UM-HSRI-79-16

TINTED WINDSHIELD INVOLVEMENT AMONG CPIR ACCIDENTS

Lyle D. Filkins

The University of Michigan HIGHWAY SAFETY RESEARCH INSTITUTE April 1979

Technical Report Documentation Page

1. Report No.	2. Government Access	ion No. J. F	Recipient's Catalog N	0.
UM-HSRI-79-16				
4. Title and Subtitle	1		leport Date	
Tinted Windshiald Invo	lvement Among		April 1979	
Accidents	Tremente Among	6. F	Performing Organization	on Code
7 Author's)			Performing Organization	on Report No.
Lyle D. Filkins		l	JM-HSRI-79-1	6
9. Performing Organization Name and Addre	ss , h Institute	10.	Work Unit No. (TRAI	5)
The University of Mich	igan]].	Contract or Grant No	
Ann Arbor, Michigan 48	109			-
		13.	Type of Report and P	eriod Covered
12. Spansoring Agency Name and Address	anv	F F	inal	1070
Technical Center		Ma	arcn-April,	19/9
1701 East Broadway		14.	Sponsoring Agency C	ode
Toledo, Ohio 43605				
16. Abstract The 9222 vehicles	in the CPIRS	data set were	examined for	evidence
that would indicate wheth	er tinted win	dshields cause	or prevent a	accidents.
Windshield-tint condition	was known fo	r 4185 vehicles	, and these	were almost
evenly split between clea	ir and tinted	windshields.		
The proportions of	of tinted wind	shields among t	hese accider	nt vehicles
were smaller than those f	or U.Sprodu	ced vehicles of	comparable	model years.
Weighted least squares re	gressions sho	wed that the pro	oportion of	drivers
having tinted windshields	s increases as	age increases,	and night:	ime condi-
tions It was concluded	, uniterences from the rear	permeen udyrime	that the da	ata do not
kunnort the hynothesis th	at older driv	ession analyses ers are negativ	elv influend	red at night
with tinted windshields.				
It was also found	l that tinted	windshields are	associated	with a
variety of driver and veh	nicular variat	les believed to	influence a	accident
risk. Because of these u	incontrolled,	confounding var	iables, and	because of
methodological limitatior	is associated	directly with t	he CPIR file	e, it is not
possible to isolate the i	influence of w	indshield tinti	ng in accide	ent causa-
tion or prevention. A co	ontrolled stud	ly is needed to	make such a	
petermination.				
17. Key Words		18. Distribution Statement		
		Unlimited		
10 Sec. (2) (1) (4) (4) (4)				
17. Security Clessif. (of this report)	AU. Security Cless	ut. (of this page)	1. No. of Pages	22. Price
Unclassified	Unclass	T100	53	
Form DOT F 1700.7 (8-72)	Reproduction of con	aleted name authorized		

Reproduction of completed page authorized

UM-79-16

:

TINTED WINDSHIELD INVOLVEMENT AMONG CPIR ACCIDENTS

Lyle D. Filkins

The University of Michigan HIGHWAY SAFETY RESEARCH INSTITUTE April 1979

TABLE OF CONTENTS

LIST	OF TABLES .	• •	•	•	•	• •	•	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	ii	
LIST	OF FIGURES.	• •	•	•	•	• •	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	iii	
1.0	INTRODUCTION	۱	•	•	•	• •	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	1	
2.0	DATA SET	• •	••	•	•	• •	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	2	
3.0	ANALYSES	• •	• •	•	•	• •	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	3	
4.0	DISCUSSION.	•	••	•	•	• •	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	15	
5.0	SUMMARY AND	CON	ICLI	JSI	ON	s.	•	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	17	

•

LIST OF TABLES

1	Comparison of Vehicles with Tinted Windshields Among Production and Accident Vehicles	6
2	Summary of Linear Regression Analyses Proportion of Tinted Windshields vs. Age (Total and Day & Night)	10
3	Summary of Quadratic Regression Analyses Proportion of Tinted Windshields vs. Age (Total and Day & Night)	11

.

.

LIST OF FIGURES

1.	Actual	and	Fitted	Tint	Proportions	vs.	Age:	Day.	•	•	•	•	•	•	•	13
2.	Actual	and	Fitted	Tint	Proportions	vs	Age:	Night	•	•	•	•	•	•	•	14

:

1. INTRODUCTION

The purpose of this technical memorandum is to update parts of the earlier work of Marsh and Arvai concerning the relationship between tinted (heat-absorbent) windshields and accident involvement.¹ They analyzed the involvement of vehicles having tinted and clear windshields from the 3502 vehicles contained in the computer file for accidents reported on the CPIR report form. Forty-two percent of the vehicles could be identified as having either clear or tinted windshields, and of these 1465 vehicles, forty-four percent (639) were equipped with tinted windshields. The authors observed a slight trend for tinted-windshield involvement to increase with age more rapidly for nighttime accidents than for daytime accidents. Their central conclusion, however, was that it was not possible to isolate tinted windshields as either a causative or a non-causative factor in the production of accidents.

The work reported here includes several least-squares regression models applied to three variables of the current version of the same CPIR file. The file now contains 9222 vehicles, of which 8389 (91%) are known to be passenger cars of various body styles. As in the earlier work, relationships between tinted windshields and a number of other variables are also of interest. In the present study these were investigated using bivariate contingency tables and tests of independence on those tables.

¹ J. Marsh and E. Arvai, <u>Tinted Windshield</u> <u>Involvement</u>, Highway Safety Research Institute, The University of Michigan, Ann Arbor, Michigan, June 1973.

2. DATA SET

The starting point of the present study is the CPIR3 file, containing 9222 vehicles as of Update 'A'. This file was first filtered to include only those 9173 vehicles coded as having a driver in the normal driving position. (This condition is indicated by Code Value 44 of Variable 580, SEAT LOCATION, POSITION.)

Vehicles having the necessary information about windshield color were obtained by re-coding the alpha variable identifying windshields (Variable 343, WINDSHIELD CODE). A two-level numeric variable describing the windshield as either CLEAR (Level 1) or TINT (Level 2) was assigned. The alpha field was empty for 1.2% of the vehicles. Of the 130 alpha codes in the file, 40 identified clear windshields, 54 identified tinted windshields, and 36 were applied to windshields for which the clear-tint classification is unknown. Thus 4185 vehicles could be identified with respect to windshield color, with 2118 (50.6%) having clear windshields and 2067 (49.4%) having tinted windshields. The distribution of the data set by the original alpha code and the re-coded variable is shown in Table A-1 of Appendix A.

All vehicles with an unambiguous code value on the windshield-code variable were retained for subsequent analysis. This was done to maximize the number of cases in order to better find differences between clear and tinted windshield involvement if such existed. Ninety-two percent of these vehicles are passenger cars.

3. ANALYSES

The two primary analytical tools used in this study were contingency table analysis and least-squares regression. Both were carried out in MIDAS, the Michigan Interactive Data Analysis System resident on MTS (Michigan Terminal System). The TWOWAY command generated the bivariate tables contained in Appendix A, and the REGRESSION command was used in the regression analyses after the data had been weighted appropriately.

Contingency Table Analysis

Several contingency tables were formed to determine whether, on a gross basis, tinted windshields were associated with other variables contained in the CPIR file. The central result of these explorations is to confirm the earlier finding that tinted windshields are, in fact, associated with many other vehicle and driver variables, a fact which complicates the inferential process considerably.

Representative of these tables is the twoway cross-tabulation of Precipitation Type (Variable 29) vs. Windshield Color (Variable 2) shown in Table A-5. Cases with missing data on either variable are shown under the applicable MISS classification, but these cases are excluded in all calculations. In this table, as in all of the others in Appendix A, the row and column percentages are included in the twoway output. Also included is a tabulation of the expected frequency under the assumption that the two variables are independent. Thus the row labeled EXPECT contains the number of cases that would be "expected" if the CLEAR and TINT frequencies were distributed in the same proportion as the marginal distribution. The MAXIMUM LIKELIHOOD and CHI-SQUARE TESTS OF INDEPENDENCE statistics are given to test whether the independence assumption holds or not. Both statistics indicate a non-significant association between windshield color and precipitation type.

Table A-3 indicates a significant, but not particularly strong, association between driver age and tinted windshields. All of the four three-year age groups under (28) contain less than 50% tinted windshields,

while (28) and higher contain more than 50%. The windshield colorationdriver age relationship is explored more fully with the regression analyses given later.

Table A-4 shows, except for the very early years, a significantly increasing percentage of tinted windshields among the more recently investigated crashes. This is undoubtedly due to the higher proportion of late model cars, themselves with higher percentages of tinted windshields, among those cars investigated in the latter years.

The data of Tables A-5 and A-6 show a non-significant association between tinted windshields and the precipitation condition prevailing at the time of the accident. Table A-7, on the other hand, shows that tinted windshields are significantly under-represented, in this accident population, with respect to their "expected" numbers on roads judged to have been slippery. The data do not provide any suggestions as to why this should be the case.

No significant association exists between tinted windshields and the amount of light prevailing at the time of the accident. This is seen in Table A-8, where the 4-level (day, night, dusk, and dawn) time-of-day variable is tabulated. As in Table A-9 (Visibility Limitation), however, a non-significant trend exists for tinted windshields to be under-represented among the darker conditions on both variables.

