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Summary

The Cox proportional hazards model has become the standard in biomedical studies, particularly for
settings in which the estimation covariate effects (as opposed to prediction) is the primary objective. In
spite of the obvious flexibility of this approach and its wide applicability, the model is not usually
chosen for its fit to the data, but by convention and for reasons of convenience. It is quite possible that
the covariates add to, rather than multiply the baseline hazard, making an additive hazards model a
more suitable choice. Typically, proportionality is assumed, with the potential for additive covariate
effects not evaluated or even seriously considered. Contributing to this phenomenon is the fact that
many popular software packages (e.g., SAS, S-PLUS/R) have standard procedures to fit the Cox model
(e.g., proc phreg, coxph), but as of yet no analogous procedures to fit its additive analog, the Lin and
Ying (1994) semiparametric additive hazards model. In this article, we establish the connections be-
tween the Lin and Ying (1994) model and both Cox and least squares regression. We demonstrate how
SAS’s phreg and reg procedures may be used to fit the additive hazards model, after some straightfor-
ward data manipulations. We then apply the additive hazards model to examine the relationship be-
tween Model for End-stage Liver Disease (MELD) score and mortality among patients wait-listed for
liver transplantation.

Key words: Additive risk model; Least squares regression; PROC PHREG; PROC REG;
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1 Introduction

Currently, the most popular regression method for survival analysis in biomedical studies is the Cox
(1972) proportional hazards model, wherein the hazard at time t for subject i is given by:

liðtÞ ¼ l0ðtÞ exp fbT
0 ZiðtÞg ; ð1Þ

where l0ðtÞ is an unspecified baseline hazard function, b0 is a p� 1 regression parameter and ZiðtÞ is
a p� 1 vector of possibly time-varying covariates. The Cox model is especially popular in settings
where the estimation of covariate effects is of chief interest, in which case l0ðtÞ is treated like a
nuisance parameter. Estimation of b0 proceeds through partial likelihood (Cox, 1975) such that l0ðtÞ
is not involved in the estimation of b0. Cox regression is the predominant model in biomedical studies
and the original paper proposing model (1) is one of the most cited papers in science, let alone
statistics.
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Under model (1), covariates are assumed to have multiplicative effects on the baseline hazard.
While this is no doubt a plausible model, there is no guarantee of its appropriateness for a particular
application. Models with additive covariate effects are well-accepted in other types of regression, most
notably the linear regression model. Additive risk models have been considered by several authors
(e.g., Aalen (1980); Breslow and Day (1980); Buckley (1984); Cox and Oakes (1984); Thomas
(1986); Breslow and Day (1987); Aalen (1989); Huffer and McKeague (1991); Andersen et al.
(1993)). The model which can be considered to be most closely connected to the Cox model was
proposed by Lin and Ying (1994):

liðtÞ ¼ l0ðtÞ þ qT
0 ZiðtÞ : ð2Þ

It is quite possible that an additive model may be more appropriate for a given application; particu-
larly for continuous covariates since, under model (1), the hazard is assumed to increase exponentially
per unit increase a given covariate element (i.e., with all other covariates held constant). An exponen-
tial increase may be too extreme in many practical applications. Due to its close connection with the
Cox model, model (2) would appear to be a natural choice if the fit of the Cox model and/or the
appropriateness of multiplicative covariate effects was in question. However, despite the potential
liabilities of model (1), it is quite difficult to find real-data examples of hazard regression models with
additive effects in the applied literature.

Since, in most applications, neither the investigators nor the statistical analysts have any reason a
priori to believe the appropriateness of the Cox model, it would appear that model (1) is often applied
by convention and out of convenience. That the Cox model is the default can hardly be questioned.
Due to its semiparametric nature, the model is extremely flexible. However, the role of convenience
cannot be understated and herein lies perhaps the biggest practical advantage of the Cox model; it can
be fitted using standard implementations of widely available software, such as PROC PHREG in SAS
and the coxph function in R/S-PLUS. It is very likely that use of additive hazard regression models
would greatly increase such models could be fitted more easily.

