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SUMMARY

When treating cancer patients with radiation therapy, the normal tissue in an organ close to the tumour
usually receives some dose of radiation. The dose is not of the same intensity throughout the organ. This
radiation can cause normal tissue complications, so for treatment planning purposes, it is important to
understand the relationship between the distribution of dose intensities in the organ and the occurrence of
complications. One general summary measure of the dose effect is obtained by integrating a weighting
function (w(d)) over the dose distribution. The weighting function w(d) should be monotone for biological
reasons. Because the true shape of w(d) is not known, we estimate it non-parametrically subject to the
monotonicity constraint. In our approach w(d) is written as a weighted sum of monotone basis functions.
The weights in this sum are formulated as a mixture of point mass at zero and a Gamma random variable.
A key feature of our method is that it allows for flat regions through the use of this mixture prior. The
model is estimated using a Markov Chain Monte Carlo algorithm. We illustrate our method with data
from a head and neck cancer study in which the irradiation of the parotid gland results in loss of saliva
flow. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cancer patients treated with radiation therapy can experience complications that are the
consequence of the irradiation of normal tissue in an organ close to the tumour site. There is
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a large literature on normal tissue complication models (see, for example, [1, 2]). These models
relate the dose received by the normal tissue to the probability of a complication. They are typically
motivated by some radio-biological or bio-physical theory and sometimes take into account the
physical structure of the normal tissue, e.g. whether it is a serial structure such as the spinal cord,
or more homogenous such as the parotid gland [3]. The most commonly used model in treatment
planning is the Lyman normal tissue complication probability model [4, 5]. This specific model
applies to binary outcomes and specifies the probability of complication as a function of dose,
the volume of normal tissue irradiated, and three parameters. In contrast to these models, which
tend to be highly parametric, our approach is more non-parametric and not restricted to binary
outcomes.

While the tumour site generally receives a fairly homogenous dose, the normal tissue in an
organ close to the tumour usually receives a heterogeneous dose. It is possible to compute, for
each subject and a given radiation treatment plan, the cumulative dose of radiation received at each
location within the organ. This dose distribution is typically represented using the dose–volume
histogram (DVH), a plot over dose of the proportion of normal tissue which received that dose.
Thus, the DVH is a curve that integrates to 1; however, it does ignore the spatial aspect of the
distribution of dose within the organ. In some organs, such as the parotid gland which is relatively
homogenous, ignoring the spatial aspect seems to be reasonable. For less homogenous organs,
such as the lung, this will be less reasonable but may still be used as an approximation or as a first
step in a more complicated analysis taking the spatial component into account. See Figure 1 for an
example of two DVH’s. Denoting the DVH by p(d), the goal is to find the relationship between
the curve p(d) and a scalar complication outcome. Specifically, we are interested in using p(d) as
a functional covariate to construct an appropriate summary measure of dose in a regression model
for the complication outcome.

Functional data analysis is a branch of statistics concerned with curves, which can be used as a
response or a predictor [6]. For the latter, one is interested in estimating the effect of a functional
covariate p(d) on a scalar outcome, and the functional form often takes

∫
p(d)w(d) dd , where

w(d) is an unknown weight function (Chapter 15 of [6]). We are interested in estimating w(d) to
construct a summary measure of p(d) as a good explanatory variable of the outcome. This approach
was discussed by Hastie and Mallows [7], and in the functional generalized linear model of James
[8], where ∫

p(d)w(d) dd was included as a covariate in a GLM and a regression spline was used
to estimate w(d), and by Zhang et al. [9] for a continuous outcome, where a smoothing spline is
used to estimate w(d). However, little work is done for such functional models with a monotonic
constraint for w(d) using mixed models. Schipper et al. [10] proposed a generalized monotone
functional mixed model (GMFMM), which included

∫
p(d)w(d) dd as a covariate in a generalized

linear mixed model (GLMM) and estimated w(d) monotonically and non-parametrically using a
regression spline. Two special cases are worth noting. If w(d)= d then the summary measure is the
mean dose received by the organ. If w(d)= I (d>d0) then the summary measure is the proportion
of the organ that receives a dose larger than d0.

