UM-HSRI-79-16
TINTED WINDSHIELD INVOLVEMENT AMONG CPIR ACCIDENTS
Lyle D. Filkins
The University of Michigan
HIGHWAY SAFETY RESEARCH INSTITUTE Apri1 1979

Technical Report Documentation Page

	$\begin{aligned} & \text { Reporin No. } \\ & \text { UM-HSRI -79-16 } \end{aligned}$	2. Govemment Accostion No.	3. Recipient s Cotalog Mo.
Tinted WindstizēTd Involvement Among CPIR Accidents			
			6. Pariorming Orgosiration Codo
7. Aumber's)Lyle D. Filkins			8. Performing Orgonizetion Report No. UM-HSRI-79-16
9. Performing Orgenization Neme and Address Highway Safety Research Institute The University of Michigan Ann Arbor, Michigan 48109			10. Wort Unir. No. (trais)
			31. Contract or Grant No.
12. Libbey-Owens-Ford Company Technical Center 1701 East Broadway Toledo, Ohio 43605			13. Type of Report and Period Covered Final March-April, 1979
			14. Sponsoring Agoner Code

15. Supplementary Notes
16. Abstroct

The 9222 vehicles in the CPIR3 data set were examined for evidence that would indicate whether tinted windshields cause or prevent accidents. Windshield-tint condition was known for 4185 vehicles, and these were almost evenly split between clear and tinted windshields.

The proportions of tinted windshields among these accident vehicles were smaller than those for U.S.-produced vehicles of comparable model years. Weighted least squares regressions showed that the proportion of drivers having tinted windshields increases as age increases, hut that there are no statistically significant differences between daytime and nighttime conditions. It was concluded from the regression analyses that the data do not support the hypothesis that older drivers are negatively influenced at night with tinted windshields.

It was also found that tinted windshields are associated with a variety of driver and vehicular variables believed to influence accident risk. Because of these uncontrolled, confounding variables, and because of methodological limitations associated directly with the CPIR file, it is not possible to isolate the influence of windshield tinting in accident causation or prevention. A controlled study is needed to make such a determination.

17. Kay Words	18. Distribution Statamant Unlimited		
19. Security Classif. (ol this repert) Unclassified	20. Security Clessif. (of this pego) Unclassified	21. No. of Pages 53	22. Price

Form DOT F 1700.7 (8-72)

UM -79-16
TINTED WINDSHIELD INVOLVEMENT AMONG CPIR ACCIDENTS

Lyle D. Filkins

The University of Michigan
HIGHWAY SAFETY RESEARCH INSTITUTE April 1979

TABLE OF CONTENTS
LIST OF TABLES ii
LIST OF FIGURES. ii
1.0 INTRODUCTION. 1
2.0 DATA SET. 2
3.0 ANALYSES. 3
4.0 DISCUSSION. 15
5.0 SUMMARY AND CONCLUSIONS 17

LIST OF TABLES

Comparison of Vehicles with Tinted Windshields Among
Production and Accident Vehicles 6
2 Summary of Linear Regression Analyses Proportion of Tinted Windshields vs. Age
(Total and Day \& Night) 10
3 Summary of Quadratic Regression Analyses Proportion of Tinted Windshields vs. Age (Total and Day \& Night) 11

LIST OF FIGURES

1. Actual and Fitted Tint Proportions vs. Age: Day. 13
2. Actual and Fitted Tint Proportions vs Age: Night 14

1. INTRODUCTION

The purpose of this technical memorandum is to update parts of the earlier work of Marsh and Arvai concerning the relationship between tinted (heat-absorbent) windshields and accident involvement. ${ }^{l}$ They analyzed the involvement of vehicles having tinted and clear windshields from the 3502 vehicles contained in the computer file for accidents reported on the CPIR report form. Forty-two percent of the vehicles could be identified as having either clear or tinted windshields, and of these 1465 vehicles, forty-four percent (639) were equipped with tinted windshields. The authors observed a slight trend for tinted-windshield involvement to increase with age more rapidly for nighttime accidents than for daytime accidents. Their central conclusion, however, was that it was not possible to isolate tinted windshields as either a causative or a non-causative factor in the production of accidents.

The work reported here includes several least-squares regression models applied to three variables of the current version of the same CPIR file. The file now contains 9222 vehicles, of which 8389 (91\%) are known to be passenger cars of various body styles. As in the earlier work, relationships between tinted windshields and a number of other variables are also of interest. In the present study these were investigated using bivariate contingency tables and tests of independence on those tables.
${ }^{1}$ J. Marsh and E. Arvai, Tinted Windshield Involvement, Highway Safety Research Institute, The University of Michigan, Ann Arbor, Michigan, June 1973.

2. DATA SET

The starting point of the present study is the CPIR3 file, containing 9222 vehicles as of Update 'A'. This file was first filtered to include only those 9173 vehicles coded as having a driver in the normal driving position. (This condition is indicated by Code Value 44 of Variable 580, SEAT LOCATION, POSITION.)

Vehicles having the necessary information about windshield color were obtained by re-coding the alpha variable identifying windshields (Variable 343, WINDSHIELD CODE). A two-level numeric variable describing the windshield as either CLEAR (Level 1) or TINT (Level 2) was assigned. The alpha field was empty for 1.2% of the vehicles. Of the 130 alpha codes in the file, 40 identified clear windshields, 54 identified tinted windshields, and 36 were applied to windshields for which the clear-tint classification is unknown. Thus 4185 vehicles could be identified with respect to windshield color, with 2118 (50.6\%) having clear windshields and 2067 (49.4\%) having tinted windshields. The distribution of the data set by the original alpha code and the re-coded variable is shown in Table A-1 of Appendix A.

All vehicles with an unambiguous code value on the windshield-code variable were retained for subsequent analysis. This was done to maximize the number of cases in order to better find differences between clear and tinted windshield involvement if such existed. Ninety-two percent of these vehicles are passenger cars.

3. ANALYSES

The two primary analytical tools used in this study were contingency table analysis and least-squares regression. Both were carried out in MIDAS, the Michigan Interactive Data Analysis System resident on MTS (Michigan Terminal System). The TWOWAY command generated the bivariate tables contained in Appendix A, and the REGRESSION command was used in the regression analyses after the data had been weighted appropriately.

Contingency Table Analysis

Several contingency tables were formed to determine whether, on a gross basis, tinted windshields were associated with other variables contained in the CPIR file. The central result of these explorations is to confirm the earlier finding that tinted windshields are, in fact, associated with many other vehicle and driver variables, a fact which complicates the inferential process considerably.

