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CHAPTER I 

 

GENERAL INTRODUCTION 

 

In eukaryotic cells, DNA is packaged into a compact chromatin structure.  The 

basic unit of chromatin, the nucleosome, comprises 146bp DNA wrapped around an 

octamer of four different core histones H2A, H2B, H3 and H4, with two copies for each 

type.  Between nucleosomes are short linker DNAs where histone H1 binds.  The 

crystal structure of the nucleosome core has been resolved, revealing that each histone 

has a short N-terminal domain (~15-40 amino acid) that protrudes from the core structure 

(Luger et al., 1997), making it accessible for a variety of post-translational modifications.  

Arrays of nucleosomes fold into a 30nm chromatin fiber, which is further condensed at 

least several hundred fold to form a higher-order chromosome structure (Tremethick, 

2007).  In humans, about 2 meters of DNA is eventually folded to fit into a nucleus 

about 10µm in diameter. 

Intuitively, such a compact chromatin structure presents a formidable barrier to all 

processes involved in protein-DNA interactions, notably regulation of gene expression.  

The central question is how does chromatin serve as a DNA template that is readily
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accessible for protein binding, while at the same time still maintaining a condensed 

genome in the nucleus? 

In the field of transcription, the prevailing model is that chromatin structure 

undergoes dynamic alterations at the gene loci where transcription occurs to 

accommodate effective protein-DNA interactions.  Two major classes of highly 

conserved factors are involved in this process.  One class of factors covalently modify 

the amino acids in histone tails, including the acetylation of lysines, the methylation of 

lysines and arginines, the phosphorylation of serines and threonines, and the 

ubiquitination of lysines (Khorasanizadeh, 2004).  Specific modifications have been 

correlated with distinct transcriptional events.  For example, histone deacetylation is 

generally connected to transcriptional repression (Gallinari et al., 2007), while 

trimethylation of histone H3 at lysine 4 (H3K4me3) renders an almost universal marker 

for transcriptional activation (Santos-Rosa et al., 2002).  It was hypothesized that the 

combination of multiple histone modifications presents a “histone code” for a specific 

transcriptional event (Strahl and Allis, 2000).  Enormous effort has been spent on 

understanding how such a code is created and interpreted by various regulatory proteins 

to bring about downstream transcriptional events (Kouzarides, 2007). 

 

ATP-dependent chromatin remodelers 

In addition to enzymes that modify chromatin, a second class of factors, often 

referred to as chromatin remodelers, physically alter the position or/and structure of 
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nucleosomes by hydrolyzing ATP.  These chromatin remodelers have been found to act 

in multi-subunit complexes, each of them containing a core enzyme with ATPase activity.  

These enzymes belong to the helicase superfamily 2 (SF2), as they harbor a characteristic 

ATPase domain with seven helicase motifs of the SF2 superfamily (Caruthers and 

McKay, 2002).  However, they are different from the typical helicases since they do not 

have the ability to unwind the DNA duplex (Cote et al., 1998).  Rather, they have been 

shown to catalyze the mobilization of nucleosomes around DNA in an ATP-dependent 

manner, either by translocating the DNA or relocating the histone octamer (Smith and 

Peterson, 2005).   

Based on the additional motifs these enzymes contain, they are divided into at 

least four families: SWI/SNF family proteins harbor a bromodomain, ISWI family 

proteins contain SANT and SLIDE domains, CHD family members share a 

chromodomain, and INO80 family members have split ATPase domains (Fig. 1.1).  In 

the following section, I will discuss the function of these chromatin remodeling proteins 

in transcription, with a particular focus on ISWI family members.  As will be 

demonstrated in a number of examples below, a concerted cooperation between histone 

modification and chromatin remodeling has been observed in many transcriptional 

events. 

 There are at least two distinct and highly conserved SWI/SNF-type chromatin 

remodeling complexes identified in yeast, flies and humans (reviewed in Martens and 

Winston, 2003; Peterson and Workman, 2000).  Besides the core ATPase, these two  
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Figure 1.1.  Domain structure of four classes of ATPases in ATP-dependent 
chromatin remodeling complexes.  Besides the ATPase domain (shown in red), the 
first three classes of ATPases contain additional signature motifs such as the 
Bromodomain, the SANT domain, and the Chromodomain.  INO80 contains 
characteristic split ATPase motifs.  The cartoon is borrowed from a stellar review 
(Tsukiyama, 2002). 
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complexes contain overlapping as well as unique cofactors to achieve specific functions.  

SWI/SNF complexes are generally correlated to transcriptional activation, and they can 

do so by interacting with modified histones and basic transcriptional machinery 

(reviewed in Narlikar et al., 2002).  One prominent example showed that through its 

bromodomain, yeast Swi/Snf can be recruited to an acetylated nucleosomal template and 

activate transcription (Hassan et al., 2002).  In addition, there is convincing evidence 

supporting that Swi/Snf represses transcription.  For example, it was shown that yeast 

Swi2/Snf2 binds to the enhancer of SER3 gene and represses its activity (Martens and 

Winston, 2002). 

Several CHD-type chromatin remodeling complexes have been purified from 

various organisms.  All ATPases in the CHD family share a chromodomain.  It was 

previously shown that the chromodomain in heterochromatin protein 1 (HP1) binds to 

histone H3 methylated at lysine 9, which is usually associated with silenced chromatin 

(Bannister et al., 2001).  Interestingly, NURD, a CHD-type complex identified in higher 

eukaryotes, comprises histone deacetylases (HDACs) and methylated-DNA-binding 

proteins.  Since both histone deacetylation and DNA methylation are correlated to 

transcriptional repression, and Mi-2, the ATPase in the complex, physically interacts 

with transcriptional repressors including Hunchback and Tramtrack in Drosophila, 

NURD provides a good example of coordinating gene silencing at multiple layers 

(reviewed in Tsukiyama, 2002). 

INO80 protein contains a characteristic split ATPase domain, and how its 
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catalytic activity differs from other types of ATPases is unknown.  Several research 

groups showed that SWR1, an INO80 type complex, can replace conventional histone 

2A with a variant form H2A.Z., which is important to define the boundary between 

heterochromatin and euchromatin (Meneghini et al., 2003; Mizuguchi et al., 2004). 

 

ISWI family chromatin remodelers in transcription 

Components of ISWI family complexes 

The core component in ISWI family complexes is the ATPase ISWI (Imitation 

Switch), which contains SANT and SLIDE domains at the C-terminus.  Although there 

is no evidence that these domains can bind to modified histone tails as the bromodomain 

or chromodomain does, they are important for nucleosome recognition and remodeling in 

vitro (Grune et al., 2003).  The ATPase domain of ISWI is highly related to that of 

SWI/SNF, yet is likely to bear an unique catalytic activity that makes ISWI remodel 

chromatin differently from SWI/SNF.  Consistent with this notion, a report 

demonstrated that a chimeric BRG1 (a human SWI/SNF), with its ATPase domain 

replaced with that of SNF2H (a human ISWI), displays characteristic ISWI-like 

remodeling activity in vitro and fails to activate some BRG1-responsive genes in vivo 

(Fan et al., 2005). 

Several ISWI-type complexes have been purified from Drosophila (Fig. 1.2).  

They are ACF (ATP-utilizing chromatin assembly and remodeling factor), CHRAC 

(chromatin accessibility complex) and NURF (nucleosome remodeling factor).  As the  
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Figure 1.2.  Summary of components in ISWI family chromatin remodeling 
complexes.  ATPase ISWIs are well conserved from Drosophila to humans.  While 
Drosophila has only one ISWI, yeast and mammals have two ISWI homologues, which 
are involved in distinct complexes.  Many co-factors are conserved as well.  Yeast Itc1 
is the closest protein to ACF1, though it only shares N-terminal WAC and DDT motifs 
with ACF1 (Gelbart et al., 2001).  Mammals have two ACF1 homologues, termed as 
hACF1 and WSTF respectively.  Other complexes, such as CHRAC, NURF and NoRC, 
are also found in both Drosophila and mammals. 

