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In this article, two sets of fourth-order compact finite difference schemes are constructed for solving heat-
conducting problems of two or three dimensions, respectively. Both problems are with Neumann boundary
conditions. These works are extensions of our earlier work (Zhao et al., Fourth order compact schemes of a
heat conduction problem with Neumann boundary conditions, Numerical Methods Partial Differential Equa-
tions, to appear) for the one-dimensional case. The local one-dimensional method is employed to construct
these two sets of schemes, which are proved to be globally solvable, unconditionally stable, and convergent.
Numerical examples are also provided. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 24:
165–178, 2008
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I. INTRODUCTION

In this article, two sets of fourth-order compact finite difference schemes for heat-conducting
problems of two or three dimensions are studied, respectively. Both problems are with Neumann
boundary conditions. These works are extensions of our earlier work reported in [1].

What makes these two sets of schemes different from many others, such as those reported
in [2] and [3–14], is that they are uniformly fourth-order at both interior and boundary points.
The LOD method is used so that the schemes are constructed through a sequence of two or three
one-dimensional equations. Moreover, they are proved to be globally solvable, unconditionally
stable with respect to initial data, and convergent. Numerical examples are also provided.
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The two sets of schemes are derived based on the following two-dimensional problem:

Ut = Uxx + Uyy + F(x, y, t), 0 < x, y < 1, t > 0,

U(x, y, 0) = U0(x, y),

Ux(0, y, t) = α1(y, t), Ux(1, y, t) = α2(y, t), (1)

Uy(x, 0, t) = β1(x, t), Uy(x, 1, t) = β2(x, t);

and the following three-dimensional problem:

Ut = Uxx + Uyy + Uzz + F(x, y, z, t), 0 < x, y, z < 1, t > 0,

U(x, y, z, 0) = U0(x, y, z),

Ux(0, y, z, t) = α1(y, z, t), Ux(1, y, z, t) = α2(y, z, t), (2)

Uy(x, 0, z, t) = β1(x, z, t), Uy(x, 1, z, t) = β2(x, z, t),

Uz(x, y, 0, t) = γ1(x, y, t), Uz(x, y, 1, t) = γ2(x, y, t),

where α1(·, t), α2(·, t); β1(·, t), β2(·, t); γ1(·, t), and γ2(·, t) are reasonably smooth functions of two
or three space variables.

Here is the outline of the article. In Section II, a set of fourth-order compact schemes
for the two-dimensional case is derived. Its solvability, stability, and convergence results are
shown in Section III. Since the detail in proving these properties for the 2D and 3D cases
is similar to each other, in Section IV, we only list the set of schemes for the 3D case. In
Section V, numerical examples are provided to test the accuracy for the set of schemes in the 2D
case.

II. A SET OF COMPACT SCHEMES FOR 2D CASE

Assume that the space meshes for both x and y directions are the same, which is denoted by h and
assumed to satisfy (M + 1)h = 1 for a positive integer M . �t denotes the time increment, and
um

i,j , (uxx)
m
i,j , and (uyy)

m
i,j are used to represent the approximations of U(xi , yj , tm), Uxx(xi , yj , tm),

and Uyy(xi , yj , tm), respectively, where U(x, y, t) is the exact solution of (1). i, j , and m are
used to denote the discrete x, y space, and time indexes, respectively, where 0 ≤ i, j ≤ M + 1
and m ≥ 0. Please take a note that m represents a positive constant, which may not be an
integer.

Using the LOD method reported in [2], we first separate the following equation:

Ut = Uxx + Uyy + F(x, y, t)

into the following two one-dimensional equations:

1

2
Ut = Uxx + 1

2
F(x, y, t);

1

2
Ut = Uyy + 1

2
F(x, y, t). (3)
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We then apply the well-known Crank–Nicolson method to the above two equations and obtain
the following two discrete equations:

1

2

u
m+ 1

2
i,j − um

i,j
�t

2

= 1

2

(
(uxx)

m+ 1
2

i,j + (uxx)
m
i,j

)
+ 1

2
F

m+ 1
4

i,j , (4)

1

2

um+1
i,j − u

m+ 1
2

i,j
�t

2

= 1

2

(
(uyy)

m+1
i,j + (uyy)

m+ 1
2

i,j

)
+ 1

2
F

m+ 3
4

i,j , (5)

where

F
m+ 1

4
i,j = 1

2

(
F(xi , yj , tm) + F(xi , yj , tm+ 1

2 )
)

, (6)

or

F
m+ 1

4
i,j = F

(
xi , yj , tm+ 1

4

)
,

F
m+ 3

4
i,j = 1

2

(
F

(
xi , yj , tm+ 1

2

)
+ F(xi , yj , tm+1)

)
, (7)

or

F
m+ 3

4
i,j = F

(
xi , yj , tm+ 3

4

)
.