Representative of these tables is the twoway cross-tabulation of Precipitation Type (Variable 29) vs. Windshield Color (Variable 2) shown in Table A-5. Cases with missing data on either variable are shown under the applicable MISS classification, but these cases are excluded in all calculations. In this table, as in all of the others in Appendix A, the row and column percentages are included in the twoway output. Also included is a tabulation of the expected frequency under the assumption that the two variables are independent. Thus the row labeled EXPECT contains the number of cases that would be "expected" if the CLEAR and TINT frequencies were distributed in the same proportion as the marginal distribution. The MAXIMUM LIKELIHOOD and CHI-SQUARE TESTS OF INDEPENDENCE statistics are given to test whether the independence assumption holds or not. Both statistics indicate a non-significant association between windshield color and precipitation type.

Table A-3 indicates a significant, but not particularly strong, association between driver age and tinted windshields. All of the four three-year age groups under (28) contain less than 50% tinted windshields,
while (28) and higher contain more than 50\%. The windshield colorationdriver age relationship is explored more fully with the regression analyses given later.

Table A-4 shows, except for the very early years, a significantly increasing percentage of tinted windshields among the more recently investigated crashes. This is undoubtedly due to the higher proportion of late model cars, themselves with higher percentages of tinted windshields, among those cars investigated in the latter years.

The data of Tables A-5 and A-6 show a non-significant association between tinted windshields and the precipitation condition prevailing at the time of the accident. Table $A-7$, on the other hand, shows that tinted windshields are significantly under-represented, in this accident population, with respect to their "expected" numbers on roads judged to have been slippery. The data do not provide any suggestions as to why this should be the case.

No significant association exists between tinted windshields and the amount of light prevailing at the time of the accident. This is seen in Table A-8, where the 4 -level (day, night, dusk, and dawn) time-of-day variable is tabulated. As in Table A-9 (Visibility Limitation), however, a non-significant trend exists for tinted windshields to be under-represented among the darker conditions on both variables.

Tables A-10, A-11, A-12, and A-14 all demonstrate that the accident data generally associate in the expected manner with the other variables found in the tables. More expensive cars have a higher proportion of tinted windshields, as do late-model cars compared with earlier years. Airconditioned cars, in this accident population, have 67.7% tinted windshields compared to 18.7% among non-air-conditioned cars.

Variables 338 and 339 in the CPIR file record whether the accident vehicle sustained windshield damage during the accident sequence. It is seen, from Tables A-14 and A-15, that tinted windshields are somewhat, although not significantly so, over-represented among cracked and broken windshields.

Tables $A-17$ and $A-18$ also show that, at least among these accident data, drivers of cars with tinted windshields differ from drivers of cars
with clear windshields. With respect to occupation, it is seen that 60.5% of the white-collar, accident-involved population had tinted windshields, whereas 39.3% of the blue-collar population was so equipped. Persons in service occupations, housewifes, students, military personnel, and retired persons all had greater than 50% tinted windshields, but farm workers and the unemployed joined the blue-collar workers in the under-50\% category.

Table A-18 cross tabulates the CLEAR and TINT windshields with the accident investigator's assessment of responsibility for the accident. Drivers of cars judged to be the most responsible for the accident have somewhat less than half tinted windshields, whereas the second-most responsible drivers have somewhat over half tinted windshields.

Comparison of Accident and Production Data
This section compares the tinted-windshield percentages among these accident vehicles with the tinted-windshield percentage among U.S.-produced cars of recent years. The data are presented in Table 3. The accident data are from Table A-12, and the production data are from Ward's Automotive Reports.

Clearly vehicles with tinted windshields appear much less frequentlyand highly significantly so, from a statistical perspective-than the production data suggest should be the case. The differences between the two sets of figures range from over 30% to a minimum of 13%. Rather than to support the claim that tinted windshields in fact prevent accidents, the percentage differences of this size merely highlight the methodological difficulties inherent in this study: good measures of the exposed, at-risk driving population do not exist. The implications of this for future studies are discussed later.

The data simply do not exist that would enable us to postulate and defend, in a scientific sense, alternative explanations for the discrepancies noted. Based on the prior data, however, it seems reasonable to account for the large under-representation of tinted windshields in this accident population compared to U.S. production figures on the basis of the kinds of people who buy and drive cars with tinted windshields, particularly in the earlier years. Perhaps drivers of cars with tinted windshields drive less, on the average, than do drivers of cars with clear windshields.