In this article, we draw connections between estimation of q0 in the Lin and Ying (1994) additive
hazard model and (i) Cox regression and (ii) least squares estimation. Specifically, we demonstrate
that, following some straightforward data manipulations, q̂q can be computed by combining PROC
PHREG and PROC REG, which are standard SAS procedures for Cox and linear regression, respec-
tively.

The remainder of this article is organized as follows. In Section 2, we set up the requisite notation
and review the estimation procedures proposed by Lin and Ying (1994) to fit the semiparametric
additive hazard model. In Section 3, we establish the connection between parameter estimation in the
additive hazard model and both Cox and least squares regression. We then demonstrate how to fit the
additive hazard model in SAS using PROC PHREG and REG. In Section 4, we describe how to
implement the proposed procedures. We then apply the Lin and Ying (1994) model to data on liver
failure patients. Finally, discussion of our results and some concluding remarks are given in Section 5.
SAS code to implement the proposed techniques is provided in the Appendix.

2 Additive Hazards Model: Parameter Estimation

In this section, we set up the requisite notation and list the formulae for estimating the regression
parameter in the additive hazard model proposed by Lin and Ying (1994). Consistent with usual set-
up for univariate survival data, the study population consists of n independent vectors, ðXi;Di;ZiÞ,
where, for subject i (i ¼ 1; . . . ; n), Ti is the failure time, Ci is the censoring time, Xi ¼ min fTi;Cig
is the observation time, Di ¼ IðTi < CiÞ is the observed-event indicator and Zi is a p� 1 vector of
covariates. It is also useful to set up the commonly employed counting process notation, with the
at-risk and observed-event counting processes defined as YiðtÞ ¼ IðXi � tÞ and
NiðtÞ ¼ IðTi � t;Di ¼ 1Þ ¼

Ð t
0 dNiðsÞ, respectively. The key quantities with respect to inference on q̂q
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are given by:

U ¼
Pn
i¼1

Ð t
0 ½ZiðtÞ � �ZZðtÞ� dNi ðtÞ ð3Þ

A ¼
Pn
i¼1

Ð t
0 ½ZiðtÞ � �ZZðtÞ��2 YiðtÞ dt ð4Þ

B ¼
Pn
i¼1

Ð t
0 ½ZiðtÞ � �ZZðtÞ��2 dNi ðtÞ ; ð5Þ

where, for any vector a, a�2 ¼ aaT ; t is a pre-specified time point usually set to max fX1; . . . ;Xng
such that all observed failures are included in the analysis, and

�ZZðtÞ ¼
Pn
i¼1

YiðtÞ ZiðtÞ
Pn
i¼1

YiðtÞ ð6Þ

is the at-risk weighted covariate mean at time t. Using counting process analogs of generalized estimat-
ing equation (GEE; Liang and Zeger (1986)) methods, Lin and Ying (1994) propose to estimate q0 by

q̂q ¼ A�1U ; ð7Þ
while the estimated variance of q̂q was derived to be:

V̂Vðq̂qÞ ¼ A�1BA�1 : ð8Þ
In the next section, we propose techniques for exploiting standard software to implement the above-

described estimation methods.

3 Fitting the Additive Hazard Model using Software for Cox
and least Squares Regression

In this section we describe the connection between methods described in Section 2 and Cox and least
squares regression. Through these connections, we propose techniques for fitting the Lin and Ying (1994)
model using standard software designed for Cox and linear regression. Since the code in the Appendix is
written in SAS, we describe the proposed techniques in the context of SAS’s Cox (PROC PHREG) and
linear regression (PROC REG) procedures. A SAS program is provided in the Appendix, and various code
segments are provided up front in this section for continuity. Basically, PROC PHREG and PROC REG
are combined to compute q̂q, A and B, with V̂Vðq̂qÞ then computed using only a few lines of basic PROC IML
code. For notational convenience and clarity of illustration, we consider time-independent covariates. The
extension of the proposed computational techniques to the case where ZiðtÞ 6¼ Zi is straightforward and
will be presented in Section 4. Supporting Information for this article is available from the first author or
on the WWW under http://www.wiley-vch.de/contents/jc_2221/2007/200610xxx_s.pdf