According to the result of Crank–Nicolson method, the truncation errors of (4) and (5) are order
of �t2 in time.

Applying the results in [1] to
{
(uxx)

m
i,j

}
,
{
(uxx)

m+ 1
2

i,j

}
,
{
(uyy)

m+ 1
2

i,j

}
,
{
(uyy)

m+1
i,j

}
in (4) and (5), we

obtain the following three schemes for both interior and boundary points, which provide fourth-

order approximations to
{
(uxx)

m+ 1
2

i,j

}
and

{
(uxx)

m
i,j

}
in (4)

1

10
(uxx)

m
i−1,j + (uxx)

m
i,j + 1

10
(uxx)

m
i+1,j = 6

5h2

(
um

i−1,j − 2um
i,j + um

i+1,j

)
,

2 ≤ i ≤ M − 1, 1 ≤ j ≤ M; (8)

11

6
(uxx)

m
1,j − 1

3
(uxx)

m
2,j = −α1(yj , tm)

h
+ um

2,j − um
1,j

h2
, 1 ≤ j ≤ M; (9)

11

6
(uxx)

m
M ,j − 1

3
(uxx)

m
M−1,j = α2(yj , tm)

h
+ um

M−1,j − um
M ,j

h2
, 1 ≤ j ≤ M; (10)

and the next three schemes for both interior and boundary points, which provide fourth-order
approximations to

{
(uyy)

m+1
i,j

}
and

{
(uyy)

m+ 1
2

i,j

}
in (5)

1

10
(uyy)

m
i,j−1 + (uyy)

m
i,j + 1

10
(uyy)

m
i,j+1 = 6

5h2

(
um

i,j−1 − 2um
i,j + um

i,j+1

)
,

1 ≤ i ≤ M , 2 ≤ j ≤ M − 1; (11)

11

6
(uyy)

m
i,1 − 1

3
(uyy)

m
i,2 = −β1(xi , tm)

h
+ um

i,2 − um
i,1

h2
, 1 ≤ i ≤ M; (12)

11

6
(uyy)

m
i,M − 1

3
(uyy)

m
i,M−1 = β2(xi , tm)

h
+ um

i,M−1 − um
i,M

h2
, 1 ≤ i ≤ M . (13)
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From the above derivation, it can be seen that the new set of schemes, (4)–(13), has a truncation
error of order �t2 + h4 in time and space, and hence, it is consistent with the original differential
equations.

To express the set of schemes (4)–(13) into vector forms, we first define the following six
vectors of M2 dimensions; and the two block matrices of M2 × M2 dimensions:

�um = (
um

1,1, um
2,1, . . . , um

M ,1; . . . ; um
1,M , um

2,M , . . . , um
M ,M

)T
,

�um
xx = (

(uxx)
m
1,1, (uxx)

m
2,1, . . . , (uxx)

m
M ,1; . . . ; (uxx)

m
1,M , (uxx)

m
2,M , . . . , (uxx)

m
M ,M

)T
,

�um
yy = (

(uyy)
m
1,1, (uyy)

m
1,2, . . . , (uyy)

m
1,M ; . . . ; (uyy)

m
M ,1, (uyy)

m
M ,2, . . . , (uyy)

m
M ,M

)T
, (14)

�α(tm) =
(

−α1(y1, tm)

h
, . . . , −α2(yM , tm)

h
; . . . ; −α1(y1, tm)

h
, . . . , −α2(yM , tm)

h

)T

,

�β(tm) =
(

−β1(x1, tm)

h
, . . . , −β2(xM , tm)

h
; . . . ; −β1(x1, tm)

h
, . . . , −β2(xM , tm)

h

)T

,

�F m = (
F m

1,1, F m
2,1, . . . , F m

M ,1; . . . ; F m
1,MF m

2,M . . . , F m
M ,M

)T
,

and Ab =




A

A

. . .
A




M2×M2

, Bb =




B

B

. . .
B




M2×M2

,

where A and B are the following two M × M matrices obtained in [1]:

A =




22 −4
1 10 1

. . .
. . .

. . .
1 10 1

−4 22




M×M

, B =




6 −6
−6 12 −6

. . .
. . .

. . .
−6 12 −6

−6 6




M×M

. (15)

Furthermore, we let matrix P denote the M2 × M2 permutation matrix such that:

P �um = P
(
um

1,1, um
2,1, . . . , um

M ,1; . . . ; um
1,M , um

2, M , . . . , um
M ,M

)T

= (
um

1,1, um
1,2, . . . , um

1,M ; . . . ; um
M ,1, um

M ,2, . . . , um
M ,M

)T

.
(16)

It should be pointed out that the elements of vectors �um and �um
xx are arranged in M sectors

according to their rows, while elements of �um
yy and P �um are arranged in the same number of sectors

according to their columns.
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Thus, the set of schemes (4)–(13) can be expressed into the following vector forms at a time
level tm:

�um+ 1
2 = �um + �t

2

(
�um

xx + �um+ 1
2

xx

)
+ �t

2
�F m+ 1

4 , (17)

1

10
Ab �um

xx = − 1

5h2
Bb �um + 6

5
�α(tm), (18)

1

10
Ab �um+ 1

2
xx = − 1

5 h2
Bb �um+ 1

2 + 6

5
�α

(
tm+ 1

2

)
, (19)

and

1

10
Ab �um+ 1

2
yy = − 1

5 h2
BbP �um+ 1

2 + 6

5
�β
(
tm+ 1

2

)
, (20)

1

10
Ab �um+1

yy = − 1

5h2
BbP �um+1 + 6

5
�β(tm+1), (21)

P �um+1 = P �um+ 1
2 + �t

2

(
�um+1

yy + �um+ 1
2

yy

)
+ �t

2
�F m+ 3

4 . (22)

Here Ab is invertible since Ab is a block-matrix of A, and A is invertible which is shown in
[1](see the Appendix).

III. SOLVABILITY, STABILITY AND CONVERGENCE FOR THE 2D CASE

A. Solvability

Assume that
{
um

i,j

}
have been obtained for 0 ≤ m ≤ n. The following two steps show that they

can be advanced to the next level
{
un+1

i,j

}
.

Step 1.
{
un

i,j

} → {
u

n+ 1
2

i,j

}
We substitute

{
un

i,j

}
into (17), (18), and (19), which can be combined into the following vector

form:

�un+ 1
2 = �un + �t

2

(
− 2

h2
A−1

b Bb

) (
�un+ 1

2 + �un
)

+ �t

2
12A−1

b

(
�α

(
tn+ 1

2

)
+ �α(tn)

)
+ �t

2
�F n+ 1

4 .

(23)

(23) can be further simplified to the next form:

(
I + rA−1

b Bb

)�un+ 1
2 = (

I − rA−1
b Bb

)�un + 6�tA−1
b

(
�α(tn+ 1

2

)
+ �α(tn)) + �t

2
�F n+ 1

4 , (24)

where r = �t

h2 .
From Lemma 1 in [1] (see the Appendix), which shows that the eigenvalues of A−1B are real

and non-negative, one may see that the eigenvalues of A−1
b Bb are real and non-negative since

A−1
b Bb is a block-matrix of A−1B. Hence, I + rA−1

b Bb is invertible because all its eigenvalues
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are real and in the form: 1 + rλ
A−1

b Bb
, which are strictly positive. This proves that the system

equations in (24) are solvable, and thus,
{
u

n+ 1
2

i,j

}
can be obtained from {un

i,j }.

Step 2.
{
u

n+ 1
2

i,j

} → {
un+1

i,j

}
Once

{
u

n+ 1
2

i,j

}
are obtained in Step 1, we substitute them into (20)–(22), which are combined

into the following vector form:

(
I + rA−1

b Bb

)
P �un+1 = (

I − rA−1
b Bb

)
P �un+ 1

2 + 6�tA−1
b

( �β(tn+ 1
2 ) + �β(tn)

)
+ �t

2
�F n+ 3

4 . (25)

Because I + rA−1
b Bb is invertible, (25) shows that the system equations in (25) are solvable. That

is to say that
{
un+1

i,j

}
can be obtained from

{
u

n+ 1
2

i,j

}
. These two steps show that

{
um

i,j

}
, (0 ≤ m ≤ n),

can be advanced to
{
un+1

i,j

}
.

