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A Coalescent Simulation of Marker Selection Strategy
for Candidate Gene Association Studies
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Recent efforts have focused on the challenges of
finding alleles that contribute to health-related
phenotypes in genome-wide association studies.
However, in candidate gene studies, where the
genomic region of interest is small and recombi-
nation is limited, factors that affect the ability
to detect disease-susceptibility alleles remain
poorly understood. In particular, it is unclear
how varying the number of markers on a haplo-
type, the type of marker (e.g., single nucleotide
polymorphism (SNP), short tandem repeat (STR)),
including the causative site (cs) as a genetic
marker, or population demographics influences
the power to detect a candidate gene. We evalu-
ated the power of association tests using coales-
cent-modeled computer simulations. Results
show that an effective number of markers on a
haplotype is dependent on whether the cs is
included as a marker. When the analyses include
the cs, highest power is achieved with a single-
marker association test. However, when the cs is
excluded from analyses, the addition of more
nonfunctional SNPs on the haplotype increases
power to a certain point under most scenarios.
We find a rapidly expanding population always
has lower power compared to a population of
constant size; although utilizing markers with a
frequency of at least 5% improves the chance of
detecting an association. Comparing the muta-
tional properties of a nonfunctional SNP versus
an STR, multi-allelic STRs provide more or com-
parable power than a bi-allelic SNP unless
SNP frequencies are constrained to 10% or more.
Similarly, including an STR with SNPs on a
haplotype improves power unless SNP frequen-
cies are 5% or more. � 2007 Wiley-Liss, Inc.
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INTRODUCTION

The search for alleles that contribute to health-related
phenotypes using statistical associationmethods is proceeding
on two different scales, genome-wide and candidate gene
[Goldstein et al., 2003]. In response to large-scale initiatives
such as the InternationalHapMapProject [Gibbs, 2003],many
recent studies have focused on the challenges presented in
genome-wide scans. However, candidate gene studies present
with different obstacles compared to genome-wide studies and
approaches developed to meet the challenges of scanning the
genome may not be ideal for the needs of candidate gene
analysis. Recombination is the dominant force on linkage
disequilibriumon the genome-wide scale.Whereas in the small
genomic regions occupied by candidate genes, recombination is
less important and the processes of mutation and genetic drift
are paramount in determining patterns of linkage disequili-
brium. The primary interest in selecting markers for genome-
wide scans is to reduce the genotyping burden by selecting an
informative subset of SNPS to tag specific regions [Zhang et al.,
2002]. Some candidate gene studies share this goal, but
candidate gene studies are also interested in testing functional
hypotheses that relate a particular marker allele to a disease
phenotype. There is no guarantee that the same set of markers
will serve both purposes equally well.

The potential for success of both genome-wide and candidate
gene studies critically depends on the genetic markers chosen
for analysis. Genome-wide scans use single nucleotide poly-
morphisms (SNPs) almost exclusively, because of their abun-
dance throughout the genome, their low mutation rate, and
their amenability to high-throughput genotyping platforms. In
contrast, candidate gene studies use many different kinds of
genetic markers, often with different mutational properties, in
order to extract all of the information available from the region
of interest. In addition to SNPs, both variable number tandem
repeat (VNTR) and short tandem repeat (STR) loci appear as
markers in substance abuse candidate genes. For example,
Anney [Anney et al., 2004] tested for association between
nicotinedependenceanda tetranucleotide repeat inthe tyrosine
hydroxylase gene. Zhang [Zhang et al., 2004b] investigated
whether polysubstance abuse was associated with a trinucleo-
tide repeat in the cannabinoid receptor type 1 gene. Li [Li et al.,
2004] tested for association between methamphetamine abuse
and a heptanucleotide repeat in exon III and a 120-bp promoter
VNTR in thedopamineD4receptor gene.Contini [Contini et al.,
2006] tested whether alcohol dependence and antisocial
behavior were associated with a 30-bp VNTR in the promoter
region of the monoamine oxidase A gene.