Tables A-10, A-11, A-12, and A-14 all demonstrate that the accident data generally associate in the expected manner with the other variables found in the tables. More expensive cars have a higher proportion of tinted windshields, as do late-model cars compared with earlier years. Air-conditioned cars, in this accident population, have 67.7% tinted windshields compared to 18.7% among non-air-conditioned cars.

Variables 338 and 339 in the CPIR file record whether the accident vehicle sustained windshield damage during the accident sequence. It is seen, from Tables A-14 and A-15, that tinted windshields are somewhat, although not significantly so, over-represented among cracked and broken windshields.

Tables A-17 and A-18 also show that, at least among these accident data, drivers of cars with tinted windshields differ from drivers of cars

with clear windshields. With respect to occupation, it is seen that 60.5% of the white-collar, accident-involved population had tinted windshields, whereas 39.3% of the blue-collar population was so equipped. Persons in service occupations, housewifes, students, military personnel, and retired persons all had greater than 50% tinted windshields, but farm workers and the unemployed joined the blue-collar workers in the under-50% category.

Table A-18 cross tabulates the CLEAR and TINT windshields with the accident investigator's assessment of responsibility for the accident. Drivers of cars judged to be the most responsible for the accident have somewhat less than half tinted windshields, whereas the second-most responsible drivers have somewhat over half tinted windshields.

Comparison of Accident and Production Data

This section compares the tinted-windshield percentages among these accident vehicles with the tinted-windshield percentage among U.S.-produced cars of recent years. The data are presented in Table 3. The accident data are from Table A-12, and the production data are from <u>Ward's Automotive</u> Reports.

Clearly vehicles with tinted windshields appear much less frequently and highly significantly so, from a statistical perspective—than the production data suggest should be the case. The differences between the two sets of figures range from over 30% to a minimum of 13%. Rather than to support the claim that tinted windshields in fact prevent accidents, the percentage differences of this size merely highlight the methodological difficulties inherent in this study: good measures of the exposed, at-risk driving population do not exist. The implications of this for future studies are discussed later.

The data simply do not exist that would enable us to postulate and defend, in a scientific sense, alternative explanations for the discrepancies noted. Based on the prior data, however, it seems reasonable to account for the large under-representation of tinted windshields in this accident population compared to U.S. production figures on the basis of the kinds of people who buy and drive cars with tinted windshields, particularly in the earlier years. Perhaps drivers of cars with tinted windshields drive less, on the average, than do drivers of cars with clear windshields.

Table 1

	Percentage	CPIR3 F	ile**
Model Year	U.S. Production with Tinted Windshields*	Percentage with Tinted Windshields	Number of Vehicles
1971	69.6	37.4	788
1972	75.1	48.0	744
1973	78.9	47.0	614
1974	75.0	49.8	502
1975	80.5	65.4	246
1976	79.1	65.7	99
1977	86.8	72.7	11

Comparison of Vehicles with Tinted Windshields

* SOURCE: Ward's Automotive Reports (Reproduced in MVMA Motor Vehicle FACTS & FIGURES, 1975 and 1978.

Perhaps they are inherently more careful drivers, or they drive in generally more sheltered and less hostile environments.

The unfortunate part of the lack of an adequate control group is that there is no way to test the obvious hypothesis that tinted windshields in fact prevent accidents. One would not expect to find differences as large as those observed above just because of tinted windshields, but they may account for some part of the under-representation. Further investigation of this possibility will have to await subsequent, more highly controlled studies than are possible with the data on hand.

^{**} Vehicles with missing data on the "Windshield Code" variable have been excluded.

Regression Analyses

The preceding section has revealed some interesting, but inconclusive, relationships between tinted windshields and other vehicle and driver variables documented in the CPIR file. This section focuses on the relationship between tinted windshields, age, and the day-night light condition under which the accident occurred.

Gittelsohn studied the relationship between these variables by obtaining weighted least squares regression lines between driver ages and percentage of accidents with tinted windshields for both day and night conditions.¹ He found that the slopes of the two regression lines were similar, and concluded that "... the data demonstrate that the risk of accidents for older persons driving cars with heat-absorbent windshields at night is no greater than during the day." The implicit assumption was that older drivers would be differentially more influenced at night when driving with tinted windshields than during the day if, in fact, tinted windshields had deleterious effects on vision with a concomitant increase in risk. Failure to find support for that hypothesis was an important part of Gittelsohn's claim that tinted windshields did not increase accident risk among the drivers he studied.

The same approach is taken here, for it is one of the few ways to subset the accident data in a manner that is meaningful in terms of the phenomenon under consideration. The procedure can be thought of as using the daytime accident data as a surrogate for a suitable control population and studying the performance of the nighttime drivers relative to the controls. To be noted is that the same technique could be used if one were exploring the hypothesis that tinted windshields prevented daytime accidents without increasing nighttime accidents. It is further the case that the results could very well appear the same; an elevation of the nighttime risk relative to a stable daytime risk under the first hypothesis might be indistinguishable from a depressed daytime risk relative to a stable nighttime risk under the second hypothesis.

The dependent variable in each of the several regression models was the

¹ A.M. Gittelsohn, "Tinted Windshields Don't Increase Accident Risk," Automotive Engineering, Volume 81, Number 5, May 1973.

percentage of accident-involved vehicles having tinted windshields. The independent variables were age of the driver and a dichotomous, day-night light variable.

Three different age groups were used in the various regression runs. The single-year age groups (Variable 584) and the 5-,10-year bracketed age groups (Variable 583) were tried in various regressions and were subsequently discarded. The single-year ages resulted in the data being too thin in some of the cells and resulted in loss of data when used in the weighted regressions. The 5-,10-year groups pool the data unevenly and their use is not theoretically satisfying.

Accordingly, the age data for the drivers were re-coded into 3-year age groups, and each group was identified by its mean age. Thus, for example, age group 40 contains drivers with ages of 39, 40, and 41. Two exceptions to this procedure pertain. Age group 68 contains drivers aged 66-71 and age group 75 contains drivers aged 72-83. Pooling of the age data in this manner was needed to accommodate the preferred weighted least squares regressions. This procedure was judged preferable to either discarding the data for a few of the older drivers or to arbitrarily estimating the variance for the same groups. The entire age recode is shown in Table A-2.

The dichotomous LIGHT variable was obtained by a simple re-code of the 4-level TIME OF DAY (Variable 36) into two levels. The drivers of "Unknown," "Dusk," and "Dawn" --about 7% of the total--were excluded from the analyses.

All analytical worked was conducted in MIDAS, the interactive data analysis system developed and supported by the University's Statistical Research Laboratory. The REGRESSION command uses only those cases for which all variables are complete, that is there are no missing data on any of the variables included in the analysis. In order to standardize the data set for the various regressions and other analyses, those cases with missing data on any of the age and light variables were also excluded. This resulted in a data set of 3929 drivers with no missing data on their age, the time of day of their accident, or the color (clear vs. tinted) of their vehicle's windshield. The distributions of drivers by these three variables are shown in Appendix A. Of the 3929 drivers, 50.3% had clear windshields and 49.7% had tinted windshields. Of these same drivers, 57.5% (2258) had

the accident during the day and 42.5% (1671) at night.

Each of the regressions reported in detail here used weighted least squares. The weight factor for each of the cells is the inverse of the square root of the estimated variance for that cell. For a proportion such as that used here—simply the ratio of the number of tinted windshields to the sum of the tinted and clear windshields—the variance is estimated by N/ pq; N is the number of observations, p is the proportion tinted, and q=1-p is the proportion not tinted (clear). A consequence of this weighting procedure is that the age groups with many drivers and with p and q percentages relatively closer to zero and one are weighted more heavily than those age groups not so characterized. Thus older drivers—in age groups 64 and 68, for example—are weighted less heavily than their younger counterparts in age groups 19 and 22.

Summary results of the regression analyses are presented in Tables 2 and 3. Table 2 applies to the four linear regressions, with weighted tint proportion the dependent variable and weighted 3-year age group the independent variable in all cases. In Regression 1, the light variable (coded '1' for DAY and '2' for NIGHT) is omitted, whereas it is included in Regression 2. It can be seen, however, that inclusion of the light variable did not improve the fit appreciably and that the light variable coefficient is not significantly different from zero. This indicates that the age-tint proportion relationship does not differ from day to night. Further, the two age coefficients for these two regressions do not differ from each other significantly.

Regressions 3 and 4 are similar, but in this case Regression 3 applies to the daytime accidents and Regression 4 applies to the nighttime accidents. The light variable, of course, is not included in either of these. Both coefficients of the weighted age variable are significantly different from zero and significantly different from each other. It will be noted, however, that the R-Square term for Regression 3 (0.474) indicates that a good fit to the daytime data has not been achieved.