In this paper, we propose a Bayesian version of the GMFMM in Schipper et al. [10]. The dose
effect is summarized as

∫
p(d)w(d) dd . Any biologically meaningful estimate of w(d) should be

monotone, because increasing dose cannot lead to lower probability or severity of complications.
Thus, we propose a Bayesian method for monotonic non-parametric estimation of w(d) within
this model framework.

The proposed estimator of w(d) in Schipper et al. [10] is strictly monotone. However, when
modelling a dose effect, it is possible that there is no effect within a range of doses. This appears
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to be the case for low doses in the saliva flow data we use to illustrate our model. This corresponds
to flat regions in w(d), and our Bayesian estimator allows for this, which is not allowed in the
formulation of Schipper et al. [10]. We define w(d) as the sum of monotone non-decreasing basis
functions each multiplied by a non-negative coefficient. The non-negativity is imposed through
priors in a Bayesian model. Similar to the approach of Dunson [11], we specify a mixture prior
for the coefficients, which explicitly allow the function w(d) to be flat, while at the same time
imposing the monotonicity constraint. In addition to applying to functional covariates, the model
proposed in this paper differs from that of Dunson [11] in that it applies to general distributions
and correlated outcome measures.

This paper is organized as follows. Section 2 describes the model as well as the mixture prior.
Section 3 discusses estimation of the model. In Section 4, the head and neck cancer data are
described, and the proposed methods are illustrated. In Section 5, simulation results are presented,
followed by discussions in Section 6.

2. THE MODEL

2.1. Generalized monotone functional mixed model

In this section we propose a Bayesian GMFMM, for relating a complication outcome to a dose
distribution while accounting for other covariates as well as correlation between multiple non-
Gaussian responses from the same subject. Let Yi j denote the complication outcome for the j th
observation of the i th subject, j = 1, . . . , J ; i = 1, . . . , I . We note that there may be multiple
measurements of the complication outcome for a particular subject. In the head and neck cancer
example we consider later, the complication outcome is saliva flow, which is measured separately
from the two parotid glands of each subject. We assume that conditional on random effects bi , Yi j
follows an exponential family distribution with mean �i j given by

g(�i j ) = XT
i j� +

∫
pi j (d)w(d) dd + ZT

i j bi (1)

where g is a canonical link function, � and bi represent fixed and random effects with corresponding
design matrices Xi j and Zi j , pi j (d) is the DVH in the organ of interest with

∫
pi j (d) dd = 1, and

w(d) is an unknown weight. We assume that the random effects bi are independent and follow a
N(0,�) distribution. The marginal likelihood is given by

L{�, w(d),�} = ∏
i

∫ ∏
j
f {Yi j |bi ; �, w(d)} f (bi ; 0, �) dbi (2)

where f (Yi j |bi ) is the conditional density of Yi j and f (bi ) is the normal density of bi .
Overdispersion and correlation between observations from the same subject can be modelled

using the random effects bi . We further assume w(d) is a smooth, non-decreasing function with
w(0)= 0. The constraint w(0)= 0 is for the sake of identifiability. Specifically, from (1), if �
includes an intercept term, it will be confounded with any intercept w(0) because this latter term
can be pulled out from the integration in (1), since pi j (d) integrates to one.
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2.2. Formulation of w(d)

One way to constrain w(d) to be non-decreasing is to define it as the sum of non-decreasing
functions. We consider the following formulation:

w(d)=
L∑

l=1
sl Bl(d) (3)

Here Bl(d) are known non-decreasing basis functions, L is the number of basis functions, and the
sl are non-negative parameter coefficients. With this definition of w(d), the model discussed in
the previous section can be written as a GLMM [12]. In particular,

g(�i j ) = XT
i j� +

∫
pi j (d)w(d) dd + ZT

i j bi

= XT
i j� +

∫
pi j (d)

{
L∑

l=1
sl Bl(d)

}
dd + ZT

i j bi

= XT
i j� +

L∑
l=1

sl

∫
pi j (d)Bl(d) dd + ZT

i j bi (4)

Many choices are possible for the basis functions, and we consider two here. The first is to
use piecewise linear basis functions, considered for example by Neelon and Dunson [13]. Let
Bl(d)= min(d, �l) − �l−1 if d>�l−1 and Bl(d) = 0 otherwise, where (0= �0<�1< · · · <�L) are
known knot locations. In words, Bl(d) is zero till the beginning of the lth interval, then is linear
(with slope 1) in the lth interval, and flat at its maximum value after the lth interval. Under this
formulation, the slope of w(d) within interval (�l−1, �l ] is given by sl . The second set of basis
functions we use are the I-spline functions [14]. These functions are obtained as the integral of
B-spline basis functions, and are thus monotone since the B-splines are non-negative. While both
basis functions give continuous estimates, a key feature of the I-Spline basis functions is that they
result in a smoother estimate compared to the estimator based on the linear basis functions. Since
Bl(0)= 0 for all l, w(0)= 0 from (3), for both sets of basis functions.