Moreover, investigators have used haplotypes composed of
mixtures of repeat polymorphisms and SNPs to perform tests
for association between candidate genes and substance abuse
phenotypes. Sullivan [Sullivan et al., 2001] investigated
association between haplotypes composed of two SNPs and
one dinucleotide repeat in the dopamine D5 receptor gene and
smoking initiation and nicotine dependence. Goldman [Gold-
man et al., 1997] tested whether alcoholism and substance
abuse were associated with a three-locus haplotype composed
of a STR and two SNPs in the dopamine D2 receptor gene.
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Despite the use of various types of markers in association
tests, it is not clear how the mutational properties of different
polymorphisms affect the power to detect a causative
variant. In particular, how does a biallelic SNP compare to a
multi-allelic STR? Generally, SNP markers have such a low
mutation rate that the probability of a recurrent mutation
is unlikely and allelic identity is likely to be by descent.
In contrast, STRs, which are characterized by step-wise
mutations, have a high mutation rate [Valdes et al., 1993;
Weber and Wong, 1993]. The back and forth nature of STR
mutations could disrupt associations because allelic identity
may be by state rather than by descent [Valdes et al., 1993;
Di Rienzo et al., 1994]. The question as to which type of
marker providesmore statistical power in association tests has
been investigated in terms of genome-wide scans [Chapman
and Wijsman, 1998; Xiong and Jin, 1999]; however, the issue
is poorly understood in low-recombining candidate gene
systems.

The optimum number of markers for a candidate gene
analysis is an open question. A computer simulation study
found that a large number of markers improves the power of
association analyses on a genomic scale where recombination
is likely [Long and Langley, 1999]. In these simulations, many
markers were necessary to achieve high power because
recombination broke linkage disequilibrium over moderate
genetic map distances. However, we postulate that there is a
limit to the number of markers necessary in gene regions
with low recombination. We expect that information will be
saturated beyond a threshold number of markers.

In the present study, we used coalescent-modeled computer
simulations of population-based sampling to investigate
factors that influence the ability to detect association between
aphenotype andmarkers at a candidate locus.We investigated
the composition of optimal marker sets with respect to three
genomic factors 1) the kind ofmarker (e.g., SNP, STR), 2) using
haplotypes composed of mixtures of SNP and STR markers,
and 3) inclusion of the causative variant in the marker set. We
also investigated these variables under differing demographic
variables.

METHODS

The power to detect a candidate genewas investigated under
several scenarios that differed with respect to the effect of the
candidate gene on the phenotype and the composition of a set of
genetic markers. Under each scenario, we generated a large
number of replicate data sets, tested each data set for
association, and tabulated the percentage of datasets forwhich
the effect of the candidate gene was statistically significant.

Simulation of Candidate Gene DNA Sequences

DNA sequences were simulated using the coalescent model
[Hudson, 1990; Hudson, 1993]. (1) The genealogy of a sample of
DNA sequences at a candidate gene locus was simulated by
pairing sequences at random until all sequences in the sample
linked back to a commonancestral sequence. (2) A set number of
mutations was randomly placed on the genealogy to define
polymorphic sites within the candidate locus. (3) One mutated
site was chosen to contribute to variability to a quantitative
trait. Hereafter, this site is referred to as the causative site (cs).
The remainingmutated sites were assigned nonfunctional roles
and their alleles served only as markers in the association
analyses. In some analyses, the alleles at the cs also served as
markers for testing association between the candidate gene and
thequantitative trait.EachsimulatedDNAsequencewasstored
as a haplotype consisting of one allele at the cs and one allele at
each polymorphic nonfunctional site. (4) Diploid individuals
were created by randomly pairing simulated haplotypes.

Quantitative Trait Values

A continuous trait with a roughly bell-shaped distribution
was generated using Long and Langley’s formula [Long and
Langley, 1999],
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where Yi denotes the quantitative trait of the ith diploid
individual. The environmental component of the trait is
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quantitative trait variance that is due to the cs. The genetic
component of the quantitative trait is contributed by
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, where one cs allele is arbitrarily

designated ‘A’ and the other cs allele is designated ‘a’.
QiA is the number of ‘A’ alleles in the ith individual’s genotype
and Qia is the number of ‘a’ alleles. The letter q denotes the
frequency of the ‘a’ allele.

