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Previous neuroimaging research has shown diminished anterior cingulate cortex (ACC) function in
posttraumatic stress disorder (PTSD), with most of these findings occurring in pregenual/subgenual
ACC. This study investigates whether dorsal ACC (dACC) function is also diminished in PTSD. The
authors used functional magnetic resonance imaging to study dACC function during the performance of
the counting Stroop. Thirteen men with PTSD and 13 trauma-exposed men without PTSD participated.
In the interference-neutral comparison, both groups showed response time increases and dACC activations.
These results suggest that dACC function in PTSD is not diminished during the performance of this
nonemotional task. In fact, there were statistical trends in the opposite direction. These findings will help
to better characterize functional brain abnormalities in this disorder.

For over a decade, researchers have used neuroimaging

techniques to study brain function in posttraumatic stress

disorder (PTSD). An immediate goal of this research is to

determine whether brain regions or networks function ab-

normally in this disorder. Information about the structure

or function of brain regions in PTSD could potentially

inform diagnosis, the identification of risk factors, and the

prediction of treatment response.

One of the most consistent functional neuroimaging

findings in PTSD has been that of relatively diminished

activation in the medial prefrontal cortex, including the

anterior cingulate cortex (ACC) and the medial frontal

gyrus. These brain regions are involved in a variety of

domains, including the processing of emotional informa-

tion and the retention of information about safety sig-

nals (Bush, Luu, & Posner, 2000; Milad & Quirk, 2002;

Quirk, Russo, Barron, & Lebron, 2000; Vogt, Finch, &

Olson, 1992). Decreased activation or failure to activate

the ACC in PTSD has been demonstrated during the

presentation of traumatic narratives (Bremner, Narayan

et al., 1999; Britton, Phan, Taylor, Fig, & Liberzon, 2005;

Lanius et al., 2001; Lindauer et al., 2004; Shin et al., 1999),

negative nontraumatic stimuli (Lanius et al., 2003; Phan,

Britton, Taylor, Fig, & Liberzon, 2006), combat pictures

and/or sounds (Bremner, Staib et al., 1999; Yang, Wu,

Hsu, & Ker, 2004), and fearful facial expressions (Shin

et al., 2005; Williams et al., 2006). Relatively diminished

activation of the ACC in PTSD has also been shown

during extinction after fear conditioning (Bremner et al.,

2005), as well as during auditory continuous performance

(Semple et al., 2000), auditory oddball (Bryant et al.,

2005), emotional Stroop interference (Bremner et al.,

2004; Shin et al., 2001), and emotional word retrieval

tasks (Bremner et al., 2003). Posttraumatic stress disorder

symptom severity appears to be inversely associated with

ACC activation, such that the greater the symptom severity,

the lower the ACC activation (Shin et al., 2005; Williams

et al., 2006).

Most of the findings of relatively diminished activation

in the ACC in PTSD have occurred in pregenual or sub-

genual ACC (portions of the ACC that are anterior and

ventral to the genu of the corpus callosum). This suggests

that these subregions of the ACC may be more involved in

the pathophysiology of PTSD as compared to more dorsal

portions of the ACC (superior to the corpus callosum). In-

deed, pregenual and subgenual ACC appear to be activated

in tasks involving emotional material compared to the dor-

sal ACC (dACC), which is thought to be more involved in

the processing of conflict, selection of responses, and detec-

tion of errors during nonemotional cognitive tasks (Bush

et al., 2000). However, previous studies have not assessed

dACC function in PTSD using a cognitive task designed

to activate that specific subregion. In the current study,

we assessed dACC function in PTSD and trauma-exposed

comparison participants without PTSD using functional

magnetic resonance imaging (fMRI) and a previously val-

idated cognitive task, the counting Stroop (Bush et al.,

1998).

In the counting Stroop, participants are asked to count

the number of words presented on the screen and to press

Journal of Traumatic Stress DOI 10.1002/jts. Published on behalf of the International Society for Traumatic Stress Studies.



Dorsal ACC in PTSD 703

Figure 1. Sample stimuli from the counting Stroop.

a button corresponding to the correct number. In the in-

terference condition, the presented words refer to numbers

(e.g., “two”) and the meaning of the word never matches the

correct response (see Figure 1). In the neutral condition,

the words are unrelated to numbers (e.g., “dog,” “cat”).