2.3. Prior specification

The coefficients sl are restricted to be non-negative through the prior distributions. Adapting the
ideas of Dunson [11], we propose a mixture prior for sl which imposes the monotonicity constraint
on w(d) while at the same time allowing for flat regions. Let �l be a latent Bernoulli variable
indicating zero or non-zero coefficient and �l be a positive continuous random variable. Then
define sl , as

sl = �l�l (5)

Thus, �l is the value of sl , given sl is non-zero. Plugging (5) into (4) we obtain

g(�i j ) = Xi j� +
L∑

l=1
�l�l

∫
pi j (d)Bl(d) dd + Zi j bi (6)
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Next we define the priors for �l and �l as

�l ∼Bernoulli(�) (7)

�l ∼Gamma(c1, �) (8)

where Gamma(c1, �) denotes a Gamma distribution with mean c1/� and variance c1/�
2. Rather

than choosing fixed values for � and �, we specify hyperpriors to reduce the sensitivity of our
conclusions to the chosen values. We choose to set c1 to a fixed value. If we choose c1>1 then
the prior for �l in (8) will have a non-zero mode. This should prevent non-identifiability arising
from very small �l with positive �l and zero �l , both leading to similar values for sl . Choosing
c1>1 also ensures that the prior for �l is log-concave. This allows efficient sampling in the Gibbs
sampler, as discussed in Section 3. For the hyperpriors, we assume

� ∼Uniform(0, 1) (9)

� ∼Gamma(c2, c3) (10)

We note here that w(d) depends on �l , in addition to �l . This gives some robustness in the
estimated w(d) to the choice of the prior on �l . To complete the model specification, we place a
vague Normal prior on � and an inverse Wishart prior on the covariance matrix �.

3. ESTIMATION

The DVH, or p(d), is obtained by discretizing dose into K bins and measuring what proportion
of the normal tissue received a dose within each bin. Figure 1 shows two example DVH’s from
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Figure 1. Examples of one subject’s dose volume histograms. The ipsilateral gland is the gland on the
same side of the head as the tumour, while the contralateral gland is on the opposite side of the head.
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the saliva flow data we discuss in the next section. Thus, we can rewrite (1) by replacing the
integration with summation over dose bins as

g(�i j ) = XT
i j� +

K∑
k=1

pi j (dk)w(dk) + ZT
i j bi (11)

where dk = (k − 1) (bin width). That is, dk is the left endpoint of the kth bin and p(dk) is the
proportion of normal tissue receiving dose in bin k. Similarly we can also rewrite (6) as

g(�i j ) = XT
i j� +

L∑
l=1

�l�l

[
K∑

k=1
pi j (dk)Bl(dk)

]
+ ZT

i j bi (12)

Gibbs sampling can be used to estimate the parameters in this model by iteratively sampling
from each of the full conditional distributions. Conditional on � and �, (12) specifies a GLMM with
an offset term of

∑L
l=1 �l�l

∑K
k=1 pi j (dk)Bl(dk). Gibbs sampling for GLMMs has been discussed

by many authors, e.g. Zeger and Karim [15] and Dellaportas and Smith [16], among others. These
methods could be used to sample from the full conditional distributions for �, bi , and �. The only
additional computational work is in computing the value of the offset term at each iteration of the
Gibbs sampler.