To begin, we review estimation procedures for the proportional hazards (PH) model. Inference is
carried out through partial likelihood (Cox, 1975) such that the quantity assumed to be of primary
interest, b0, can be estimated without estimating the baseline hazard, l0ðtÞ. The regression parameter
vector is estimated by b̂b, which is the solution to the score equation, UðbÞ ¼ 0p, where

UðbÞ ¼
Pn
i¼1

Ð t
0 ½Zi � �ZZðt; bÞ� dNi ðtÞ ; ð9Þ

with the risk-weighted covariate mean given by

�ZZðt; bÞ ¼
Pn

i¼1 YiðtÞ Zi exp fbT ZigPn
i¼1 YiðtÞ exp fbT Zig

; ð10Þ
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and where ap is a p� 1 vector with all elements equal to a. It is convenient to recycle the notation
from Section 2. First, the formulae in (9) and (10) are quite standard. Second, �ZZðtÞ in (6) in Section 2
equals �ZZðt; 0Þ in (10); similarly, U ¼ Uð0Þ. Such connections between the procedures of Lin and Ying
(1994) and Cox (1972) are key to the methods we propose for fitting the additive hazards model.

The root of (9) is computed through Newton-Raphson iteration, with the ðjþ 1Þ’th estimate given
by

b̂b
ðjþ1Þ
¼ b̂b

ðjÞ
þ Iðb̂b

ðjÞ
Þ�1 Uðb̂b

ðjÞ
Þ ; ð11Þ

where IðbÞ ¼ �@U=@bT .
By default, PROC PHREG sets b̂b

ð0Þ ¼ 0 which is a convenient choice for our purposes due to the
fact that �ZZðt; 0Þ ¼ �ZZðtÞ and Uð0Þ ¼ U. By setting MAXITER ¼ 0 in the call to PHREG, we could
extract U. We bypass this step, though, since we are able to compute q̂q directly, as we show later. We
need the 1-step call to PHREG to compute the Schoenfeld residuals Schoenfeld (1982),

Siðb̂bÞ ¼
Ð t

0 ½Zi � �ZZðt; b̂bÞ� dNiðtÞ

¼ ½Zi � �ZZðXi; b̂bÞ� Di ; ð12Þ
which are typically used to assess the proportionality assumption after fitting a Cox model. These can
be obtained in PHREG through the RESSCH option, which creates a data set with all Schoenfeld
residuals for subjects with Di ¼ 1. For the previously prescribed call to PHREG with MAXITER ¼ 0,
we would obtain

Si ¼ Sið0Þ ¼
Ð t

0 ½Zi � �ZZðtÞ� dNiðtÞ

¼ ½Zi � �ZZðXiÞ� Di : ð13Þ
We combine the null Schoenfeld residuals into a matrix,

S ¼

ST
1

ST
2

..

.

ST
d

2
66664

3
77775
; ð14Þ

where the number of observed failures is denoted by d ¼
Pn

i¼1 Di.
Next, we outline how to compute the matrix, B. We can re-express the Schoenfeld residuals as

follows:

B ¼
Pn
i¼1

Ð t
0 ½ZiðtÞ � �ZZðtÞ��2 dNiðtÞ

¼
Pn
i¼1
½Zi � �ZZðXiÞ��2 Di ¼ ST S : ð15Þ

We now shift attention to ordinary least squares, with response vector Y and design matrix X. Under
OLS, the regression parameter is computed as b̂bOLS ¼ ðXT XÞ�1 XT Y, while the sum-of-squares-and-
cross-products (SSCP) matrix is given by XT X. By setting Y ¼ 1d and X ¼ S, we can compute B by
fitting a linear regression (through-the-origin) model using PROC REG (via the NOINT option to
remove the intercept), outputting the SSCP matrix. Note that the choice of 1d to serve as the response
vector in the call to REG is arbitrary; any non-zero vector would suffice, since we do not aim to
estimate the OLS parameter; but only wish to force SAS into computing an inner product which
happens to equal B.