Comparison of the interference versus neutral conditions

yields fMRI signal increases in dACC in healthy individu-

als (Bush et al., 1998, 1999; Matthews, Paulus, Simmons,

Nelesen, & Dimsdale, 2004). If the ACC abnormality in

PTSD extends to dorsal portions of this structure, then the

PTSD group ought to show decreased dACC activation

and/or behavioral performance deficits during the count-

ing Stroop. Alternatively, if the ACC abnormality is con-

fined to more ventral regions of the ACC, then the PTSD

and control groups should show similar dACC activation

and behavioral performance.

Most behavioral studies involving the Stroop task and

PTSD have used emotional versions of the Stroop to ex-

amine attentional biases (e.g., Bryant & Harvey, 1995;

Constans, McCloskey, Vasterling, Brailey, & Mathews,

2004; Field et al., 2001; Foa, Feske, Murdock, Kozak,

& McCarthy, 1991; Kaspi, McNally, & Amir, 1995;

Litz et al., 1996; Thrasher, Dalgleish, & Yule, 1994;

Vrana, Roodman, & Beckham, 1995). Fewer studies have

implemented nonemotional Stroop paradigms (Bremner

et al., 2004; Kanagaratnam & Asbjornsen, in press; Litz

et al., 1996; Stein, Kennedy, & Twamley, 2002; Vasterling,

Brailey, Constans, & Sutker, 1998; Vasterling et al., 2002).

Of these, only one study has reported significantly worse

Stroop performance in a PTSD group compared to a

trauma-exposed comparison group without PTSD (Litz

et al., 1996). Thus, behavioral performance of the stan-

dard, nonemotional Stroop appears to remain intact in

most samples of PTSD in the existing literature.

M E T H O D

Participants

Participants were 26 trauma-exposed men without a his-

tory of head injury, neurological disorders, or other major

medical conditions. Thirteen participants met the Diag-

nostic and Statistical Manual of Mental Disorders, Fourth

Edition (DSM-IV ; American Psychiatric Association,

1994) diagnostic criteria for current PTSD (PTSD group)

and 13 participants (who were exposed to criterion A trau-

matic events) never had PTSD (control group) as deter-

mined by a structured clinical interview (the Clinician-

Administered PTSD Scale [CAPS]; Weathers, Keane,

& Davidson, 2001). Participants had served in combat

in Vietnam (10 PTSD, 8 control) or were firefighters

(3 PTSD, 5 control). All cases of PTSD were chronic (>10

years). Twenty-four participants were right-handed, and 2

(1 PTSD, 1 Control) were left-handed (Oldfield, 1971).

No participant was taking psychotropic or cardiovascular

medication at the time of study. These 26 individuals also

participated in another previously reported study involving

a separate task designed to study amygdala function (Shin

et al., 2005).

The PTSD and control groups did not differ in age

(PTSD M = 52.8 years, SD = 7.3; control M = 49.7 years,

SD = 8.9; F < 1) or marital status (PTSD = 69% married,

control = 85% married;), χ2(1, N = 26) < 1. The control

group had an average of 1.8 more years of education than

the PTSD group (PTSD M = 13.8 years, SD = 2.3; con-

trol M = 15.6 years, SD = 1.9), F (1, 24) = 5.02, p < .05.

Compared to the control group, the PTSD group had sig-

nificantly greater PTSD symptom severity, as measured by

the CAPS (PTSD M = 62.0, SD = 25.2; control M = 3.3,

SD = 6.0), F (1, 22) = 61.90, p < .001. The PTSD group

also had significantly higher scores on the Beck De-

pression Inventory (BDI; Beck & Steer, 1987) (PTSD
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M = 20.7, SD = 17.0; control M = 4.2, SD = 4.3),

F (1, 24) = 11.52, p < .01. Finally, the PTSD group had

significantly higher scores on the Beck Anxiety Inventory

(BAI; Beck & Steer, 1990) (PTSD M = 18.8, SD = 14.5;

control M = 5.0, SD = 6.2), F (1, 24) = 10.08, p < .01.

The Structured Clinical Interview for DSM-IV (SCID;

First, Spitzer, Gibbon, & Williams, 1995) was used to

assess for other Axis I psychiatric disorders. Participants

in the PTSD group met criteria for the following cur-

rent comorbid diagnoses: major depression (n = 4), dys-

thymia (n = 2), bipolar II (n = 1), panic disorder (n = 3),

social phobia (n = 2), and specific phobia (n = 1). None

of the participants in either group met diagnostic criteria

for current alcohol or substance use disorders. None of the

participants in the control group met criteria for any cur-

rent Axis I diagnosis. Past histories of alcohol dependence

(which are not uncommon among Vietnam veterans) oc-

curred in 5 PTSD and 2 control participants. Past histories

of drug dependence occurred in 2 PTSD and 0 control

participants.

The Partners Healthcare System (Boston, MA) and

Veterans Affairs Medical Center (Manchester, NH) In-

stitutional Review Boards approved this study. Written in-

formed consent was obtained from each participant.

Behavioral Procedures

Task. Participants performed the counting Stroop (Bush

et al., 1998) during fMRI data acquisition. On each trial,

participants viewed a set of identical words (1–4 words

per trial) displayed simultaneously on a screen; they were

asked to count the number of words displayed and to press

a button corresponding to that number. Each trial was

1.5 seconds in duration and consisted of a blank screen

(50 ms) followed by a word set (1.45 s). Participants re-

sponded using a keypad consisting of four horizontally

arranged buttons that represented the numbers 1, 2, 3,

and 4 from left to right. Participants used the middle and

index fingers of their left hand to press the 1 and 2 but-

tons, respectively; participants used the index and middle

fingers of their right hands to press the 3 and 4 buttons,

respectively. Response times and error rates were compiled

on a Macintosh computer (Cupertino, CA) during task

performance. Participants received 40 practice trials before

fMRI scanning began.

Stimuli. Stimuli were affectively neutral words that named

animals (dog, cat, mouse, bird) and words that named

numbers (one, two, three, four). The animal words made

up the neutral (N) condition, in which there was no con-

flict between the meaning of the word and the correct

response. The number words made up the interference (I)

condition, in which there was always a conflict between

the meaning of the word and the correct response (see

Figure 1). Stimuli were presented in eight blocks (30 s

each) alternating between conditions (N and I) per func-

tional run. Each run began and ended with 30 s of a

fixation baseline, which involved simply focusing on a cen-

tral fixation cross (e.g., +ININININ+). Each participant

completed two functional runs, and the order of condi-

tions was counterbalanced across participants and groups.

The stimuli were displayed using standardized software

(MacStim 2.5.9; Darby) and a Sharp XG-2000V color

LCD projector (Osaka, Japan). Immediately prior to this

task, all participants had viewed blocks of neutral, happy,

and fearful facial expressions in a passive viewing paradigm

(Shin et al., 2005).

fMRI Procedures

Scans were obtained from a Symphony/Sonata 1.5 Tesla

whole body high-speed imaging device equipped for echo

planar imaging (EPI; Siemens Medical Systems, Iselin, NJ)

with a 3-axis gradient head coil. Head movement was

restricted using expandable foam cushions. After an au-

tomated scout image was acquired and shimming pro-

cedures were performed to optimize field homogeneity

(Reese, Davis, & Weisskoff, 1995), high-resolution three-

dimensional (3D) magnetization-prepared rapid acquisi-

tion gradient-echo (MP-RAGE) sequences (TR/TE/flip

angle = 7.25 ms/3 ms/7◦) with an in-plane resolution

of 1.3-mm and 1-mm slice thickness, were collected for

positioning the slice prescription of the subsequent se-

quences. Then, a T1-weighted (TR/TE/flip angle = 8 s/39
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ms/90◦) and a T2-weighted (TR/TE/flip angle = 10 s/48

ms/120◦) sequence were gathered. Functional MRI (blood

oxygenation level dependent (BOLD; Kwong et al., 1992)

images were acquired using a gradient echo T2*-weighted

sequence (TR/TE/flip angle = 2.5 s/40 ms/90◦). Prior to

each scan, four images were acquired and discarded to al-

low longitudinal magnetization to reach equilibrium. The

T1, T2, and functional images were collected in the same

plane (24 coronal slices angled perpendicular to the an-

terior commissure–posterior commissure [AC–PC] line)

with the same slice thickness (7 mm, skip 1 mm; voxel size

3.125 × 3.125 × 8 mm), excitation order (interleaved),

and phase encoding (foot-to-head).

Data Analysis. Response times from correct trials only

were averaged within each condition and each run for each

participant. Errors were expressed as a percentage of the

total number of trials on which the participant responded

within each condition and each run for each participant.

Behavioral data from 1 control participant were lost due

to technical difficulties.

Preprocessing and statistical analysis of the fMRI data

were performed using the SPM99 software package (Well-

come Department of Cognitive Neurology, London, UK;

Friston, Frith, Liddle, & Frackowiak, 1991). Within

SPM99, images were motion corrected (sinc interpolation)

and transformed into a standard (Montreal Neurological

Institute; MNI) stereotactic space (bilinear interpolation).