Accordingly, four additional weighted least squares regression analyses were conducted. This second set of four-summarized in Table 3-parallels the first set of four except for the inclusion of a quadratic term for age. Regressions 5 and 6 both fit the total data set well. As with the linear

	Regress. 1	Regress. 2	Regress. 3	Regress. 4
Light	Both	Both	 Day	Night
Error Sum			1	
Squares (D.F.)	102 . 51 (36)	101.64 (35)	43.97 (17)	47.31 (17)
R-Square (S.E.)	.64609 (1.6874)	.64382 (1.7041)	.47413 (1.6084)	.71661 (1.6683)
Constant (S.E.) Signif.	.34659 (.32411 -1) .0000	.32304 (.54027 -1) .0000	.38137 (.40646 -1) .0000	.27954 (.50875 -1) .0000
Age Coeff. (S.E.) Signif.	.45026 -2 (.87343 -3) .0000	.45698 -2 (.89055 -3) .0000	.33526 -2 (.10377 -2) .0049	.68912 -2 (.14865 -2) .0000
Light Coeff. (S.E.) Signif.	Absent Absent Absent	(.14843 -1) (.27091 -1) .5873	 Absent Absent Absent	Absent Absent Absent

Summary of Linear Regression Analyses

regressions, the light coefficient, in Regression 6, is not significantly different from zero nor are the linear coefficients of age significantly different from each other. Moreover, the coefficients of the quadratic age terms do not differ from each other significantly. These results again are consistent with the hypothesis that the age-windshield tint phenomenon is essentially the same during the day as during the night.

Regressions 7 and 8 in Table 3 are analogous to regressions 3 and 4 of Table 2. Regression 7 includes the daytime data and Regression 8 includes the nighttime data. It will first be noted that both quadratic regressions accomplish an appreciably better fit to the data than do their linear counterparts, particularly for the daytime data where the R-Square has increased from 0.474 to 0.611. Pair-wise comparison of the coefficients of

	Regress. 5	Regress. 6	Regress. 7	Regress. 8
Light	Both	Both	Day	Night
Error Sum Squares (D.F.)	79 . 99 (35)	79 . 48 (34)	32.04 (16)	41.33 (16)
R-Square (S.E.)	.72830 (1.5118)	.72625 (1.5289)	.61107 (1.4151)	.75558 (1.6071)
Constant (S.E.) Signif.	.12680 (.75803 -1) .1033	.11025 (.84417 —1) .0000	.17644 (.91231 -1) .0710	.09183 (.91825 –1) .4987
Age Coeff. (S.E.) Signif.	.17438 -1 (.41945 -2) .0002	.17400 -1 (.42429 -2) .0002	.15213 -1 (.49427 -2) .0072	.18293 -1 (.76216 -2) .0289
Coeff. of Age Squared (S.E.) Signif.	15892 -3 (.50628 -4) .0034	15781 -3 (.51256 -4) .0041	14262 -3 (.58410 -4) .0266	14666 -3 (.96296 -4) .1473
Light Coeff. (S.E.) Signif.	 Absent Absent Absent	(.11392 -1) (.24332 -1) .6426	Absent Absent Absent	Absent Absent Absent

Summary of Quadratic Regression Analyses

Table 3

the linear and quadratic terms now shows, contrary to the finding with the linear regressions of Table 2, non-significant differences between the day and night terms.

Another way of looking at the additional explanatory power of making the day-night split is by comparing the Error Sum of Squares of Regression 5--79.99 with 35 degrees of freedom--with the sum of the Error Sum of Squares from Regressions 7 and 8 together. The latter figure is 73.37(32.04 + 41.33) with 32 degrees of freedom. The difference between these two--6.62--is itself distributed as Chi-square with three degrees of freedom. This is not a statistically significant difference, again indicating that the further split of the data set into the day-night subsets does not provide additional explanatory power for the phenomenon.

The fitted regression models for the daytime and nighttime light conditions, together with the actual data points, are shown in Figures 1 and 2. Figure 1 shows the original data points—the proportions of tinted windshields by 3-year age group—for the daytime accidents, together with the fitted linear and quadratic models. Figure 2 repeats these plots for the nighttime accidents. The apparent non-linearity in the linear fit—and also the perturbation in the quadratic fit—at age groups 68 and 75 are to be expected. It will be recalled that it was necessary to pool the drivers for these two age groups for analytic purposes, and the selected age groups are not linear with respect to the younger 3-year groupings. This in no way alters the analytical accuracy of the results, but the visual display is slightly distorted.

In sum, weighted least squares regression models—both linear and quadratic—were fit to the proportion of drivers having tinted windshields by 3-year age groups for both day and night accidents. The quadratic models provided acceptably good fits to the actual accident data. The models show that the proportion of drivers having tinted windshields increases as age increases for both the daytime and nighttime accidents. Several different ways of looking at these models shows that there are no statistically significant differences between the daytime and nighttime conditions. It is concluded, therefore, that the data do not support a hypothesis that argues that older drivers are differentially and negatively influenced when driving at night with tinted windshields.

Actual and Fitted Tint Proportions: Day

ACTUAL AND FITTED TINT PROPORTIONS: NIGHT

Figure 2

Actual and Fitted Tint Proportions vs. Age: Night

4. DISCUSSION

The preceding results suggest that, among these CPIR data, there is little evidence to support either the hypothesis that tinted windshields cause accidents or the hypothesis that they prevent them. It would be desirable, of course, if the conclusions could be far more definitive and less qualified.

The application of statistical techniques to these sorts of technical issues is appropriate, but a minimum of three conditions must be met so that sound inferences can be drawn. First, the accident data must be sampled correctly so that inferences are not limited to just the population under study. Second, the missing-data rate on the variables of interest within the accident sample must be negligibly small. Third, an adequate description of the at-risk population from which the accident sample is taken must be available so that the necessary comparisons can be made between accident and control samples.

None of these conditions is met in the present case. The CPIR data were obtained from a wide variety of locations and times by many different investigators. The accidents selected for investigation were frequently interesting but far from typical, such as extensive property-damage accidents accompanied by little personal injury, or much personal injury with little property damage. The net result is that it is most hazardous to generalize findings from this data set beyond the limits of the data set itself, particularly with respect to subtle influences such as that under consideration here.

Given the lack of representativeness of the accident data, the missingdata issue on the variables under study is of little practical consequence. For the sake of completeness, however, it can be seen, from Table A-12, that the missing-data frequencies exceed those for the combined CLEAR and TINT categories for the 1971 model year and earlier. As late as the 1976 model year, the missing-data cases comprise some 27%--37 of the 136--vehicles. Whether a bias exists on the windshield color variable for the missing-data vehicles is unknown, of course. But it is reasonable to speculate that

windshield information is likely to be missing in the more serious crashes where post-accident investigations are less productive. From other studies it is known that accident severity is associated with such pre-crash factors as speeding, alcohol consumption, and the like. It is not unlikely, therefore, that a bias created by incomplete reporting could exist, and this effect could be larger than either the positive or negative effects caused by tinted windshields.

For these reasons, and the lack of a suitable control group as noted earlier, inferences from this study must be guarded. The results of other studies, whether they claim to establish that tinted windshields cause accidents or prevent them, should also be questioned in light of the soundness of the underlying research methodologies.

5. SUMMARY AND CONCLUSIONS

The CPIR3 data set was examined for evidence that would indicate how tinted windshields are related to accident occurrence. It was found that tinted windshields are associated with a variety of other vehicular and driver variables, some of which are also believed to influence the risk of a crash. Because of these uncontrolled confounding variables, and because of methodological limitations directly associated with the CPIR file, it is not possible to isolate the influence of tinting in accident causation or occurrence. Failure to find an effect one way or the other, although far from conclusive, certainly suggests that whatever effects exist are small.

A well designed and well executed study, with great attention to methodological rigor, is needed if the effects of tinted windshields in causing or preventing accidents are to be determined with confidence. Such a study might be undertaken as a special study within the framework of the National Accident Sampling System. Appendix-A

•

BIVARIATE TABULATIONS

,

THOWAY CROSS-TABULATION TABLE A-1

0 V	23 • 5	o	0	23 1.1	BM	- 2 -	0	0	~~~	DE	• ,	0	5 N 9	0	00	231 5.5	0
AP	31 • 7	0	0	31 1.5	BL	-0,	0	0	• 0	08	69 1.6	0	0	69 3.3	68	-0.	0
N	. .	0	0	е. <mark>.</mark> Г	l.B	۰.	0	۰.	с ч	DA	14 • 3	0	14	0	GA	8 ~	0
MA	46 1.1	0	0	46 2•2	ВН	16 • 4	0	0	16 • 8	CR	12 • 3	0	0	12 •6	FB	• 5 •	0
٩٢	15	0	0	15 • 7	BF	41.	0	* *	0	СР	• 0	o	• ²	0	FA	. .	0
AK	0		0	0	BE	• • •	0	10.	0	CL	116 2.8	0	0	116 5.6	EL	77 1.8	0
ſΨ	• 2 • 2	0	23 1.1	0	BC	• 8	0	84	0	CK	111 2.7	0	111 5.2	0	ЕK	68 1•6	0
н	27 •6	0	27 1.3	0	88	1	O	5 2 •	0	CF	° 0	0	0	۲. ۱.	EB	е .	0
AG	o	1	0	0	BA	° °	0	0	• 1	CE	12 • 3	0	12 • 6	0	EA	10	0
AF	61 1.5	0	61 2.9	0	AY	1.0.	0	0	- 0	CD	0	1	0	0	DS	-0.	0
AE	11 • 3	0	11	o	AX	•1	0	0	• 2 5	CB	• 1	0	O	• • •	DR	10	0
AD	6 .1	0	• •	0	MM	10.	0	0	10.	СА	37 • 9	0	37 1.7	0	90	10.	0
AC	72 1•7	0	72 3.4	0	AV	• I •	0	0	4 N	BS	1.0.	0	0	-0.	NQ	•1	0
AB	74 1.8	0	74 3.5	0	AU	140 3.3	0	0	140 6.8	BR	• 0	0	0	° 1	MQ	1 0	0
NDSHLD AA	20 • 5	0	20	0	AT	150 3.6	0	0	150	90	• S	0	0	1	DL	517 12.4	0
343.WI MISS	o	118	0	0	, AS	.3	0	0	•5	8P	• 0	0	0	• 5	DK	270 6.5	0
	4185 9173	4870	2118	2067	AR	0	9	0	0	80	0	1	0	0	DF	• 0	0
2. CCLOR	N= TOTAL= ROWT	MI SS ROM	CLEAR ROWZ	TINT Rowr		ROW3	MI SS ROWS	CLEAR Row 7	TINT Rowr		RUWT	MI SS ROWS	CLEAR ROWZ	TINT Rowz		ROWS	MISS ROWT

•

~

.

