THE UNIVERSITY OF MICHIGAN

COLLEGE OF ENGINEERING
Department of Meteorology and Oceanography

Final Report

A TWO-LAYER MODEL OF THE GULF STREAM

Stanley J. Jacobs
Assistant Professor of Oceanography

ORA Project Q7344

under contract with:
DEPARTMENT OF THE NAVY
OFFICE OF NAVAL RESEARCH
CONTRACT NO. Nonr-1224(55), NR-083-20k4
WASHINGTON, D.C.
administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

September 1966

Distribution of this document is unlimited.






TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

ABSTRACT

1.

L,

5.

INTRODUCTION
FORMULATION

ANALYTTCAL SOLUTTONS

A, A Quasi-Linear Case
B. General Theory

NUMERICAL RESULTS

CONCLUDING REMARKS

ACKNOWLEDGMENTS

APPENDIX. AN EXISTENCE CRITERION

REFERENCES

iii

Page

vii

22
et
30
31
32

35






Table

LIST OF ILLUSTRATION

Comparison of analytical and numerical results

Flow configuration.

Meridional velocity of upper layer vs. dimensionless distance
from coast at y = .75.

Meridional velocity of lower layer vs. dimensionless distance
from coast at y = .75,

Position of interface at y = .75.

Numerical solution for meridional velocities at y = .75.

Page

29

19

20

21

28






ABSTRACT

A theory is developed for a two-layer inertial model of the Gulf Stream,
Both layers are in motion, but it is assumed that the ratio of the geostrophic
drift in the lower layer to that of the upper layer is small., Approximate ana-
lytical solutions are obtained under this assumption, In addition, a criterion
for the existence of inertial boundary currents is established. An important
result is the prediction of deep and surface countercurrents to the east of
the high velocity part of the Stream. These are due to the effect of bottom
topography. Another important result is that the interface at the coast comes
to the surface at a lower latitude if the deep water is in motion, and that
the intersection of the interface and the sea surface extends out to sea in a
northeasterly direction from the coast. The theory of the flow near the line
of zero upper layer depth is as yet incomplete.
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1. INTRODUCTION

This paper is about the Gulf Stream, or, more precisely, that portion of
the Gulf Stream which lies along the North American continent. In the theory
used here (c.f., Charney, 1955, and Morgan, 1956) the boundary current is con-
sidered to be driven by advection of mass at its seaward edge rather than by
the local wind stress. The boundary current can thus be studied as an isolated
entity, provided that the mass flux into the current is known.

In Charney's and Morgan's papers a two-layer model was used, the lower
layer being assumed motionless. Their results are in good agreement with ob-
servations except for an absence in the theoretical results of countercurrents
east of the high velocity part of the Stream (see Stommel, 1965, p. 123).

More recent papers have attempted to extend the earlier work to take ac-
count of motion of the deep water. Robinson (1965) uses what is essentially
a quasi-geostrophic theory for a stream with continuous density and velocity
variation with depth. His paper is concerned more with setting up a theoret-
ical framework than with obtaining detailed results. In another recent paper
(Blandford, 1965), the earlier two-layer model was modified by considering
three layers, the lower one being at rest. Blandford attempted to find a deep
countercurrent, presumably due to advection of warm water from low latitudes
which causes a zonal temperature contrast, but in this he was unsuccessful.

In the present work a two-layer fodel is employed with both layers in
motion. Thus, by contrast to the other layer models, the effect of topography
on the Stream can be included. An analytical solution is obtained under the
assumption of small velocities in the lower layer. Some numerical results are
also presented,

The effect of topography proves to be very important, for under the as-
sumption that velocities in the lower layer are small, the relative vorticity
of the lower layer is negligible except very near the coast; and consequently,
the requirement of conservation of potential vorticity in a region of decreas-
ing depth of the lower layer in the shoreward direction implies a deep counter-
current. This proves to be at approximately the same location and with the ap-
proximate magnitude of that observed (Stommel, p. 188). A surface countercur-
rent somewhat east of the deep countercurrent is also predicted, though this
is somewhat weaker than observed,

In addition to the foregoing results, a criterion for the existence of in-
ertial boundary currents is obtained. This generalizes earlier work by Green-
span (1963) but its conclusions are essentially the same, namely that a sharp
northward variation of depth at the seaward edge of the Stream may be incompat-
ible with the existence of an inertial boundary current.
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2. FORMULATION

We consider a two-lsyer fluid on the P~plane, with Coriolis parameter f =
fo + By, and with coordinates (x,y,z) which measure respectively distance to
the east, the north, and in the vertical. The flow is assumed to be steady,
inviscid, and geostrophic in the x direction., The fluid is bounded below by
bottom topography at z = b, above by a free surface at z = H, and to the east
by a meridional wall at x = O, No mass flux is allowed across the interface,
z = N,