We now focus on the full conditional distributions for the dose effect parameters �l , �l , �, and
�. Some of these distributions involve the likelihood

L= ∏
i, j

f (Yi j |bi ) (13)

where f (Yi j |bi ) is the density of yi j conditional on bi . Let �−v denote the set of all unknown
parameters except v, and [a1|a2] denote the distribution of a1 given a2. We consider the �l first.
The full conditional distribution for �l is given by

[�l |�−�l ] ∝ [�l |�]L (14)

where the proportionality constant can be easily calculated since the �l are binary.
Next we consider the full conditional for the �:

[�|�−�] ∝ [�]∏
l

[�l |�] = �
∑

l �l (1 − �)
∑

l 1−�l

∝Beta

{
1 + ∑

l
�l , 1 + ∑

l
(1 − �l)

}
(15)

Thus, the full conditional for � is a Beta distribution for which standard sampling methods are
available.

The full conditional for the �l is given by

[�l |�−�l ] ∝ [�l |�]L (16)

When �l = 0, it is clear from (12) that �i j does not contain any terms for �l . Thus, the likelihood
L is independent of �l , and the full conditional is proportional to the prior. Conditional on �l = 1,
the right-hand side of (12) is a linear function of �, �l , and bi and thus specifies a GLMM. If we
condition on �l = 1 and on bi , (12) specifies a GLM with offset term Zi j bi . Thus, the likelihood is a
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log-concave function of �l [16]. Since we have also specified a log-concave prior (Gamma(c1, �))

for �l , the full conditional (16) is log-concave because the product of two log-concave functions
is also log-concave. Adaptive rejection sampling may be used to efficiently sample from this
distribution [17].

The full conditional for � is given by

[�|�−�] ∝ [�]∏
l
[�l |�]

∝Gamma

(
c1L + c2, c3 + ∑

l
�l

)
(17)

Thus, the full conditional for � is a Gamma distribution, for which straightforward sampling
methods are available. The Gibbs sampling discussed here can be conveniently implemented in the
program WinBUGS. Convergence of the Markov chain can be assessed using standard methods.

4. APPLICATION TO HEAD AND NECK CANCER DATA

4.1. Data description

The data come from a head and neck cancer study conducted at the University of Michigan.
Patients with a cancerous tumour in their head or neck were treated with external beam radiation
therapy. A common side effect in these patients is loss of saliva flow due to the irradiation of the
parotid glands. The parotid glands, of which there are two, one in each cheek, are responsible for
producing the majority of a person’s saliva. The radiation doses ranged from 0 to 82 and the DVH
bin widths are 0.5Gy, thus K = 164. Figure 1 is an example of the DVH’s for the two glands
of a particular subject. Saliva flows are obtained at baseline (before radiation therapy) and at 6
months after radiation therapy. At each timepoint, saliva flows are measured from both parotids.
The ipsilateral glands (gland on the same side of head as tumour) generally received a much higher
dose than the contralateral glands (glands on the opposite side of head as tumour). This can be
seen in the example DVH’s plotted in Figure 1. As a consequence, the ipsilateral glands typically
had much lower saliva flows. In total, there are 157 saliva flow measurements (with corresponding
DVH’s) from 82 subjects.

4.2. Model description

The units of saliva flow are millilitres per minute, so we use the Poisson distribution as outcome
distribution. Since the measured saliva flows are not integers, we multiplied the original flows by
150 and rounded to the nearest integer. Let Yi j denote the (transformed) saliva flow from gland
j of subject i . Let b′

i =[bi1 bi2] denote the unobserved random effects for subject i , assumed to
be independently distributed as N(0,�). Further, denote the log of the baseline saliva flow from
gland j of subject i by basei j . We assume that, conditional on the random effects bi , the saliva
flows follow a Poisson distribution with mean �i j given by

log(�i j ) = a0 + a1basei j −
k=164∑
k=1

pi j (dk)w(dk) + bi j (18)

where pi j ( ) is the DVH for the j th gland of the i th subject.
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To use the prior and hyperprior distributions specified in (7) and (10), we must specify values
for c1, c2, and c3. We wish to choose these values so that reasonable prior mass is placed on both
linear w(d) (i.e. meandose models) and step function w(d) which correspond to a threshold effect.
We use the link between model (18) and the simpler meandose model to aid in setting these values.
Specifically, if s1 = s2 = · · · = s20 = s, then some algebra shows that (18) can be rewritten as

log(�i j ) = a0 + a1basei j − s ×meandosei j + bi j (19)

We fit this mean dose model to the saliva flow data and obtain ŝ = 0.1. The implied linear w(d)

can be computed by replacing each sl with ŝ in equation (3). Using the implied w(d) from the
fitted meandose model, we compute ŵ(82)≈ 8. If the true w(d) was a step function such that
w(82)= 8, we would require sl ≈ 2 for a particular l, since the maximal value of Bl(d) is 4 for
both sets of basis functions. Given these calculations, we set c1 = 1.5, c2 = 1.5, and c3 = 0.75. The
resulting prior and hyperprior in (8) and (10) assign large prior probability to a range of plausible
values for �l including 0.1 and 2.