りもてきい

1

~

~··

-

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 270 0 0 2 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 270 \\ 1270 $	0 270 0 2 0 0 2 0 0 2 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 2770 0 7 1 0 7 0 0 1 0
70 0 517 1 0 5 0 71 66 61 10 25 0 0 2 1 12 66 61 10 0 2 0 1 12 0 541 0 0 2 0 1 12 0 541 0 0 2 1 12 0 0 541 0 0 0 0 0 0 0 2 3 1 12 0 0 2 3 3 1 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 0 0 0 0 0 1 1 148 7 148 10 1 1 1 148 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	70 0 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 1 1 0 1 1 0 0 5 1 0 1 1 0 1 1 0	70 0 0 5 0 0 5 0	70 0 0 5 0 0 5 0 0 5 71 12 0 5 0 0 5 0 0 0 0 5 71 12 0 5 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0	70 0 0 5 1 0 0 10 0 10 0 10 0 10	70 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 5 1 0 1 1 1 1 1 0 5 1 0 0 1	$ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	77 0 7 1 0 7 1 0 1 <th1< th=""> 0 1 1</th1<>
0 0 0 517 1 0 55.0 0 55.0 0 55.0 0 55.0 0 55.0 0	0 0 0 0 5 0 5 0 5 1 0 0 5 1 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 0 5 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1	2517 0 0 5 0 0 5 0 0 5 0	0 0 5 0 0 5 0 0 0 55.0 0 0 25 0 0 0 0 0 0 66 61 HA HB HN JA JB 10 0 0 12 0 541 20 0 12.9 55 0 111 0 0 12 0 541 20 0 1 0 0 111 0 0 111 0 0 111 0 0 111 0 0 111 0 0 111 0 0 111 0 0 111 0	0 0	0 0	0 0			0 0	0 0 2 1 0 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 1 1 0 1 1 0 1 1 0 1
0 0	0 2 0 2 0 0 2 0	0 0 5 0	0 2 0 0 2 0	0 2 0 0 2 0 0 1 0	0 .2 .0	0	0 .2 .0	0	0 0 0 0	0 2 2 1 0 2 1 0 1 2 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 -5 -2 -2 -2 -2 -2 -2 -2 -4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -2 -3 -4 <	 ² ² ² ⁵ ⁵	 7.2 7.3 7.4 7.5 7.5	5 0	5 5 5 0 6 0	7 5 0	7 7 7 0	5 5 5 1 0 0 1	7 7 1 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	7. 7. <td< td=""><td>7 7 1 0 0 1 0</td></td<>	7 7 1 0 0 1 0
	10.0 HB 20.0 0 1.0	 10 <	10 0 10 1	1 0	1. 0 1. 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0	0 0 1 0	0 0	0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	0 0 1 0 1 0 0 1 0	0 10 0 11 0 11<
				0 10 1 0 0 10 10	0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 3 3 3 0 0 3 3 3 0 0 3 3 3 0 0 3 3 3 0 0 3 3 3 0 0 3 3 3 0 0 3 3 3 0 0 3 3 3 0 0 3 3 3 0 0 3 3 3 0 0 3 3 3 0 0 3 3 3 0 0 0 3 3 3 3 3 3 3 3 3 3 0	0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	0 10	0 10 1

1	o	Ð
3	0	0
3251	0	0
115	0	0
65	0	0
60	0	0
68	0	0
35	0	0
126	D	0
160	0	0
70	0	0
45	0	o
MISS ROWS	LEAR	11N1 R0M2

.

•

.

THOWAY CROSS-TABULATION TABLE A-2

4. AGE	N= 101AL = R0W3 C0L\$	MISS ROWE COLE	(16) Rowz Col S	(19) Romz Cul 7	(22) ROW\$ COL\$	(25) ROWT COLT	(28) ROWS COLS	(31) Rows Cols	(34) Rows Cols	(37) RUMT COLT	(40) ROWT COLT	(43) Rowt Col I	(46) RDWS COLS	(49) RUWS COL #
	61 16 61 13	C	526 5.1	1267 13.8	1341 14•6	1101	780	554	448	386	393	366	362	348
584.SN(MISS	0	14	0	0	0	0	0	0	0	o	0	0	C	0
6L-AGE (13)	- 0	0	1 .2 100.0	0	0	0	C	0	0	0	0	0	0	Э
(12)	16 • 2	0	16 3.0 100.0	0	O	0	0	0	0	0	0	0	0	0
(16)	199 2.2	0	199 37.8 100.0	0	0	0	0	0	0	0	0	0	0	0
(11)	310 3.4	0	310 58.9 100.0	0	0	0	0	0	0	0	0	0	0	0
(81)	395 4•3	O	0	395 31.2 100.0	0	0	0	0	0	0	0	0	0	0
(16)	441 4.8	0	0	441 34.8 100.0	0	0	0	o	0	0	O	0	0	ο,
(20)	431 4•7	0	0	431 34.0 100.0	0	0	0	0	0	o	0	0	C	0
(21)	417 5.2	0	0	0	477 35.6 100.0	0	0	0	0	0	0	0	0	0
(22)	457 5•0	0	0	0	457 34.1 100.0	o	0	0	0	0	0	0	0	0
[23]	4°4 4°4	0	0	0	407 30.4 100.0	0	0	0	0	0	0	0	o	0
[24]	369 4•0	0	0	0	0	369 36.5 100.0	0	c	0	0	0	0	C	C
(52)	338 3 . 7	0	0	0	0	338 33.4 100.0	0	0	0	0	0	0	0	0
(56)	304 3•3	0	0	0	0	304 30.1 100.0	° O	0	0	0	0	0	o	0
(12)	276 3.0	0	o	0	0	0	276 35•4 100•0	0	0	0	0	0	0	0
(28)	260 2.8	0	0	0	0	0	260 33.3 100.0	C	0	0	0	0	0	0

(52) Row ³ Col 7	(55) Row ³ Col ³	(58) Rows Cols	(61) ROWI COLI	(64) RDWS COL 3	(69) ROMT CULT	(75) Rom Col 2		RDWT COLT	MLSS ROW COLS	(16) Rumt Colt	(19) Ruwz Col z	(22) Rowz Cols	(25) Rum t Col t	(28) Rows Col 2
298	260	195	167	138	169	150	(53)	244 2.1	0	0	0	0	0	244 31.3
0	0	0	0	0	0	0	(30)	207 2.3	0	0	0	o	0	0
0	5	0	0	0	0	0	(31)	183 2.0	0	0	0	0	0	0
0	0	0	o	0	o	0	(32)	164 1.8	0	0	0	0	0	0
0	0	0	0	0	0	0	(33)	148 1.6	0	0	C	0	D	0
0	0	0	0	0	0	0	(46)	143 1•6	0	0	0	0	0	0
0	0	0	0	0	0	C	(32)	157	0	0	0	0	D	o
0	0	Ð	0	0	0	0	(96)	136 1•5	0	0	O	o	0	0
o	0	0	0	o	0	o	(37)	133 1•5	0	0	0	0	0	0
0	0	0	0	0	Э	0	(38)	117 1.3	0	0	0	0	0	0
0	0	0	0	0	0	0	(68)	119 1.3	0	0	0	0	0	0
0	0	o	0	0	0	0	(07)	141 1•5	0	0	0	0	0	0
0	0	0	0	O	0	0	(15)	133 1.5	0	0	0	0	0	0
0	0	0	0	0	0	0	(42)	138 1.5	0	0	o	0	0	0
0	0	0	0	0	0	0	(43)	116 1.3	0	0	0	0	0	o
0	o	0	0	0	C	0	(44)	112	0	0	0	0	0	0
0	0	0	0	C	0	0	(42)	114 1.2	o	o	0	0	0	0