Let subscripts 1 and 2 denote quantities in the upper and lower layers,
and let subscript k when it appears be either 1 or 2, Also, let D1 and Da be
the depths of the upper and lower layers at x = w, y = 0, and let I and Ip
be defined by

H=Dy + Dz + M Ap/pas (L.a)

h =Dy + Iz =M p1/p2; (1.b)

where Ap = ps = pi. Imposing the conditions that the pressure vanishes at the
free surface and 1s continuous at the interface yields

p1/p1 + gz = g(D1-+ Dg) + g'My, (2.a)

p2/p2 + gz = g(Dipr/pe + Dg) + g'lizs (2+b)

where g' = gAp/pe, while the definitions of Iy and Ip lead to

H-h=D1 + 1 - Iz (3.a)

h=b=Dp+ g =Mpi/pz =D

~ Do +Jlzg =11 =D o (B&b)

In the definition of the depth of the lower layer, (3.b), we have assumed that
bo/pe < < 1,



Figure 1. Flow configuration.,



The equations of motion consistent with the above definitions and assump-
tions are

-fv, + g', =0 . (4)
UgVix + VkVky * fug + 8'lky = 0, (5)
[up(DL + M - Hz)]x + [vi(DL + I - Hz)]y = 0, (6)
and
[ug(D2 + Mz - My - b)) + [va(D2 + Tz - M - b) ]y = 0. (7)

A
Taking u1(y) and Uo (y) to be known functions, we require that

u (w, ¥) = a (), v (=,5) =0, (8.a)
k k k

i.e., we consider the boundary current to be driven by a known zonal flow at
its seaward edge., In addition,.the kinematic condition at the coast implies

uk (O, y) =0. (8.1)

As a last condition, we require that there be no net transport between the
coast and the point X = w, y = O,

It is convenient now to introduce non-dimensional variables. These are
x¥ = (fo/“ngl>x PR =(B/fo)y ’

u* = (£2/g'BDy) u , v*¢ = (INg'D) v ,
k 0 k k k

n*k = (1/]31)11k , f¥=1+y¥%¥ D¥=1-1/Ds,

D* being the non-dimensional depth of the lower layer in the absence of flow.



The non-dimensional version of the eguations of motion is, with asterisks
omitted,

-tv + I =0, (9)
k kx
uv, +vv +fu +I =0, (10)
k kx Vi . ky
fup(l+ M -Tx)] + vl +m -1M)] =0, (11)
X ¥
and
(uz[D + y (12 - El)]}x + {ve [D+ (O - Hi)]}y = 0, (12)

where vy = D]_/Dg°
This scaling is convenient, but overestimates somewhat the meridional
extent of the current. It also overestimates, by a large amount, velocities
in the lower layer.
We choose to work with first integrals of the equations of motion rather

than with equations themselves, To this end, we introduce transport stream
functions Vi and Vo through

Yix =ve [L+ M -], ay = -wil +m -m], (13)

Vox = valD+ y{lo = M} ], Vpy = = up D+ y(Ilx - )], (14)

1
Q% = ﬂ% +‘§ sz . (15)

It is easily shown that the potential vorticity and Bernoulli function of each
layer are constant on streamlines, whence

oy = 0 (V) (16)

and

f+vixg=[1+ 0 -] od(V1) , (17)



4+ vex = D+ (e - M)l ob(V¥a) . (18)

Replacing 1 and Il in these equations and in

Vix = vy [+ - I2] , (19)

Yox = vo [D+ (I - )], (20)

through the use of (15) provides a system of four equations in the four un-
knowns vi, Vo, V1, Vo in place of the original system. As boundary conditions,
we have

¥ (0,y) =0 (21.a)
k
and also
Vi(eo,y) = - j B0+ m - Molay, (21.b)
0
Y A A A
Velo) = - | GelBy) + 7 (R - T, (2L.c)
o
where ﬁ(y) = D(w,y) and where
A 4 A
B) = - | shay - Bley) (22)
0

An alternate integrated form of equations (9)-(12) which is useful for
some purposes is

f + (l/f)Hlxx = 1+m -] 7y (M + jlg m%] ) (23)
of
£+ (1/f)Toxx = [D + (e - T)] Fo (M + -5 M5 . (2k)

or2
These follow from the fact that the potential vorticity and Bernoulli functior

of each layer are constant on streamlines and hence functionally related. Use
of the x momentum equations to express vi and vo in terms of 1 and IIs leads
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immediately to the desired result, a set of two equations in the unknowns Iy
and IIo in place of the original system. Since from the y momentum equations

n o+ sz MEly = -u £+ (/D) M T, (25)

the boundary conditions for this last set of equations are
I + -T2 =0atx=0, (26)
kx

and (22).



3. ANALYTICAL SOLUTIONS

Though the process of numerically integrating the equations is difficult
and time consuming, some numerical solutions have been obtained and will be
presented below. Here, however, we present an analytical solution. The method
of obtaining this is based on the fact that velocities in the lower layer are
much smaller than in the upper leyer, so that to lowest order the flow in the
upper layer and the position of the interface are decoupled from the flow in the
lower layer. The flow in the lower layer and higher order approximations in the
upper layer are then determined using the method of matched asymptotic expansions
(Van Dyke, 1964). We will obtain solutions first for a particularly simple case
and then generalize.

A. A QUASI-LINEAR CASE

Suppose the zonal velocities at x = » are

B (y) = - 1/f - ¢ '(‘1—1'3;—)3 (27.2)
1/;2(3’) =-¢ zi%siyg ’ (27.b)

where € is a c%nstant, and suppose also that in the open sea the bottom is
flat, so that D(y) = 1. Then

o =yepeudmeong, (28.2)
A
boly) = ¢ () ¥ (28.5)
T (y) = %e [(ﬁ—%)a -11, (28.c)
and
fa () =1 7. (28.4)
=7y
If follows that
ar (V1) = V1 (29.a)

and



as(Vz) = %E 1+ vp/e)® - 1] . (29.1)

For this flow, the potential vorticity of the upper layer is constant, in agree-
ment with observations (Stommel, p. 111). We exploit this fact in using equa-
tion (23) to describe the flow in the upper layer, since (23) is linear in Iy
for constant potential vorticity. The flow in the lower layer will be described
by equations (18) and (20).

Another fact which will be exploited is that € < <1 if the flow is to
be representative of oceanic conditions, since the velocities in the lower
layer are much smaller than those in the upper layer. Consequently, the inter-
facial position must be only weakly dependent on the flow in the lower layer,
which thus behaves much like the flow of a one-lower fluid of given depth forced
by a zonal velocity at infinity of magnitude €. This motivates the introduc-
tion of a scaled stream function ¥ and meridional velocity V through

vo = ev, va =Ne v, (30.2)

in which it 1s assumed that ¥ and V are order unity. For notational reasons,
we introduce two more new functions { and y through

€ =1L, x == . (30.b)

The equations to be solved can now be written out. They are

y+ (/e =t (31)

Jer =bb+y (x-01v, (32)

Veu =-t+D+y(x-8)10+Y), (33)
x=§e[(l+‘l’)2-l-v2] , (3h4)

which are to be solved subject to

g+§il:5gi=§f=0atx=o, (35.2)

and



Loy rpe (D2 -0, v -y, (35.0)

at X = ». When these equations are solved, Vi and vi can be computed from
vy =, /f ,W1=C+%V‘§ . (36)

Also, the depth of the upper layer can be obtained; it is 1 + € - .

The fact that the small constanthE multiplies the differentiated terms
of (32) and (33) indicates that this is a singular perturbation problem. In
what is obviously a boundary layer of thickness N e near the coast the variables
must depend on a stretched coordinate & = x/fé in order that the differentiated
terms enter into the balance. Away from the coast, the variables are smooth
functions of x. In each region the equations may be solved by expanding in
powers of 61/2; in the inner region near the coast the solutions are made to
obey the boundary conditons at x = & = 0, and in the outer region the solu-
tions are made to satisfy the boundary conditions at x = », Any remalning am-
biguity is resolved by requiring that the limit as € > « of inner solution matches
the limit as x = 0 of the corresponding outer solution.

We turn first to the determination of {, and in this we let a subscript i
denote the inner solution, a subscript o the outer solution, and a superscript
the order of the term in the expansion., Thus, when x is order unity, x being
the outer variable,

-t (0 =t () v erfe (D r et Py L L,
(37.a)

and when x is small, of order N e B

N Ol R R RSO RN CTAS

1 1

where £ = x/fé is the inner variable. We now substitute these expansions into
the equations.

(o)

As = X(l) = 0, the equations in the outer region are

y+t(©e o 0 e()/e = (1) (38)
OXX (e} OXX 0
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ng)/f _ Co(2) _ x§2) , éi; /f = ggS)_ XSS) s etc. Hence

Qéo) =y + a(o)erV%”x, Cél) =a(1) e-'x, (39.a)
and

() = [ a2 (ex)(® (x1) ax:

32 = G2/ (x,x")xe2 (x') ax' (39.b)

o u[; o

{9 = [ ole) ) () e (59.<)
where a<o) and a (;) are constants, and G(Z) (x,x') and G(3)(x,x') are appro-

priate Green's functions. In order to determine these it is necessary to re-
write the outer solution in inner variables and re-arrange terms so as to match
with the inner solution term by term. Thus, using the Taylor series expansion
of the exponential function, we obtain the inner expansion of the outer solu-
tion,

CO =y+a(0) [1 -\/‘é—f 3 +_]2-_Efg2 _% éef)3/2 53]

++e a(l) [1 -erf & + % eft?®]

{gff) (o) +ne t$) (o) £1+ e3/2 (o) (o)
+0 () (40)

[y + a(o)] +e [a(l) NE a(o) £]

(2 (o) -t alt) ¢4 %fa(o) £2]

v e2l2 gle) (o) + tla) (o) & +lza (1) g2 Lo/ (o)

+ 0(e®)

The inner solution obeys
¢  =eflt - x -v] (k1)
iEE i 1
11



and the boundary condition
2 2 _ _
2ef gi + (Cig) =0 at £ =0, (42)

Introducing (37.b) and sorting out the terms, we obtain for the first four terms
in the expansion

(o) _ (1) _
Ci&é =0 H Cl]ég =0 2 (L;.Z).a)

and

(2)

(3)
€5 ee =

f(CEO) - Y) ’ Clgg = fggl) P ()*5}3)

i

with boundary conditions

) =0, 2mt{® Lo, (1.2)

and
£2 ggl) + giz)ggﬁ) =0 , ey
ez £ D 1 (ef)z v 2D el -0, (ko)

at £ = 0, and with the matching conditions

§(0)+ v + a(o) Lt (1) . a(l) NI (o) £, ng) N §£2)(O)

i 1 i

Nral) g aleal) gz, tle) s tla)o) v 12 (o) (45)

i 0xX
J

+ % £ a(l) £2 % f3/2 a(o) £3

as & » o ,

Now (L43.a) shows that Cgo) and §§l) are linear functions of &, and by the
first two of the matching conditions they are

12



@{o) =y + alo), ggl) = ol1) _J7 alo)

The first of the boundary conditions (Ll4.a) is identically satisfied, and the
second implies

22 (y +a ') +f(a )% =0
Hence
A = (46)
1+y
and Q(O) is completely determined both in the inner and outer regions,

From (43.b), Qig) is equal to f a(o) £2/2 plus a linear function of &,
The matching conditdion yields

géz) - Cég) (o) -~r alt) g+ % £ gl0) g2

and the boundary condition (Lk4.Db) 1?p}1es al1) = 0, Hence Q(l) is determined.
The next term in the expansion is C , which by virtue of the equation it
satisfies and the matching condltlon is given by

IAICISPRIONGIE FANCO NS

oX

The boundary condition (4k.c) becomes

£2/2 1(2) (o) - al®) tf2) (o) =0, (¥7)

oxX

and hence G(g)(x,x‘) is

f ~‘J} X

G(E)(X,X') = e > [sinh Wf x _ + a(O) cosh N x

1,
ey <'f <(l+8)

where x,, 1s the greater and x¢ the lesser of (x,x'). Thus Q(g) is determined.
Higher order approximations can be calculated if desired, but will not be ob-
tained here.

a/2

It is seen by inspection that with an error of order = the inner solu-

13



tion 1s merely the outer solution written in terms of §. Consequently, the
solutions

(0) Ly 4 alo) o VT x (49)

() <o, (50)

(=) - fm 6(2) (x,x) 1l2) (x) axt (51)
0

are uniformly valid. To this order, the flow in the upper layer does not ex-
hibit boundary layer phenomona.

From (36) and (49)-(50) the meridional velocity and transport stream func-
tion are computed to be

e VT o (o) 1P v (e (52)
and

¥y o=y + a(o) e-"J% X [(a(o))g/gf] e 2NF x
R O N e R G I (53)
Also, the depth at the coast of the upper layer is

no+elo) s eela) 2 yleh)1 O aVTRE 4 el(@ (o) - 1l (o) 1

We now turn to solution of the equations of the lower layer. With an error
of order e, these equations are

New = [D - 7§(O)]V 5 (5h,a)

(o)

Je v,o=-f+ D=yt ] (1) . (5h4.b)

In solving (54.a) and (54.b) it is expedient not to use the method of matched
asymptotic expansions. Instead, let

14



t =f (D - 7C(O)) dx;

o)
then
Ve ¥y =V, (55)
Ve Vo=l+y - f/(D-VC(O)) ) (56)
which yield
Gth -y =1- f/(D_7C(0)>) (57)
which in turn has solution
o
g=-1+e _t/fg + (fYQJ;) {e-tﬁféb/\ et /f% 1t
o (p-t(9)
+et/“/_€fooe——t-l£[€-—dt’ -e‘t/*[efwe—_f;ﬁf-—dt'. (58)
t (D-y£(0)) o (p-7¢(0))

Repeated integration by parts yilelds a series in ascending powers of'JE,
of which we keep only the first two terms. The result is

v = [ _ -1 - (&5 e-tAe 40 (¢) (59)
D-y{;(o) r

where I is (D-yﬁ(o)) evaluated at x = 0, i.e.,, it is the approximate (with an
error of order ¢) depth of the lower layer at the coast.