The marginal variance of the saliva flows is larger than we would expect from the Poisson
assumption and is approximately proportional to the square of the marginal mean. The random
effects included as part of the linear predictor approximate this variance structure and account
for the overdispersion. The two parameters of � on the main diagonal capture overdispersion for
the ipsilateral and contralateral glands. We do not constrain them to have the same value. Most
of the subjects have two measurements, one from each parotid. The off diagonal element of � is
the covariance between the two sides within a subject. To fit the model, we use Gibbs sampling
implemented in WinBUGS.

4.3. Results

We fit the model separately using the piecewise linear and I-spline basis functions to define w(d).
The reported results are based on using 20 basis functions (L = 20), but similar results were
obtained using 10 or 40 functions. Using only five knots resulted in noticeably different estimates
of w(d). For each of the I-spline and linear basis function models, we ran two chains for 200 000
iterations discarding the first 50 000 as burn-in and retaining every 10th iteration thereafter. Thus
estimates are based on 30 000 iterations. Trace plots of the parameters were compared between
chains and within each chain over iteration to visually assess convergence. The chains mixed
relatively rapidly for most parameters but were slowest to mix for �l . WinBUGS provides an
estimate of the Monte Carlo error of the posterior mean estimate, and at 200 000 iterations the
estimated Monte Carlo error is less than 10 per cent of the standard error for each parameter.
It took about 4 h to run one chain for 200 000 iterations on a PC. Table I gives posterior mean
estimates and 95 per cent credible intervals for the parameters based on the I-spline model. Results
were very similar for the linear basis function model. The lower 95 per cent credible bounds for
�1,1 and �2,2 are not close to 0, suggesting significant overdispersion for both the ipsilateral and
contralateral glands, although it is much larger for the former. The estimated covariance between
the two sides (�1,2) does not appear to be significantly different from zero.

The posterior mean estimates of w(d) and their 95 per cent pointwise credible intervals are
shown in Figure 2. The estimated w(d) obtained using linear and I-spline basis functions are
similar, although not surprisingly, the linear basis functions lead to a less smooth estimate.
For comparison we included an alternative estimate of w(d) obtained from the method of
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Table I. Parameter estimates and standard errors for model (18).

Parameter Estimate 95 per cent credible intervals

a0 1.54 (0.36, 2.95)
a1 0.74 (0.45, 1.04)
p 0.30 (0.06, 0.69)
� 3.20 (0.65, 8.20)
�1,1 10.35 (4.85, 20.20)
�1,2 0.27 (−0.62, 1.24)
�2,2 0.78 (0.54, 1.11)
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Figure 2. Posterior mean estimate of w(d) with pointwise 95 per cent credible intervals.

Schipper et al. [10]. We briefly describe the method here. Starting with an unconstrained
regression spline r(d), w(d) is defined as the integral of a positive transformation of r(d) as

w(dc) =
∫ dc

0
	(r(d)) dd (20)

where 	 is chosen to be proportional to a Normal density. This formulation of w(d) is used in
the same model given in (1), but we fit it using maximum likelihood. It is reassuring that the
estimates are similar despite coming from different models and different estimation procedures.
The Bayesian estimates of w(d) do not exhibit the poor tail behaviour for the largest doses that is
present in the Frequentist estimator.

Figure 3 plots for each gland the log proportion change in saliva flow versus the estimated
summary measure of the dose effect

∑k=164
k=2 pi j (dk)ŵ(dk). Because some of the saliva flows are

zero, we added one before taking logs. The plot shows proportion change in saliva flow from
baseline (on log scale) decreasing linearly as a function of the estimated dose effect term.

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:4643–4656
DOI: 10.1002/sim



4652 M. SCHIPPER, J. M. G. TAYLOR AND X. LIN

7

7 8
DVH Summary Measure

9 10

6

6

5

5

4

4

3

3

2

2

1

1

0

0

lo
g(

S
al

iv
a 

flo
w

/B
as

el
in

e)

−1

Figure 3. Change in log saliva flow from baseline versus estimated dose effect summary measure.