0	0	0	0	0	114 31.5 100.0	0	0	0	0	0	c	0	0	(29)
0	0	0	0	112 30.6 100.0	0	0	0	C	0	0	0	0	0	(19)
0	0	0	0	116 31.7 100.0	o	0	ο.	0	0	0	C	0	0	(09)
0	0	0	0	138 37.7 100.0	0	0	0	0	0	0	0	C	c	(65)
C	0	0	133 33.8 100.0	0	o	0	0	0	C	0	0	o	0	(83)
0	0	0	141 35.9 100.0	0	0	0	o	0	0	0	0	0	0	(22)
o	0	0	119 30.3 100.0	0	0	0	0	0	0	o	0	0	0	(26)
c	0	117 30.3 100.0	0	0	0	o	o	0	0	0	0	0	0	(22)
0	0	133 34•5 100•0	0	0	0	o	0	0	C	0	c	0	Э	(24)
0	0	136 35.2 100.0	o	o	0	0	0	0	0	0	0	0	0	(23)
0	157 35.0 100.0	o	o	0	0	0	o	0	0	0	o	0	o	(25)
0	143 31.9 100.0	0	0	0	0	0	0	0	c	0	0	0	0	(15)
0	148 33.0 100.0	0	0	0	0	0	0	o	o	0	c	0	0	(20)
164 29.6 100.0	0	0	0	0	o	0	0	o	o	0	0	0	0	(44)
183 33.0 100.0	0	0	0	0	0	0	0	0	0	0	0	0	0	(48)
207 37.4 100.0	0	0	0	0	0	0	0	0	0	0	0	0	0	(41)
0	0	0	0	0	0	0	0	0	0	0	0	0	0	(95)
(31) Rows Col \$	(34) Rows Cols	(37) RUWZ COLS	(40) ROWT COLT	(43) Rows Cols	(46) Rows Cols	(49) Rowz Col z	(52) Ruw r Cul \$	(55) Rowt Col 2	(58) RUWT COLT	(61) Rows Col\$	(64) ROWT COLT	(68) Row 2 Col 2	(75) Rowz Col \$	

.

ROW% Col%	124 1.4	124 1.4	123 1•3	117 1.3	108 1.2	110 1.2	104 1.1	84 •9	79 •9	99 1.1	82 • 9	78 • 9	65 •7	52 •6	51 •6	57 •6	59 •6
M155 Row% Col%	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0	0	0
(16) Row% Col%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(19) Row% Col%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(22) ROW% CDL%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(25) Row% Col%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(28) Row% Col%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(31) Row% Col%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(34) Row% Col%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(37) Row% Cul%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(40) ROW% Col%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(43) RDW% CUL%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(46) Row% Col%	124 34•3 100•0	124 34.3 100.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(49) Row% Col%	0	0	123 35•3 100•0	117 33.6 100.0	108 31.0 100.0	0	0	0	0	0	0	0	0	0	0	0	0
(52) Row% Col%	0	0	0	0	0	110 36.9 100.0	104 34.9 100.0	84 28.2 100.0	0	0	0	0	0	0	0	0	0

•

1. 1. .

(55) Row ² Cols	(58) ROWT COLT	(61) Row? Col3	(64) Rowz Col S	(68) Rowz Colz	(75) Rows Cols		ROWT	MI SS ROWT COL Z	(16) RDWT COLT	(19) Rowr Col \$	(22) ROWS COLS	(25) Rowr Col 2	(28) ROMT CULT	(31) ROWT COLT
0	0	0	0	0	0	(63)	50	0	C	0	0	0	• •	0
0	0	0	C	o	0	(64)	56 • 6	0	0	0	c	0	0	0
0	o	0	o	0	0	(9)	32.	0	0	0	0	0	0	C
0	0	0	0	0	0	(99)	25 • 3	0	C	0	0	0	0	0
0	0	0	0	0	0	(67)	93 4	0	0	0	0	0	0	0
0	o	0	0	0	0	(89)	. 36	0	0	0	0	0	0	0
0	0	0	0	0	o	(69)	21 • 2	0	o	0	o	0	0	0
o	0	0	0	O	o	(01)		0	o	0	0	0	0	0
79 30.4 100.0	0	0	0	0	0	(11)	- 3 - 3 - 3	0	0	0	0	o	0	C
99 38.1 100.0	0	0	o	0	0	(22)	2 4 • 3	0	0	0	0	0	0	0
82 31•5 100•0	0	0	0	0	0	(13)	21 •2	0	0	0	0	C	0	0
o	78 40.0 100.0	0	0	o	0	(14)	18 • 2	0	0	o	0	0	0	0
0	65 33.3 100.0	0	0	0	o	(12)	15	0	0	0	o	o	0	0
0	52 26.7 100.0	C	0	0	0	(92)	.1	0	0	0	0	0	0	0
0	0	51 30.5 100.0	0	0	0	(11)	10	0	0	0	0	0	0	0
0	0	57 34.1 100.0	0	0	0	(18)	10 • 1	0	0	C	0	0	C	0
0	0	59 35.3 100.0	0	0	0	(61)	13 • 1	0	0	0	0	0	0	0

(34) (04% :01%	(37) (04% (01%	2 10 2 MOI	(43) (042 (042	146) 1015 1015	2 10: 2 MO1 2 MO1	152) 1042 1012	155) 1042 1042	158) 1043 1012	161) 1047 1013	(64) (042) (042)	101 g	(75) 2012 2012		S MO
C	0	0	0	0	0	o	0	0	0	50 36•2 100•0	0	0	(80)	т 0 •
C	0	0	0	0	0	0	0	0	0	56 40•6 100•0	0	0	(18)	11 • I
0	0	0	0	0	0	0	0	0	0	32 23.2 100.0	0	0	(82)	4 O .
0	0	0	0	0	0	o	0	0	o	o	25 14.8 100.0	0	(83)	е о
0	0	0	0	0	0	0	0	0	0	0	33 19.5 100.0	0	(84)	10.
0	0	0	0	0	0	0	0	0	0	0	36 21.3 100.0	0	(82)	1.0.
0	0	0	0	0	0	0	0	0	0	0	21 12.4 100.0	0	(86)	2 ° •
0	0	0	0	0	o	0	0	0	0	o	26 15.4 100.0	o	(88)	- 0.
0	0	0	0	O	0	0	0	0	0	0	28 16.6 100.0	0	(8)	10,
0	0	0	O	o	o	ο.	0	0	0	0	0	24 16.0 100.0		
0	0	o	o	0	0	0	0	0	0	0	0	21 14.0 100.0		
0	0	0	0	0	0	o	0	0	0	0	0	18 12.0 100.0		
0	0	0	0	0	0	0	0	0	0	0	0	15 10.0 100.0		
0	0	0	0	0	0	0	0	0	0	0	0	12 8.0 100.0		
0	0	0	0	C	0	0	о	0	0	0	0	10 6.7 100.0		
0	o	0	0	0	0	0	0	0	0	0	0	10 6.7 100.0		
0	0	0	0	0	0	0	0	0	0	0	0	13 8.7 100.0		

v-⊊ i Va

MISS Rowr Colr	(16) Rows Col S	(19) Rows Col 3	(22) Rom 7 Col 7	(25) Rom? Col3	(28) Rows Cols	(31) Roms Cols	(34) Rowr Col 5	137) Rom 7 Col 7	(40) Rom 7 Col 2	(43) Rom3 Col 3	(46) Rows Col 3	(49) Rov3 Col3	(52) Rows Col2	(55) RDM% COL 2
0	0	0	0	0	0	0	0	0	S	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	o
0	o	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	o	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	o
0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	o	0	0	0	0	0
0	0	0	o	0	0	o	0	0	0	0	0	0	0	o

.

.

0	0	c	0	1 100.0
0	0	0	o	1 7 100.0
o	0	o	0	1.3 100.0
0	0	0	0	1 7 100.0
0	0	0	0	1 .7 100.0
0	0	C	0	3 2.0 100.0
0	0	0	0	2.7 2.7 100.0
0	0	0	0	11 7.3 100.0
0	o	0	0	3 2.0 100.0
(58) Rom ² Col ²	191) 1913 1913	(64) RDM3 COL3	(68) ROMS CUL3	(75) Rowr Cols

.

•

2. CCLOR		4.AGE MISS	E (16)	(19)	(22)	(25)	(28)	(31)	(34)	(37)	(40)	(43)	(46)	(49)	(52)	(55)	(58)
N=	4180																
TOTAL =	9173	5	230	544	602	447	357	255	189	176	178	176	168	175	143	123	113
RDW%			5.5	13.0	14.4	10.7	8.5	6.1	4.5	4.2	4.3	4.2	4.0	4.2	3.4	2.9	2.7
COL %																	
MISS	4979	9	296	723	739	564	423	299	259	210	215	190	194	173	155	137	82
EXPEUT DOWP																	
COLS																	
CLEAR	2114	4	116	352	369	243	174	114	75	70	83	76	68	75	60	52	55
EXPECT			116	275	304	226	181	129	96	89	90	89	85	89	72	62	57
ROW %			5.5	16.7	17.5	11.5	8.2	5.4	3.5	3.3	3.9	3.6	3.2	3.5	2.8	2.5	2.6
COLS	50.6		50.4	64.7	61.3	54.4	48.7	44.7	39.7	39.8	46.6	43.2	40.5	42.9	42.0	42.3	48.7
TINT	2066	1	114	192	233	204	183	141	114	106	95	100	100	100	83	71	58
EXPECT			114	269	298	221	176	126	93	87	88	87	83	86	n	61	56
RUW%	40 A		5.5 40.4	9.3	11.3	9.9	8.9	6.8	5.5	5.1	4.0 52 /	4•8 56 8	4.8 50.5	4.8	4.0	57.7	51.3
506 %	47.4		49.0	37.3	30+1	49.0	51.05	99.5	00.5	00+2	77.4	J U • 0	J 7 • J	51.1	90.0	51.	<i>J</i> [•J
	(61)	(64)	(68)	(75)													
	87	57	75	85											•		
ROWS	2.1	1.4	1.8	2.0													
COL																	
MISS	80	81	94	65													
EXPECT																	
ROW%																	
CUL %																	
CLEAR	42	22	26	42													
EXPECT	44	29	38	43													
COL%	48.3	38.6	34.7	49.4													
TIMT		26	(0	()													
EXPECT	43	28	37	43													
ROW2	2.2	1.7	2.4	2.1													
COL%	51.7	61.4	65.3	50.6													
TESTS DE	INDED	ENDENCE	STATI	STIC 51		DF= 18	N = 4	4180									
	LIDEF	LINCINC	31411			01 - LU											
MAXIMU Chi-sq	M LIKE UARE	LIHOOD	131.00	6 0. 6 0.	•	CRAMER CONTING	S PHI= ENCY CO	EFF≖ .	1762 1735								