Association Test - Multiple Regression

For this investigation, which simulates a population-based
candidate gene study of unrelated individuals, indicator
regression [Neter et al., 1990] was used to test for association
between individual markers or haplotypes and a quantitative
trait. The regression model was specifically:

Yi ¼ b0 þ b1Xi1 þ b2Xi2 þ . . .þ bj�1Xi; j�1 þ ei

where Yi represents the quantitative trait value for the ith
diploid individual. Xi1, . . ., Xi, j�1 are the ith individual’s
genotypic indicator for the number of copies of the jth
haplotype. b1, . . ., bj�1 are the estimatedmean genotypic values
for the jth haplotype. The residual error, denoted by ei is the
estimated environmental deviation. Under the null hypothesis
of no association between any one of the haplotypes at the locus
and the quantitative trait, b1¼ b2¼ . . . bj-1¼ 0. A standard
F test was used to reject the null hypothesis in favor of the
alternative hypothesis that at least one haplotype is associated
with the quantitative trait. One or both of two scenarios can
result in a haplotype-trait association: 1) one of the marker
alleles in the jth haplotype is the cs, or 2) a nonfunctional
marker allele in the jth haplotype is in linkage disequilibrium
with a cs allele.

Power to Detect Association

The power to detect association was estimated as the
proportion of 1,000 replicate simulations for which the
regression null hypothesis was rejected at the a¼ 0.05 level
of significance.

Simulation Models

The sample size was set at 250 diploid individuals in all
simulation models. The proportion of total phenotypic varia-
tion accounted for by the cs was varied from 1% to 25%. For
haplotype-based analyses, we selected the most ancient
mutation from all polymorphic sites as the cs. For genetic
markers analyzed individually, the cs allele frequency was set
at 50%. In preliminary analyses, the power to detect an
association was similar when the frequency of the cs allele was
set at 30, 40, or 50%, thus for simplicity all results are reported
for a cs allele frequency equal to 50%.

To investigate how varying the number of markers in a
haplotype affects the power to detect an association, we varied
the number of polymorphic sites on a haplotype. Depending on
the analysis, 2, 5, 10, 15, or 20 SNPswere superimposed on the

Candidate Gene Association Studies 87



gene-genealogy. SNPs were distributed on the genealogy
according to a random uniform variable and the total branch
length of the tree [Hudson, 1993].

To study how the mutational property of a STR polymor-
phism affects the power of an association test, one STR locus
was generated in the coalescent model. The stepwisemutation
approachwas appliedwhich assumes that the STRmutation is
single-step and reversible. The number of mutations on a
branch in the genealogy was a Poisson random variable with
parameter l¼ mt, where m is the mutation rate and t is the
branch length. The STR mutation rate was set at 10�4.

RESULTS

Number of Markers in a Haplotype

Causative SNP (cs) excluded from haplotype. Figure 1
presents the effect of varying the number of markers on a

haplotype when the cs is not in the marker-set. Each panel
evaluates the performance of haplotypes composed of 2, 5, 10,
15, or 20 nonfunctional SNPs as a function of the % of total
phenotypic variance contributed by the cs. The four panels
represent combinations of population size (constant, growing)
and allele frequency constraint (no minimum, 5% or over). As
expected, in all panels power is higher with an increasing
contribution of the cs to total phenotypic variation. Power also
increases universally with more SNPS in the haplotypes.
However, the benefit of increasing the number of markers
eventually plateaus. In the case of constant population size and
no minimum allele frequency, 10, 15, and 20-marker hap-
lotypes have considerably more power than 2- and 5-marker
haplotypes (Fig. 1a). Thebenefit of addingmarkers approaches
saturation with 10 markers on a haplotype and completely
plateaus with 15- and 20-marker haplotypes. In contrast, if
marker allele frequencies are 5% or greater, then fewer

Fig. 1. A–D: The effect of varying thenumber ofmarkers onahaplotypewhen the cs is excluded fromanalyses.Haplotypes are composed of 2, 5, 10, 15, or
20 nonfunctional SNPs as a function of the% total phenotypic variance contributed by the cs. The power to detect a significant association was evaluated for
population size, (constant, expanding) and SNP allele frequency constraints, nominimum (A&C) and 5% or over (B&D). [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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markers are necessary to achieve comparable power (Fig. 1b).
The power of a 5-marker haplotype increases considerably and
resembles the power of a 10-marker haplotype from Figure 1a.
The power of 10, 15, and 20 markers is virtually identical, and
onlymodestly higher than a 5-marker haplotype. In the case of
rapid population expansion with no allele frequency con-
straints (Fig. 1c), power continues to increase with 15 and
20-marker haplotypes rather than reaching a plateau. Despite
higher power with additional markers, the probability of
detecting a candidate gene remains under 60% unless the cs
accounts for 25% of the total phenotypic variance. The
situation improves, however, if allele frequencies are at least
5% (Fig. 1d). In this scenario, power increases considerably,
although it remains lower than the constant population size
model shown in Figure 1b.

Thus, when haplotypes do not contain the cs, 10 to 15
nonfunctional markers have more power to detect an associ-
ation compared to a smaller number of markers. In most
scenarios, power plateaus with 15markers in a haplotype. The
one exception is the case of population expansionwith no allele
frequency constraints.Here, power increasedwith20markers,
however, more power can be obtained with fewer markers if
allele frequencies are at least 5%.

cs included in haplotype. The effect of varying the
number ofmarkers in ahaplotypewhen the cs is in themarker-
set is shown in Figure 2. The two panels present the power of
haplotypes composed of 2, 5, or 10 nonfunctional SNPs as a
function of the % of total phenotypic variance contributed by
the cs. Twoelements of population size, constant versus growth
and a minimum allele frequency of at least 5% were evaluated
in simulations. If the cs is included in the haplotype, then
power decreases as more nonfunctional markers are added to
themarker-set regardless of population history (Fig. 2a and b).
Highest power is obtained when the cs is analyzed alone,
however, power is only slightly lower with a 2-marker
haplotype (data not shown). Thus, if a marker is strongly
believed to be functional, then nonfunctional markers should
not be used in the analyses.

STR Versus SNP Markers

Figure 3 presents the power of a single STR relative to that of
a single nonfunctional SNP. Single-locus tests were evaluated
as a function of the % of total phenotypic variance contributed
by the cs. The six panels are distinguished by various
configurations of population size (constant, growing) and
heterozygosity levels (no minimum, 9.5% or more, 18% or
more). In all panels, power is higher when the cs accounts for a
greater proportion of the total phenotypic variation.Moreover,
a STR polymorphism provides either comparable or higher
power thanaSNPunless theSNP is common in thepopulation.
Under the scenario of a constant population size with no
heterozygosity constraints, a STR has considerably more
power than a SNP (Fig. 3a). If SNP and STR locus hetero-
zygosity is at least 9.5%, then theSTRhasonlymodestlyhigher
power compared to the SNP (Fig. 3b). With a more rigorous
heterozygosity threshold of 18%, thepower of aSNPandSTR is
similar (Fig. 3c). Under conditions of population growth and no
heterozygosity constraints, a STRhasmore power compared to
aSNP (Fig. 3d). The difference between the power of a SNPand
a STR somewhat resembles the pattern shown in Figure 3a,
however, here, overall power is lower. In the case where
heterozygosity is least 9.5%, the power of a SNP and STR is
identical (Fig. 3e). If heterozygosity is 18% ormore, then a SNP
outperforms a STR (Fig. 3f) and approaches the level of power
found in a constant population size model (Fig. 3c).

Regardless of population demographics, locus heterozygos-
ity constraints had virtually no effect on the power of a STR,
whereas the power of a SNP improved substantially with
stricter allele frequency cutoffs. These findings show that the
multi-allelic nature of a STR is advantageous relative to a bi-
allelic SNP, unless SNP frequencies are at least 10%.

STR and SNP Haplotype Marker-sets

The power of haplotypes composed of two nonfunctional
SNPs and oneSTRor three nonfunctional SNPs is presented in
Figure 4. Haplotypes were evaluated as a function of the % of

Fig. 2. A–B: The effect of varying the number of markers on a haplotype when the cs is included in the analyses. In addition to the cs, haplotypes are
composed of 2, 5, or 10 nonfunctional SNPs as a function of the% total phenotypic variance contributed by the cs. The power to detect a significant association
was evaluated for two conditions of population size, constant (A) and expanding (B). For all simulations, SNPallele frequencieswere at least 5%. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Fig. 3. A–F: The power of a single STR relative to a single nonfunctional SNP as a function of the % total phenotypic variance contributed by the cs. The
power to detect a significant associationwas evaluated for population size, (constant, expanding) and heterozygosity constraints, nominimum (A&D), 9.5%
or over (B & E), and 18% or over (C & F). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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total phenotypic variance contributed by the cs under con-
ditions of population size (constant, growing), and hetero-
zygosity constraints (nominimum, 9.5%ormore). In the case of
constant population size and no heterozygosity constraints,
1-STR/2-SNP haplotypes have more power than 3-SNP haplo-
types (Fig. 4a). However, if heterozygosity is at least 9.5%,
then power is essentially identical between 1-STR/2-SNP and
3-SNP haplotypes (Fig. 4b). When simulation conditions are
modified to account for population expansion, we find trends
similar to those found when the population size is constant,
albeit, overall power is reduced (Fig. 4c and d). Thus, haplo-
types composed of amixture of aSTRandSNPmarkers provide
either comparable or more power compared to haplotypes
constructed entirely of SNPs.

DISCUSSION

There are different obstacles to overcome when considering
marker selection in a candidate gene versus a genome-wide
association study. On a genome-wide scale, recombination
plays a prominent role influencing linkage disequilibrium;
while mutation and genetic drift are the predominant forces
generating linkage disequilibrium in candidate genes. SNPs
are the primary marker used in genome-wide scans, whereas,
numerous types of markers with different mutational proper-
ties are used in candidate gene studies. There is a considerable
effort to develop marker-selection strategies for large genome
segments [Bader, 2001; Byng et al., 2003; Huang et al., 2003;
Stram et al., 2003;Weale et al., 2003; Halldorsson et al., 2004];

Fig. 4. A–D: The power of haplotypes composed of one STR and two nonfunctional SNPs or three nonfunctional SNPs as a function of the % total
phenotypic variance contributed by the cs. The power to detect a significant association was evaluated for population size, (constant, expanding) and
heterozygosity constraints, no minimum (A & C) and 9.5% or over (B & D). [Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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however, it is not clear how well such strategies apply to
small, low-recombining regions such as candidate genes. In
this study, we used coalescent-based computer simulations
to investigate factors that influence the power to detect a
candidate gene.

The following factors were evaluated in a non-recombining
candidate gene system: 1) the number of markers in a
haplotype, 2)whether or not the cs is included in thehaplotype,
3) polymorphisms with different mutational mechanisms
(STR versus SNP), 4) allele frequency constraints, 5) hap-
lotypes composed of different types of polymorphisms, and 6)
population demographics. However, these are not the only
factors that determine the power of a study. We did not
investigate the contribution of sample size because there is
no question that larger samples have more power. Also, we
did not examine the effect of inferring haplotype phase from
diplotype data. This is because the conditions of our simu-
lations, i.e., common polymorphisms in non-recombining
regions, enable accurate inference of haplotype phase using
the EM algorithm [Excoffier and Slatkin, 1995; Hawley and
Kidd, 1995; Long et al., 1995]. Therefore, adding a haplotype
inference step to our simulations would have needlessly
increased computations. We did not investigate the issue of
correction for multiple tests because the regression procedure
that we used accounts for multiple haplotypes at a locus. Of
course, if one were evaluating multiple candidate genes, a
multiple test correction such as Bonferroni’s would be
necessary. Lastly, evaluating the power to detect the effect
of a haplotype that carries more than one causative site
[Hamon et al., 2004; Hamon et al., 2006] was beyond the scope
of this study. It would be a suitable objective for a subsequent
study.

We began by investigating the power to detect association as
a function of the number of markers on a haplotype. We found
that the answer differed depending on whether or not the
marker-set included the cs. When the cs is included in the
analysis, the highest power is achieved when the cs is the only
marker. The possibility of this phenomenon was suggested by
Zhang and colleagues [Zhang et al., 2002; Zhang et al., 2004a].
The placement of more nonfunctional markers on the hap-
lotype decreases the power. Power is lost because non-cs
markers spread the cs over etiologically identical haplotype
classes, and thereby, needlessly inflate the degrees of freedom
associated with the F test. We conclude that analyzing strong
candidate polymorphisms alone will achieve the highest
power. This supports the recent recommendation to prioritize
markers by function in association studies [Tabor et al., 2002;
Rebbeck et al., 2004]. Functionally irrelevantmarkers dampen
the signal of strong candidates. However, a two-marker
haplotype (the cs and one nonfunctional SNP) does not
compromise power much and will increase the power if the
candidate gene is correct but the wrong functional marker has
been selected.

Association analyses performed without the cs in the
marker-set present a very different picture with respect to
the optimal number of markers on a haplotype. We find that
addingmarkers now enhances the power to detect association.
This is because each marker increases the chance that at least
onemarkerwill be in strong linkage disequilibriumwith the cs.
Nonetheless, the power reaches a plateau.As shown (Fig. 1), 15
markers are sufficient to saturate the power curve in several
scenarios; however, the actual number of makers needed is
sensitive to the population demographics. Growing popula-
tions require more markers on haplotypes than do stable
populations. This is because in growing populations most
mutations creating markers appear in the terminal branches
of the genealogy and are thus rare. Our result agrees with
Zollner and vonHaeseler [Zollner and vonHaeseler, 2000]who
found a lower amount of linkage disequilibrium in an

expanding population compared to a population of constant
size.

A marker site with a rare allele does not increase power.
Regardless of cs allele frequency, high linkage disequilibrium
is only possible with a commonmarker allele. With unselected
SNPs, moremarkers on a haplotype are necessary because the
chance that there is a higher frequency allele in linkage
disequilibrium with the cs is lower. Choosing markers
with minor allele frequencies of at least 5% increases the
chance that at least one marker is in strong disequilibrium
with the cs. This finding supports a recommendation that
selecting SNPswith a frequency of at least 5%will improve the
success of a candidate gene association study [Tabor et al.,
2002]. Constraining allele frequencies to higher values is
especially critical for an expanding population (Fig. 1c). When
SNP allele frequencies are 5% or more, power is higher with
fewermarkers onahaplotype reaching aplateauat 15markers
(Fig. 1d).

In a previous family-based association analysis of Alz-
heimer disease with SNPs surrounding the apolipoprotein E
(APOE) gene, Martin et al. [Martin et al., 2000] found that
haplotype analyses offered little advantage over single-
marker analyses when the causative APOE-4 allele was
included. However, excluding the APOE-4 allele changed the
situation and haplotypes were more powerful for detecting
the effect of APOE than SNPs analyzed individually. Our
results extend their findings by showing that 1) increasing the
number of nonfunctional markers on a haplotype that
contains the cs leads to a steady decline of power and 2) when
the cs is excluded from the analyses, the addition of nonfunc-
tional markers increases the power of haplotypes to a certain
point.

The next set of questions that we addressed dealt with
the power of a STR to detect association relative to the
power of a SNP. A potential concern of using a STR
polymorphism in association analyses is that the underlying
mutational process creates newalleles that are indistinguish-
able from existing alleles. The overall effect of these ‘parallel’
mutations is to randomize the pairing of STR and causative
alleles. To address this problem,we chose to use a pure single-
step process to model mutation at STR loci. This process
imposes the most regularity on the generation of new alleles
[Valdes et al., 1993; Di Rienzo et al., 1994]; it constitutes a
worse case scenario for STRs because it maximizes the
production of new alleles that are identical to existing alleles
[Slatkin, 1995].

We find that the power of a STR is higher than a single
randomly chosen nonfunctional SNP. Themultiple STRalleles
provide a greater chance that a high frequency allele is
associated with the cs. In contrast, the bi-allelic nature of a
SNP results in fewer instances of a high frequency allele in
linkage disequilibrium with the cs. When SNP frequency
thresholds are set at 5% or 10%, the power of a SNP either
resembles or surpasses aSTR.SNP frequency constraints have
a considerable influence on power by eliminating rare alleles.
On the other hand, constraining STR locus heterozygosity in
our simulations has little to no effect on power, because
generally, STR heterozygosity is higher than the minimum
threshold of 18%. These results demonstrate the effectiveness
of a STR in detecting a candidate gene.

We then evaluated whether markers with different muta-
tional mechanisms can be effectively combined on haplotypes
in association studies. We find that including a STR on a
haplotype with randomly chosen nonfunctional SNPs
improves power. 1-STR/2-SNP haplotypes have more power
than 3-SNP haplotypes when allele frequencies are not
constrained. As we discussed above, a multi-allelic STR is
advantageous because there is greater chance of a higher
frequency allele associated with the cs. However, when rare
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SNPs are excluded from analysis with a minimum allele
frequency threshold, the power of 1-STR/2-SNP and 3-SNP
haplotypes are comparable.

In conclusion, we have identified several novel consider-
ations when selecting markers for detecting association
between phenotypes and candidate genes. First, the number
ofmarkers onahaplotypenecessary to optimize thepower of an
association test depends on whether the cs is included in the
analysis. When the cs is used in an association analysis, a
single-marker test provides the highest power. Moreover,
including non-functional markers with the cs reduces stat-
istical power. However, when the haplotype marker-set is
exclusively comprised of non-functional markers, more
markers provide higher power. Even then, the benefit of
adding markers plateaus. Second, STR polymorphisms are
powerful markers for candidate gene association studies. We
find STRs provide comparable or greater statistical power over
a SNP. For haplotype association analysis, a STR provides
more statistical power than randomly chosen SNPs, and
comparable power to high frequency SNPs. A STR provides
important information for detecting an association and should
be used if it occurs in a candidate gene region.
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