It is now necessary to introduce some additional notation. First, we order the observation times:
Xð1Þ < Xð2Þ < . . . < XðnÞ ¼ t and set Xð0Þ ¼ 0. We then denote the gaps between successive observa-
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tion times by dtj ¼ XðjÞ � Xðj�1Þ for j ¼ 1; . . . ; n. The number of observation gap times for which the
i-th subject is under observation denoted by Ki ¼

Pn
j¼1 YiðXðjÞÞ, with K ¼

Pn
i¼1 Ki. As alluded to pre-

viously, the Schoenfeld residuals and closely related quantities are essential to our proposed techni-
ques. As such, we set up further notation along these lines, related to the observation gap times.
Specifically, set Rij ¼ Zi � ZðXðjÞÞ for j ¼ 1; . . . ;Ki and set

R ¼
RT

1

..

.

RT
n

2
64

3
75 ; Ri ¼

RT
i1

..

.

RT
iKi

2
64

3
75 : ð16Þ

Note that Si ¼ RiKi Di. Correspondingly, we set up observation block diagonal gap time vectors as
follows,

D ¼
D1

..

.

Dn

2
64

3
75 ; Di ¼

dti1
..
.

dtiKi

2
64

3
75 : ð17Þ

In addition, we define corresponding observed-event indicator vectors; set Dij ¼ DiIfXi ¼ XðjÞg and let

D ¼
D1

..

.

Dn

2
64

3
75 ; Di ¼

Di1

..

.

DiKi

2
64

3
75 :

Next, we depart briefly from notational considerations to describe a data set that we hereafter refer
to as the “expanded” data set which has one record per subject per observation gap time at risk. That
is, while the original data set contained n rows, 1 row per subject, the expanded data set will contain
K rows. For example, consider a study with n ¼ 3 and observed data: ðXi;DiÞ ¼ (10, 1), (5, 0), (7, 1)
for i ¼ 1, 2, 3, respectively. The original data would be given by:

idnum obs_time dead
1 10 1

2 5 0

3 7 1

while the expanded data set would look like:

idnum t1 t2 dead dt dead1

1 0 5 0 5 1
1 5 7 0 2 1

1 7 10 1 3 1

2 0 5 0 5 1
3 0 5 0 5 1

3 5 7 1 2 1

Creating the expanded data set is straightforward, and SAS code is provided in the Appendix. The
only provision is that the subject-identification numbers be sequenced 1; . . . ; n in the original data set.
By setting the event indicator to 1 for all records (through the dead1 variable listed above), we can
obtain the Ri vectors by fitting a Cox model to the expanded data set and again getting PHREG to
output the Schoenfeld-type residuals (to a data set we subsequently refer to as the expanded-Schoen-
feld data set). As a quick look ahead, we would then fit a weighted least squares model to the Schoen-
feld-type residuals; the output of which will be used to estimate the additive hazard model regression
parameter and its variance.
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We now describe algebraically the connection between estimators for the additive hazard model and
the quantities we have just defined which relate to the expanded data set. The matrix A can be re-
expressed as follows:

A ¼
Pn
i¼1

Ð t
0 ½Zi � �ZZðtÞ��2 YiðtÞ dt

¼
Pn
i¼1

Pn
j¼1

Ð XðjÞ
Xðj�1Þ
½Zi � �ZZðtÞ��2 YiðtÞ dt

¼
Pn
i¼1

Pn
j¼1
½Zi � �ZZðtÞ��2 YiðXðjÞÞfXðjÞ � Xðj�1Þg

¼
Pn
i¼1

RiDiRT
i ¼ RT DR : ð18Þ

Similarly, we can re-write U as:

U ¼
Pn
i¼1

Ð t
0 ½Zi � �ZZðtÞ� dNiðtÞ

¼
Pn
i¼1

Pn
j¼1

Ð XðjÞ
Xðj�1Þ
½Zi � �ZZðtÞ� dNiðtÞ

¼
Pn
i¼1

Pn
j¼1
½Zi � �ZZðXðjÞÞ� Dij

¼
Pn
i¼1

RT
i Di ¼ RT D : ð19Þ

For weighted least squares (WLS), the regression parameter and its estimated variance are given
by b̂bWLS ¼ ðXT WXÞ�1 XTWY, where Y and X are (as in our description of OLS) the response
vector and design matrix, respectively, while W is a matrix of weights. Exploiting the close rela-
tionship between the WLS set-up and (18) and (19), we can now estimate compute q̂q and A
directly using a program that can perform weighted least squares (e.g., through the WEIGHT com-
mand in PROC REG) by setting X ¼ R, Y ¼ D�1D and W ¼ D. The regression parameter from
this fit to the expanded-Schoenfeld data set (again using the NOINT option to remove the model
intercept) would equal b̂bWLS ¼ q̂q. The matrix A, can be obtained by outputting the weighted SSCP
matrix, ðXT WXÞ, from PROC REG. The estimated variance for the regression parameter additive
hazard model, V̂Vðq̂qÞ ¼ A�1BA�1 can now be computed through a very brief and basic call to PROC
IML, as listed in the Appendix.

We summarize the proposed fitting procedure as follows:

1. Fit a Cox model to the original data set and output Schoenfeld residuals, Si.
2. Fit OLS regression model with Si as the covariate vector and 1 as the response; obtain B as the

SSCP matrix, XT X.
3. Create an expanded data set which contains one record per subject per observation gap time at

risk.
4. Fit a Cox model to the expanded data set with Zi as the covariate and 1 as the event indicator.

Output the Schoenfeld-type residuals, Ri.
5. Fit WLS regression model with Rij as the covariate, Dij=dtij as the response and dtij as the

weight; b̂bWLS ¼ q̂q, while the weighted SSCP matrix, XT WX equals A.

6. V̂Vðq̂qÞ ¼ A�1BA�1 is computed using PROC IML.
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4 Application of the Proposed Techniques to the Analysis
of End-stage Liver Disease Data

In this section we describe how to apply the procedures proposed in Section 3. We begin by describ-
ing the data set of interest in Section 4.1. In Section 4.2, we detail how to implement the proposed
procedures using the SAS program provided in the Appendix. The results of our analysis are pre-
sented in Section 4.3.

4.1 Description of end-stage liver disease data

The data set to be analyzed was constructed by merging records from the Pennsylvania Health Care
Cost Containment Council (PHC4) and the Scientific Registry for Transplant Recipients (SRTR). The
SRTR data were originally collected by the Organ Procurement and Transplant Network (OPTN). We
analyzed the n ¼ 764 chronic liver failure patients aged � 18 who were initially wait-listed for liver
transplantation in Pennsylvania between September, 2001 and December, 2002. For each patient, fol-
low-up began (t ¼ 0) at the date of initial wait listing and ended at the earliest of death, liver trans-
plantation, loss to follow-up, or the conclusion of the observation period (December 31, 2002).

We fitted the following additive hazards model,

liðtÞ ¼ l0ðtÞ þ qT
0 ZiðtÞ;

where ZiðtÞ contained terms for Model of End-stage Liver Disease (MELD) score, age (18–29, 30–
49, 50–59, �60), gender, race (Caucasian, Minority) and diagnosis (non-cholesteric cirrhosis, choles-
teric cirrhosis, acute hepatic necrosis, other). The covariate of chief interest was MELD, which is the
only time-dependent covariate and is used to rank patients on the waiting list. MELD is scored as an
integer between 6 and 40, with higher scores generally associated with greater degree of liver failure.
The higher the MELD score, the higher the estimated wait-list mortality. Under the current allocation
system, chronic liver failure patients awaiting transplantation are ranked by decreasing order of
MELD. Updated MELD scores are mandated according to a schedule that depends on the current
value.