•

2.		9.CR#	ISH YR											
COLOR		MISS	(4)	(67)	(68)	(69)	(70)	(71)	(72)	(73)	(74)	(75)	(76)	(77)
N=	4159													
TOTAL =	9173	26	1	0	1	106	335	852	908	849	509	370	178	50
ROW%			•0		•0	2.5	8.1	20.5	21.8	20.4	12.2	8.9	4.3	1.2
COL%														
MISS	4728	260	0	45	178	334	631	943	1013	788	421	243	102	30
EXPECT														
ROWS														
COL %														
CLEAR	2115	3	0	0	1	37	151	482	523	430	258	161	57	15
EXPECT			1	0	1	54	170	433	462	432	259	188	91	25
ROW3					•0	1.7	7.1	22.8	24.7	20.3	12.2	7.6	2.7	• 7
COLS	50.9				100.0	34.9	45.1	56.6	57.6	50.6	50.7	43.5	32.0	30.0
TINT	2044	23	1	0	0	69	184	370	385	419	251	209	121	35
EXPECT			0	0	0	52	165	419	446	417	250	182	87	25
ROW3			.0			3.4	9.0	18.1	18.8	20.5	12.3	10.2	5.9	1.7
COL %	49.1		100.0			65.1	54.9	43.4	42.4	49.4	49.3	56.5	68.0	70.0

-

Ç

.

•

TESTS OF INDEPENDENCE STATISTIC SIGNIF DF= 10 N= 4159

MAXIMUM LIKELIHOOD	88.696	.0000	CRAMER S PHI =	-1445
CHI-SQUARE	86.898	.0000	CONTINGENCY COEFF=	-1431

TWOWAY CROSS-TABULATION TABLE A-5

2. CCLOR		29.PRE MISS	CTYPE NONE	RAIN	MON S	HAIL	SLEET	OTHER	
N= TOTAL= ROWT COLT	41 79 91 73	Q	3292 78.8	589 14.1	268 6.4	10.	17.04	12 • 3	
MISS Expect Rows Cols	1614	161	3939	610	235	0	Q	~	
CLEAR EXPECT ROWS	2114	4	1649 1665 78.0	294 298 13.9	136	0 -	10 • 5	1000	
2012	50.6		1.05	4 9 . 9	2•84		8.84	41.1	
TINT Expect Row\$	2065	N	1643 1627 79.6	295 291 14.3	112 132 5.4	-00.	~ @ m	- 0 m .	
COLT	49.4		4 0 •9	50.1	41.8	100.0	41.2	58.3	
TESTS OF	INDEPE	NDENCE	STATIS	TIC	SIGNIF	DF= 5	= Z	4179	
MAXIMUN CHI-SQU	1 LIKEL JARE	1H000	8.9482 8.5259		.1112	CRAMER • CONTING	S PHI= ENCY CO	EFF=	.0452

•

THOWAY CROSS-TABULATION TABLE A-6

2.		30.PRE	CRATE				
CCLOR		MISS	N . A .	LIGHT	MODERT	HEAVY	
N=	4039						
TOTAL =	9173	146	3297	443	225	74	
ROW %			81.6	11.0	5.6	1.8	
COLZ							
221M	4658	330	3941	474	192	101	
EXPECT	10.20	330	<i>,,,,</i>			101	
RUM 7							
COL 2							
CLEAR	2047	71	1652	230	121	44	
EXPECT			1671	225	114	38	
ROW %			80.7	11.2	5.9	2.1	
COLS	50.7		50.1	51.9	53.8	59.5	
TINT	1992	75	1645	213	104	30	
EXPECT			1626	218	111	36	
ROWZ			82.6	10.7	5.2	1.5	
COL %	49.3		49.9	48.1	46.2	40.5	
TESTS OF	INDEP	ENDENCE	STATI	STIC	SIGNIF	DF= 3	N= 4039
MAXIMUI		LIHOOD	3.868	8	.2760	CRAMER .	PHI=
CHI-SQL	JARE		3.852	1	.2779	CONTINGE	NCY COEFF=

•0309 •0309

-

•

.

2. CCLOR		31.RD MISS	SLIP? YES	NC)			
N=	4096		1005					
TOTAL= ROW% COL%	91 73	89	24.5	3091 75.5	5			
MISS EXPECT ROW3 COL3	4886	102	1077	3809)			
CLEAR EXPECT RDW%	2083	35	566 511 27•2	1517 1572 72•8	7			
COL%	50.9		56.3	49.1	L			
TINT EXPECT BOW%	2013	54	439 494 21 - 8	1574 1519 78 - 2	+ 9 2			
COL%	49.1		43.7	50.9	9			
TESTS OF	INDEPE	NDENCE	STATIS	TIC	SIGNIF	DF =	1	N =
MAXIMU	4 LIKEL	1H000	15.947	7	.0001	CRA	MER • S	PHI =

CHI-SQUARE	15.908	.0001	CONTINGENCY COEFF=	.0622
BINOMIAL TEST	OF SYMMETRY	0.	FISHER EXACT PROB=	.0000

N= 4096

.0623

-

•

TWOWAY CROSS-TABULATION TABLE A-8

								.0285 .0284
							N= 4185	S PH1= ENCY COEFF=
(4)	76 1.8	112	45 38 2-1	59.2	31 38 1-5	40.8	DF= 3	CRAMER • CONTING
(3)	176	237	93 89 4	52.8	83 87 4-0	47.2	IGNIF	.3335 .3355
(2)	1673 40.0	2108	855 847 40 4	1.12	818 826 39.6	48.9	STIC S	82
11) (1)	2260 54.0	2509	1125 1144	49.8	1135 1116 56.9	50.2	STATI	3.403 3.388
36.TIM MISS	0	22	0		C		ENDENCE	LIHORD
	4185 9173	4966	2118	50.6	2067	49.4	INDEPI	MLIKF
2. COLDR	N= TUTAL= ROWT COL2	MISS EXPECT ROWT COLT	CLEAR EXPECT	COL %	TINT EXPECT	201 %	1ESTS 0F	MAXIMU CHI-SQ

23

•

U 1.

THOWAY CROSS-TABULATION TABLE A-9

•

2. CCLOR		37.VIS MISS	LMIN NONE	DARK	FDG	SMOKE	MNDCDN	GLARE	OTHER	RAIN	NONS
N= TOTAL= ROWT COLT	4162 9173	23	3533 84•9	295 7.1	81 1.9	• 1 •	3	50 1.2	17	96 2•3	73 1.8
MISS EXPECT RDW% COL%	4726	262	4002	333	83	ñ	24	89	31	106	5
CLEAR Expect Rowz	2110	æ	1760 1791 83.4	161 150 7.6	50 41 2•4		8 - 4 8	27 25 1•3	12 • 6	50 2.49	40 37 1.9
COLT	50.7		49.8	54.6	61.7	66.7	57.1	0.42	10.6	1.24	9 4 •8
T I NT EXPECT RDWX	2052	15	1773 1742 86.4	134 145 6=5	31 40 1-5	0	9 - 9 1	23 25 1•1	n a v	46 47 2•2	33 36 1•6
COL *	49.3		50.2	45.4	38.3	33•3	42.9	46.0	29.4	41.9	45.2
TESTS OF	INDEPE	ND ENCE	STATIS	511C	SIGNIF	DF= 8	= . Z	4162			
MAXIMU CHI-SQU	4 LIKEL JARE	1H000	10 .96 8 10 . 829		.2035 .2116	CRAMER CONTINC	SENCY CO	EFF= •	0510 0509		