B. Stability

Assume that �um
1 , �um

2 are two solutions of (4)–(13) with different initial data sets, but the same

function F and same boundary conditions. Then, �θm = �um
1 − �um

2 , �θm+ 1
2 = �um+ 1

2
1 − �um+ 1

2
2 , and

�θm+1 = �um+1
1 − �um+1

2 satisfy the following relations:

(
I + rA−1

b Bb

)�θm+ 1
2 = (

I − rA−1
b Bb

)�θm,(
I + rA−1

b Bb

)
P �θm+1 = (

I − rA−1
b Bb

)
P �θm+ 1

2 . (26)

By eliminating the intermedium term �θm+ 1
2 in (26), we obtain that:

�θm+1 = P −1
(
I + rA−1

b Bb

)−1(
I − rA−1

b Bb

)
P

(
I + rA−1

b Bb

)−1(
I − rA−1

b Bb

)�θm. (27)

Theorem 1. The set of schemes, (4)–(13), is unconditionally stable with respect to the initial
data. This implies that no restriction on the ratio r is required.

Proof. Since P , P −1 are permutation matrices obtained from the identity matrix I , they
satisfy the following results:

λσ (P ) = 1, λσ (P −1) = 1. (28)

Here, λσ (C) represents the spectral radius of a matrix C. According to the result obtained in [1],
the following result is true.

λσ

((
I + rA−1

b Bb

)−1(
I − rA−1

b Bb

)) ≤ 1. (29)

According to a result stated in [15] (see the Appendix), we have the following results:

‖P ‖ε ≤ 1 + ε, ‖P −1‖ε ≤ 1 + ε, (30)∥∥(
I + rA−1

b Bb

)−1(
I − rA−1

b Bb

)∥∥
ε
≤ 1 + ε, (31)

where ε is a positive constant, and ‖ · ‖ε represents a matrix norm corresponding to ε.
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Thus, by applying (30) and (31), we obtain the next result: At any fixed time level tn, where
tn ≤ T , we have that:

‖�θn‖ε ≤ ‖P −1‖ε

∥∥(
I + rA−1

b Bb

)−1(
I − rA−1

b Bb

)∥∥2

ε
‖P ‖ε‖�θn−1‖ε

≤ (1 + ε)4‖�θn−1‖ε

...

≤ (1 + ε)4n‖�θ 0‖ε . (32)

If ε is taken to be �t , we then obtain from (32) that:

‖�θn‖�t ≤ [(1 + �t)n]4‖�θ 0‖�t

≤ e4n�t‖�θ 0‖�t

≤ e4T ‖�θ 0‖�t , tn ≤ T . (33)

(33) does not mean that the difference between the two solutions, ‖�θn‖�t , increases with n. Instead,
it shows that for a given time T > 0, the difference between the two solutions, ‖�θn‖�t , is bounded
by the initial difference between the two solutions for any tn ≤ T . This indicates that the new set
of schemes is stable.

C. Convergence

According to the theory for the finite difference method stated in [3], a set of consistent and stable
finite difference schemes is convergent to the exact solution of the original differential equations.
Thus, we conclude that the stability and consistency results for the set of schemes, (4)–(13), imply
its convergence.

IV. A SET OF COMPACT SCHEMES FOR 3D CASE

The detail for constructing the set of schemes for the three-dimensional case is very similar to
that of the two-dimensional case derived in the previous two sections. Therefore, only the set of
schemes is listed here.

As in the two-dimensional case, we let h and �t be the space mesh and time increment,
respectively. The space meshes for all three directions, x, y and z, are assumed to be h and
satisfy (M + 1)h = 1 for a positive integer M . um

i,j ,k , (uxx)
m
i,j ,k , (uyy)

m
i,j ,k , and (uzz)

m
i,j ,k are

used to represent the approximations of U(xi , yj , zk , tm), Uxx(xi , yj , zk , tm), Uyy(xi , yj , zk , tm), and
Uzz(xi , yj , zk , tm), where U(x, y, z, t) is the exact solution of (2).