4.2 Fitting the semiparametric additive hazards model

We now describe how to fit the Lin and Ying (1994) additive hazards model using SAS. The code is
provided in the Appendix. As described in Section 4.1, the liver data set has one time-dependent
covariate, MELD. As would be the case for a SAS or R/S-PLUS user who wanted to fit a Cox model
when ZiðtÞ 6¼ Zi, records for the input data set (liver 1) would consist of multiple records per subject.
That is, each subject would generate a separate record each time their MELD changed. For example,
consider a patient (e.g., IDNUM 999; i ¼ 999) who is age 56 and has the following MELD history:
began follow-up (t ¼ 0) with MELD ¼ 11; increased to MELD ¼ 14 at t ¼ 30; increased to
MELD ¼ 21 at t ¼ 45; died at t ¼ 63. This patient would be represented in the raw input data set as
follows:

IDNUM t1 t2 MELD AGE DEAD
999 0 30 11 56 0

999 30 45 14 56 0

999 45 63 11 56 1

The proposed procedure assumes this basic data structure for the input data in the presence of time-
dependent covariates. It also assumes that the ID numbers are sequenced 1; . . . ; n.

The algorithm we propose in Section 3 was, for ease of illustration, presented in the context of
time-independent covariates; i.e., ZiðtÞ ¼ Zi. However, techniques carry over to the time-dependent
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covariate require no new ideas and carry over with very little modification. In cases where ZiðtÞ 6¼ Zi,
assuming that the original data contains a new start/stop (t1=t2) record each time a subject’s covariate
vector changes, the creation of the expanded data set is the same. That is, each record in the original
data will be expanded into multiple records, where each record spans a ðt1; t2� time interval during
which YðtÞ and �ZZðtÞ are constant; i.e., the same algorithm we propose for the ZiðtÞ ¼ Zi case.

We now outline the proposed techniques for fitting the Lin and Ying (1994) additive hazards model,
referring to the sequence of steps listed at the end of Section 3 and the SAS code provided in the Appendix.

As a preliminary, the program first counts the number of subjects in the data set using PROC
MEANS, then saves the result as a global (macro) variable, &n.

In Step 1, we fit a Cox model to the input data, stopping the Newton-Raphson procedure at the first
iteration (MAXITER ¼ 0) in order to obtain the Schoenfeld residuals given in (13).

In Step 2, we fit a no-intercept (NOINT) ordinary least squares regression using PROC REG which
has the Schoenfeld residuals as the covariate and the event indicator as the response. Since PROC
PHREG only keeps non-zero Schoenfeld residuals (i.e., corresponding to events), the response vector
in the OLS model is actually a vector of 1s. The SSCP matrix, XT X, equals ST S, where S is the
matrix of Schoenfeld residuals defined in (14). The SSCP matrix equals B from (5), as indicated in
(15). Note that the response vector in the linear model is arbitrary in this case, since OLS is only used
to compute the SSCP matrix.

In Step 3, we create an expanded data set which splits each row of the input data into sub-inter-
vals, ðt*1; t*2�, within which ZiðtÞ, YðtÞ and hence �ZZðtÞ are constant. That is, YðtÞ and �ZZðtÞ will change
whenever there is a death or censoring event, while ZiðtÞ changes whenever one of the time-depen-
dent covariates for subject i changes. We first create a data set which contains all censoring, event
and covariate change times; this data set will merely contain the t2 variable from the raw input data
set.

In Step 4, we compute the Ri quantities related to A and given in (18). It is necessary to compute
Ð t�2

t�1
fZiðtÞ � �ZZðtÞg YiðtÞ dt ¼ Yiðt*1Þ fZiðt*1Þ � �ZZðt*1Þg ft*2 � t*1g ;

for each ðt*1; t*2� subinterval for each subject. The equality holds since the expanded data set is struc-
tured such that the risk sets and covariates are constant across each of the ðt*1; t*2� subintervals. We fit
a Cox model to the expanded data, with the death indicator (dead1) set to 1 for all records. The
desired quantities from this model are given by the Schoenfeld residuals from this model in (16).

In Step 5, we compute the regression parameter estimator, q̂q and the matrix A using weighted least
squares through the origin. Specifically, the covariate equals the Schoenfeld residuals from Step 4;
the response equals a death indicator, scaled by the length of the subinterval; while the weight equals
the subinterval length. The WLS regression parameter equals q̂q, while the weighted SSCP matrix
equals A.