٠

TWOWAY CROSS-TABULATION TABLE A-10

115.MFR M155	01V (10) BI	JICK C	ADLAC	CHE VL T	OLDS	PONTAC	GMC T&C	LEKTRO	OPEL V	AUXHL	FORD	LINMER	KRYSLR	DODGE	IMPRL
	0	249 6.0	91 2.2	1097 26.4	298 7.2	337 8•1	13 • •	-0.	16 • 4	0	1067 25.7	237 5.7	40 1 •0	295 7.1	ю - .
	-	151	54	1023	209	308	26	0	66	1	1237	307	61	361	¢
	00	33 125 1.6 13.3	0 \$	587 552 28.1 53.5	66 150 3.2 22.1	111 170 5.3 32.9	13 7 100.0	0 -	14 8 • 7 87•5	00	711 537 34.0 66.6	110 119 5.3 46.4	20 20 15•0	174 148 8•3 59•0	0 N
	00	216 124 10.5 36.7	91 45 4•4 100•0	510 545 24•7 46•5	232 148 11-2 77-9	226 167 10.9 67.1	00	1 0 • 0 100•0	2 8 • 1 12•5	00	356 530 33.4	127 118 6.2 53.6	34 20 1.6 85.0	121 147 5.9 41.0	3 1 100.01
	AMC														
	98 2.4												•		
	239														
	66 49 3.2 67.3														
	32 49 1•5 32•7														
	STATISTI	C \$16	NIF)F= 14		÷156									
	642.21 572.27	•••		CRAMER S CONTINGE	PHI= NCY COE		3711								

,

-
A-1
ABLE
I NC
ATI(
ABUL
CROSS-T
TWOWAY

• CLOR N=	41 R5	117.CV- MISS	MODEL (1)	(2)	(3)	(+)	(2)	(9)	(2)	(8)	(6)	(01)	(11)	(12)	(13)	(14)	(12)
TOTAL= RUWT COLT	61 16 61 13	C	806 19.3	1024 24.5	211 5.0	49 1•2	111 2.7	345 8+2	114 2.7	1-81	6 6 9	26 • 6	75 1.8	164 3.9	• 0 •	36 • 9	6 Z •
MLSS XPECT ROWT COLT	4987	1	841	1103	133	61	95	464	66	704	481	54	146	261	0	38	23
CLEAR XPECT ROWS COLS	2118 50.6	0	402 408 19•0 49•9	294 518 13.9 28.7	1 107 •0	a2 25 1.5 65.3	3 6 5 3 6 6 3 6	184 175 8•7 53•3	26 58 1.2 22.8	592 383 28•0 78•2	28 17 1.3 84.8	3 13 11-5	56 38 2.6 14.7	133 83 6•3 81•1	o -	33 18 1.6 91.7	55.6 55
11NT XPECT ROW% COL #	2067 49.4	0	404 398 19.5 50.1	730 506 35.3 71.3	210 104 10.2 99.5	17 24 8 34.1	107 55 5•2 96•4	161 170 7.8 46.7	88 56 4.3 71.2	165 374 8.0 21.8	5 16 • 2 15• 2	23 13 1.1 88.5	19 37 -9 25-3	31 81 1•5 18•9	0°001	8 1 3 1 8 3 3 1	4044 • • 4
	(16)	(11)	(18)	(61)	(20)	(22)	(23)										
ROWT Colt	21 •5	21 •5	371 8.9	• 1	۰ ۰	6 • 1	0										
MLSS XPECT ROWS COLS	34	44	379	61	14	æ	7										
CLEAR XPECT ROWS COLS	16 11 .8 76.2	11 11 52.4	291 188 13.7 78.4	4 2 2 100•0	0 1	3 3 •1 50•0	00										
TINT XPECT ROWS COLS	5 10 •2 23•8	10 10 •5	80 183 3.9 21.6	0 N	0°001	3 3 • 1 50•0	00										
ESTS OF	INDEP	ENDENCE	STATIS	TIC S	I GN I F)F= 20	N = 4	185									
MAX I MUI CHI - SQU	4 LIKE JARE	L1H00D	1181.6	00		CRAMER'S CONTINGE	PHI=	FF= .4	1981 1459								

٠

-#

(99)		111	3 8 • 1 20•0	12 7 80.08							
(99)	-3	611	4 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
(64)	- 2 •	74	1 4 14 .3	85 . 7							
(63)	° °.	75	1 1 50.0	1 • 0 50• 0							
(29)	0	51	00	00							
(19)	- O -	24	0	1 0 100.0							
(09)	10.	17	0 1	1 0 100.00	(11)	11.6.	٢	3 6 21.3 21.3	8 5 12.1		
(65)	10.	15	10	1 0 1 00.00	(16)	99 2.4	31	34 50 1.6 34.3	65 49 3•1 65•7		
(28)	0	4	00	00	(15)	246 5.9	136	85 124 4.0 34.6	161 122 7.8 65.4		1967 1930
(27)	0	1	00	00	(14)	502 12.0	268	252 254 11•9 50•2	250 248 12.1 49.8	4185	EFF≈ .
(26)	D	14	00	00	(13)	614 14.7	453	320 311 15•1 52•1	294 303 14•2 41•9	" Z	S PHI=
(22)	0	2	00	00	(12)	744 17.8	129	387 377 18-3 52-0	357 367 17-3 48-0	DF= 17	CRAMER • CONTING
(23)	0	4	00	00	(11)	788 18.8	061	493 399 23•3 62•6	295 389 14.3 37.4	IGNIF	
(44)	0	-	00	00	(10)	725 17.3	195	400 367 18-9 55-2	325 358 15•7 44•8	STIC S	6 9
ЕL YR (48)	0	-	00	00	(69)	268 6.4	548	84 136 4.0 31.3	184 132 8•9 68•7	STATI	166 . 3 161.8
119.MDC (46)	o	-	00	00	(68)	118 2.8	449	42 60 2•0 35•6	76 58 3.7 64.4	END ENCE	LIHOOD
	4185 9173	4988	2118 50.6	2067 49.4	(67)	32 • 8	256	8 16 • 4 25•0	24 16 1•2 75•0	F INDEP	UM LIKE QUARE
2. COLDR	N= TOTAL= ROWS COL	MLSS EXPECT ROW COL	CLEAR Expect Rows Cols	TINT EXPECT ROWS COLS		ROW% COL %	MISS EXPECT ROWS COLS	CLEAR EXPECT ROW% CUL%	TINT EXPECT ROWS COLS	1ESTS 01	MAXI M CHI-S

しい

,

THOWAY CROSS-TABULATION TABLE A-12

2. COLOR		119.MOD (49)	EL YR (53)	(55)	(26)	(57)	(58)	(53)	(60)	(19)	(62)	(63)	(94)	(65)	(99)	(19)
N= TOTAL= ROW3 COL\$	2260 4769	C	0	0	0	0	0	- 0	0	- 0	0	.1	• • 0	84.	10 • •	20
MISS Expect Rows Cols	2509	-	-	1	Q	-	Π	10	6	14	32	49	37	11	64	130
CLEAR EXPECT Rows Cols	1125 49.8	00	00	00	00	00	00	00	00	00	00	1 1 50.0	1 2 • 1 20•0	50.0	1 5 • 1 10•0	10 10 30.0
TINT Expect Rows Cols	1135 50.2	00	00	00	00	00	00	1 1 100.0	00	1 1 100.0	00	1 1 50.0	80°0 480°0	50°54	90.09 90.09	14 10 1.2 70.0
	(69)	(10)	(11)	(12)	(23)	(14)	(15)	(92)	(11)							
ROW% COL%	165 7.3	398 17•6	441 19.5	379 16.8	330 14•6	252 11.2	120 5.3	54 2•4	50 m •							
MISS EXPECT ROWT CULT	251	375	407	374	238	118	61	18	4							
CLEAR EXPECT Rows Cols	50 82 4•4 30•3	224 198 19.9 56.3	276 220 24•5 62•6	192 189 17.1 50.7	159 164 14•1 48•2	123 125 10•9 48•8	43 60 35•8	19 27 1.7 35.2	33.3 33.3							
TINT EXPECT ROW3 COL3	115 83 10.1 69.7	174 200 15•3 43•7	165 221 14•5 37•4	187 190 16.5 49.3	171 166 15•1 51•8	129 127 11.4 51.2	77 60 6.8 6.8	35 27 3•1 64•8	4 6 6 1							
TESTS OF	INDEPI	END ENCE	STATIS	STIC S	IGNIF	DF= 16		260								
MAX I MU CHI-SQ	M LIKE UARE	LIHUUU	94.U30 94.752	0.01	0000	CRAMER -	S THI =	FF= •2	006 006							

*

THUMAY CROSS-TABULATION <1> LIGHT:DAY TABLE A-12-A

(89)

68 3•0 224

24 34 35•3

	(64)	• 1 • 1	29	0	2 1 100.0			
	(63)	o	21	00	00			
	(29)	0	16	00	00			
	(19)	o	6	00	00			
	(09)		8	0	1 0 1.00.0	(11)	40	£
	(66)	o	ŝ	00	00	(16)	41 2.5	17
	(28)	0	7	00	00	(15)	116 6.9	66
12-8	(22)	0	Ś	00	00	(14)	220 13.2	128
ABLE A-	(26)	0	æ	00	00	(13)	250 14.9	186
I CHT T	(22)	0	1	00	00	(12)	310 18.5	303
L IGHT :N	(53)	o	ι. Γ	00	00	(11)	305 18.2	325
N <2>	EL YR (48)	0	-	00	00	(10)	276 16.5	352
BULATIO	119.MOD (46)	o	1	00	00	(69)	90 5 • 4	252
ROSS-TA		1673 3781	2108	855 51•1	818 818	(68)	42 2•5	185
TWOWAY C	2• COLOR	N= TOTAL= ROW% COLS	MISS EXPECT ROWT COLT	CLEAR EXPECT ROWS COLS	TINT EXPECT ROW% COL 2		ROWT COLT	MISS EXPECT ROWT COLT