By using the LOD method, the heat equation

Ut = Uxx + Uyy + Uzz + F(x, y, z, t)

can be separated into the following three one-dimensional equations:

1

3
Ut = Uxx + 1

3
F(x, y, z, t),

1

3
Ut = Uyy + 1

3
F(x, y, z, t), (34)

1

3
Ut = Uzz + 1

3
F(x, y, z, t).
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Applying the Crank–Nicolson method to the equations in (34) sequentially, we obtain that:

u
m+ 1

3
i,j ,k − um

i,j ,k

3 �t

3

= 1

2

(
(uxx)

m+ 1
3

i,j ,k + (uxx)
m
i,j ,k

)
+ 1

3
F

m+ 1
6

i,j ,k , (35)

u
m+ 2

3
i,j ,k − u

m+ 1
3

i,j ,k

3 �t

3

= 1

2

(
(uyy)

m+ 2
3

i,j ,k + (uyy)
m+ 1

3
i, j ,k

)
+ 1

3
F

m+ 1
2

i,j ,k , (36)

um+1
i,j ,k − u

m+ 2
3

i,j ,k

3 �t

3

= 1

2

(
(uzz)

m+1
i,j ,k + (uzz)

m+ 2
3

i,j ,k

)
+ 1

3
F

m+ 5
6

i,j ,k , (37)

where

F
m+ 1

6
i,j ,k = 1

2

(
F(xi , yj , zk , tm) + F

(
xi , yj , zk , tm+ 1

3

))
, (38)

or

F
m+ 1

6
i,j ,k = F

(
xi , yj , zk , tm+ 1

6

)
, (39)

F
m+ 1

2
i,j ,k = 1

2

(
F

(
xi , yj , zk , tm+ 1

3

)
+ F

(
xi , yj , zk , tm+ 2

3

))
, (40)

or

F
m+ 1

2
i,j ,k = F

(
xi , yj , zk , tm+ 1

2

)
, (41)

F
m+ 5

6
i,j ,k = 1

2

(
F

(
xi , yj , zk , tm+1

) + F
(
xi , yj , zk , tm+ 2

3
))

, (42)

or

F
m+ 5

6
i,j ,k = F

(
xi , yj , zk , tm+ 5

6

)
. (43)

By using a similar argument as that in the 2D case, we obtain the following three schemes,
which provide fourth-order approximations to

{
(uxx)

m+ 1
3

i,j ,k

}
,
{
(uxx)

m
i,j ,k

}
in (35).

1

10
(uxx)

m
i−1,j ,k + (uxx)

m
i,j , k + 1

10
(uxx)

m
i+1,j ,k = 6

5h2

(
um

i−1,j ,k − 2um
i,j ,k + um

i+1, j ,k

)
,

2 ≤ i ≤ M − 1, 1 ≤ j , k ≤ M , (44)

11

6
(uxx)

m
1,j ,k − 1

3
(uxx)

m
2,j ,k = −α1(yj , zk , tm)

h
+ um

2,j ,k − um
1,j ,k

h2
, i = 1, 1 ≤ j , k ≤ M (45)

11

6
(uxx)

m
M ,j ,k − 1

3
(uxx)

m
M−1,j ,k = α2(yj , zk , tm)

h
+ um

M−1,j ,k − um
M ,j ,k

h2
, i = M , 1 ≤ j , k ≤ M .

(46)
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The next three schemes provide fourth-order approximations to
{
(uyy)

m+ 2
3

i,j ,k

}
and

{
(uyy)

m+ 1
3

i,j ,k

}
in (36).

1

10
(uyy)

m
i,j−1,k + (uyy)

m
i,j , k + 1

10
(uyy)

m
i,j+1,k = 6

5h2

(
um

i,j−1,k − 2um
i,j ,k + um

i,j+1,k

)
,

2 ≤ j ≤ M − 1, 1 ≤ i, k ≤ M , (47)

11

6
(uyy)

m
i,1,k − 1

3
(uyy)

m
i,2,k = −β1(xi , zk , tm)

h
+ um

i,2,k − um
i,1,k

h2
, j = 1, 1 ≤ i, k ≤ M , (48)

11

6
(uyy)

m
i,M ,k − 1

3
(uyy)

m
i,M−1,k = β2(xi , zk , tm)

h
+ um

i,M−1,k − um
i,M ,k

h2
, j = M , 1 ≤ i, k ≤ M .

(49)

The last three schemes provide fourth-order approximations to
{
(uzz)

m+1
i,j ,k

}
and

{
(uzz)

m+ 2
3

i,j ,k

}
in (37).

1

10
(uzz)

m
i,j ,k−1 + (uzz)

m
i,j , k + 1

10
(uzz)

m
i,j ,k+1 = 6

5h2

(
um

i,j ,k−1 − 2um
i,j ,k + um

i,j , k+1

)
,

2 ≤ k ≤ M − 1, 1 ≤ i, j ≤ M , (50)

11

6
(uzz)

m
i,j ,1 − 1

3
(uzz)

m
i,j ,2 = −γ1(xi , yj , tm)

h
+ um

i,j ,2 − um
i,j ,1

h2
, k = 1, 1 ≤ i, j ≤ M , (51)

11

6
(uzz)

m
i,j ,M − 1

3
(uzz)

m
i,j ,M−1 = γ2(xi , yj , tm)

h
+ um

i,j ,M−1 − um
i,j ,M

h2
, k = M , 1 ≤ i, j ≤ M .

(52)

It can be seen that the set of schemes, (35)–(52), has truncation error of order �t2 + h4 in time
and space.

V. NUMERICAL EXAMPLES

The numerical examples provided in this section are based on equations of two dimensions. The
new set of schemes obtained in Section II is compared to the following set of Crank–Nicolson
schemes, which has truncation error of order �t2 + h2 at interior points, but only order h at the
boundary points.

um+1
i,j − um

i,j

�t
= δ2

x

(
um+1

i,j + um
i,j

2

)
+ δ2

y

(
um+1

i,j + um
i,j

2

)
+ F

m+ 1
2

i,j , 1 ≤ i, j ≤ M , m ≥ 0,

(53)

um
1,j − um

0,j

h
= α1(yj , tm),

um
M+1,j − um

M ,j

h
= α2(yj , tm), 1 ≤ j ≤ M , m ≥ 0,

um
i,1 − um

i,0

h
= β1(xi , t

m),
um

i,M+1 − um
i,M

h
= β2(xi , t

m), 1 ≤ i ≤ M , m ≥ 0,
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where

δ2
xθi,j = θi+1,j − 2θi,j + θi−1,j

h2
, δ2

yθi,j = θi,j+1 − 2θi,j + θi,j−1

h2
.

The maximum absolute errors of these two sets of schemes are computed and compared with
each other. The computations are performed for 0 < t < 1 using �t = 0.0001 and h = 0.02, 0.04,
and 0.1, respectively. It is worth reiterating at this point that no restriction on h and �t for either
set of schemes is required. The choices of h and �t in this section are for testing purpose only.
The convergent criterion for time level m + 1 is:

Max1≤i,j≤M

∣∣(um+1
i,j

)new − (
um+1

i,j

)old∣∣ < 10−8.

The first example is described below:

Ut = Uxx + Uyy , 0 < x, y < 1; t > 0,

U(x, y, 0) = cos(πx) cos(πy),

Ux(0, y, t) = Ux(1, y, t) = 0, (54)

Uy(x, 0, t) = Uy(x, 1, t) = 0,

where the exact solution is U(x, y, t) = e−2π2t cos(πx) cos(πy). In application, the homo-
geneous boundary conditions imply that the boundaries are insulated. The maximum absolute
errors at each time level are plotted in Fig. 1, which shows that the maximum absolute error of

FIG. 1. Comparison results for Example 1.
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FIG. 2. Comparison results for Example 2.

the new set of schemes is about the square of the maximum absolute error of the Crank–Nicolson
scheme. Noted that the truncation error of the Crank–Nicolson schemes is order O(h2) is space,
the numerical result indicates that our set of schemes has much higher order of accuracy than the
Crank–Nicolson scheme.

The second example is the following nonhomogeneous one:

Ut = Uxx + Uyy + F(x, y, t), 0 < x, y < 1; t > 0,

F(x, y, t) = π 2e−π2t cos(πx) cos(πy) − 4 + x + y,

U(x, y, 0) = cos(πx) cos(πy) + x2 + y2, (55)

Ux(0, y, t) = t , Ux(1, y, t) = t + 2,

Uy(x, 0, t) = t , Uy(x, 1, t) = t + 2,

where the exact solution is

U(x, y, t) = e−π2t cos(πx) cos(πy) + x2 + y2 + (x + y)t .

The nonhomogeneous boundary conditions imply that there is a heat exchange through the bound-
aries. The comparison results are plotted in Fig. 2. Again, we see significant improvement in
accuracy of the current set of schemes over the Crank–Nicolson schemes.
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VI. CONCLUSIONS

In this article, two sets of fourth-order compact finite difference schemes are derived for heat-
conducting problems of two or three dimensions with Neumann boundary conditions, respectively.
What makes these two sets of schemes different from others is that they are uniformly fourth-order
at both interior and boundary points. The LOD method is used so that both sets of schemes are
constructed through a sequence of one-dimensional equations. Moreover, the set of schemes for
the 2D case is shown to be globally solvable, unconditionally stable with respect to initial data,
and convergent. The proofs of the same properties for the 3D case are very similar to those of 2D
case, so the detail is omitted. Numerical examples for the 2D case are used to verify the accuracy
of the set of the schemes.

APPENDIX

For review purpose, we list a few results obtained in [1].

Lemma 1. Assume that λ is an eigenvalue of matrix A−1B, and �x, a vector of dimension M , is
a corresponding eigenvector. Then λ is real and satisfies:

λ ≥ 0.

Proof. Since λ and �x are an eigenvalue and a corresponding eigenvector of matrix A−1B,
they satisfy the following conditions:

λ �x = A−1B �x or λ �xT A�x = �xT B �x.

Since

�xT A�x = [x1, x2, . . . , xM ]




22 −4
1 10 1

. . .
. . .

. . .
1 10 1

−4 22







x1

x2

...
xM




= 22x2
1 − 4x1x2 + x1x2 + 10x2

2 + 2x2x3 + 10x3
3 + 2x3x4 + · · ·

+ 2xM−2xM−1 + 10x2
M−1 − 4xM−1xM + xM−1xM + 22x2

M

≥ 22x2
1 − 3

2

(
x2

1 + x2
2

) + 10x2
2 − (

x2
2 + x2

3

) + 10x2
3 − (

x2
3 + x2

4

) + · · ·

+ (
x2

M−2 + x2
M−1

) + 10x2
M−1 − 3

2

(
x2

M−1 + x2
M

) + 22x2
M

= 41

2
x2

1 + 15

2
x2

2 + 8x2
3 + · · · + 8x2

M−2 + 15

2
x2

M−1 + 41

2
x2

M

> 0
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and

�xT B �x = [x1, x2, . . . , xM ]




6 −6
−6 12 −6

. . .
. . .

. . .
−6 12 −6

−6 6







x1

x2

...
xM




= 6x2
1 − 6x1x2 − 6x1x2 + 12x2

2 − 12x2x3 + 12x2
3 − 12x3x4 − · · ·

− 12xM−2xM−1 + 12x2
M−1 − 6xM−1xM − 6xM−1xM + 6x2

M

≥ 6x2
1 − 6

(
x2

1 + x2
2

) + 12x2
2 − 6

(
x2

2 + x2
3

) + 12x2
3 − 6

(
x2

3 + x2
4

) − · · ·
− 6

(
x2

M−2 + x2
M−1

) + 12x2
M−1 − 6

(
x2

M−1 + x2
M

) + 6x2
M

= 0,

the above two results indicate that λ is real and λ ≥ 0.

The following lemma is from [15].

Lemma 2. Let A be an arbitrary square matrix. Then for any operator matrix norm ‖ · ‖, we
have λσ (A) ≤ ‖A‖, here λσ (A) represents the spectral radius of A. Moreover, if ε > 0, then
there exists an operator matrix norm, denoted here by ‖ · ‖ε , such that ‖A‖ε ≤ λσ (A) + ε

Theorem 1. The set of schemes, consisting of (2), (7), (19), and (20) or their equivalent vector
form (25) in [1], is unconditionally stable with respect to the initial data

Proof. Lemma 1, (31) and (32) in [1] indicate the following result:

‖(I + rA−1B)−1(I − r A−1B)‖ε ≤ λσ ((I + rA−1B)−1 (I − rA−1B)) + ε ≤ 1 + ε,

where ε > 0. From this, it can be concluded that:

‖�θn‖ε ≤ ‖[(I + rA−1B)−1(I − rA−1B)]n‖ε‖�θ 0‖ε

≤ (‖(I + rA−1B)−1(I − rA−1B)‖ε)
n‖�θ 0‖ε

≤ (1 + ε)n‖�θ 0‖ε

≤ enε‖�θ 0‖ε .

If we take ε = �t , then the above relation yields the following result:

‖�θn‖�t ≤ en�t‖�θ 0‖�t ≤ eT ‖�θ 0‖�t ,

for tn ≤ T . This completes the proof.
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