Step 6 involves various simple matrix calculations which complete the proposed procedure.

4.3 Analysis of end-stage liver disease data

We applied the Lin and Ying (1994) additive hazards model to a data set of patients on the waiting
list for liver transplantation. We began by coding MELD in categories, with the estimated covariate-
adjusted risk (hazard) differences by MELD category listed Table 1. Compared to patients with
MELD score between 15 and 19, patients in the 6–9 and 10–14 MELD categories have significantly
reduced risk of death, while the risk of death for patients with MELD scores on 25–29 and 30–40
levels is significantly increased. As indicated in the table, q̂q has been multiplied by 104 and hence
would be interpreted as per 10 000 patients.

Due to the monotone nature of the MELD effect, which is evident from Table 1, we sought to fit a
more parsimonious model. After some experimentation, it was found that the mortality hazard in-
creased quadratically with MELD. In Figure 1, the hazard difference associated with MELD is plotted
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for both the original model,

liðtÞ ¼ l0ðtÞ þ qT
1 Zi1 þ qT

2 Zi2ðtÞ ; ð35Þ
which assumes a step-function MELD effect (Table 1), and the revised model,

liðtÞ ¼ l0ðtÞ þ qT
1 Zi1 þ q3miðtÞ þ q4miðtÞ2 ; ð36Þ

which assumes a quadratic MELD effect. In both models (20) and (21), Zi1 contains elements corre-
sponding to the adjustment covariates (age, gender, race, diagnosis), while miðtÞ is the MELD score at
time t. In model (20),

Zi2ðtÞ ¼

If6 � miðtÞ � 9g
If10 � miðtÞ � 14g
If20 � miðtÞ � 24g
If25 � miðtÞ � 29g
If30 � miðtÞ � 40g

2
6666664

3
7777775
; q2 ¼

qm1

qm2

qm4

qm5

qm6

2
6666664

3
7777775
;
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Table 1 Covariate-adjusted mortality hazard difference by MELD category.

k miðtÞ q̂qmk � 104 (95% CI) p

1 6–9 �4.7 (�7.9, �1.7) <0.005
2 10–14 �4.5 (�7.6, �1.5) <0.005
3 15–19 0 – –
4 20–24 3.5 (�3.3, 10.3) 0.32
5 25–29 19.5 (0.1, 38.9) 0.05
6 30–40 77.1 (44.8, 109.4) <0.005
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Figure 1 Covariate-adjusted hazard difference as-
sociated with MELD based on step-function (‘o’)
and quadratic (‘––’) models described by Eqs. (20)
and (21), respectively.
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as implied by Table 1. Based on Figure 1, modelling the MELD effect through a quadratic appears
quite reasonable.

5 Discussion

In this report, we develop techniques for fitting the Lin and Ying (1994) additive hazards model. We
describe the connections between the additive hazards, proportional hazards and least squares regres-
sion procedures and demonstrate that, after modifying the original data, the Lin and Ying (1994)
model can be fitted through basic calls to Cox and least squares regression procedures. We then apply
the additive hazards model to a data set consisting of liver failure patients awaiting transplantation.

The contribution of our report to the literature is two-fold. First, we describe in detail the relation-
ships between the Cox (1972) proportional hazards and Lin and Ying (1994) semiparametric additive
hazards models. Second, we show how standard software can be used to fit the Lin and Ying (1994)
model. The proposed computational techniques save the practitioner from relying on C/C++ code or
more extensive IML code. In practice, these perhaps substantial savings in development time would
need to be traded off with computing time due to the data management steps in the proposed proce-
dure. This is particularly true for very large data sets or even perhaps moderate-sized data sets with
time-dependent covariates since, in such cases, the ‘expanded’ version of the data could be quite large
and hence cumbersome.

The Cox (1972) proportional hazards model is the predominant regression model for survival analy-
sis in biomedical studies. In addition to its wide applicability, at least part of its appeal is the lack of
computationally convenient alternatives; particularly if one restricts attention to semiparametric ap-
proaches. As we demonstrate, it is possible to fit this model after some straightforward data manipula-
tion using PROC PHREG, PROC REG and some basic computations in PROC IML. Minimal knowl-
edge of SAS-IML (and, none beyond what is listed in this report) is required. Given that the Lin and
Ying (1994) model can be fitted using standard software, the model should be considered as an alter-
native to the Cox model by practitioners in settings where poor fit of the Cox model is uncovered or
where additive covariate effects are suggested based on previous literature or preliminary descriptive
analysis.

SAS (v9.1.3) was the statistical computing language used in this report. S-PLUS and R can com-
pute Schoenfeld residuals through the coxph function and can carry out ordinary and weighted least
squares estimation through the lm function. Both the coxph and lm functions can return all required
elements for the q̂q, A and B vectors and matrices. As such, S-PLUS/R could be used to fit the addi-
tive hazards model using algorithms similar to those proposed in this report.

We propose techniques for fitting the semiparametric additive hazard model of Lin and Ying
(1994). This report has focused on the Lin and Ying (1994) model since, among the hazard regression
models assuming additive covariates effects, it would appear to be the most closely related to the Cox
(1972) model. There are several different versions of the of the additive hazards model, including the
non-parametric model of Aalen (1989). The Aalen (1989) nonparametric additive hazards model also
features least squares type closed form estimators and, for this reason, procedures similar to those
derived in this report could be applied. However, it should be noted that there are several pertinent
software packages already available to fit the Aalen (1989) model. Examples include the S-PLUS
survival package by Therneau (http://mayoresearch.mayo.edu/mayo/research/biostat/splusfuctions.cfm);
the R/S-PLUS addreg package by Weedon-Fekjaer (http://www.med.uio.no/imb/stat/addreg/); the R
timereg package by Scheike (http://staff.pubhealth.ku.dk/ ts/timereg.html); and a SAS macro by Ho-
well and Klein (1997).

The numerical techniques proposed in this report illustrate computational similarities between the
semiparametric proportional hazards (Cox, 1972) and additive hazards (Lin and Ying (1994) models.
For the additive model, Lin and Ying proposed zero-mean estimating functions, analogous to the gen-
eralized estimating equations (GEE) approach (Liang and Zeger (1986) for longitudinal data. The
score equations for the proportional hazards model, while derived through partial likelihood (Cox

728 D. E. Schaubel and G. Wei: Computing Additive Hazards Model

# 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



(1975)), can also be expressed as the solutions to zero-mean estimating functions. That is, when
dMiðt; bÞ ¼ dNiðtÞ � YiðtÞ exp fbT ZiðtÞg dL0ðtÞ and

Ð t
0 Zi dMiðt; bÞ are used as the basis of a GEE-type

procedure, the maximum partial likelihood estimators are obtained. This is evident from the literature
in various places, including a related development in the recurrent event setting by Schaubel and Cai
(2005). Thus, computational similarity between the semiparametric additive and multiplicative models
is less surprising if one considers that the estimation procedure for either can be derived through an
estimating equations approach.

In practice, investigators may have valid reasons for preferring the Cox model over the additive
hazard model, or vice versa. Given that both the additive and multiplicative hazard models can be
fitted easily, practitioners may prefer to fit both and base their inference on the model with the super-
ior fit; particularly in the absence of any a priori preference for one model over the other. However,
few methods are available to compare the two models in a global sense. Lin and Ying (1995) pro-
posed a general additive-multiplicative model, which subsumes the Lin and Ying (1994) and Cox
(1972) models. A related approach was developed by Martinussen and Scheike (2002). More research
directed at comparing the use of multiplicative and additive hazard models is needed. Reports compar-
ing the two approaches do exist (e.g., Klein, 2006), but are rare. Yin and Cai (2004) proposed an
additive hazard model for multivariate failure time data and, in their real-data application, the esti-
mated survival curves based on their proposed additive model were notably different than those based
on the multiplicative counterpart, the Wei, Lin and Weissfeld (1989) model. It is not known whether
such lack of agreement between the multiplicative and additive approaches is the rule or the exception
and whether one model tends to out-perform the other with respect to goodness-of-fit and/or predic-
tion.
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