(67) (99)

(62)

с i

4 ~

е 2

106

40

36

1 5 11.1

1 2 2 25•0

1 2 33•3

8 1.0 88.9

а 2 75.0

2 1 66.7

-

1 2 •1 25•0

13 21 1.5 31.7

40 4.7 34.5

112 112 13.1 50.9

142 128 16.6 56.8

162 158 18•9 52•3

189 156 22.1 62.0

149 141 17.4 54.0

28 46 3•3 31•1

16 21 1.9 38.1

CLEAR EXPECT ROWS COLS

15.0 $m \sim$

.1993 .1954

CRAMER'S PH1= CONTINGENCY COEFF=

• 0000

69.262 66.432

MAXIMUM LIKELIHOOD CHI-SQUARE

N= 1673

DF= 14

SIGNIF

STATISTIC

TESTS OF INDEPENDENCE

28 28 3•4 68•3

76 57 9.3 65.5

109 108 13.2 49.1

108 122 13•2 43•2

148 152 18.1 47.7

116 149 14.2 38.0

127 135 15.5 46.0

62 44 7•6 68•9

26 21 3•2 61•9

TINT EXPECT ROWT COLZ

.

TWOWAY CROSS-TABULATION TABLE A-13

)LOR OTAL= ROWT COLT	3933 9173 4617	136•LIG MISS 252 371	НТ DAY 2260 57.5 2509	NIGH 167 42.	⊷ ∾∿ ജ	
RSHA SSA	1980 50.3	138	1125 1138 56.8 49.8	85 84 51 •	- 2 2 2	
INT ECT JL%	1953 49 . 7	114	1135 1122 58.1 50.2	44 48 48 48 48 48 48 48 48 48 48 48 48 4	8 - 6 6	
rs of	INDEP	END ENCE	STAT	STIC	SIGNIF	
VI MUNI	A LIKEL JARE AL TES1	LIHOOD F OF SYM	.6772 .6772 METRY	15 N	-4105 -4105 -0000	

.

•

.0131 .0131 .2150

CRAMER'S PHI= Contingency coeff= Fisher exact prob=

N= 3933

DF= 1

•

TWOWAY CROSS-TABULATION TABLE A-14

ÛN	2018 48.3	1635	1051 1022 49.6 52.1	967 996 46。9 47。9	TIC SIGNIF
CRKD? YES	2163 51.7	3292	1066 1095 50.4 49.3	1097 1068 53•1 50•7	STATIS
338.WD M I SS	4	61	1	ŝ	ENDENCE
	4181 9173	4921	2117 50.6	2064 49.4	INDEPI
2. CCLOR	N= TOTAL = ROWT CCLT	MISS EXPECT ROWZ COLZ	CLEAR E XPECT ROWS COLS	TINT Expect Rows Cols	TESTS OF

03주변영

.

.0280 .0280 .0378

CRAMER'S PHI= CONTINGENCY COEFF= FISHER EXACT PROB=

.0706 .0706 .3316

MAXIMUM LIKELIHUOD 3.2700 CHI-SQUARE 3.2695 BINOMIAL TEST OF SYMMETRY

N= 4181

DF = 1

٠

.

TWOWAY CRPSS-TABULATION TABLE A-15

N - A -	0	'n	00	00	
ÛN	3836 91.9	3489	1960 1940 92.9 51.1	1876 1896 90.9 48.9	
BRKN? YES	337 8•1	1364	150 170 7.1 44.5	187 167 9.1 55.5	
339.WD MISS	12	132	ω	4	
	41 73 91 73	4856	2110 50.6	2063 49•4	
2. CCLOR	N= 101AL = ROW% COL\$	MISS EXPECT ROWS COLS	CLEAR Expect ROWS Cols	TINT EXPECT ROW2 COL3	

	.0359 .0359 .0118
N= 4173	• S PHI = GENCY COEFF= EXACT PROB=
0F= 1	CRAMER CONTIN FISHER
SIGNIF	.0204 .0205 0.
STATISTIC	5.3807 5.3731 METRY
TESTS OF INDEPENDENCE	MAXIMUM LIKELIHOOD CHI-SQUARE BINOMIAL TEST DF SYM

.

•

2.		361.AIR	COND					
CULOR		MISS	YES	N	0			
N=	4179				-			
TOTAL=	9173	6	2479	170	0			
ROWS			59.3	40.	7			
COL%								
					_			
MISS	4768	220	2539	222	9			
EXPECT								
ROW3								
COL%								
61 6 A D	2115				r			
LLEAR	2115	•	800	121	2			
EXPECT			1200	80	0			
RUW%			37.8	62 •	2			
COL%	50.6		32.3	77.	4			
TINT	2044	2	1670	2.0	5			
FYDECT	2004	5	1224	90	0			
			01 3	10	7			
KUWA COLW	10 1		(77	10.	4			
CULZ	49.4		0/./	22.	0			
TESTS OF	INDEP	ENDENCE	STATIS	STIC	SIGNIF	DF = 1	N= 4179	
MAXIMU	M LIKE	LIHOOD	855.72	2	0.	CRAMER 1	5 PHI=	•4429
CHI-SQ	UARE		819.94	4	0.	CONTING	ENCY COEFF=	.4050
BINOMI	AL TES	T OF SYM	METRY		.0000	FISHER E	EXACT PROB=	0.

•

•

•

THOWAY CPCSS-TABULATION TABLE A-17

2. COLOR		516.BRI M1SS	U DCCU WHITE	BLUE	FARM	SERVIC	HCUSWF	STUDNT	MILTRY	RET IRD	UNEMPL
N= TUTAL= ROW% COL%	1438 9173	2697	575 38•6	351 23•6	10	152 10+2	123 8•3	151 10.1	24 1.6	73 4•9	29 1.9
MISS EXPECT ROW% COL%	2112	2876	132	534	17	190	129	320	39	76	15
CLEAR E XPEC T ROWS COLS	694 46•6	1424	227 268 32.7 39.5	213 164 30.7 60.7	7 5 1.0 70.0	67 71 7.9 7.9	49 57 7.1 39.8	66 9.5 4.3.7	10 11 4-1-4	36 36 49•2 49•3	19 14 2•7 65•5
TINT EXPECT ROWS COLS	794	1273	348 307 43.8 60.5	138 187 17.4	0 • 0 • 0 • 0 • 0	85 81 10•7 55•9	74 66 9•3 60•2	85 81 10•7 56•3	14 13 1.8 58.3	37 39 4•7 50•7	10 11 34.5 34.5
TESTS OF	INDEPE	ENDENCE	STAT IS	5710	SIGNIF	DF= 8	" 2	1488			
MAXIMU ^M CHI-SQU	I LIKEI JARE	гноор	49 . 896 49 . 669	m n	• 0000	CRAMER 1 CONTING	S PHI =)EFF= .	1827		

.

THOWAY CRUSS-TABULATION TABLE A-18

2. CCLDR		536.RES MISS	720M 770M	S ECOND	THIRD	FOURTH	FIFTH	S I XTH	
N= 101AL = ROWT COLT	4025 9173	160	2450 60 . 9	1497 37•2	67 1•7	• 3	• 0	• 0	
MLSS EXPECT ROWS COLS	4511	411	3000	1399	104	ŗ	m	0	
CLEAR EXPECT ROW?	2038	80	1289 1241 63.2	715 758 35.1	33 34 1•6	- 4 0	0-	0 -	
COL %	50.6		52 • 6	47.8	4°3	12.5			
TINT EXPECT RDW2	1987	80	1161 1209 58.4	782 739 39.4	34 33 1.7	r44 ,		-0-	
COLE	49.4		41.4	52.2	50.7	87.5	100.0	100.0	
TESTS OF	INDEP	ENDENCE	STATI	ISTIC	SIGNIF	0F= 5	۳	4025	
MAXIMUN CHI-SQU	I LIKE	L 1H00D	18.28	08	.0026	CRAMER • CONTING	S PHI =	EFF=	• 0641 • 0640

.

•

æ

TWOWAY CROSS-FABULATION TABLE A-19

111	0 10	m.			N I GN
F EMA LI	136(32 • 1	133	701 52.1	65 81 41	
MALE	2824 67•5	3647	1409 1429 66.6 49.9	1415 1395 68.5 50.1	STAT!
590.SEX MISS	-	æ	I	0	ENDENCE
	4184 9173	4980	2117 50.6	2067 49.4	INDEP
2. COLOR	N= 10TAL= ROWT COLT	MISS EXPECT RDW% COL%	CLEAR Expect Rows Cols	TINT EXPECT ROW% COL%	TESTS OF

	• 0203 • 0203 • 1005
DF= 1 N= 4184	CRAMER'S PHI= Contingency coeff= Fisher exact prob=
SIGNIE	.1895 .1895 .0000
STATISTIC	1.7218 1.7214 IMETRY
ESTS OF INDEPENDENCE	MAXIMUM LIKELIHOOD CHI-SQUARE BINOMIAL TEST OF SYM

•

: