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CHAPTER 1

INTRODUCTION

Two Major Issues

This thesis addresses two major issues.

The first is the need for a computational aid for preliminary design. The entire
design process can be thought of as an iterative two-phase cycle. Synthesis creates a
solution to a design problem and analysis determines if the solution is satisfactory.
If it is not, a new design solution is synthesized and the process starts again.

There is a wide variety of computational aids for the analysis phase of the design
cycle. Finite element methods, for example, can determine stresses and strains in
a proposed design. Kinematic and dynamic analysis will reveal the motions and
attendant forces in a mechanism under consideration. Both of these techniques,
however, require that a proposed design exist. They do nothing to help the designer
formulate a design solution; they only analyze a completely specified design idea.

It is a reasonable argument that computer-aided design and drafting systems do
actually aid the design synthesis process since they facilitafe the creation and vi-
sualization of a record of a design solution. The important point is that they aid
in archiving the design solution, not in creating it. The human designer is still re-

sponsible for generating all design solutions. It seems highly unlikely that attractive,
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2
accurate renderings of designs will cause designers to create ditferent, better designs.
(Indeed, they may in fact cause premature satisfaction and unwarranted complacency
in designers.)

The second major issue is the need for a computational framework for concurrent
engineering. Typically, products are first designed to meet functional requirements
and then, once most design decisions have been made, is consideration given to other
aspects, such as manufacture, distribution, repair, and disposal. In a concurrent en-
gineering design approach, consideration of these aspects influences the initial design
of the product. Ideally, the product and all related processing are designed at the
same time. By doing this, costs associated with the “downstream” aspects are mini-
mized. Redesigns and design revisions are less likely because initial design decisions
are more informed. This general philosophy goes by several names, including “life-
cycle engineering” and “simultaneous engineering,” and encompasses many different
“design for ...” (assembly, manufacturability, etc.) techniques.

At present, implementing this philosophy is more of an administrative issue than
a technical one. The concurrent engineering idea can be implemented by simply
soliciting the input of personnel familiar with each life cycle aspect during the initial
design stages. We hope for a computational implementation of this process. Experts
are not always available and their time is very expensive. Encoding their expertise
once in a system tailored to helping with concurrent engineering would faciltate the
process and perhaps cause dramatic improvements in design productivity.

What is needed, then, is a system that helps designers obtain better design ideas,
and allows the computational implementation of a concurrent engineering design

approach. The system developed here attempts to achieve these two goals.

Intelligent Purposeful Suggestions

To address these two issues, the idea is to devise a system that will make intelli-
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gent, purposeful suggestions to the designer during the preliminary design phase.

An example demonstrates the idea. Figure (1.1) illustrates how this system would
operate in a typical design process. The figure shows four successive screens of a CAD
modeling session. In Figure (1.1a), the user has created a block. In Figure (1.1b),
the user has subtracted a groove from the block in order to satisfy some design
requirement. Assume that the user’s concern is to maintain the dimension indicated.
The system recognizes that a feature has been added to the block and in Figure
(1.1c) graphically suggests that the groove be moved to the center of the block face.
The system’s concern is to alter the feature to make the entire design 180-degree
symmetric about the X-axis, perhaps to facilitate later mechanical handling of the
part. If the user does not understand the system’s motivation, an explanatory text
interactivity could be carried out on a seperate terminal. In Figure (1.1d) is shown
the user’s design solution. The user has widened the groove in order to both maintain
the important dimension and obtain symmetry. There has been an effective mixture
of human and artificial intelligence, with the human intelligence creating a design to
meet specifications and with the artificial intelligence analyzing each design step and
suggesting improvements relative to some previously encoded knowledge domain.

The system in the above example performs two tasks. First, it analyzes the design
to determine how well its own design goals are met. In this case the design goal was
to obtain X-axis symmetry. Second, based upon the analysis, it alters the design
to improve it with respect to its goals. To perform the analysis, the system must
access a representation of the evolving design, for this is what is being analyzed.
It must also access representations of domain analysis knowledge so it can carry
out the analysis. Finally, the system must possess methods to alter the design in
order to make the suggestions to the user. The system does not, however, use any
representation of the user’s design goals. The user clearly had a goal to maintain a

particular dimension and the system’s suggestion did not meet the goal. The system



has no concept of the user’s intentions.

Considering these system capabilities, it is evident that the user also performs
two tasks. The first is to perform design steps to meet their design goals. The second
task is to revise their design steps to accomodate in some way the suggestions of the
system. The user must ensure that their design goals are satisfied while allowing the
system to influence the way they achieve their goals. This could result in a range
of user behavior, depending on how the user is influenced. At one extreme, the
suggestions may differ very little from the user’s design step, causing minor changes
in the user’s design. At the other extreme, the suggestions may cause the user to
obtain a completely new idea of how to meet their goal.

It is important to note that the system operation is not influenced by the spec-
ifications of what is being designed. The user will begin a design session with some
design specifications, most importantly specifications of design function. Assuming
that the user is a capable designer, the sum total of their design goals will meet the
design specifications. The system only responds to the user’s actions; it can do noth-
ing with the requirements that are motivating the user’s design steps. Because of
this, the system could not be considered an automated designer. It could not create
a design independently of the user. On the other hand, since the system operation
does not depend on the design specifications, it can be applied to a wide range of de-
sign problems. It can apply its analysis and suggestive capabilities to many different
classes of objects.

An obvious question arises from the description of this type of design aid. Can
suggestions favorably influence designers? If they can, then such a system can help
in the preliminary design process, thereby achieving one of our goals. Additionally, if
the suggestions embody some aspect of the product life cycle normally not considered
during preliminary design, then the system will provide a computational method

for concurrent engineering, achieving the other goal. Also, it is significant that
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the suggestions are not related to the product specifications. If the suggestions
help designers create better designs, it will demonstrate that design improvement
assistance need not be specific to a particular class of designs, making such a system
more broadly applicable.

The research described in this thesis attempts to answer the above question. A
system like the one described above is developed and configured to provide sugges-
tions in different ways. Following this, the system is tested with human users to

determine how effectively it provides assistance during preliminary design.

Relation to Other Disciplines

This research is highly interdisciplinary in nature and relates to several other very
fertile research areas. Here, we briefly describe some of these relationships and the
potential contributions to each.

In the general area of design, the proposed system would actually help people be
better designers by providing design improvement information during the preliminary
design process. To date, many have considered it impossible to augment true design
ability, since this ability was considered to be an abstract, almost artistic talent.

In the area of computer-aided design, the system developed here will actively take
part in the design process by autonomously altering the design in response to the
user’s actions. An architecture for achieving this capability will be specified.

The intelligent CAD system proposed will not require any sophisticated applica-
tions of artificial intelligence programming techniques, but will result in a production
rule system specifically designed to interact with a feature-based CAD model. In ad-
dition, heuristics for making de:ign improver:ent suggestions will be investigated.

In the area of human-computer interaction, this work will provide a starting
point for the study of suggestion-making CAD interfaces. The results of the user

tests will aid in the design of interactivity schemes for systems that actively take
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part in design processes. The question of how to motivate and stimulate users to

create better solutions to design problems is obviously of great importance.

Organiza,tion

This thesis is organized into ten chapters.

Chapter Two discusses background and related work. Chapter Three introduces
design for assembly as a design knowledge domain. Chapter Four reviews the au-
thor’s previous efforts to devise suggestion-making systems. Chapter Five formalizes
some pertinent concepts. Chapter Six specifies an architecture for a suggestion-
making CAD system. Chapter Seven derives two possible suggestion-making inter-
activities and provides example design sessions for them. Chapter Eight discusses
knowledge engineering issues that arose during a system implementation. Chapter
Nine describes some initial user tests that were performed and chapter Ten provides

conclusions.
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Figure 1.1: Proposed interactivity with the intelligent CAD program.
(a) Initial design. (b) User input. (c) System suggestion.
(d) Revised user input.



CHAPTER II

BACKGROUND AND RELATED WORK

Introduction

This chapter provides background for the research by reviewing some related
work of others. This related work has been grouped into seven general categories,
which are represented with sections of this chapter. Six of the categories derive from
the discussion of two major issues and four related disciplines found in Chapter One.
The other category, similar systems, is required to discuss developed systems that
are somehow similar in purpose or philosophy to the system described in this thesis.
Similar systems are discussed first. This is followed by discussion of works related to
the two major issues: preliminary design aids and concurrent engineering. The next
four sections discuss related work in the four disciplines of design, computer-aided
design, artificial intelligence, and human-computer interaction. A final conclusion
section closes the chapter.

These divisions are not very precise. Some of the research reviewed below ob-
viously makes contributions to several of the categories. The categorization of the
various research efforts reflects the author’s opinions on how the efforts most signifi-

cantly contribute to the idea of an intelligent suggestive CAD system. Also, with such
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a variety and large amount of related work, it is possible that some pertinent efforts

have been overlooked. This possibility is regrettable, but seemingly unavoidable.

Similar Systems

Of the similar systems that were found in the literature, one descibed by Runci-
man and Swift seems to be the closest in purpose [Run.l] (see also [Swi.l]). The
system they describe uses a CAD model of a part to estimate the expected costs
of automatically handling the part. Additionally, minor graphical recommendations
are made directly to the CAD model. The system accesses a CAD representation
and uses a production rule system to perform its task.

The system is similar because it addresses the same concurrent engineering aspect
as is used in the system developed here (see Chapter Three) and makes recommended
changes to the CAD model. The primary differences are in emphasis and sophisti-
cation. The emphasis of the work described in [Run.1] is to accur:tely predict the
cost of automatically handling the part, given the CAD model. The authors measure
the performance of their system by comparing its predictions with those of a human
expert. They make clear that the purpose of their graphical recommendations is to
make very minor changes to the part that will yield decreased cost predictions. In
the system described in this thesis, the emphasis is on influencing the designer to
make better design decisions. These better decisions will, of course, result in lower
costs for the subsequent handling of the part. There is no effort in the system we
propose, however, to suggest only minor changes that maintain the user’s original
idea. Gross changes may be suggested. These may cause the designer to obtain
a completely different design idea with handling costs lower than any design that
would result from a minor change. The system described in the subsequent chapters
also seems to be more sophisticated and robust than that described in [Run.1]. In

certain situations their system requires significant help from the user to derive the
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necessary facts from the design representation. The system described here requires
none. Additionally, their system represents the design as a list of corner points of a
planar polygon which is the silhouette of the part. This is actually a representation
of a drawing instead of an object, and it suppresses the three-dimensional nature of
the design. As will be seen in Chapters Five and Six, the system developed here
employs a three-dimensional feature-based model, a representation that facilitates
necessary processing.

Another similar system with a more complete representation of the design is
described by Luby et al. [Lub.1]. Their system is a sophisticated CAD modeler that
automatically evaluates the suitability of a design for manufacture by casting. The
user creates a design with meaningful geometric features. These features are part
of a heirarchical object-oriented representation of the design. This representation
includes the design features and various levels of CAD entities (planes, lines, points,
etc.). Relationships between the design features and the CAD entities are maintained
in the representation. This allows a “spreadsheet interface,” where altering one of
the design features also appropriately alters the features bordering it. In operation,
the user first builds a CAD model, and then asks for analysis and recommendations.
Recommendations are made without changing the CAD model: the user must modify
the design.

The system is similar because it employs a design-with-features interface’ and
provides design analysis and recommendations. The sophisticated features interface
seems to be the major thrust of this work. This interface is considerably more capa-
ble than the one employed in the system developed here. The design improvement
recommendation capabilities, on the other hand, seem to be more limited. The sys-

tem does not autonomously alter the CAD model, which is an important part of our

1 The design-with-features approach taken in the system developed here is
explained in Chapters Five and Six.
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approach. Upon request it analyzes the design, notes any problems, and recommends
possible improvements, but it is up to the user to incorporate the recommendations.
Like the system described by Runciman and Swift, the emphasis seems to be on the
automation of a design analysis task rather than the stimulation of new design ideas.

It is conceivable that an additional benefit of using a system that would produce
the output shown in Figure (1.1) is to learn more about the encoded concurrent
engineering domain. By viewing the suggestions, the user might learn what design
characteristics are favorable with respect to the domain. Such a system, therefore,
seems to be somewhat similar to some type of intelligent tutoring system. Sleeman
and Brown have edited a collection of work in this area [Sle.1]. Existing intelligent
tutoring systems often have a typical structure and mode of operation. The structure
consists of two models: a model of the student that is derived from the interactiv-
ity, and a model of an expert that is encoded beforehand. The system will operate
by comparing the student model to the expert model to determine pertinent differ-
ences in skill and knowledge. These differences are then used to guide subsequent
instruction.

One example is the WEST program described by Burton and Brown [Bur.1].
This program coaches users on how to more effectively play a computer game. The
game involves moving along a path of discrete spaces, where the distance of a move
is related to an arithmetic expression formed by a player. Players must form these
expressions with a set of numbers that result from spinning several dials. The object
is to reach the end of the path. There are also several strategic possibilities related
to jumping ahead and forcing back the opponent. Usually, the student plays against
the tutor. The tutor will recognize deficiencies in the student’s play and will suggest
alternate improved moves.

Another example is a geometry tutor described by Anderson et al. [And.1]. This

system contains production rules that represent the decisions that might be made
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during the formulation of a proof in high-school level geometry. One set of pro-
ductions represents appropriate steps in the proof and can be considered the expert
model. Another set, the so called “bug catalog,” represents incorrect steps. The
system monitors the student and infers which type of production he is using at a
given step in the formulation of the proof. If the production is one of those in the
bug catalog, the system provides pertinent instructions to the student.

The behavior of these two systems is similar to that shown in Figure (1.1). The
basic operation of monitoring a user and providing advice when needed is demon-
strated in Figure (1.1). A major difference between a tutoring system and the system
described in this thesis is, of course, that in the system described here there is no
intention to provide tutoring. The intention is instead to provide useful inforfnation
that may stimulate better design ideas. If this information is properly brought to
the design situation, there is really no need for the user to learn it. Another dif-
ference is that the system proposed here does not exhibit the level of expertise in
its domain that the tutoring systems do. In particular, note that the WEST pro-
gram can actually play the computer game and that the geometry tutor can actually
complete a proof. The analagous capability for a suggestion-making program would
be for it to complete a design on its own. This is not to say, of course, that game
playing and theorem proving are somehow equivalent to design; the distinction is
that the tutoring systems can perform the task the user is trying to learn, while a
suggestion-making system cannot perform design. This is due to the complexity of
the task. Design requires a large amount of information and knowledge. To date,
systems that can carry out a design independently have tended to be very specific
to a certain class of objects (see the “Artificial Intelligence” section below). This
brings the amount of knowledge required down to a workable level. The system we
propose instead limits the amount of knowledge by making it specific to a particular

engineering concern. This knowledge can then be applied to a range of different



13
objects if the user participates in the design process

There are tutoring systems that are more aligned with this approach. One ex-
ample is the SPADE-0 program developed by Mark Miller [Mill.1]. This system
attempts to promote good program planning, development, and debugging practice

‘in the coding of simple graphics application programs. Its basic operation is to
prompt the user about what to do next in an orderly software development plan.
Importantly, it could not take program specifications and automatically generate
the correct program. In this way, it is like the system we propose. It is unlike it in
the way it responds to the user’s actions. It does not, for example, propose alternate
ways of coding a portion of the program that the user has just finished. Its purpose
is to encourage the user to follow a good program planning and debugging approach.

A system that does react more to a user’s actions is described by Shrager and
Finin [Shr.1]. Their program keeps track of a user’s interactivity with an operating
system and informs the user of more efficient ways to use operating system com-
mands. If, for example, a user simply wants to rename a file but does not know the
proper command, the user might copy the file to a file with the desired name and
then delete the old file. The Shrager and Finin system will infer their desire and
help them with the delete command. The emphasis, therefore, is on understanding
what the user is trying to accomplish in order to help them do it more efficiently.
The situation is somewhat different with our suggestion-making program, where the
emphasis is on altering what the user did in order to prompt a more desirable user
action.

A final related system is the SACON program developed by Bennet and En-
glemore [Ben.1] which provides advice on the use of a structural analysis program.
The user first participates with the program in a question and answer session which
provides the system with required information. The system then makes recommen-

dations about parameters for a particular run of the structural analysis program.
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This system does provide assistance, but does little if anything to provide the user

with new ideas.

Preliminary Design Aids

The first major issue was the need for a preliminary design aid. In this section
we discuss research related to this issue. Two basic approaches were found in the
research that was reviewed. The first was to stress some idea that provided an
approach to preliminary design. Two of these ideas are discussed below. The second
approach was to develop a system that actually performs a preliminary design of some
type of object. Four of these working systems are described. The research outlined
in this section could rightfully be found under one of the other categories. The ideas,
for example could be found with the other approaches to design. They are described
separately here because they are thought to be more distinctly related to preliminary
design and somewhat more formalized. The developed systems could be grouped
with the other artificial intelligence applications. They are described here because
they seem to be more focused on issues pertaining to preliminary design. Although
these systems are not actually aids to preliminary design, they do emphasize the
preliminary design process.

One idea that can be applied in the preliminary design process is the axiomatic
approach to design that was proposed by Suh et al. [Suh.l]. The basic theme to
an axiomatic approach is to apply axioms when one must make design decisions in
uncertain situations. If all pertinent information was at the designer’s disposal at
the time of the design decision, the decision would be very easy to make. When
information is lacking, the decision can still be made by considering some generally
true design axiom and applying it to the situation. These axioms are very general

ideas for which there seem to be no counterexamples. An example axiom is that
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a design’s primary functional requirement should be satisfied first and other func-
tional requirements should be satisfied in order of importance [Suh.1]. Rinderle and
Suh developed quantitative measures of “functional coupling” which they related
to one of these design axioms [Rin.1]. The only real relation of an axiomatic ap-
proach to the work described in this thesis is that the suggestions that are output
by a suggestion-making program can be thought of as fairly specific axioms for a
concurrent engineering concern.

Another idea, put forth by Lansdown, is the idea of design as a modification
of prototypes [Lan.l]. A prototype is a generally accepted concept of something.
A kitchen chair, for example, is a prototype for all chairs. Prototypes would be
represented as a concept with a list of features. Two parameters related to this
representation are “c” and “m.” “C” is a measure of how close a particular design
is to its prototype, and in the chair example would measure the “chairness” of the
design. If the prototype is a kitchen chair, an office desk chair has a higher “chairness”
than a bean-bag chair. “M” is a measure of how much the list of features of the
design differs from the list of features of the prototype. The author proposes that
an innovative design is one that is far from its prototype with a very similar list of
features. Another idea outlined in the paper is that of “lean” and “robust” designing.
“Lean” designs are those that develop with a discontinuous progression of ideas, with
many large and abrupt changes made on the way to a solution. “Robust” designs
are those that develop with a continuous smooth progression of ideas, with small
refining changes made to the original design idea. The author relates these two
types of designing to mathematical catastrophe theory (Lansdown cites [Tho.1]).
Suggestion-making programs can be thought of as systems that propose alternate
prototypes or alterations to prototypes. The resulting design process may be lean if
the desiger gets many new ideas, or robust if the designer maintains and refines an

original concept.
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The first working system we will describe is reported by Murthy and Addanki
[Mur.1]. Their PROMPT system modifies prototypes (there is no relation between
these prototypes and the prototypes proposed by Lansdown), in order to obtain a
problem solution. The system uses a graph of prototype models, with a prototype at
each node. Changing the prototype is equivalent to traveling from node to node on
the graph. As an example, consider designing a beam cross section. A possible pro-
totype change is to change from a solid cross section to a tubular cross section. This
prototype change might be made if the tubular cross section is better suited to the
given load conditions. The authors describe “modification operators” that transform
one prototype into another. This program changes protoypes autonomously (for a
particular type of object, e.g. beams); it is hoped that suggestion-making programs
will help the user to change prototypes in an effective way.

Dyer et al. report on a very ambitious project to develop an engineering design
invention system that can create novel mechanical devices [Dye.1]. The EDISON
program is meant to create innovative solutions in the way a human does. It uses
naive physics, qualitative reasoning, planning, various discovery/invention heuristics,
and a set of abstract devices that are organized and indexed in an episodic memory.
To create an innovative design the system can employ one of several strategies.
It might obtain a prior design that could serve as the solution, make some type of
generalization or analogy, or mutate an existing abstract device. The implementation
described by the authors is limited to the application of mutation heuristics that can
manipulate and create doors. In proposing suggestion-making programs, we take
a different approach. Instead of modeling what the designer does when creating
innovative solutions, we attempt to devise a program that will help the designer be
more innovative.

Ulrich and Seering describe two systems that automate the preliminary design of

a particular type of object. In [Ulr.1] they describe a system that uses a combinato-
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rial approach to design mechanical fasteners given a set of functional requirements.
Five fastener subcomponents are found on seven different prototype fasteners. The
prototypical fasteners exhibit structure-function relationships that are used to con-
strain the combinatorial search for solution fasteners. This limits the number of
solutions to a reasonable number that meet the functional requirements. A defi-
ciency of the system is that the structure-function relationships preclude some truly
novel solutions. The authors suggest that this problem could be alleviated by ob-
serving structure-function relationships at a more detailed level: in other words to
decrease the “grain size” of the observed relationships. This work has very little re-
lation to programs that are meant to influence designers since the system completes
the entire design.

A second effort designs objects in a simple planar blocks domain by using a
design-debug strategy [Ulr.2]. The important concept is that the debug step is done
from a number of perspectives, which are related to different design goals. An initial
design is first created. New designs are then created with a debug step for each
perspective. All of these designs, created from each debug step, are then tested to
see if any satisfy the overall problem goals. If one is satisfactory, then the design
process stops. If none are satisfactory, then one is picked to become the new initial
design, and the process repeats. The important similarity to the approach we propose
is the explicit separation of the perspectives. This allows the debug knowledge to be
isolated in several distinct computational modules. Because it is dedicated to a single
perspective, a module is probably relatively small and easy to encode and maintain.
We similarly separate knowledge about various concurrent engineering perspectives,
from knowledge about other concurrent engineering perspectives and from the user’s

knowledge of the design requirements.

Concurrent Engineering
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In this section we discuss some of the literature related to concurrent engineering.
Again, the categorization of certain works into this group is a matter of opinion.
Some works described here are closely related to computer aided design (articles
pertaining to the feature-based approach) and aritificial intelligence (articles about
collaborative systems). Their inclusion is due to their relationship to the idea of
considering several engineering aspects simultaneously.

Several brief publications can provide an introduction to topics in concurrent
engineering [Eva.l, Dwi.1, Sto.l]. In particular, Stoll provides a useful review of
several design for manufacturability approaches and compares their various qualities
in [Sto.1].

Concurrent engineering has as its most direct ancestor the techniques of value
analysis and engineering. Miles provides a thorough introduction with many case
study examples [Mil.1]. The purpose of value analysis is to identify and eliminate
unnecessary costs in a product. Once these costs are identified, alternative designs
are proposed. This is usually not done during preliminary design, when designers
are primarily concerned with meeting functional specifications. It is more likely
attempted when the product idea is fairly well defined, so that concentration can be
focused on reducing costs (i.e. increasing value). With a suggestion-making program,
of course, we try to integrate the consideration of value into the preliminary design
phase. This is done by inserting the “value knowledge” into the design process with
suggestions.

The specific concurrent engineering aspect we have chosen to apply is design for
assembly. Boothroyd and Dewhurst have created several useful design for assem-
bly charts that can be found in a “designer’s handbook” [Boo.1]. The Boothroyd-
Dewhurst system provides the concurrent engineering knowledge for the intelligent
CAD system that is developed here. These charts are used to rank a part to de-

termine the ease with which it can be handled and assembled. The information on
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these charts is based on theoretical and experimental studies, [Boo.2] for example.
Thorough background information is provided in [Boo.3]. It should be noted that
computer programs have been developed that aid in the use of the design for assem-
bly charts {Dew.1]. These programs are really only computational representations
of the charts: they do not access representations of designs to perform automatic
analyses. Use of the Boothroyd-Dewhurst design for assembly system as a concur-
rent engineering design concern is discussed in more detail in Chapter Three. Other
researchers have investigated problems related to design for assembly. Andreasen
et al. consider the overall problem of design for assembly [Andr.1]. den Hamer dis-
cusses several different kinds of part feeding and orienting tracks and provides some
guidelines {deH.1].

To use the Boothroyd-Dewhurst system, one must note the features on a part.
This implies that a representation of the design should allow some representation of
its features. Features can be thought of as meaningful geometric entities that are
pertinent to some processing of the design. Most of the interest in part features
has been related to the problem of automated process planning, for example the
planning of required machining operations [Pra.1]. Others recognize a more general
utility of part features [Bri.1]. The idea of automated process planning is to derive
the required processing operations from a CAD representation of the part. Since the
part features are related to the processing operations, it is necessary to determine
the features of the part. This motivated attempts to automatically extract features
from standard CAD model representations [Hen.1, Woo.1]. This proved to be a very
difficult problem. To avoid an extraction of features, others have proposed designing
with features from the outset [Dix.1]. In this approach, the user creates the CAD
model with feature building blocks. T: -epresentation of the model will be organized
around the features, thereby eliminating the need for any feature extraction. This is

the approach taken in the system developed here. An additional benefit is that an
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easy to use human-computer interface results.

Research in collaborative systems is another area that is related to concurrent
engineering. As their name implies, these systems allow several users to collaborate
on a problem or design. Wrona and Olszynski, for example, describe a system that
causes an interaction between an architect and a non-architect during the design
of a portion of a city [Wro.1]. Two computer support systems for group meeting
situations are described by Stefik et al. [Ste.1]. One system, called COGNOTER,
aids the group while they interact to outline a talk or paper. A second system, called
ARGNOTER, helps the group conduct arguments concerning research proposals.
Stults proposes to use videotechnology in design environments [Stu.1], particularly
to provide a real-time connection between designers at different locations and to
record the circumstances surrounding design decisions. All of these systems could
have some application to a concurrent engineering approach because they facilitate
the collaboration of several individuals. These individuals may possess expertise in
different concurrent engineering areas. These systems differ from the suggestion-
making systems we propose because they assume a human-human collaboration,

whereas we assume a human-encoded expertise collaboration.

Design

The purpose of providing suggestions in the interactivity of Figure (1.1) is to help
users get better design ideas. Other techniques found in the literature of general de-
sign theory and methodology have the same purpose and some of those techniques
are briefly explained in this section. These techniques are grouped together here un-
der the general heading of “Design” because they can easily be applied in a number
of design situations. Their application is not limited to the preliminary design phase.

Jones provides summaries of a wide variety of design methods, including those ex-



21
plained here [Jon.1]. The explanations below are based on these summaries. and the
references are suggested by Jones.

Osborn describes the method of brainstorming [Osb.1]. In this technique, the
process of developing new ideas is divided into two phases. A group of people are
first gathered together for the purpose of finding ideas relevant to a problem at
hand. The first phase is an idea generation phase where the participants offer any
idea that may occur to them. Other participants may get new ideas from the ideas
offered by others. Various idea-spurring questions may be posed. During this first
phase it is important that none of the ideas are criticized. The second phase is used
for evaluation and organization of the ideas. A similarity between this process and
the suggestion-making process is that users may get new ideas from the suggestions
output by the system.

Gordon proposes the method of synectics, which is another group participation
idea generation technique [Gor.1). A group that is devoted to this approach, gathers
to produce ideas relevant to a certain problem. Various analogies are used to stimu-
late creativity. Participants might, for example, consider how some animal performs
the functions required of the design they must create. This technique seems more
“free form” than brainstorming, with more and varied interactivity between the par-
ticipants.

Morphological analysis, discussed by Norris [Nor.1] and Zwicky [Zwi.1], can be
done on an individual basis and is more formal than either of the preceding two
approaches. In this technique, the necessary functions of a design are noted and
possible subsolutions that will provide each function are proposed. A design is created
by choosing one subsciution for each functional requirement. The total number of
potential designs is therefore the product of the numbers of subsolutions for each
function. This can be a very large number. If all possible subsolutions are noted,

the technique ensures that no potential designs are overlooked.
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All of these methods can be used to generate a large number of design ideas. Un-
like the ideas output from a suggestion-making program, there is no indication of the
quality of the ideas; the suggestions will be better designs with respect to the con-
current engineering concern. Additionally, with the techniques described above, the
generation of ideas can be random and unfocused (particularly with brainstorming
and synectics). A suggestion-making program will output design improvement ideas
that are dependent on the user’s preceding design steps and the encoded concurrent

engineering design domain.

Computer-Aided Design

In recent years, there have been impressive advances in the capabilities of CAD
systems. Some of these improvements are briefly discussed in this section.

One significant advance was the variational geometry design representation [Lig.1].
In this approach, designs are outwardly represented by a dimensioning scheme. The
dimensions correspond to certain geometric constraints, such as distances between
points and angles between lines. These constraints are represented with equations
containing the variable dimension values. Given a set of dimension values, solution of
the constraint equations specifies the location and orientation of the CAD primitives
that make up the design model. If the set of dimensions specified would not produce
a physically realizable object, the constraint equations can not be solved. This rep-
resentation allows a “dimension-driven geometry” type of interface. The user makes
a rough model of the design and then adds a dimensioning scheme to the model.
Values for the dimensions are then input, and the system alters the model automat-
ically to agree with the dimensional values. The commercial Cognition system has
this capability [Cog.1].

Note that a variational geometry representation allows the efficient modeling

of a family of parts: models of all parts that have the same dimensioning scheme
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can be generated automatically by simply changing the dimensional values. This
representation does not allow a variable topology. The numbers of faces, edges,
vertices, and the connectedness between them does not change. Consider Figure
(1.1) again. If the groove is moved far enough across the block face toward one edge,
eventually the groove will become a step removed from the corner of the block. A
variational geometry representation could not model this change because a block
with a step and a block with a groove would require two different dimensioning
schemes. Gossard et al. describe a model representation that allows changes in
topology [Gos.1]. In this approach, dimensions are represented as “relative position
operators” between CAD entities. These relative position operators and standard
set operators then become the nodes of a graph that represents the entire model.
When a dimension on the model is changed, the graph is reevaluated to produce a
new model that may have a different topology.

A very different type of advanced CAD modeler is a program model system.
With these systems, a design is modeled by writing a program. When the program
is compiled or run, the design is “created.” This design creation can cause many
different types of output, such as a graphical rendering, a manufacturing process
plan, or repair information. A design is altered by altering the program model. The
commercial ICAD system [ICA.1] and a system described by Premack [Pre.1] are
examples of this approach. This type of model is most useful for a design that is a
complex prototype, such as a machine with many parts. If new designs are created
by altering the prototype program, then all related information (e.g. process plans)
can be generated automatically.

All these systems provide advanced techniques for modeling the design. None
of them autonomously alter the design. In contrast, the system described in this
thesis will actively alter the model to try to improve it with respect to a concurrent

engineering aspect. In this way, the system we propose is very different from the



CAD modelers described above.

Artificial Intelligence

There has been a considerable amount of research on applying artificial intelli-
gence techniques, especially expert systems, to problems of engineering design. Rych-
ener provides an overview of the major issues [Ryc.1]. In this section we describe
some systems that have been developed. The systems outlined below are distinct
from the preliminary design systems discussed earlier because their emphasis is more
on general design issues. We compare these systems with the idea of a suggestion-
making program by noting the specificity of their application and the involvement
they require from the user.

Brown and Chandrasekaran have developed a system that does routine design of
air cylinders [Bro.1]. The user specifies some parameters of a pre-existing air cylinder
configuration and the system completes the detail design of the device. The system
is organized as a heirarchical community of design agents and completes the design
in four phases: requirements checking, rough design, design, and redesign. The only
interactivity with the user is the initial input of parameters. This system is very
specific in that it can design only air cylinders with a known basic configuration. The
involvement with the user is minimal. This system is clearly more of an automated
routine designer than a design aid.

A system that is philosophically similar but seems to be somewhat more sophis-
ticated is the PRIDE system described by Mittal et al. [Mit.1]. PRIDE designs
pinch roll paper handling systems for photocopiers. The configuration of the design
is variable to some degree (e.g. the system determines the number and location of
roll stations in the handling device). The basic operation is that the user inputs the

specifications and the system completes the design. The user can, however, change
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the specifications at various stages in the design process. PRIDE can also critique de-
signs and suggest modifications. The design problem is represented as a generalized
design plan that will make design decisions going from the general to the specific.
A graphical interactivity showing the paper path is provided. This allows the user
to specify obstacles that might influence the paper path, and to partially construct
a paper path that the system will help to complete. Details of the graphical inter-
activity are found in a report by Morjaria et al. [Mor.1]. This system only designs
pinch roll paper handling systems with varying configurations. There is some coop-
eration possible between the system and the user during design, but the system’s
main purpose is the design of the paper handling system.

Another system that provides a graphical interface and cooperates with a designer
during design is a kitchen design system described by Oxman and Gero [Oxm.1]. This
system can fully complete a floor plan design, finish a partially created design, and
analyze an existing design. This is a production rule expert system with a graphic
display module that performs the transformations between representations used for
the graphical display and representations used for the expert system fact base. The
user interactivity includes simple digitizing of the graphical floor plan, and text
input. This system is similar to the PRIDE system in that it can work with various
amounts of user input, that is, it can fully design a kitchen or complete one the
user has started. There is no direct attempt, however, to stimulate the users with
alternate design ideas. Although only the development of a kitchen design system is
reported, it is possible that this system could be extended to other types of rooms
since all rooms can be represented with a floor plan layout.

DOMINIC, the final system that is reviewed, is intended to be a domain inde-
pendent program for mechanical engineering design [How.1]. The system can design
in almost any domain provided that the domain meets a few requirements. First, the

designs must be represented as a list of variables. This implies some a priori knowl-
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edge of the structure of the designed object. Dependencies between these variables
and the satisfaction of various design goals must also be known. Additionally, there
must be some means to measure the overall quality of the design as a function of the
degree of satisfaction of the various design goals. The system operates in an evaluate-
and-redesign cycle. An initial design is analyzed to determine if it is satisfactory.
If it is not, a variable is modified to create a redesign, and the cycle starts again.
The user inputs some design specifications and perhaps a starting proposed design.
The system then searches for a satisfactory design. The system seems to provide
a fairly general method that can be applied to many types of objects. It must be
reconfigured for each new domain. The system has been configured to design V-belt
drive systems [Dix.2] and heat fins [Kul.1]. The system performs as an automated
designer.

To summarize, these systems are usually very specific to a certain type of object
or system. This is because they can carry out the entire design process. The user
is not purposely stimulated to get better design ideas, although it is possible for the
user to get new ideas while using these systems. A suggestion-making program will
divide the design concerns between the user and system. The user will design to
meet the specifications and the system will respond based on concurrent engineering
concerns. The system’s actions will hopefully cause the designer to conceive new

design solutions that would be overlooked without the system.

Human-Computer Interaction

This final category of reviewed research includes psychological and human-com-
puter interaction studies that have some relation to the idea of a suggestion-making
interface. Some of these efforts do not involve CAD systems or computers at all, but

are reviewed because they are thought to provide useful findings.
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Card, Moran, and Newell, as part of a larger study of various types of human-
computer interactivity, studied the VLSI CAD task [Car.1]. Using a CAD program,
a user designs the chip layout for an integrated circuit. The authors considered this
to be a semi-creative task in the sense that the user often has created the idea of
the circuit before using the CAD tool.? Less creative tasks, such as compressing
the circuit to a minimum area and integrating the circuit with other subcircuits are
performed while using the CAD system. The authors had developed a GOMS model
(Goals, Operators, Methods, Selection rules) of various instruction following tasks,
such as text editing, and they wanted to see how applicable the model was to a semi-
creative task where the user followed no prestated instructions. They found that the
semi-creative circuit design task was composed of a creative part and a routine part.
The routine part was found to be similar to other instruction-following tasks they
had studied. This type of result could be useful for the design of the detailed levels
of a CAD interface, but it says very little about the predicted efficacy of an interface
that makes suggestions.

Eberts ev al. studied a different type of CAD interactivity in an attempt to
reveal differences in expert and novice use of a CAD system [Ebe.1]. Here, the term
“expert” refers to proficient use of the CAD tool, not general design skill. Expert and
novice users were given the task of creating a model of an existing mechanical object
with a typical CAD system. Note that this was not a design task: the object already
existed. The users only had to model it. They found that expert users were proficient
because they planned their modeling task around the functions of the CAD system.
This allowed them to use the system effectively. The novice users, on the other hand,
planned their task around logical subportions of the modeled object. This led to a
very inefficient use of the CAD system that required significant backtracking. The

authors suggest teaching the experts’ “functional” strategy during training for the

2 The single user that was studied started with a sketch of the circuit.
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system. We would instead propose developing a CAD interface that accomodates the
novices’ “object-oriented” strategy. This could be accomplished by providing design
primitives that are like typical subportions of the designs that will be modeled. In
short, provide a feature-based interface.

Other researchers have attempted to study the cognitive processes of design.
Ullman et al. performed a protocol analysis study of mechanical engineering designers
[UIL1]. In such a study (see also [Eri.1]), subjects are videotaped and asked to
verbalize their thoughts as they solve a problem. These records are later examined
to hopefully determine their problem solving strategy. In the experiment described in
[UlL1], there were two design problems and six subjects. One problem was a “one of a
kind” design and the other was a part design that was intended for mass production.
Four of the six subjects were experienced mechanical designers and the other two
were inexperienced. Two experienced subjects and one inexperienced subject were
assigned to each problem. The experienced subjects were assigned to the problem
that was closest to their real-world experience. An important result found by the
rescarchers is that designers tend to pursue a single conceptual design idea. This
idea is chosen very early in the design effort, and is maintained and “patched,” no
matter how bad it proves to be. This is a very significant result because it reveals
one reason why bad designs are created. We hope that a suggestion-making CAD
interface will cause better initial ideas and promote the abandonment of bad ideas
later in the design process.

Other researchers have used different techniques to study designer behavior. Wal-
dron and Waldron, for example, studied the knowledge processing that occurred in
a large-scale group design project that took place over a long period of time [Wal.1].
Because of the scale of the project and the time and number of people involved,
protocol analysis techniques would have been impractical. They derived information

about the design process from retrospective accounts and project records. In con-
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trast with the work of Ullman et al. they found that in a group setting, different
design ideas are often pursued in parallel, and they report that this was done even
by an individual design team member. A study by Davies and Talbot also pertains
to the issue of one versus many conceptual design ideas [Dav.1]. In interviews with
award winning designers, they found that designers seem to intuitively know when
an insightful idea will prove to be the design solution that they will develop. Their
interviews indicate that many of the designers don’t feel it is necessary to make any
effort to confirm the quality of an idea that they feel is good. This suppports the
single conceptual design idea view because it will naturally be difficult for designers
to go against their intuition.

A final study that we will review is reported by Malhotra et al. [Mal.1]. The
authors describe an observational study and two experimental studies that were
performed. In the observational study, they videotaped client-designer dialogs and
later analyzed the vidotapes. The client is the person who has a design problem
that requires a solution. This problem is often poorly specified. The designer is the
person who has some experience in a relevant design area, and is considered to be
an expert consultant. An interesting finding was that during the period when the
client is describing the design requirements to the designer, the designer will often
prematurely suggest design solutions before all of the requirements are described.
The authors feel that the designer does this in order to help the client clarify and
elaborate his goals. They use this result to support the idea of a design aid for
the goal elaboration process. This aid would output various designs in the domain
of interest, allowing clients to familiarize themselves with the domain and obtain
prototype design ideas that can be more fully considered. This seems like more than
goal elaboration, since some idea generation is also involved (“goal elaboration” and
“design generation” are two processes contained in a model of the design process

proposed by the authors). The suggestion-making program we propose will behave
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somewhat like an expert designer does in the design dialogs. It will not suggest
solutions that do not meet the design requirements because it wants to clarify the
requirements. It will never “understand” any of the requirements. Its suggestions will
provide concurrent engineering information and will hopefully stimulate the client to
obtain better design ideas.

One of the experimental studies described in [Mal.1] involved the design of a
restaurant. A group of subjects, who were not architects, were given an assignment to
design a restaurant that would be located in an old church building. They were given
background information about the church building and the restaurant requirements.
Half of the subjects also received a list of random words. When their designs were
completed, the subjects communicated them to the investigators in any way they
wished. One finding of this experiment was that the subjects with the random
word lists produced designs that were considered to be more practical, but not more
original,® than the designs of the other subjects. The authors hypothesize that the
words served as memory cues that brought more items from the user’s memory into
contact with the design problem. They suggest the creation of an unstructured design
aid that will provide memory cues during design. The researchers also determined a
list of fundamental functional requirements for the restaurant before the experiment.
They found that no subject fulfilled more than 70% of these functional requirements,
but that all requirements were fullfilled by some subject. From this they propose
the creation of a collaboration aid for designers that would be especially useful if the
requirements of the design can be partitioned into a few general categories. This idea
is very much like the suggestion-making programs we have proposed. Concurrent
engineering requirements are handled by the system and other requirements are

handled by the user. The system’s input to the design process cannot be considered

3 Refer to [Mal.1] for more information about measuring practicality and
originality.
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as unstructured as a list of random words. After all, the system is motivated by the
concurrent engineering domain. It is fair to say, however, that the suggestions are

unstructured in the sense that they do not take into account the user’s design goals.

Conclusion

To conclude this chapter, it is useful to reiterate the goals of this research project
and to summarize how these goals compare with accomplishments described in the
literature. The idea of a suggestion-making CAD system should be put in perspec-
tive.

The fundamental goal is to provide useful information to designers during the pre-
liminary design process. This information, related to some concurrent engineering
aspect, is normally not considered during preliminary design. The system provides
this information by autonomously altering the design in response to a user action.
The system providing this information will be unable to complete a design indepen-
dently of the user, as it has no representation of the design requirements. It is hoped
that by providing this information, the designer will obtain better design ideas.

Unlike most other Al-based design systems, this system is independent of what
is being designed. Its capabilitites can be applied to any object that is pertinent
to the encoded concurrent engineering knowledge. Unlike other CAD systems, this
system can alter a design in response to a user design step. Unlike most tutoring
and advice giving systems, this system does not try to teach and makes no effort to
determine the user’s intentions. The system’s interactivity with the user is somewhat
unstructured because the user’s design goals are not taken into account. On the other
hand, the interactivity is not completely unstructured because it is dependent upon

a design knowledge domain and a representation of the design.



CHAPTER III

DESIGN FOR ASSEMBLY

Introduction

In this chapter we describe design for assembly as a design analysis domain.
The ideas presented here are pervasive and implicit throughout the remainder of the
thesis, as design for assembly information is the sole information encoded to date in
the intelligent CAD system described in this thesis. Design for assembly principles
are most commonly used for analysis. A part (or assembly of parts) is analyzed
to determine the suitability of the part for automated assembly. This information
then serves as a starting point for a redesign effort. The intelligent CAD system will
instead integrate the principles into the design process, noting bad design decisions
and suggesting improvements with respect to design for assembly. Other design
analysis domains are possible: design for assembly demonstrates the concept of an
intelligent suggestive CAD system.

All the encoded information is derived from the Boothroyd-Dewhurst Charts
[Boo.1]. The data on these charts represent the compilation of much empirical and
theoretical research (see for example [Boo.2]). Background information on the general

area of automated assembly is available in [Boo.3]. Other researchers [Andr.1, deH.1]
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have investigated assembly topics but have not derived tables and charts useful for
the design task.

Indeed, this is the primary reason the Boothroyd-Dewhurst Charts were chosen as
the knowledge source. The design for assembly charts provide a clear and direct way
to quantify the suitability of a part for automated assembly. They can, therefore, be
used to unambiguously compare two designs with respect to assembly considerations.
Additionally, parts can be considered as single entities. The relationship of a part
to other parts in an assembly has no bearing on how that single part will behave
in an orienting machine, which is our specific interest. This is not to say, of course,
that design considerations related to an assembly of many parts are not important.
Boothroyd discusses the economic importance of reducing the number of parts in an
assembly through elimination and integration [Boo.4]. Other researchers have ad-
dressed the difficult problems associated with the design of assemblies. For example,
Kroll et al. apply Al techniques to the problem of integration and elimination of
parts in an assembly [Kro.1]. Here, we are designing single parts only in the context
of their suitability for orienting machinery. Finally, the charts are well suited to an
intelligent CAD implementation because they can yield sensible design suggestions
that are not obvious to most people. Very few people are familiar with design for

assembly ideas.

Design for Vibratory Bowl Feeding

Specifically, the encoded knowledge concerns designing rectangular shaped parts
(as opposed to rotational parts) to facilitate the use of vibratory bowl feeders. These
devices accept a disorganized bulk of parts and orient them wi: : a series of mechanical
filters and orienting devices. The filters and devices are located on a helical track that
accomodates a single-file line of parts. An oscillating electromagnetic field vibrates

the entire feeder and causes the parts to climb the helix. The filters are used to reject
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improperly oriented parts back into the bulk. As the parts move, they slide against
the filters which sense their orientation and force them off the track if necessary.
The orienting devices, on the other hand, cause a part to change orientations. The
parts are reoriented as they slide against the device. Some combination of filters and
orienting devices is used to deliver parts in the proper orientation. See [Boo.3] and
[deH.1] for example feeder tracks with filters and orienting devices.

The objective is to design the part so as to minimize the cost of engineering and
implementing the bowl feeder. The fundamental problem is to orient the parts with
certainty and still provide an adequate delivery rate. Since filtering slows the delivery
rate by rejecting parts from the track, it is useful to design the part to minimize the
amount of filtering required. This can be done by making the part symmetric about
one of the axes.! Since symmetric parts have different orientations that are identical,
less filtering is required. Another useful idea is to make orienting the part very easy.
This can be done by making the features of the part very pronounced. Distinct,
large features and dimensions facilitate the interaction of the part with the orienting
devices.

Figure (3.1) illustrates some of these ideas. Figure (3.1a) shows a very good
example part for assembly considerations. Note that the part is 180-degree symmetric
about all three axes and the overall dimensions of the part are distinct. This part
requires very little orientation and the orientation that is required is facilitated by
the distinct side lengths of the original block. Figure (3.1b) shows a part that is much

worse than the one shown in Figure (3.1a). The part has no symmetry and two of

! In the Boothroyd-Dewhurst system, rectangular parts are considered to be
symmetric about an axis if they repeat their orientation after a 180-degree rotation
about that axis. Parts that repeat their orientation after a smaller angular rotation
are considered to be rotational parts. Note that these axes are attached to the part.
The X axis is aligned with the longest overall dimension, the Y axis is aligned with
the midlength overall dimension, and the Z axis is aligned with the shortest overall
dimension.
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the overall dimensions are not distinct. There is, however, a very prominent feature
that can interact with the filtering devices. Note how orientation of the grooved
projection which is parallel to the Z axis orients the entire part. Figure (3.1c) shows
a part that is very bad. Although the part appears to have some useful symmetry,
note that two pairs of features are symmetric about two different axes (the steps
about the Z axis and the holes about the Y axis). Orienting the part with with the
steps facing up, for example, does not unambiguously orient the part because the
location of the holes is still not known. Both feature pairs must interact with filters
and orienting devices.

In the Boothroyd-Dewhurst system, characteristic part shapes are related to the
ease of feeding and orienting. These relationships are recorded on matrix-type charts.
The indices of the matrix are text descriptions of the part shape and the matrix ele-
ment specified by the indices is a numerical score of the ease of feeding and orienting.
The charts are intended to be used in an analysis mode. A part is designed, ranked
with the charts, redesigned, reranked, and so on until the designer is satisfied. The
charts themselves are discussed in more detail in the descriptions of the previous

suggestion-program efforts found in the next chapter.
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Figure 3.1: Various parts that might be bowl fed. (a) Highly suitable
for bowl feeding. (b) Difficult to bowl feed. (c) Very
difficult to bowl feed.



-HAPTER IV

SUGGESTIVE SYSTEMS: PREVIOUS EFFORTS

Introduction

This chapter describes previous suggestion-making systems developed by the au-
thor. The information encoded into these systems was exclusively design for assembly
information. Each major section below describes one of the previous efforts, and be-
gins with a summarizing introductory subsection. This is provided for the reader who
seeks only an overview of each system. The remaining detailed description, however,
is essential for understanding the research evolution that led to the intelligent CAD

system described in this thesis.

Text Suggestions?

Introduction

! This section is derived from [Jak.1]. Figures (4.1) through (4.7) are also
from [Jak.1].
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An initial system makes text suggestions to prompt users to design parts that
will be ranked more favorably on the Boothroyd-Dewhurst Charts. The inherent
structure of the information on the charts was determined and represented with
a ranked directed graph structure. At each node of the graph is a group of text
suggestions that are output to the user. The system travels a path through this
graph, outputting the suggestions at the nodes. The user responds yes or no to a
suggestion, thereby determining which subsequent path of the graph to travel to the
next node. The graph is structured such that the more suggestions that are rejected,
the more the design quality decreases. The user is expected to incorporate the
intent of the accepted suggestions into the evolving design, which they are sketching
offline. The system has no representation of the evolving design; only the information
contained on the Boothroyd-Dewhurst Charts. When several graphs are traversed in
this way, the design is adequately specified to determine a cost estimate. Analysis
information is thus transformed into suggestive information. It was hoped that the
system would aid users unfamiliar with design for feeding and orienting in creating
better initial design configurations.

The reactions of initial users, however
miliar with the Boothroyd-Dewhurst system had difficulty understanding the mean-
ing of the brief text suggestions, even though there were clear references back to
the charts. After using the system for only a short time, many of them recom-
mended outputting the suggestions as pictures accompanied by liberal explanation
and “help” files. This led to the second effort described below (“Text and Pictorial
Suggestions”).

The emphasis in this first system is specific to the handling of the data used
for the suggestions. After a short description of the Boothroyd-Dewhurst data as
presented in the design charts, we will explore how the data can be structured to

derive suggestion rules for proper interaction with the designer. The actual program-



39
ming implementation will then be presented with an example. Some experiences of
running the program by several users will also be discussed.

A final note should be made here about the programming language. For proper
expert systems that are designed to grow and accumulate large amounts of knowledge
it is appropriate to use Lisp or an expert system package. For small-size systems
that are generally static, a language like FORTRAN or Pascal is quite adequate. In

the application presented here, Pascal was used.
The Boothroyd-Dewhurst Data

The classification system proposed by Boothroyd and his co-workers consists
mainly of a set of charts which attempt to quantify design characteristics of parts
from the assembly viewpoint [Boo.1]. The design features examined are generally of a
geometric nature, such as various symmetries, dimensional proportions and presence
of grooves or flats. Other qualities such as rigidity, surface type (sticky or not) and
complex topology (nesting or tangling when handled in bulk), are included as well.
These design features are associated with numerical values assigned to four basic
parameters: orienting efficiency (OE), relative feeder cost (FC), additional feeder
cost (DC), and relative workhead cost (WC). The latter cost is associated with
insertion procedures and means of securing the part in the assembly.

The relation between design properties and numerical values for the parameters
is presented by dual-entry table charts. To use the charts, one must first assign a
numerical value to a “digit” associated with a particular design feature. For example,
the first digit can take values 0, 1 or 2 for a rotational part with ratio of two prin-
cipal dimensions length/diameter in the ranges (0, 0.8), (0.8, 1.5) and (1.5, Infinity)
respectively. Assignment of values to the first three digits leads to a specification of
an OE-FC pair. The additional feeder cost DC value is specified by assigning values

to the fourth and fifth digits. Two more numbers, referred to here as the sixth and
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seventh digits (though Boothroyd and his coworkers do not use these terms), are
needed to specify the relative insertion machine cost WC.

The assignment of numerical values to all digits gives a “digit code” which speci-
fies values for all the foregoing parameters. With some additional information, such
as feed rates, maximum part dimension and number of simultaneous assemblies, the
entire assembly cost per part is calculated based on a cost function expression.

It is evident that the optimal design according to this system is the one having
maximum OE and minimum FC, DC, and WC. It should be noted, however, that
when maximum part dimension dictates a feed rate greater than the user-required
feed rate, OFE is not used in the cost-function expression. This is a result of under-
utilization of the feeding equipment and details can be found in [Boo.1]. The typical
use of the charts is an analysis of an existing design in order to evaluate it. This can
be done in an iterative process, i.e. create a design, rank it according to the charts,
redesign, and repeat. Decisions about what to change during redesign are based on
familiarity with the charts and some trends implied by them. This will be discussed
further in a later subsection.

The procedure of using the charts has been implemented on a microcomputer by
Dewhurst and Boothroyd [Dew.1]. This aids the designer to iterate more efficiently
on a design, but the main philosophy on the use of the data remains the same,
namely as an analysis tool. In the next two subsections we shall discuss how the
same data can be used in a suggestive mode as proposed earlier. A full appreciation
of the discussion there will require more familiarity with the charts than what was
summarized above and the interested reader is urged to consult the cited reference
[Boo.1]. It is important to note that the data restructurings described here are very
different from the production rule modeling described in Chapter Eight. Also this
initial system uses all five of the Boothroyd-Dewhurst Charts, while the intelligent

CAD system described in this thesis uses only two of them, those that determine
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an OE-FC pair for nonrotational parts. This gives some indication of the added
complexity resulting from the integration of an intelligent suggestive program and a

CAD modeler.

Binary Tree Representation

The most natural way to represent the data in the charts appears to be one which
will aid in assigning one digit at a time. This is amplified by the apparent fact that
the digit indexing corresponds to design feature generality; i.e., specification of a
first digit value is based on a more general design configuration decision than what
is required for the second digit, and so on. This is not strictly true, however, and
could be misleading.

Examination of a typical chart, shows that better designs, e.g. better OE-FC
pairs, are found in the upper left region of the chart, while less desirable designs
are found in the lower right of the chart. So design quality generally decreases
along the diagonal. It would then seem appropriate to structure the design property
suggestions so that the design is placed as close as possible to the upper left portion
of the chart. A natural way to effect this is to recast the row and column numbers
(corresponding to digit values) in a binary tree structure.

Such a structure is shown in Figure (4.1). The terminating branches on the left
side of the tree correspond to regions near the upper left “optimal” region of the
chart. They are accessed by an affirmitive response to the suggested design feature.
Any branching to the right will generally suggest successively inferior designs. Note
that in the lower right corner of the tree, a common node exists; therefore, a more
efficient representation of a directed graph rather than a tree is used there. This is
not particularly significant here because of the small size of the tree, but it could be

more important in larger problems.
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Once the first three digits are determined with binary trees, an OE-FC database
is accessed and the values for the parameters are determined. In a similar manner,
the fourth and fifth digit determination will lead to a DC database and the sixth
and seventh to a WC one.

The binary tree representation appears to be a good way to organize the program
in the natural fashion of the charts’ organization. There is, however, a major problem.
Although in general better design properties are found in the upper left portion of
the charts, this is not an absolute rule. In fact there are too many exceptions to
make this method practicable. What appeared to be a good decision when assigning
the first or second digit, may turn out to be a poor decision when the third digit is
assigned. In the present case, the number of possibilities is finite, so a backtracking
strategy could be implemented to include better suggestions introduced in the first
search. Proper bookkeeping could check for possible “wrong turns” after the design
is created and if any were found, they could be brought to the user’s attention. Then
partial or full redesign would have to be initiated. This approach is plausible due to
the small size of the database, but still it is psychologically unattractive because the
user would have the feeling of possibly wasting a lot of thinking for solutions that
would be discarded after she has completed them.

For the aformentioned reasons the binary tree structure was deemed inadequate

and a different representation was sought. This is discussed in the next subsection.
Ranked Directed Graph Representation

''he new structure investigated takes advantage of the fact that the state space
has a relatively small number of states which can be explicitly enumerated. Recall
that the first three digits specify an OE-FC pair, the fourth and fifth specify DC and
the sixth and seventh specify WC. Thus we have a triplet and two couplets in the

correspondence
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(st, 2nd, 3rd) (OE, FC)
(4th, 5th) DC (1)
(6th, 7th) e

Furthermore, the goal state is described by the set

maximum OE
minimum FC
minimum DC (2)

minimum WC

That is, we have multiple objectives which, however, are ranked in the sense that
preference is given to better values for OE than FC.? We assume that OE does
not drop from the cost function expression (i.e. the feeders are fully utilized) in
order to rank designs with respect to OE, a parameter which quantifies part shape
rather than economic use of feeders. If OE is dropped, the program may yield false
solutions. It should be noted that there are no explicit constraints, but the designer,
by responding to the suggestions, implicitly introduces or removes constraints. Thus
the goal state (2) is optimal when the constraints allow for it to be reached. If
this does not happen, the goal state will not be (2) but another one which can be
considered as a constrained optimum, or better as a satisfying solution [Sim.1, Wil.1].

A characteristic of the solution space is that it has more than one element. For
example, the best tripict will assign (OE, FC) = (0.9, 1.0) for rotational parts,
but there are several t ~lets that can do that, e.g. (2, 0, 0), (2, 1, 5), (2, 0, 5),

(2, 1, 0). This leads to including all triplet sets with the same quality, i.e. (OE,

2 In the encoding of information described in Chapter Eight, we instead
minimize the ratio FC/OE.
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FC) values, into one group. The groups are then ranked according to their quality.
Figure (4.2) shows the first two such groups for the rotational triplets. The grouping
is done once manually for both rotational and nonrotational parts and also for the
couplets corresponding to DC and WC values. Thus the entire database is completely
structured and ranked into these groups. The groups are sequentially numbered, the
first one having the best (OE, FC) values.

It is important to recognize how the values of (OE, FC) can be achieved within a
group. Each group contains a list of states which are connected with OR statements.
As mentioned earlier, all the group states have the same (OE, FC) values. Each state
now contains three design characteristics connected with AND statements. These
three characteristics correspond to specific values of the first three digits. Since each
state may often differ from another only by the value of one digit, most states in one
group will have similar design features.

To illustrate the aforementioned ideas, let us consider Group 1 in Figure (4.2)
and examine the program’s interaction with the user. At the point when Group 1
becomes relevant, a decision has already been made that the part will be rotational.
Now the program first suggests that the part have the general shape of a long cylinder,
a property related to the first digit. If the designer responds that this is possible, the
program next suggests, as a single statement, that the part be alpha-symmetric or
slot-fed with its center of mass below supporting surfaces, properties related to the
second digit. Finally, if the designer agrees to this, the program suggests as a single
statement that the part be beta-symmetric or have a beta-asymmetric groove or flat
seen in end view, properties related to the third digit. If the designer agrees again,
membership of the design in Group 1 has been determined and the search stops.

The next question to be addressed is how to link the groups together. This is done
by a directed graph representation where the groups are examined in a heirarchical

serial manner. An example of a typical suggestion structure is shown in Figure (4.3).
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Assume that the program is considering a ranking within Group 1 by suggesting that
the part be a long cylinder. If the user responds negatively, there is no reason to
consider Group 2, since all the states (triplets) in that group have “long cylinder”
as the first digit property. Thus thé program proceeds to consider the less desirable
Group 3 having “short cylinder” as the first digit property. Note that, while still
in Group 1, if the user accepts the first digit properties and rejects the second digit
properties, then Group 2 will again be bypassed. Only if the third digit property
suggestions are rejected will the program consider Group 2.

It is evident now that Figure (4.3) represents essentially an entire rearrangment of
the Boothroyd-Dewhurst Chart data. The columns represent different values of the
first digit, while the rows represents different states of the same quality, in decfeasing
quality ranking. Thus, in Figure (4.3) the Groups 3 and 4 have the same quality
but different First Digit property, i.e. “short cylinder” versus “disc.” If any of the
Group 3 suggestions are rejected, consideration of Group 4 begins. If that group
is also rejected, the program proceeds to Group 5, a new “long cylinder” group.
Thus rejection of the “long cylinder” suggestion in Group 1 does not preclude its
consideration later in the search.

At this point an undesirable situation seems to occur because a rejected property
is reintroduced. To understand why this is justified, one may first notice that in the
discussion of the Group 1 above, the two second digit properties and the two third
digit properties were suggested independently. This is because all four combinations
of these properties are present in this best group. If they were not, after the Third

Digit suggestions the program would present a suggestion of the form

(Second Digit AND Third Digit)
OR (Second Digit AND Third Digit) (3)

in order to present all possible combinations of the group. Thus the First Digit
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property remains constant within a Group, avoiding the need for a rather unwieldy

suggestion of the form:

(First Digit AND Second Digit AND Third Digit)
OR (First Digit AND Second Digit AND Third Digit) (4)

The result is that, as the user tries to evolve and rank the design (in this first
group), she has to respond to only three program suggestions. The serial heirarchy
described above allows eliminating consideration of a group with a minimum number
of suggestions. Moreover, it utilizes the idea that the user should never be given the
same suggestion consecutively. Repeating the same suggestion was considered likely
to create a degree of frustration and to stifle creativity. If during a search, a rejected
property is reintroduced, as in the aforementioned description of Figure (4.3), at a
lower value, the designer can rethink the whole situation and perhaps simply restart
the search with some fresh ideas.

The serial heirarchy structure of the data described above is summarized as fol-
lows. The OE-FC triplets and DC and WC couplets are ranked in the ordered groups.
These listings are used by the program for making suggestions to the user about the
design being created. The user accepts or rejects the suggestions and synthesizes the
design accordingly. When enough suggestions have been accepted, the program as-
signs the pertinent cost parameters from the set of values for OE, FC, DC, and WC.
When all parameters have been assigned, the Boothroyd-Dewhurst cost calculations

for the part are performed and presented to the user.

Program Implementation

The ranked directed graph representation was coded in an interactive program

written in the OMSI Pascal language on a DEC 11/34 computer using the RSX/11M
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operating system. As mentioned in the introduction above, Pascal was selected as
the programming language because of its good structure, and the small size of the
database. A sample run of the program is shown in Figures (4.4) through (4.7).
Figure (4.4) shows the suggestions pertaining to assigning the first three digits, Figure
(4.5) shows the suggestions pertaining to assigning the fourth and fifth digits, and
Figure (4.6) shows the suggestions pertaining to assigning the sixth and seventh
digits. Figure (4.7) shows the results of the session.

The various functions of the program are initiated through responses to a menu.
The digits are assigned in the sequence (1st, 2nd, 3rd), (4th, 5th), and (6th, Tth).
Each part property suggested is preceded by an ordered pair of two integers within
parentheses. The first integer refers to the Boothroyd-Dewhurst digit place and
the second integer refers to the number suggested for that place by the associated
property. For example, (1,2) refers to assigning “2” as the suggested value of the
first digit. Thus an easy reference to the original Boothroyd-Dewhurst Charts is
maintained. Numbers larger than nine in these parentheses reflect the fact that some
| of the Boothroyd-Dewhurst Charts are divided into horizontal blocks, numbered in
the charts themselves identically across the horizontal blocks. For instance, (7,19)
refers to Chart number 8 in [Boo.1] and means “column number 9” in the middle
block. A complete description of these details is not important here. The interested
reader could easily understand them by comparing the program with the actual data
in [Boo.1]. |

In a typical design interaction, the user will sit with a sketch pad or a graphics
tablet and try to visualize and sketch design configurations as prompted by the
program suggestions. To avoid excessive bookkeeping in the program, the user must
record and later inp : the specific Boothroyd-Dewhurst digit values corresponding
to an accepted property within a group, because of the inherent ambiguity in an

affirmative response to an ... OR ... OR ... OR ... statement. Finally, the menu
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allows redoing many choices easily and recalculating the cost results reflecting the

changes.

Discussion

A first observation is that, although the entire programming effort is aimed at
a synthesis aid, analysis and redesign can be effected using the program in a very
straightforward and efficient manner. Note, however, that no concern was given to
the elimination of constituent parts of an assembly, or the choice of assembly machin-
ery, issues extensively discussed in {Boo.1]. The goal here has been to demonstrate
the feasibility of constructing suggestion programs and examining the implications
with respect to how existing data are viewed, structured, or manipulated.

There were several principal ideas that were adhered to for the development of

the program.

1. The suggestions are made in a truly optimal way, i.e. positive response guar-

antees the best possible design.
2. Decisions are reached with a minimum number of suggestions.
3. No single suggestion is repeated consecutively.

4. Data organized for design analysis may not be appropriately organized for

design synthesis.

Initial informal observations of several users (mechanical engineering senior stu-
dents) indicate that there are some drawbacks in the program interface. It appeared
that the triplet-couplet-couplet suggestion routine was rather irritating. Many com-
mented that they would like to assign one digit at a time, as would be done with

the binary tree structure. The reappearance of the same part suggestion, even much
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later than the previous time, was also considered irritating. Also, some users would
answer the questions without much thinking and complete the design study without
having a real design concept outlined. Most important, though, was the need for
graphical suggestions. Many users reported that they had trouble envisioning the
meaning of the brief text suggestions and recommended that the suggestions be out-
put as pictures along with more complete explanations. These last two observations
clearly indicate the need for a system that integrates a graphical design model with
the suggestive knowledge.

These observations can be viewed appropriately if we mention that the users
had only two hours instruction in both the Boothroyd-Dewhurst design for assembly
charts and the program-time clearly too limited. As the motivation behind the
program was explained in some detail, the suggestion routine was accepted more
readily. It was clearly evident, though, that the program did influence the decisions
made during the design synthesis process. The negative attitudes observed may have

been a result of poor user preparation rather than the program itself.

Text and Pictorial Suggestions

Introduction

The user recommendations to provide graphical suggestions along with complete
text explanations were implemented in a second system. A simplified design knowl-
edge base derived from the binary tree restructuring described above was used. This
system ran on two side-by-side computer terminals, one outputting the text and the
other outputting the corresponding picture. Note that the graphics of this improved
system were only pictures and not models. The system still had no representation of

the evolving design and users still had to sketch their evolving design idea. Again,
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users were informally observed interacting with the system. Designers found the text
and pictorial suggestions helpful and easy to understand. Most users were influenced
by the suggestions, but a minority seemed to ignore the suggestions and pursue their
own design ideas. These observations seemed to indicate that a graphical sugges-
tive mode program was feasible. The fundamental technical problem was integrating
design model representations with design knowledge representations.

The emphasis of this second effort was determining the influence and utilty of
graphical suggestions rather than reorganizing data. The goal was to determine if
the picture suggestions made any difference in the design process. First, we pro-
vide a brief description of the suggestive system developed for this second effort.
The suggestive knowledge base is then described. Finally, observations of users are

discussed.
The Suggestive System

As mentioned above, the suggestive system ran on two side-by-side computer
terminals, one outputting the text and the other outputting the pictorial graphics.
The text terminal provided all instructions to the user along with the textual portion
of the suggestions. The instructions included commands the user would type at the
graphics terminal that would output the picture corresponding to the particular text
suggestion. Unfortunately, the hardware and software used prevented any inter-
system communication. The users, therefore, would first read the text suggestion,
then view the picture, and finally decide if they could work the idea of the suggestion
into their design plans.

The program outputting the text suggestions was menu driven and required that
the user complete three design phases. Completing a phase would assign one of the
Boothroyd-Dewhurst digits for the design: the first phase would assign the first digit,

the second phase the second digit, and the third phase the third digit. Therefore,
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successfully completing a design session would assign the first three digits, thereby
specifying values for the parameters OE and FC. Suggestions related to assigning the
parameters DC and WC were not considered here. The suggestions were structured
and output as lists, as opposed to tree or ranked directed graph structures. In the
list structure used, a text suggestion was placed at each node of the list with a single
link pointing to the node from a more desirable suggestion, and with a single link
pointing from the node to a less desirable suggestion. In this way, the suggestions
were prioritized from best to worst. The users would traverse the list by reading
the suggestion and responding yes or no. A “yes” response would terminate the
traversal since a particular suggestion had been chosen. A “no” response would
cause the next best suggestion to be output. The rationale and derivation of this

simplified suggestion structure is described in the next subsection.

The Suggestions

We will describe the derivation first. The suggestions output by this system
pertain to rotational parts. As mentioned above, suggestions are made regarding
Digits 1, 2, and 3, allowing specification of an OE-FC pair. The list structure of
the text suggestions is a simplification of the binary tree structure considered in the
first suggestive system effort. Consider, for example, the tree shown in Figure (4.1)
since it contains text descriptions for rotational parts. The difference between a list
and tree data structure is that a list structure requires only one accepted suggestion
to specify a Boothroyd-Dewhurst digit, while a tree may require many. In Figure
(4.1) note how it takes two afirmative responses in order to specify Digit 2 = 3. The
suggestions are “... BETA symmetric grooves holes or recesses,” and “... on both side
and end surfaces.” For a list structure, one affirmative response to the suggestion

“... BETA symmetric grooves holes or recesses on both side and end surfaces” would
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be required. The suggestions for the list structure are therefore more detailed and
specific.

The suggestions are prioritized on these lists by prioritizing the values chosen for
the Boothroyd-Dewhurst digits rather than using the OE and FC values. Digit 1
is considered most important, with a value of 2 (long cylinder basic shape) being
better than a value of 0 (disk basic shape), which is in turn better than a value of
1 (short cylinder basic shape). Digit 2, which pertains to symmetries about an axis
perpendicular to the rotational axis, is next most important. Digit 3, which pertains
to symmetries about the rotational axis is least important of the three. For Digits
2 and 3, lower values are considered better. This means that a design with digits
(2,0,5) is better than a design with digits (2,5,4), which is in turn better than a
design with digits (0,0,0).

The only motivation for this was simplicity. Our interest was in observing the ef-
fect of suggestions on designers rather than measuring the true Boothroyd-Dewhurst
quality of the created designs. This structuring of suggestions was straightforward
and easy. It was only necessary that the suggestions not seem ridiculous to the
designers, which certainly seemed to be true.

Figures (4.8) through (4.13) show a sample run of the program. Figure (4.8)
shows the introductory text of the program. Figures (4.9), (4.10), and (4.11) show
respectively sample text suggestions for phase 1, phase 2, and phase 3. Figure (4.12)
shows the conclusion of the design session. Figure (4.13) shows typical pictures that

would appear on the graphics terminal.
Observations of Users

The users were senior mechanical engineering design students. Because they were
introduced to design for assembly ideas as part of one of their courses, they had a

casual interest in using the program.
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Most of the users were influenced by the program. Some commented that a
particular suggestion changed their idea about the design they were working on.
One user even reported that a conscious effort was made to think only in terms of
design function rather than form, allowing the suggestions to provide ideas for the
best possible shapes to meet the design requirements.

Other users said that they were not influenced by the program. Quite simply, use
of the program did not change their original idea about the design. Some commented
that they looked for a suggestion that matched their original idea. Others said the
suggestions provided alternatives that were still overruled by the original idea.

In summary, it was clear that the majority of users were favorably influenced by
the program. A graphical suggestive mode program was a feasible idea. The next
step would be to integrate the suggestive program with a graphical representation of
the design. Some of the users hinted at this. One felt that it would be more difficult
to consider the meaning of the pictures when working on a more complex design.
Another commented that it was difficult to formulate design modification ideas in
response to a picture suggestion. An intelligent suggestive system with graphical
modeling capabilities could formulate some ideas automatically and output them

graphicaliy on the evolving design.

Expert System Implementation®

Introduction

A limitation of these early systems was that the design aid was structured in

a static way. There was no capability for changing the information used or the

8 The system described here is also described in [Jak.2].
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sequencing of suggestions without major reprogramming. In order to gain flexibility
and allow the user to change the system easily, the data were restructured again and
then encoded in a commercial expert system shell (operating with text only) with a
control strategy that generated suggestions. Thus the ability to expand and change
the knowledge base and the sequence of rule firing was significantly improved. The
suggestive mode naturally requires forward-chaining reasoning, while the commercial
shell used employs backward chaining. This made the software implementation quite
awkward, although this was transparent to the user. The difficulty of not interfacing
with graphic representations of the design, however, was not resolved.

The emphasis in this section is on the implementation of a suggestive system
with the Teknowledge M.1 expert system shell [Tek.1]. The discussion below begins
with a description of a broadly applicable set of suggestions that was formulated.
Following this is a brief discussion of how the expert system was used to generate

and output suggestions. A short summary closes the section.
The Suggestions

The suggestions result from a drastic simplification of all but one of the Booth-
royd-Dewhurst design for assembly charts. Recall that coding a part with the charts
results in values for the parameters OE, FC, DC and WC. WC relates to how the
part is inserted into an assembly with other parts and therefore depends on the
shapes of the other parts and the fastening technique. The other three parameters
can be determined by considering only the part in question. In this system we did
not want to consider parts in the broader context of the entire assembly, so we did
not consider the chart that determines a value for WC. The other charts contain
some very general design rules that may not be apparent to a novice user. Although
there are a significant number of exceptions, following these rules is usually good

design practice. These rules were organized into suggestive rules that were encoded.
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The idea was that this suggestive system could be used as a preprocessor to the
Boothroyd-Dewhurst system. General design principles could be checked before using
the charts to quantify the design quality.

The goal was to extract these design rules and encode them in a commercial
expert system shell. A suggestive decision graph that represents the general design
for assembly ideas was created (see [Jak.2]). The suggestions are at the nodes and
are output as a path through the graph is traveled. As in the binary decision tree,
better choices are to the left, and affirmative responses cause the traversal to take
the left link.

Values are assigned to variables as the graph is traversed. These variables are
used by the expert system shell to output the suggestions. First a basic-shape is
chosen, which is either rotational or rectangular. Once the basic shape is known,
it is assigned a size which is called the enclosure. Rotational parts can have a long
cylinder, disc, or short cylinder enclosure. Rectangular parts can have a long, flat,
or cubic enclosure. Four features are then specified, which will be referred to as
feature-1, feature-2, feature-3, and feature-{. Feature-1 for a rotational part relates
to its symmetry about an axis perpendicular to the rotational axis. It is best if
it has this symmetry (called “alpha” symmetry), and if not, the best asymmetric
shape is similar to a machine screw: the part could ride on two parallel rails with
its center of mass hanging below the rails. Feature-1 for rectangular parts specifies
the part’s symmetry. Either the part is symmetric about all three axes, symmetric
about one axis, or has no symmetry at all.* Feature-2 for a rotational part specifies
if the part is symmetric about its rotational axis (called “beta” symmetry). For a
rectangular part, feature-2 specifies if the part has certain features parallel to an

axis. For both rectangular and rotational parts, feature-3 specifies if the part is

4 Recall from Chapter Three that the symmetry we refer to is 180-degree
symmetry. Note that if a part is 180-degree symmetric about two axes, it is 180-
degree symmetric about three axes.
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small and nonabrasive, and feature-4 specifies if the part will not tangle or nest
when handled in bulk quantities. In traversing the tree, values are assigned to six

variables: basic-shape, enclosure, feature-1, feature-2, feature-3, feature-4.

Programming the Expert System

The Teknowledge M.1 expert system package was used to model the suggestion
decision graph explained above. This expert system is backward chaining, meaning
that the system uses production rules to establish the requirements for known goals.
In this implementation, a goal would be the assignment of some value to one of the six
variables described above. Different productions would assign different values to each
variable. The requirements for each goal were particular properties of the part being
designed. Required properties to achieve a desirable goal were output to the designer
as suggestions. This was done by using “question” statements that were available
with the M.1 system. A rule would output a suggestion question statement if the
answer to the question determined the satisfaction of one of its requirements. The
user would consider each suggestion and try to work its meaning into the evolving
design. If a suggestion could be accepted. the user would inform the system (i.e.
answer “yes”’ to the question) and the requirement would be established. If all of a
rule’s requirements could be established, the goal of assigning a value to a variable
would be achieved. In this way, user responses to suggestions caused values to be
assigned to the variables.

Althought this implementation was easy to achieve, it seemed rather awkward.
Suggestions were actually generated from the antecedents of the rules. It is more
natural to output a suggestion as a consequence of a rule firing. The current state of
the design should be checked with the rule antecedents and if a particular suggestion

is appropriate, it should be output. This would require production rules of the form:
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“If fact-1 and fact-2 and ... fact-N, then suggest suggestion-1.” This would require

a forward chaining system such as OPS5 [For.1].
Summary

A suggestive mode expert system was implemented with the Teknowiedge M.1
expert system package. General design for assembly ideas were derived from tab-
ulated data and placed at the nodes of a suggestive decision graph. These general
ideas were related to variables that described the design from an assembly viewpoint.
An M.1 rule base was used to provide a representation of the graph. Running M.1
would cause a graph traversal. which would output the general design for assembly

ideas as suggestions and assign values to the variables. This system operated with

text only.
Conclusion

This chapter has provided a history of the author’s previous efforts to devise
suggestion-making programs. A first system that made only text suggestions required
the complete reorganization of available tabulated data in order to use design analysis
information in the design synthesis phase. A second effort investigated the influence
of pictorial suggestions on the design process. It was found that pictorial suggestions
were preferrable to text suggestions. The tabulated data were again restructured in
a third system, which was a true production rule expert system.

The first two systems had no representation of the object being designed, while
the third system mplc »d only a very limited list of variables. The r.+xt obvious step
is to devise a suggestion-making program that contains a representation of the design
along with the representation of the design analysis knowledge. The findings of the

second effort indicate that these representations should allow a graphical interactivity
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with the user. An ideal system would be one in which the system makes suggestions

by altering the design in the same way the designer does.
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Part is ALPHA
symmetric.

Yes ,/ \I\b

VALUE OF Part is not ALPHA symmetric
DIGIT2=0 (code the feature(s) requiring
end to end orientation).

N\

0

Part can be fed in a slot supported by
large end or protruding flange with 1
center mass below support surfaces.

- N\~

VALUE OF BETA symmetric
DIGIT2 = 1 steps/chams. on| 2
external surf.

Yes \ No
VALUE OF BETA symmetric
DIGIT2 =2 grooves, holes,

or racesses.

On both side and 4/Yes \ No

end surfaces. 3 — ¥
BETA symmetric hidden
Yes ¥ features with no corres- | g
VALUE OF ponding exposed features.
DIGIT2 = 3
No ves o~ \ Mo
On side surface 4 VALUE OF BETA asymmetric features
only. DIGIT2=6 on side or end surfaces.
Yes o \ No
VALUE OF - .
DIGIT 2 = 4 Slightly asymmetric or small features;
amount of asymmetry or feature size
No less than D/10 and L/10.
On end surface
only 5 Yes ‘
' VALUE OF

VALUE OF DIGIT2 = 8
DIGIT2=5

Yes o \«; DIGIT 2 = 7 VALUE OF

Figure 4.1: Example of a binary suggestion tree.
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SO0 0OPISSVINETRSBOSPSCISEB VI CSSTIOEPOEIVBIBIEDESOS

AN ORDERED LISTING OF CONFIGURATION SUGGESTIONS

SSEFISISSCOCEIPURUS PO LISHSOIES O TR REIETIINETS

oS mp 1 (2 2]

LONG CYLINDERS LD > 1.5

PART IS ALPHA SYMETRIC

PART IS SYMETRICAL ABOUT ITS PRINCIPLE AXIS (BETA SYMETRIC)
E =0.%9 fC=1.00

LONG CYLINDERS LD > 1.5

PART CAN BE FED IN A SLOT WITH CENTER OF MASS BELOW SUPPORTING SURFACES
PART IS SYMETRICAL ABOUT ITS PRINCIPLE AXIS (BETA SYMETRIC)
=09 fC=10

LONG CYLINDERS LD > 1.3

PART IS ALPHA SYMETRIC

PART HAS BETA-ASYMETRIC THROUGH GROOVE OR FLAT SEEN IN END VIEW
0E =0.9 fC=1.00

LONG CYLINDERS LD » 1.3

PART CAN BE FED IN A SLOT WITH CENTER OF MASS BELOW SUPPORTING SLRFACES
PART HAS BETA-ASYMETRIC THROUGH GROOVE OR FLAT SEEN IN END VIEW

€ =90.9 FC = 1.00

e m 2 o8

RS ETFS-RSYH;TRIC STEPS, CHAMFERS OR PROJECTIONS ON END SURFACES ONLY
.90 = 2.

INDERS-LD > 1.3
6E FED IN A SLOT WITH CENTER OF MASS BELOW SUPPORTING SURFACES
RS BETA-ASYMETRIC STEPS, CHAMFERS OR PROJXECTIONS ON END SURFACES ONLY

ox

PART HAS BETA-ASYMETRIC THROUGH GROOVE SEEN IN SIDE VIEW ON END SURFACE
E =09 FC=2.00

LONG CYLINDERS LD > 1.3

PART CAN BE FED IN A SLOT WITH CENTER OF MASS BELOW SUPPORTING SURFACES
PART HRAS BETA-ASYM'ETRIC THROUGH GROOVE SEEN IN SIDE VIEW ON END SLRFACE
=09 fC=20

LONG CYLINDERS LD > 1.3

PART IS ALPHA SYMETRIC

PART HAS BETA-ARSYMETRIC THROUGH GROOVE SEEN IN SIDE VIEW ON SIDE SURFACE
E =0.9 FC=2.00

LONG CYLINDERS LD > 1.3

PART CAN BE FED IN A SLOT WITH CENTER OF MASS BELOW SUPPORTING SURFACES
PART HRS ETFCR-RSYHEIRIC THROUGH GROOVE SEEN IN SIDE VIEW ON SIDE SURFACE
€ =0.9 = 2.00

Figure 4.2: First two ranked groups of rotational triplets.
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SHORT CYLINDERS
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Figure 4.3: Directed graph example for serial heirarchy
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RUN PROG

ENTER ONE OF FOLLOWING COMMANDS ---

{ » REVIEU INSTRUCTIONS

2 * ASSIGN DIGITS 1,2,3 FOR A ROTATIONAL PART

3 » ASSIGN DIGITS 1,2,3 FOR A PRISMATIC PART

4 « ASSIGN DIGITS 4,5 (SURFACE PROPERTIES)

S « ASSIGN PARAMETER UC (INSERTION)

6 * PERFORM COST CALCULATIONS

g * END DESIGN SESSION

12X ASSIGN DIGITS 1,2,3 FOR ROTATIONAL PART 112

CATTEMPTING TO ASSIGN
0E = .99 FC « 1.00]

IT IS RECOMMENDED THAT ...

{1,2) LONG CYLINDERS L/D ) 1.5
$S THIS POSSIBLE ? ...

IT IS RECOMMENDED THAT ...
(2,0) ALPHA SYA.
oR

(2,1) NOT:ALPHA SYM., SLOT FED UITH C.M. BELOW SUPPORTING S’FACES
IS THIS POSSIBLE ? ...

IT IS RECOMMENDED THAT ...
(3,9) BETA SYM.

(3,5) BETA hSYﬂ. THRU GROOVE OR FLAT SEEN IN END VIEV
IS THIS POSSIBLE 7 .

X!X OPTIMAL PARAMETERS ASSIGNED 112

382230800090 0388838833488943+44
RESULTS OF SEARCH

0E - 0.90 FC = 1.00
IZTLLTTLIIIITILLTITIIIIRLIINILR

PLEASE INPUT THE SPECIFIC 1,2,3 |oomm DIGITS
;ot.: :ICKED IN THAT ORDER AS INTEGERS .

Figure 4.4: Assigning values to the first three digits with the text-
only suggestive system.
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ENTER ONE OF FOLLOUING COMMANL: ---

REVIEW INSTRUCTIONS

ASSIGN DIGITS 1,2,3 FOR A ROTATIONAL PART
ASSIGN DIGITS 1,2,3 FOR A PRISMATIC PART
ASSIGN DIGITS 4,5 (SURFACE PROPERTIES)
ASSIGN PARAMETER UC (INSERTION)

PERFORN COST CALCULATIONS

END DESIGN SESSION

PO UIA LM

222 ASSIGN DIGITS 4,5 FOR PART 312
CATTEMPTING TO ASSIGN

PARAMETER - 9.00]

IT 1S RECOMMENDED THAT ...

(4,0) SMALL, NON-ADRASIVE, DON’T OVERLAP, NOT DELICATE, NON-FLXBLE
$S THIS POSSIBLE ? ...

IT 1S RECOMMENDED THAT ...
(5,0) MOT TANGLE OR NEST, NOT LIGHT, NOT STICKY
$5 THIS POSSIBLE ? ...

23T OPTIMAL PARAMETERS ASSIGNED 312

2322T2TITLTITTTTTTITTITITTLLX
RESULTS OF SEARCH

PARARETER - 0.00
II23TT2TTTIXIITITIITXIIIITILX
PLEASE INPUT THE SPECIFIC BOOTHROYD 4,5 DIGITS

:02 PICKED, IN THAT ORDER AS INTEGERS ...
’

Figure 4.5: Assigning values to the fourth and fifth digits with the
text-only suggestive system.



ENTER ONE OF FOLLOWING COMMANDS ---

REVIEU INSTRUCTIONS

ASSIGN DIGITS 1,2,3 FOR A ROTATIONAL PART
ASSIGN DIGITS 1,2,3 FOR A PRISMATIC PART
ASSIGN DIGITS 4,5 (SURFACE PROPERTIES)
ASSIGN PARAMETER UC (INSERTION)

PERFORN COST CALCULATIONS

END DESIGN SESSION

WIre MU LN —

13X ASSIGN DIGITS 6,7 FOR PART 112

CATTEMPTING TO ASSIGN
PARAMETER -« 9.80]

IT 1S RECOMMENDED THAT .
(6,3) FINAL SECURING. STRAIGHT INSERT., VERTICALLY ABOVE

OR

(6,9) SOLIDS IN PLACE, NON-S0LIDS ADDED OR PARTS MANIPULTD.
$S THIS POSSIBLE ? ...
IT IS RECOMMENDED THAT .

(7,18) SCREVING, EASY TO ALIGN & POS’N, NO RESISTANCE

OR

{7,22) MECH. FSTNG., NONE OR LOCAL PLASTIC DEF., SCREWING ETC.

OR

(7,27) NON-RECH. FSTNG., CHEMICAL FSTNG. (ADHESIVES ETC.)
IS THIS POSSIBLE 7 ...

IT 1S RECOMMENDED THA
503) FINAL SECUR!NG. STRAIGHT INSERT., VERTICALLY ABOVE

(7,18) SCREVING, EASY TO ALIGN & POS’N, NO RESISTANCE

OR

;569) SOLIDS IN PLACE, NON-SOLIDS ADDED OR PARTS MANIPULTD.
(7,22) MECH. FSTNG., NONE OR LOCAL PLASTIC DEF., SCREVING ETC.
OR

;SBS) SOLIDS IN PLACE, NON-SOLIDS ADDED OR PARTS MANIPULTD.

(7,87) NON-MECH. FSTNG., CHEMICAL FSTNG. (ADHESIVES ETC.)
1S THIS POSSIBLE 7 ...

Y
132 OPTINAL PARAMETER ASSIGNED 212

I2222222T2T222TTLTTITTTITTLXL
RESULTS OF SEARCH

PARAMETER - .80
I222TIXTTITTTTTITIILLLILLILLL
PLEASE INPUT THE SPECIFIC BOOTHROYD 6,7 DIGITS

;OgaP!CKED. IN THAT ORDER AS INTEGERS ...
L4

Figure 4.6: Assigning values to the sixth and seventh digits with the
text-only suggestive system.
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ENTER ONE OF FOLLOVING COMMANDS ---

REVIEYU INSTRUCTIONS

ASSIGN DIGITS 1,2,3 FOR A ROTATIONAL PART
ASSIGN DIGITS 1,2,3 FOR A PRISMATIC PART
ASSIGN DIGITS 4,5 (SURFACE PROPERTIES)
ASSIGN PARAMETER UC (INSERTION)

PERFORM COST CALCULATIONS

END DESIGN SESSION

MO ULL W

PLEASE INPUT Y «
MAXIMURM PART DIMENSIONM IN MILLIRETERS ...

PLEASE INPUT FR
EEQUIRED RATE OF ASSERMBLY ...

PLEASE INPUT (AS AN INTEGER) N «
gUﬂlER OF ASSEMBLIES PERFORMED SINULTANEOUSLY ...

ZTTTITTTITITTILTITXIIXRIT
RESULTS OF DESIGN STUDY
I3LTIITITLIITTITLTLILIIZIIT
~== ROTATIONAL- PART -—-
MAXINUM PART DIMENSION = 25.00 AR
REQUIRED RATE OF ASSEMBLY » SQ... "PARTS/MIN
NUMBER OF SIMULTANEOUS OPERATIONS » 2
FIVE DIGIT AUTOMATIC HANDLING CODE -«
20000
ORIENTING EFFICIENCY °QE°® 9.90
RELATIVE FEEDER COST CR « FC + DC 1.00
MAXIMUM BASIC FEED RATE FM = 54.90 PARTS/AIN
DIFFICULTY RATING FOR AUTOMATIC HANDLING DF =
COST OF AUTOMATIC HANDLING PER PART CF « 0.03 3 DF . 9.03 CENTS
VO Dgng AUTOMATIC INSERTION CODE -
TIVE UORKHEAD COST UC =
DIFFICUL?? RATING FOR AUTORATIC INSERT!ON DI o 0.80
COST OF AUTOMATIC INSERTIOM PER PART CI - 0.06 3 DI ° 9.05 CENTS

OPERATION COST » 9.16 CENTS

Figure 4.7: Final output results of the design study with the text-
only suggestive system.
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* t 4
- HELLO !  +
E L 4

(S22 22222222222 X]]

Welcome to the Design-for-Asssembly suggestion program. The program
will maxe suggestions as you design something. These suggestions will
be given both as text and graphical pictures: the graphics will be
output on the larger computer screen to your right, and the text will

be output on this computer screen. The text of the suggestion will tell
vou exactly what to do to view the appropriate picture.

Note that a menu 13 output below. Your design session will be divided
.ato three phases: assigning the first, second, and third Boothroyd
Zigits. Zoothroyd is the person who figured out what designs are good
ana wnat cesigns are bad, and how to code part features with his
"digits”. Zach of the three phases will output text/graphic suggestions.
You can re-do any of the phases at any time by simply making the menu
selection.

The main idea here is to let the suggestions alter the way you are
thinking about the design you are creating. Be open-minded! Try to make
your design have the properties of the suggestion. If you accept the
suggestion the Boothroyd digit will be assigned and the design phase
will be completed; 1f you reject the suggestion, a new suggestion will
be output. The process goes on until you accept a suggestion or until
the program runs out of suggestions. It is important to note that the
suggestions get progressively worse. Try to accept the earlier
suggestions in order to get a better design.

Keep a scratch pad handy to keep track of the features that must be on
your design configuration. Feel free look at all the suggestions in any
phase before deciding what to do, but remember that the earlier ones are
best. You don‘t have to make your design look exactly like the graphic
output; the idea 13 to include similar characteristics in your desaign.
You can modify sizes and proporticns as long as you stay with the
general idea.

Ok, enough talk. Mark will do an example with you and then you are on
your own. Good Luck!

Figure 4.8: Introductory instructions output by the text-and-picture
suggestive system.
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i A2 2222222222

* *
. MENO  +
* »

(2222222222222 ]

Please input choice followed by a carriage return:
1. Assign first Boothroyd digit.
2. Assign second Boothroyd digit.
3. Assign third Boothroyd digit.
?. Review 1introductory instructions.
*. End the design session
1

222222222222 222 2]

* *
* DIGIT 1 *
* *

TR RRENRTARANSCNRRNSY

The following suggestions pertain to assigning the first Boothroyd
digic.

{ BOOTHROYD INDICES (1,2) )

IT IS RECOMMENDED THAT ...

LONG CYLINDER

Tzy to make the part so that its overall shape (envelope) is that of a
long cylinder with length/diameter greater than 1.5. Type D ROT.1.2 at the
graphics terminal to see an example. There may be features protuding from
the envelope and there may be features within the envelcpe.

IS THIS POSSIBLE? Y/N ...
Y

** BOOTHROYD DIGIT ASSIGNED *+*

Figure 4.9: Assigning a value to the first digit with the text-and-
picture suggestive system.
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TRRAARRRRRANND

* .
* MENU -

EXRAXTNRNNTRENSY

flease input choice followed by a carriage return:
1. Assign firsc Boothroyd digit.
2. Assign second Boothroyd digit.
3. Assign third Boothroyd digit.
?. Review i1ntroductory instructions.

*. End the design session

2

AT R SR NRETRR NS
* *
* DIGIT 2 *
L ] 4

822222 22222222222

The following suggestions pertain to assigning the second Boothrova
digit.

( BOOTHROYD INDICES (2,0) |

IT IS RECOMMENDED THAT ...

ALPHA SYMMETRIC
Try to design the part so that it has end to end symmetry. The part will
have 180 degree symmetry abouut an axis perpendicular to the rotational

axis. Type D ROT.2.0.1 and D ROT.2.0.2 at the graphics terminal to see
tWo examples.

IS THIS POSSIBLE? Y/N ...
N

( BOOTHROYD INDICES (2,1) |
IT IS RECOMMENDED THAT ...

CENTER OF MASS BELOW SUPPORTING SURFACES

Design the part so that it could slide down a track with its center of mass
hanging below the supporting surfaces. The best example is & normal
machine screw configuration (type D ROT.2.l1 at the graphics terminal to see
this). Any type of screw head is allowable. Note that this and all
following suggestions in this phase of the design are not alpha symmetric.

IS THIS POSSIBLE? Y/N ...
Y

** BOOTHROYD DIGIT ASSIGNED *~*

Figure 4.10: Assigning a value to the second digit with the text-and-
picture suggestive system.
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(I E2A 222222222222

* *
* MENU *
* *

TARRRRETTREORRY

Please input choice followed by a carriage return:
1. Assign first Boothroyd digit.
2. Assign second Boothroyd digit.
3. Assign third Boothroyd digit.

?. Review 1ntroductory instructions.

*. End the design session
3
I ZX2 222222222 R221 4]
* *
* DIGIT 3 *
* *

[Z 22222122 2 1 RAURa 2] )

The follox sugge: sns pertain to assigning the third Boothroyd
digit.

[ BOOTHXCYD INDICES (3,0) ]

IT IS RECOMMENDED THAT ...

BETA SYMMETRIC

Design the part zhat it is symmetric about its rotational axis. This is
known as beta symmetry. Type D ROT.3.0.1, D ROT.3.0.2. D ROT.3.0.3, at the
graphics terminal to see three examples. These features are Just examples,
any features that provide beta symmetry are allowed.

IS THIS POSSIBLE? 1Y/N ...
Y

** BOOTHROYD DIGIT ASSIGNED **

Figure 4.11: Assigning a value to the third digit with the text-and-
picture suggestive system.
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* *
* MENU *
* *

rrRERER T RTRENY
Please 1input choice followed by a carriage return:
1. Assign first Boothroyd digat.
2. Assign second Boothroyd digit.
3. Assign third Boothroyd digit.
?. Review introductory instructions.

*, znd the design session

222222 R2R222 22

* »
b DONE .
* *

(E2 222222222222

The design session has been terminated.
Thanks very much for your time and patience.
BOOTHROYD VALUE 1 = 2

BOOTHROYD VALUE 2 = 1
BOOTHROYD VALUE 3 = 0

Figure 4.12: Conclusion of a session with the text-and-picture sugges-
tive system.
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Figure 4.13: Example pictures output by the text-and-picture sugges-
tive system. (a) An example picture from phase 1. Pro-
duced with the command “D ROT.1.2". (b) An example
picture from phase 2. Produced with the command “D
ROT.2.1”. (c) An example picture from phase 3. Pro-
duced with the command “D ROT.3.0.2".



CHAPTER V

SYSTEM REQUIREMENTS AND DEFINITIONS

Introduction

Previous attempts to devise a suggestion-making program indicate that sugges-
tions should be output on a graphical design model. This is the fundamental system
requirement. In addition, it would be useful if the architecture of the system generat-
ing the suggestions is somewhat flexible. This would allow suggestions to be output
in several different interactivity schemes and the encoding of other applications using
the available design knowledge. This chapter first outlines the requirements of such
a system and determines the overall methods that will be used to meet these re-
quirements. Then, some terms that are used in subsequent chapters will be defined.

The following chapter describes a system architecture employing the methods chosen

here.

System Requirements

Several requirements are obviously necessary for the desired system. The system

must contain some representation of the designed artifact. This representation is used

72
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for the design analysis. To carry out the analysis. there must be some representation
of design analysis knowledge. Additional knowledge is required to generate design
improvement suggestions based on the results of the analysis. Here, we choose the
methods to satisfy these requirements.

A suitable representation of the design should promote the design analysis. The
design representation chosen should be amenable to the processing required to ana-
lyze the design with respect to some concurrent engineering aspect. Additionally, the
representation should facilitate the creation of a very easy to use human-computer
interface. Users should be able to concentrate on the design task. rather than on the
use of the CAD system.

These considerations make a feature representation seem like the natural choice.
Features are meaningful geometric entities, such as grooves, holes, and chamfers.
that make up a design. The representation of the design should be based on repre-
sentations of its constituent features. Features are directly related to later processes
and aspects of the product life cycle [Dix.1, Bri.l, Pra.l]. Machining, for exam-
ple, naturally creates part features as a consequence of the material removal. The
Boothroyd-Dewhurst system determines the quality of a part by noting the geometric
features. Different aspects of the product life cycle will relate to different features.
Portions of a part that are significant to one concern may be unimportant to others.

Features also seem like reasonable building blocks for the designer. Users will
naturally construct a design by sequentially building a series of features. Eberts et
al. provide evidence of this [Ebe.1]. Recall from the description of their experiment
given in Chapter Two that experienced and inexperienced users were given the task
of rendering an existing design concept with a CAD modeler. The design was a
three dimensional solid object, with several volumetric features. The expert users,
with considerable experience using the CAD system, created the model with tech-

niques that optimally used the capabilties of the CAD system. These techniques
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also suppressed the geometric nature of the individual features of the design because
they required that portions of each feature be created before any one feature was
completed. The novice users, following their natural inclinations, tried to create the
model with a feature-by-feature approach, completing each feature before moving
on to another. This proved to be an inferior technique for the given CAD system.
The important point is that the novice users naturally thought of creating the model
by building its constituent features. A CAD system should accomodate this type of
approach.

With the design knowledge representation, we hope to model the decision making
processes of a skilled designer. A designer who is an expert in the design analysis
domain can determine if a design is good or bad and suggest improvements. These
capabilities are based on many decisions that the designer can make about the de-
sign and possible modifications to it. A large number of decisions can be modeled
appropriately with production rules. The if-then structure naturally represents a
decision and a set of production rules can easily expand as more decision processes
are understood and encoded. Production rules will be used te analyze the design
and determine possible improvements.

The system requirements have led to some basic methods that will be used in
the implementation of the intelligent CAD system. Designs will be represented with
features and design knowledge will be represented with production rules. The next
chapter describes a system architecture that uses these methods to meet the require-

ments. Before proceeding, however, some useful terminology is introduced.
Defigiti

In the context of the user-system interaction, it is useful to think of a feature, as
described above, as an alteration step. Alteration steps are the primitives that are

used to create the design model. A user will build a design with a series of alteration
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steps, stopping when they feel the design is completed. An important idea is that
the suggestion-making system can build the same alteration steps. The system and
the user can modify the design with the same primitives. An alteration step created
by the user will be called a feature and an alteration step created by the system
will be called a suggestion. Features and suggestions are tentative in nature and can
be easily discarded from the design. When the user chooses to accept a feature or
suggestion as part of the design, an incorporation process is carried out, making the
alteration step a permanent part of the design. Incorporated alteration steps are
called objects. Finally, a suggestive system is a system that makes suggestions during
the design process.

To clarify these definitions, consider the design cycie shown in Figure (5.1). In
Figure (5.1a) the design is shown before the user’s feature input. For the purposes of
this example, the design is composed of two objects: a block, and a groove opening
in the -Y direction. Figure (5.1b) shows the user’s feature input of a groove opening
in the +Y direction. Note that the edge lines of the block are not trimmed away with
the input of the groove feature, as would be expected. This indicates the ientative
nature of the feature input. In Figure (5.1c) the system’s suggested improved groove
is shown shaded. In the actual implementation, objects, features, and suggestions
have different colors. Note how the suggestion makes the entire design 180-degree
symmetric about the Z axis. This might be a design for assembly consideration.
Figure (5.1d) shows the suggestion accepted and incorporated into the design. Note
the trimmed lines to make a geometrically valid object.

The distinction between tentative and incorporated alteration steps is a result of
a simplistic treatment of the CAD data associated with the design. As will be shown
in the next chapter, the entire design representation is made up of representations
of the individual incorporated alteration steps (objects). Very little information

concerning the CAD rendering of the objects is represented. In going from Figure
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(5.1c) to Figure (3.1d), for example, two edge line of the block are deleted and four
new block edge lines are created. These new edge lines are not directly associated to
the added groove’s representation. If the groove were to be subsequently moved, it
could be difficult to determine how to correctly modify the edge lines (particularly if
some of the four new edge lines were altered for some reason in the meantime). The
system developed here overcomes problems such as this by allowing modification
of tentative alteration steps only, for they have not yet altered any other part of
the design. This is clearly a deficiency in the design representation and should be
corrected by effectively associating geometric entities with each object.

We should be careful, however, to not let relationships among the incorporated
objects and various pieces of CAD data overconstrain the suggestion generation
process. Consider Figure (5.2), where both the groove and the hole have been in-
corporated into the design. If the CAD data is properly considered, both objects
might be associated with the plane at the bottom of the groove. If the user solicits
suggestions regarding the groove, and one of the suggestions is to move the groove in
the -X direction, what should be done with the hole? Since the plane at the bottom
of the groove is associated with the hole, it is reasonable to move the hole along with
the groove. An alternate suggestion is to leave the hole where it is and lengthen
it to meet the upper plane of the block. This might be a superior design idea and
therefore should be brought to the user’s attention.

It is possible that the user intended that the groove and hole interact in the
manner shown, possibly to meet some design goal. This should not prevent the
suggestive system from proposing alternate configurations. Recall from Chapter
One that the system uses no representation of the user’s design goals. Put another
way, the system is not concerned with the designer’s intent. The system attempts
to modify the design in ways that will yield a more favorable design analysis and

output these possibilities to the designer. With this information, the designer might
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create a different, higher quality design that meets all of their design goals.
Still, the two suggestions described (modifying incorporated objects) might be
possible with a better design representation. At the end of the next chapter. a
heirarchical representation of objects is proposed as a possible improved representa-

tion.
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Figure 5.1: Clarification of definitions. (a) Initial design composed
of two objects. (b) User’s feature input. (c) System’s
suggestion input. (d) Suggestion incorporated into the
design.
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Figure 5.2: Interacting features cause difficulty in generating sugges-
tions.



CHAPTER VI

SYSTEM DESIGN AND IMPLEMENTATION

Introduction

The preceding chapter describes system requirements for an intelligent suggestive
CAD system. This chapter specifies an architecture for such a system. This overall
architecture is really two architectures. One is the architecture of the production rule
system, which is discussed first. This will include a description of the data structures
used for the the design alteration steps and the production rules. The inference engine
match-resolve-execute algorithm is also explained. This production rule system 1s
invoked by the other architecture, a higher-level intelligent CAD system architecture,
which is discussed next. The fundamental program modules are described to explain
the operation of the overall system. The goal in specifying these architectures is to
provide enough information to allow others to replicate this intelligent CAD system
with other hardware and software systems.

To this end, we use a program design language (PDL) to specify the data struc-
tures and algorithms of both architectures. A PDL is a structured way to describe
the data and operations of a computer program. English language statements de-

scribing fundamental operations are presented along with the control constructs of

80
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a programming language. A PDL description. therefore, looks much like a normal
program except that some portions are described with natural English language.
The PDL used here is adapted from one described by Pressman ([Pres.1], pages
253-261). Progam language keywords will be boldface uppercase (e.g. IF-THEN,
WHILE-CONTINUE), and program module names (i.e. names of programs and
procedures) will be normal uppercase. Comments are enclosed in “{ }” brackets.
Otherwise, there will be a generally loose syntax. Other specifics of the PDL will
be presented in the various explanations that follow. A PDL was chosen over some
graphical method of describing the software (e.g. flowcharts) because it facilitates
recoding the modules. The important constructs of each program and procedure are
already in the specification and one need only devise code for the parts described
with natural language. The intelligent CAD system architecture is more precisely
described than the production rule system architecture. It is important to specify
only what the production rule system does, as it can be coded in a number of ways.
The CAD system architecture, on the other hand, is made up of many procedures
and it is important to state the exact relationships between them.

A final note concerns the implementation of the system. The approach taken was
to add feature and production rule capabilties to an existing CAD system. The CAD
package used is a command-driven graphics modeling system that is powerful, but
difficult to use [Gen.1]. The system programming language, called DAL, is a Pascal-
like language that employs basic list data structures and operators. DAL is tailored
to programming graphical output and contains system functions for such tasks as
solid modeling, hidden line removal, and plot generation. It was felt that it would be
easier to add modest feature and production rule capabilities to a CAD system than
to add sophisticated graphics capabilities to an artificial intelligence system. Since
list data structures greatly facilitate artificial intelligence programming techniques,

and this system was readily available to the author, it was chosen for the implemen-



32
tation. In the following discussions, the reader should be careful not to confuse the
graphics representation of the design model with the feature representation. The
graphics representation is maintained by the underlying CAD system and only pro-
vides the graphical rendering of the design. The feature representation of the design
is maintained by the intelligent suggestive system and is used for design analysis and
suggestion generation. As explained in the previous chapter, only minimal links are

maintained between the two representations.

Production System Architecture!

Introduction

An obvious question is why was a production rule system developed when many
commercial production rule systems were already available? The problem with avail-
able systems was their inability to easily and intimately communicate with a CAD
system. This communication was possible, but very difficult to achieve. For this
reason, a production rule system was developed that was completely embedded in
an existing CAD package.

What follows are data structures and algorithms for the production rule system.
A sample production is described to illustrate how the algorithms operate on the
data and cause a single suggestion. The organization of groups of productions to

perform various tasks is discussed in Chapter Eight.

Data Structures and Algorithms

! This section is derived from [Jak.3). Figures (6.1) through (6.4) are also
from [Jak.3].
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Features, suggestions and objects are represented as association lists (see e.g.

(Win.1]) of the form:

((property-name-1, property-value-1),
(property-name-2. property-value-2), (5)

v e ey

(property-name-N, property-value-N))
For example, a solid block feature might be represented in the following way:

((Type, Block),

(Name. BLOCKO01),

(X-Dimension, 10.), (6)
(Y-Dimension, 15.),

(Z-Dimension, 8.))

This appears to be a natural way of representing entities that have several properties,

as most alteration steps likely will.

Production rules are represented as a list of text strings of the form:

(Rule-name,
((Antecedent-1),
(Antecedent-2),
(Antecedent-J)),
((Consequent-1), (7)
(Consequent-2),
(Consequent-K)),

Rule-comment)
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The rule has a name. a list of antecedent conditions that must be simultaneously
true for the rule to fire, a list of consequent actions that are performed, and a place
for comments about the rule or other data that may be needed.

Each antecedent or consequent is a list of four text strings of the form:

((Antecedent-program-name or Consequent-program-name),
(Feature-property-name),
(Object-property-name), (8)
(

Variable-list-name))

There are several things to note here. First, antecedents and consequents are actually
invocations of DAL subprograms. The name of the subprogram is the first string
in the antecedent or consequent and the names of the arguments passed to the
subprogram are the remaining three strings. These subprograms can be programmed
to perform any task desired, giving each individual rule significant processing power
and flexibility. Second, one should note the presence of the “Variable-list-name,”
which is a list of DAL variables that are passed to the antecedent or consequent
subprogram. This list is used to hold values that are not related to any feature or
object and may be pertinent to the particular rule.

The match-resolve-execute cycle is feature driven. That is, a feature that was
just input, or one of the objects incorporated permanently into the design, must
be singled out as the feature for each iteration of the match-resolve-execute cycle.
Consider first the match step as shown in Figure (6.1). For each rule, the antecedents
are invoked with the feature and one of the objects. If all the antecedents evaluate
to “true,” then the object is “attached” to the rule by adding the object to the rule’s
“attachment list.” The first antecedent that evaluates to “false” ends consideration
of the rule with the particular object. This test is done for all objects. Note that
each object that causes the match to succeed (i.e. all antecedents evaluate to “true”)

is added to the attachment list. This yields an attachment list of the form (rule,
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(object, object, ..., object)). If at least one object causes the rule to succeed. the
attachment list is added to a conflict list, which is just a list of attachment lists.
This is done for all rules.

The resulting conflict list has the form:

((rule, (object, object. . . ., object)),
(rule, (object, object. . . ., object)),

o (9)
(rule, (object, object, . . ., object)))

To perform conflict resolution, one must choose some sublist of this list of “triggered”
rules. There are many possibilities. Different conflict resolution strategies are used
in different situations. Often, if a rule base is small, only one rule wiil match in
any given situation. Most commonly, several rules will match and all will later be
executed, for example, generating all design improvement suggestions related to a
feature input.

The execution part of the cycle is similar to the matching part, except that all
consequents are invoked, regardless of what they do. The PDL description of the

execution process is shown in Figure (6.2).
A Sample Production

To get an idea of how the production system is used to encode design knowledge,
consider an example production that makes improvement suggestions about blocks.
When designing something with the basic shape of a block, a heuristic that can be
derived from the Boothroyd-Dewhurst Charts is that a flat 'pla.t&ljke block is better
than a long bar-like block, which is in turn better than a cube-like block. Therefore,
when the user inputs a block feature, if it is not flat, it would be beneficial to

suggest ways to make it flat. If a flat block is not possible, it would be beneficial to
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suggest ways to make it long. Figure (6.3a) shows a user’s input feature of a block
with dimensions which, according to the Boothroyd-Dewhurst Charts, make it cubic.
Figure (6.3b) shows the system’s suggested improved long block, which appears as
a different color than the user’s input on the graphics screen, and with explanatory
text on an alphanumeric screen. The block is made long by lengthening its longest
side. Figure (6.3c) shows the system'’s suggestion incorporated into the design to
complete one cycle of the suggestive mode.

Figure (6.4a) shows the actual DAL code rule that made the suggestion above.
Figure (6.4b) is an explanatory annotation of the rule. The antecedent routine
MATCHSTRING can be used to compare the character string property value of
some feature or object property with a character string provided in the variable list.
So the first antecedent determines if the feature's “Type” property value is equal to
the character string found in the list named “BLOCK.” Since the list “BLOCK” is
just a single element list containing the string “Block”, the first antecedent simply
checks if the feature is a block. Note that the object property used is “None.” This
results in no ouject property being used in the invocation of MATCHSTRING.

In a similar way, the second antecedent checks if the object’s “Name” property
value equals the string value found in the list “DUMMYO01,” which is the string
“Dummy01.” More simply, it checks if a particular object is being considered by the
rule. This second antecedent insures that the rule will match with only one object
(i.e. the object with the “Name” property value equal to “Dummy01”). Without
it the rule would match with each object and the suggestion shown in Figure (6.3)
would be output repeatedly. We call the object named “Dummy01” a dummy object,
since its property values are not needed by the rule. The third antecedent determines
if the block has a cubic enclosure. Another rule infers and adds this property to the
block’s association list in an earlier use of the production rule subprograms.

The consequent routine SUGGESTBLKS copies the side lengths of the feature
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block and modifies them with the ratios found in the list “SUGLONGL.” It then
uses these new side lengths to output the suggestion block. MESSAGE outputs
the text messages found in the list “MESSLONG1” on the alphanumeric screen.
USERRESPONSE solicits the user for a decision regarding whether to consider
incorporating the suggestion, or to view other suggestions. Both MESSAGE and
USERRESPONSE require no property values from the feature or object. A brief
comment ends the rule.

[t is important that many of the antecedent and consequent routines can accept
input from the feature and/or the object, and that a list of variables can be used.
This makes each routine more powerful and reduces the total number of routines that
are required. To determine. for example, if a string property value of the feature is
equal to a string property value of the object, MATCHSTRING is invoked with a
property name from the feature, a property name from the object, and no variable
list (by using the string “None” for the variable list name). This seems more natural
than having three string-matching routines: one to match the feature properties with
variables, one to match object properties with variables, and one to match feature

properties with object properties.

Suggestive CAD System Architecture

Introduction

The production rule system described above is invoked as one of the many pro-
cedures of a larger intelligent suggestive CAD system. This system can operate in
several different suggestive modes. The only suggestive mode seen thus far (in Fig-
ures (1.1), (5.1), and (6.3)) might be called a “before” suggestive mode. A user

builds a feature, and suggestions are output before the feature or some suggestion is
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incorporated into the design. Many other suggestive modes are possible. and some
of particular interest are discussed in the next chapter (there, we will see that a
“before” mode is a specific type of during suggestive mode). Here we describe a soft-
ware architecture that would effect this before mode. Other modes would be coded
similarly, with minor changes to the high-level control programs. It wiil be seen in
Chapter Seven how the same suggestive rule bases can be used in different suggestive
modes.

We hope to provide enough information to allow others to implement a similar
suggestive system with other hardware and software. We cannot describe all the
code, however, because the system is far too large. Instead. we recognize sensi-
ble limitations on the system description. First, the description must not specify
programming that relates to a specific alteration step, since other systems may be
designed with other alteration steps. It should not, for example, describe the code
that will derive the properties of a groove. It should only specify the software that
is used with all the features. Second, the description must not specify programming
that relates to specific hardware or software. This is obvious, as our motivation is

system generality.
Basic System Design

With these limitations in mind, we provide a hierarchical description of idealized
program modules. This description is idealized in the sense that software structures
that are due to the specific hardware and software considerations are not presented.
This description will go from the general to the specific by describing several different
modules at different heirarchical levels. The overall structure and the relationships
between the modules is shown in Figure (6.5).

We begin with the highest-level calling program, “SUGGEST1,” as shown in

Figure (6.6). The structure of this program dictates the suggestive mode. Before
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examining the function of the program. we consider some PDL syntax issues. Recall
that program and procedure names are upper case and that keywords are upper-
case boldface. EXTERNAL indicates that certain procedures that will be invoked
are written externally (i.e. in different files) to the file containing this program.
DECLARE is used to specify variable names (the convention here is that variable
names are lower case) and to assign a type and scope for each variable. The only type
shown here is ASSOCIATION-LIST, which was described earlier in this chapter
as the primary data structure used with the production rule system. LIST-OF is
used to form compound data types, here a list of association lists. The scope of
all three variables is LOCAL, meaning that they are known only to this program
and are available to other procedures and programs only if they are passed to those
procedures and programs as arguments. ARGUMENT is also, then, another pos-
sible scope, along with GLOBAL, which means that variables are available to all
procedures and programs that specify their names as GLOBAL.

Considering now the program function, note how the program is functionally
divided by the idea of incorporation. First the list of objects is initialized. Then
while the user wishes to continue designing, features and suggestions are generated
with GENERATE-ALTERATION-STEPS. If a feature was successfully created (it is
possible th: ) feature, and therefore no suggestions were created), then CHOOSE-
ACTION _:ermines the next course of action, particularly whether or not to incor-
porate each tentative alteration step. Both of these invoked procedures are primarily
control routines and are discussed further below. They divide the architecture into
two major branches, a generation branch and an incorporation branch. The genera-
tion branch will be described first.

Procedure GENERATE-ALTERATION-STEPS, shown in Figure (6.7) controls
the user creation of, and system response to a feature input. Continuing to clar-

ify some syntax, note that now “feature,” “suggestion,” and “objects” have scope
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ARGUMENT since they were passed into this procedure. The CASE structure.
quite simply, provides a way to choose and act upon one of many cases. The case
statement in GENERATE-ALTERATION-STEPS appears to the user as menu on
a text screen. Virtually all nongraphical interactivity is accomplished with menus.

Note that for a suggestive system with “N” features in a feature library, the system
can invoke any one of N CONSTRUCT-FEATURE and GENERATE-SUGGEST-
IONS routines. The basic operation is to first allow the user to try to build a fea-
ture. If a feature was successfully constructed, then suggestions are generated from
it. In each GENERATE-SUGGESTIONS routine, “feature” is used to motivate the
generation of suggestions. “suggestion” is used to hold the association list represen-
tation of a suggestion. and “objects” is used to represent the entire design. Typi-
cal CONSTRUCT-FEATURE and GENERATE-SUGGESTIONS procedures will be

considered in more detail.

A generic feature construction routine, which we call CONSTRUCT-FEATURE-
X, is shown in figure (6.8). This procedure manages the user input of a particular
type of feature and allows it to be repeated or aborted before the invocation of any
extensive production rule programs. It invokes three procedures for the construc-
tion of each feature. GET-FEATURE-INFORMATION-x allows the user to input
information required to build the feature. This information is stored in a local vari-
able called “input-information” and in the case of a CAD suggestive system is a
list of some type of geometry. Note that it is possible for the user to not input the
information correctly, causing “input-information” to retain the value NIL. If “input-
information” is not NIL, then PROCESS-FEATURE-INFORMATION-x creates an
association list representation of the feature from the input information list. Finally,
RENDER-FEATURE-INFORMATION generates a graphical image of the feature
for the user to see. The GET-, PROCESS-, and RENDER- routines invoked are

feature-specific and will not be described here.
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It is necessary, however, to discuss the general operation of a typical GET-
FEATURE-INFORMATION procedure. In the system developed here, the user
inputs feature information directly onto the CAD model with a screen digitizing »en.
Locations and dimensions are input in a freehand manner, causing a sketchpa. pe
of interactivity that does not allow the input of exact feature parameters. The desire
was to allow the quick input of a design idea rather than the creation of an accurate
model. If precise input were required, different GET-FEATURE-INFORMATION
routines could be easily developed. The available features, shown in Figure (6.9),
are initial blocks, grooves, holes, steps, and chamfers. Additionally, symmetric sets
of grooves, holes, steps, and chamfers can be created by making a single template
feature and specifying the type of symmetry.

GENERATE-SUGGESTIONS-x, shown in Figure (6.10), is a generic suggestion
generation procedure which invokes the rule based programming required to generate
suggestions. It is convenient to break this code into two parts, PRE-SUGGESTIVE-
RULES-x, and SUGGESTIVE-RULES-x. These two parts are actually procedures
that contain rules as local variables and invoke the required rule-firing programs.
The structures of rule sets that would be found in these procedures are discussed in
Chapter Eight.

Jumping back up the calling chain to program SUGGESTI, we now begin to
specify the incorporation branch of the architecture. Procedure CHOOSE-ACTION.
shown in Figure (6.11), allows the user to choose what to do with the tentative
geometry that has been created. If the system was able to generate one or more
suggestions (i.e. suggestion not equal to NIL), then the choice is between keeping
the featu:~ keeping a particular suggestion (one suggestion is chosen from all pos-
sible prior to the invocation of CHOOSE-ACTION), or rejecting both, causing the
design to remain unchanged. If no suggestion was generated, then the choice is

between keeping and discarding the feature. The procedure INCORPORATE-AND-
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PROCESS incorporates (see Chapter Five) the tentative geometry and processes the
object list representation of the design by appropriately augmenting the list with the
representation of the feature or suggestion. Note that if the user has chosen to in-
corporate a suggestion, the procedure ENSURE-VALIDITY is invoked to make sure
that the entire design representation is valid. This is because the effect of incorpo-
rating a suggestion into the design representation is not precisely specified prior to
the incorporation process. This issue is discussed in more detail in Chapter Eight.

Finally, procedure INCORPORATE-AND-PROCESS, shown in Figure (6.12),
controls the incorporation of tentative alteration steps into the design. An alter-
ation step, either feature or suggestion. enters the procedure as an argument. Pro-
cedure GET-PROPERTY-VALUE extracts the vaiue of the “Type” property from
the alteration step association list and stores it in the local variable “is-a.” GET-
PROPERTY-VALUE is an example of one of several access routines that facilitate
the manipulation of the data structures. “Is-a” is used in the CASE statement to
choose which feature-specific procedures to execute. POST-ALTERATION-RULES-
x correctly modifies the alteration step association list and the list of objects be-
fore adding the alteration step as a new object. In a suggestive CAD system.
INCORPORATE-ALTERATION-x makes the graphical representation geometri-
cally valid. This is the routine that trims the lines in Figure (5.1). These last
two routines are, of course, feature-specific. Finally, procedure AUGMENT adds the
association list of the alteration step to the object list design representation. This
augmentation process is specific to the way the programming language performs list

processing.
Discussion

It is useful and appropriate to point out some deficiencies of this architecture.

First, it is evident that many alteration-step-specific procedures exist. An obvious
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question. then. is why not use a true "object-oriented” architecture. where the names
of all such procedures are attached directly to the representation of the alteration
step (see e.g. pages 239-243 of (Win.1]). A procedure like RENDER-FEATURE-
INFORMATION-HOLE could be the value of a “Render-procedure” property of a
hole association list. This would eliminate the need for procedures such as GEN-
ERATE-ALTERATION-STEPS and INCORPORATE-AND-PROCESS, that only
choose which alteration-specific procedures to invoke. The user would simply invoke
the desired feature and the system would extract and invoke the program property
values at the appropriate times.

Another shortcoming of this system is that there is no heirarchical structure in
the object list representation of the design. All objects are at the same level of detail:
there is no distinction between primitive and complex objects. A consequence of this
is that the association lists have no properties that would allow changes to one object
to directly affect another object. Consider again Figure (5.2) and assume that there
is a primitive feature of type “planar-surface.” The groove’s association list could
have a “Made-of” property with a list of planar surfaces as the property value. The
hole, on the other hand, could have an “End-surfaces” property with a list of two
planar surfaces as the property value. Moving the groove to accept a suggestion
would also move the single common planar surface. Simple procedures would be run
to determine if this primitive object is related to any high level objects, showing that
the hole would be affected. If the strategy is to move the hole with the groove, then
the plane movement dictates the translation; if the strategy is to extend the hole to
the new upper surface, the common planar surface must be deleted from the hole’s
“End-surfaces” property value and replaced with the new upper surface. Primitive
features, then, could solve some of the geometric problems associated with making
suggestions about incorporated objects. Presently, the features of the system only

have a property that holds representations of the points used to construct the feature.
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This is not enough information to determine the interactions between incorporated
objects.

These deficiencies are primarily due to the emphasis of the research effort. Ve
were interested in a production rule system that could be used to model the deci-
sion processes of design creation and improvement. Because the encoded intelligence
is not directly linked to any particular alteration step data structure, general pur-
pose intelligent routines that apply to the entire design representation can be easily
emploved (e.g. ENSURE-VALIDITY). Luby et al. describe a feature-oriented CAD
system for the design and evaluation of aluminum castings, which suffers {from neither
of the deficiencies described above since it is a true object-oriented system [Lub.1].
Evaluation procedures are related to each feature and therefore tend to be more nar-
row in scope. An ideal system would be the integration of characteristics of both the
production-rule and object-oriented approaches to create a system that could model
the design decision processes and perform geometric reasoning.

The programming effort to create the intelligent CAD system described in this
thesis was significant. Approximately 370 source code programs were written, in-
cluding all rule based programs. Average program length is about 100 lines of source
code. Although this might seem very large, it should be noted that there was some
amount of “conceptual redundancy.” Many of the programs related to a step feature.
for example, are very much like the programs for a chamfer feature. Subsequent im-
plementations of the ideas presented here might allow for some streamlining along

with architectural improvements.
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Given a feature:
FOR every rule
FOR every object
BCR
REPEAT
Evaluate antecedent(i) of the rule using the:
antecedent program specified
feature property specified
object property specified
variable list specified
imie1

UNTIL (an antecedent evaluates to "faise") OR
(all antecedents evaluate to "true”)

IF all antecedents evaluate to “true”
THEN attach the object to the rule
CONTINUE { over all the objects }
IF any objects attached to the rule
THEN add the attachment list to the conflict list

CONTINUE { over all the rules }

Figure 6.1: The match step of the match-resolve-execute cycle.
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Given a feature:
FOR every attachment list
FOR every object
FOR every consequent
Evaluate consequent(i) of the rule using the:
consequent program specified
feature property specified
object property specified
vanable list specified
CONTINUE { over all the consequents }
CONTINUE { over all the objects }

CONTINUE { over all the attachment lists }

Figure 6.2: The execute step of the match-resolve-execute cycle.
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Figure 6.3: The effect of an example production. (a) User’s initial

(c)

(b) System’s improved suggestion.

feature input.

Suggestion incorporated into the design.
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( "Suggest_long_from_cubic", ~

( ¢ “MATCHSTRING", "Type", "None*, "8BLOCK" ), ~
"MATCHSTRING", '"None", '"Name*, "OUMMYOQOL" ), 6 ~
( “MATCHSTRING", "Enclosure*, "None*, "CUBIC" ) ), *
( ( "“SUGGESTBLKS", "Side lengtnhs‘“, '"None", "SUGLONGL" ), =
( "MESSAGE", ''None“, "None', "“MESSLONGI" ), ~
¢ "USERRESPONSE", '"None", '"None"”, "USERVAR" ) ), =~
“Secause A long Dblaock 15 detter thanm a cubdtc dlocx " ), =~
(a)

If the feature type is ‘blocic’,
and the feature is compared to a dummy object,
and the enclosure of the feature is ‘cubic’,
Then suggest a block with ‘long’ side lengths,
and output a text message,
and obtain a response from the user,
Because a long block is better than a cubic block.

(b)

Figure 6.4: An example suggestive rule. (a) The DAL code rule that
made the long-block suggestion. (b) Annotation of the
rule.
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Figure 6.5: The structure of the intelligent suggestive CAD system.
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PROGRAM SUGGEST1

EXTERNAL  GENERATE-ALTERATION-STEPS
CHOOSE-ACTION

DECLARE feature AS ASSOCIATION-LIST LOCAL
suggestion AS ASSOCIATION-LIST LOCAL
objects AS LIST-OF ASSOCIATION-LIST LOCAL

BEGIN { SUGGEST1}

objects := NIL

WHILE user wishes to continue DO

feature := NIL
suggestion := NIL

BEGIN

GENERATE-ALTERATION-STEPS ( feature, suggestion,
objects )

IF feature <> NIL

THEN CHOOSE-ACTION (feature, suggestion,
objects )

END
CONTINUE

END { SUGGEST1 }

Figure 6.6: The PDL description of program “SUGGESTL1.”
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PROCEDURE GENERATE-ALTERATION-STEPS ( feature, suggestion, objects )

EXTERNAL CONSTRUCT-FEATURE-1
CONSTRUCT-FEATURE-2

CONSTRUCT-FEATURE-N
GENERATE-SUGGESTIONS-1
GENERATE-SUGGESTIONS-2

GENERATE-SUGGESTIONS-N

DECLARE feature AS ASSOCIATION-LIST ARGUMENT
suggestion AS ASSOCIATION-LIST ARGUMENT
objects AS LIST-OF ASSOCIATION-LIST ARGUMENT

BEGIN { GENERATE-ALTERATION-STEPS }

CASE
WHEN user desires feature-1
BEGIN
CONSTRUCT-FEATURE-1 ( feature )
IF feature <> NiL
THEN GENERATE-SUGGESTIONS-1
( feature, suggestion, objects )
END
WHEN user desires feature-2
BEGIN
CONSTRUCT-FEATURE-2 ( feature )
IF feature <> NIL
THEN GENERATE-SUGGESTIONS-2
( feature, suggestion, objects )
END

WHEN user desires feature-N
BEGIN
CONSTRUCT-FEATURE-N ( feature )
IF feature <> NIL
THEN GENERATE-SUGGESTIONS-N
( feature, suggestion, objects )
END
ENDCASE

END { GENERATE-ALTERATION-STEPS }

Figure 6.7: The PDL description of procedure “GENERATE-
ALTERATION-STEPS.”
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PROCEDURE CONSTRUCT-FEATURE-x ( feature )
EXTERNAL  GET-FEATURE-INFORMATION-x
PROCESS-FEATURE-INFORMATION-x
RENDER-FEATURE-INFORMATION-x

DECLARE feature AS ASSOCIATION-LIST ARGUMENT
input-information AS LIST-OF GEOMETRY LOCAL

BEGIN { CONSTRUCT-FEATURE-x }
input-information := NIL
REPEAT
GET-FEATURE-INFORMATION-x ( input-information )

IF input-information <> NIL

THEN
BEGIN
PROCESS-FEATURE-INFORMATION-x
(input-information, feature )
RENDER-FEATURE-INFORMATION-x
( input-information )
CASE
WHEN user desires to keep feature
Do nothing
WHEN user desires to redo feature
Delete tentative geometry
WHEN user desires to abort feature
Delete tentative geometry
ENDCASE
END

UNTIL ( user is satisfied with feature input ) OR
( user has aborted feature input efforts )

END { CONSTRUCT-FEATURE-x }

Figure 6.8: The PDL description of procedure “CONSTRUCT-
FEATURE-x.”
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Figure 6.9: Available features: block, groove, hole, step, chamfer.
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PROCEDURE GENERATE-SUGGESTIONS-x ( feature, suggestion, objects )

EXTERNAL PRE-SUGGESTIVE-RULES-x
SUGGESTIVE-RULES-x

DECLARE feature AS ASSOCIATION-LIST ARGUMENT

suggestion AS ASSOCIATION-LIST ARGUMENT
objects AS LIST-OF ASSOCIATION-LIST ARGUMENT

BEGIN { GENERATE-SUGGESTIONS-x }

PRE-SUGGESTIVE-RULES-x ( feature, objects )
SUGGESTIVE-RULES-x ( feature, suggestion, objects )

END { GENERATE-SUGGESTIONS-x }

Figure 6.10: The PDL description of procedure “GENERATE-
SUGGESTIONS-x.”
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PROCEDURE CHOCSE-ACTION ( feature, suggestion, objects )

EXTERNAL  INCORPORATE-AND-PROCESS
ENSURE-VALIDITY

DECLARE feature AS ASSOCIATION-LIST ARGUMENT
suggestion AS ASSOCIATION-LIST ARGUMENT
objects AS LIST-OF ASSOCIATION-LIST ARGUMENT

BEGIN { CHOOSE-ACTION }

IF suggestion <> NIL
THEN
CASE
WHEN user desires to incorporate suggestion
BEGIN
Delete feature geometry
INCORPORATE-AND-PROCESS
( suggestion, objects )
ENSURE-VALIDITY ( objects )
END
WHEN user desires to incorporate feature
BEGIN
Delete suggestion geometry
INCORPORATE-AND-PROCESS
( feature, objects )
END
WHEN user desires to aiscard both feat and sug
BEGIN
Delete suggestion geometry
Delete feature geometry
END
ENDCASE
ELSE
CASE
WHEN user desires to incorporate feature
INCORPORATE-AND-PROCESS
( feature, objects )
WHEN user desires to discard feature
Delete feature geometry
ENDCASE

END {C "OSE-ACTION}

Figure 6.11: The PDL description of procedure “CHOOSE-ACT-
ION.”
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PROCEDURE INCORPORATE-AND-PROCESS ( alteration-step, objects )

EXTERNAL  GET-PROPERTY-VALUE
AUGMENT
INCORPORATE-ALTERATION-1
INCORPORATE-ALTERATION-2

INCORPORATE-ALTERATION-N
POST-ALTERATION-RULES-1
POST-ALTERATION-RULES-2

POST-ALTERATION-RULES-N

DECLARE alteration-step AS ASSOCIATION-LIST ARGUMENT
objects AS LIST-OF ASSOCIATION-LIST ARGUMENT
is-a AS CHARACTER-STRING LOCAL

BEGIN { INCORPORATE-AND-PROCESS }

is-a := GET-PROPERTY-VALUE ( alteration-step, "Type" )
CASE
WHEN is-a = "Feature-1"
BEGIN
POST-ALTERATION-RULES-1
( alteration-step, objects )
INCORPORATE-ALTERATION-1
END
WHEN is-a = "Feature-2"
BEGIN
POST-ALTERATION-RULES-2
( alteration-step, objects )
INCORPORATE-ALTERATION-2
END

WHEN is-a = "Feature-N"
BEGIN
POST-ALTERATION-RULES-N
( alteration-step, objects )
INCORPORATE-ALTERATION-N
END
ENDCASE
objects := AUGMENT ( objects, alteration-step )

END { INCORPORATE-AND-PROCESS }

Figure 6.12: The PDL description of procedure “INCORPORATE-
AND-PROCESS.”



CHAPTER VIZ

SUGGESTIVE INTERACTIVITIES

Introduction

With an intelligent suggestive CAD system architecture specified, it is now ap-
propriate to examine some of the human-computer interactivity issues. There are
many ways to make suggestions. In this chapter we will choose two suggestive inter-
activities (or suggestive modes) to use in the experiment discussed in Chapter Nine.
The rationale for this decision will be discussed and examples of each interactivity

will be presented.

T'wo Interactivities

Our goal in providing suggestions during preliminary design is to provide infor-
mation to designers that will cause them to obtain better design ideas. These better
ideas will result in designs that are superior with respect to some concurrent engi-
neering concern. Recall that one of the major findings of a study done by Ullman et
al. ([UIL1]) was that designers will often pursue a single initial design idea, refusing

to abandon it regardless of how poor it proves to be. By providing suggestions we

107



108
hope to stimulate the creation of better ideas and promote the abandonment of bad
ones. An important issue is the manner in which suggestions are presented to the
designer. What type of suggestive mode is most helpful in preliminary design?

Consider first a nonsuggestive mode. shown as a flowchart in Figure (7.1). While
the user wants to continue designing, they input a feature. If they are satisfied
with the feature, they incorporate it, and if they are not, they discard it. The
addition of each feature constitutes a “design cycle,” and features are added until
the design is complete. Recall from Chapter One that the system we propose will
provide improvement suggestions only in response to user actions. The nonsuggestive
mode. therefore. can be augmented by providing suggestions either during or after
the design process. If the suggestions are provided during the design process. they
will be generated at some point in the feature input loop of Figure (7.1). If they are
provided after the design process, they will be generated after the user has decided to
stop designing. Suggestions cannot be output before the design process commences
because the user has completed no design steps. During versus after will be the
major distinction between the two suggestive modes used in the experiment.

An implementation of either type of mode raises interesting issues. A during
mode would generate suggestions at each design cycle, bringing improvement ideas
to the user while they are designing. One might expect that this would result in better
designs with fewer redesigns and design revisions since designers can alter their design
ideas before the design is complete. On the other hand, because later suggestions
may stimulate ideas that were not evident from earlier suggestions, redesigns may
be necessary. An additional question is whether or not designers will find a during
mode distracting. Providing suggestions during the design process might actually be
detrimental if the suggestions interrupt the designers’ train of thought and prevent
them from concentrating on the design task.

An after mode would not generate suggestions until after the designer is finished.



109
Once an initial effort is completed. the system would provide suggestions that wouid
motivate an improved redesign. A redesign step is an expected part of the overall
design process. An interesting question is whether or not designers will be willing to
undertake a redesign effort. In the process of completely specifying a design with the
CAD system, they may become committed to the design idea. Redesign suggestions
may not be welcome, and therefore might be ignored.

The following two sections describe the during and after interactivities that were
implemented with the architecture described in Chapter Six. Two limitations should
be noted. First, both interactivities make suggestions with respect to one alteration
step at a time. A suggestion. for example, would not propose to alter a feature
input and move one of the incorporated objects. The rule-based suggestive programs
described in Chapter Eight are based on the idea of generating suggestions from one
alteration step only. Second, suggestions may be generated that alter incorporated
objects (particularly in the after mode), but these suggestions can only be viewed.

Incorporated objects cannot be altered.

Suggestions During

Introduction

The particular during mode implemented is shown in flowchart form in Figure
(7.2). Suggestions are generated from each feature input. Features and suggestions
are therefore both present on the CAD screen. These suggestions will propose various
alterations to the feature input and will not atterzpt to modify any incorporated

objects. Because of this, the suggestions themselves can be incorporated into the

design.
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Example

We present an extended example to give some idea of typical suggestions that
would be generated. The figures in this example and the after example below are from
actual system output. For both the during and after cases. the suggestions appear on
a graphics screen and accompanying text explanations appear on an alphanumeric
screen.

Figures (7.3) through (7.5) show the first design cycle. Assume the user begins
with the block shown in (7.3a) and then builds the groove feature in (7.3b). The
system will analyze the design quality with the feature input and will then formulate
a list of suggestions. In this case. since the unaltered block was 180-degree symmetric
about all three axes, the suggestions will attempt to maintain some symmetry. Figure
(7.3c) shows how three-axis symmetry is obtained by duplicating the groove in three
other locations; (7.3d) obtains three-axis symmetry by first moving the groove and
then duplicating it in one other location; (7.4e) obtains symmetry about the X axis
by duplicating in one other location; (7.4f) obtains Y-axis symmetry by duplicating
once, and (7.4g) obtains Y-axis symmetry by moving the groove; (7.4h) obtains Z-axis
symmetry by duplicating the groove once. None of the suggestions are impossible,
so all will be created. Heuristic analysis of the design quality with each of the
suggestions produces the interesting result that symmetry about the X axis is best,
followed by symmetry about the Y axis, followed by three-axis symmetry, followed by
symmetry about the Z axis.! This makes (7.4e) the best suggestion, going against the
common intuition that maintaining three-axis symmetry is optimal. This unexpected
Boothroyd-Dewhurst ranking is caused by the dimensions of the overall block and
illustrates the type of design suggestion that could help even a more experienced

designer. Figure (7.51) shows the suggestion (7.4e) incorporated into the design.

! Heuristic analysis of design quality and the ordering of the suggestions is
discussed in Chapter Eight.
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Figures (7.6) and (7.7) illustrate the second design cycle. Figure (7.6a) shows
the user’s feature input of a hole. Design quality analysis yields a low quality score
because the orientation of the entire design is defined by the orientation of the hole.
and the hole is fairly inaccessible to standard filtering and orienting devices. In
comparison to a groove, for example, it only borders two of the original block faces
while a groove borders three. Since the design prior to the hole feature input was
symmetric only about the X axis, only suggestions that are symmetric about the X
axis or all three axes are necessary. Indeed, note that deriving a suggestion that is
Y- or Z- axis symmetric, when the prior total design was X symmetric, will vield a
very poor design because two main features will be required to orient the part. The
suggestions depicted in (7.6b) and (7.6c) cause an X-axis symmetric hole: (7.6b)
by duplicating the hole and (7.6c) by moving the hole; (7.6d) provides a three-
axis symmetric hole by duplicating the hole three times, and (7.7e) by moving and
duplicating once. The suggestion of (7.6d) is eliminated because two of the holes
required clash with two of the grooves. When analyzing the design quality and
ranking the suggestions in situations where single-axis symmetry existed prior to
the feature input, the following heuristic is used: suggestions that cause the existing
symmetry are preferrable to suggestions that offer three-axis symmetry. A suggestion
that is three-axis symmetric within itself is a neutral addition to the design. Other
incorporated objects that are not three-axis symmetric must be used to orient the
design, thereby preventing the suggestion from improving the design. A three-axis
symmetric suggestion, on the other hand, cannot decrease the design quality. Assume
the user rejects all suggestions and incorporates the initial feature input. This is
shown in figure (7.7f).

Figure (7.8) shows a third and final design cycle. Figure (7.8a) shows that the user
has input another hole feature, parallel to the earlier hole but larger. Analyzing the

quality of the design indicates no decrease in quality, since the design was already
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asymmetric due to a hole. In cases such as this where the design was previously
asymmetric, the suggestions generated will show efforts to reduce the number of
asymmetric incorporated objects. Figure (7.8b) shows the only example possible
here, moving the hole feature and decreasing its size.” Figure (7.8c) shows the

suggestion incorporated into the design.

Discussion

Other during suggestive modes are possible. Figure (7.9) shows a mode in which
suggestions are generated after the incorporation process. The idea here is that the
system makes suggestions that give the user some idea of what to do with the next
feature input. If some of these suggestions propose altering objects, however, they
cannot be incorporated. The mode shown in Figure (7.2) was implemented because it
only alters the feature input, thereby creating suggestions that can be incorporated.

It should be noted that the implemented during mode emphasizes the order of
feature input. The early features and suggestions derived from them can influence
later suggestions. This was demonstrated by the suggestiors that maintain existing
symmetry. If there is any relative importance among the features, the more important

ones should be created earlier.

Suggestions After

Introduction

2 The system will actually suggest several different modifications to the hole

feature that will cause several different symmetries for the hole. The system warns
the user to make sure that the symmetry suggested does not cause a design that
will require two features for orientation (as in Figure (3.1c)). The system does
not analyze the potential design that would result from acceptance of one of these
suggestions.
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An after interactivity, as shown in Figure (7.10), can be thought of as a design
postprocess. After an initial design is completed, it is analyzed and improvement
suggestions are generated. The user will then view and consider the suggestions.
Since the suggestions involve incorporated objects. they cannot be incorporated.
Using ideas obtained from the suggestions, the user performs a redesign.

The extended example of the during mode presented above sh-ws three basic
suggestion strategies related to optimizing the syrmametry of a des.zn. Prior to a
feature input, if a design was symmetric about all three axes, the system will generate
suggestions for all symmetries (three-axis, X-, Y-, or Z-) and rank them for the user.
Thus. the system tries to maintain some symmetry. If the design was symmetric
about one axis only, the system makes suggestions that maintain the same symmetry.
If the design was asymmetric, the system will try to reduce asymmetry. These are
not the only strategies that were encoded. Others, for example, propose altering the
dimensions of the initial block, and others warn the designer if the design will require
two features for orientation. The strategies related to optimizing the symmetry,
however, were the most frequently used in a typical design session. The desire was
to use these same three strategies in the after mode. This would cause both modes
to generate similar suggestions, which would be useful in the experiment. Our desire
in the experiment was to only compare differences due to when the suggestions are
output. Other differences between the two modes should be minimized. An added
convenience is that the same suggestive rule bases could be used for each mode.

A problem arises, however, when suggestions are generated from a single alter-
ation step in the after mode. To use the same rules in the after mode, a single
incorporated object is “extracted” from the design and treated as if it were an added
feature in the during mode described above. The remainder of the design is treated
as the total set of incorporated objects. Often, however, when a design is completed,

it is difficult for the suggestive strategies described above to generate any suggestions
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from the extracted object. Consider the design shown in Figure (7.11). Extracting
any object still leaves a design with no symmetry, so no symmetric suggestions of
any kind will be made. If one of the grooves is extracted, it can be “matched” with
the other groove in an effort to reduce asymmetry. The remaining objects. however,
will still cause an asymmetric design after the match. In a design that was completed
with no consideration given to assembly issues, this type of “gridlock” situation is
not uncommon.

To get around this problem, the object representation is limited to the original
block only. Suggestions are made with respect to each object. in the order they
were incorporated into the design. If the original block is being considered. then
suggestions are made about the block. If one of the other objects is being considered.
then suggestions are made as if that object were the only object in the block. The

following example will show the effect of this method.

Example

Figure (7.12a) shows the completed design prior to the generation of suggestions.
This is a cubic block with an asymmetric groove and hole. Suggestions are first made
with respect to the initial block. Figure (7.12b) shows that the first and best block
suggestion, as was mentioned in Chapter Six, is to flatten the block. If that is not
possible, figure (7.12c) is a suggestion to lengthen the block. Note how the block is
modified as if the other features were not there.

Figures (7.13) and (7.14) show suggestions generated from the groove, similar to
the way they were for the during case described above. In this situation, however,
there is a different order for the suggestion quality. Again, X-axis symmetry is best,
followed by three-axis symmetry, followed by Y-axis symmetry, followed by Z-axis

symmetry. The difference in order is due to the different block dimensions. Some
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groove suggestions naturally interfere with the hole because the hole is not considered
to be part of the design.

Figures (7.15) and (7.16) show suzgestions generated from the hole. These are
similar to the suggestions generated from the groove. except that there are iwo
suggestions symmetric about the X axis and only one symmetric about the Y axis.
In this case, the suggestion quality order is: three-axis symmetry is best, followec

by Y-axis symmetry, followed by Z-axis symmetry, followed by X-axis symmetry.

Discussion

In contrast to the during mode, this mode emphasizes all objects of the design.
regardless of the order in which they were input. All objects are treated as if they
were the first to be built. Additionally the suggestions are displayed along with the
objects that are considered not to exist. This has the effect of displaying fundamental

suggestions on a detailed design.

Discussion

We have chosen to vary when the suggestions are made to derive two different
suggestive modes for the later experiment. Other variations are certainly possible.

One possibility is to consider mandatory versus optional suggestions. Should users
be forced to see suggestions? Since we are interested in the influence of suggestions
upon designers, all initial test interactivities should have mandatory suggestions.
Users should not be able to bypass suggestions, even if tkov believe they need no
design assistance.

Another possibility is to allow the use of a subset of the design representation
when making suggestions. It was found that this was necessary for the after case:

the design representation was limited to the block only. More generally, some subset
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of the objects could be chosen prior to generating suggestions. Consider the design
and design representation shown in Figure (7.17), which is composed of five objects:
a block, groove, hole. step, and chamfer. If we omit the hole, step, and chamfer, the
design might appear as shown by the bold lines in Figure (7.4a). Additionally, the
design representation would be given by the objects in bold type in Figure (7.4b).
Turning off some objects could allow an artificial reordering of the feature input that
created the design. Omitting objects that were incorporated earlier would cause
suggestions that are influenced only by objects that were incorporated later. In
such situations it might be beneficial to remove the omitted objects from view or
deemphasize them somehow (e.g. as shown in Figure (7.17a)). A system that allowed
this capability would be more difficult for users to learn since not only must features
be built, but some objects must be omitted, requiring an even more complicated
human-computer interface. This is perhaps best done when a group of users gains

experience with an initial implementation.
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Figure 7.1: The nonsuggestive design process.
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Figure 7.2: The implemented during suggestive mode.
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Figure 7.3: The first design cycle of the during case. (a) The design
prior to the feature input. (b) A groove feature input.
(c) First suggestion to obtain three-axis symmetry. (d)
Second suggestion to obtain three-axis symmetry.
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Figure 7.4: The first design cycle of the during case continued. (e)
Suggestion to obtain X-axis symmetry. (f) First sugges-
tion to obtain Y-axis symmetry. (g) Second suggestion to
obtain Y-axis symmetry. (h) Suggestion to obtain Z-axis
symmetry.
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Figure 7.5: The first design cycle of the during case concluded. Sug-
gestion incorporated into the design.
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Figure 7.6:

The second design cycle of the during case. (a) A hole
feature input. (b) First suggestion to produce and X-axis
symmetric hole. (c) Second suggestion to produce an X-
axis symmetric hole. (d) First suggestion to produce a
three-axis symmetric hole.
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Figure 7.7: The second design cycle of the during case concluded.
(e) Second suggestion to produce a three-axis symmetric
hole. (f) Feature incorporated into the design.
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(a) A hole

(b) A suggestion to reduce asymmetry.

Figure 7.8: The third design cycle of the during case.

feature input.

(c) Suggestion incorporated into the design.



Continue Yes

desing
No
User inputs
a feature

incorporate?

\ 4

Discard Incorporate

System makes

suggestions
(no

incorporation)

Figure 7.9: Another possible during suggestive mode.
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Figure 7.10: The after suggestive mode.



Figure 7.11: A completed design that that would allow generation of
very few suggestions in an after suggestive mode.
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(c)

Figure 7.12: Suggestions for the block in the after case. (a) The com-

pleted design before suggestions. (b) Suggestion to make

the block flat. (c) Suggestion to make the block long.
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(b) Second

to obtain X-axis symmetry. (d) First suggestion to obtain

Y-axis symmetry.

suggestion to obtain three-axis symmetry.
suggestion to obtain three-axis symmetry. (c) Suggestion

Figure 7.13: Suggestions for the groove in the after case. (a) First
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(e) Second suggestion to obtain Y-axis symmetry. (f)

Figure 7.14: Suggestions for the groove in the after case concluded.
Suggestion to obtain Z-axis symmetry.
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gestion to obtain three-axis symmetry. (c) First sugges-
to obtain X-axis symmetry.

gestion to obtain three-axis symmetry. (b) Second sug-

Figure 7.15: Suggestions for the hole in the after case. (a) First sug-
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Suggestion to obtain Y-axis symmetry. (f) Suggestion to

Figure 7.16: Suggestions for the hole in the after case concluded. (e)
obtain Z-axis symmetry.
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Figure 7.17: A design with three objects omitted. (a) The design. (b)
The corresponding representation.



CHAPTER VIII

KNOWLEDGE ENGINEERING ISSUES

Introduction

In Chapter Six, architectures for a CAD production rule system and an intelligent
suggestive CAD system were presented. Chapter Seven described two suggestive
interactivities that will be used in a system-user test. This chapter will discuss
issues arising from using rule-based programming to cause the suggestive modes.
This will be an explanation of what the rules do in the broader framework of the
overall system. We will begin by examining the decision making that is performed
when a designer uses the existing charts. This will motivate a description of the
rule-based processing that is required to generate suggestions from one input feature.
The chapter will close with a discussion of characteristics of design domains that are

suitable for suggestive systems.

Required Decision Making

The knowledge encoded in the system is the knowledge that allows a human

to effectively use the Boothroyd-Dewhurst Charts. This is simply the capability to
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rank a part with the charts and intelligently redesign it so it will rank more favorably.
Encoding the knowledge with the production rule system developed here allows the
automation of this decision making task.

Before describing how a human designer typically uses the charts, it is necessary
to describe the pertinent charts in more detail. Suggestions are provided with refer-
ence to the first three Boothroyd-Dewhurst digits for nonrotational parts. Assigning
values to these first three digits specifies values for the parameters OE and FC (see
Chapter Four). The first digit is found by using Chart Four, found in [Boo.1]. This
chart is is not a dual-entry matrix, but a list of descriptions of the overall shape of
the part. There are three possible overall shapes for a nonrotational part: plate-like.
bar-like, and cube-like. Aspect ratios of the nonrotational part in question are used
to determine the overall shape and specify a first digit. The second and third digits
are found by using Chart Six, found in [Boo.l]. This chart is a two dimensional
matrix, with the row number specifying the second digit and the column number
specifying the third digit. The rows and columns relate to symmetries and features
of the part (see further discussion below). Additionally, each element of the matrix
contains three possible OE-FC pairs, one for each possible value of the first digit. So
Chart Six could be thought of as a three dimensional matrix. Suggestions derived
from Chart Four are output when changes to the intial block are being considered.
Since there are only three different overall shapes, the related suggestions are rather
obvious (see the discussion of Figure (6.3)).When suggestions derived from Chart Six
are output, the overall shape (i.e. the first digit) is considered fixed. The remainder
of the discussion in this chapter pertains to deriving suggestions from Chart Six.

Although the actual Boothroyd-Dewhurst Chart Six is £t reproduced here (see
[Boo.1]), it is beneficial to «.scribe how one might analyze an existing design, as this
will show some of the decision processes automated by the suggestive system. Figure

(8.1) shows an example part. The first step is to determine which feature (here,
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“feature” is used in the general sense. not the specific sense defined in Chapter Five)
is most likely to interact with the filters and orienting devices, and note it as the
“main feature.” In Figure (8.1) it is the groove since it borders three planes of the
convex hull of the part (while the hole only borders two planes), facilitating the
application of orienting moments and forces. Next, several properties of the main
feature and properties of the entire design related to the main feature are noted. In
this case, the width and depth of the groove are noted together with the fact that
the orientation of the entire part is defined by the orientation of the groove. These
notations are matched against the descriptions on the charts to determine the second
and third digits. Using all three digits, an OE-FC pair is specified. Design quality
is defined as the ratio FC/OE. Recall from Chapter Four that the abbreviations
“FC” and “OE” are shorthand for “relative feeder cost” and “orienting efficiency”
respectively. Naturally, we would hope to minimize FC and maximize OE. In the
cost equations given in [Boo.l], if the feeding equipment is underutilized, cost is
proportional to F'C. If the equipment is fully utilized, cost is proportional to the ratio
FC/OQE. It is desirable to retain the influence of OE in the quality figures because
OE relates primarily to the geometric shape of the part. Therefore, in the quality
ranking of designs, we assume full utilization and use the value FC/OE. This value
can vary from zero for the best designs to infinity for the worst designs. The part in
Figure (8.1) is found to be a relatively poor design because it has no symmetry.

One way to determine improvements to the design is to first generate alterations.
and then reanalyze the design with each alteration to determine if in fact the design
has been improved. This method will always work. but it can be very computationally
costly to repeatedly perform the design analysis for each potential improvement
suggestion. An alternate way to determine improvements is to generate alterations
and predict the design quality that will result. This is the approach taken here.

This is done by assuming that the suggestions will not cause a different feature of
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the design to become the main feature. An interesting property of Chart Six is that
one index of the matrix is specified by a description of the main feature and the other
index is specified by some overall design property related to the main feature. This
is shown in Figure (8.2) which is a simplification of Chart Six. The description of the
main feature includes the feature type and other properties of the feature, such as
orientation and size. The design can be improved by altering it so it is ranked with
a more favorable matrix element of the chart. Suggestions, therefore, might cause a
ranking with a different row and different column of the chart. Since the choice of
main feature is assumed to not change, however, the predicted suggestion rankings
will be in the same column of the chart. but in a different row. The following section
explains how suggestions are generated and how this simplification is used to predict
the resulting design quality. In some cases, the suggestions will cause a different
feature to become the main feature, so these quality predictions are sometimes not
accurate. In almost all cases, however, the suggestions will increase or maintain the

actual quality of the design.

Generation of Suggestions

Introduction

The description of the high-level system architecture in Chapter Six made ref-
erence to the procedures PRE-SUGGESTIVE-RULES-x, SUGGESTIVE-RULES-x,
and POST-ALTERATION-RULES-x without describing their structure or precise
function. In this section we describe the structures of the various rule sets that
make up these three procedures and discuss how the rules change the state of the
production rule system. This is done with the example of a groove feature being

input to an evolving design. Other features are handled similarly. The discussion
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will emphasize techniques to effect the suggestions shown in Figures (7.3) through
(7.5) (i.e. suggestions to maintain some symmetry), since the suggestions in Figures
(7.6) and (7.7) (maintain same symmetry), and Figure (7.8) (reduce the amount of
asymmetry) are achieved with similar methods.

The state of the production rule system is recorded with values assigned to lo-
cal variables of procedures and values linked to property names of the the various
association-list representations. Recall from Chapter Six that the rule sets are ac-
tually local variables in procedures that receive features, suggestions, and objects as
arguments and also contain other local variables. These other local variables can be
used to hold information related to the rule-based processing. This information is
held, however. only as long as the rule-based procedure is running: once the proce-
dure stops, the values of local variables are lost. Association-list property values, on
the other hand, survive the termination of the procedure since they are part of the
arguments that are passed into and out of the procedure. Property values, then, can
be used to hold information that is significant to many different procedures.

It is useful to think of two distinct classes of property values for any alteration
step that is used to generate suggestions. Primary property values are those that
are immediately evident and recorded when the feature is input by the user. These
properties are normally geometric in nature, such as various sizes, locations, and ori-
entations and are generated by the PROCESS-FEATURE-INFORMATION routines
(see Chapter Six). A groove, for example, would have the following primary prop-
erty values. Note that the type of value required for each property is given instead

of actual example values.

((Type, STRING),
Name, STRING),
Normal, LIST-OF-3 SCALAR),

(
(
(
(Direction, LIST-OF-3 SCALAR),
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(Origin-point, LIST-OF-3 SCALAR),

(Length, SCALAR), (10)
(Width, SCALAR),

(Depth, SCALAR).

(Geometry, LIST-OF-8 POINTS),

(Volume, SCALAR),

(Extents, LIST-OF-3 (LIST-OF-2 SCALAR)))

Figure (8.3) shows the geometric meaning of some of these properties. “Type” and
“Name" are identifying string properties, with “Type” being assigned the value
“Groove.” “Normal” and “Direction” are unit vectors that are specified with a
string of three scalars. “Origin-point” is the center point of the normal face of the
groove and is specified with a list of three scalars. “Length,” “Width,” and “Depth”
are scalars as would be expected. “Geometry” is a list of eight points found at the
corners of the “box” of the groove. The CAD system programming language used
here had a POINTS data type. This “Geometry” property is an example of how the
feature-based representation is related to the underlying CAD representation. Other
languages might require storing the numerical space coordinates of the point list.
“‘Jolume” is, as expected, a scalar. “Extents” is a list of the form ((Xmin, Xmax),
(Ymin, Ymax), (Zmin, Zmax)), where “min” and “max” refer to the minimum and
maximum coordinate values over the entire list of eight points. “Extents,” therefore,
specifies the portion of three-dimensional space taken up by the groove.

Derived property values are those that are =dded by the rule-based programming,
primarily for the purpose of ger ating ana p.: ing .ggestions. The following
discussion will give examples of these and explain their purpose.

The remainder of this section will give insight into the rule-based programming

by describing the nine production rule cycles that are distributed over three typical
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rule-based procedures. In particular. the state changes caused by each cycle will be
specified. Example rules will be presented with English language statements only.
All rules have the syntax shown in Figure (6.4a). The convention “(feature/object.
property-name),” used in these example rules should be noted. Recall that the
production rule system inference engine singles out one “feature” and uses it with
each object in turn to perform inferencing. This is done by extracting property values
from the feature and the object and using them as arguments for some subprogram.
The convention above specifies whether the feature or object is being considered, and
what property value is extracted. In the discussion that follows, the term “feature”
will be used to refer to the argument passed to the production rule system and to
refer to a user-generated alteration step. The context of eacn usage wiil make the
meaning clear. Finally, although antecedent and consequent routines will not be
specified in the sample rules, pertinent routines will be discussed to give some idea

of their purpose.

Rule-Based Programming

The following discussion will describe the nine production rule cycles for a groove.
The first seven cycles are found in procedure PRE-SUGGESTIVE-RULES-GROOVE.
and cycles eight and nine are in SUGGESTIVE-RULES-GROOVE and POST-ALT-
ERATIONS-RULES-GROOVE respectively.

The purpose of cycle one is to calculate preliminary values and to load local
variables with various property values that will be useful for subsequent processing.
Loading variables with the property values eliminates the need to reaccess the feature

or object and speeds up processing. A typical production is as follows:

If (object, “Main-feature™) = “True”,

Then previous-digit-1 := (object, “Digit-1"), (11)
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and previous-digit-2 := (object, “Digit-2"),

and previous-digit-3 := {object. “Digit-3").

All objects in the design representation could potentially be the main feature. Al
therefore, contain the derived property “Main-feature” and the three derived digit
properties. “Digit-1" is the first Boothroyd-Dewhurst digit and pertains to the overail
size of the original block. (Note that all objects redundantly have the same “Digit-
1” property value.) “Digit-3” is the column number of the encoded Chart Six (as
shown in Figure (8.2)) and specifies properties of the main feature. “Digit-2" is
the row number of the encoded chart. This specifies some overail design propertv
related to the main feature, usually the type of symmetry of the main feature. If
a particular object is the main feature of an evolving design, the “Main-feature”
property is linked to the value “True.” This rule loads the Boothroyd-Dewhurst
digit values of the current main-feature into local variables. Other values that are
similarly loaded (with other productions of cycle one) are the dimensions and related
direction vectors of the original block. The property “A-dim” is the longest dimension
of the original block and the unit vector aligned with this dimension is linked to
the “X-dir” property. The variables a-dimension and x-direction are loaded with
these values. “B-dim” and “Y-dir,” associated with the midlength dimension of the
block, are loaded into b-dimension and y-direction. “C-dim” and “Z-dir,” associated
with the shortest block dimension, are loaded into c-dimension and z-.irection. The
consequent procedure VARIABLE-GETS-VALUE was written to load variables with
feature and object property values, or with the values of other variables.

Cycle two is used to choose a third Boothroyd-Dewhurst digit for the input groove
and assign it to a variable. Adding it as a derived property to the groove association
list is not done until the next cycle. A typical production is shown below. Note

that, like the rule shown in Figure (6.4), this rule is matched and fired with one
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object only, since all the required properties come from the feature. For simplicity.

the antecedent insuring that it matches with only one object is not shown.

If (feature, “Direction”) is parallel to x-direction.
and (feature. “Depth”) is greater than a minimum-depth,
and (feature, “Width") is greater than a minimum-width, (12)

Then feature-column-number := 4.

Properties of the groove are compared to property descriptions on the chart to choose
the correct chart column. This is exactly the task completed by a person using the
charts. Minimum-depth and minimum-width are local variables that are related to
the dimensions of the original block. Two antecedent procedures are of interest here.
IS-PARALLEL was written to test if two unit vector representations are parallel.
LESS-EQUAL-GREATER is a multi-purpose antecedent that performs all equality
and inequality comparisons of scalar quantities.

To this point, we have not added any properties to any association-list represen-
tations. The purpose of cycle three is to add the “Digit-1,” “Digit-2,” and “Digit-3"
properties to the feature representation and to choose a column of the chart that will
be used in the generation of suggestions. First. we explain how the three digits are
specified. Since “Digit-1" relates to the dimensions of the block, it is readily avail-
able in the variable previous-digit-1. The value of “Digit-3” was determined in the
previous cycle and is found in the variable feature-column-number. Only “Digit-2” is
left unspecified. Recall from the discussion of cycle one that “Digit-2” usually relates
to the symmetry of the particular object. Recall from Chapter Six that features are
input by the user in a freehand style using a digitizing pen on the graphics screen.
The user does not input exact dimensions, locations, and relationships to other fea-
tures. It is impossible, then, to input a single groove that is symmetric about any

of the three axes. (There are, however, explicitly symmetric features available to
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the user. The system aids the user in the construction of a single symmetric feature
or symmetric groups of features.) The feature will be either grossly asymmetric or
slightly asymmetric, depending on how far “off center” the feature is. The details of
this distinction do not merit discussion here: the idea of gross and slight asymmetry
should be obvious. The important point is that there are only two possible “Digit-2”
values for a groove feature, 4 if the groove is grossly asymmetric and 9 if the groove
is slightly asymmetric.

The other task of cycle three is to determine which column of the chart will
be used in the generation of suggestions, and to assign the column number to the
variable motivating-column-number. The basic principle of generating suggestions
is that a main feature column is chosen and the design is altered to place the de-
sign ranking in a more favorable row, while maintaining the main feature column.
Different columns have different orderings of row desirability. To achieve the de-
sign modification, only the tentative feature geometry can be altered. None of the
incorporated geometry can be changed. Considering the entire object list and the
tentative feature together as an interim design representation (i.e. what would the
design be if the feature was incorporated “as is”?), it is clear that the added feature
is not necessarily the main feature. A design with a single grossly asymmetric groove
object provides an example. Adding another grossly asymmetric groove feature that
is smaller than the object groove will leave the object groove as the main feature.
Suggestions will be generated from the input feature to improve the ranking row of
the incorporated object. In most cases, however, an added groove will be the main
feature of the interim representation. Adding a groove to a design with some sym-
metry, for example, will always yield an asymmetric interim design. The problem is
simplified somewhat by noting that the motivating column is either the column of
the feature, or the column of the main feature object (previously the most impor-

tant object of the design). A sample production illustrates the case where a groove
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is added to a previously symmetric design (again. matched and executed over one

object):

If previous-digit-2 not equal to 4,
and previous-digit-2 not equal to 9,
and feature is grossly asymmetric,
Then add (feature, “Digit-1") with value of previous-digit-1.
and add (feature, “Digit-2") with value of 4, (13)
and add (feature, “Digit-3") with value feature-column-number.
and motivating-column-number := feature-column-number.

and add (feature, “Main-feature”) with value of “Not-assigned.”

To paraphrase, if the design was previously symmetric (previous-digit-2 not equal
to 4 or 9), and the feature is grossly asymmetric, then add “Digit-1,” “Digit-2,”
and “Digit-3” properties to the feature, and note that the motivating column is the
feature column. The property “Main-feature” is also added to the feature with the
value of “Not-assigned.” The consequent routine ADDPROPERTY was written to
add property-value pairs to the association list representations. Note now that the

representation of the feature is as follows:

(. . . all primary properties . . .

(Digit-1, SCALAR)}, (14)
(Digit-2, SCALAR),

(Digit-3, SCALAR),

(Main-feature, STRING))

Cycle four is used to derive all the information needed to display and process the

suggestions. The suggestions, if used instead of the feature, will cause the design to
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be ranked in a different row of the chart. This cycle creates the geometry necessary to
display the suggestions and also determines the relationship between each suggestion
and the row number it would cause. Figure (3.4) shows the six other individual
grooves that are derived from the groove feature by some translation and/or rotation
of the points that are attached to the “Geometry” property (Groove-1 undergoes no
transformation). These six point lists are attached to the feature association list with
the property names “Groove-1” ... “Groove-6," and will be used later to actually
render the geometry of suggestions on the CAD screen. Subsets of this set of six
grooves make up individual suggestions. Suggestion-3, for example, uses Groove-
1 and Groove-6 .o form a suggestion that is symmetric about the airection axis
of the groove. The symmetries of the suggestions are known with respect to the
local groove coordinate system (shown in Figure (8.4)). It is necessary to determine
the symmetries with respect to the global axes of the block in order to assign each
suggestion a row number. Since the symmetry with respect to the local axes is
known, to find the global symmetries the productions simply find the relationship
between the local and global axes and use this information to assign a row number
to each suggestion. The properties “Suggestion-1” ... “Suggestion-6” are added to
the feature with the determined row numbers as values. A typical production is as

follows (matched and executed over one object):

If (feature, “Direction”) is parallel to x-direction.
and (feature, “Normal”) is parallel to y-direction,
Then translate and rotate (feature, “Geometry”),

and add (feature, “Groove-1”) with value of altered point list,

and add (feature, “Groove-6") with value of altered point list, (15)

and extents-1 := extents of (feature. “Groove-1"),
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and extents-6 := extents of (feature, “Groove-6").

and add (feature, “Suggestion-1") with value of row number.

and add (feature, “Suggestion-6") with value of row number.

Note that the six extents are not added as properties but stored as variables since. as
will be seen, they are not needed outside the scope of PRE-SUGGESTIVE-RULES-
GROOVE. The consequent routines CALCULATE-GROOVE-EXTENTS, TRANS-
LATE, and ROTATE perform the various computations on the groove point lists.
TRANSLATE and ROTATE can be used on any list of points.

The feature representation now appears as follows:

(. . . all primary properties . . .
(Digit-1, SCALAR),

(Digit-2, SCALAR),

(Digit-3, SCALAR),

(Main-feature, STRING), (16)
(Groove-1, LIST-OF-8 POINTS),

(Groove-6, LIST-OF-8 POINTS),
(Suggestion-1, SCALAR),

(Suggestion-6, SCALAR))

The information needed to generate suggestions has now been added to the repre-
sentation of the feature. Note that the number of possible suggestions (six in this

case) gives some idea of the power of the suggestive mode implementation. It would
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be easy to add many more suggestions. Note for example. that none of the sugges-
tions change the size of the original feature groove. Note also that information for
all possible suggestions has been added to the feature. This is not always the case.
In cases where the design is previously one-axis symmetric, as in Figures (7.6) and
(7.7), only those suggestions that are three-axis symmetric or symmetric about the
same axis will add derived properties to the feature. It is also possible that point
lists from incorporated objects may be used to generate the suggestion information.
This is the case in Figure (7.8), of course using a hole, where the goal is to reduce
the amount of asymmetry. The basic idea in pfogramming the rules in this case is
to treat some object as the feature by creating a copy of the object association list
and adding the relevant suggestion properties to the copy. This is how the smaller
symmetric hole is made. Interestingly, this is programmed most effectively using a
high-level “meta-rule,” where each consequent causes one invocation of the produc-
tion rule system. The after mode is programmed similarly by extracting an object
and generating derived suggestion properties from it.

Although information for generating the suggestions has been added to the fea-
ture, some of these suggestions may not be possible. If one of the suggestions contains
a groove that volumetrically interferes with some incorporated object. it should not
be presented to the user. Cycle five uses the extents of the suggestion grooves (held
in variables extents-1 ... extents-6) and the “Extents” property of the objects to

detect this condition and note it in a variable. A typical production is as follows:

If extents-3 clashes with (object, “Extents”),
Then suggestion-1-possible := “False,” (17)

and suggestion-4-possible := “False.”

If Groove-3 interferes with some other object, then both Suggestion-1 and Suggestion-

4 will be impossible because they both use Groove-3. Since this rule is matched over
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all the objects. this rule will check if Groove-3 clashes with any object of the design.
There are six such rules, one for each suggestion groove. The antecedent procedure
CLASH was written to compare the extents of two geometric objects and determine
if they clash. Note that this type of production provides a very rudimentary, but
useful, form of geometric reasoning.

The rules of cycle five note the impossibility of a suggestion with a variable rather
than simply deleting the suggestion property because the suggestion property may
not have been added to the feature representation. Cycle six deletes the properties
if they have been added and are impossible. Recall from the discussion of cycle four.
that in certain cases. not all six suggestion properties are added to the feature. An
error will occur if the system tries to delete a property that is not there. A sample

production is shown below (matched and executed over one object):

If (feature, “Suggestion-4") exists,
and suggestion-4-possible = “False,” (18)

Then delete (feature, “Suggestion-4”).

This removes the entire property-value pair from the association list. The antecedent
procedure FEATURE-PROPERTY-EXISTS checks if the feature has the property
and the consequent procedure DELETE-PROPERTY deletes the property value pair.

The final cycle of PRE-SUGGESTIVE-RULES-GROOVE uses the motivating
column number (see the discussion of cycle three) and the overall shape of the block
to order the suggestion row numbers. Given that the suggestions, if incorporated,
will cause different row numbers, this cycle determines which row is best, second
best, and so on and adds this ordering as a property to the feature. The following is

a typical rule (matched and executed over one object):

If (feature, “Digit-1") = 8,
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and motivating-column-number = 1. (19)

Then add (feature. “Suggestion-order”) with value (0, 1. 2. 3).

The ~Digit-1" prorerty is used to specify the overall shape of the block. For the chart
encc.ed here, the  are thirteen different suggestic~ srders resulting from combina-
tions of “Digit-1" ..d motivating-column-number - w.ues. After adding this property,

the feature representation is as follows:

(. . . all primary properties . . .
(Digit-1, SCALAR),

(Digit-2, SCALAR),

(Digit-3, SCALAR),

(Main-feature, STRING), (20)
(Groove-1, LIST-OF-8 POINTS),

(Groove-6, LIST-OF-8 POINTS),
(Suggestion-1, SCALAR),

(Suggestion-6, SCALAR),
(Suggestion-order, LIST-OF SCALAR))

This representation is then passed into the procedure SUGGESTIVE-RULES-
GROOQ' = which contains cycle eight. The purpose is to take the suggestion proper-
ties attacaed to the feature and use them to output the suggestions to the user in the
proper order. This is done by arranging the match, resolve, and execute portions of
the production rule system in the special purpose algorithm shown in Figure (8.5).

To understand the function of this routine, consider one of the productions that is
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used (matched and executed over one object):

If (feature, “Suggestion-2") exists.
and (feature, “Suggestion-2”) equals row-number,

Then Render and process Groove-2.
and Render and process Groove-3,
and Establish relationships between Groove-2 and Groove-5, (21)
and Add “Digit-1” prop. to Groove-2 and Groove-3 a-lists,
and Add “Digit-2" prop. to Groove-2 and Groove-5 a-lists,
and Add “Digit-3” prop. to Groove-2 and Groove-5 a-lists.
and Add “Main-feature” prop. to Groove-2 and Groove-3 a-lists.

and Allow user choice.

There is a production for each suggestion. For each cycle through the FOR loop
a different row number is specified, according to the ordering of the row numbers
found attached to the property “Suggestion-order.” The algorithm tries to match all
rules for every FOR loop cycle. Only those rules that will produce the row number
under consideration will survive the match process. The survivors will be added to a
conflict list. Executing all rules in this conflict list, in order. will output a prioritized
list of suggestions that produce row numbers in the same order as that specified in
“Suggestion-order.” The user is allowed to selectively execute elements of the conflict
list with a menu that is created. This menu shows the relative predicted qualities
of the feature and suggestions in order of decreasing predicted quality. To view a
suggestion, a particular element of the conflict list is executed. As the consequents
above show, this will graphically render the grooves of the suggestion and create
an individual association list for each one (i.e. “Render and process”).! Once these

association lists exist, relationships between them are established. In this case, for

! It is evident, therefore, that a suggestion can actually be a list of association
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example, properties would be added to indicate that Groove-2 and Groove-3 are
three-axis symmetric partners. Also, digit properties and a main feature property
are added to all grooves of the suggestion. For the suggestions shown in Figure (8.4),
each groove of a suggestion will have the same “Digit-1” and “Digit-3” values as the
original feature groove. The “Digit-1" value is the same because the original block
has not changed. The “Digit-3” value is the same because each suggestion groove
has the same “Direction,” “Depth.” and “Width” properties as the feature groove
(refer to the explanation of cycle two above). The “Digit-2” value for each suggestion
groove is the row number the suggestion will cause. The “Main-feature” property is
added with the value “Not-assigned.” Finally, the user must choose to view other
suggestions or stop at this point. A decision to stop will require a subsequent decision
to keep this suggestion, keep the feature that motivated it, or discard both. The
user can pick only one suggestion from the execute process and the routine USER-
RESPONSE creates the menu interactivity that allows this choice. The consequent
routine SUGGEST-GROOVE renders and processes a suggestion groove.

Finally, since most of the derived properties are used only for the generation of
suggestions, they should be deleted from the feature representation prior to adding
the feature to the design object list. This is accomplished with cycle nine contained in
procedure POST-ALTERATION-RULES-GROOVE, which is invoked by procedure
INCORPORATE-AND-PROCESS. A sample production is shown below (matched

and executed over one object):

If (feature, “Suggestion-4”) exists, (22)

Then delete (feature, “Suggestion-4”).

lists. This is also true of a feature, e.g. a symmetric groove pair. For simplicity,
the suggestive CAD system architecture described in Chapter Six presents features
and suggestions as single association lists. The procedures described there actually
use features and suggestions that are lists of association lists.
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Rules similar to this delete the “Groove-1" ... “Groove-6.” “Suggestion-1" ... “Sug-
gestion-6,” and “Suggestion-order” properties in order to minimize the size of features
that will be added to the design representation. This helps to make the program run
faster. Other productions in cycle nine establish relationships between suggestion
and object representations if a reduce asymmetry suggestion is accepted. After the

productions of cycle nine are executed, the feature representation should appear as:

(. . . all primary properties . .

(Digit-1, SCALAR), (23)
(Digit-2, SCALAR),

(Digit-3. SCALAR).

(Main-feature, STRING))

Discussion

First, it should be mentioned that the processing done by cycle nine can be quite
wasteful. Some of the productions apply only to features and others apply only
to suggestions. The POST-ALTERATION-RULES procedures. however. accept a
general alteration step as an argument. The production rule system will try to
match many rules that are certain to fail, causing some wasted processing. One
way to remedy this problem is to set up different cycle nine cases: one if a feature
is being incorporated and one if a suggestion is being incorporated. Different rule
sets would be used for each case. There are several other situations where some
amount of needless processing can be eliminated by adding more procedural control
programming. Doing this reduces the size and increases the specificity of each rule
set. Adding more procedural control knowledge causes a natural progression from a

rule-based to a procedural system.



153

A second point is that there is a fundamental theme to the suggestion-generation
process. Properties are derived, then added to the feature. then used to generate
the suggestions, then deleted from the feature. This overall procedure was an ad-hoc
creation, but seems to work satisfactorily.

Note also that after a suggestion is incorporated into the design, the main feature
object is not known with certainty. More processing (done by procedure ENSURE-
VALIDITY) is required to determine the most important object of the design rep-
resentation. The fact that the tentative feature is the most important object of the
intertm design representation does not imply that suggestions generated from this
feature will also be most important. Consider Figures (7.6a) and (7.6c). If the hole
feature of Figure (7.6a) is incorporated. clearly it will be the main feature because it
will cause the asymmetry. The symmetric hole suggestion of Figure (7.6¢c) will not
be the main feature because the grooves with the same symmetry are more acces-
sible to filters and orienting devices. On the other hand, in Figures (7.3) through
(7.5), since there were no other objects in the initial block, each suggestion generated
from the main feature of the interim design representation would become the main
feature if incorporated. Through the determination of the motivating column, the
importance of the feature is known with certainty. To determine the importance of
each suggestion would require comparing it with the entire design, and this is too
computationally costly to do during the suggestive cycle. The suggestions are output
not knowing if they would become the main feature. The design representation is
made correct after some suggestion has been accepted.

A final point concerns the size of the knowledge base. For a groove, there are 77
productions in cycles one through seven, 9 rules in cycle eight and 24 rules in cycle
9. For a system with five features, therefore, there are about 500 rules relating to
generating suggestions from features. There are perhaps an additional 200 rules for

various utility programs (e.g. ENSURE-VALIDITY, automation of solid modeling
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tasks) to vield a total of approximately 700 rules.

Suitable Properties of Design Domains

The preceding discussion suggests that certain characteristics of a design domain
make it appropriate for modeling with a suggestive system. Note, for example, how
the design for assembly charts specify not only design analysis knowledge, but also
the necessary features. A suitable design domain must have well-defined knowledge
and well-defined features. The predefined alteration steps provide building blocks for
the designer and become the units of change for suggestive heuristics that can alter
the design 1n order to improve it.

The domain must also provide some means to analyze the quality of the design.
There must be some way to determine if designs are good or bad. This can be
thought of as a classification problem. Designs are put into different classes, with
each class having a different design quality. Suggestions can be generated by altering
the design in some way, and then reclassifying it to determine if the alteration is an
improvement.

It would be better if suggestions could be generated in a more informed way.
Suggestions should be generated without having to reanalyze the design with each
suggestion. Given a design and design analysis, the domain should provide some
means to predict what alterations will improve the design. In other words, there
should be some knowledge about the relationships between design alterations and
the consequent reclassifications. Howe et al. [How.1] make similar observations in
their description of the Dominic system. It is best if these predictions can be made
with certainty, but uncertain predictions are also useful. In the design for assembly
rule bases described in this chapter, this predictive capability is found in the list
of row numbers attached to the “Suggestion-order” property. An interim design

representation is first analyzed, yielding a suggestion-motivating column of the chart
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(i.e. motivating-column-number). The system generates suggestions that would cause
the design to be ranked in a different row. The relationships among the motivating
column and the various rows of the ch~rt allow the system to rank the suggestions
in terms of predicted design qualitv. This predicted quality is clearly uncertain.
since the design representation must be checked (with a program like ENSURE-

VALIDITY) if a suggestion is incorporated.
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suggestion-order := ( feature, "Suggestion-order" )
FOR each row-number in suggestion-order
MATCH
AUGMENT the conflict list
CONTINUE

EXECUTE the conflict list

Figure 8.5: The suggestion-production algorithm of procedure
SUGGESTIVE-RULES-GROOVE.



CHAPTER IX

HUMAN-COMPUTER INTERACTION STUDIES

Introduction

This chapter describes the user testing that was done. Results are reported.
Some conclusions are drawn, with respect to both the effectiveness of the interac-
tivities and the general idea of suggestive design aids. A brief description of the
experiment is provided, followed by an explanation of the motivation of the specific
design assignment used in the experiment. With this background. the intellectual
responsibilities of the test subjects are outlined. Finally, the results are presented

and analyzed.

Description of Experiment

The experiment consisted of testing three interactivity modes with three groups
of users to determine which mode helps designers create the best design solutions.
The three modes were a control mode that provided no suggestions, and the two
modes decided upon in Chapter Seven. Users of each mode were given the same

design assignment and were instructed to pay attention to design for vibratory bowl
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Unfortunately, it is more often the case that a version of a prototype is designed.
Most designs seem to be redesigns. and design specifications are often in terms of
form rather than function. This was clearly unacceptable for this experiment. To
overcome this problem, we created an artificial design domain that is similar to the
domain of digital circuit design. In the same way that each digital circuit element
performs a single function (e.g. NAND gate. NOR gate, etc.), each feature in the
feature-based modeler should perform a single function. This idea resulted in the
“design of gauge tools” domain.

The fundamental idea is that features match each other in pairs. Consider, for
example, a groove and a block. The groove gauges an upper tolerance of a single
dimension of the block since if the block fits into the groove, the block is small enough.
Conversely, a block gauges a lower tolerance of a groove since if the groove fits over
the block, the groove is large enough. Pegs and holes are similar gauge pairs. Steps
and chamfers are “gauges” in the sense that they provide a shape template to match
with other steps and chamfers. A typical design problem is to configure a number
of gauging features on a single, multipurpose gauge tool, given a set of gauging
requirements. The design domain is more fully explained in the design assignment
shown in Appendix B.

Note how there is a certainty of function with this domain. Grooves gauge blocks.
holes gauge pegs, and so on. There is, on the other hand, a broad ambiguity of form.
For a groove to gauge a block, for example, it is only necessary to specify the groove
width. Values for other attributes, such as depth, length, location, and orientation
are not needed. In this way, many designs are possible for a given set of functional
requirements. Figure (7.11) shows a design that meets the assignment’s Case A
specifications. The original midlength side of the block is intended to gauge the
three unit groove. The two grooves gauge the two boxes and the hole gauges the

peg. Assuming that the two faces of a step are approximately equal in size, the
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“characteristic dimension” of a step is the approximate depth of the faces. For a

chamfer, this depth is a right-angle projection of the slanted face.

User Intellectual Responsibilities

The subjects in the experiment were required to fulfill various responsibilities and
were allowed to make various decisions. This section describes these requirements
and freedoms for the users in general, and for each user group.

The general setting of the experiment was a design problem. The users had to
read and understand a design assignment and design an object to meet the given
specifications. This required a mapping from function to form using the features
available with the CAD system. The experiment had two sets of design specifications,
known as “Case A” and “Case B.” Case A provided only functional specifications
while Case B provided different functional specifications (to discourage any “carry-
over” designs from Case A to Case B) and other considerations. For both cases, the
users were concerned with designing the object to be suitable for use with automated
assembly machinery. The users were told to complete Case A within a two hour time
limit, and if any time remained, to attempt Case B. While they were designing, the
CAD graphics screen was videotaped and a log file of the user’s menu choices was
kept by the system.

There were common responsibilities for all three suggestive mode groups. All
users had to read and understand the design assignment. They were given the
design assignment immediately before the CAD session and were not allowed to
begin designing until they had read the assignment and asked any questions.! In
addition, they were allowed to ask questions at any time during the session. It was

left to the users to ensure that they understood the assignment: they were not given

1 The author was on hand at all times to answer questions.
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any test that would demonstrate their understanding or lack thereof. After reading
the assignment, they could work on their design. This required inputting features.
in any order. to meet the design specifications. When they I inished the design,
they had t .enerat a plot and annotate it to explain how .neir design met ail
the functio. .. specifications. They were also allowed to use hand-drawn sketches to
alter and add to the plot. This was often necessary because features were improperly
created and there was not sufficient time to redo the design. The emphasis was on
using the system to get design ideas rather than creating a flawless CAD model. The
users also had to complete the questionnaire shown in Appendix B.

There was also a set of common decisions that all users were free to make. All were
allowed to organize their overall design effort in any way they saw fit. They could
make any number of design efforts and leave some of them incomplete. They decided
when they were finished: they were not required to fill the entire time limit. Of course
their most important decision was how to respond to the assistance received from the
program. They decided whether they would consider the assistance, or ignore it and
continue uninfluenced. Although the three modes provided assistance in different
ways, all users received a quantitative indication of the design quality at the end of
each design cycle. Also, all were allowed to refer to the standard Boothroyd-Dewhurst
Charts.

The no-suggestion subjects used the interactivity diagrammed in Figure (7.1).
The only assis! :ce available to them was the standard charts and whatever design
guidance they could deduce from the design quality indication at the end of each
cycle. This output of a quality figure was sophisticated enough to provide some help
to a concerned user. The system would highlight the object it interpreted as the
main feature and provide the related quality figure. This could help the user decide
on a subsequent design alteration.

The suggestions-during subjects, using the interactivity shown in Figure (7.2),
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had specific responsibilities and required choices. In addition to the Boothroyd-
Dewhurst Charts and the quality indication. these users also received specific design
suggestions during each design cycle. The suggestions were generated from every
feature input = . were available for incorporation. There was usually more than
one suggestion .cnerated, so a menu was output that allowed the user to repeatedly
view the suggestions. On the menu. the predicted design quality figures that would
result from incorporation of each suggestion and from incorporation of the feature
were shown. This allowed the user to compare the relative merit of each possibility.
The program required that the user view at least one suggestion before proceeding,
and to pick one suggestion from the list to consider incorporating. At that point, the
user would choose to incorporate the feature. incorporate the suggestion. or reject
~oth and begin a new design cycle.

These subjects were free to take a variety of actions in response to the suggestions.
They could view as many of the suggestions as they wanted, as many times as they
wanted, and they could pick any of the suggestions for possible incorporation. They
were not required to incorporate either the feature or suggestion: they could discard
both and investigate new design ideas that perhaps were a result of the program’s
assistance. Another important decision was the order of feature input.

The suggestions-after subjects, using the interactivity of Figure (7.10), also had
unique responsibilities and choices. Again, the Boothroyd-Dewhurst Charts and
system quality indication were available. The suggestions were output as a design
postprocess. The users would complete their designs with no suggestive assistance,
and then the system would output suggestions with respect to every feature, in the
order it was input, as if it was the only feature on the block. Of course, sugges-
tions about the block were made first. Like the suggestions-during users, a list of
suggestions was normally output from which the user had to view at least one sugges-

tion. Again the users could view all the suggestions repeatedly. These suggestions,
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however, could only be viewed: they could not be incorporated.

The suggestions-after users were expected to configure a design, receive sugges-
tions. and create a redesign based on the suggestions that were viewed. Within this
basic sequence of events. there were many possibilities. The users could, for example.
receive suggestions on a partially completed design. They were also free to receive
suggestions on the redesign effort. The strength of the suggestive heuristics was such
that two user redesign efforts could usually produce an object that the system could
not improve. Any number of initial design efforts, time permitting, could be inves-
tigated. On the other hand, the users were not required to create a redesign. After

viewing the suggestions, they could submit their initial unaided effort as the final

solution.

Results

The overall results of the experiment are somewhat disappointing because there is
not enough distinction in design qualities between the the three groups. In particular,
there is not a marked difference between the suggestions-during and suggestions-after
design qualities. Although it is possible that these two modes are equally helpful.
it was hoped that there would be some distinction between them. It is possible,
however, to derive some conclusions and formulate future research directions from
a close look at the data. The following discussion will present the results of the

experiment and will describe several of the individual design efforts that demonstrate

important findings.
Basic Results

Figure (9.1) shows the basic result of the experiment, a plot of design quality

versus suggestive mode. Note that this data is for Case A of the design assignment
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only, as many of the users did not have time to attempt Case B. Also. the identifica-
tion numbers assigned to the fifteen users are placed next to the data points. Recall
from Chapter Eight that the design quality is defined as the ratio FC/OE. This vaiue
theoretically varies from zero for the best designs to infinity for the worst designs.
All designs created by the users yielded qualitities between zero and sixteen.

The data seems to show that suggestions of some type do help. The two suggestive
groups have a higher fraction of users with better designs (say, quality figure less
than or equal to four). This is not a strong trend, however, and more data should be
collected to amplify whatever distinction there is. The lack of distinction between
the Mode 1 and Mode 2 users is disturbing. \ithout more data it is very difficult
to draw any conclusions.

It might be useful to examine relationships between the user design qualities and
other data that are available from the experiment. One comparison can be made
using the number of CAD model changes of each user. When creating a design with
the suggestive system, the users are also building a “model” with the underlying
CAD system. The log of menu choices records the point at which work stops on one
model and begins on another. This may be due to starting a new model from the
beginning or returning to a model that was worked on previously. In many cases the
user changes models because he has a new design idea, but it is possible that the old
model was terminated by the CAD system because the user made an error in using
the feature-based CAD program.

The hypothesis is that users with more CAD model changes should produce better
designs. More CAD model changes should imply more design ideas, increasing the
chances of a better final design solution. We expect, then, that the best designs
were created by users who made the most CAD model changes. Figure (9.2), which
shows this number for each user, does not support this hypothesis. Within any single

suggestive mode, there is no evident correlation between the number of models and
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the design quality. Indeed. the best designers for each mode made relatively few
model changes. We might also hypothesize that the Mode 1 users would have fewer
model changes than the Mode 2 users because the suggestions-during mode should
optimize a design during the design effort, mimimizing the need for redesigns. The
suggestions-after mode, on the other hand, requires the creation of redesigns as part
of its normal operation. This is also not supported by the data. It is possible that
the suggestions-during mode does cause some wholesale redesign ideas.

Also of interest is the number of suggestions viewed by each designer. Recall that
the system often would generate a list of suggestions, and that the user was required
to view at least one before proceeding. Since the suggestions would improve the
design, it seems reasonable to predict that the users that viewed more suggestions
would produce better designs. Viewing more suggestions should prompt more and
better ideas. Again, the data as shown in Figure (9.3) do not support our expectation
(repeated viewings of the same suggestion are counted). The Mode 3 users, of course,
received no suggestions. The three best designers viewed relatively few suggestions
and there does not seem to be a trend in any group. There is no noticeable distinction
between the Mode 1 and Mode 2 designers. Users 06 and 04 are particularly notable
as extremes. Users 07, 01, and 05 provide some positive evidence. Although their
designs are not as good as those of users 13, 08, and 06, they did view a relatively
large number of suggestions and their designs are of relatively high quality. Again,
more data points would be very helpful.

With the existing data it is difficult to say which mode helps users create the
best designs. Other comparisons of the systems, however, also merit discussion. The
productivity allowed by each system is also important. In the context of true design
creation, productivity is difficult to measure. The problem is very different from
measuring productivity in a design archival task, where an existing design is being

modeled. For design archival, measurements such as number of features input per
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unit time. and number of models created per unit time are important because they
indicate how quickly a design can be modeled. In a design creation task they are not
as important because they give no indication that the design requirements are being
met. The real issue is how quickly users can create designs that they are satisfied
with. Their satisfaction depends upon the help they receive, both in generating
design ideas and in modeling them. In this regard, then, it is useful to examine how
many of the users finished Case A and attempted Case B in the allotted time. The
suggestions-during mode is the clear winner. Four of the Mode 1 subjects made some
serious attempt at Case B, compared to one of the Mode 2 subjects. and two of the
Mode 3 subjects. More precise measurements of work output per unit time were not
considered here because the system ran too slowly. The time required to generate a
list of suggestions from a feature input could be as long as two minutes. Users spent
a large portion of their time waiting for the system to respond rather than doing
creative work, and this would make time measurements difficult to interpret. Brady
proposes that such delays interrupt the attention of the user, causing overall creative
productivity to decrease [Bra.l1].

Another way to view the question ot system productivity is to determine if the
system actually eliminates the need for the standard Boothrovd-Dewhurst Charts.
Do either of the suggestive modes integrate the chart information into the preliminary
design process? Compiling the answers to question seven on the questionnaire (see
Appendix B) shows that two Mode 1 users looked at the charts during the design
process, three Mode 2 users looked (one Mode 2 user did not submit a questionnaire),
and all five Mode 3 users looked at the charts. This type of result was expected since
the Mode 3 users received no suggestive help and were forced to use the charts for
detailed design for assembly information. Of the five Mode 1 and Mode 2 users
that looked at the charts, four reported that they used the charts only to create an

initial block shape, and not afterwards. (One Mode 2 user looked at the charts after



171
creating the initial block. but reported that they provided little help.) Four of the
five Mode 3 users commented that they referred to the charts throughout the design
session. Since the suggestions-during and suggestions-after designs are certainly no
worse than the no-suggestion designs. we can conclude that the use of the charts for

preliminary design has been automated to a large degree.
Specific Design Efforts

Since the overall data falls short of being conclusive, we will examine the efforts of
particular experimental subjects in order to uncover other interesting issues related to
the interactivities. The discussion below is derived from plots of the various designs.
and the menu-choice log files.

Prior to running the experiment, one fear was that the output of the design
quality index at the end of each design cycle would allow the no-suggestion subjects to
deduce useful design guidelines that were presented to the other subjects as graphical
suggestions. In other words, by observing the change in design quality with the input
of various features, the no-suggestion users could determine how to favorably alter
their designs without the benefit of graphical suggestions. It was observed that
one Mode 3 subject, user 15, made this a primary design strategy by paying close
attention to the quality index and terminating a design effort if the design quality
appeared to drop too far. This resulted in eleven Case A design efforts (out of
thirteen CAD model changes). A moderately good design was created with a great
deal of effort.

A closer look at the designs of users 13, 07, and 01, the three most successful Mode
1 designers, uncovers some interesting findings. User 13 created a very good initial
design that did not meet the functional specifications. Slight corrections were made
in a second effort that was functionally correct and also very high quality. Users 07

and 01 both created flat, plate-like gauges that were symmetric about the Y axis (the
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axis parallel to the midlength dimension of the original block). Both designs would
have been much improved if they were symmetric about the X axis (the axis parallel
to the longest dimension of the original block). Examining the menu choice logfile
for user 01 shows that Y-axis svmmetry resulted because the user began by adding
Y-axis symmetric features to the block. The system does not generate suggestions
that attempt to change the symmetry of already-symmetric feature input, although
in this case it might have helped. The design proceeded to a conclusion with the
system generating suggestions that maintained the Y-axis symmetry. The Y-axis
symmetry of the design of user 07 resulted because the user chose to incorporate a
nonoptimal suggestion. The log of menu choices shows that the user first established
a flat. plate-like block and then added a groove feature. The system generated a list
of suggestions, the best of which caused X-axis symmetry. (Recall that the possible
suggestions are ranked and displayed with quality figures on a menu.) The user
viewed this suggestion and two others that caused Y-axis symmetry, and chose to
incorporate one of the Y-axis symmetric suggestions. The design was completed with
the system making suggestions to maintain the existing symmetry.

The post-suggestive subjects provided perhaps the most interesting design ses-
sions. User 08, who created the best final design, initially created a design that was
a flat shape that was symmetric about the Y axis. After viewing the suggestions, the
user made a similar higher quality design that was symmetric about all three axes.
Some Mode 2 design sessions were notable for the radical redesigns that occurred.
User 05 produced an initial effort that was very poor from an assembly standpoint,
but clearly met all the function:. requirements. It was a cube-like block with the
required gauging features seemingly arbitrarily positioned. With a single redesign
effort, a flat Y-symmetric design was created. As with users 07 and 01, this design
would have been better if it was X-axis symmetric. User 02 had a similar design

session. The first design was functionally correct but very low quality. A second,
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very different effort was a long bar-like block that was symmetric about the Z axis
(the axis parallel to the smallest dimension of the original block), a combination of
dimensions and symmetries that vielded a fairly low quality design. Clearly, these
two users payed very little attention to design for assembly ideas during their initial
design. [t seems as though their strategy was to anticipate the help provided by the
suggestions. After viewing the suggestions, a genuine effort would be made to design

the gauge tool for assembly

Analysis of Results

In general. the results of the experiment were somewhat disappointing. There is
only weak evidence that designers who received suggestions created better designs
and the data do not indicate which of two suggestive modes is more effective. It was
found, however, that a suggestive system can integrate the concerns of downstream
analyses into the initial design process. It should be emphasized that this was a
preliminary experiment, intended to provide an initial useful experience in testing
such systems as well as data. Although the results are not very conclusive, we can
summarize some findings and make recommendations for subsequent efforts.

Obviously, there were deficiencies in the experiment. It would be useful to outline
what was wrong and how it should be changed in future tests. First, it does seem as
though the experiment made an interesting comparison. In subsequent experiments,
it would still be useful to compare a suggestions-during mode with a suggestions-after
mode. Along with the obvious interesting contrast of help during design versus help
after design, the experiment revealed some unexpected user behavior that calls for
further investigation. The during users created many design efforts, sometimes aban-
doning an idea to start fresh. Some after users advantageously adopted a “cynical”

attitude toward using the system, clearly paying no attention to design for assembly
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ideas during the initial design, and allowing the system to formulate design improve-
ments that would motivate a radically changed redesign. The important finding is
that they made no commitment to the original design: they expected it to change.

In subsequent efforts, a stronger, more robust system is necessary. The system
must run faster in order to allow the user to explore more possibilities. There must
also be an undo capability that might allow users to alter previously incorporated
alteration steps, or more simply, go back to a previous state in the design process.
The lack of such a capability was particularly troublesome for the during users. If
these users obtained a new design idea, their only recourse was to start a new design.
Some of them specifically recommended that an undo capability be implemented.
Toriva et al. describe a solid modeler that represents the history of a solid design
process as a tree of primitive modeling operations [Tor.1]. This allows an undo and
redo capability. Such an approach could alleviate the problems here.

Using a different design domain might also be helpful. At the outset, the Booth-
royd-Dewhurst system seemed like the ideal choice because it was feature-based and
design quality was quantified. The encoded charts provided a fairly limited number
of different design qualitites, however, and therefore did not allow an adequately
fine measure of design quality. It would be better to use a more detailed ranking
system. Additionally, a different design domain might eliminate some of the CAD
system limitations that were experienced. Other domains (e.g. floor plan layout)
could more readily allow the alteration of previously accepted design steps. It is
uncertain, however, whether these other domains have any related concurrent engi-
neering techniques analagous to the Boothroyd-Dewhurst system. The desire was to
use realistic concurrent engineering knowledge in a mechanical design context. For
this, the Boothroyd-Dewhurst system was an obvious choice.

Of course. the biggest problem was that there were not enough experimental

subjects. Larger subject groups might clarify any distinctions that do exist.
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Additionally, there is the question of how the users were prepared for the exper-
iment. Training in basic design for assembly ideas seemed necessary to explain the
motivation of the suggestions and to provide the control group with some minimal
background they could use to complete their designs. Without training, the control
group would not know how to use the standard charts available to them. It is possi-
ble, however, that the users were too well trained and could derive little benefit from
the fundamental suggestive design rules encoded in the system. This might explain
why the best designs were created by users who received relatively few suggestions
(see Figure (9.3)). In a real-world setting, users who are ignorant of a design domain
are the most likely users of a suggestive system. A test using untrained subjects
might be worthwhile.

Moving from the overall results to an analysis of the specific design sessions reveals
some potential problems with the two suggestive modes. From the questionnaires we
find that the Mode 1 users who felt they were influenced by the system also produced
the best designs. Why were some of their designs not as good as they could have
been? Recall that users 01 and 07 produced designs that were fairly good, but
could have been much better if they displayed a different symmetry. The subjects
could have designed an object with the appropriate symmetry; why didn’t they?
The answer perhaps lies in the three basic suggestive strategies described in Chapter
Seven. When three axis symmetry exists, the system will suggest all symmetries.
ranking them according to their desirability. When some single-axis symmetry exists,
the system will make suggestions to maintain the same symmetry. When the design
is asymmetric, the system will make suggestions to reduce asymmetry. If some single
axis symmetry exists, the system will not suzrest a different single-axis symmetry.
The general thinking behind this is that some symmetry is much better than none
at all and that once the user has specified some symmetry, it is probably easier to

get them to maintain it rather than change it. Is this a wise strategy?
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In the pre-suggestive mode. if the user is made aware of the optimal symmetry,
then yes, it is an adequate way to output the suggestions. User 07, for example
viewed an optimal suggestion and then chose to incorporate one of lesser quality. A
s stive system cannot force users to accept suggestions: the user has final author-
ity. User 01, on the other hand, would have benefitted from a suggestion to change
the existing symmetry. Recall that this user added a single-axis symmetric feature
to a three-axis symmetric design. (Recall from Chapter Six that there are symmet-
ric feature options, where the feature as built by the user is already symmetric.)
Although it was not the optimal symmetry for the situation, the system made no
suggestions to change it. This user was not aware that the design could be improved.

The strategy is definitely inadequate for the postprocessing mode. User 02 chose
the worst possible single-axis symmetry for a long bar-like block. What is worse is
that a second postprocess of the redesign would be guided by the maintain same
symmetry strategy and would not suggest improved symmetries.

The real issue here is that the system should not make suggestions that disagree
with the established intent of the designer. Although a fundamental premise of
this research is that the system is ignorant of the designer’s overall intentions, that
is, the design goals. there are obviously situations where some small aspect of the
user intent can be inferred and used to make the interaction more effective. In the
suggestions-during mode, for example, if the user has considered and rejected an
optimal suggestion in favor of another, the optimal suggestion should not be offered
again. This would be obtrusive and irritating. With reference to the Mode 1 cases
described above, if the user is made aware that X-axis symmetry is best and has
opted for Y-axis symmetry, then X-axis symmetry should not be suggested again.
If, however, the user has specified Y-axis symmetry without knowing that X-axis
symmetry is better, then of course X-axis symmetry should be suggested.

This shortcoming is easily corrected for the suggestions-during mode implemented
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here: simply encode more sophisticated rule bases that keep track of what the user
has and has not considered. In the postprocessing mode it is much more difficult
for the system to infer anything about the designer’s intent because there is no
suggestive interactivity in w-ch the user responds to different suggestions. The
implementation developed here instead outputs a large number of uninformed and
unrelated suggestions (suggestions are made with respect to every object, as if it was
the only object in the block) and leaves it to the user to combine them in a way that
improves the design. The designs of users 05 and 02 demonstrate that the users can
sometimes devise combinations that yield suboptimal and even poor designs.

One way to relieve the user of the error-prone combination task is to take the
entire design into account when generating suggestions. To overcome the “gridlock”
problem discussed in Chapter Seven, the system may be limited to nongraphical sug-
gestions and general recommendations (e.g. “Flat blocks are best if X-symmetric.”).
A more appealing solution is to allow the system to do the combining by performing
the entire redesign itself. This would require that the system contain knowledge
about allowable alterations to the initial form, knowledge to this point considered
segregated from the suggestive system and used only by the designer. In the con-
text of gauge tools, this knowledge would consist of the possible alernate locations.
orientations and symmetries of the individual features. Certain dimensions of the
features could not be varied because of the gauging requirements. The user would
input an initial design and information about allowable form variations and the sys-
tem would output a completed optimized redesign. In a more realistically complex
domain, formulation of interactivity methods to specify allowable form variations, or

conversely required form constraints, might itself be a significant problem.
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Figure 9.1: Design quality versus suggestive mode (Case A only).




()]

10

11

12

13

14

15

16

(5)

179

Design Quality versus Suggestive Mode. !
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CHAPTER X

CONCLUSION

[ntroduction

In this chapter we summarize our findings and clarify the overall conclusions
derived from the research. First, a broader view of suggestive systems, emphasizing
their key functions and characteristics, is outlined. Then, the two major issues stated
at the outset are examined in the context of the research resuits. Major contributions

of the work are discussed. Finally, possibilities for further research are offered.

Suggestive Systems: A Broader View

Introduction

This section takes a broader view of suggestive systems by envisioning possible
systems that are extensions of the one described in this thesis. These possible future
systems and the system described in this thesis will share some general common
attributes. These attributes are explained and potential variations of system char-

acteristics related to each attribute are described. In this way, the potential range
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of suggestive systems is outlined. The attributes and related characteristics are dis-
cussed by taking a structural, procedural. and knowledge base view of suggestive

systems.

A Structural View

Figure (10.1) is a structural view. The major components of the system are shown
without showing the procedures carried out by them. First, a designing agent can
produce alteration steps, called features. Suggestive agents can similarly create al-
teration steps, called s::ggestions, usually in response to the actions of the designing
agent. One or more design representations are changed by accepting some alteration
step as part of the design. We will assume that the designing agent is authoritative,
meaning that it controls the creation of the evolving design by choosing which alter-
ation step to accept. The designing agent is also normally a human being. Also, note
that it is required that the suggestive agents have the capability to produce alteration
steps, and that these alteration steps are dependent upon the design representations.
This requirement would exclude systems like those described in Chapter Four, and
other influencing situations, such as requiring a designer to work under great stress
or in unfamiliar surroundings.

These components exist within a certain context and are related to various design
domains. A domain is the area of interest about which suggestions are made. Design
for assembly is the domain for the system described in this thesis. A contezt is the
more general type of design effort. The design for assembly domain is in the context
of designing solid objects. The domain of “writing for readability” is in the context
of text composition. Each suggestive agent is associated with a domain. In the
system developed here, there is only one suggestive agent, associated with design for

assembly. If there is more than one suggestive agent, it is reasonable to assume that
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they are all in the same context. A combination design for assembly and writing for
readability suggestive system, for example. seems highly unlikely.

There should be a separate representation, used by the designing agent. which
facilitates the human-computer interactivity and the production of graphical ren-
derings of the design. This representation is related to the other representations
used by the suggestive agents. Ideally, each suggestive agent should have its own
representation, tailored to its respective domain, but it is possible for two or more
suggestive agents to share one multi-purpose representation. This might happen if
the alteration steps for the domains are similar. Dixon et al. have also proposed
the idea of many design representations related to various design concerns [Dix.1].
In their architecture. a primary representation of alteration steps is created from
the designer input. Secondary representations, corresponding to other aspects of the
design (manufacturability evaluation, graphics output, etc.) are derived from the
primary representation. In the system described here, the primary representation
would be the object list representation of the design, and secondary representations
would be portions of each object that are used for various tasks. An alternate view
is to consider the underlying CAD model to be the representation used by the de-
signing agent and the object list representation to be the representation used by the
suggestive agent. In this view, two representations are used.

Given the requirement of a single designing agent, the only attributes of the
above structural description that can vary are the number of suggestive agents and

the number of design representations.

A Procedural View

A procedural view of suggestive systems emphasizes what the systems do. The at-

tributes made evident from a procedural view will pertain to the processes performed

by the system.
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The highest level process performed is the particular suggestive mode that is
implemented. If this is considered an attribute. it can be varied by implementing
various suggestive modes. Three different modes were implemented in this research
effort.

Looking more specifically at the way the designing agent inputs alteration steps
reveals two attributes. The first is the number of alteration steps that are avail-
able. Obviously, this attribute is varied by simply adding more. A second attribute
is the number of alteration steps that can be built before allowing the suggestive
agents to generate suggestions.! In the familiar feature-based CAD context. if this
number is more than one. several tentative alteration steps could be buiit before in-
voking any suggestion-generation procedures. This attribute includes the possibility
of compound alteration steps, where the individual alteration steps have some prede-
fined relationship to one another. The system described in this thesis permits more
than one alteration step only when there is a symmetry relation between them. As
explained in Chapter Eight, suggestions are always generated from a single feature.
Symmetric feature groups are treated like a single feature when generating sugges-
tions. The problem of generating suggestions from one or more unrelated features
was not considered here.

The suggestive agents also input alteration steps to the design, a process related
to several attributes. First is the idea that the designing agent can omit accepted
alteration steps from the design before the generation of suggestions. As discussed in
Chapter Seven, this will cause the suggestive agents to generate different suggestions
than would be generated if the entire design representation was used. A second,
similar attribute is the capability of the designing agent to pick the alteration step

that motivates the generation of suggestions. In the system described in this thesis.

L Although this attribute applies only to the during mode implemented here.
it is considered important enough to warrant discussion.
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either the feature or a system-specified object motivated the suggestions.

Another attribute related to the suggestive agents is the sophistication of the
suggestions that are output. This will be explained in a feature-based CAD context.
but the idea is very general. In short. what can the suggestive agents generate from
a design alteration step? Consider a groove feature and the design for assembly
suggestive agent described in Chapter Eight. All suggestions are the result of only
duplicating and moving t& ;roove. An added capability would be to alter vari-
oué dimensions ¢. e sugg: ..on grooves. This would require more suggestive rules
to output suggestions that use these parametrically altered grooves appropriately.
An even more sophisticated suggestion would be to replace the groove with some
other type of alteration step that may be appropriate and would improve the design.
Age  more productions, of a more complex nature, wc .id be required. Related to
the . ..a of suggestion sophistication is an attribute that would indicate the amount
of useful information in each alteration step representation. More detailed repre-
sentations might contain ir’:rmatior :bout allowable form variations and properties
that describe function. This informai:on would certainly help in the generation of
more sophisticated suggestions.

To summarize, the attributes related to a procedural view of suggestive systems
are: the number of suggestive modes, the number of different features, the number
of design agent alteration steps allowed before generating suggestions, the capabil-
ity to omit #ccepted alteration steps from the design, the capability to choose the
motivating alteration step, the sophistication of the suggestions, and the amount of

informatiorn :cpresented in ea... alteration step.
A Know ge Base View

Two attributes are evident from considering a knowledge base view of suggestive

systems. The first is the capability of the system to perform some type of automated
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knowledge acquisition. How easily can a new suggestive domain be implemented
without explicit programming? This attribute will vary with the amount of user
intervention required. One possible method for automated knowledge acquisition 1s
described in the “Further Work” section below. A second attribute is now sensibly
the suggestions interact with the rest of the design. The rudimentary geometric
reasoning capability descrioed in Chapter Eight is an example of this sensibility. Note
that this att-->ute is different than the suggestion sophistication attribute, which
pertains to variety and complexity of the possible suggestions. The sensibility of
the suggestions pertains to how informed the system is about the rest of the design
when generating suggestions.

Figure (10.2) summarizes this section by listing all of these attributes and showing
how they can vary. Certain attributes can vary by discrete values, and these rows
of the chart are hown subdivided into individual boxes. If an attribute can vary in
a continuous wa_, the row is shown undivided. The “X” marks indicate where the

suggestive system described in this thesis would be placed on the chart.

Two Major Issues

Recall from Chapter One that this research had two goals: to help designers
obtain better design ideas during the preliminary design process, and to create a
computational tool for concurrent engineering. The hypothesis was that these two
goals could be achieved with a system that made intelligent purposeful suggestions
to designers during the preliminary design phase. These suggestions embody infor-
mation that is different than the information normally used by the designer when
creating the object. Most importantly, the suggestions are not based on design spec-
ifications. This hypothesis naturally implies a basic question: will these suggestions

actually influence designers? The data collected in the user tests performed here in-
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dicate (perhaps weakly) that suggestions can favorably influence designers and help
them create better designs.

The suggestions seemed to give users better design ideas. Although the data did
not show any gross effect, for the small number of subjects it did show that user
groups that received suggestions had a higher fraction of users with good designs.
Unfortunately, the results do not indicate the best method to provide suggestions.
Further research is required to answer this question.

Regarding the effectiveness of an intelligent suggestive CAD system as a tool for
concurrent engineering, it was seen that most of the users who received suggestions
stopped using the original design for assembly charts very early in the design process.
and relied solely on the system’s assistance. They seemed to prefer the system over
the charts. Their completed designs were as good or better than those of the unaided
users. For the user groups tested, the computational suggestive system seemed to

provide as much help as the charts.

Contributions to Other Disciplines

In the general area of design, we have developed a system that provides design im-
provement information to a designer during the preliminary design phase. Although
refinement and additional testing are required, indications are that the system can
help designers create better designs.

An architecture for an intelligent, feature-based computer-aided design system has
been implemented. This architecture allows a system that can analyze an evolving
design and actively suggest changes to the design to improve it with respect to the
analysis domain. The architecture is based on a fe: re representation of the design
and a production rule representation of design knowledge.

The contributions to the area of artificial intelligence, while not significant, are

worthy of note. The work here was primarily an application of existing artificial
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intelligence programming techniques that are used to encode heuristics. Production
rules for making design improvement suggestions were devised. Since these sugges-
tions are intended to give designers new design ideas. the rules that cause them are
both inherently heuristic and heuristic in the sense that the designer’s subsequent
actions are unknown. This additional uncertainty makes formulation of a suitable
rule base very difficult.

Unfortunately, the results in the area of human-computer interaction were not
as conclusive as originally hoped for. Most of the users that received suggestions
created high quality designs. There are no conclusive results, however, that indicate
which of two suggestive modes is best. [t was evident that a feature library is an
effective interface for a CAD sysfem. Users can design quickly by using sensible
entities that seem natural to them. The idea of incorporation of features, however,
was a problem. It was seen that users often desire to make wholesale changes to a
design in the middle of a session, and the architecture used here really didn’t allow
this (see Chapters Five and Nine). An “undo” capability is absolutely necessary.

The goal of the user testing was to answer a very general question: do suggestive
systems help? Our interest was in determining if suggestive systems provide some
advantage to designers. and if so, which of two very different systems is better. We
were not interested in fundamental, low-level cognitive processes of the designers.
It is unfortunate that the data collected does not show a more distinct gross effect
with the small number of subjects. There is a trend indicating the potential benefit
of suggestive modes and this effect might be clarified by an experiment with more
subjects. Once a general effect is demonstrated with more conclusive data, it would
be interesting to study the lower-level cognitive processes associated with designing

while influenced by suggestions.
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Finally, we discuss possibilities for future work. Potential subsequent efforts seem
to be of two basic types. One is to extend and improve suggestive svstems like the
one implemented here. The other is to learn more about how designers can be
favorably influenced during the design process. The extensions and improvements

will be discussed first.

Extensions and Improvements

Of course one obvious extension is to implement suggestive systems for other con-
texts. This might reveal issues not brought to light with the implementations of the
system described in the previous chapters. Within any one context. better svstems
are those that have attributes that fall to the right in each row of Figure (10.2). If we
limit our consideration to a feature-based CAD context, many of the extensions and
improvements required for this more favorable rating would be fairly easy to achieve.
More suggestive modes could be added by changing the high-level calling procedures.
Additional features could be created and added to the system implementation. The
capabilities to omit objects from the representation and to choose the motivating
alteration steps are easy to achieve as long as there are correspondences between the
representation used for the interface and the representations used by the suggestive
agents.

Allowing the designer to pick an incorporated object to motivate the generation
of suggestions raises the special problem of properly taking into account the pres-
ence of any tentative features. Note that feature representations are not part of the
entire design representation, but still must influence the generation of suggestions.
This problem was har _ied in the system implementations developed so far with the
concept of an interim design representation, consisting of the feature and the object

list. Increasing the number of tentative features that are built before generating
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suggestions would make it more difficult to correctly interpret the important charac-
teristics of the interim design. Another potentially difficuit problem is to motivate
suggestions with more than one unrelated feature alteration step (or incorporated
object. or some combination of both). This would be equivalent to generating sug-
gestions with respect to an entire gross portion of the design that is made up of many
alteration steps. Information about allowable form variations would be useful here
also. This capability was not considered in this research.

Other obviously useful extensions would be more difficuit to implement. Increas-
ing the number of suggestive domains and design representations might require some
tvpe of parallel computation to efficiently generate suggestions about each domain si-
muitaneously. The system architecture must change to accomodate this. A question
arises as to how the suggestions should be generated. Should suggestions be out-
put for each domain separately, or should hybrid suggestions that are a compromise
between suggestive domains be produced?

Implementing some type of automated knowledge acquisition would also be dif-
ficult. As seen in this thesis, suggestive systems first analyze a design to determine
its quality and then suggest ways to modify the design to improve it. The analysis
portion is basically a classification problem. Examination of the design properties
allows the system to place the design in one of several classes, with the classes hav-
ing different design qualities. The suggested alterations would cause placement in a
more favorable class. A significant first effort would be to automate the acquisition
of knowledge required for the classification process. A useful system would be one in
which a number of designs with a range of corresponding design qualitites are used
to automatically generate a classification system. The system would use the design
representations and corresponding qualities to determine classification rules. The
qualitites would pertain to a particular suggestive domain with knowledge that was

not vet encoded. Once generated, the classification rules could be used to classify
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other designs.

Boose {Boos.1] has devised a method of knowledge acquisition for classification
problems based on the “personal construct psychology” introduced by Kelley [Kel.1l.
This method could possibly be extended to create design classification systems. In
the method, objects considered for the automated knowledge acquisition are taken
three at a time to determine how one is unlike the other two. This “unlikeness”
then becomes a property pertinent to the classification process. All objects are then
given a numerical value for this property, indicating the degee to which they have
the property. Several triplets are considered in this way in order to determine an
adequate number of properties for the classification. Consider, as Boose does in
(Boos.1], the problem of classifying potential vacation cities. Properties that might
appear include cost and average temperature. Assigning values to these properties
for each city and comparing the values could yield several heuristic rules. Cities that
are warm, for example, are usually cheaper.

In a feature-based CAD context, the objects used in the comparison would be
completed designs of known quality. The determined heuristics would provide a way
to determine the quality of other designs. In the system described by Boose, a human
user performs the comparison and the system automatically derives the rules. If the
designs are represented appropriately, the comparison process could be automated
to a certain degree, with the system making comparisons when it can and gracefully
relying on human intervention when it cannot.

Another difficult future effort would be the postprocess redesign system proposed
in Chapter Nine. Users would be able to create an initial design and specify allowable
variations to the alteration steps. The system would use this information to create an
optimized redesign. One problem is devising a way for the users to specify allowable
variations. It will be difficult for the users to know how the form can be changed while

still satisfying the function they intended. Another even more advanced possibility
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is to specify a design in terms of its functions only. With this input, a system with
design alteration steps associated with various functions might be able to perform
simple initial designs with no human assistance. The major technical problem is that
for all but a few design domains (e.g. for digital circuit design truth tables specify

function), there exists no means to specify the function of a design.

Favorably Influencing Designers

Aside from developing better, more powerful suggestive systems. it would be
interesting to investigate different ways to influence designers during the design pro-
cess.

The suggestive system described here made suggestions about individual parts
of the design. An alternate technique is to make suggestions about entire designs.
Consider, for example, an experiment in which subjects are assigned the task of
designing some complex object, say some type of metal removal machine tool. Along
with the design specifications they are shown other metal removal tools that clearly
do not meet the given functional specifications. What attributes of the other designs
will appear in their design solution? What attributes will not? How is their design
solution dependent upon their previous exposure to similar designs? Will subjects
that are shown designs that are considered to be good also produce good designs?
Answers to these questions might indicate a way to promote accepted “good design
practices” by influencing designers with previous successful designs.

A related experiment might attempt to encourage noveity.? The goal here is to
cause designers to produce designs that are not necessarily better, but certainly out of
the norm. Consider now a group of experienced machine tool designers. Also assume

that given a set of fairly standard machine tool specifications, because of accepted

2 Recall from Chapter Two that Malhotra et al. have proposed a method to
measure the similar abstract notion of originality. See {Mal.1]

.
4
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design practices and conventions. all will produce very similar designs. What can be
done to encourage the creation of novel solutions? Can the designers be stimulated
in some way? Could other unrelated designs provide fresh ideas? If so, how are their
design solutions influenced by the unrelated designs. Answers to these questions

could provide a way to generate a larger number of innovative designs.
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APPENDIX A

INTRODUCTORY CAD ASSIGNMENT
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FEATURE-BASED CAD ASSIGNMENT

You task is to produce a line printer piot as shown below. Please note the
following points:
1. You must do a hidden line removal in the isometric viewport (i.e.
upper right box).
2. The initial block is generaily long. Refer to your
Boothroyd/Dewnurst handouts for a definition of *long”.
3. The steps are symmetric about the X-axis of the block. (Again. refer
to your handout for a definition of "X-axis").
4. All other features are asymmetric. They are not made with the
symmetric feature options.
5. Just make a model with the features in the same configuration.
Dont worry about precise dimensions.

What you hand in (Due 29 March 1988):
1. The piot.
2. On the plot, write the name you gave to your model (I suggest the
first six characters of your iast name), and your full name. Write these
on the border of the plot outside the viewports.
3. On a seperate attached sheet of paper, describe any difficuities you
had, and the times you will be available for a 2 hour user testing
session.

Remember the log-on procedure:
1. Turmn on the machine and press carriage return.
2. USERNAME: DESLAB, PASSWORD: ME516 (followed by carriage
returns.)
3. DDM (carriage retumn)
4.1 RETRIEVE A FILED MODEL.
5. MODEL NAME: STARTE
6. _!_DESLABCAD
7. Remember to keep Capsl.ock and ask Craig Thams (in the back room)
for any heip.

O
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APPENDIX B

DESIGN ASSIGNMENT AND QUESTIONNAIRE



FEATURE-BASED DESIGN ASSIGNMENT

User Number:
Suggestive program:

Introduction

Consider the idea of gauge pairs for tolerance. A groove and a box, for
example, are gauge pairs. The groove can gauge one dimension of the box
since if the box fits into the groove, the box dimension satisfies an upper
tolerance. On the other hand, if the box does not fit into the groove, the box
dimension does not satisfy an upper tolerance. A box of known size may
similarly gauge a groove.

A hole and a peg are gauge pairs. If the peg fits into a known hole diameter.
the peg diameter satisfies an upper tolerance. If the hole fits over a known
peg diameter, the hole diameter satisfies a lower tolerance.

A

Steps and chamfers are gauge pairs with other steps and chamfers. They are
not gauge pairs in the sense that they can determine if dimensions satisfy
tolerances: rather they can be used to determine if the shapes of the pairs
match. Fit the gauge against the gauged part, and if any light passes
through, the gauged part is unacceptable.




Design Specifications

Design a muiti-purpose gauge tool that wili gauge required clearances of
other parts in a machine. This gauge tool will be fed with a vibratory bowi
feeder, to be piaced and stored in a larger machine where all of the gauged
parts are located. A service person wiil later find the gauge tool when
performing routine gauging service. The dimensions given below are
approximate to the extent that you can estimate them while designing free
hand.

Design Assignment

Design the gauge tool for the following two cases:

Case A:

ThHe gauge tool must perform the following gauging operations. [t must
gauge that a groove is greater than three units wide. [t must gauge two
boxes. One that has a dimension of about two units, and one that has a
dimension of about four units. It must gauge that a peg is less than about 2
units in diameter. It must gauge either a step or a chamfer (you choose),
with characteristic dimension of about 1.5 units.

Optimize the assemblability of the tool.

Models created for Case A (in order of creation):

Case B:

The gauge tool must perform the following gauging operations. It must
gauge a chamfer with characteristic dimension of about 1 unit and a step
with characteristic dimension of about three units. It must gauge that a peg
is less than about 1.5 units in diameter. It must gauge a box with dimension
about two units.

Optimize the assemblability, minimize the volume, and minimize the number
of machining operations required to produce the gauge tool.

Models created for Case B (in order of creation):

Obtain line printer plots for both cases and annotate them to explain how



the design specifications are met.
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SUGGESTION PROGRAM QUESTIONAIRRE

User Number:
Suggestive program:

1. Did the suggestions influence you? Please explain.

2. Did you view all of the suggestions for a feature before deciding which
one to use? Please explain.

3. Did your ideas about the design change repeatedly as you viewed more
suggestions? Please explain.

4. Did you do any total redesigns? How did your design evoive?

5. Were the graphical suggestions heipful? Was the text explanation
helpful?

6. Did you enjoy using the program? What should be changed? Please
comment.



7. Did you refer to the Boothroyd/Dewhurst charts while designing?
Please explain the circumstances.
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