

SNA+CLC

JMP
TAD

DAC

*+4
KBDP1
KBDPI

JMPx KBDPI

LAW
DAC
JMP

DZM
LAC
DAC
LAC
JMS
LAC
DAC
JMP

$DC
$DC
$DC
$DC
$DC
$DC
$DC

$DC
$DC

17761
KBDPM
XKBDP2+1

KBDPB

=KBDPB
KBDPP

KBDPLP
PENSET
KBDPSV
KBDTBL
KBDCM2

0

11771717
1771717
17171717
17771717
171177
17717117
1771777
7711777

A-40

* QAS COMMAND

KBDQ

KxBDa®Q

LAC QASR+1
SAD =740000
JMP KBDINT
JMS KBDTP
LAC =KBDQT /PAR
JMS KBDCM
LAC =XBDQQ /PAR
LAW -6

DAC XBDI
LAC QASQ+2
SAD QASQ+!
JMP KBDINT
SAD QAsSQ
LAC =QASQ+2
TAD =1

DAC xBDQ!
LACx XBDQl!
SAD 50002
SKP

SAD S0003
SKP

SAD S0004
SKP

JMP KBDINT
LAW 31
JMSk =T .R
JMSxk =T,F

$DC *+47
$DS 47

A-41

* REPLY COMMAND

KB DR JMS KBDTP
LAC =KBDRT /PAR
JMS KBDCM
LAC =KBDRQ /PAR
LAW 10
JMS%x =T,R
LAC KBDRSV
DAC KBDTBL
JMS KBDR2
DAC XBDSW
JMS XBDR2
SZA
DZM XKBDSW
DAC QASP
JMS KBDR2
SAD =2
SKP
SAD =3
SKP
SAD =4
SKP
DZM KBDSW
DAC QASC
LAC XKBDSW
S NA
JMP KBDR!
LAC =QASQ

LAC =50000
TAD QASC
JMS QASCHM

KBDR |

KBDR2

XBDRQ

JMSx =T,F

LAC
JMS

$DC
LAC

J NSk

$DC

=377
QASS
QASP
QASS
QASC
QASS
KBDR2

KBDINT+2
QASS
*ed

0
=KBDRQ
=Q,.F

0

JMPx KBDR2

$DC
$DS

*+47
47

A-43

* SAVE COMMAND

KBDS

KBDS |

JMS KBDTP

LAC =KBDST /PAR

JMS KBDFL
$DC S0400+1
LAC =PBTR+2
JMSx =P,T
CLA

JMSx =D,P
LAV 10

LMQ

LAC LVLBUT
JMSx =S ,LP
JMS® =X .S
JMSx =T,P
LAC =KBDINT
JMS* =T,S
LAC =50400
DAC KBDSS
JMS QASCHMR
LAC QASCMS
SNA

JMP KBDG!
LAC XBDSS
SNA

JMP *+4
SKP

JMP %*=7
JMSx =T,.P
LAC =XBDSFQ
JMSk =Q,C
LAC LVLDGM
JMS ATIR
JMP KBDS2
LMQ

LAC =KBDSFQ
JMS* =Q,.A
$DC O

CLA

A-44

KBDS2

KBDS3

KBDS 4

JMP KBDS |
LAC =XBDSFQ

JMSx =Q . F
JMP KBDS11
DAC KBDSF
LAC =2000
DAC S0403+]
LAC KBDSF
JMS XBDCRD
LAC S0403+3
XOR =400
DAC S0403+3
LAC =50403
JMS QASCHM
LAC =KBDsaQ!
JMS*x =Q,C
LAC =XBDsQ2
JMSx =Q,C
LAC KBDSF
JMS ATIR
JMP KBDS4
LMQ

LAC =KBDSQl
JMS*k =Q,A
$DC O

CLA

JMP KBDS3
LAC =KBDSQ!1
JMSx =@ ,F
JMP KBDS6
DAC KBDSS
JMS ATIR
$DC O

TAD =-1

DAC KBDSTP
LACx KBDSTP
AND =200
SNA

JMP XBDS5
LAC KBDSS

A-45

KBDSS

KBDS 6

LMQ

LAC =XBDSQ@2
JMSx =Q LA
$DC O

JMP KBDS 4
LAC =200l
DAC S0403+1
LAC KBDSS
JMS KBDCRD
LAC KBDSS
JMS NAMGET
$DC O

ALSS I

DAC S0403+4
LAC KBDSTP
SAD =DIC1+12
LAC =401000
SAD =DIC2+!2
LAC =402000
SAD =DIC3+10
LAC =403000
SAD =DIC4a+10
LAC =404000
DAC S0403+5
LAC =50403
JMS QASCHM
JMS KBDPAR
JMP KBDS 4
LAC =KBDSQ2
JMSx =@ ,F
JMP KBDS2
DAC kBDSS
LAC =2001
DAC S0403+1
LAC KBDSS
JMS KBDCRD
LAC KBDSS
JMS NAMGET
$DC O

ALSS 11

46

KBDS 7

KBDS8

DAC S0403+4
LAC KBDSS
JMS ATIR
$DC O

TAD ==2

DAC KBDSTP
LACx XBDSTP
1SZ KBDSTP
TAD =~1

DAC KBDSC
JMS KBDCOD
XOR =400
DAC S0403+5
LAC =50403
JMS QASCM
LAC =2002
DAC S0403+1
LAC KBDSC
CMA

TAD =1

DAC KBDSC
LAC =S0403+42
DAC XBDSP
LAW =~-4!

DAC KBDSWC
LACx XKBDSTP
I1SZ KBDSTP
LRS 14

RTIR

RTR

LLS 14

JMS KBDCOD
DACx KBDSP
I1SZ KBDSP
I1SZ KBDSC
SKP

JMP KBDS9
I1SZ XBDSWC
JMP KBDSS8
CLC

A-47

KBDS S

TAD
DAC

KBDSP
KBDSP

LAC*x KBDSP

XOR
DACx

LAC

JMS
JMP
CLC
TAD
DAC
LACx*
XOR
DACx
LAC
JMs
LAC
DAC
LAC
JMS
JMS
LAC
JMS %
LAC
DAC
LAC
JMS
$DC
CLA
JMS
$DC
DAC
JMs
JMP
Lme
LAC
JMSx
$DC
CLA
JMP

=400

KBDSP
=50403
QASCHM
KBDS 7

XKBDSP
KBDSP
XBDSP
=400
KBDSP
=50403
QASCM
=2403
S0403+1
=50403
QASCM
KBDPAR
sKBDSQ3
=Q.C
=2005
S0403+1
KBDSS
ATTR
0

ATIR

0
KBDSSV
ATTR
KBDS10

=k BDSQ3
=Rl
0

x=7

A-48

KBDS 10 LAC =KBDSQ3
JMSx =Q,F
JMP XBDSS
DAC XBDSP
LMQ
LAC XBDSSV
JMS* =S ,TR
$DC O
LAC =%+5
LMQ
LAC XBDSP
JMSx =S ,.LU
JMS* =T¢F
LAC XBDSP
JMSx =S LN
LAC XBDSP
LmQ
LAC KBDSSV
JmSx =5 ,TI
$DC O
LAW 2
JMSx =D,0
$DC O
DAC KBDSYM
LAW |
JMS*x =D,0
$DC O
DAC XBDPRT
JMS*x =D E
LAC XBDSYM
JMS NAMGET
$DC O
ALSS It
DAC S0A403+2
LAC KBDSP
Lma
LAC XBDPRT
JMS PENCNT
XOR =400
XOR S0403+2

A-49

KBDS 11

KBDS FQ

KBDSQl

KBDSQ2

KBDSQ3

DAC S0403+42
LAC =50403
JMS QASCHM
JMP KBDS10
LAC =50401
JMS QASCHM
DZM QASCMS
JMP XBDG!

$DC *+430
$DS 30

$DC *+30
$DS 30

$DC *+15
$DS 15

$DC %415
$DS 15

A-50

* VALUE COMMAND

KBDV JMS KBDTP
LAC =KBDVT /PAR
JMSx =B K
SAD =31
JMP %46
SAD =35
JMP %44
SAD =77
JMP XBDCM2
JUP %-7
TAD ==31|
DAC KBDVSW
TAD =XKBDVTP
SAD =KBDVTP+4
TAD =KBDVTT-KBDVIP-4
JMSx =L T
JMP KBDINT

A-51

* RESPONSE TO ILLEGAL COMMAND FROM QAS

KBDRPY LAC =537475
JMSx =B,T
LAVW 10
JMSx% =T,R
LAC XBDTBL
DAC KBDRSV
LAC =XBD2
DAC XBDTBL
CcLC
DAC XBDSW
LAC KBDSW
SAD =377
JMP QO0000+3
SZA
JMP %+3
JMP QASCMD
JMP *x=6
JMSx =T,P

* RETURN BYTE FROM LAST KEYBOARD COMMAND
* CALLING SEQUENCE:

* JMS KBDBYT

* cwew (RETURN)

* AC CONTENT ON RETURN:
* BYTE IN BITS 10-17¢ BITS 0-9 CLEAR (UNLESS END OF RECORD)

*%%x CALLED FROM QAS TASK ONLY x**x*

KBDBYT $DC O
LAW -6
SAD XBDI
JMP k44
SKP
JMP KBDBYT+!
JMSx =T,P
LAC =XBDQQ
JMSx =Q ,F
$DC O
SMA
JMP* XBDBYT
LAW =7
DAC KBD!
CLC
JMPx KBDBYT

* INTERPRET KEYBOARD CHARACTER
* CALLING SEQUENCE:

* JMS KBDXCT

* LAC <e- (LAC POINTER TO KEYBOARD TABLE)

KBDXCT $DC O
JMSx =B K
DAC KBDXC1
XCT*x KBDXCT
DAC XBDPTR
LAC*x KBDPTR
DAC KBDCNT
LAC KBDXxCI
1SZ XBDPTR
SADx KBDPTR
JMP *45
1SZ XBDPTR
I1SZ KBDCNT
JMP %x-5
JMP KBDXCT+1
1SZ KBDPIR
XCTx KBDPTIR

A-54

TYPE KEYBOARD RESPONSE AND OBTAIN CONFIRMATION IF NECESSARY

CALLING SEQUENCEs

JMS KBDTP

LAC ew=- (LAC POINTER TO RESPONSE TEXT LISTs
BIT O SET IF CONFIRMATION REQUIRED)

cren (RETURN)

KBDTP $DC O
LAW 10
JMSx =T A
XCT* XKBDTP
JMSxk =L ,T
XCT* KBDTP
1SZ XBDTP
SMA
JMPx XBDTP
KBDTPI JMS KBDXCT
LAC =XBD4 /PAR
KBDTP2 LAC =XBDOK
JMSx =L ,T
JMPx KBDIP
KBDTP3 LAC =KBDNO
JMS%k =L ,T
JMP KBDINT

¥ W N W *

A-55

* READ COMMAND FROM KEYBOARD
* CALLING SEQUENCES

* JMS XBDCM
*

*

O

LAC ===~ (LAC POINTER TO SINK QUEUE)
weos (RETURN)

KBDCM $DC O
XCT* KBDCM
JMSx =Q ,C
LAC =377
LMQ
XCT*x XBDCHM
JMSx z=Q,A
$DC O
JMS KBDCM4
JMP KBDCM3
JMS KBDCMA
JMP XBDCM2
JMS KBDCM4
SKP
JMP %2
KBEDCM! LAC =377
LMaQ
XCT* KBDCM
JMSx =Q, A
JMP XBDCMZ2
cLa+CMa
XCT* XBDCM
JMSk =Q,A
JMP KBDCM2
LAC =537475
JMSx =B,T
1SZ KBDCM
JMPx KBDCM
KBDCM2 LAC =KBDDEL
JMSx =L ,T
JMP KBDINT
KBDCM3 LAC =KBDNUL
JMSx =L,T
cLQ

KBDCM4

KBDCM5

XCT» KBDCM
JMSx =Q,A

$DC O

cLQ

XCT*x KBDCM
JMSx =Q A

$DC O

JMP KBDCMI

$DC O

JMS KEDCMS
JMPx KBDCM4
DAC XBDCM7
JMS KBDCMS
JMSx =T,P
LRS 4

LAC XBDCM7
LRSS 16
XCT* KBDCM
JMSk =Q ,A
JMP KBDCM2
I1SZ XBDCM4
JMP* KBDCMA4

$DC O

JMSx zB.K
SAD =74
JMPx KBDCMS
SAD =77
JMP KBDCM2
TAD =-20
SMA

JMP KBDCMS5+1
AND =777717
DAC KBDCM6
JMS* =B,T
LAC KBDCM6
AND =17

1SZ KBDCMS
JMPx KBDCMS

A-57

* GET FILE NAME FROM KEYBOARD

* CALLING SEQUENCE:

JMS KBDFL

$DC «=~e- (POINTER TO 16-BYTE VECTOR)
coe- (RETURN)

¥* *

KBDFL $DC O
LACx XKBDFL
DAC XBDFL3
DAC XBDFL4
LAW ~-14
DAC XBDFLS
DAC KBDFLS
LAC =76076
DACx KBDFL3
1SZ KBDFL3J3
1Sz KBDFLS
JMP %-3
JMSx =B K
SAD =77
JMP XBDCM2
SAD =74
JMP KBDCM2
XOR =400
ALSS 11
DACx KBDFLA
LRS 11
AND =77
XOR =777700
JMSx =B,T

KBDFL1 JMSx =B .K
SAD =77
JMP XBDCM2
SAD =74
JMP KBDFL2
XOR*x KBDFL 4
XOR =400400
DACx KBDFL4
AND =77
XOR =777700

KBDFL2

JMSk =B,T
I1SZ XBDFLS6
SKP

JMP KBDFL2
JMSx =B K
SAD =717
JMP XBDCM2
SAD =74

JMP KBDFL2
DAC KBDFL7?7
LAC* XBDFL 4
AND =1T77177
DACx KBDFL 4
ISZ XBDFLA
LAC KBDFL?7
XOR =400
ALSS 11
DACx KBDFL 4
LAC KBDFL7
XOR =777700
JMSx =B,T
JMP KBDFLI1
LAW 17475
JMSx =B,T
LAC XBDTBL
DAC XBDFSV
LAC =KBDJ
DAC XBDTBL
1SZ KBDFL
JMPx KBDFL

A-59

*
*
*
*

KBDPAR

KBDPA |

SEND PARAMETERS
CALLING SEQUENCE:

JMS KBDPAR

$DC O

LAC =XBDsSQ3
JMSx =Q ,C
LAC =2004
DAC S0403+1
LAC KBDSS
JMS ATTR
$DC O

CLA

JMS ATIR
$DC O

CLA

JMS ATIR
JMPx KBDPAR
JMS ATIR
JMP %x+7

LMa

LAC =XBDSQ3
JMSx =Q,]
$DC O

CLA

JMP %xe7

LAC =KBDSQ3
JMSkx =Q,F
JMPx KBDPAR
DAC KBDSP
JMS KBDCRD
LAC XBDSP
JMS ATIR
$DC ©

DAC XBDSP
SAD =PARINT
JMP KBDPA3
SAD =PAR
JMP XBDPA3

(RETURN)

I1SZ XBDSP
LACx KBDSP

LRS 3

AND =77000
XOR =400000
DAC S0403+4
1SZ XBDSP
LAC* KBDSP
SAD =761121
JMP KBDPA2
1SZ KBDSP
LACx KBDSP
LRS 14

AND =77

XOR =400400
XOR S0403+4
DAC S0403+4
1Sz XBDSP
LAC* KBDSP
SAD =761121
JMP KBDPA2
1SZ XBDSP
LAC* XBDSP
LRS 3

AND =77000
XOR =400000
DAC S0403+5
LAC S0403+4
XOR =400
DAC S0403+4
1SZ KBDSP
LAC*x KBDSP
SAD =761121
JMP KBDPAZ2
1SZ XBDSP
LACx XBDSP
LRS 14

AND =77

XOR =400400
XOR S0403+5

DAC
KBDPA2 LAC
JMS
JMP
KBDPA3 LAC
XOR
DAC
JMP

S0403+5
=S0403
QASCHM
KBDPA
S0403+3
=400
S0403+3
XKBDPA2

A-62

* SET UP COORDINATES FOR TRANSMISSION

* CALLING SEQUENCE:

* JMS KBDCRD

* - (RETURN)

* AC CONTENT ON ENTRY:

* POINTER TO LEVEL WHOSE COORDINATES ARE TO BE SENT

KBDCRD $DC O

TAD =4

DAC KBDCR !

LACx KBDCR!
JMS%x =C ,CB

JMS KBDCOD

DAC S0403+2
ISZ KBDCR1

LACx XKBDCR|
JMSx =C .CB

JMS KBDCOD

DAC S0403+3
JMPx KBDCRD

A-63

* ENCODE 14 BITS OF INFORMATION FOR TRANSMISSION
* CALLING SEQUENCES

* JMS KBDCOD

x =eee (RETURN)

* AC_CONTENT ON ENTRY:

* INFORMATION TO BE ENCODED IN BITS 4-17

* AC CONTENT ON RETURN:

* TWO~BYTE WORD OF ENCODED INFORMATION

XBDCOD $DC O
LRS 7
ALS 2
LLs 7
AND =1771717
JMPx KBDCOD

b
1

64

* KEYBOARD TABLES

KBDI

KBD2

KBD3

KBD 4

KBDS

$DC -7
$TEXT "00C"
JMP KBDC
$TEXT "OOE"
JMP KBDE
$TEXT "00G™
JMP KBDG
$TEXT "00P"
JMP KBDP
$TEXT “00S”
JMP XBDS
$STEXT “00V"
JMP KBDV
$TEXT "00Q"
JMP KBDQ

$DC -1
$TEXT “OOR"
JMP KBDR

$DC -|
$TEXT “00Q™
JMP KBDQ

$DC -3
$TEXT "000"
JMP KBDTP2
$TEXT "OON"
JMP KBDTP3
$DC 77

JMP KBDTP3

$DC ~-14
$DC O
JMP XBDP2
$DC |

JMP KBDP2
$DC 2

A-65

JMP XBDP2
$DC 3

JMP KBDP2
$DC 4
JMP KBDP2
$DC 5
JMP KBDP2
$DC 6
JMP KBDP2
$DC 7
JMP KBDP2
$DC 10
JMP KBDP2
$DC 11
JMP KBDP2
$TEXT “00,"
JMP KBDP3
$DC 717
JMP XBDP4

KBDE $DC -1I

$DC 77
JMP KBDP4

A-66

* TEXT LISTS

KBDCT $DC 3

$TEXT "CLEAR? *
KBDET $DC 3

$TEXT "BSCAPE? "
KBDGT $DC 3

$TEXT "GET FILE "
KBDPT $DC 4

$TEXT "PARAMETER: °
KBDQT $DC 2

$TEXT "QAS: (”
KBDRT $DC 3

$TEXT "REPLYs ("
KBDST $DC 5

$TEXT "SAVE ON FILE *
KBDVT $DC 4

$TEXT "VALUES FROM "

KBDVTP $DC 5
$TEXT "PUSK BUTTONS™
$DC 747577

KBDVTT $DC 4
STEXT " TELETYPE™
$DC 747577

KBDOK $DC 2
$TEXT "Ok"
$DC 7475717

KEDNO $DC 2
$STEXT “NO™

A-67

$DC. 747577

KBDDEL $DC 5
$TEXT " «- DELETED"™
$DC 747577

KBDNUL $DC 2
$TEXT "0000"

A-68

PBT

PBTD

$STITLE

LAC XBDVSW
SZA

JMP PBIR
JMSx =P R
SAD =1

JMP PBIR
CLA

JMSx =P,T
DZM XBDPM
LAC KBDTBL
DAC KBDPSV
LAC =XBD6
DAC XBDTBL
LAC TRAPEN
DAC KBDPLP
LAC =PENPAR
JMS PENSET

LAW «400

Lme

LAC LVLSCR
JMS* =S ,LY
LAC =320
LMa

LAC LVLSCR
JMS*x =5 ,1LX
JMS PBTI
JMS PBTI!
JMS PBTI
JMS PBTI!
JMS PBTI
LAC LVLSCR
JMS CHEWA
Dzm XBDPB
LAC :=XBDPB
DAC KBDPP
LAC KBDPLP
JMS PENSET
LAC KBDPSV

SELMA PUSH BUTTON INTERPRETER

A-69

DAC KBDTEL
PBTR LAC =PBT

JMSx =P,T

CLA

JMSx =P .S

JMSx =P .E

JMSx =T,F

PBT! $DC O
JMSx :=P,E
JMSx =P ,R
SZA
JMP %47
LAC KBDPB
S NA
JMP PBTR
SXP
JMP %x-7
JMSx =T,P
SAD =i
JMP PBTD
NORM
LACS
TAD =7776317
SAD =7717712
TAD =47
SAD KBDPM
JMP PBT2
SAD =7771761
DAC XBDPM
1SZ KBDPP
DACx KBDPP
1SZ XBDPB
LAC LVLSCR
JMS CHEWA
LAC =KBDPB
JMSx =L D
$DC O
LMQ
LAC LVLSCR

PBT2

JMSx =S ,T1
$DC O

CLA

JMS*x =P,.S
JMPx PBTI
CLA

JMSx =P,S
JMP PBTI1+]

A-71

CON

CONY

STITLE

JMSX =X .S
JMP PENEND
LAC LVLBUT
JMS CHEWA
LAC LVLDGM
LMe

LAC LVLHAL
JMSx =S ,TR
NOP

LAC LVLRES
LmMa

LAC LVLDGM
JMS% =S ,TR
JMP %+3
LAC LVLRES
JMS CHEW
LAC LVLDGM
LmMQ

LAC LVLHAL
JMSx =S ,TI
$DC O

LAC =310
DAC CONY
LAC =DICI
DAC CONDIC
TAD =1

DAC %+5
TAD =1
TAD%x %43
DAC %47
JMS BUTX
$DC O

$DC LVLBUT
$DC O

$DC 320
$DC 500
$DC O

$DC O

SELMA CONSTRUCTION FRAME

A-72

LAW -50

TAD CONY
DAC CONY
LACx CONDIC
SZA

JMP CONY~-11
JMS BUTX
$DC RESTXT
$DC LVLBUT
$DC - 400
$DC -34
$DC 500
$DC RES

$DC O

JMS BUTX
$DC SELT2
$DC LVLBUT
$DC -400
$DC ~400
$DC 500

$DC TRA

$DC O

DAC LVLTRA
LAC =PENINT
JMS PENSET
LAW =100
JMS*x =N,C
JMP PENEND

* CREATE NEW SYMBOL

CONCRE $DC O
DAC CONDIC
JMSx =X .S
JMP PENEND
JMS PENHIT
LAC TRAPEN
JMS PENSET
JMSx =S ,TL
JMP PENEND

CON!

CON2

DAC LVLFRG
LAC PENY
CMA

TAD PENYL
CHMA

LRSS 25
LAC LVLFRG
JMSx =S LY
LAC PENX
CMA

TAD PENXL
CMA

LRSS 25
LAC LVLFRG
JMSx =S ,LX
JMS* =5,TL
JMP CONS8
DAC LVLSYM
LM

LAC LVLFRG
JMSx =8 ,T1
JMP CONT

LAC* CONDIC

SPA

JMP CON3
JMSx =5 ,TL
JMP CONS8
DAC LVLTMP
LmMa

LAC LVLSYM
JMSx =S ,T1
JMP CON6

LAC* CONDIC

SPA

JMP CON3
ALS 2
LRSS 12
DAC %*+13
LACQ
LRSS 12

A-74

CON3

CONA

DAC

x+11

LACx CONDIC

AND
SNA
LAC
TAD
JMS
$DC
$DC
$DC
$DC
JMP
152
JMP

=600000

=PAR~PARINT+200000
=PARINT~200000

LVL

LVLTMP

0

0

500

CONS8

CONDIC

coN2

JMSx =S TL

JWP
DAC
Lma
LAC

CoNng
LVLTMP

LVLSYM

JMSx =5 ,T1

J P

CONG

LACx CONDIC

SMA
JMP
ALS

CONS
2

LRSS 12

DAC

*+14

LACQ
LRSS 12

DAC

*x+12

LAC* CONDIC

AND
SAD
LAC
SAD
LAC
JMS
$DC
$DC
$DC

=600000
=400000
=INP
=600000
souUT
LVL
LVLTMP
(0]

0

A-75

$DC 500
JMP CONS
ISZ CONDIC
JMP CON4
CONS LAC CONDIC
TAD =1
LMQ
LAC LVLSYM
JMSx =8,TI
JMP CONS
LAC LVLFRG
Lma
LAC LVLDGM
JMSx =8 ,TI
JMP CONg
LAC =FENMV
JMS* =T,S
LACx CONDIC
JMS NAMDEF
LAC LVLSYM /PAR
XCT* CONCRE /PAR
$DC O
JMSx =T ,.F
CONG6 LAC LVLTMP
SKP
CON7 LAC LVLSYM
JMS CHEW
CONS LAC LVLFRG
JMS CHEW
JMP PENEND

CONTXT $DC 3
$TEXT “"CONSTRUCT"

* CREATE ELEMENT WITH NO GENERATION PARAMETERS

CONNUL $DC O
LAC S0100+!
XOR =400
DAC SO100+1

LAC =50100
JMS QASCHM
JMP* CONNUL

* MOVE FRAGMENT LEVEL WITH TRACKING CROSS

PENMV JMS TRAC
LAC LVLFRG /PAR
LAW =40
JMSx =N,C
JMP PENEND

* INTERPRET HIT ON ELEMENT OR CONNECTION

PENINT JMS PENLVL
LAC LVLEAF
SAD =0UT
JMP PENCON
LAC LVLSYM
JMS ATTR
$DC O
TAD =e|
DAC PENTNMP
LAC*x PENTMP
AND =200
SNA+CLA
JMP %414
JMS*x =D .0
$DC O
TAD =]

SAD PENTMP
SKP

JMP PENEND
LACx PENTMP
AND =200000
TAD =140

DAC PENCII+1
JMP PENCIN
JMS PENHIT
LAC LVLFRG

A-T77

JMS
$DC
CLA
JMS
SKP
JMP
LAW
DAC
/4y
LAC
JMS
$DC
DAC

LACQ

DAC
PENTHR JMS
$DC
AND
SZA
JMP
JMS
$DC
AND
SNA
JMP
SAD
JMP
DAC
152
SKP
JMP

JMSx%

JMP
JMP
JMP

ATTR
0

ATTR

PENMV
-5
PENINC
PENIND
LVLSYM
COORDS
0

PENY

PENX
PENREG
160
=757

PENMV
PENREG
10
=202

*+7
PENI ND
*+5
PENIND
PENINC

PENDEL
=X oS
*+3
PENEND
PENTHR

JMSx =T,P

* DELETE SYMBOL
PENDEL JMS* =X,T

A-78

LAC LVLFRG
LmMe

LAC LVLDGM
JMSx =S ,TR
$DC O

LAC LVLSYM
JMS NAMGET
$DC ©

DAC PENTMP
XOR =400
LLS I}

DAC SO101+1
LAC =S0101
JMS QASCHM
LAC =NAME
TAD PENTMP
DAC PENTMP
DZMx PENTMP
LAC LVLFRG
JMS CHEW
JMP PENEND

* TERMINATE CONNECTION LINE

PENLIN JMS PENLVL
LAC LVLEAF
SAD =INP
JMP PENINP
LAC LVLSYM
SAD PENSYM
JMP PENEND
JMS ATIR
$DC O
TAD =-|
DAC PENTMP
LAC*x PENTMP
SPA
JMP PENEND
AND =200
SNA

PENI NP

* DRAV
PENCON

JMP PENEND
DAC LINTYP
JMSx =T,F
LAC LINV
DAC PENTMP
I1SZ PENTMP
LAC* PENTMP
SMA

JMP PENEND
DAC LINTYP
LAC =QO000!A
LMa

LAC LVLOUT
JMSx =8 ,TR
NOP

JMS%k =X,T
JMSx =T,.F

CONNECTION FROM OUTPUT PORT

LAC =Q000!A
LMQ

LAC- LVLOUT
JMS*x =S5 ,TR
NOP

JMS PENHIT
LAC LVLFRG
DAC PENFRG
JMS COORDS
$DC O

DAC PENFY
LACQ

DAC PENFX
LAC LVLSYM
DAC PENSYM
LAC LVLPRT
DAC PENPRT
LAC LVLOUT
DAC PENOUT
JMS COORDS

A-80

$DC O

DAC PENY
LACQ

DAC PENX
JMS LINDRW
JMP PENEND
SKP

JMP PENIB
LAC LVLOUT
JMS COORDS
$DC O

DAC PENYT
LACQ

DAC PENXT
JMS LINADJ
JMSx =S ,TL
$DC O

DAC LVLFRG
LAC LINE
LM

LAC LVLSCR
Jmsx =S ,TR
$DC O

LAC LINY
CMA

TAD PENFY
CHMA

LRSS 3

DAC =%+12
LAC LINX
CMA

TAD PENFX
of.")

LRSS 3

DAC *+5
LAC LVLFRG
JMS LVL
$DC PENFRG
$DC O

$DC O

A-81

$DC O

$DC O

DAC PENFRG
LAV 10
LMQ

LAC LVLFRG
JMSx =S ,LP
LAC PENOUT
LMQ

LAC LVLFRG
JMSx =S,TI
$pC O

LAC LVLOUT
LM

LAC LVLFRG
JMSx =8,T1
$DC O

LAC LINE
LMQ

LAC PENFRG
JMSx =S .TI
$DC O

LAC =0UT
LMQ

LAC PENOUT
JMSx =S ,TR
$DC O

LAC =OUTCON
LMQ

LAC PENOUT
JMSx =5 ,TI
$DC O

LAC =INP
LmQ

LAC LVLOUT
JMSx =S ,TR
$DC O

LAC =INPCON
LM

LAC LVLOUT

JMSx =5,TI
$DC O *
LAC =201
DAC S0100+1
JMS NAMDEF
LAC PENFRG /PAR
JMS CONNUL /PAR
$DC O

LAC PENFRG
JMS NAMGET
$DC O

ALSS 11

DAC SO103+1
I1SZ SO0103+1
LAC PENSYM
JMS NAMGET
$DC O

ALSS 1]

DAC SO0103+2
LAC PENOUT
LMQ

LAC PENPRT
JMS PENCNT
XOR S0103+2
XOR =400
DAC SO103+2
LAC =S0103
JMS QASCM
1SZ S0103+}
LAC LVLSYM
JMS NAMGET
$DC O

ALSS |11

DAC S0103+2
LAC LVLOUT
LMQ

LAC LVLPRT
JMS PENCNT
XOR S0103+2
XOR =400

A-83

DAC S0103+2
LAC =50103
JMS QASCHM
LAV -40

JMS % :N.C
JMP PENEND

* DETERMINE WHETHER TO DELETE CONNECTION OR DRAW OUTPUT BRANCH

PENCIN JMS PENNIT
LAC PENY
LRSS 23
LAC LVLSCR
JMSx =S ,LY
LAC PENX
LRSS 23
LAC LVLSCR
JMS%x =S LX
LAC =RAND
Lma
LAC LVLSCR
JMSk =S ,TI
$DC O *
LAW =5
DAC PENINC
DzM PENIND
DzM PENTYP

PENCI! JMS PENREG
$DC O
AND =757
SZA
JMP PENOB
JMS PENREG
$DC 20
AND =252
LMQ
LAC PENTYP
oma
DAC PENTYP
SAD =252

JMP PENOB
JMS PENREG
$DC 24

AND =202
SNA

JMP %47
SAD PENIND
JMP *x+5
DAC PENIND
1SZ PENINC
SKP

JMP PENCDL
JMSk =X S
JMP PENCI2
LAC LVLSCR
JMS CHEWA
JMP PENEND
JMP PENCII

PENCI2 JMSx =T,P
* DELETE CONNECTION

PENCDL LAC LVLSCR

JMS CHEWA
JMSx =X ,T
CLA

JMSx =D P
LAC LVLFRG
TAD =4

DAC PENTMP
LACx PENTMP
JMS*x =C ,CB
DAC PENY
I1SZ PENTMP
LACx PENTMP
JMS* =C ,CB
DAC PENX
LAC LVLSYM
DAC PENSYM
LMa

A-85

PENCDI

LAC

LVLFRG

JMSx =S ,TR
$DC 0

LAC
JMS

PENSYM
ATTR

$DC O

CLA
JMS
$DC
DAC
LAC
JMS
JMP
DAC
LmMe
LAC

ATTR

0
PENPRT
PENPRT
ATTR
PENCD2
PENOUT

PENPRT

JMSx =S ,TR

$DC
LAC
JMs
$DC
DAC
Lma
LAC

0
PENOUT
ATTR

0

PENTMP
PENOUT

JMSx =S ,TR

$DC
LAC
SAD
LAC
SAD
LAC
LM
LAC

0
PENTMP
=OUTCON
=0UT

I NPCON
=INP

PENOUT

JMSx =S5 ,TI

$DC
JMS
JMs
LAC
JMS
$DC

0
PENCDS
PENLVL
LVLSYM
NAMGET
0

A-86

PENCD2

PENCD3

ALSS 11
DAC SO104+1

LAC LVLOUT
Lme

LAC LVLPRT
JMS PENCNT
XOR SO0104+1
XOR =400
DAC S0104+!
LAC =50104
JMS QASCM
JMP PENCDI!
LAC PENSYM
JMS NAMGET
$DC O

DAC PENTMP
XOR =400
ALSS 11
DAC SO101+]
LAC =S0101
JMS QASCHM
LAC =NAME
TAD PENTMP
DAC PENTMP
DZmx PENTMP
LAC PENSYM
JMS CHEW
LAC =PENCQ!
JMS* =@ ,C
LAC =PENCQ2
JMSx = ,C
LAC LVLFRG
JMS ATTIR
JMP PENCDS
DAC PENSYM
JMS*k =S ,TL
$DC O

DAC PENFRG
LMQ

LAC LVLDGM

A-87

PENCD A4

PENCDS

JMSx =5 ,TI
$DC O

LAC PENY
LmMQ

LAC PENFRG
JMSk zS LY
LAC PENX
LMQ

LAC PENFRG
JMSx =S ,LX
LAC PENSYM
LM

LAC LVLFRG
JMSx =S ,TR
JMP PENCDT
LAC PENSYM
LMQ

LAC PENFRG
JMSx =S ,TI
$DC O

LAC PENSYM
JMS ATIR
$DC O

CLA

JMS ATIR
$DC O

DAC PENPRT
LAC PENPRT
JMS ATTR
JMP PENCDS
DAC PENOUT
LMQ

LAC PENPRT
JMSx =S ,1IR
$DC O

LAC PENOUT
LMQ

LAC =PENCQl

JMSx =Q,1
$DC O

A-88

PENCD6

PENCD?7

PENCDS

LAC PENOUT
JMS ATIR
$DC O

SAD =INP
JMP PENCDS
SAD =0UT
JMP PENCDS
JMS PENCDS
LAW 2

JMSx =D.0
$DC ©

LmMQ

LAC =PENCQ2
JMSx =Q,1
$DC ©

JMP PENCDS
LAC =PENCQI
JMSx =Q,F
JMP PENCD7
Lma

LAC PENPRT
JMSx =5 ,TI
$DC 0
JMP PENCDE
LAC =PENCQ2
JMSk =Q,F
JMP PENCD3
DAC PENSYM
JMP PENCD 4
LAC LVLFRG
LMQ

LAC LVLDGM
JMS* =S ,TR
$DC O

LAC LVLFRG
JMS CHEW
LAC TRAPEN
JMS PENSET
JMP PENEND

A-89

PENCDS

PENCQ
PENCQ2

$DC O

LAC =x%+§
Lme

LAC PENOUT
JMSx =S LU
JMSx =D ,E
JMSx =T,.F
LAC PENOUT
JMSx =S oLN
JMPx PENCDS

$DC %434
$DS 34
$DC *x+34
$DS 34

A-90

* DRAW
PENOB

PENOB 1

STITLE
OUTPUT BRANCH

LAC LVLFRG
DAC PENFRG
JMS COORDS
$DC O

DAC PENFY
LACQ

DAC PENFX
LAC LVLSYM
DAC PENSYM
JMS ATIR
$DC O

TAD =-]

DAC PENTMP
LAC*x PENTMP
SAD =201
JMP %46

RAL

SPA4RAR

JMP PENCII+1S6
TAD =400
JMP PENOBI
LAC PENTYP
SAD =252
LAC =401202
SAD =401202
SKP

LAC =401203
DAC PENTYP
AND =377
SAD =203
JMP PENOB2
LAC LVLSCR
JMS CHEWA
LAC =PRI1O

LAC LVLSCR

SELMA CONSTRUCTION FRAME (CONT,)

A-91

PENOBZ

JMSx =5 ,TI
$DC O
LAC LVLPRT

DAC PENPRT
LAC LVLOUT
DAC PENOUT
JMS LINDRW
SKP

JMP *x+4
LAC LVLSCR
JMS CHEWA
JMP PENEND
LAC LVLOUT
JMS COORDS
$DC O

DAC PENYT
LACQ

DAC PENXT
JMS LINADJ
LAC LVLFRG
LMQ

LAC PENFRG
DAC LVLFRG
LACQ

DAC PENFRG
LAC LVLSYM
LMQ

LAC PENSYM
DAC LVLSYM
LACQ

DAC PENSYM
LAC LVLPRT
LMQ

LAC PENPRT
DAC LVLPRT
LACQ

DAC PENPRT
LAC LVLOUT
LMQ

LAC PENOUT

A-92

DAC LVLOUT
LACQ

DAC PENOUT
JMP PENBCH

k TERMINATE MULTI-INPUT BRANCH

ENIB LAC LVLSYM
JMS ATTR
$DC O
TAD =~}
DAC PENTMP
LACx* PENTMP
SAD =201
LAC LINTYP
TAD =400
DAC PENTYP
LAC LINV
DAC PENTMP
1SZ PENTNMP
LACx PENTMP
SPA+CLC
JMP *+6
TAD LINV
DAC LINV
ISZ LINR
LAC =1
SKP
LAW =3
DAC PENTNP
LAC PENX
DAC PENXT
CMA
TAD LINX
ChMa
JMS LINSTR
LAC PENTMP
TAD LINV
DAC LINV
CLC

A-93

TAD LINR
DAC LINR
LAC PENY
DAC PENYT
CMA

TAD LINY
CHMA

JMS LINSTR
LAC LVLFRG
SAD PENFRG
JMP PENBCH
JMS COORDS
$DC O

ChA

TAD PENFY
(of)

LRSS 3

DAC PENTMP
LLS 25

CMA

TAD PENFX
CMA

LRSS 25
LAC PENTMP
JMS PENMOV
LAC PENFRG /PAR
LAC LVLFRG /PAR
LAC LVLFRG
Lme

LAC LVLDGM
JMSx =S ,TR
$DC O

LAC LVLFRG
JMS CHEW
JMP PENBCH

* ADD BRANCH TO CONNECTION & INFORM QAS

PENBCH LAC LVLSYM
JMS ATIR

A-94

PENEC!

$DC O

TAD =-1
DAC PENBC
LAC* PENBC
SAD =201
JMP PENBC3
LAC LVLSYM
JMS NAMGET
$DC O

ALSS 1}

XOR
DAC
LAC
RAL
AND
XOR
DAC

=1
S0105+!
PENTYP

377000
=400000
S0105+2

LAC =50105
JMS QASCHM
CLA

JMSx =D,P
LAC =%+6
LMQ

LAC LVLSYM
JMSx =S ,LU
JMSx =D,E
JMSx =T,F
LAC LVLSYM
JMS%x =S ,LN
LAC PENTYP
SMA

JMP %+5
LAC LINY
DAC PENYT
LAC LINX
DAC PENXT
LAC LVLSYM
JMS COORDS
$DC O

DAC PENYB

CMA

TaD PENYT
CMA

LRSS |

DAC PENYT
LLS 23

DAC PENXB
CMA

TAD PENXT
CMA

LRSS 1|

DAC PENXT
CcLC

TAD PENBC
DAC PENBCC
LAW -2

TAD LIRKE
DAC PENBCB
LAC PENTYP
AND =1
SNA+CLA

LAW <3

TAD =-4

DAC PENBCN
SAD =-7

LAC =PRIO-RAND~-4
TAD =RAND+5
DAC PENTMP
LAC PENBCN
CMA

TAD =i

TADx PENBCB
TADx PENBCC
JMS CORGET
$DC O *
DAC PENBCT
DAC PENBCP
LAC PENTYP
DACx PENBCP
I1SZ PENBCP

A-96

PENBC2

LAC =200500
DACx PENBCP
1SZ PENBCP
LAC =20112!1
DACx PENBCP
ISZ PENBCP
LAC PENYT
JMS* =C ,BC
XOR =2000
DAC* PENBCP
1SZ PENBCP
LAC PENXT
JMSx =C ,BC
XOR =6000
DACx PENBCP
1SZ PENBCP
LAC PENBCN
JMS CORMOV
LAC PENBCP
LAC PENTMP
LAC PENBCN
CMA

TAD =1

TAD PENBCP
DAC PENBCP
LAC LINE
TAD =1

DAC PENTMP
LAC PENTYP
SMA

JMP PENBCS
LAW -4

TAD*x PENBCB
DAC PENBCN
cMA

TAD =|

JMS CORMOV
LAC PENBCP
LAC PENTMNMP
LAC PENBCN

/PAR
/PAR

/PAR
/PAR

A-97

TAD PENBCP
DAC PENBCP
TAD =-|

DAC PENTMP
LACx PENTMP
AND =3777
DACx PENTMP
LAC PENYT
JMSx =C BC
DAC* PENBCP
ISZ PENBCP
LAC PENXT
JMSx =C BC
XOR =4000
DACx PENBCP
ISZ PENBCP
LAC PENBC
TAD =2

DAC PENTMP
LAW =4

TADx PENBCC
CMA

JMS CORMOV
LAC PENBCP
LAC PENTWP
LAC PENBC
TAD =1

Lma

LAC LVLSYM
JMSx :s.TR
$DC O

LAC PENBCT
TAD =}

LmQ

LAC LVLSYM
JMSx =8 ,TI
$DC O

LAC LVLSCR
JMS CHEWA
LAC PENBC

/PAR
/PAR

98

JMS CORFRE
LAC PENOUT
JMS ATIR
$DC O

DAC PENTMP
LMQ

LAC PENOUT
JMSx =5 ,TR
$DC O

LAC PENTMP
SAD =INP
LAC =INPCON
SAD =0UT
LAC =OUTCON
LmMQ

LAC PENOUT
JMSx =5 ,TI
$DC O *
LAC LVLSYM
JMS ATIR
$DC O

DAC PENTMP
CLA

JMS ATTR
$DC O

DAC LVLPRT
CLA

JMS ATTR
$DC O

DAC LVLTMP
LAC PENTYP
AND =1
SNA+CLA

LAC =PARINT-PAR
TAD =PAR
DAC PENTMP
LAC =*+§6
LMQ

LAC PENOUT
JMSx =S ,LU

A-99

PENYT
PENXT

JMS* =D,E
JMSxk =T .F
LAC PENOUT
JMSk =S LN
LAC TRAPEN
JMS PENSET
LAC PENOUT
Lmae

LAC LVLPRT
JMSx =S ,T1
$DC O

LAC PENOUT
JMS COORDS
$DC O

TAD =20
CMA

TAD PENYB
CMA

LRSS 1

DAC PENYT
LLS 23

DAC PENXT
LAC PENTYP
SPA+4CLA
LAW =200
TAD =100
TAD PENXT
CMmA

TAD PENXB
CiMA

LRSS 1

DAC PENXT
LAC PENTMP
JMS LVL
$DC LVLTMP
$DC O

$DC O

$DC 500
$DC O

LAC LVLSYM

A-100

PENBC3

JMS
$DC

NAMGET
0

ALSS 11

DAC
LAC
LM
LAC
JMs
XOR
DAC
LAC
JMS
$DC

S0103+!
PENOUT

LVLPRT
PENCNT
S0103+!
S0103+1
PENSYM
NAMGET
0

ALSS 11

DAC

XOR
LAC
LMA
LAC
JIMS
XOR
XOR
DAC
LAC
JMs
LAW

S0103+2
PENOUT

PENPRT
PENCNT
S0103+42
PENOUT

PENPRT
PENCNT
S0103+2
=400
S0103+2
=50103
QASCM
=40

JMSx =N,C

JMP
CLA

PENEND

JMSx =D,P

LAC
DAC
LAC
DAC
LAC

=10
PENYB
=40
PENXB
LVLSYM

A-101

JMS
$DC
DAC
CLA
JMS
$DC
DAC
CLA
Jms
JMP
DAC
LAC
AND

ATIR
0
PENTMP

ATTR
0

LVLPRT

ATTR
PENBCS
LVLTMP
PENTYP
s}

SNA+CLA

LAC
TAD
DAC
LAC
SMA
JMP
CLC
TAD
DAC
LAW

=PARINT-PAR
=PAR

PENTMP
PENTYP

PENBC4
PENBC

PENBCC
-3

TAD* PENBCC

TAD
DAC

PENBCC
PENBCP

LAC* PENBCP
JMSx =C ,CB

ChA
TAD
DAC
1sz

PENYB
PENYB
PENBCP

LACx PENBCP
JMsSx =C ,CB

CMA
TAD
TAD
DAC
PENBC4 LAC

==100
PENXB
PENXB
PENTMP

A-102

PENYB
PENXB

JMS LVL
$DC LVLTMP
$DC 0

$DC 0

$DC 500
$DC 0

LAC LVLPRT
DAC PENBCP
JMS ATTR
$DC O

DAC LVLTMP
CLA

JMS ATIR
$DC 0

DAC PENTMP
LMQ

LAC PENBCP
JMSx =S TR
$DC O

LAC LVLTMP
LM

LAC PENBCP
JM* =S, TR
$DC 0

LAC LVLSYM
DAC PENBSV
JMS NAMGET
$DC 0

ALSS 11

DAC S0103+1
XOR =400000
DAC SO101+1

LAC =%+6

LAC PENTMP
JMSx =S LU
JMSx =D,E
JMS% =T,F
LAC PENTMP
JMS%x =S LN

A-103

JMS PENLVL
LAC LVLSYM
JMS NAMGET
$DC O

ALSS |1

DAC SO104+1
LAC PENTMP
Lma

LAC LVLPRT
JMS PENCNT
XOR =400
XOR SO0104+!
DAC SO0104+1
DAC S0103+2
LAC =50104
JMS QASCHM
LAC =%x+6
Lme

LAC LVLTWMP
JMSx =S ,LU
JMS*x z=D,E
JMSx =T,F
LAC LVLTMP
JMS% =S.LN
JMS PENLVL
LAC LVLSYM
JMS NAMGET
$DC O

ALSS 11

DAC SO104+1
‘LAC LVLTMP

LAC LVLPRT
JMS PENCNT
XOR =400
XOR S0104+!
DAC S0104+!
LAC =50104
JMS QASCHM
LAC =S010!

A-104

PENBCS

JMS QASCHM
LAC PENTYP
AND =377
XOR SO101+1

XOR =400000
DAC S0100+1
LAC =402000
DAC S0100+2

LAC =50100
JMS QASCM
I1SZ S0103+!
LAC PENTYP
Sha

ISZ S0103+1
LAC =S0103
JMS QASCM
LAC S0104+!

DAC S0103+2

LAC S0103+!
XOR =3

DAC S0103+1

LAC =50103
JMS QASCHM

LAC PENBSV
DAC LVLSYM
LAC PENTMP
LMa

LAC PENBCP

JMS*k =S ,TI

$DC O

LAC LVLTMP
LMQ

LAC PENBCP
JMSx =S5 ,TI]
$bC O

JMP PENBC!
LAC PENTMP
LMQ

LAC LVLSYM
JMSx =S ,TR

A-105

PENBC6

$DC O

LAC LVLPRT
LMQ

LAC LVLSYM
JMS % :S .TR
$DC O

JMSx =S ,TL
$DC O

DAC LVLTMP
LM

LAC LVLSYM
JMSx =5 ,T1
$DC O

LAC LVLPRT
LM

LAC LVLSYM
JMSx =S5 ,T1
$DC O

LAC PENTMP
LMQ

LAC LVLSYM
JMS% =5 ,TI
$DC O

JMP PENBC3+22
LAC =20112}
DACx PENBCP
ISZ PENBCP
LACx PENTMP
1SZ PENTMP
SMA

JMP %e3
DACx PENBCP
ISZ PENBCP
LACx PENTMP
ISZ PENTMP
AND =37717
DACx PENBCP
I1SZ PENBCP
LAC LINE
TAD =2

A-106

DAC PENTMP
LAW =7
JMP PENBC2

A-107

RES

$TITLE

JMEX =X .S
JMP PENEND
LAC LVLBUT
JMS CHEWA
LAC LVLDGM
LmQ

LAC LVLHAL
JMSx =5 ,TR
NOP

LAC LVLDGM
Lma

LAC LVLHAL
JMSx =8,T1
$DC O

JMS BUTX
$DC SELT2
$DC LVLBUT
$DC =400
$DC -400
$DC 500
$DC TRA
$DC O

DAC LVLTRA
LAC =PENID
JMS PENSET
JMS BUTX
$DC CONTXT
$DC LVLBUT
$DC =400
$DC ~-160
$DC 500
$DC CON
$DC O

JMS BUTX
$DC PLOTXT
$DC LVLBUT
$DC =400
$DC 50

SELMA RESULTS FRAME

A-108

$DC
$DC
$DC
JMS
$DC
$DC
$DC
$DC
$DC
$DC
$DC
DAC
LAW
DAC
bzm
LAV

500
PLO

0

BUTX
RESTYP
LVLBUT
= 400
200
500
REST

0
LVLTYP
-67
PENIDT+1
LVLRES
=100

JMSk =N,C

JMP
k IDENTIFY

ENID JMS
LAC
JMs
$DC
DAC
AND
SZA
JMP
LAC
TAD
DAC
LAC
LMQ
LAC

PENEND
SYMBOL

PENLVL
LVLSYM
NAMGET

0
PENIDN
=200

PENEND
PENIDN
==87
PENIDT+!
LVLRES

LvVvLDGM

JMSx =S TR

JMmP
LAC

*+3
LVLRES

JMS CHEW

JMs

PENHIT

A-109

LAC LVLDGM

JMS COORDS

$DC O

cma

DAC PENIDY

LACQ

CMA

DAC PENIDX

LAC LVLSYM

JMS COORDS

$DC O

TAD =121

TAD PENIDY

LRSS 1|

DAC PENIDY

LLS 23

TAD =-177

TAD PENIDX

LRSS 1

DAC PENIDX

JMS BUTX

$DC PENIDT

$DC LVLDGM
PENIDY $DC O
PENIDX $DC O

$DC 540

$DC PENIDC

$DC O *

DAC LVLRES

LAC =R ESBOX

Lme

LAC LVLRES

JMSkx =5 ,T1

$DC O *

JMSk =X S

JmSx =T.,P

JMP PENEND

* REMOVE ELEMENT LABEL

A-110

PENIDC

REST

PENIDT

RESTXT

TESTYP

LAC LVLRES
LMe

LAC LVLDGM
JMSx =S5 ,TR
$DC O

LAC LVLRES
JMS CHEW
LAW -67

DAC PENIDT+!

JMP PENEND

LAC PENIDT+!

TAD =67
XOR =400
LLS 11

DAC S0303+!

LAC LVLTYP
LMa

LAC LVLBUT
JMSx =8 ,TR
$DC O

LAW ~-100
JMSx% =N,C
LAC LVLTIYP
LMQ

LAC LVLBUT
JMSx =S ,TI
$DC O

LAC =50303
JMS QASCM
JMP PENEND

$DC |
$DC O

$DC 3

$TEXT "RESULTS"

$DC 2

$TEXT " IYPE"

A-111

RESBOX $DC
VEC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
POP

700
2002
6020
4000
20
4020

4000
2020

4000

A-112

$TITLE SELMA PLOT FRAME

PLO JMSx =X ,.S
JMP PENEND
LAC =PBTR+2
JMSx =P,T
DzMm LVLVX
DZmMm LVLVY
LAC XBDTBL
DAC PLOXBD
LAC =KBD3
DAC KBDTBL
LAC LVLBUT
JMS CHEWA
LAC LVLDGM
LMQ
LAC LVLHKAL
JMSx =S ,TR
" NOP
LAC LVLRES
LMa
LAC LVLDGM
JMSx =S ,TR
JMP %43
LAC LVLRES
JMS CHEW
DzM LVLRES
LAC =PENGPH
JMSx =D,P
LAC =PLOAX
LMQ
LAC LVLBUT
JMS% =S5 ,TI
$DC © _ *
JMS BUTX
$DC PLODGM
$DC LVLBUT
$DC =400
$DC -34
$DC 500

A-113

PLOALL

$DC
$DC
DAC
LAW
SAD
JMP
LAC
XOR
DAC
JMs
$DC
$DC
$DC
$DC
$DC
$DC
$DC
JMP
JMs
$DC
$DC
$DC
$DC
$DC
$DC
$DC

$DC
$DC
$DC
$DC
$DC
$DC
$DC
DAC

$DC
$DC
$DC
$DC

DGM

0
LVLESC
-687
PENIDT+1
PLOALL
PENIDT+!
=420100
PLOLBE+6
BUTX
PLOLBE
LVLBUT
-320
-110
500
PENEND
0

*x+11
BUTX
PLOLBA
LVLBUT
=320
-124
500
PENEND
0

BUTX
PLORT
LVLBUT
310
320

500
PLORTT
0

LVLPR
BUTX
PLOLT
LVLBUT
240

320

A-114

DGM

$DC
$DC
$DC
DAC
JMS
$DC
$DC
$DC
$DC
$DC
$DC
$DC
DAC
JIMS
LAW
LMa
LAC

JMSx

LAW
LM
LAC

JMSx

LAC
TAD
ALS
DAC
LAC
JMS
DZm
LAC
SNA
JMP
SKP
JMP

500
PLOLTT
0
LVLPL
BUTX
PLODT
LVLBUT
170
320
500
PLODTT
0
LVLPD
PLOCLR
=300

LVLSCR
=S LX
-300

LVLSCR
=S .LY
PENIDT+1

=467

11
S0300+1
=S0300
QASCMR
PLOST
QASCHMS

PENEND

*=4

JMSx =T,P

LAC
DAC
LAC

PLOKBD
KBDTBL
=PBT

JMS* =P,T

A-115

JMS PLOCLR
JMP RES

* MODIFY PLOT

PLODTT
PLORTT
PLOLTT

LAC LVLPD
SKP ‘
LAC LVLPR
SKP

LAC LVLPL
DAC LVLPLO
JMSx =5 LN
LAW 10
LM

LAC LVLESC
JMSx =S ,LP
LAW 10
LM

LAC LVLPD
SAD LVLPLO
SKP

JMSx =S ,LP
LAV 10

LMQ

LAC LVLPR
SAD LVLPLO
SKP
J"B*_:.. .LP
LAW 10
LMQ

LAC LVLPL
SAD LVLPLO
SKP

JMSkx =S ,LP
LAC =PENSHF
JMSx =D,P
LAC =400000
DAC S0301+2
DZM PLOSW
JMSx =D,E

A-116

PLOEND

LAC PLOSW
SZA

JMP *x+4
SKP

JMP %-4
JMSx =T,P
LAC LVLPLO
SAD LVLPD
JMP PLOD
SAD LVLPR
JMP %420
LAC PLOCNT
TAD =-61
TAD PLOST
SPa

CLA

DAC PLORBREG
CMA

TAD PLOST
TAD =2

TAD PLOCNT
ALSS 11

XOR =400000
DAC S0301+4+2
LAC PLOBEG
JMP %+3

LAC PLOCNT
TAD PLOST
DAC PLOST
JMS KBDCOD
DAC S0301+!
LAC LVLPLO
SAD LVLPD
LAC =PLODTT
SAD LVLPR
LAC =PLORTT
SAD LVLPL
LAC =PLOLTT

LAC LVLPLO

A-117

PLOD

JMSk =S ,,LL
LAW 500
LMa

LAC LVLPD
JMSx =S ,LP

LAW 500

LMQ

LAC LVLPR
JMSk =S ,LP
LAW 500
LMQ

LAC LVLPL
JMSx =S ,LP
LAW 500
LM

LAC LVLESC
JMSx =S .LP
LAC =PENGPH
JMSx =D.P
LAC =S0301
JMS QASCMR
LAC QASCMS
SNA

JMP PENEND
SKP

JMP x=4

JMS% =T,P
JMS PENKIT
JMSx =X S
JMSx =T,P
LAC PLOCNT
DAC PLOSAV
DZM PLOSW
JMSx =D, E
LAC PLOSW
SZA

JMP %+4
SKP

JMP *x-4
JMSx =T,P

A-118

LAC PLOCNT
CMA

TAD PLOSAV
CMA

ALS 11

XOR =400000
SPA

JMP %46

CMA .
TAD =2000
DAC S0301+2
LAC PLOCNT
JMP *x+4

TAD =1000
DAC S0301+2
LAC PLOSAV
TAD PLOST
DAC PLOST
JMS KBDCOD
DAC S0301+1!
JMP PLOEND

* DISPLAY VALUE

PENGPH JMSx =D,A
TAD =-PLOGPH-3
AND =777770
DAC PENGPI
LRSS 3
TAD PLOST
JMS KBDCOD
XOR =400
DAC S0302+]
LAC =50302
JMS QASCHM
LAC PENGPI
TAD =PLOGPH+4
DAC Q01021
LAC* Q01021
AND =1777

A-119

TAD =-300
DAC Q01021
JMSx =T,F

* SHIFT GRAPH

PENSHF JMS* =D,A
TAD ==PLOGPH=3
LRSS 3
DAC PLOCNT
cLC
DAC PLOSW
JMSx =T,F

A-120

x C
*x C
%*
*

PLOCLR

PLOGPH

LEAR GRAPH
ALLING SEQUENCEs

JMS PLOCLR

$DC ©

LAC LVLSCR
JMS CHEWA

LAW -1000

DAC PLOC!

LAC =PLOGPH+2
DAC PLOC2
DZMx PLOC2
1Sz PLOC2

1Sz PLOCI

JMP %3

LAC =PLOGPH
LMQ

LAC LVLSCR
JMSx =5 ,TI
$0C ©

LAC =PLOGPH+3
DAC PLOPTR
JMPx PLOCLR

$DC 560
VEC

$DS 1000
$DC 0
$DC 4000
POP

(RETURN)

A-121

x DISPLAY LABEL FROM DATAPHONE BUFFER
* CALLING SEQUENCEs

JMS
$DC
$DC

* ¥ ¥ ¥

PLOLBL $DC

- o e

PLOLBL

0

LACx PLOLBL

) 874
TAD
DAC
JMS
DAC
CMA
TAD
DAC
CLL
ALS

PLOLBL
=300
PLOLBY
QASR
PLOLBB

=1
PLOLBC

2

TAD*x PLOLBL

152
TAD
DAC
LAC
DAC
JMs
XOR

PLOLBL
=300
PLOLBX
=PLOLBB+1
PLOLBP
QASR
=777700

DAC*x PLOLBP

1Sz
15z
JMP
JMS
$DC
$DC
PLOLBY $DC
PLOLBX $DC
$DC
$DC
$DC

PLOLBP
PLOLBC
*e5
BUTX
PLOLBB
LVLSCR
0

0

500
PENEND
0

JMP* PLOLBL

(Y COORDINATE)

(X COORDINATE)
(RETURN)

A-122

PLOLBB $DS 20

A-123

PLOTXT $DC 2
$TEXT "PLOT"

PLODGM $DC 3
$TEXT “DIAGRAM"

PLOLBE $DC 6
$TEXT "STATE OF ELEMEN"
$DC ©

PLOLRA $DC 7
$TEXT "STATE OF ENTIRE MODEL"

PLORT $DC 2
$TEXT "RIGHT"

PLOLT $DC 2
$TEXT " LEFT"

PLODT $DC 2
$TEXT "DETAIL"

PLOTT $DC 2
$TEXT " TYPE"

A-124

PLOAX $DC
VEC

$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
PoOP

500

300
2300
6600

4000
620
300
6320

A-125

$TITLE
* TERMINATE DISPLAY SERVICE

PENEND LAC QASCM+2
SZA
JMP %44
JMSx =D,E
JMSx =T,F
JMP PENEND
JMSx =T,P

* PARAMETER DISPLAY TASK

PENPAR LAC XBDPB
SNA
JMP PENEND
SAD =|
SKP
JMP %x+4
LAC XBDPB+1I
SAD =777761
JMP PENEND
JMS PENLVL
LAC LVLEAF
SNA
JMP PENEND
SAD =PAR
JMP %+10
SAD =PARINT
JMP %46
LACx LVLEAF
AND =7777
SAD =2010
SKP
JMP PENEND
LACx LVLEAF
XOR KBDPM
SPA
JMP PENEND

SELMA GLOBAL DISPLAY TASKS

A-126

LAC LVLSYM
JMS NAMGET
$DC O

ALSS 11

DAC S0102+1]
LAC LVLOUT
Lma

LAC LVLPRT
JMS PENCNT
XOR SO0102+1
DAC S0102+1
LAC LVLEAF
LMR

LAC LVLOUT
JMSx =8,TR
¢$DC O

LAC KBDPB
TAD =-4
SMA

CLA

TAD =4

DAC KBDPB
LACx XBDPP
XOR =400
DACx XBDPP
LAC =KBDPB
DAC PENPA3
LAW =4

DAC PENPAI
LAC =50102+2
DAC PENPA2
1SZ PENPA3
LACx PENPA3
ALSS 11

1SZ PENPA3
XOR* PENPA3
XOR =77017
DAC*x PENPAZ2
1SZ PENPA2
1SZ PENPAL

A-127

JMP %xe{]
LAC =50102
JMS QASCM
LACx XBDPP
XOR =400
DACx KBDPP
LAC*x LVLEAF
LRS 14

AND =7

of]}

DAC PENPAL
LAC LVLOUT
TAD =4

DAC PENPA2
LAC LVLEAF
JMS CHEWA
LAC LVLEAF
SAD =PAR
JMP x+4
SAD =PARINT
SKP

JMP %+7
LACx*x PENPA2
JMSx =C ,CB
TAD =-4

LM

LAC LVLOUT
JMSx =S LY
LAC PENPA |
TAD XKBDPB
CMA+CLL

ALS 2

DAC PENPA3
I1SZ PENPA2
LAC* PENPA2
JMSx =C ,CB
TAD PENPA3
LmQ

LAC LVLOUT
JMSx =8 ,LX

A-128

PENREJ

LAC =KBDPB
JMSx =L D
JMP PENREJ
DAC LVLEAF
LmMQ

LAC LVLOUT
JMSx =S ,TI
JMP PENCHW
LAC =Q0001A
LmQ

LAC LVLOUT
JMS%k =S .TR
NOP

LACx LVLEAF
AND =7777
DAC* LVLEAF
LAC KBDPM
AND =40

XOR KBDPB
ALSS 14
XOR* LVLEAF
DAC* LVLEAF

JMP PENREJ+10

LAC KBDPM
SMA+CLA

LAC =PARINT~PAR

TAD =PAR
Lme

LAC LVLOUT
JMSx =6 ,TI
$DC ©

LAC KBDPLP
JMS PENSET
LAC KBDPSV
DAC XBDTBL
Dzm XBDPB
LAC =KBDPB
DAC KBDPP
LAC LVLSCR
JMS CHEWA

A-129

PENCHW

* TRANSLATION TASKS

TRA

PENTRA

LAC XKBDVSW
SNA

JMP *+5
LAW 17475
JMSx =R .T
LAW 10
JMSkx =T R
LAW <40
JMSx =N,C
JMP PENEND
LAC LVLEAF
JMS CHEW
JMP PENREY

JMSx =X ,S
JMP PENEND
LAC TRAS
SZA

JMP x+11
LAW =380
DAC TRAS
LM

LAC LVLTRA
JMSk =S LY

LAC =PENTRA

JMSx =D P
JMP *x+3
LAC TRAPEN
JMS PENSET
LAW «40
JMS%x =N,C
JMP PENEND

JMS PENHIT
JMS TRAC

LAC LVLDGM /PAR

LAC LVLDGM

A-130

JMS COORDS
$DC O

DAC PENYL

LACQ

DAC PENXL

JMP PENEND

A-131

STITLE SELMA GRAPHICAL TABLES
* SYMBOL DICTIONARY

DICI $DC DIc2
$DC 2
$TEXT "QUEUE"
LAC =%+3
JMS CONCRE
JMS CONNUL /PAR
$DC 200000 INTEGER PARAMETER AT (0,0) #1
$DC 400354 INPUT PORT AT (-24,0) #]
$DC 600034 OUTPUT PORT AT (34,0) #2
$DC | QUEUE
$DC 500
VEC
$DC O
$DC 4024
INCR
$DC 7252
$DC 5372
$DC 5352
$DC 7373
$DC 6354
$DC 5374
$DC 5374
$LC 7464
$DC 5574
$DC 5554
$DC 7575
$DC 6556
$DC 5576
$DC 5576
$DC 5676
$DC 5657
$DC 7657
$DC 5677
$DC 7767
$DC 5057
$DC 7057

A-132

$DC 7070
$DC 6051
$DC 7051
$DC 507!
$DC 7161
$DC 5251
$DC 7251
$DC 7252
$DC 1400
VEC

$DC 0
$DC 6024
POP

pI1C2 $DC DIC3
$DC 2
$TEXT "SERVER"
LAC =%+3
JMS CONCRE
JMS CONNUL /PAR
$DC O REAL PARAMETER AT (0,0) #|
$DC 400354 INPUT PORT AT (-24,0) #1
$DC 600034 OUTPUT PORT AT (34,0) #2
$DC 2 SERVER
$DC 500
VEC
$DC 24
$DC 24
$DC 4000
$DC 2050
$DC 6050
$DC O
$DC 4000
$DC 50
$DC 4050
$DC O
$DC 2024
$DC 6024
POP

A-133

DIC3 $DC DIC4
$DC 2
$TEXT "SOURCE"
LAC =%+3
JMS CONCRE
JMS CONNUL /PAR
$DC 600010 OUTPUT PORT AT (10,0) #!
$DC 3 SOURCE
$DC 500
SVEC
$DC 1400
$DC 7400
$DC 7300
$DC 1340
POP

DIC4 $DC O

$DC 2

$TEXT "EXIT"

LAC =%+3

JMS CONCRE

JMS CONNUL /PAR

$DC 400000 INPUT PORT AT (0,0) #1
$DC 3 EXIT
$DC 500
POP

A-134

* GRAPHICAL PORTS

* OUTPUT PORT (UNCONNECTED)
OUT SVEC

$DC 30

$DC 4050

POP
* OUTPUT PORT (CONNECTED)
OUTCON SVEC

$DC 30

$DC 4050

POP
* INPUT PORT (UNCONNECTED)
INP SVEC

$DC 30

$DC 4050

'POP
* INPUT PORT (CONNECTED)
INPCON SVEC

$DC 4727

$DC 3721

$DC 4707

$DC 014l

POP
* UNASSIGNED REAL PARAMETER
PAR $DC 401111

$DC 5255

$DC 5751

$DC 400

POP

* UNASSIGNED INTEGER PARAMETER

PARINT INCR
$DC 5255
$DC 5751
$DC 400
POP
* RANDOM BRANCH NODE
RAND $DC 200500
$DC 201111
$DC 5164

A-135

$DC
$DC
$DC

* PRIORITY

PRIO

$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC
$DC

6660
5204
203000
BRANCH NODE
200500
20114]
10
5030
7030
7010
5010
70
203000

A-136

* DRAW CONNECTION LINE

$STITLE

* CALLING SEQUENCE:

* M ¥

* LINE
LINDRW

JMS LINDRW

L X X X 2

SELMA LINE DRAWING SUBROUTINES

(RETURN IF LINE NOT COMPLETED)
(RETURN IF LINE ENDED ON PORT)
(RETURN IF LINE ENDED ON CONNECTION)

STARTS AT COORDINATES IN PENX AND PENY

$DC O

LAC PENY
DAC LINY
LRSS 23
LAC LVLSCR
JMSx =S ,LY
LAC PENX
DAC LINX
LRSS 23
LAC LVLSCR
JMS*k =S ,,LX
LAC =12
JMS CORGET
JMP* LINDRW
DAC LINE
ISZ LINE
DAC LINTMP
LAC =20!

DACx LINTMP

ISZ LINTWP
LAC =200500
DAC* LINTMP
ISZ LINTMP
LAC =201121
DAC* LINTMP
ISZ LINTMP
LAC =4000
DACx LINTMP
ISZ LINTMWP
DZM* LINTMP

A-137

LI NDEL

LINCHW

LI NXL

I1SZ LINTMP
LAC LINTWP
DAC LINVEC
LAC =4000
DAC* LINTMP

ISZ LINTMP

DZMx LINTMP
ISZ LINTMP
LAC LINTWMP
DAC LINRET
LAC =400000
DACx LINTMP
ISZ LINTMP
LAC =4000
DAC* LINTMP
ISZ LINTMP
LAC =203000
DAC* LINTMP
LAC LINE
LMa

LAC LVLSCR
JMSx =5 ,T1
JMP LINDEL
DZM LINTYP
LAC =PENLIN
JMSx =D,P
JMSx =D E
JMP LINXL
LAC LINE
JMS CHEW
JMP %43

LAC LVLSCR
JMS CHEWA
JMSx =D,D
LAC TRAPEN
JMS PENSET
JMP* LINDRW
LAC LINVEC
DAC LINV
1SZ LINV

A-138

LI NXM

LI NONE

LI NXA

LAC LINRET
DAC LIMR
ISZ LINR
SKP

SKP

JMSx =T,P
JMSx =X X
CMA

TAD LINX
o, ‘
JMS LINSITR
JMS PENREG
$DC 100
AND =707
SZA

JMP LINXA
JMS PENREG
$DC 40
AND =555
SNA

JMP LINXS
LAC LINTYP
SAD =200
JMS LINCON
JMS%k =X ,S
JMP LINXM
LAC LINTYP
SNA

JMP LINCHW
LAC =PENINT
JMS PENSET
ISZ LINDRW
JMPx LINDRW
LAW =5

TAD LINV
SAD LINE
SKP

JMP %413
JMS PENREG
$DC 100

A-139

LINXS

AND =555
SZA

JMP %46
LAC PENX
CMA

TAD LINX
ChMA

JMS LINSTR
LAC* LINV
JMSx =C ,CB
RCL

TAD PENX
DAC PENX
LAC LINE
Lme

LAC LVLSCR
JMSx =5 ,TR
$DC O

LAC LINE
JMS LINEXT

DAC
DAC
DAC
JMP
LAC
LM
LAC

LINE /PAR
LINVEC /PAR
LINRET /PAR
LINDEL

LINE

LVLSCR

JMSx =5,T1

JmP
JMP
LAW
TAD
SAD
JMP
LAC
CMA
TAD
CMA
JMS
LAC

LINDEL
LINYL
=5
LINV
LINE
LINONE
PENX

LINX

LINSTR
LINE

A-140

JNYL

INYM

LM

LAC LVLSCR
JMSxk =S ,TR
$DC O

LAC LINE
JMS LINTRM

DAC LINE /PAR
DAC LINVEC /PAR
DAC LINRET /PAR

JMP LINDEL
LAC LINE
Lma

LAC LVLSCR
JMSxk =5 ,T1
JMP LINDEL
LAC* LINVEC
XOR =2000
JMSx =C CB
RCL

TAD PENY
DAC PENY
LAC LINVEC
DAC LINV
LAC LINRET
DAC LINR
SKP

SKP

JMS%k =T P
JMSx =X ,Y
CMA

TAD LINY
CMA

JMS LINSTR
JMS PENREG
$DC 100
AND =555
SZA

JMP LINYA
JMS PENREG
$DC 40

A-141

LINYA

LINYS

AND =707
SNA

JMP LINYS
LAC LINTYP
SAD =200
JMS LINCON
JMSk =X ,S
JMP LINYM
JMP LINCHW
LACx LINV
JMSx =C ,CB
RCL

TAD PENY
DAC PENY
LAC LINE
Lma

LAC LVLSCR
Jmsx =S ,TR
$DC O

LAC LINE
JMS LINEXT

DAC
DAC
DAC
JWP
LAC
LMa
LAC

LINE /PAR
LINVEC /PAR
LINRET /PAR
LINDEL

LINE

LVLSCR

JMSx =S ,T1

JMP
JMP
LAC
CMA
TAD
CMA
JMS
LAC
LM
LAC

LINDEL
LINXL
PENY
LINY

LINSTR
LINE

LVLSCR

JMS* =S ,TR

A-142

$DC
LAC
JMS
DAC
DAC
DAC

0

LINE

LINTRM
LINE /PAR
LINVEC /PAR
LINRET /PAR

LI NCON

_INDUN

INREG

JMP LINDEL
LAC LINE
Lme

LAC LVLSCR
JMSx =S5 ,.T1
JMP LINDEL
LAC LINVEC
DAC LINV
ISZ LINV
LACx LINV
XOR =2000
JMS* =C ,CB
RCL

TAD PENX
DAC PENX
JMP LINXL+3
$DC O

LAC PENX
DAC PENXT
LAC PENY
DAC PENYT
JMS PENHIT
JMS* =X ,S

JMP LINREG-!

LAC =200603
DAC LINTYP
LAC TRAPEN
JMS PENSET
JMSk =X ,T
ISZ LINDRW
ISZ LINDRW
JMPx LINDRW
DZM LINTYP
JMS PENREG

A-143

$DC 140

AND =20

SZA

JMP x+11
DZMm LINTYP
LAC PENXT
DAC PENX
LAC PENYT
DAC PENY
ISZ LINCON
JMS*x =D,E
JMPx LINCON
JMS PENREG
$DC 20

AND =252
LMa

LAC LINTYP
oma

DAC LINTYP
SAD =252
JMP %45
JMSk =X .S
JMP %46
JMSx =D,D
JMP LINDUN-]
LAC =200602
JMP LINDUN
JMP LINREG
JMSx =T,P

A-144

* STORE COORDINATE IN LINE BLOCK

* CALLING SEQUENCES

* JMS LINSTR

% cowe (RETURN)

x AC CONTENT ON ENTRY:

* DESIRED COORDINATE AT END OF LINE RELATIVE TO BEGINNING

LINSTR $DC O

AND =777770
LRSS |

DAC LINI
JMS*x =C ,BC
XOR =2000
DAC LIN2
LAC* LINR
JMS* =C ,CB
DAC LIN3
LACx LINV
JMSx =C ,CB
TAD LIN3
TAD LINI
JMSx =C ,BC
XOR* LINV
AND =3777
XOR* LINV
DACx LINV
LACx LINR
AND =774000
XOR LIN2
DAC* LINR
JMPx LINSTR

A-145

* EXTEND NON-ACTIVE LINE BLOCK

* CALLING SEQUENCES

*
*
*
%
*
*
*
*

JMS LINEXT
DAC ===~
DAC ===-
DAC ==-e=

AC CONTENT ON ENTRY:
POINTER TO BLOCK TO BE EXTENDED (SECOND LOCATION)

LINEXT $DC O

TAD =]
DAC LINI
DAC LIN2
TAD =-]
DAC LIN3
LACx LIN3
TAD =1

JMS CORGET
JMP LINE!]
DAC LIN3
TAD =1}
XCTx LINEXT
ISZ LINEXT
LACx LIN2
SPA

JMP %45
DACx LIN3
1SZ LINZ2
ISZ LIN3
JMP %=§
LAC LIN3
XCT*x LINEXT
ISZ LINEXT
LAC =4000
DACx LIN3
ISZ LIN3
DZMx LIN3
1SZ LIN3

(DAC POINTER TO NEW BLOCK)
(DAC POINTER TO LAST VECTOR)
(DAC POINTER TO RETURN VECTOR)
(RETURN IF NOT ENOUGH STORAGE)
(RETURN)

A-146

LINE!

LAC LIN3
XCT*x LINEXT
LAC* LIN2
I1SZ LIN2
DACx LIN3
1SZ2 LIN3
LACx LIN2
DACx LIN3
ISZ LIN3
LAC =203000
DAC* LIN3
LAC LINI!
JMS CORFRE
SKP

I1SZ LINEXT
ISZ LINEXT
ISZ LINEXT
JMPx LINEXT

A-147

* SHORTEN NON~ACTIVE LINE BLOCK

* CALLING SEQUENCE:

* JMS LINTRM

* DAC «==-- (DAC POINTER TO NEW BLOCK)

% DAC -=-=~- (DAC POINTER TO LAST VECTOR)

* DAC ==e- (DAC POINTER TO RETURN VECTOR)
* —e-- (RETURN IF NOT ENOUGKH STORAGE)
* o (RETURN)
* AC CONTENT ON ENTRY?
* POINTER TO LINE BLOCK (SECOND LOCATION)

LINTRM $DC O
TAD ==}
DAC LIN!
DAC LIN2
TAD =-{
DAC LIN3
LAW =3
TADx LIN3
JMS CORGET
JMP LINTI
DAC LIN3
TAD =1
XCTx LINTRM
1SZ LINTRM
LAC* LIN2
SPA
JMP x+S
DAC* LIN3
ISz LIN2
ISZ LIN3
JMP %-§
LAW =4
TAD LIN3
XCT* LINTRM
ISZ LINTRM
TAD =2
DAC LIN3
XCT* LINTRM
LAC* LIN2

A-148

LINTI

ISZ LIN2
DAC* LIN3
ISZ LIN3
LAC* LIN2
DACx LIN3
ISZ LIN3
LAC =203000
DAC* LIN3
LAC LINI
JMS CORFRE
SKP

ISZ LINTRM
ISZ LINTRM
ISZ LINTRM
JMPx LINTRM

A-149

aO>

Jms

DJUST END OF LINE
ALLING SEQUENCE:

LINADJ

(RETURN)

& LINR SET TO X VECTOR ON ENTRY

$DC
LAC
CMA
TAD
CMA
Jms
LAC
SAD
JWP
JMs
$DC
TAD
CMA
TAD
TAD
CMA

0
PENXT

LI NX

LINSTR
LVLFRG
PENFRG
LINAL
COORDS
0

PENY

PENFY
PENYT

LRSS 3

DAC
LLS
CMA
TAD
CMA

PENTMP
25

PENFX

LRSS 25

LAC
JMS
LAC
LAC
LAC
LM
LAC

PENTMP
PENMOV
PENFRG /PAR
LVLFRG /PAR
LVLFRG

LvLDGM

JMSx =S TR

$DC
LAC

0
LVLFRG

JMS CHEW

A-150

LINAI

JMPx LINADJ
LAW =3

TAD LINV
DAC LINV
CLC .

TAD LINR
DAC LINR
LAC PENYT
CMA ’
TAD LINY
CMa

JMS LINSTR
JMPx LINADJ

A-151

$TITLE SELMA DISPLAY SUPPORT SUBROUTINES

* GENERATE INTERMEDIATE LEVEL
* CALLING SEQUENCES
JMS LVL
$DC ==--- (LOC CONTAINING POINTER TO OWNER)
$DC === (Y COORDINATE)
$DC === (X COORDINATE)
$DC ~=== (DISPLAY PARAMETER)
- (RETURN IF DISPLAY STORAGE EXCEEDED)
--ee (RETURN)
AC CONTENTS ON ENTRY:
POINTER TO ATTRIBUTE
AC CONTENTS ON RETURN:
POINTER TO CREATED LEVEL

LA 3R BE 2 2R B R IR K K

LVL $DC O
JMSx =T .4
$DC O
DAC LVLA4
JMS% =S ,TL
JMP LVL3
DAC LVLS
LAC LVL4
LMQ
LAC LVLS
JMSx =S ,TI
JMP LVL2
LACx LVL+2
DAC LVL4
I1SZ LVL+2
LACx LVL+2
LM
LAC LVLS
JMSx =S LY
I1SZ LVL+2
LACx LVL+2
LMa
LAC LVLS
JMSxk =S ,LX

A-152

LVL1

LvVL2

LVL3

ISZ LVL+2
LACx LVL+2
LMa

LAC LVLS
JMSk =S ,LP
LAC LVLS
LMa

LACx LVL4
JMSx =8 ,TI
JMP LVLI
LAC LVLS
JMP LVL3+2
LAC LVLS
JMS ATIR
$DC O

LMQ

LAC LVLS
JMS* =S TR
$DC O

LAC LVLS
JMSx =S,.TD
$DC O

JMP LVL3+3
LAC LVLS
JMSx =S,TD
$DC O

ISZ LVL+2
ISZ LVL+2
ISZ LVL+2
ISZ LVL+2
JMS*x =T,U
$DC LVL

A-153

FORM LIGHT BUTTON FROM PREDEFINED STRUCTURE
CALLING SEQUENCEs
JMS BUTN
$DC ===~ (LOC CONTAINING POINTER TO OWNER)
$DC === (Y COORDINATE)
$DC e=e=- (X COORDINATE)
$DC ===- (DISPLAY PARAMETER)
$DC =we- (SERVICE TASK ADDRESS)
cvoa (RETURN IF DISPLAY STORAGE EXCEEDED)
ke (RETURN IF SUCCESSFUL)
AC CONTENTS ON ENTRY:
POINTER TO STRUCTURE FOR BUTTON DISPLAY
AC CONTENTS ON RETURN:
POINTER TO LIGHT BUTTON LEVEL

SR A A B R R IR BE JE JE K IR 2

w
ot
-3
=

$DC O

JMSx =T,L
$DC O

DAC BUTN3
LAW =4

DAC BUTNA
LAC =BUTNI
DAC BUTNS
LACx BUTN+2
DACx BUTNS
1SZ BUTN+2
ISZ BUTNS
1SZ BUTNA
JMP %5
LAC BUTN3
JMS LVL
BUTN! $DC O

$DC O

$DC ©

$DC O

JMP BUTN2
DAC BUTN3
LAC*x BUTN+2
LMe

LAC BUTN3

A-154

3UTN2

JMS*x =S .LL
LAC BUTN3
1SZ BUTN+2
1S7 BUTN+2
JMSx =T,U
$DC BUTN

A-155

CREATE TEXT LIGHT BUTTON

CALLING SEQUENCE:
JMS BUTX
$DC e==- (ADDRESS OF TEXT LIST)
$DC === (LOC CONTAINING POINTER TO OWNER)
$DC w==- (Y COORDINATE)
$DC ~=-- (X COORDINATE)
$DC ===~ (DISPLAY PARAMETER)
$DC ==~- (SERVICE TASK ADDRESS)
- (RETURN IF DISPLAY STORAGE EXCEEDED)
cone (RETURN IF SUCCESSFUL)

AC CONTENTS ON RETURN:

POINTER TO LIGHT BUTTON LEVEL

C 2R 2K 2R B JE R BE R IR K K

BUTX $DC O
JMSx =T,L
$DC O
LACx BUTX+2
JMSx =L,D
JMP BUTX4
paC BUTX?7
LAW ~§
DAC BUTXS
LAC =BUTX2
DAC BUTXS

BUTX! 1Sz BUTXx+2
1SZ BUTXS6
ISZ BUTXS
SKP
JMP BUTX2~1!
LAC*x BUTX+2
DACx BUTX6
JMP BUTXI
LAC BUTX?7

BUTX2 JMS BUTN
$DC O
$DC O
$DC O
$DC O
$DC O

A-156

JUTX3

SUTX 4

JMP BUTX3+2
1Sz BUTx+2
JMSxk =T,U
$DC BUTX
LAC BUTX7
JMS% =S ,LL
JMP BUTX3
LAC BUTX+2
TAD =6

DAC BUTX+2
JMP BUTX3

A-157

* DESTROY ALL LEVELS, NODES, AND TEXT LEAVES IN A DISPLAY

* STRUCTURE

* CALLING SEQUENCE:

* JMS CHEW

* -oo- (RETURN)

* AC CONTENTS ON ENTRY:

* POINTER TO MAXIMUM ELEMENT IN THE STRUCTURE TO BE CHEWED
* THE MAXIMUM ELEMENT SPECIFIED MUST OWN ALL LEVELS WHICH OWN
* ELEMENTS OF THE STRUCTURE,

CHEW $DC O
JMS*k =T,L
$DC O
DAC CHEWE
LAC =CHEWQ
JMSx =Q,C
CHEW! LAC* CHEWE
SNA
JMP CHEWS
AND =T7777
SAD =2010
JMP CHEW4
LAC CHEWS
CHMA
TAD FREE
o,
SMA
JMP CHEW35
LAC CHEWS&
AND =70000
SAD =10000
SKP
JMP CHEWS
CHEW2 LAC CHEWE
JMS ATTR
JMP CHEW3
DAC CHEW7
LM
LAC CHEWE
JMS*k =S ,TR

A-158

CHEW3

CHEW35

CHEWA4
CHEWS

CHEWQ

$DC O

LAC CHEW?7
Lma

LAC =CHEWRQ
JMS%k =Q LA
$DC 0
JMP CHEW2
LAC CHEWS
JMSx =S ,TD
$DC O

JMP CHEWS
CLC

TAD CHEWS
JMS CORFRE
JMP CHEWS
LAC CHEWSE
JMSx =L .L
LAC =CHEW®Q
JMSx*x =Q,F
JMP %43
DAC CHEW6
JMP CHEWI
JMSx =T,U
$DC CHEW

$DC *+200
$Ds 200

A-159

* CHEW ATTRIBUTES

* CALLING SEQUENCE

* JMS CHEWA

* coow (RETURN)

* AC CONTENT ON ENTRY?¢

* POINTER TO LEVEL WHOSE ATTRIBUTES ARE TO BE CHEWED

CHEWA $DC O
JMSx =T,L
$DC O
DAC CHEWAL
LAC CHEWA
JMS ATIR
JMP x+11
DAC CHEWA2
LmMa
LAC CHEWAI
JMSx =5 ,.TR
$DC O
LAC CHEWA2
JMS CHEW
JMP CHEWA+4
JMS* =T ,U
$DC CHEWA

A-160

2k SR 2R K R R X

ATTR

ATIRI

JMS ATTIR

$DC O

SNA

JMP ATTRI

TAD =7

DAC ATTR2

LAC* ATTR2
DAC ATTR2

“LACx ATTR2

AND =777770
SAD =762010
SKP

JMPx ATTR
1Sz ATTR2
LACx ATTR2
I1SZ ATIR
JMPx ATTR
LAC ATTRZ2
TAD =2

JMP ATTR+4

FIND ATTRIBUTE OF LEVEL
CALLING SEQUENCE:

(RETURN IF NO MORE ATTRIBUTES)
(RETURN IF ATTRIBUTE FOUND)

AC CONTENTS ON ENTRY?
ADDRESS OF LEVEL -~ GET POINTER TO FIRST ATTRIBUTE
ZERO

«= GET POINTER TO NEXT ATTRIBUTE

A-l161

CHECK TRACKING THRESHOLDS
CALLING SEQUENCES

JMS THRS -

$DC ===-=

$DC =-o=

(THRSX OR THRSY)
(REFERENCE COORDINATE C)
(THRESHOLD VALUE T)

(Z > C+T-1)

(C~T < Z < C+T)

(Z < C=T+1)

THRSY =« TEST Y TRACKING COORDINATE
THRSX == TEST X TRACKING COORDINATE
"z" DENOTES EITHER THE X OR Y TRACKING COORDINATE

*
*
*
%
*
* -
*
*
*
*
*

THRSX $DC O
JMSk X oX
CMA
TAD*x THRSX
1SZ THRSX
TAD* THRSX
CMA
SmA
JMP THRSXI
TAD* THRSX
TAD* THRSX
SPA
ISZ THRSX
ISZ THRSX
THRSX1 ISZ THRSX
JMP* THRSX

THRSY $DC O
LAC THRSY
DAC THRSX
JMS® =X.Y
JMP THRSX+2

A-162

FIND COORDINATES OF OWNER LEVEL ON LAST DISPLAY INTERRUPT
CALLING SEQUENCE:
JMS COORDS
- (RETURN IF LEVEL NOT AN OWNER)
oo (RETURN)

AC CONTENT ON ENTRY:S
POINTER TO OWNER LEVEL
AC CONTENT ON RETURN:
Y COORDINATE
MQ CONTENT ON RETURN:
X COORDINATE

L 20 2K R K B R IR K IR R

COORDS $DC O
JMSx =T,L
$DC O
DAC COOLVL
LAC =Co00Q
JMSx =Q,C
DZM COOSW
DzM COOCNT
LAC COOCNT
JMSx =D,0
JMP %x+16
DAC COOTMP
SAD COOLVL
DAC COOS W
LAC COOSW
SNA
JMP *+6
LAC COOTmMP
Lma
LAC =C00Q
JMS%x =Q,1
$DC O
1SZ COOCNT
JMP *=17
LAC COOSW
SNA
JMP COOFAL
LAC =3

A-163

COONXT

C00s

COODUN

COOFAL

DAC COOSKL

Dzm COOX
DzMm COOY
LAC =€C00Q
JMSx =@ ,F
JMP COODUN
TAD =2

DAC COOTMP
LACx COOTMP
LRS 10

AND =1
SNA+CLA+CLL
JMP %43

LLS 2

DAC COOSKL
LAC COOSKL
XOR =640700
DAC COO0S
1SZ COOTMP
1SZ COOTMP
LAC*x COOTMP
JMS* =C ,CB
CLL

$DC O

TAD COOY
DAC CoOY
ISZ COOTMP
LAC*x COOTMP
JMS* =C ,CB
CLL

XCT CO00S
TAD COOX
DAC C00X
JMP COONXT
LAC COOX
LMQ

LAC COOY
ISZ COORDS+2
JMSx =T, U
$DC COORDS

A-164

cooQ $DC *+103
$DS 103

A-165

% MOVE LEVEL WITH TRACKING COORDINATES

* CALLING SEQUENCES

JMS TRAC

LAC ===~ (LAC POINTER TO LEVEL)
vome (RETURN)

TRAC $DC O
LAC PENY
DAC TRACY
LAC PENX
DAC TRACX
XCT* TRAC
TAD =4
DAC TRACTP
LAC* TRACTP
JMS*x =C ,CB
LLSS 3
DAC TRACYL
I1SZ TRACTP
LACx TRACTP
JMS*x =C ,CB
LLSS 3
DAC TRACXL
TRAC1 JMSx =X X
LMa
cMmA
TAD TRACX
CMA
DAC TRACXI
LACQ
DAC TRACX
JMSk =X ,.Y
LmMa
CMA
TAD TRACY
CMA
DAC TRACYI
LACQ
DAC TRACY
LAC TRACXI

* ¥ ¥

A-166

TAD TRACXL
DAC TRACXL
LRSS 25

XCT* TRAC
JMSk =S ,LX
LAC TRACY]
TAD TRACYL
DAC TRACYL
LRSS 2%

XCT*x TRAC
JMSx =S LY
JMSk =X .S
JMP %x+4

ISz TRAC

JMPx TRAC
JMP TRACI
JMSk =T,P

A-167

$TITLE

SELMA MISCELLANEOUS SUBROUTINES

* DEFINE SYMBOL NAME & SEND CREATE COMMAND TO /360
* CALLING SEQUENCE:

LR R 2K JE BE

JMS NAMDEF
LAC ==e=

AC CONTENT ON ENTRYS
TYPE NUMBER IN BITS 10-17

NAMDEF $DC O

NAMI

NAM2

NAM3

JMSk =T,L
$DC O

AND =377

DAC S0100+!
AND =200

TAD =NAME+1
DAC NAM4

LAW =177

DAC NAMS
LACx NAMA
SNA

JMP NAM2

I1SZ NAMA

ISZ NAMS

JMP NAMI

JMP NAM3
XCT* NAMDEF+2
DACx. NAMA
LAC NAM4

TAD ==NAME
cLaq

LLS I

XOR SO0100+1
DAC SO0100+!
1SZ NAMDEF+2
XCT* NAMDEF+2
1SZ NAMDEF+2

(LAC POINTER TO SYM OR CON LVL)
(JMS TO GEN PAR SUBROUTINE)
(RETURN IF NO NAME AVALIABLE)
(RETURN IF SUCCESSFUL)

A-168

1SZ NAMDEF+2
JMSk =T,U
$DC NAMDEF

A-169

x FIND SYMBOL NAME

* CALLING SEQUENCE:

* JMS NAMGET

* coea (RETURN IF NO CORRESPONDING NAME)
* —eew (RETURN IF SUCCESSFUL)

* AC CONTENT ON ENTRYS

* POINTER TO SYMBOL

* AC CONTENT ON RETURNS

% NAME OF SYMBOL IN BITS 10-17, BITS 0-9 CLEAR

NAMGET $DC O

AND =777177
DAC NAMS
LAC =NAME+1]
DAC NAMA4
LAW =377
DAC NAMS
LAC* NAM4
AND =77777
SAD NaME
JMP %45

1SZ NAmMA
ISZ NAMS
JMP *-6
JMP* NAMGET
LAC NAM4
TAD ==-NAME
1SZ NAMGET
JMPx NAMGET

NAME $DS 400

A-170

* SET LIGHT PEN SERVICE & STOP TRANSLATION
« CALLING SEQUENCE:

* JMS PENSET

* coow (RETURN)

* AC CONTENT ON ENTRY?

* POINTER TO NEW LIGHT PEN SERVICE TASK

PENSET $DC O
DAC TRAPEN
JMSx* :D'P
LAW =400
DzM TRAS
Lma
LAC LVLTRA
JMS%k =S ,LY
JMPx PENSET

A-171

* READ DISPLAY COORDINATES AND START TRACKING
* CALLING SEQUENCES
* JMS PENHIT
. eon (RETURN)
* X & Y COORDINATES ARE STORED IN PENX & PENY BY THIS SUBROUTINE

PENHIT $DC O
JMS* =D,Y
TAD =4
AND =777770
DAC PENY
TAD =700
SPA
JMP PENEND
JMS*x =D X
TAD =4
AND =777770
DAC PENX
Lma
LAC PENY
JMSxk =X ,1
JMPx PENKIT

A-172

DETERMINE LIGHT PEN REGION RELATIVE TO PENX AND PENY
CALLING SEQUENCE:

JMS PENREG

$DC ===~ (THRESHOLD VALUE)

~-ee (RETURN)

AC CONTENT ON RETURN:
ALL BITS O EXCEPT ONE WHICH DENOTES REGION:
15 16 17
12 13 14
S 10 11

b . Y Y . S oy . o S L . S

>ENREG $DC O
LAC* PENREG
1SZ PENREG
DAC PENY+I
DAC PENX+!
DZM PENTMP
JMS THRSY
2ENY $DC O
$DC O
1SZ PENTMP
1SZ PENTMP
LAC PENTMP
TAD PENTMP
TAD PENTMP
XOR =660500
DAC *+7
JMS THRSX
PENX $DC O
$DC ©
1SZ *+3
ISZ *+2
LAC =400
$DC O
JMPx*x PENREG

A-173

* MOVE ALL ATTRIBUTES FROM ONE LEVEL INTO ANOTHER
* CALLING SEQUENCE?

L K 2K IR B R 2R B 5

JMS PENMOV
LAC ====.

AC CONTENT ON ENTRY:

Y DISPLACEMENT TO BE ADDED TO ALL MOVED LEVELS
M2 CONTENT ON ENTRYS

X DISPLACEMENT TO BE ADDED TO ALL MOVED LEVELS

PENMOV $DC O

PENMI

DAC PENMY
LACQ

DAC PENMX
XCT*x PENMOV
DAC PENSNK
1SZ PENMOV
XCTx* PENMOV
DAC PENSOU
1SZ PENMOV
LAC PENSOU
JMS ATIR
JMPx PENMOV
DAC PENMT
LMQ

LAC PENSOU
JMSkx =S,TIR
$DC O

LAC PENMT
TAD =4

DAC PENMC
LAC* PENMC
JMSx =C ,CB
TAD PENMY
LM

LAC PENMT
JMSx =S ,LY
1SZ PENMC
LAC*x PENMC

(LAC POINTER TO "TO™ LEVEL)
(LAC POINTER TO "FROM™ LEVEL)
(RETURN)

A-174

JMSx =C ,CB
TAD PENMX
LMe

LAC PENMT
JMSk =5 ,LX
LAC PENMT
LMQ

LAC PENSNK
JMSx =5,T1
$DC O

CLA

JMP PENMI

A-175

COUNT ATTRIBUTE POSITION IN LEVEL

CALLING SEQUENCE?
JMS PENCNT

*
*

*

* cone (RETURN)

* AC CONTENT ON ENTRY?

* POINTER TO OWNER LEVEL

x M) CONTENT ON ENTRY:

* POINTER TO ATTRIBUTE WHOSE POSITION IS TO BE DETERMINED

* AC CONTENT ON RETURN:

* POSITION OF ATTRIBUTE IN LEVEL RELATIVE TO LAST ATTRIBUTE

PENCNT $DC O
DAC PENCT
LACQ
DAC PENCA
DZM PENCC
LAC PENCT
SKP

PENC1 CLA
1SZ PENCC
JMS ATIR
JMP PENC2
SAD PENCA
SKP
JMP PENC!
LAC PENCC
DAC PENCCS
ISZ PENCC
JMP PENCI

PENC2 LAC PENCCS
CMA
TAD PENCC
JMPx PENCNT

A-176

READ ALL NECESSARY LEVEL ADDRESSES

JMS PENLVL

- e

*
* CALLING SEQUENCE:
*
*

PENLVL $DC O
LAC =PENLSW
DAC PENLP
DZM PENLSW
LAC =10
DAC PENLT
JMSx =D,0
JMP %45
DACx PENLP.
LAC PENLSW
SAD LVLDGHM
1Sz PENLP
CLC
TAD PENLT
SMA
JMP %-12
DZmMx PENLP
1SZ PENLP
LAC PENLP
SAD =LVLOUT+4
~JMPx PENLVL
JMP *-5

PENLSW $DC
LVLFRG $DC
LVLSYM $DC
LVLPRT $DC
LVLOUT $DC
LVLEAF $DC

$DS

NMOOOOOO

(RETURN)

A-177

* COLLECT GARBAGE

* CALLING SEQUENCEs

* JMS CORGRB

* cmes (RETURN)

CORGRB $DC O
bzMm CORLI
LAC FREE
DAC CORL
LAC*x CORL
SPA
JMP *+6

CORG! TAD CORL
SAD =40000
JMP CORG3
DAC CORL
JMP %=7
CMA
TAD =}
TAD CORL
DAC CORLZ2
LAC CORL
DAC CORL3
I1SZ CORL
LAC CORL!
DAC* CORL
LAC CORL3
DAC CORL!
LAC CORL2
SAD =40000
JMP CORG3
DAC CORL

CORGZ LACx CORL
SMA
JMP CORGI
TAD* CORLI
DAC* CORL!
LAC% CORL
CMA
TAD =1

A-178

CORG3

TAD CORL
SAD =40000
JMP CORG3
DAC CORL
JMP CORG2
LAC CORL!
DAC CORCHN
JMP*x CORGRB

A-179

* GET CORE BLOCK

* CALLING SEQUENCES

* JMS CORGET

* o= (RETURN IF BLOCK NOT AVAILABLE)
* oy (RETURN)

* AC CONTENT ON ENTRY:

*x SIZE OF DESIRED BLOCK

* AC CONTENT ON RETURN:

* ADDRESS OF BLOCK

CORGET $DC O
SNA+SPA
JMPx CORGET
DAC COR2
JMS CORI
SKP
JMP COR3
JMS CORGRB
LAC COR2
JMS CORI
JMP*x CORGET
COR3J ISZ CORGET
JMPx CORGET
COR! $DC O
DAC CORSIZ
1SZ CORS1Z
LAC =CORCHN
DAC CORL!
LAC CORCHN
SNA
JMPx COR |
DAC CORL
COR4 LACx CORL
TAD CORSIZ
SPA+SNA
JMP CORS
1SZ CORL
LAC CORL
DAC CORL!
LACx CORL

A-180

J0R S

COR7

COR 6

SNA

JMPx COR1I
DAC CORL
JMP COR4
DAC CORT!
SAD =-|
JMP COR4+4
SNA

JMP CORE
LAC CORS1Z
DAC* CORL

- TAD CORL

DACx CORLI
DAC CORL!

LAC CORT! .

DACx CORLI
I1SZ CORLI
1Sz CORL
LAC* CORL
DAC* CORLI
LAC CORL
1STZ COR!
JMPx CORI
LACx CORL
cMA

TAD =1}
DACx CORL
JMP COR7

A-181

* FREE ALL ALLOCATABLE CORE
* CALLING SEQUENCE:

* JMS CORINT
%k

CORINT $DC O
LAC FREE
DAC CORCHN
TAD =-40000
DAC* CORCHN
LAC CORCHN
TAD =1
DAC CORT
Dzmk CORT
JMPx CORINT

(RETURN)

A-182

FREE CORE BLOCK
LING SEQUENCE:

* E

% CAL

* JMS CORFRE

*x cowa (RETURN)
* AC CONTENT ON ENTRY:

* ADDRESS OF BLOCK TO BE FREED

CORFRE $DC O
DAC CORT
LAC CORCHN
DACx CORT
LAC CORT
TAD =-]
DAC CORCHN
LACx CORCHN
CMA
TAD =1
DACx CORCHN
JMPx CORFRE

A-183

* MOVE A BLOCK OF CORE

* CALLING SEQUENCE:

* JMS CORMOV

* LAC ===~ (LAC ADDRESS OF "TO™ BLOCK)

* LAC =~-- (LAC ADDRESS OF "FROM™ BLOCK)
% come (RETURN)

* AC CONTENT ON ENTRY3

* TWO'S COMPLEMENT OF LENGTH OF BLOCK

CORMOV $DC O

DAC CORCNT
XCT* CORMOV
DAC CORSNK
I1SZ CORMOV
XCT* CORMOV
DAC CORSOU
ISZ CORMOV
LAC*x CORSOU
DAC* CORS NK
ISZ CORSNK
ISZ CORSOU
1SZ CORCNT
JMP %5
JMP*x CORMOV

A-184

« STORE ZEROS THROUGHOUT CORE BLOCK
¢ CALLING SEQUENCE:

k JMS CORZRO

k LAC ==-- (LAC ADDRESS OF CORE BLOCK)
K oo (RETURN)

k AC CONTENT ON ENTRY:

¢ TWo'S COMPLEMENT OF LENGTH OF BLOCK

CORZRO $DC ©

DAC CORCNT
XCT* CORZRO
DAC CORS NK
DZ Mk CORS NK
I1SZ CORSNK
ISZ CORCNT
JMP %3
JMPx CORZRO

A-185

SELMA

$TITLE

LAW 633

JMSx =T ,.A
LAC =SELTI!
JMSx =L T

LAC =637475

JMSx =B,T
LAW 630
JMSx =T.,R
LAC =PBT
JMS% =P,T
JMSx =P E
DzMm KBDPB
LAC =KBDPB
DAC XBDPP
DZMm KBDVSW
JMS*kx =S ,LH
DAC LVLHAL
JMSx =S ,TL
$DC O

DAC LVLSCR
LMmQ '
LAC LVLHAL
JMSx =5 ,T1
$PC O

LAW 500
Lme

LAC LVLSCR
JMSx =S ,LP
JMS BUTX
$DC SELTI
$DC LVLHAL
$DC 370
$DC -34
$DC 500
$DC PENEND
$DC O

JMSx =S ,TL
$DC O

SELMA INITIALIZATION

A-186

SELTI

DAC LVLBUT
LMQ

LAC LVLHAL
JMSxk =5,TI1
$DC O
JMSxk =5 ,TL
$DC O

DAC LVLDGM
LAW 60

LMQ

LAC LVLDGM
JMSxk =S ,LP
JMS CORINT
LAW -400
JMS CORZRO

LAC =NAME /PAR

DZM PENXL
DzM PENYL
DZM NAMDEF+2
DzM BUTN+2
DzM BUTX+2
DZm LVL+2
DZM CHEWA+2
DZM CHEW+2
DzMm COORDS+2
LAC =QAS
JMS % :T.S
LAC =XBD
JMSxk =T ,S
LAC =CON
JMSx =T,S
SKP

SKP

JPS* =TOP
LAC =S0005
JMS QASCHM
JmSx =T,F

$DC 3

$STEXT “SELMA-3"

A-187

SELT2 $DC 6

FREE

$TEXT " RANSLATE"
$DC 747576

$TEXT = ON"

$DC 36200

$END

BEGINNING OF FREE CORE

A-188

UNCLASSIFIED

Security Classification

DCCLSM‘:M CC‘N F‘" DAY A—R"u '.3

Security classifivation of title, body ¢! eostract and indexiag fonorarion musr Be oroveril wian the overall report is classified)
RIGINATING ACTIVITY (Corporate author) ? 2a. REP0ORT SECURITY CLASSIFICATION
THE UNIVERSITY OF MICHIGAN ? Unclassifie

Tﬁ

ZD GROUP

CONCOMP PROJECT

*"°SELMA: A CONVERSATIONAL SYSTEM FOR THE GRAPHICAL SPECIFICATIOL
MARKOVIAN QUEUEING NETWORKS

Zy

ESCRIPTIVE NOTES (Type of report and inciusive dates)
Technical Report 23

UTHORIS) (First name, middie initial, last name)

JAMES H. JACKSON

.‘;7&. TOTAL NO. OF PAGES 75, NO. OF REFS

October, 1969 73 5

Sa. ORIGINATOR’S REPORT NUMBERI(S)

EFORT DATE

;ONTRACT OR GRANT NC.

DA-49-083 OSA 3050 i
*ROJECT NO. Technical Report 23

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

'SEL Technical Report 45

JISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC

WURE_EMINTARY NOTES ‘2. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

ABSTRACT

This report discusses the design and use of the Systems Engineering
Laboratory's Markovian Analyzer (SELMA) system for a DEC 339
computer display terminal. This system provides interactive graphics
support for a program which was developed concurrently for the IBM
360/67 to analyze a class of Markovian queueing networks. Special
features of the system include handling of all graphic operations at
the terminal and recognition of patterns of motion of the light pen to
provide a human-oriented drawing capability.

D.wV..1473

Security Classification

Unclassified

ecurity Classification

14,
KEY WORDS

LINK A

LINK B8

LINK C

ROLE

WT

ROLE WT

ROL &

WT

Interactive computer graphics
Remote display terminal
Network diagrams

Queueing models

DEC 339

Security Classification

T

3 9015 03025 2103