Images were then smoothed with a 6-mm Gaussian

kernel.

In SPM99, voxelwise interference vs. neutral contrast

images were created for each participant. Data from both

runs per participant were included in this analysis. At each

voxel, the data were fit to a linear statistical model by the

method of least squares. The design was modeled using

a boxcar function convolved with the hemodynamic re-

sponse function. Hypotheses were tested as contrasts in

which linear compounds of the model parameters were

evaluated using t statistics, which were then transformed

to z-scores. Random effects analyses were then performed

to assess (a) the difference between conditions within each

group, and (b) the difference between groups on the

difference between conditions (i.e., Group × Condition

interaction).

The statistical parametric maps resulting from the ran-

dom effects analyses were inspected for activations in the

dACC, our a priori region of interest. The dACC was

defined as the portion of the AC superior to the corpus

callosum, between y = 0 and y =+30 mm (Bush et al.,

2002). For the dACC, we used a significance threshold of

p < .05 (two-tailed), corrected for multiple comparisons

(based on the 10 mL volume of dACC, (Rauch et al.,

2003). For regions about which we had no a priori pre-

diction, we used a more conservative constant significance

threshold of p < .00005, uncorrected (z ≥ 3.90).

To determine whether PTSD symptoms were related

to dACC activation, we ran correlational analyses between

CAPS scores and extracted values from dACC in each

group (shown in Figure 2). Our significance threshold for

this analysis was p < .05, two-tailed.

To determine whether dACC gray matter densities dif-

fered between groups, we conducted a post hoc voxel-

based morphometric analysis. We spatially normalized,

segmented, and smoothed (12-mm full width at half max-

imum [FWHM]) 3D MPRAGE images within SPM99

according to previously published methods (Ashburner &

Friston, 2000). The resulting images were compared be-

tween groups in a voxelwise manner in accordance with

the general linear model (Ashburner & Friston, 2000).

The smoothing kernel of 12 mm was chosen to facili-

tate comparison with previous voxel-based morphometric

studies of PTSD (Corbo, Clement, Armony, Pruessner, &

Brunet, 2005; Yamasue et al., 2003). Due to missing data

in 3 control participants, this analysis was conducted with

9 control and 10 PTSD participants. We focused this anal-

ysis on only the dACC and used a significance threshold of

p < .05 (two-tailed), corrected for multiple comparisons.

R E S U L T S

Behavioral Results

Three participants with PTSD and 1 control partici-

pant had unusually high error rates (20–44%) in the
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Figure 2. The functional images show activation in dorsal anterior cingulate cortex (dACC) in the interference versus neutral
contrast separately in the control (n = 12; top) and PTSD (n = 10; bottom) groups. Functional data are superimposed on a
standard SPM99 T1 template, displayed according to neurological convention. The bar graph shows magnetic resonance (MR)
signal change in the dACC (PTSD: MNI = +10, +22, +42; control: MNI = +4, +22, +42) in each condition (relative to
fixation baseline) for each group. MNI = Montreal Neurological Institute.

interference condition, averaged across both runs. Because

this is not an event-related study, we were unable to remove

fMRI datapoints corresponding to the trials on which er-

rors were made. Given that high error rates may indicate a

failure to comprehend or attend to the task (which could

render the corresponding fMRI data uninterpretable) and

the substantial evidence showing that committing errors

activates the anterior cingulate cortex (Bush et al., 2000;

Critchley, Tang, Glaser, Butterworth, & Dolan, 2005;

Holroyd et al., 2004; Mathalon, Whitfield, & Ford, 2003),

behavioral and fMRI BOLD data from these four partici-

pants were deemed (a priori) unreliable and removed from

all analyses (Bush et al., 1998, 1999). Removing data from

these four participants did not alter the pattern of be-

havioral and fMRI findings, with one exception as noted

below.

Journal of Traumatic Stress DOI 10.1002/jts. Published on behalf of the International Society for Traumatic Stress Studies.
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Response times and error rates were submitted to sep-

arate 2 (Diagnosis: PTSD, control) × 2 (Condition: in-

terference, neutral) ANOVAs. As expected, a significant

main effect of condition indicated that response times

were greater in the interference condition compared to the

neutral condition, F (1, 19) = 66.30, p < .001 (see Table

1). The main effect of group, F < 1, and interaction be-

tween condition and group, F (1, 19) = 3.13, ns), were not

significant.