Recalling the definitions of t, ¥, and V, we obtain from the above the
uniformly valid solutions

_ £ ) (0) 2
¥, = e{[m - (& ) exp [ T f (D-y¢" ") ax]} + o(e )(’60)
and
_7§ (O)
ve =ve (12 ) exp [- =— (D- 7§ ) dx] - ef X+ 0(e3/2).
f ot 0P D

Note that the stretched boundary layer variable is not x/fé as assumed earlier,
but rather

15



(1/Je)f (0-7¢(%) ax,
0

Note also that away from the coast

f

Vo = € [——— -
= D-y¢(0)

1] + o(e2),

ve = 0 + 0(€).,

so the term xéZ) which appears in (51) is

It is in order now to discuss these results. As noted earlier, the flow
in the upper layer and the position of the interface behave to lowest order
as 1f the fluid in the lower layer were at rest., The flow in the lower layer
is as if it were the flow of a one-layer fluid of given depth forced by a
zonal velocity at infinity of magnitude €. The meridional velocity in the lower
layer is of magnitude € except in a layer of thickness N ¢ near the coast where
it is of order'J%E Consequently, the relative vorticity of the lower layer is
smaller than the planetary vorticity by a factor of € except very near the coast,
where it is comparable to the planetary vorticity.

This has very impor*ant consequences, for it means that the direction of
the deep meridional velogity is greatly influenced by the topography. Away
from the coast the potential vorticity is essentially equal to the planetary
vorticity divided by the depth of the layer, as shown by the first term in
equation (60), in which, it will be remembered, (D-7C(O)) is the approximate
depth of the lower layer. Consequently, if the depth of this layer decreases
in the shoreward direction, the streamlines must deviate to the south in order
to conserve potential vorticity, Since in the ocean there are regions in which
the depth of the lower layer does decrease in the shoreward direction and in
which there is a deep countercurrent (see Stommel, p, 188-190), the present
theory provides a possible explanation for the deep countercurrent.

Near the coast the relative vorticity of the lower layer is not small,
and in this region the deep current according to this theory is in the same
direction as the surface current.

Turning again to the flow in the upper layer, we note that the correction
due to the motion of the lower layer must be important at least near y = 1,
as seen from (L48), Near y = 1,

16



G(g)(x)x|) ~ . 2 " Jo (x> + %) ,

and the non-dimensional depth of the upper layer becomes

2e N2
l+§-xw2+[\—/l-y2-2]e"fex- e\[x
N1-y

xfwe' Vo x! Xég) (x') ax' ,

which vanishes on the line

x =1 log(1- [AL 4+ _& L/“ ejfélxlx (2)(x’) ax '}
J2 \ 2 Ji-y Yo ©

This intersects the coast at a value of y somewhat smaller than 1,

v~ 1 _\/—2 efoo e'JE'X' X(Z) (X') ax'! s

(]
e}

and extends in a north-easterly direction from the point of intersection with
the coast. At y = 1 the method of solution is invalid, because the correction
term due to motion in the lower layer is no longer small and because the non-
linear terms in the x momentum equation, which were neglected at the outset,
also become large. In fact, the values of u; and up become infinite like

+l/Vl-y' as y +~ 1.

We note also that even for y < 1 the present theory is invalid unless~f§
< T, for otherwise the basic approximation that { << x does not hold true.

In order to obtaln numerical results we must assign numerical values to
the constants, pick a representation for the bottom topography, and carry out

the integration in (51). We take y = O to coincide with 15° latitude, and
chose Dy = 500 m, Do = L4700 m, f = 6.1k x 1072 sec~l, B = 2,07 x 10°11
m-1 sec'l, Ap/pg = 2 X 10'5, € = 0.04. Thus x is measured in units of 51 km,

vy in units of 2970 km, u; and us in units of 5.4 cm/sec, and vi and vs in units
of 313 cm/sec. The transports T; and Ts for the two layers are

Ty = (79.8 x 106 m?/sec) ¥y,

Tp = (750 x 100 wd/sec) Vs,

and with € = 0.04 this yields

17



T, = 63.8 x 106 mi/sec

Ts = 27.0 x 106 m5/sec

at y = .75, which is close to 35° latitude. These values are at least repre-
sentative of those for the Gulf Stream,

For the topography, we use a smoothed representation by taking

D=.5+ x/12 0<x<6

D=1 x > 6,

This was chosen more for convenience than for accuracy, though apart from omis-
sion of the steep part of the continental shelf it 1s not unreasonable.

For evaluating the integral in (51), we make use of the fact that y =
Dl/Dg is small, of the order of 0.1l. Indeed, a theory could be made (and has
been, by the author, though it is not presented here) based entirely on the
fact that the lower layer is much thicker than the upper. For small Y, We
make the approximation

0 -
1 _ 1 1 N 273( ) e,J}vX

(p-y¢(0))2 (D-W-%’:L(O)e"‘[f X)2 ) (D-yy)®  (D-yy)3

in the integrand of (51), and then find that for a constant slope bottom §(2)
can be expressed in terms of elementary functions and various types of expo-
nential integrals, which are tabulated. The expression for Q(E) is lengthy and
uninformative and is not presented here,

In Figures 2 and 3 the velocities vi and vs are plotted. The maximum
value of the deep countercurrent is 7 cm/secaﬂ and it occurs some distance from
the coast. There is also a surface countercurrent, but this is weaker than
the deep countercurrent, 1ts maximum velocity being 3 cm/seco The location of
the countercurrents appears to be in reasonable agreement with observations,
but their magnitudes are too small. These could be increased by using a lar-
ger value of ¢ or a greater amplitude for the bottom topography, but then the
method of solution used here becomes invalid.

The position of the interface is shown in Figure 4, As can be seen, there

is no indication of a warm core, which would be characterized by a decrease
of the depth of the upper layer in the seaward direction.

18
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Flgure 2, Meridional velocity of upper layer vs. dimensionless
distance from coast at y = .75.

19



-
Vo (CM-SEC ')

400

300 |-

200 |-

100

ol

-100 R ' E—
o I 2 3 4 5 6

x (DIMENSIONLESS)

Figure 3. Meridional velocity of lower layer vs. dimensionless
distance from coast at y = .75.
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Figure 4, Position of interface at y = ,75.
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B, GENERAL THEORY
We turn now to the task of generalizing the previous results, and in this we
assume only that the magnitude of ﬁl is of order unity, while that of Gg is of
order e, It follows that op (V1) will be of the form
oa(¥1) = A(¥1) + e B(¥1) + 0(e®) ,

and that

az(V2) = € C(Vz/e) + 0(e3) ;

here A, B, and C are functions with amplitude of order unity.

Defining ¥, V, £, and x as before, and again letting superscripts denote
the order of a term in expansions in powers of €1/ 2, we have

Yig =vi (L+ ¢ - ), (62)
Vig = E 4 (LG - x) (A (V1) + e B (V1) +. . .), (63)
Ve ¥, = v(pyty), (6k)
Jeut = we v (D= ot +9x) (¢ (®) +. . L), (65)
where
£ =A() *eB¥) +. .. -v, (66)
x=cle@) +. .. -5V, (67)

to be solved subject to
V1 (0,y) =¥(0,y) =0,

1 (eyy) = ¥a(y), (68)

¥ (,y) -9 (3).
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In discussing the top layer, we use the results found previously, that
with an error of order €3/2 the variables in the top layer do not exhibit
boundary layer character, and furthermore have no term proportional to 61/2
in their expansion. Also, we use

fv-l = CX’

which comes from the x momentum equation.

Now

Yix = G (1) /T - vy, (69)

SO

Yy = (¢ + %ge)/f +k/m vxdx + b. (70)

X

Here b is a function of y which is determined by the values of V; and £ at x =,
In general, it is of the form

b =0 4 e pla)

Inserting perturbation series and sorting out terms, we arrive at
\lfl(o) - C(o)(l + %—_ C(O))/f + b(o) , (71)

m@)=K1+5®Vﬂ§@)1fv?&§)w+bu) (2)

Since
A(VL) + € B(¥1) = A (®)) + efn(@ar (1,00)) + B (O] + 0(e?),
(73)
and since
pavf® o @) a1, (74)
we have from (66)
C(o) =A(1lf1(0)) i (C(i))a/gfz (75)
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and

¢ (2 (2w vlgdy s + £00)y 4 p(ry(0dy - (o) ¢(2) e (76)
Consequently, from (71) and (75), we obtain
() 1 (glohyzraee - arg@a + L () e 4 w00y, (77)

a differential equation which can be solved by quadrature, while the equation
for £\2/ becomes

(o)) = tr/wiohE] ) war () 1) ) ax + (B,
* (78)

which can also be solved by quadrature. This completes the solution for the
flow in the upper layer, since from the solutions for C(O) from (77) and for
Q(a) from (78) the other variables of interest can be calculated.

If we let

t=f (D - 7£(°)) ax

0

as before and neglect terms of order €, the equations describing the flow in
the lower layer become

Vey, =7, (79)
Ve v = ¢ (¥) - £/6(t), (80)
where
a(t) = D - '

These will be solved by the method of matched asymptotic expansions, the inner
variable being T = t/fé. Thus when t is order unity,

v =2 (1) +~fe&/£l) (t) +. ..,
and when t 1is small, of order~f§,
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v =v{O(n) +Verl) (el .,

and V is treated in the same way.

In the outer region,

W) =0, ¢ @le)) = g/a(v), (81)

and

vél) —v(0) Yél) = 0. (82)

Bearing in mind the definition of G(t), this indicates that as in the case treated
in 3,A, the velocity in the lower layer is found by requiring conservation of f
divided by the depth of the layer.

For matching the outer solution to the inner solution, we need the results
that when t is order'JE,

SO

o 1857 (0)1 = £/a(0)

o 15 (0)] = -ger (0)/16%(0) o (o1,

In the inner region,

Vit = Vi (83)
Vit = C' (‘l"i) - f/CT (“/;): (8&)

which combine to
Yirr = C' (¥1) - £/6 Wer). (85)

Consequently,
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(o)

iTT

(0),

vior=C (¢ ) - £/G(0) (86)

A2 - vl o (@) 4 (060, (87)

N (0) : .
Multiplying (86) by ¥ir and integrating, we obtain

§w§%2=uﬁd>-waMM+a“X (88)

Here d(o) is a constant of integration which is found by using

Y§O) - WéO) (O) as T = oo,

Using the value of a6 )obtalned in this way, we can then solve (88) by quadra-
ture, using the boundary condition at 7 = O.

Before solving (87), we note that as T + o, Y(l) -~ TYS ) (0), hence Y(l)
cre (Y(O ) = - £6' (0) T/G2 (0), as it should. Now

gre (Y(O)) =2 [c (w(o)) - (0)/V(0)

1TT

hence (87) becomes

() (4 .
(V4 w;T) - vﬁi) wﬁ )] = fG' (O)TV /G (0), (89)

and integration together with application of the matching condition yields

2 © (o)
[¥, AR )] . = - [fo (O)/G(O)Vgo)) ] k/w v, aT, (90)

T

so0 the solution of this equation also is obtained by quadrature. Hence the
equations of the lower layer are solved, and a uniformly valid solution can
be constructed,

It is important to note that as in 3.A the relative vorticity of the lower
layer is negligible except very near the coast. Consequently, away from the
coast, a decrease of depth of the lower layer in the shoreward direction implies
southward motion of the deep water.

26



L,  NUMERICAL RESULTS

In order to check the analysis an attempt has been made to obtain numer-
ical solutions for the case discussed in 3.A. The method consists of guessing
values of vy and vz at x = O and then integrating. A Runge-Kutta scheme with
spatial steps of .005 was used.

In general the initial guesses will be incorrect and the integration must
be repeated with different values of vi (0) and vo (0) until the solutions ap-
pear to obey the boundary conditions at x = ». The integration is easier if
topography is ignored, for then it can be shown that

A= t£(V1 + Vafy) - Ty - Ta/y - % (I - Tp)2

is independent of x. Since A is a function only of y it can be computed from
the known conditions at x = »., This provides a relation between vy and vs so
that (say) only vo (0O) need be guessed. No such simplification was found for
the topographic case.

It is difficult to say whether the numerical integrations represent true
solutions because in many cases the numerical solutions diverge with x. It
is felt that this is due to incorrect values of vi (0) and vo (0), since the
solutions are extremely sensitive to the initial conditions. The results of
a typical calculation are shown in Figure 5, which represents the best result
that could be obtained with a reasonable amount of effort. It is apparent that
for x greater than 2.5 the numerical solution is inaccurate. In Table I the
values of vi1 (0) and vs (0) as found analytically and numerically are compared
for different values of y. The agreement is much better for the non-topographic
case, in which both the analytical and numerical solutions are more accurate.