It is notable in Figure 2 that the estimated w(d) is flat for doses less than 30Gy. This
implies that the parotid gland could be given a uniform dose of 30Gy with minimal effect
on saliva flow. In addition it implies that meandose is not the best way to summarize the DVH.
When w(d) is defined using linear basis functions it will be flat in a region (� j−1, � j+k) only
if � j = � j+1 = · · · = � j+k = 0. The posterior probability of this event can easily be calculated as
the proportion of draws (after discarding burn in) for which it holds. The posterior probabilities
of w(d) being flat in the four quartiles (0, 20), (20, 40), (40, 60), and (60, 81) are 0.72, 0.19,
0.02, and 0.27, respectively. A weakness of these calculations is that they ignore the size of the
non-zero increases in w(d). In particular they make no distinction between large coefficients and
small coefficients close to zero.

The same calculations can be done for the I-spline basis functions but are slightly more involved.
Rather than one, there are five I-spline basis functions with non-zero slope at any dose and thus
we must check whether all five coefficients are zero. As a result, the corresponding probabilities
are smaller than those based on the linear basis functions. Using the analysis based on the I-spline
basis functions, the posterior probabilities of w(d) being flat in the four quartiles of dose are
0.54, 0.004, 0 and 0.06, respectively. These probabilities are noticeably smaller than those from
the analysis using linear basis functions. The reason for the difference is that these calculations
dichotomize the basis functions as flat or not flat. At a given dose, however, some of the non-flat
I-spline basis functions have large slope while some have very small slopes. This is not an issue
for the linear basis functions since they have constant slope in their increasing regions. It is an
undesirable property of these calculations for the I-spline functions that, although the estimated
function w(d) is similar to that using the linear basis functions, the estimated probabilities of flat
w(d) are much different. For this reason if one wishes to perform these calculations, the linear
basis functions are preferable to the I-spline basis functions. Instead of relying solely on �l , the
‘flatness’ of w(d) can be assessed visually using ŵ(d) and pointwise credible intervals presented
in Figure 2.
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4.4. Goodness of fit

We assess goodness of fit of our model using posterior predictive simulation [18]. In this method
we simulate new data yrep from the posterior predictive distribution P(yrep|y). To compare the
simulated and observed data we use a discrepancy variable, T (y, �), which will take on large values
when the data do not fit the model well. For each draw of �, we compute T (yobs, �) and T (yrep, �).
A P-value can be calculated as the proportion of times that T (yrep, �) exceeds T (yobs, �).

We use the deviance as a discrepancy variable, where the deviance is defined as

D =∑
i, j

yi j log(yi j/�i j ) − (yi j − �i j ) (21)

The mean �i j = E[Yi j |bi j ] is obtained from (18) by plugging in the parameter draws from
the posterior distribution. For each of the 15 000 post-burn in samples (of one chain), we used the
parameter draws to simulate a vector of Poisson data. We then computed the deviance for the
observed data and the simulated data using the posterior parameter draws. In 49 per cent of
the samples the deviance from the simulated data was greater than that of the observed data.
Another commonly used discrepancy variable is the Pearson Chi-square GOF statistic, calculated
as

∑
i, j (yi j −�i j )

2/�i j . In 36 per cent of the samples the Pearson statistic from the simulated data
was larger than that of the observed data. Thus for both of these discrepancy variables, we find
no lack of fit.

5. SIMULATIONS

To evaluate our method, we simulate overdispersed Poisson data with a mean dependent on a
sigmoidal shape for w(d). We then estimate w(d) with our method using both the I-spline and
piecewise linear basis functions. Specifically, we simulate 50 data sets each with 157 (the number
of glands for which we have both dose data and saliva flows) independent Poisson variables with
means �i given by

log(�i ) = a −
k=164∑
k=1

w(dk)pi (dk) + bi (22)

where a = 5 and bi ∼ N(0, 1). The DVHs were simulated as truncated normal densities with
means drawn uniformly in (5, 76.5) and standard deviations drawn uniformly on (1, 10). For each
of the 50 simulated data sets we estimated w(d) − a. Figure 4 shows the mean and the 5th and
95th percentiles of these 50 estimates using I-spline basis functions along with the underlying true
value. Similar results were obtained from piecewise linear basis functions. Overall, the method
seems to work well with little bias except in the tails. In addition, the percentiles are close together
and indicate that the estimated w(d) is reasonably stable.

We also fit the model from Schipper et al. [10] to these same 50 data sets in order to compare
the efficiency of the two estimators of w(d). Table II contains the standard deviations of the 50
estimated values of w(d) at various doses for each of the estimators. Despite using a different
model and estimation procedure, the standard deviations for the method in Schipper et al. [10] are
generally similar to those of the Bayesian models. As expected, the variability of each estimator
is highest at 40Gy where w(d) is changing most rapidly. The variability of the two Bayesian
estimators is also generally similar although the linear basis functions lead to more variability near
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Figure 4. Simulation results for Poisson mixed data. The short dashed line is the mean of the 50 estimates
of w(d). The long dashed lines are the 5th and 95th percentiles of the 50 estimates.

Table II. Standard deviations of estimated w(d) from 50 simulated data sets for
the maximum likelihood (ML) estimator in Schipper et al. [10] and Bayesian

posterior mean estimators.

Bayesian STD

Dose (Gy) ML STD I-spline basis functions Linear basis functions

10 0.10 0.16 0.17
20 0.18 0.17 0.19
30 0.24 0.22 0.29
40 0.68 0.67 0.82
50 0.32 0.35 0.32
60 0.33 0.22 0.34
70 0.34 0.25 0.37
80 0.36 0.44 0.44

40Gy. This is not surprising as the I-spline method has the advantage that the ‘true’ w(d) used
to simulate the data sets was created using 20 I-spline basis functions. We found that all of the
methods can give poor estimates at 80Gy, which is at the edge of the design space.

6. DISCUSSION

We have presented a flexible method for non-parametric and monotone estimation of a dose
effect within a Bayesian GMFMM. Estimation of the model parameters can be accomplished via
Gibbs sampling and is implemented in a standard program (WinBUGS). Our general summary
measure of the dose effect allows us to estimate what aspect of the dose distribution best predicts
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complications. Because the doctor has some control over the dose distribution p(d), having an
estimate of w(d) would allow a dose distribution to be chosen to minimize

∫
p(d)w(d) dd , and thus

keep the expected saliva flow rate at a high level. Of course the desire to minimize
∫
p(d)w(d) dd

must be balanced with other considerations, including the need to keep the dose to the tumour
high.

Of the two basis functions we considered, the I-splines result in a smoother, and thus more
visually appealing and biologically plausible, estimate of w(d). The drawback of using the I-spline
basis functions is that computing the probability of flat w(d) is not as straightforward. Thus if
primary interest is in estimating the posterior probabilities of flat w(d), the linear basis functions are
preferable. It is the overlapping nature of the I-Spline basis functions that both results in smoothness
and makes computing these probabilities problematic. However, estimating the probability of flat
w(d) by P(�= 0) using either linear or I-spline basis functions ignores information in �. Thus,
we prefer to assess flatness visually using the estimated w(d) and pointwise CI’s.

The model given in (1) is an example of a dose-damage-injury model [19, 20]. In these models,
the damage to the tissue is considered to be a deterministic function of the DVH. This damage
need not be directly interpretable in terms of the anatomical structure of the organ. Rather it can
be viewed as a single number which summarizes the effect of the dose of radiation received.
The damage is not observable but is responsible for causing the injury, loss of saliva flow in our
case, which is observable. Denote the damage by D and the injury by Y. Then (1) can be seen
to be a special dose-damage-injury model relating �, the expected injury level, to the damage
D = ∫

p(d)w(d) dd . Rather than including D linearly in (1), we might more generally include
H(D) where H( ) is a function to be estimated. Future work could be directed at investigating
conditions under which H( ) and w( ) may both be non-parametrically estimated without loss of
identifiability. These conditions will depend in part on the observed DVHs. An alternative is to fix
w( ), possibly to a linear form (equivalent to meandose), and then only H( ) need be estimated.
Generalized additive mixed models [21] could be used to estimate H( ) non-parametrically. To
estimate H( ) both non-parametrically and monotonically, the model of Neelon and Dunson [13]
could be directly applied.
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