Table 1
Comparison of Vehicles with Tinted Windshields

Model Year	\qquad	CPIR3 File**	
		```Percentage with Tinted Windshields```	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Vehicles } \end{gathered}$
1971	69.6	37.4	788
1972	75.1	48.0	744
1973	78.9	47.0	614
1974	75.0	49.8	502
1975	80.5	65.4	246
1976	79.1	65.7	99
1977	86.8	72.7	11

* SOURCE: Ward's Automotive Reports (Reproduced in MVMA Motor Vehicle FACTS \& FIGURES, 1975 and 1978.
** Vehicles with missing data on the "Windshield Code" variable have been excluded.

Perhaps they are inherently more careful drivers, or they drive in generally more sheltered and less hostile environments.

The unfortunate part of the lack of an adequate control group is that there is no way to test the obvious hypothesis that tinted windshields in fact prevent accidents. One would not expect to find differences as large as those observed above just because of tinted windshields, but they may account for some part of the under-representation. Further investigation of this possibility will have to await subsequent, more highly controlled studies than are possible with the data on hand.

The preceding section has revealed some interesting, but inconclusive, relationships between tinted windshields and other vehicle and driver variables documented in the CPIR file. This section focuses on the relationship between tinted windshields, age, and the day-night light condition under which the accident occurred.

Gittelsohn studied the relationship between these variables by obtaining weighted least squares regression lines between driver ages and percentage of accidents with tinted windshields for both day and night conditions. ${ }^{1}$ He found that the slopes of the two regression lines were similar, and concluded that "... the data demonstrate that the risk of accidents for older persons driving cars with heat-absorbent windshields at night is no greater than during the day." The implicit assumption was that older drivers would be differentially more influenced at night when driving with tinted windshields than during the day if, in fact, tinted windshields had deleterious effects on vision with a concomitant increase in risk. Failure to find support for that hypothesis was an important part of Gittelsohn's claim that tinted windshields did not increase accident risk among the drivers he studied.

The same approach is taken here, for it is one of the few ways to subset the accident data in a manner that is meaningful in terms of the phenomenon under consideration. The procedure can be thought of as using the daytime accident data as a surrogate for a suitable control population and studying the performance of the nighttime drivers relative to the controls. To be noted is that the same technique could be used if one were exploring the hypothesis that tinted windshields prevented daytime accidents without increasing nighttime accidents. It is further the case that the results could very well appear the same; an elevation of the nighttime risk relative to a stable daytime risk under the first hypothesis might be indistinguishable from a depressed daytime risk relative to a stable nighttime risk under the second hypothesis.

The dependent variable in each of the several regression models was the

[^0]percentage of accident-involved vehicles having tinted windshields. The independent variables were age of the driver and a dichotomous, day-night light variable.

Three different age groups were used in the various regression runs. The single-year age groups (Variable 584) and the $5-, 10$-year bracketed age groups (Variable 583) were tried in various regressions and were subsequently discarded. The single-year ages resulted in the data being too thin in some of the cells and resulted in loss of data when used in the weighted regressions. The $5-, 10-y e a r$ groups pool the data unevenly and their use is not theoretically satisfying.

Accordingly, the age data for the drivers were re-coded into 3-year age groups, and each group was identified by its mean age. Thus, for example, age group 40 contains drivers with ages of 39,40 , and 41 . Two exceptions to this procedure pertain. Age group 68 contains drivers aged 66-71 and age group 75 contains drivers aged 72-83. Pooling of the age data in this manner was needed to accommodate the preferred weighted least squares regressions. This procedure was judged preferable to either discarding the data for a few of the older drivers or to arbitrarily estimating the variance for the same groups. The entire age recode is shown in Table A-2.

The dichotomous LIGHT variable was obtained by a simple re-code of the 4-level TIME OF DAY (Variable 36) into two levels. The drivers of "Unknown," "Dusk," and "Dawn" --about 7\% of the total-were excluded from the analyses.

All analytical worked was conducted in MIDAS, the interactive data analysis system developed and supported by the University's Statistical Research Laboratory. The REGRESSION command uses only those cases for which all variables are complete, that is there are no missing data on any of the variables included in the analysis. In order to standardize the data set for the various regressions and other analyses, those cases with missing data on any of the age and light variables were also excluded. This resulted in a data set of 3929 drivers with no missing data on their age, the time of day of their accident, or the color (clear vs. tinted) of their vehicle's windshield. The distributions of drivers by these three variables are shown in Appendix A. Of the 3929 drivers, 50.38 had clear windshields and $49.7 \%$ had tinted windshields. Of these same drivers, $57.5 \%$ (2258) had
the accident during the day and $42.5 \%$ (1671) at night.
Each of the regressions reported in detail here used weighted least squares. The weight factor for each of the cells is the inverse of the square root of the estimated variance for that cell. For a proportion such as that used here-simply the ratio of the number of tinted windshields to the sum of the tinted and clear windshields-the variance is estimated by $\mathrm{N} /$ pq ; N is the number of observations, p is the proportion tinted, and $\mathrm{q}=\mathrm{l}-\mathrm{p}$ is the proportion not tinted (clear). A consequence of this weighting procedure is that the age groups with many drivers and with $p$ and $q$ percentages relatively closer to zero and one are weighted more heavily than those age groups not so characterized. Thus older drivers-in age groups 64 and 68, for example-are weighted less heavily than their younger counterparts in age groups 19 and 22.

Summary results of the regression analyses are presented in Tables 2 and 3. Table 2 applies to the four linear regressions, with weighted tint proportion the dependent variable and weighted 3 -year age group the independent variable in all cases. In Regression 1 , the light variable (coded 'l' for DAY and ' 2 ' for NIGHT) is omitted, whereas it is included in Regression 2. It can be seen, however, that inclusion of the light variable did not improve the fit appreciably and that the light variable coefficient is not significantly different from zero. This indicates that the age-tint proportion relationship does not differ from day to night. Further, the two age coefficients for these two regressions do not differ from each other significantly.

Regressions 3 and 4 are similar, but in this case Regression 3 applies to the daytime accidents and Regression 4 applies to the nighttime accidents. The light variable, of course, is not included in either of these. Both coefficients of the weighted age variable are significantly different from zero and significantly different from each other. It will be noted, however, that the R-Square term for Regression 3 ( 0.474 ) indicates that a good fit to the daytime data has not been achieved.

Accordingly, four additional weighted least squares regression analyses were conducted. This second set of four-summarized in Table 3-parallels the first set of four except for the inclusion of a quadratic term for age. Regressions 5 and 6 both fit the total data set well. As with the linear

Table 2
Summary of Linear Regression Analyses

| \| Regress. 1 | Regress. 2 |  |  | 1 Regress. 3 | Regress. 4 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 11 |  |
| Light | Both | Both | 11 Day | Night |
|  |  |  | 11 |  |
| Error |  |  | 11 |  |
| Sum |  |  | 11 |  |
| Squares | 102.51 | 101.64 | 1143.97 | 47.31 |
| (D.F.) | (36) | (35) | 11 (17) | (17) |
|  |  |  | 11 |  |
| R-Square | . 64609 | . 64382 | 11.47413 | . 71661 |
| (S.E.) | (1.6874) | (1.7041) | 11 (1.6084) | (1.6683) |
|  |  |  | 11 |  |
| Constant | . 34659 | . 32304 | 11.38137 | . 27954 |
| (S.E.) | (. 32411 -1) | (. $54027-1$ ) | \|| (. $40646-1$ ) | (. $50875-1$ ) |
| Signif. | . 0000 | . 0000 | 11.0000 | . 0000 |
|  |  |  | 11 |  |
| Age |  |  | 11 |  |
| Coeff. | . 45026 -2 | . 45698 -2 | I\| . $33526-2$ | . $68912-2$ |
| (S.E.) | (.87343-3) | (.89055-3) | 11 (.10377-2) | (. $14865-2)$ |
| Signif. | . 0000 | . 0000 | 11.0049 | . 0000 |
|  |  |  | 11 |  |
| Light |  |  | 11 |  |
| Coeff. | Absent | (.14843-1) | 11 Absent | Absent |
| (S.E.) | Absent | (. $27091-1$ ) | 11 Absent | Absent |
| Signif. | Absent | . 5873 | II Absent | Absent |

regressions, the light coefficient, in Regression 6, is not significantly different from zero nor are the linear coefficients of age significantly different from each other. Moreover, the coefficients of the quadratic age terms do not differ from each other significantly. These results again are consistent with the hypothesis that the age-windshield tint phenomenon is essentially the same during the day as during the night.

Regressions 7 and 8 in Table 3 are analogous to regressions 3 and 4 of Table 2. Regression 7 includes the daytime data and Regression 8 includes the nighttime data. It will first be noted that both quadratic regressions accomplish an appreciably better fit to the data than do their linear counterparts, particularly for the daytime data where the R-Square has increased from 0.474 to 0.611 . Pair-wise comparison of the coefficients of

Table 3

Summary of Quadratic Regression Analyses

|  | \| Regress. 5 | Regress. 6 |  | Regress. 7 | Regress. 8 |
| :---: | :---: | :---: | :---: | :---: |
| Light | Both | Both | Day | Night |
|  |  |  |  |  |
|  |  |  |  |  |
| Error |  |  |  |  |
| Sum |  |  |  |  |
| Squares | 79.99 | 79.48 | 32.04 | 41.33 |
| (D.F.) | (35) | (34) | (16) | (16) |
|  |  |  |  |  |
| R-Square(S.E.) | . 72830 | . 72625 | . 61107 | $\begin{array}{r} .75558 \\ (1.6071) \end{array}$ |
|  | (1.5118) | (1.5289) | (1.4151) |  |
|  |  |  |  |  |
| Constant | $.12680$ | $.11025$ |  | $09183$ |
| (S.E.) | $(.75803-1)$ | $(.84417-1)$ | $(.91231-1)$ | (.91825-1) |
| Signif. | . 1033 | . 0000 | . 0710 | . 4987 |
|  |  |  |  |  |
| Age |  |  |  | 1 |
| Coeff. | . $17438-1$ | . $17400-1$ | . $15213-1$ | . $18293-1$ |
| (S.E.) | (. $41945-2)$ | (. $42429-2)$ | (. $49427-2$ ) | (.76216-2) |
| Signif. | . 0002 | . 0002 | . 0072 | . 0289 |
|  |  |  |  |  |
| Coeff. |  | 11 |  | 1 |
| of Age |  | 11 |  | 1 |
| Squared | -. 15892 -3 | -. $15781-3$ | -. $14262-3$ | -. 14666 -3 |
| (S.E.) | (. 50628 -4) | (. $51256-4$ ) | (. $58410-4$ ) | (. $96296-4$ ) |
| Signif. | . 0034 | . 0041 | . 0266 | . 1473 |
|  |  |  |  |  |
| Light |  |  |  |  |
| Coeff. | Absent | (.11392-1) | Absent | Absent |
| (S.E.) | Absent | (.24332-1) | Absent | Absent |
| Signif. | Absent | . 6426 | Absent | Absent |

the linear and quadratic terms now shows, contrary to the finding with the linear regressions of Table 2, non-significant differences between the day and night terms.

Another way of looking at the additional explanatory power of making the day-night split is by comparing the Error Sum of Squares of Regression 5-79.99 with 35 degrees of freedom-with the sum of the Error Sum of Squares from Regressions 7 and 8 together. The latter figure is 73.37 $(32.04+41.33)$ with 32 degrees of freedom. The difference between these
two-6.62--is itself distributed as Chi-square with three degrees of freedom. This is not a statistically significant difference, again indicating that the further split of the data set into the day-night subsets does not provide additional explanatory power for the phenomenon.

The fitted regression models for the daytime and nighttime light conditions, together with the actual data points, are shown in Figures 1 and 2. Figure 1 shows the original data points--the proportions of tinted windshields by 3 -year age group-for the daytime accidents, together with the fitted linear and quadratic models. Figure 2 repeats these plots for the nighttime accidents. The apparent non-linearity in the linear fit--and also the perturbation in the quadratic fit--at age groups 68 and 75 are to be expected. It will be recalled that it was necessary to pool the drivers for these two age groups for analytic purposes, and the selected age groups are not linear with respect to the younger 3-year groupings. This in no way alters the analytical accuracy of the results, but the visual display is slightly distorted.

In sum, weighted least squares regression models-both linear and quadratic-were fit to the proportion of drivers having tinted windshields by 3 -year age groups for both day and night accidents. The quadratic models provided acceptably good fits to the actual accident data. The models show that the proportion of drivers having tinted windshields increases as age increases for both the daytime and nighttime accidents. Several different ways of looking at these models shows that there are no statistically significant differences between the daytime and nighttime conditions. It is concluded, therefore, that the data do not support a hypothesis that argues that older drivers are differentially and negatively influenced when driving at night with tinted windshields.
actual and phedicted tint phopontions


Figure 1
Actual and Fitted Tint Proportions: Day


Figure 2
Actual and Fitted Tint Proportions vs. Age: Night

## 4. DISCUSSION

The preceding results suggest that, among these CPIR data, there is little evidence to support either the hypothesis that tinted windshields cause accidents or the hypothesis that they prevent them. It would be desirable, of course, if the conclusions could be far more definitive and less qualified.

The application of statistical techniques to these sorts of technical issues is appropriate, but a minimum of three conditions must be met so that sound inferences can be drawn. First, the accident data must be sampled correctly so that inferences are not limited to just the population under study. Second, the missing-data rate on the variables of interest within the accident sample must be negligibly small. Third, an adequate description of the at-risk population from which the accident sample is taken must be available so that the necessary comparisons can be made between accident and control samples.

None of these conditions is met in the present case. The CPIR data were obtained from a wide variety of locations and times by many different investigators. The accidents selected for investigation were frequently interesting but far from typical, such as extensive property-damage accidents accompanied by little personal injury, or much personal injury with little property damage. The net result is that it is most hazardous to generalize findings from this data set beyond the limits of the data set itself, particularly with respect to subtle influences such as that under consideration here.

Given the lack of representativeness of the accident data, the missingdata issue on the variables under study is of little practical consequence. For the sake of completeness, however, it can be seen, from Table A-12, that the missing-data frequencies exceed those for the combined CLEAR and TINT categories for the 1971 model year and earlier. As late as the 1976 model year, the missing-data cases comprise some 27\%-37 of the 136 -vehicles. Whether a bias exists on the windshield color variable for the missing-data vehicles is unknown, of course. But it is reasonable to speculate that
windshield information is likely to be missing in the more serious crashes where post-accident investigations are less productive. From other studies it is known that accident severity is associated with such pre-crash factors as speeding, alcohol consumption, and the like. It is not unlikely, therefore, that a bias created by incomplete reporting could exist, and this effect could be larger than either the positive or negative effects caused by tinted windshields.

For these reasons, and the lack of a suitable control group as noted earlier, inferences from this study must be guarded. The results of other studies, whether they claim to establish that tinted windshields cause accidents or prevent them, should also be questioned in light of the soundness of the underlying research methodologies.

## 5. SUMMARY AND CONCLUSIONS

The CPIR3 data set was examined for evidence that would indicate how tinted windshields are related to accident occurrence. It was found that tinted windshields are associated with a variety of other vehicular and driver variables, some of which are also believed to influence the risk of a crash. Because of these uncontrolled confounding variables, and because of methodological limitations directly associated with the CPIR file, it is not possible to isolate the influence of tinting in accident causation or occurrence. Failure to find an effect one way or the other, although far from conclusive, certainly suggests that whatever effects exist are small.

A well designed and well executed study, with great attention to methodological rigor, is needed if the effects of tinted windshields in causing or preventing accidents are to be determined with confidence. Such a study might be undertaken as a special study within the framework of the National Accident Sampling System.

Appendix-A
BIVARIATE TABULATIONS


0	$\begin{aligned} & \sim \\ & N \\ & N \end{aligned}$	$\frac{a}{x}$	NO.	0	0	$N-$	$\dot{c}$	$v=$	0	0	VN	$\underset{\lambda}{\Sigma}$	0	in	0	0		
0	$-0$	$\underset{x}{z}$	NO	0	$N=$	0	$\stackrel{\square}{2}$	$5 \sim$	0	$\checkmark$	0	خ	0	$\stackrel{N}{n}$	0	0		
$\infty$－	0	$\bar{x}$	$m$	0	0	$m-$	믕	0	$\cdots \cdot$	c	0	$\frac{y}{2}$	0	$\begin{aligned} & \text { n } \\ & \text { in } \end{aligned}$	0	0		
0	~	$\pm$	~	0	0	$N \sim$	U	0	$\cdots$	0	0	＞	0	－	0	0		
$m \rightarrow$	0	$\underset{x}{x}$	$\tilde{N}^{n}$	0	$\stackrel{\sim}{N}$	0	$\frac{\Sigma}{z}$	0	$N$	0	0	$\underset{x}{\chi}$	0	$m$	0	0	$\stackrel{\sigma}{\sigma}$	0
0	$\approx \underset{n}{r}$	$\hat{x}$	$-0$	0	0	$-0$	$\frac{7}{2}$	0	－	0	0	$>$	0	$\sim$	0	0	$\underset{\sim}{N}$	0
$\begin{aligned} & \infty N \\ & 0 \\ & 0 \\ & m \end{aligned}$	0	$\underset{x}{\infty}$	~O	0	0	$\sim$	$\underset{\mathbf{z}}{\mathbf{z}}$	0	$\stackrel{N}{N}$	0	0	z	0	$N$	0	0	앙	0
0	$m$	$\dot{x}$	$9!$	0	$\sigma_{0}^{a m}$	0	$\underline{2}$	NO	0	0	$N \sim$	S	0	$\sim$	0	0	$\rangle$	0
$00$	0	$\stackrel{\infty}{7}$	$=\mathrm{m}$	0	0	$=\text { ـn }$	$\frac{11}{2}$	$\bullet$	0	ナ N	0	$\underset{\sim}{\chi}$	0	$\cdots$	0	0	$\underset{>}{\times}$	0
0	$-0$	$4$	$-0$	0	$-0$	0	$\underset{\boldsymbol{Z}}{\boldsymbol{\sim}}$	$\pm!$	0	$\pm 7$	0	$\overrightarrow{\boldsymbol{\alpha}}$	0	$*$	0	0	$\frac{3}{2}$	0
0	$0 \ln$	$\underset{\Sigma}{z}$	0	$\sim$	0	0	$0$	$m \rightarrow$	0	$\cdots \cdots$	0	$\underset{\alpha}{\alpha}$	0	$\cdots$	0	0	$\rangle$	0
$-0$	0	$\underline{\infty}$	O!	0	0	${ }^{20}$	U	${ }_{\infty}^{n} \underset{\sim}{\infty}$	0	0	$\ln \uparrow$	$\underset{\sim}{\underset{\sim}{x}}$	$\stackrel{\infty}{\sim}$	0	0	$\propto$	$\underset{2}{2}$	0
$\mathfrak{n}$	0	$\leqq$		0	Hin	0	\％	$0 \backsim$	0	0	OO:	$\frac{\bar{x}}{\text { a }}$	No．	0	0	$\sim$	$\stackrel{-}{2}$	0
0	$-0$	－	0	$\stackrel{ }{*}$	0	0	$\underset{\Sigma}{\Sigma}$		0	$\bigcirc$	$$	$\underset{\sim}{\underset{\sim}{u}}$	$00$	0	$0 \%$	0	$\sim$	0
0	No	－	$\simeq ?$	$\bigcirc$	$\bigcirc$	$N 0$	$\underset{ـ}{\infty}$	$\vec{\sigma} \stackrel{\sim}{\sim}$	0	0	$\vec{\sigma}$	$0$	$-0$	0	$-0$	0	$\stackrel{\sim}{\sim}$	0
ON	0	岕	$\underset{~}{-1}$	0	0	$\stackrel{m}{\Delta}$	」	$\stackrel{*}{c}$	0	$\stackrel{+}{\circ}$	0	¢	$\cdots \cdots$	0	$\cdots$	0	$\stackrel{0}{2}$	0
0	$\sim \sim$	山	$\stackrel{\infty}{N} \stackrel{n}{N}$	0	$\stackrel{\infty}{\sim} \underset{\sim}{\sim}$	$\bigcirc$	$\stackrel{\sim}{x}$	$-0$	0	$\bigcirc$	$-0$	$\varangle$	$\stackrel{\sim}{\sim}$	0	$\underset{\sim}{n} \text { n }$	0	$\underset{>}{2}$	0
			n 3 3 0					$\begin{aligned} & \infty \\ & 3 \\ & 0 \\ & 0 \end{aligned}$					0 3 3		$\begin{aligned} & \stackrel{\sim}{4} \\ & \underset{3}{\underset{\sim}{x}} \end{aligned}$			M 3 0 $\times 8$

$$
\begin{aligned}
& \text { N } 00 \\
& -00 \\
& \text { N } 0 \quad 0 \\
& \underset{\mathrm{~N}}{\underset{\sim}{N}} 00 \\
& \xlongequal{n} 00 \\
& \because 00 \\
& 000 \\
& \underset{0}{\infty} \quad 0 \quad 0 \\
& { }_{n}^{n} 00 \\
& \stackrel{\sim}{\sim} 00 \\
& \begin{array}{lll}
0 & 0 & 0 \\
0 & &
\end{array} \\
& 000 \\
& \underset{\substack{\operatorname{ng}}}{\sin } 0
\end{aligned}
$$






0	0	0	0	0		$\bigcirc$	0	0	$=$	0	c	0	0	No
0	0	0	0		0	0	0	0	0	0	0	0	$\bigcirc$	$\underset{\sim}{c}$
0	0	0	0		0	0	0	0	0	0	0	$\bigcirc$	$\bigcirc$	0
0	0	0	0	$\begin{gathered} \infty \\ \sim \\ \sim M O \\ M O \\ 0 \end{gathered}$	0	0	$\bigcirc$	0	0	0	0	0	c	0
0	0	0		0	0	0	0	0	0	0	0	0	0	-
0	0	0	$\begin{array}{r} \text { जo } \\ \text { 士in } \\ \text { mo } \end{array}$	0	0	0	0	0	0	0	0	$\bigcirc$	0	in
0	0	$\bigcirc$	$\begin{aligned} & \text { gmo } \\ & \text { GO: } \\ & m 0 \end{aligned}$	0	0	0	0	0	0	0	0	0	0	00
$c$	0		0	0	0	0	0	0	0	0	0	0	0	N
0	0	$\begin{gathered} m \sim 0 \\ \underset{\sim}{n} 0 \dot{0} \\ m 0 \end{gathered}$	0	0	0	0	0	0	0	0	0	0	0	ज
0	0	$\begin{aligned} & 0 \sim 0 \\ & m \text { nio } \\ & \text { mo } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0	$\underset{\sim}{n}$
0		0	0	0	0	0	0	0	0	0	0	0	0	N
0		0	0	0	0	0	0	0	0	0	0	0	0	$\cdots$
$\bigcirc$		0	0	0	0	0	0	0	0	0	0	0	0	O
$\begin{array}{r} 4 \\ 0 \\ 0 \\ -0 \\ -0 \\ N \end{array}$	$\bigcirc$	0	0	0	0	0	0	0	0	$\bigcirc$	0	0	$\bigcirc$	$\sigma$ $\pm$
	0	0	0	0	0	0	$\bigcirc$	0	0	$\bigcirc$	0	$\bigcirc$	0	¢
	0	0	0	0	0	0	0	0	0	0	0	$\bigcirc$	0	$\stackrel{N}{2}$
0	$\bigcirc$	0	0	0	0	0	0	0	0	0	0	0	0	5 5





0	0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} m \uparrow 0 \\ -10 \\ 0 \\ 0 \end{gathered}$		
0	0	0	0	0	0	0	0	0	0	0	0	$\begin{array}{r} 0 \sim \\ 0 \\ 0 \\ 0 \end{array}$		
0	0	0	0	0	0	0	0	0	0	0	0	$0 \sim 0$		
0	0	0	0	0	0	0	0	0	0	0	0	$\begin{array}{r} N O \\ \cdots 0 \\ \infty 0 \\ 0 \\ 0 \end{array}$		
0	0	0	0	0	0	0	0	0	0	0	0	$\begin{array}{r} \text { noo } \\ -10 \\ 00 \\ =0 \end{array}$		
0	0	0	0	0	0	0	0	0	0	0	0	$\begin{array}{r} \infty 00 \\ -10 \\ \\ \sim 0 \end{array}$		
0	0	0	0	0	0	0	0	0	0	0	0	$\begin{array}{r} \sim 00 \\ \sim 0 \\ \pm 0 \\ -0 \end{array}$		
0	0	0	0	0	0	0	0	0	0	0	0	$\begin{array}{r} +00 \\ \sim 0 \\ 00 \\ -10 \\ \hline \end{array}$		
0	0	0	0	0	0	0	0	0	0	0	$\begin{array}{r} \alpha 0 \\ N \\ \sim \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0	-	$-0$
0	0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { oso } \\ \text { N } \\ \text { no } \\ =0 \end{gathered}$	0	$\underset{\infty}{\infty}$	$-0$
0	0	0	0	0	0	0	0	0	0	0	$\begin{array}{r} \sim \pm 0 \\ \sim \pm 0 \\ \sim 0 \end{array}$	0	-	NO
0	0	0	0	0	0	0	0	0	0	0	$\begin{array}{r} 0 m 0 \\ m \vdots 0 \\ N O \end{array}$	0	$\underset{\sim}{\infty}$	$-0$
0	0	0	0	0	0	0	0	0	0	0		0	-	$\rightarrow 0_{0}$
0	0	0	0	0	0	0	0	0	0	0	$\begin{array}{r} \text { in } \infty 0 \\ \sim 0 \\ =0 \end{array}$	0	$\underset{\sim}{\infty}$	mo
0	0	0	0	0	0	0	0	0	0	$\begin{aligned} & N O O \\ & M O \\ & N O \\ & N O \end{aligned}$	0	0	$\underset{\sim}{\infty}$	$s 0$
0	0	0	0	0	0	0	0	0	0	$\begin{array}{r} 0 \\ \text { in } \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0	0	$\underset{\sim}{\sim}$	$\pm$.
0	0	0	0	0	0	0	0	0	0	$\begin{gathered} \text { OO } \\ \text { NO } \\ \text { mi } \end{gathered}$	0	0	-	Mo
$\begin{aligned} & =0 \% \\ & 500 \\ & 200 \end{aligned}$		$\begin{aligned} & -x \\ & 03 \\ & \pm 0 \\ & \pm 0 \\ & 0 \end{aligned}$						$\begin{aligned} & \infty x \\ & \infty 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ccc} -x & x \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{lcc} \text { to } \\ \text { t } \\ 0 & 0 \\ 0 & 0 \end{array}$		$\begin{array}{ll} \text { n } \\ \text { in } \\ \text { No } \\ \hline 0 \end{array}$		

000
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 0 & 0 & 0\end{array}$

000000
$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ 00 $0 \quad 0 \quad 0 \quad 0 \quad 0$




TWOWAY CROSS-TABULATION TABLE A-5

$\begin{aligned} & 2 . \\ & \text { CCLOR } \end{aligned}$		$\begin{aligned} & 29 . P R \\ & \text { MISS } \end{aligned}$	CTYPE NONE	RAIN	S NOW	HAIL	SLEET	OTHER
$N=$	4179							
TOTAL =	9173	6	3292	589	268	1	17	12
ROW\%			78.8	14.1	6.4	- 0	. 4	- 3
COL\%								
MISS	4797	191	3939	610	235	0	6	7
EXPECT								
ROW\%								
COL\%								
CLEAR	2114	4	1649	294	156	0	10	5
EXPECT			1665	298	-136	1	9	6
ROW\%			78.0	13.9	7.4		- 5	- 2
COL\%	50.6		50.1	49.9	58.2		58.8	41.7
TINT	2065	2	1643	295	112	1	7	7
EXPECT			1627	291	132	0	8	6
ROW \%			79.6	14.3	5.4	- 0	- 3	- 3
COLT	49.4		49.9	50.1	41.8	100.0	$41 \cdot 2$	58.3
IESTS OF	INDE	NDENCE	STAT	IC	GNIF	$D F=5$	$N=$	4179



Thomay cross -tabulation table a-t

2.   CCLOR		$\begin{aligned} & 31 . R D \\ & \text { MISS } \end{aligned}$	$\begin{array}{r} \text { SLIP? } \\ \text { YES } \end{array}$	NO
$N=$	4096			
TOTAL =	9173	89	1005	3091
ROW 8			24.5	75.5
COL\%				
MISS	4886	102	1077	3809
EXPECT				
ROW?				
COL 8				
CLEAR	2083	35	566	1517
EXPECT			511	1572
ROW			27.2	72.8
COL\%	50.9		56.3	49.1
TINT	2013	54	439	1574
EXPECT			494	1519
ROW $\%$			21.8	78.2
COL ${ }^{\text {\% }}$	49.1		43.7	50.9

TESTS OF INDEPENDENCE STATISTIC SIGNIF DF $=1 \quad N=4096$

MAXIMUM LIKELIHOOD	15.947	.0001	CRAMER•S PHI =
CHI-SQUARE	15.908	.0001	CONTINGENCY COEFF $=$
BINOMIAL TEST OF SYMMETRY	0.0623		


$\begin{aligned} & 2 . \\ & \text { COLUR } \end{aligned}$		$\begin{aligned} & 36-\text { TIME } \because D A Y \\ & \text { MISS (II) } \end{aligned}$		(2)	(3)	(4)
$N=$	4185					
TOTAL =	9173	0	2260	1673	176	76
ROW 3			54.0	40.0	4.2	
COL\%						
MIS S	4966	22	2509	2108	237	112
EXPECT						
ROW\%						
COL\%						
CLEAR	2118	0	1125	855	93	45
EXPECT			1144	847	89	38
ROW			53.1	40.4	4.4	2.1
COL:	50.6		49.8	51.1	52.8	59.2
TINT	2067	0	1135	818	83	31
EXPECT			1116	826	87	38
ROW			54.9	39.6	4.0	1.5
C.OL\%	49.4		50.2	48.9	47.2	40.8




$\stackrel{\text { N }}{\underset{\sim}{\sim}}$	$\stackrel{\rightharpoonup}{m}$	


	ON	$\underset{\infty}{\infty}$		
$\begin{aligned} & \mathbf{z} \\ & 0 \\ & 0 \\ & S_{x} \end{aligned}$	$\pm$＊	$\stackrel{ \pm}{*}$	© N	
$\begin{aligned} & \text { 山 } \\ & \text { 吕 } \\ & \dot{2} \end{aligned}$	$m-$	m	$N N \div \stackrel{1}{0}$	
O	$\sim_{\infty} \stackrel{\square}{\square}$	$\stackrel{\sim}{\infty}$	$\text { 욱 } \underset{\sim}{4}$	$\bar{m} \underset{j}{o n} \underset{\sim}{n} \underset{\sim}{\infty}$

Thohar cross－tabulation table a－g

$\underset{\sim}{\alpha}$	のn－	m	oun！
¢	NN	m	－


$D F=8$
.0510
.0509
$\begin{array}{lll}\text { SIGNIF } & \text { DF }=8 & N=4162 \\ \text {－} 2035 & \text { CRAMER PS PHI }= \\ \text {－2116 } & \text { CONTINGENCY COEFF }=\end{array}$
$\begin{array}{cl}\text { ESTS OF INDEPENDENCE } & \text { STATISTIC } \\ \text { MAXIMUM LIKELIHOOD } & 10.968 \\ \text { CHI－SQUARF }\end{array}$
thowar cross-tabulation table a-io

2. CCLOR		$\begin{aligned} & 115 . M F R \\ & \text { MISS } \end{aligned}$	$\begin{aligned} & \text { OIV } \\ & \text { (10) } \end{aligned}$	BUICK	CADLAC	CHEVLT	OLDS	PONTAC	GMC TEC	LEKTRO	OPEL	VAUXHL	FORD	LINMER	KRYSLR	OODGE	IMPR L
MOTA $=$	4156 9173																
TOTAL $=$		29	0	249	91	1097	298	337	13	1	16	0	1067	237	40	295	3
ROW\% COL				6.0	2.2	26.4	7.2	8.1	. 3	. 0	. 4		25.7	5.7	1.0	7.1	. 1
MISS	4422	566	1	151	54	1023	209	308	26	0	66	1	1237	307	67	361	6
EXPECT																	
ROW\%																	
COL $\%$																	
CLEAR	2091	27	o	33	0	587	66	111	13	0	14	0	711	110			
EXPECT			0	125	46	552	150	170	7	,	8	0	537	119	20	148	2
ROW ${ }^{\text {c }}$				1.6		28.1	3.2	5.3	. 6		. 7		34.0	5.3	. 3	8.3	
COL ${ }^{\text {\% }}$	50.3			13.3		53.5	22.1	32.9	100.0		87.5		66.6	46.4	15.0	59.0	
tint	2065	2	0	216	91	510	232	226	0	1	2	0	356	127	34	121	3
EXPECT			0	124	45	545	148	167	6	0	8	0	530	118	20	147	1
ROW?				10.5	4.4	24.7	11.2	10.9		. 0	. 1		17.2	6.2	1.6	5.9	. 1
COL\%	49.7			86.7	100.0	46.5	77.9	67.1		100.0	12.5		33.4	53.6	85.0	41.0	100.0


$N=4156$
$\pm$
"
告
.3711
.3479
CRAMER OS PHI
CONTINGENCY COEFF $=$
SIGNIF
$\therefore 0^{\circ}$
statistic
642.21
572.27

O 0 - 0000


tests of independence
MAXIMUM LIKELIHOOD
CHI-SQUARE


$$
\begin{array}{lllll}
m & -0 & 0 & -00 \\
= & 0 & 0 & 0 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \dot{N} \\
& \text { " } \\
& \stackrel{1}{0}
\end{aligned}
$$

TWOWAY CROSS-TABULATION TABLE A-11

$$
\begin{aligned}
& \text { CRAMERIS PHI = } \\
& \text { CONTINGENCY COEFF }=.4981 \\
& .4459
\end{aligned}
$$

$\begin{aligned} & \pm \\ & \sim \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{n}{\underset{a}{a}}$		$\begin{aligned} & 00 \mathrm{~m} \\ & \text { mo } \\ & \text { Nin m } \end{aligned}$
$\begin{aligned} & 00 \\ & 0 . \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\underset{\infty}{\stackrel{\rightharpoonup}{\infty}}$		

 100.0

2

$\therefore 0^{\circ}$
1181.6
1038.5
TESTS OF INDEPENDENCE

[^1]\[

$$
\begin{aligned}
& \text { " No n - }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { ロッチン }
\end{aligned}
$$

$$
\begin{aligned}
& \text { シ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ミ }
\end{aligned}
$$


twowar cross-tabulation table a-13

Mッロ .4105 CRAMERIS PHI = . 4105 CONTINGENCY COEFF $=$ MAXIMUMLIKELIHOOO .67725
MAXIMUM LIKELIHOOD
CHI-SQUARE
$N=3933$
$D F=1$
SIGN
.4105
.4105
.0000
CHINOMIAL TEST OF SYMMETRY
ThOWAY CROSS-TABULATION TABLE A-14

$2 \cdot$		$\begin{gathered} 338 . W D \\ \text { MISS } \end{gathered}$	$\begin{array}{r} \text { CRKD? } \\ \text { YES } \end{array}$	NO
N ${ }^{=}$	4181			
TOTAL $=$	9173	4	2163	2018
ROW\%			51.7	48.3
COL				
MISS	4927	61	3292	1635
EXPECT				
ROW $\%$				
COL ${ }^{\text {a }}$				
CLEAR	2117	1	1066	1051
EXPECT			1095	1022
ROW \%			50.4	49.6
COL ${ }^{\text {T }}$	50.6		49.3	52.1
TINT	2064	3	1097	967
EXPECT			1068	996
ROW\%			53.1	46.9
COL $\%$	49.4		50.7	47.9

TESTS OF INDEPENDENCE STATISTIC SIGNIF DF=1 N=4181

[^2]TWOWAY CRESS-TABULATION TABLE A-15

$\dot{i}$	0	00	00
$\dot{Z}$			


$\qquad$
$\mathrm{PHI}=$ .0204
.0205 CONTINGENCY COEFF $=$
0.0 FISHER EXACT PROB $=$

$2 .$		$\begin{aligned} & 361 \text { AIR } \\ & \text { MISS } \end{aligned}$	$\begin{array}{r} \text { COND } \\ \text { YES } \end{array}$	NO
$\mathrm{N}=$	4179			
IOTAL =	9173	6	2479	1700
ROW'			59.3	40.7
COL				
MISS	4768	220	2539	2229
EXPECT				
ROW				
COL				
CLFAR	2115	3	800	1315
EXPECT			1255	860
ROW\%			37.8	62.2
COL	50.6		32.3	77.4
tint	2064	3	1679	385
EXPECT			1224	840
ROW\%			81.3	18.7
COL\%	49.4		67.7	22.6

TESTS OF INDEPENDENCE STATISIIC SIGNIF DF $=1 \quad N=4179$
$\begin{array}{llll}\text { MAXIMUM LIKELIHOOD } & 855.72 & 0 . & \text { CRAMER'S PHI }= \\ \text { CHI-SQUARE } & 819.94 & 0 . & \text { CONTINGENCY COEFF }= \\ & .4050\end{array}$ BINOMIAL TEST OF SYMMETRY . 0000 FISHER EXACT PROB $=0$.
ThOWAY CRESS-TABULATION TABLE A-17

${ }_{\text {COLOR }}^{2}$		$\begin{aligned} & 516 . \text { BRD } \\ & \text { MISS } \end{aligned}$	$\begin{aligned} & 0 \text { OCCU } \\ & \text { WHITE } \end{aligned}$	BLUE	FARM	SERVIC	HCUSWF	STUDNT	MILTRY	RETIRD	UNEMPL
$N=$	1438										
TUTAL $=$	9173	2697	575	351	10	152	123	151	24	73	29
ROW ${ }^{\text {c }}$			38.6	23.6	. 7	10.2	8.3	10.1	1.6	4.9	1.9
COL\%											
MISS	2112	2876	732	534	17	190	129	320	39	76	75
EXPFCT											
$\begin{aligned} & \text { ROW\% } \\ & \text { COL } \end{aligned}$											
clear	694	1424	227	213	7	67	49	66	10	36	19
EXPFCT			268	164	5	71	57	70	11	34	14
ROW			32.7	30.7	1.0	9.7	7.1	9.5	1.4	5.2	2.7
COL $\%$	46.6		39.5	60.7	70.0	44.1	39.8	43.7	41.7	49.3	65.5
TINT	794	1273	348	138	3	85	74	85	14	37	10
EXPect			307	187	5	81	66	81	13	39	15
ROW			43.8	17.4	. 4	10.7	9.3	10.7	1.8	4.7	1.3
COL*	53.4		60.5	39.3	30.0	55.9	60.2	56.3	58.3	50.7	34.5
tests of independence			STATISTIC		SIGNIF	$D F=8$	$N=1488$				
MAXIMUM LIKELIHOOD CHI-SQUARE			$\begin{aligned} & 49.898 \\ & 49.669 \end{aligned}$		$\begin{array}{r} .0000 \\ .00000 \end{array}$	CRAMER'S PHI= CONTINGENCY		COEFF=	$\begin{aligned} & .1827 \\ & .1797 \end{aligned}$		

Tholiar crooss-rabulation table a-18

2. CCLOR		$\begin{gathered} 536 . \text { RES } \\ \text { MISS } \end{gathered}$	$\begin{aligned} & \text { PBL TY } \\ & \text { MOST } \end{aligned}$	SECOND	third	FOURTH	FIFTH	SIXTH
$N=$	4025							
$\operatorname{TOTAL}=$	9173	160	2450	1497	67	8	2	1
Rowz			60.9	37.2	1.7	. 2	. 0	. 0
COL $\%$								
MISS	4511	471	3000	1399	104	5	3	0
EXPECTROW\%								
$\begin{aligned} & \text { ROW } \\ & \text { COL } \end{aligned}$								
CLEAR	2038	80	1289	715	33	1	0	0
EXPECT			1241	759	34	4	,	1
ROL\%			63.2	35.1	1.6	. 0		
	50.6		52.6	47.8	49.3	12.5		
TINT	1987	80	1161	782	34	7	2	1
EXPECT			1209	739	33	4	1	0
ROW\%			58.4	39.4	1.7	. 4	. 1	. 1
COL ${ }^{\text {a }}$	49.4		47.4	52.2	50.7	87.5	100.0	100.0
tests of	INDEP	ENDENCE	STAT	IStic	SIGNIF	$\mathrm{DF}=5$		4025
MAXIMJJCHI-SQU	M LIKE	LIHOOD	18.28		. 0026	CRAMER	S PHI =	
	ARE		16.55		. 0054	CONTIN	ENCY CO	EFF $=$

twowar cross-tabulation table a-19

${ }^{2} \mathrm{CLLOR}$		$\begin{gathered} 590 . \text { SEX } \\ \text { MISS } \end{gathered}$	MALE	Female
$N=$	4184			
TOTAL $=$	9173	1	2824	1360
ROW\%			67.5	32.5
COL\%				
MISS	4980	8	3647	1333
EXPEC				
ROW\%				
COLS				
CLEAR	2117	1	1409	708
EXPECT			1429	688
ROW\%			66.6	33.4
COL ${ }^{\text {\% }}$	50.6		49.9	52.1
tint	2067	0	1415	652
EXPECT			1395	672
ROW\%			68.5	31.5
COL\%	49.4		50.1	47.9

49.4

CLEAR
EXPECT
ROW\%
COL $\%$
TINT
EXPECT
ROWZ
COL
tests of independence

$$
\text { SIGNIF } \quad D F=1 \quad N=4184
$$

MN』
NOS
NOO
ONO

$$
\begin{array}{r}
.1895 \\
.1895 \\
.0060
\end{array}
$$

$$
\begin{aligned}
& \text { CRAMER'S PHI = } \\
& \text { CONTINGENCY C }
\end{aligned}
$$




[^0]:    1 A.M. Gittelsohn, "Tinted Windshields Don't Increase Accident Risk," Automotive Engineering, Volume 81, Number 5, May 1973.

[^1]:    MAXIMUM LIKELIHOOD
    CHI-SQUARF.

[^2]:    $\begin{array}{ll}\text { MAXIMUM LIKELIHOOD } & 3.2700 \\ \text { CHI-SQUARE } & 3.2695 \\ \text { BINOMIAL TESI OF SYMMETRY }\end{array}$