In view of the great difficulty in obtaining numerical solutions the prin-
ciple conclusions of this papér must rest on the analytical work of the previous
section. The numerical results serve to check some of the qualitative features
of the analysis, however, and for this reason have been presented.
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Numerical solution for meridional velocities at y = .75.
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TABLE I

COMPARISION OF ANALYTTICAL AND NUMERICAL RESULTS

(VELOCITIES ARE GIVEN IN CM—SEC'l)

Analytic

v1(0)
83
174

265

v1(0)
105
215

364

Non-topographical case

v2(0)
16

%0
L6

Vg(o)
82
11k

152

29

Topographical case

Numerical
v1(0)  v5(0)
82 16
171 31
265 L5
Vl(o) Ve(o)
79 g2
178 111
28L 119



5. CONCLUDING REMARKS

An interesting result is the separation of the boundary current from the
coast at a slightly smaller value of y than that predicted by the Charney-Morgan
theory and the existance of large positive zonal velocities in both layers near
the separation latitude, The flow 1n the region near this latitude 1s not ac-
curately described by the present theory. In order to obtain such a descrip-
tion and thus to treat the portion of the Gulf Stream northward and eastward
of Cape Hatteras a much more extensive theory is necessary.

The present work is applicable south of the separation latitude and ap-
pears to account for a number of observed features of the Stream. However,
frictional effects, which have been ignored here, are undoubtedly important
at least very near the coast. An extension of the present theory by inclusion
of frictional effects would serve to put the work on a firmer basis.
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APPENDIX

AN EXISTENCE CRITERION

A necessary condition for the existence of solutions can be obtained by

linearization about the flow at infinity.

The solutions of the linearized

equations are then examined to see 1f they decay with x as they should.

We will use the dimensional form of (23) and (24) for this purpose,

£+ (8'/0) Ty

= Fy [1’[l + 8’ ]ﬁx]: (A.1)
Dl + Il - Hg 2f2
f+ (g'/f) I ,
X = Fy [l + E_ My 1, (A.2)

Do +IIs -11 - Db 2f2

A A
and linearize taking @p = I}, - I to be small. We will also take b = b(y),
thus assuming that there is no appreciable dependence of the topography on x

far from the coast.

In what follows, we let

£ A .
Ppo=f/lg" (D + 11 + 1) ], P

and remember that

Then

A A
£/lg' (D2 + Tz - M - D)1,

(4.3)
fu + g'Thy = O . (A1)
Pl + /202 1 ~ Rl + o]
~ 7 (1) + o 7 (1)
(4.5)

]

Ry () + (9/Thy) 3/ ()

]

g' [P, - (a'0, /el) Py
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We now let

Qe = (1/%) 3/dy log Py (.6)
and obtain, after linearization of the left sides of (A.1l) and (A.2),
(1/f)paxx + (Qu - P1)o1 + P=p2 = O, (A.7)
(1/f)poxx + (Qz - P2)oz + P19y = O. (A.8)
Assuming solutions of the form exp[fl/zkx] leads to the characteristic equation

M - [(PL-Q) +(P2-Q)] A+ [PL-Qi)(P2 - Qo) - P1Ps] = 0,

(A.9)
which in turn leads to
2N2 = (P1-Q1) + (P2-Q2) + ([(P1-Q1) + (P2-Q2) ]® - L[(P1-Q1) x
x (P2-Q2) - P1P2]}l/2 ) (A.10)

The expression inside the curly bracket 1s easily shown to be positive,
and hence the eigen-values A are either pure real or pure imaginary. In
order that they be real, so that the solutions decay exponentially with x,

(P1-Q1) + (P2-Qz2) >0, (P1-Q1)(P2-Qz2)>P1Ps, (A.11)

which is the desired criterion.

Now let

A A A A A
81 = D1 + Iy - I, 82 = Do +Ilo - Il - II1 - b3

these are the depths of the upper and lower layers at x = o, Using (A.L4) and
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the fact that each of the terms (P1 - Qi), (P2 - Qo) must be separately posi-
tive, we arrive at

A A A
Uius > g'ulaél/fz (A.13.2)
A
8ife > g'ua(Bd2 + 1By) /12, (A.13.D)
and
Il (p(l51 + O55) + fﬁzby] < fiflp g [(BB1) (PR + fby) 1/£2.
(A.13.c)
It is now a matter of working through the inequalities to find that:
A
(1) for BB, + fby > 0
A 1L
4 <0, Us <O (4.1%)
1
and
A
(2) for MO + foy < 0,
A A A
B(uidy + ubz) + fiugby
<g' (BB1) (B2 + fby)/£2  ({fufz > 0); (4.15)
and

g' (651) (662 + f{)\y)/fE < B(ﬁ151 + 6262) + f U.géy <0
(4.0, <0). (A.16)

These conditions are subsumed by
A
B(Urdy + Usbp) + £ Wby <O, (A.17)

which is a special case of a result proved by Pedloskey (1965) for a baroclinic
fluid and which reduces to Greenspan's criterion if ﬁl = ﬁg. It should be noted
that a rapid variation of topography with y can be highly important even though
Gg is in general quite small.
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