With regard to error rates, the main effect of con-

dition was significant, F (1, 19) = 15.45, p < .001; er-

ror rates were higher in the interference condition than

in the neutral condition (see Table 1). The main effect

of group, F < 1, and interaction between condition and

group, F < 1, were not significant.

fMRI Results

In the control group (n = 12), BOLD signal increases oc-

curred in dACC. In the PTSD group (n = 10), BOLD

signal increases were found in dACC, as well as in regions

about which we had no a priori hypothesis (see Table 2).

In the control group, BOLD signal decreases occurred in

subgenual ACC. The PTSD group exhibited BOLD signal

decreases in bilateral insula, with a trend for a decrease in

subgenual ACC.

The voxelwise Condition × Diagnosis interaction re-

vealed no significant group differences. Furthermore,

BOLD signal increases in the dACC regions shown in

Figure 2 did not significantly differ between groups

Table 1. Response Times and Error Rates in Posttrau-
matic Stress Disorder (PTSD) and Control Groups

M SD

PTSD Control PTSD Control

Response time in ms
Interference 821 830 107 92
Neutral 772 754 105 69

Error rate
Interference 4.2% 4.0% 2.7% 1.6%
Neutral 2.5% 1.8% 1.1% 1.2%

Note. ms = milliseconds.

(p = .85; effect size r = .04). In a different location within

the dACC, a trend for greater BOLD signal increases in

the PTSD versus control group occurred in two separate

foci: (a) MNI =+12, +8, +48, z = 2.02, p < .06, ef-

fect size r = .29; and (b) MNI =−6, +8, +32, z = 1.92,

p < .08, effect size r = .43. However, these activations did

not exceed our significance threshold and their spatial ex-

tent was relatively small (7 and 8 voxels, respectively).

When the data from the 4 participants with high error

rates were added back into the analysis, the p-values asso-

ciated with these two small activations decreased to p < .02

and p < .07, respectively. This is not surprising given that

these participants made a large percentage of errors, which

is known to activate dACC.

Activation of dACC in the interference versus neutral

comparison was not significantly correlated with CAPS

total scores or with scores on subscales of the CAPS in

either group.

The post hoc voxel-based morphometric analysis

yielded no significant between-group differences in gray

matter density in dACC.

D I S C U S S I O N

In the current study, we found no evidence of diminished

function in the dACC in PTSD during the affectively

neutral counting Stroop task. If anything, the PTSD group

tended to show greater activation than the control group in

a small area of dACC, although that finding did not meet

our a priori criteria for significance. Dorsal ACC activation

was not significantly related to symptom severity, and the

groups did not differ in terms of gray matter densities, as

determined by voxel-based morphometry.

These results are broadly consistent with the hypothe-

sis that diminished ACC function may be more confined

to pregenual and subgenual ACC. Interestingly, this same

PTSD group (who showed intact dACC function here)

also showed diminished pregenual ACC function during

the passive viewing of emotional facial expressions (Shin

et al., 2005). Furthermore, in that study, pregenual ACC

function was inversely related to PTSD symptom sever-

ity. The current results are also convergent with those of
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Table 2. Interference Versus Neutral Comparison in Posttraumatic Stress Disorder (PTSD) and Control Groups

PTSD MNI Coordinates Control MNI Coordinates
Region Z (x , y , z) Region Z (x , y , z)

BOLD Signal increases
Dorsal ACC 2.59 +10, +22, +42 Dorsal ACC 2.59 +4, +22, +42

2.75 −8, +28, +40
2.83 0, +14, +50

Brainstem 4.44 +4, −22, −26
R Inferior temporal gyrus 4.40 +58, −46, −16
L Occipital cortex 4.38 −28, −88, +36

3.91 −32, −94, +12
R Precentral gyrus 3.98 +36, −16, +60

BOLD Signal decreases
Subgenual ACC 3.17 (ns) −6, +18, −12 Subgenual ACC 4.01 +6, +26, −8

3.29 (ns) −12, +20, −14
4.41 +38, −20, +18

B Insula 4.10 −48, −4, −2

Note. BOLD = blood oxygenation level dependent; MNI = Montreal Neurological Institute; B = bilateral; R = right; L = left; ACC = anterior cingulate cortex;
ns = nonsignificant.

Bremner et al. (2004), who found no group differences in

ACC activation during performance of a standard, affec-

tively neutral color Stroop. Indeed diminished ACC func-

tion may be more evident in the context of tasks involving

emotional versus neutral stimuli (Bryant et al., 2005; Shin

et al., 2001).

The counting Stroop has been shown to be sensitive

enough to detect diminished dACC function in patient

groups, such as in attention deficit/hyperactivity disorder

(Bush et al., 1999). In addition, using the emotional count-

ing Stroop, which is identical to the counting Stroop in all

respects except for the stimuli used, we observed dimin-

ished function in more pregenual portions of the ACC in

PTSD (Shin et al., 2001). Thus, our finding that dACC

function was not diminished in PTSD cannot be explained

by the use of an insensitive cognitive probe.

Our finding of no significant group difference in gray

matter densities in dACC is consistent with our previous

report of normal dACC volumes in PTSD (Rauch et al.,

2003). In contrast, other previous studies have reported

diminished volumes in or including dACC in PTSD

(Kitayama, Quinn, & Bremner, 2006; Woodward et al.,

2006; Yamasue et al., 2003). Our relatively small study

may have lacked the power to show significant between-

group differences in the voxel-based morphometric anal-

ysis, although the number of participants in the current

study did not differ greatly from that of Kitayama et al.

(2006). An account for the inconsistency between studies

remains unclear. The finding that voxel-based morphome-

tric results may indicate group differences in shape rather

than volume (Corbo et al., 2005) would seem to call for the

use of more standard volumetric segmentation procedures

in future studies.

The trend for greater dACC activation in PTSD was un-

expected. This finding could reflect increased effort in the

interference versus neutral conditions in the PTSD group.

We also considered the possibility that this trend could

reflect regulation of autonomic arousal during the cogni-

tive task (Critchley et al., 2003, 2005). However, three

recent studies have demonstrated that heart rate changes

during the performance of Stroop tasks are not significantly

higher in PTSD compared to control groups (Bremner

et al., 2004; Klumpers et al., 2004; Litz et al., 1996). Other

previous research shows that individuals with PTSD are not

more physiologically responsive to trauma-unrelated cog-

nitive stressors (e.g., mental arithmetic tasks) than trauma-

exposed individuals without PTSD (Blanchard, Kolb,

Gerardi, Ryan, & Pallmeyer, 1986; Keane et al., 1998; Orr,
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Meyerhoff, Edwards, & Pitman, 1998) and PTSD symp-

tom severity appears to be negatively correlated with skin

conductance during a cognitive stressor (McDonagh-Coyle

et al., 2001). Future fMRI studies in which psychophysio-

logic data are collected would be helpful in addressing these

issues. If replicated in a larger sample, increased dACC ac-

tivation in PTSD could indicate a functional abnormality,

although it would be in the opposite direction as the func-

tional abnormality in the pregenual and subgenual ACC.

Limitations of this study include the relatively small

number of participants per group, although such sample

sizes are not uncommon in functional neuroimaging re-

search. Interpretation of any study reporting negative find-

ings may be challenging; however, the absence of any mean

differences between groups (and indeed the trend toward

greater activation in PTSD in two small portions of dACC)

suggests that dACC function appears not to be diminished

in PTSD, at least in the context of this well-validated

cognitive interference task. In addition, these participants

participated in only the version of this task that was de-

signed to activate the dACC. To make definitive statements

concerning the relative involvement of dACC versus pre-

genual and subgenual ACC in PTSD, it would be necessary

to administer separate cognitive and emotional versions of

the counting Stroop in the same group of participants. As

mentioned above, although these PTSD participants did

not also complete the emotional counting Stroop, they did

show diminished pregenual ACC function during the pas-

sive viewing of fearful facial expressions (Shin et al., 2005).

Finally, future studies might implement a similar cogni-

tive interference task using an event-related design, which

would permit a more detailed analysis of error-related ACC

activation.

The current findings suggest that diminished function

may be more confined to pregenual and subgenual por-

tions of the ACC in PTSD. If future studies confirm that

diminished pregenual/subgenual ACC function is an ade-

quately sensitive and specific measure, then this type of

information could assist in the diagnosis of PTSD. In

addition, the current and previous findings suggest that

the ACC, as well as the amygdala and hippocampus, may

be regions to consider in the search for neuroanatomical

risk factors for the development of PTSD. Lastly, ACC

function could be measured before and after treatment to

determine whether functional abnormalities normalize fol-

lowing successful treatment (Fernandez et al., 2001; Seedat

et al., 2004), and whether pretreatment activation in the

ACC predicts treatment response.
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