 

 

 

 

TIP5hACF1hACF1

Ioc4Ioc2Ioc3

TOUNURF301

Drosophila

Human/Mouse

Yeast

ACF1

ISWI

ACF1

ISWI CHRAC16
CHRAC14

ISWI
NURF55

N
U
R
F38

ISWI

Isw2

Itc1

Isw1 Isw1Isw2

Itc1

Dpb4
Dpb1

ACF    CHRAC    NURF    dNoRC

ISW2  yCHRAC        ISW1a        ISW1b

SNF2H

WSTF

SNF2H SNF2H
hCHRAC14

hCHRAC16

BPTF

SNF2L
RbAP48

R
bA

P46

SNF2H

 hACF           hWICH    hCHRAC                 hNURF    mNoRC

 



 8 

names imply, these complexes strongly catalyze chromatin assembly and nucleosome 

remodeling in vitro.  Both ACF and CHRAC complexes contain ACF1, a protein with 

PHD fingers and a bromodomain at its C-terminus.  The PHD fingers bind histones and 

are required for ACF to effectively mobilize nucleosomes in vitro (Eberharter et al., 

2004).  Besides ISWI and ACF1, CHRAC complex contains two additional histone-fold 

proteins CHRAC14 and CHRAC16, which facilitate ISWI/ACF1 mediated nucleosome 

sliding in vitro (Kukimoto et al., 2004).  In the NURF complex, ISWI is associated with 

three other cofactors.  The largest subunit, NURF301, shares structural domains with 

ACF1, and plays an important role in ISWI mediated nucleosome sliding (Xiao et al., 

2001). 

ISWI family complexes are highly conserved in eukaryotes (Fig. 1.2).  There are 

two homologues of ISWI in yeast, Isw1 and Isw2.  It appears that two complexes that 

Isw2 forms share certain similarity with fly ACF and CHRAC complexes (Gelbart et al., 

2001; Iida and Araki, 2004).  In mammals, two ISWI homologues, SNF2H and SNF2L, 

have been identified.  Among several complexes that SNF2H forms are hACF, 

hCHRAC and hNURF (Barak et al., 2003; Poot et al., 2000).  There exists a second 

ACF1 homologue in mammals called WSTF, which has been implicated in Williams 

syndrome, a developmental disorder (Lu et al., 1998).  Another ISWI-type complex 

purified in mammals is NoRC (nucleolar remodeling complex), which contains TIP5 

protein (also called BAZ2A) as a cofactor (Strohner et al., 2001).  Interestingly, TIP5 is 

highly related to hACF1 and WSTF.  Its fly homologue, Toutatis (Tou), has been shown 
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to physically interact with ISWI, indicating the existence of a similar complex in flies 

(Vanolst et al., 2005).  In conclusion, ISWI is involved in multiple complexes that are 

highly conserved throughout eukaryotes, indicating their functional importance in vivo. 

 

The in vivo functions of ISWI family complexes 

ISWI-type complexes play important roles in a wide array of biological events 

including transcription, DNA replication, DNA repair and recombination (reviewed in 

Langst and Becker, 2001; Corona and Tamkun, 2004).  For the purpose of my 

dissertation, I will focus on their roles in transcriptional regulation, especially 

transcriptional repression. 

In yeast, Isw1 and Isw2 are not essential genes since isw1/isw2 double mutant 

displays no evident phenotype at normal conditions (Tsukiyama et al., 1999).  However, 

several reports strongly suggest that Isw1 and Isw2 are required for transcriptional 

repression in specific contexts.  Tsukiyama and colleagues showed that Isw2 directly 

represses several early meiotic genes in cooperation with Rpd3-Sin3 histone deacetylase 

complex (Goldmark et al., 2000).  Both Isw2 and Rpd3-Sin3 are recruited to target 

genes by DNA-binding protein Ume6.  A later microarray analysis revealed that Isw2 

and Rpd3-Sin3 act in parallel to repress a great number of gene expression, though it is 

unclear how many of them are directly regulated (Fazzio et al., 2001).  Another report 

showed that Isw1 is recruited to PHO8 promoter by the sequence-specific repressor Cbf1, 

and silences PHO8 activity.  Interestingly, increased binding of TBP (TATA-binding 
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protein) to the PHO8 promoter was observed in isw1 mutants, suggesting that Isw1 

restricts chromatin accessibility for TBP binding to PHO8 promoter, thereby preventing 

the basic transcriptional machinery from initiating transcription (Moreau et al., 2003). 

In addition to repressing gene expression at the initiation stage, Isw1 was also 

found to coordinate RNA polymerase II (Pol II) complex mediated transcription 

elongation and termination (reviewed in Mellor and Morillon, 2004).  Mellor and 

colleagues noted that Isw1 preferentially binds the MET16 promoter in quiescent 

conditions, but is enriched in the coding region when the gene is induced.  Loss of isw1 

causes an aberrant RNA termination of MET16, and the binding profile of Pol II across 

the MET16 gene is significantly altered (Morillon et al., 2003).  A follow-up study with 

a finer time course analysis indicates that Isw1 may play a role in delaying the release of 

Pol II complex for transcriptional elongation/termination to guarantee the timely histone 

modifications (Morillon et al., 2005). 

It has long been proposed that chromatin modification/remodeling contributes to 

epigenetic transcriptional memory, though few convincing examples exist to support this 

argument.  A recent study by Peterson and colleagues showed that GAL1 induction is 

controlled by the prior expression state (Kundu et al., 2007).  Up to 4 hours after 

shutdown of its expression, GAL1 can be re-induced eight times faster than the prior 

activation (5 minutes vs. 40 minutes), suggesting that cells somehow “remember” that 

GAL1 is previously transcribed.  Such a transcriptional memory is not dependent on a 

variety of histone modifying enzymes, yet is “erased” in SWI/SNF mutants.  
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Furthermore, the lost memory in SWI/SNF mutants is restored upon loss of isw1 or isw2.  

These observations suggest that SWI/SNF antagonizes ISWI to control the 

transcriptional memory of the GAL1 gene. 

Besides the examples given above, many other studies in yeast point to the role of 

ISWI in transcription, predominantly in transcriptional repression (van Vugt et al., 2007).  

In contrast, in higher eukaryotes, ISWI-type complexes have been shown to bear more 

diverse activities including transcriptional regulation, chromatin assembly during DNA 

replication, and global chromosome organization.  In Drosophila, iswi mutants die at 

late larval stage (Deuring et al., 2000).  Consistent with ISWI’s role in transcriptional 

repression, ISWI and Pol II generally have no overlapping distribution pattern on 

polytene chromosome.  Strikingly, the X chromosome in male iswi mutant is much 

shorter and broader than that in wild-type flies, indicating a defect in higher-order 

chromatin structure.  A follow-up study showed that this phenotype can be significantly 

rescued upon mutation of a dosage compensation gene (Corona et al., 2002).  Dosage 

compensation occurs in fly males to up-regulate gene expression on X chromosome by 

twofold, and this process involves the acetylation of histone H4 at lysine 16 (H4K16) 

(reviewed in Straub et al., 2005).  Interestingly, H4K16 acetylation greatly reduces the 

ATPase activity of ISWI in vitro (Corona et al., 2002).  These data suggest that dosage 

compensation complex counteracts ISWI’s repression activity partly through H4 tail 

acetylation. 

ISWI is highly expressed in fly embryos (Tsukiyama et al., 1995).  Removal of 
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maternal ISWI leads to sterility, suggesting that ISWI is required for oogenesis (Deuring 

et al., 2000).  A recent study showed that germline stem cells get lost rapidly in iswi 

mutants, indicating a role for ISWI in germline stem cell self-renewal (Xi and Xie, 2005).  

Two transcriptional targets of bone morphogenetic protein (BMP) signals are either 

derepressed or misregulated in iswi mutants, suggesting that ISWI regulates the proper 

expression of BMP targets in germline stem cells. 

The mammalian genome encodes two ISWI homologues, SNF2H and SNF2L.  

These two proteins have distinct expression patterns in mice: SNF2H is ubiquitously 

expressed, while expression of SNF2L is more restricted to the central nervous system 

(Lazzaro and Picketts, 2001).  Interestingly, overexpression of SNF2L promotes neurite 

outgrowth in mouse neuroblastoma cells, and the ATPase activity of SNF2L is required 

for this phenotype (Barak et al., 2003).  Since Wnt-3a can induce neurite outgrowth in 

dorsal root ganglion (DRG) neurons (Lu et al., 2004), it is unclear whether the effect of 

SNF2L on neurite outgrowth is through Wnt signaling.  SNF2H knockout mice were 

generated, and they died at early embryonic stage.  SNF2H null blastocysts revealed 

phenotypes of growth arrest and cell death in both the trophectoderm and inner cell mass, 

suggesting that SNF2H is required for cell proliferation (Stopka and Skoultchi, 2003). 

In contrast to the severe phenotypes iswi mutants display in flies and mice, ACF1 

in Drosophila is not essential for viability (Fyodorov et al., 2004).  Based on its strong 

ability to catalyze ATP-dependent chromatin assembly in vitro, Kadonaga and colleagues 

proposed that the ACF complex, containing ISWI and ACF1, participates in the 
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formation of repressive chromatin after DNA replication (Ito et al., 1999; Fyodorov and 

Kadonaga, 2002).  Consistent with this notion, an acceleration of S phase progression in 

embryos and larval neuroblasts was observed in acf1 mutants.  Moreover, the bulk 

chromatin in acf1 mutant has a shorter repeat length than that in wild-type, though the 

effect is very modest (Fyodorov et al., 2004).  This defect could be due to an incomplete 

incorporation of histone H1 into the chromatin, since ACF1 has the unique activity to 

assemble H1-containing chromatin in vitro (Lusser et al., 2005).   

Several studies in mammalian system showed that hACF1/WSTF and SNF2H are 

enriched in replicating heterochromatin in cultured cells, and their recruitment to 

replication foci is mediated by proliferating cell nuclear antigen (PCNA), an important 

cofactor for DNA synthesis (Moldovan et al., 2007).  Depletion of hACF1/WSTF or 

SNF2H by RNAi impairs DNA replication in late S phage (Collins et al., 2002; Poot et 

al., 2004).  These results indicate that the role of ACF complex in DNA replication is 

conserved. 

Some ISWI family members are also implicated in transcriptional activation.  

The best evidence comes from the analysis of a unique subunit of NURF complex, 

Nurf301, in flies.  NURF complex was initially purified in fly embryos by its activity to 

modulate chromatin structure at the hsp70 promoter (Tsukiyama and Wu, 1995).  

Nurf301 can interact with the GAGA transcriptional factor and the heat-shock 

transcriptional factor (HSF) in vitro (Xiao et al., 2001).  Consistently, the heat-shock 

induction of hsp70 and hsp26 is impaired in nurf301 mutant flies (Badenhorst et al., 
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2002).  A later study showed that Nurf301 is required for the expression of a number of 

ecdysone target genes, and Nurf301 interacts with the ecdysone receptor (EcR) in an 

ecdysone-dependent manner (Badenhorst et al., 2005).  These data suggest that Nurf301 

directly activates transcriptional targets of ecdysteroid signaling.  In addition, a study in 

human cells reported that hNurf301 (also called BPTF) binds to the enhancer of 

homeotic gene engrailed (en) and activates its expression (Barak et al., 2003).  Different 

from other ISWI-type factors, Nurf301 may contain unique features to render NURF 

complex with the gene activation potential.  How this is achieved will be discussed in 

the following section. 

 

Mechanisms of ISWI family complexes in chromatin remodeling 

It is evident that ISWI family complexes are involved in a wide array of 

biological events.  However, what happens at the chromatin level for these events to 

occur is still poorly understood.  Extensive biochemical studies have identified many 

characteristic activities of ISWI for chromatin remodeling in vitro.  For example, unlike 

SWI/SNF, whose ATPase activity can be stimulated by either free or nucleosomal DNA, 

the ATPase activity of ISWI requires intact nucleosomes (Boyer et al., 2000).  

Moreover, the N-terminal tails of histone H4 are essential to stimulate nucleosome 

mobilization activity of a ISWI complex (Clapier et al., 2001; Eberharter et al., 2001).  

Cofactors also enhance the remodeling efficiency: ACF mobilizes nucleosomes ten fold 

more efficiently than ISWI alone.  Interestingly, ACF1 alters the directionality of 
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nucleosome movement catalyzed by ISWI.  While ISWI itself moves a 

mono-nucleosome from the center of a DNA fragment to the end, ACF moves it from the 

end to the center (Eberharter et al., 2001).  The significance of such a directionality in 

vivo is unknown.  Similarly, two histone fold subunits of CHRAC complex, CHRAC15 

and CHRAC17, improve the efficiency of nucleosome mobilization by ACF (Kukimoto 

et al., 2004; Hartlepp et al., 2005). 

Many ISWI complexes exhibit nucleosome sliding activity in vitro, which means 

the movement of histone octamers in cis (Hamiche et al., 1999; Langst et al., 1999).  

The first in vivo evidence of ISWI catalyzed nucleosome sliding came from a study of 

two yeast genes, POT1 and REC104, which are repressed by Isw2.  High-resolution 

mapping of the nucleosomes at these gene loci showed a clear shift of the nuclease 

insensitive area upon Isw2 induction, suggesting that Isw2 slides nucleosomes in vivo 

(Fazzio and Tsukiyama, 2003).  To date, there is no evidence to support that ISWI-type 

complexes can remove histone octamers from DNA as SWI/SNF-type complexes do, or 

facilitate the histone variant exchange as INO80-type complexes do. 

How do ISWI complexes slide nucleosomes?  Two major mechanisms have 

been proposed.  The first is “twist diffusion” model, which argues that a small DNA 

twist generates a DNA wave that propagates across the surface of the nucleosome (van 

Holde and Yager, 2003).  Consistent with this model is the observation that ISWI can 

generate superhelical torsion in vitro (Havas et al., 2000).  However, there is evidence 

that challenges this model.  ISWI can still effectively induce nucleosome sliding on 
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nicked DNA, which presumably inhibits the propagation of a DNA twist (Langst and 

Becker, 2001).  In addition, the ACF complex can still move nucleosomes bound to 

magnetic beads, which presents an obstacle for DNA twisting.  Interestingly, the 

remodeling of nucleosomes by ACF generates a stretch of DNA long enough to be 

incorporated by ethidium bromide (EB) (Strohner et al., 2005).  This result argues for a 

“loop recapture” model, in which ISWI complex induces the formation of a DNA loop at 

the nucleosome entry site that propagates across the surface of histone octamer.  

Readers who are interested in the details of these two models are recommended to peruse 

recent reviews (Langst and Becker, 2004; Saha et al., 2006).  

Can DNA sequence influence nucleosome positioning?  A recent in vivo study 

on a yeast Isw2 target, POT1, provided stimulating thought on this question (Whitehouse 

and Tsukiyama, 2006).  A low-complexity, AT-rich DNA element was identified at the 

POT1 promoter.  This element poorly wraps into nucleosomes in vitro, and is refractory 

to nucleosome binding in isw2 mutant.  However, when Isw2 is present, the AT-rich 

element is occupied by a nucleosome.  Replacing the endogenous AT element with an 

unbiased sequence (GATC) makes the chromatin less “open” over the POT1 promoter.  

These results suggest that the AT element at the POT1 promoter directs nucleosomes to 

thermodynamically stable positions accessible for transcriptional activators, while Isw2 

repositions nucleosomes onto unfavorable DNA positions to shut down transcription.  It 

is tempting to speculate that such a rule is not just limited to the AT sequence but can be 

extended to other cis-acting elements, though more gene loci need to be analyzed to 
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justify such a bold claim. 

How are ISWI-type complexes targeted to chromatin for transcriptional 

regulation?  At least two mechanisms have been identified.  The first is the recruitment 

via sequence-specific transcriptional factors.  As I described before, yeast Isw2 can be 

recruited to several early meiotic genes by the DNA-binding protein Ume6 to repress 

their expression (Goldmark et al., 2000).  Yeast Isw1 can be recruited to PHO8 locus 

via sequence-specific repressor Cbf1 (Moreau et al., 2003).  Bdp1p, a component of the 

RNA polymerase III complex, is required for targeting Isw2 to tRNA genes (Bachman et 

al., 2005).  Interestingly, only the catalytically inactive form of Isw2, not wide-type 

Isw2, is enriched at its target genes, suggesting that the recruitment of Isw2 is transient 

and dynamic (Gelbart et al., 2005).  

There are also examples in mammals.  Both hSNF2H and hACF1 can be 

targeted to the IL-2Rα (interleukin-2 receptor α) gene by SATB1 (special AT-rich 

sequence binding 1) to mediate repression.  Interestingly, the ISWI complex appears to 

function over a long distance at IL-2Rα locus, as deletion of SATB1 causes alteration of 

nucleosome positioning over seven kilobases around IL-2Rα locus (Yasui et al., 2002).  

Another study showed that recruitment of hSNF2H to a thyroid hormone receptor (TR) 

regulated reporter is dependent on nuclear receptor co-repressor (N-CoR), though no 

physical interaction between hSNF2H and N-CoR was detected (Alenghat et al., 2006).  

In contrast to the localized recruitment of ISWI to its targets, there is one example 

in yeast where Isw2 broadly associates with the DNA damage-inducible gene RNR3 
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(across ~4 kb region) and represses its expression.  The binding of Isw2 even extends to 

the loci where the nucleosome positioning is not dependent on Isw2.  The functional 

significance of this broad binding remains to be explored (Zhang and Reese, 2004). 

The second mechanism involves interaction of ISWI factors with the histone 

proteins.  I have already discussed the potential importance of histone H1/linker DNA 

in ACF mediated chromatin remodeling, which was supported by several in vitro studies 

(Kagalwala et al., 2004; Qian et al., 2005).  In addition, acetylation of histone H4 at 

lysine 16 (H4K16Ac) inhibits the ATPase activity of ISWI and ACF-mediated 

nucleosome sliding in vitro (Corona et al., 2002; Shogren-Knaak et al., 2006).  The 

genetic evidence that ISWI antagonizes H4K16Ac and the biochemical evidence that 

H4K16Ac inhibits the formation of chromatin fibers suggest that ISWI is required to 

maintain chromatin architecture by counteracting H4K16Ac activity.  Interestingly, a 

recent report showed that TIP5, a subunit of the SNF2H-containing complex NoRC, 

binds to H4K16Ac through its bromodomain and this binding is important for NoRC 

mediated rDNA repression (Zhou and Grummt, 2005).  These seemingly incongruous 

observations could be reconciled by the distinct contributions of unique cofactors (TIP5 

vs. ACF1) for ISWI activity. 

The targeting of ISWI complexes to activated genes has been connected to 

trimethylation of histone H3 at lysine 4 (H3K4me3), which marks the transcription 

initiation sites of many active genes (Santos-Rosa et al., 2002).  Both hSNF2H and 

yeast Isw1 bind to trimethylated H3K4, and this histone modification is required for Isw1 
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targeting (Santos-Rosa et al., 2003).  Similarly, the human NURF complex associates 

with H3K4me3 through a PHD finger of Nurf301, and this interaction facilitates NURF 

complex binding to its target genes.  A point mutation in the PHD finger of Nurf301 

that abolishes its ability to bind H3K4me3 fails to rescue nurf301 mutant phenotypes in 

Xenopus, suggesting that the recognition of H3K4me3 is crucial for NURF function in 

vivo (Wysocka et al., 2006). 

Finally, both sequence-specific factors and histone modifications can act in a 

coordinate manner to recruit ISWI complexes to target genes.  This was demonstrated in 

an example of thyroid hormone receptor (TR) mediated repression.  Both nuclear 

receptor co-repressor (N-CoR) and HDAC are required for recruitment of SNF2H to its 

target.  Although no physical interaction was detected between SNF2H and 

N-CoR/HDAC complex, SNF2H preferentially binds to unacetylated H4, which is 

mediated by HDAC.  A model was proposed where the recruitment of HDAC by 

nuclear receptor results in the local deacytelation of histone H4, which is a prerequisite to 

target SNF2H for target gene repression (Alenghat et al., 2006). 

Since the identification of the first ISWI-type complex in yeast more than 20 

years ago, our knowledge of the activities of ISWI family members has exploded, mainly 

driven by the elegant biochemical studies in vitro.  Only recently did their physiological 

functions in vivo begin to be elucidated.  Yet, these studies, especially in multicellular 

organisms, tend to focus on the phenotypic analysis of ISWI-type factors at the 

whole-animal level, with an insufficient exploration of the molecular mechanisms 
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underneath.  By studying several ISWI-type factors in an important signaling pathway, 

namely the Wnt signaling pathway, in Drosophila, this dissertation attempts to enhance 

our understanding of the role of ISWI family chromatin remodeling proteins in 

transcriptional repression.  In the following sections, I will briefly introduce Wnt 

signaling, and then discuss our current knowledge on how Wnt target genes are 

repressed. 

 

Wnt/β-catenin signaling 

Wnts in development and disease 

 Precise regulation of cell-cell communication is of paramount importance for 

proper development of multicellular organisms.  It appears that several families of 

signaling molecules, including Hedgehogs, Wnts, and bone morphogenetic proteins 

(BMPs), play pivotal roles throughout animal development.  Cells respond to these 

signaling molecules through highly conserved signal transduction cascades, which 

eventually lead to the transcriptional activation of various target genes.  It is a general 

consensus that each signaling pathway displays tight control and high specificity for its 

transcriptional outcome.  Devastating consequences, for example diseases in humans, 

often ensue when these pathways go awry. 

 Signaling molecules of the Wnt family are secreted lipid-modified glycoproteins 

that are highly conserved in all metozoans.  The name derives from a fusion of wingless, 

the founding member in flies, and int-1 (later renamed as wnt1), the first member 
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identified in mice (Nusse and Varmus, 1982).  Defined by sequence, Wnt family 

encompasses a large group of proteins: at least 11 members in a cnidarian, 7 members in 

Drosophila, 5 members in C. elegans, and 19 members in mammals.  How different 

Wnts execute their distinct functions to regulate animal development has been an 

intriguing question for Wnt researchers to tease out. 

 Wnts are required for a myriad of developmental processes including axis 

specification, cell identity determination, and pattern formation (Logan and Nusse, 2004).  

In Drosophila, the major Wnt gene wingless (wg) acquired its name from the phenotype 

of a hypomorphic allele wg1 , which displays missing wings in adult flies (Sharma, 1973).  

Later molecular analysis suggests that Wg acts as a gradient morphogen to regulate its 

target genes in the developing wing (Zecca et al., 1996).  More severe alleles of wg 

were generated by the outstanding genetic screen performed by Eric Wieschaus and 

Christiane Nusslein-Volhard (Nusslein-Volhard and Wieschaus, 1980).  wg null 

mutants cause embryonic lethality with severe segmentation defects, underscoring the 

essential role of Wg during embryogenesis (Bejsovec, 2006).  In Xenopus, ectopic 

induction of Wnt1 in ventral blastomeres of 4-cell-stage embryos triggers a duplication 

of the body axis, and depletion of maternal Wnt11 causes embryos to lose dorsal axis 

identity (McMahon and Moon, 1989; Tao et al., 2005).  The notion that Wnts are 

important for embryonic axis formation is also buttressed by studies in mice, where 

Wnt3 knockout mice lack the primitive streak before gastrulation (Liu et al., 1999).  

Many Wnt genes have been knocked out in mice, and a multitude of developmental 
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defects in various tissues have been observed.  Readers are referred to a recent review 

for more detailed information (van Amerongen and Berns, 2006). 

 In addition to their essential requirement in many developmental events, Wnts 

also play important roles in adult tissue homeostasis.  Examples include the 

maintenance of stem-cell fate in the intestinal epithelium, control of haematopoietic stem 

cell (HSC) self-renewal, establishment of the hair follicle, and regulation of bone mass 

formation (Reya and Clevers, 2005; Clevers, 2006).  Recently, Wnts have also been 

implicated in tissue regeneration upon injury (Stoick-Cooper et al., 2007). 

 Given the importance of Wnts in animal development and adult tissue 

homeostasis, it is not surprising that misregulation of Wnt signaling leads to various 

diseases in humans (Logan and Nusse, 2004; Moon et al., 2004).  For example, Wnt3 

loss of function mutations are linked to Tetra-amelia, a genetic disorder characterized by 

complete loss of all limbs (Niemann et al., 2004).  Loss of function mutations in LRP5, 

a co-receptor in Wnt signaling, leads to reduced bone mass as well as vasculature defects 

in the eye (Gong et al., 2001).  Probably the most notable disease correlated to 

inappropriate activation of Wnt signaling is cancer, especially colorectal cancer (Polakis, 

2007).  Familial adenomatous polyposis (FAP), a hereditary predisposition to colorectal 

cancer, is caused by truncation mutations in APC, a negative regulator of the pathway 

(Kinzler et al., 1991; Nishisho et al., 1991).  Strikingly, loss of APC has been found in 

most sporadic colorectal cancers (Kinzler and Vogelstein, 1996).  Less frequent cases 

were also identified in other types of cancers when Wnt signaling is aberrantly activated, 
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including hepatocellular carcinoma, melanoma, and mammary carcinoma (Polakis, 2007).  

It has become increasingly popular to view cancer as a stem cell disease, since the 

molecular mechanisms that control normal stem cell self-renewal and inappropriate 

carcinogenesis are quite symmetrical (Taipale and Beachy, 2001).  This is best 

illustrated in the case of intestine epithelia stem cell biology/pathology (Radtke and 

Clevers, 2005). 

 

Wnt/β-catenin signaling 

Since the discovery of the first Wnt in 1982, a combination of genetic and 

biochemical studies from a variety of organisms has depicted a highly conserved 

signaling pathway downstream of Wnts.  The pathway has several branches, and here I 

only focus on the branch through β-catenin (β-cat), sometimes called the canonical Wnt 

pathway (Fig. 1.3).  In this branch of signaling, Wnt binds to a seven-transmembrane 

receptor Frizzled (Fz) and a single-transmembrane coreceptor of the low density 

lipoprotein related protein family (LRP).  The Fz/LRP complex, probably bridged by 

Wnt, transduces two disparate signals into the cytoplasm.  The first signal is the 

phosphorylation of LRP by two kinases GSK3 and casein kinase I-γ (CKIγ), which then 

recruits Axin and leads to its inactivation/degradation.  The second signal is the 

phosphorylation and activation of Dsh/Dvl through Fz, the mechanism of which is still 

mysterious, and the subsequent inhibition of a degradation complex comprising APC, 

Axin and GSK3.  The net outcome of these two signals is the stabilization of β-cat in  
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Figure 1.3. Outline of the Wnt/β-catenin pathway.  (A) In the absence of Wnt, 
β-catenin (β-cat) is phosphorylated by a complex comprising APC, Axin and GSK3 in 
the cytosol, which targets it for proteasomal degradation.  In the nucleus, TCF binds to 
Wnt regulated enhancer (WRE) and silences Wnt targets expression with the aid of 
co-repressors.  (B) Upon Wnt binding to the Fz-LRP receptor complex, a combination 
of LRP-Axin interaction and Dvl activation leads to the inhibition of APC-Axin-GSK3 
complex from phosphorylation of β-cat.  β-cat is then stabilized and translocated into 
the nucleus, where it binds to TCF and converts it into a transcriptional activator.  With 
other co-activators (not shown), they activate Wnt targets expression.  Corresponding 
names of proteins in vertebrates and flies are listed in the inset.  For a more elaborate 
description of Wnt signaling, check a recent review (Cadigan and Liu, 2006) and the Wnt 
homepage http://www.stanford.edu/~rnusse/wntwindow.html. 
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the cytoplasm, which would have been rapidly degraded by the degradation complex in 

unstimulated cells (Cadigan and Liu, 2006). 

Upon stabilization by Wnt signal, β-cat enters the nucleus and interacts with the 

DNA-binding T-cell factor/lymphoid-enhancing factor (TCF/LEF) family of HMG-box 

proteins to activate Wnt target genes.  A variety of co-activators bind to β-cat, many of 

which negotiate with chromatin structure and the basal transcriptional machinery.  The 

N-terminal β-cat recruits two essential proteins, Legless (BCL9) and Pygopus, while the 

C-terminal β-cat binds to a SWI/SNF-type protein Brg-1, histone acetyltransferase 

CBP/p300, and Hyrax/Parafibromin, a component of a Pol II interacting complex 

(Stadeli et al., 2006).  The recruitment order of these co-activators onto β-cat and the 

mechanism of their action in transcriptional activation are yet to be elucidated. 

What is the situation for Wnt targets in the absence of Wnt signaling?  We can 

envision that for some genes, absence of co-activators is sufficient to keep them silenced, 

while for others, an active repression mechanism is required to prevent their basal 

transcription.  A body of strong evidence suggests that when not bound to β-cat, TCFs 

act as repressors, probably in cooperation with co-repressors, to maintain the silent state 

of Wnt target genes (Fig 1.3).  Thus far, our knowledge on the repression mechanism of 

Wnt targets is still incomplete.  In the following sections, I will first discuss extensively 

the role of TCFs in repressing Wnt targets, followed by a comprehensive survey of all 

co-repressors implicated in Wnt signaling. 
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Transcriptional repression in Wnt signaling 

TCFs as transcriptional repressors 

Besides the widely regarded view that TCFs, when bound to β-cat, act as 

activators in Wnt signaling, there is accumulating evidence in the past decade that TCFs 

can also repress Wnt target expression in the absence of Wnt signaling.  Therefore, 

TCFs serve as switches, silencing Wnt target genes until β-cat converts them into 

activators.  The following section is a summary of the evidence from several model 

organisms that supports the repression activity of TCFs.  The results can be divided into 

two categories: First, TCF mutant derepresses Wnt targets or shows phenotypes 

reflecting an activation of the pathway.  Second, mutation of putative TCF binding sites 

in a Wnt regulated enhancer (WRE) leads to the derepression of the target. 

 

(a) TCFs as repressors  

Invertebrates such as Hydra, Drosophila and C. elegans only have one TCF 

ortholog, while vertebrates have four TCF members (TCF1, LEF1, TCF3 and TCF4).  

All TCFs contain the highly conserved N-terminal β-cat binding domains as well as the 

HMG DNA-binding domains.  The central domains and the C-terminal tails are highly 

varied, which are thought to interact with distinct proteins.  In addition, Drosophila and 

all vertebrate TCFs have alternative splicing forms, though their significance is not well 

understood (Arce et al., 2006).  

In Drosophila, a careful analysis of TCF mutant phenotypes in embryos suggests 
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its role as a negative regulator in Wnt signaling.  Either TCF mutants or TCF/wg double 

mutants display a less severe defect in Wg signaling in the embryonic epidermis than that 

of wg mutants (Cavallo et al., 1998).  This difference can not be explained by the 

maternal contribution of TCF since embryos devoid of maternal and zygotic TCF show 

similar phenotypes as those of zygotic TCF mutant (Schweizer et al., 2003).  These 

results strongly suggest that TCF acts as a repressor in Wnt signaling.  However, TCF 

mutant embryos only reveal a partial activation of Wnt signaling, indicating that 

alleviation of TCF repression is not sufficient for Wnt target expression (Schweizer et al., 

2003).  A similar repressive activity was also observed for POP-1, the worm ortholog of 

TCF.  Either POP-1 single mutants or POP-1/MOM-2 (a worm Wnt) double mutants 

result in embryonic phenotypes that are opposite to MOM-2 mutants (Rocheleau et al., 

1997; Thorpe et al., 1997).  Later studies demonstrated that Wnt signaling regulates 

nuclear export of POP-1 to relieve its repression on target genes (Lo et al., 2004).  It 

appears that in worms, POP-1 can act solely as a repressor in Wnt signaling, and 

antagonizing its repression activity is sufficient to activate Wnt target genes. 

Things are complex in vertebrates where TCFs have evolved into divergent forms.  

An intriguing question is whether all vertebrate TCFs have activation/repression 

activities or some isoforms are more dedicated to activation or repression than others?  

The latter scenario seems to be the case as so far only the activation role has been 

identified for LEF1 and the repression role has been identified for TCF3, while TCF1 

and TCF4 can do both.  I will focus on the repressive role of vertebrate TCFs based on 
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loss-of-function results. 

Abundant evidence exists for TCF3 as a repressor in Wnt signaling from various 

organisms.  In Xenopus, depletion of TCF3 by antisense oligos leads to an ectopic 

activation of several Wnt targets in ventral blastomeres, including a direct Wnt target 

siamois, while there is no significant reduction of these target expression in dorsal 

blastomeres (Houston et al., 2002).  It would be interesting to see whether the induction 

of siamois by xTCF3 knockdown can be rescued by other TCFs.  Another study 

dissected the non-redundant roles of xTCF3 and xTCF1/LEF1 during mesoderm 

induction (Liu et al., 2005).  When xTCF3 was fused to VP16, a strong transcriptional 

activator, it could rescue either xLEF1 or xTCF1 knockdown phenotypes.  In contrast, 

only a constitutive repressor form of xTCF3 with its N-terminal deletion could rescue the 

xTCF3 knockdown phenotypes.  This result suggests that xTCF3 controls mesoderm 

development through its repression activity.  A similar analysis for TCF3 was 

performed in zebrafish, where TCF3, also called Headless (Hdl), is essential for head 

development (Kim et al., 2000).  The headless phenotype can be rescued by a 

constitutive repressor form of TCF3 (N-terminal deletion or fused to the repressor 

domain of the Engrailed protein), but can not be rescued by a TCF3-VP16 fusion.  

Again, this suggests that TCF3 acts as a repressor for zebrafish head formation. 

TCF3 knockout mice reveal axis formation defects (e.g., expansion and 

duplication of node and notochord) that resemble those of the Axin or APC knockout 

mice, supporting TCF3’s role as a repressor in Wnt signaling (Merrill et al., 2004).  At 



 29 

the molecular level, TCF3 directly binds to the regulatory region of Nanog, a 

Wnt-responsive gene important for embryonic stem cell self-renewal, and represses its 

expression (Pereira et al., 2006). 

Do other TCFs have repression activity?  Knockdown of xTCF1 leads to 

activation of several Wnt targets in ventral blastomeres.  xTCF1 knockdown also 

decreases the expression of these targets in dorsal blastomeres, indicating that xTCF1 

plays a dual role of activating and repressing Wnt targets in different developmental 

domains (Standley et al., 2006).  In addition, TCF1 knockout mice develop spontaneous 

tumors in the gut and mammary glands, suggesting an inappropriate activation of Wnt 

signaling.  It was speculated that a truncated form of TCF1, serving as a naturally 

occurring dominant negative, is responsible for this phenotype (Roose et al., 1999).  

There are also reports for TCF4 acting as a repressor, but they are based on either 

overexpression analysis or a modest activation of a Wnt target upon TCF4 RNAi in 

cultured cells (Lei et al., 2006; Shulewitz et al., 2006).  More rigorous loss-of-function 

analysis for TCF4 in vivo is required to confirm its repressor activity. 

 

(b) Derepressable Wnt targets 

TCFs contain a single high mobility group (HMG) DNA-binding domain, which 

specifically bind to the minor groove of the DNA.  In vitro analysis demonstrated that 

HMG domains of LEF1 and TCF1 recognize the sequence CCTTTGWW (W=A or T) 

with high affinity (Giese et al., 1991; van de Wetering et al., 1991).  Such a TCF 
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binding site, commonly found in clusters, has been identified in many Wnt regulated 

enhancers (WREs).  In many examples given below, mutating the TCF sites diminishes 

the activation of Wnt target genes, supporting a model where TCFs specifically bind to 

WREs and activate transcription. 

Interestingly, mutating TCF sites in some WREs results in a clear derepression of 

Wnt targets.  For all examples described below, the recurring theme is that mutation of 

TCF site(s) in a minimal WRE, presumably disrupting TCF binding, leads to the ectopic 

expression of the reporter, suggesting that TCF acts as a repressor to maintain Wnt target 

gene silenced in the absence of signaling. 

In Drosophila, an enhancer element of decapentaplegic (dpp, a TGFβ family 

member) that controls its expression in visceral mesoderm was identified.  Mutation of 

two TCF binding sites results in a clear expansion of the dpp reporter throughout the 

visceral mesoderm (Yang et al., 2000).  A similar approach identified another minimal 

Wnt response sequence in visceral mesoderm, which controls expression of the homeotic 

gene Ultrabithorax (Ubx).  Mutation of the TCF site in this element causes a subtle 

expansion of the reporter (Riese et al., 1997).  A more obvious expansion of this 

reporter was observed when repressors Osa or dCBP were absent, indicating a 

TCF-independent repression mechanism (Waltzer and Bienz, 1998; Collins and 

Treisman, 2000, see below for details).  A third derepressable WRE in flies is from the 

pericardial WRE of even-skipped (eve), where an obvious ectopic expression of the 

reporter can be detected once the TCF sites are destroyed (Knirr and Frasch, 2001). 
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In C. elegans, Wnt signaling is required to specify endoderm fate, which is 

achieved through alleviating POP-1 (the worm TCF) mediated repression on endoderm 

specific genes (Rocheleau et al., 1997; Thorpe et al., 1997).  One of such genes is end-1 

(Calvo et al., 2001).  Mutation of a TCF binding site in the end-1 enhancer leads to an 

obvious ectopic expression of the reporter in MS cells that generate mesoderm (Shetty et 

al., 2005).  A similar phenotype was observed in pop-1 mutant worms.  These results 

suggest that POP-1 represses the endoderm specific gene end-1 in the mesoderm founder 

cells. 

The best example for TCF’s repression activity in vertebrates comes from the 

analysis of the enhancer of a homeobox gene siamois, which is a direct target of Wnt 

signaling and plays an important role in dorsal axis formation in Xenopus.  Elimination 

several TCF sites in the minimal siamois enhancer leads to a robust activation (~20 fold) 

of the reporter in ventral bastomeres (Brannon et al., 1997).  This result indicates that 

TCF silences the ventral expression of siamois to restrict its activity in dorsal 

blastomeres.  Similar analysis was performed for another dorsal specification gene, 

Xenopus Nodal-related 5 (Xnr5), though the effect is milder.  Mutation of two TCF sites 

in the minimal enhancer of Xnr5 leads to ~3 fold activation of the reporter in ventral 

blastomeres (Hilton et al., 2003). 

A recent study on a gene involved in ventral neural tube development, Nkx2.2, 

provided additional evidence for TCF’s repression activity in mammals.  Nkx2.2 is 

expressed in a specific domain (p3) of the ventral neural tube in mouse embryos.  When 
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two putative TCF sites were deleted in the minimal enhancer of Nkx2.2, ectopic reporter 

expression was observed throughout the whole ventral neural tube and even expanded 

into the dorsal spinal cord (Lei et al., 2006).  The authors argue that TCF regulates the 

threshold response of Nkx2.2 so it can be properly activated by Shh signaling in the p3 

area of the ventral neural tube. 

Finally, it is worthwhile mentioning that not all Wnt targets are repressed by 

TCFs, or to be more accurate, by TCFs alone.  In Drosophila, TCF mutants result in 

loss of activation of two Wnt targets (Dll and Vg) in the wing, yet no detectable 

derepression of these targets can be observed in the region where Wg is absent 

(Schweizer et al., 2003).  For several Wnt targets in vertebrates (Xnr3, Brachyury and 

Delta-like 1), mutation of TCF sites in the WREs clearly abolishes their expression, yet 

no derepression can be detected (McKendry et al., 1997; Yamaguchi et al., 1999; 

Galceran et al., 2004).  Therefore, it is probably unwise to assume that the amount of 

repression is the same for every Wnt target gene.  It is conceivable that only a subset of 

Wnt targets, which have low basal expression threshold, require the tight control of TCFs 

to maintain their silent state outside the Wnt expression domain.  Alternatively, in 

certain biological contexts, some Wnt targets may employ TCF-independent repression 

mechanisms.  Several examples of this will be recounted later. 
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Other transcriptional repressors in Wnt signaling 

How are Wnt targets silenced in the absence of Wnt signaling?  In addition to 

the discovery that TCFs play an important role, several other factors have been 

implicated in the transcriptional repression of Wnt targets (Fig. 1.4).  I will discuss 

these factors in three categories: first, transcriptional co-repressors that either bind to 

TCF or covalently modify TCF; second, proteins that bind to β-cat and divert it from 

binding to TCF; third, DNA-binding proteins that repress Wnt targets independently of 

the TCF complex.  The purpose of such a categorization is to facilitate the 

comprehension of the repression picture in Wnt signaling, and readers should not take it 

too rigidly.  In fact, several factors that are to be described have been implicated in 

more than one group (e.g., CtBP, Kaiso, Sox). 

 

(a) Factors that associate/modify TCF 

The best characterized factor in this group is a WD-repeat containing protein 

called Groucho(Gro)/TLE that functions as a co-repressor in Wnt signaling.  In 

Drosophila, similar to what was observed for the TCF/wg genetic interaction, gro/wg 

double mutants show less severe embryonic phenotypes than those of wg mutant alone, 

suggesting that Gro represses Wnt targets in embryos (Cavallo et al., 1998).  Several 

TLEs bind to the central portion of TCF (Brantjes et al., 2001; Roose et al., 1998).  A 

mutant form of TCF3 that lacks TLE-binding domain is unable to rescue the TCF3 

mutant phenotype in Xenopus, demonstrating the functional revevance of TLE-TCF  
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Figure 1.4.  Summary of factors that repress Wnt target expression in the nucleus.  
These factors can be generally divided into three groups.  Factors in the first group 
work through TCF.  They either bind to it (e.g. Gro/TLE) or modify its activity (e.g. 
CBP) for repression.  Factors in the second group bind to β-catenin and divert it from 
binding to TCF (e.g. Chibby).  Factors in the third group act independently of 
TCF/β-catenin.  They either bind to specific DNA sequence (e.g. Kaiso) or possibly 
work through such a binding (e.g. CtBP) to act in parallel with TCF for repression. 
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interaction (Liu et al., 2005).  An in vitro study using highly purified proteins showed 

that β-cat directly displaces TLE from TCF (Daniels and Weis, 2005).  Such a 

mechanism is likely to occur in vivo, since concomitant with an increase of β-cat binding, 

TLE’s binding to Wnt targets is decreased upon the activation of the pathway (Sierra et 

al., 2006; Wang and Jones, 2006). 

How does Gro/TLE mediate repression of Wnt targets?  Part of the answer may 

reside in its recruitment of histone deacetylase (HDAC).  Deacetylation of histone tails 

is generally associated with gene repression (Gallinari et al., 2007).  In Drosophila, Gro 

directly binds to a HDAC protein Rpd3, and these two proteins genetically interact 

during embryonic development in a non-Wnt context (Chen et al., 1999).  In human 

cultured cells, Wnt-responsive reporters are activated when HDAC activity is blocked by 

deacetylase inhibitor TSA (Billin et al., 2000).  A more rigorous mutant analysis of 

HDAC for Wnt-related readouts is needed to confirm their role in Wnt signaling.  In 

addition, although it is widely assumed that HDAC is recruited by Gro/TLE to Wnt 

targets, such a model has never been experimentally tested. 

Several lines of evidence indicate that modification of TCF by acetylation, 

phosphorylation or sumoylation affects Wnt target expression.  Drosophila histone 

acetyltransferase dCBP binds to TCF and acetylates it on K25 (in the Arm binding 

domain).  Compared to wild-type TCF, acetylated TCF has a less binding affinity to 

Arm in vitro, suggesting that acetylation of TCF facilitates repression by disrupting 

TCF/Arm interaction (Waltzer and Bienz, 1998).  Consistently, CBP mutants reveals 
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phenotypes in fly embryos reflecting an activation of Wg signaling.  The repression role 

of CBP in Wg signaling appears to be conserved in vertebrates, as depletion of CBP 

leads to an activation of a Wnt reporter in human cultured cells (Li et al., 2007). 

TCF can also be phosphorylated by MAP kinase-related nemo-like kinase (NLK).  

Phosphorylation of TCF by NLK inhibits the interaction of β-cat-TCF complex with 

DNA, thereby inhibits Wnt target activation (Ishitani et al., 1999).  In C elegans, this 

phosphorylation is important for the nuclear export of POP-1 (the worm TCF) 

(Meneghini et al., 1999; Lo et al., 2004).  In Drosophila, nemo is not an essential gene 

for animal development, and nemo mutants display a subtle derepression of a Wnt target 

in the wing (Zeng and Verheyen, 2004).  Interestingly, knockdown of NLK in zebrafish 

reveals phenotypes indicative of blocking Wnt signaling, suggesting it also plays a 

positive role (Thorpe and Moon, 2004).  This could be explained by NLK’s specific 

interference with TCF3 to antagonize its repression activity in zebrafish. 

TCF can also be sumoylated by a SUMO E3 ligase PIASy that is correlated to 

repression, though this effect is solely based on overexpression (Sachdev et al., 2001).  

PIASy knockout mice display no obvious Wnt defects, casting doubts on the 

physiological importance of it in Wnt signaling (Roth et al., 2004). 

 

(b) Factors that buffer β-cat/TCF binding 

Many factors in this group can bind to β-cat directly or indirectly, and prevent the 

β-cat-TCF complex from activating Wnt targets.  Therefore, the function of these 
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“buffer” proteins is either to restrict the activity of trace amounts of nuclear β-cat in the 

absence of Wnt signaling or to set the threshold for the precise activation of Wnt targets. 

The best example in this group, mainly due to the strong genetic evidence, is 

Chibby (Cby), a coiled-coil domain containing protein conserved from flies to humans 

(Takemaru et al., 2003).  Endogenous Cby and β-cat interact in human cells, and Cby 

competes with TCF for binding to β-cat.  Knockdown of cby by RNAi in fly embryos 

produced phenotypes resembling constitutive Wg activation.  Importantly, in an arm 

mutant background, cby RNAi can no longer activate a Wnt target (Ubx-lacZ), yet cby 

RNAi can still activate this target in the wg mutant background.  This data strongly 

suggest that unlike TCF or Gro, Cby mediates repression of Wnt targets in a β-cat 

dependent manner. 

Another protein, called ICAT, can also bind to β-cat, and inhibits the interaction 

of β-cat with TCF4 (Tago et al., 2000).  ICAT knockout mice showed phenotypes of 

neural fate posteriorization (Satoh et al., 2004), which are similar to those observed in 

APC mutant mice (Hasegawa et al., 2002) or mice embryos lacking Dickkopf1, an 

inhibitor of Wnt co-receptor (Mukhopadhyay et al., 2001).  This result suggests that 

ICAT induce head formation by blocking Wnt signaling. 

Reptin is another β-cat interacting protein, which was initially identified as a 

binding partner of Pontin (Bauer et al., 2000).  These two related proteins are members 

of a highly conserved family of an ATP-dependent DNA helicase.  Interestingly, Reptin 

and Pontin appear to play opposite roles in Wnt signaling.  reptin mutation dominantly 
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suppresses the phenotypes caused by inactivation of Wg signaling in flies, suggesting 

that Reptin acts as a negative regulator in the pathway (Bauer et al., 2000).  In zebrafish, 

a gain-of-function mutant of Reptin was identified, and it displays phenotypes in the 

developing heart similar to those of β-cat knockdown (Rottbauer et al., 2002).  A 

rigorous loss-of-function study for Reptin is lacking.  In addition, compared to Chibby 

and ICAT, much less is known about how it represses Wnt targets.  A recent study 

showed that the histidine triad protein Hint1 interacts with Reptin/Pontin and disrupts 

their interaction to antagonize Wnt signaling (Weiske and Huber, 2005). 

C-terminal binding protein (CtBP) is another repressor that plays an important 

role in silencing Wnt targets.  Initial reports showed that CtBP binds to TCF and blocks 

Wnt signaling when overexpressed in Xenopus (Brannon et al., 1999; Valenta et al., 

2003).  However, later studies failed to detect any physical or functional interaction 

between CtBP and TCF in mammalian cells (Hamada and Bienz, 2004; Valenta et al., 

2006).  Instead, strong evidence shows that CtBP directly binds to APC (Hamada and 

Bienz, 2004; Sierra et al., 2006).  Mutation of APC binding sites on CtBP reduces its 

ability to repress a Wnt reporter, underscoring the functional importance of such a 

binding.  In addition, an increase binding between β-cat and TCF was observed in CtBP 

mutant cells (Hamada and Bienz, 2004).  Therefore, similar to Chibby or ICAT, CtBP 

appears to divert β-cat from binding to TCF, probably through the adaptor APC, to 

antagonize Wnt signaling.  Our laboratory recently showed that CtBP can also repress a 

Wnt target independently of β-cat-TCF complex in fly cells (Fang et al., 2006).  It is 
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likely that different strategies are adopted by CtBP to repress Wnt targets in various 

biological contexts. 

Several other proteins have also been shown to antagonize Wnt signaling by 

altering the subcellular localization of β-cat/TCF.  For example, Ran binding protein 3 

(RanBP3) binds to β-cat, and blocks Wnt signaling by stimulating its nuclear export 

(Hendriksen et al., 2005).  HIC1, a BTB/POZ family member, binds to TCF4 and 

prevents TCF4/β-cat from associating with Wnt targets (Valenta et al., 2006).  Duplin is 

another inhibitor of Wnt signaling that compete with TCF to bind to β-cat (Sakamoto et 

al., 2000).  However, it might not be an indispensable factor in Wnt signaling since 

Duplin knockout mice displays no obvious Wnt defects (Nishiyama et al., 2004). 

 

(c) Factors that bind to DNA 

For this group of repressors, they have either specific or non-specific DNA 

binding capacity, and the prevailing model is that they cooperate with TCF to repress 

Wnt target genes.  Three examples, Osa/Brahma, Kaiso and Sox family members, will 

be discussed in detail. 

Drosophila osa encodes a protein containing an AT-rich interaction (ARID) 

domain.  Osa is a cofactor in a fly SWI/SNF type chromatin remodeling complex.  The 

core ATPase in this complex is Brahma (Brm).  How the Osa/Brm complex is recruited 

to Wnt targets remains unknown as Osa does not specifically bind DNA in vitro (Collins 

et al., 1999).  Loss-of function analysis in Drosophila revealed that Osa and Brm play 
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an important role in repressing several Wg targets in fly embryos and the developing 

wing (Collins and Treisman, 2000).  Interestingly, osa and gro/rpd3 (a fly HDAC) 

genetically interact to repress a Wg target in the wing, suggesting a cooperation between 

a chromatin remodeling complex and a histone deacytelation complex to repress Wg 

targets (Collins and Treisman, 2000).  Further study is required to confirm the direct 

involvement of Osa/Brm in Wnt signaling. 

In Xenopus, investigation of a BTB/POZ family member protein Kaiso has shed 

new light on the Wnt repression mechanism (Park et al., 2005).  Unlike fly Osa, xKaiso 

contains sequence-specific binding capacity in vitro on a Wnt-responsive enhancer 

(siamois).  Kaiso also directly binds to the siamois enhancer in vivo.  Depletion of 

Kaiso by morpholino results in a derepression of several Wnt targets important for axis 

specification.  Interestingly, Kaiso also physically binds to TCF3 and prevents it from 

binding to β-cat.  These results argue that Kaiso has both TCF-dependent and 

TCF-independent activities to repress Wnt targets.  Upon Wnt stimulation, Dsh 

stabilizes p120-catenin, which in turn binds to Kaiso and relieves its repression on Wnt 

targets (Park et al., 2006).  Surprisingly, Kaiso knockout mice show no obvious 

abnormalities, drawing caution to extrapolate results from a single organism 

(Prokhortchouk et al., 2006). 

Several Sox family members, which contain HMG domains, have also been 

implicated in Wnt signaling.  Besides their DNA binding capacity, Sox proteins 

(xSox17 and xSox3) can also bind to β-cat, though the significance of this interaction is 
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elusive (Zorn et al., 1999).  Loss-of-Sox3 in Xenopus activates a Wnt target during early 

embryogenesis, and at least one amino acid in the HMG domain is important for its 

repression activity (Zhang et al., 2003).  In mice, Sox9 interacts with β-cat, and 

conditional knockout of Sox9 in chondrocytes shows chondrodysplasia phenotype 

similar to that of constitutively activated β-cat (Akiyama et al., 2002; Akiyama et al., 

2004).  In Drosophila, SoxNeuro (SoxN) mutant reveals subtle gain-of-Wg-signaling 

phenotypes in embryos, though it clearly suppresses a wg mutant phenotype (Chao et al., 

2007).  There is no evidence that SoxN interacts with TCF or Arm, so it is unclear 

whether SoxN is a direct repressor in Wg signaling. 

Finally, it is worth mentioning that several repressors described above (e.g. CtBP, 

CBP and Brm) are also involved in activating Wnt targets (Fang et al., 2006; Li et al., 

2007; Barker et al., 2001).  Possible scenarios include that activation or repression of 

Wnt targets is gene or tissue specific, or different forms of the protein (e.g. monomer or 

dimer) determine whether it activates or represses Wnt targets. 

 

Transcriptional regulation of Wnt targets in chromatin 

Increasing evidence in the past decade has shown that Wnt signaling regulates 

transcription in the chromatin context.  A number of chromatin remodeling factors and 

histone modification factors have been implicated in the pathway, and much is to be 

explored for their role in transcriptional control of Wnt targets . 

The importance of chromatin in β-cat/TCF mediated transcription was suggested 
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by a pioneering study which examined the transcription and binding activities of 

recombinant β-cat and LEF1 proteins on a chromatinized β-cat response element (BRE) 

in vitro (Tutter et al., 2001).  Although LEF1 effectively binds naked DNA, it only 

weakly binds chromatized BRE.  β-cat strongly enhances LEF1 binding to this 

chromatin.  These data suggest that chromatin structure is crucial for β-cat/LEF1 

mediated transcription in vitro.  Interestingly, both a histone acetyltransferase p300 and 

a partially purified chromatin remodeling fraction enhance β-cat/LEF1 mediated 

transcription from a preassembled nucleosomal template, and inhibition of ubiquitination 

on chromatin template blocks the transcription, indicating the involvement of chromatin 

modification/remodeling proteins in “opening up” chromatin structure for β-cat/LEF1 to 

activate transcription (Tutter et al., 2001; Sierra et al., 2006). 

A recent study provides in vivo evidence for some chromatin factors in regulating 

a direct Wnt target, c-Myc (Sierra et al., 2006).  A C-terminal fragment of β-cat was 

used to purify its binding partners, and subunits from several chromatin 

modification/remodeling complexes were identified including the TRRAP/TIP60 histone 

acetyltransferase complex, ISWI chromatin remodeling complex, and SET1-type histone 

methyltransferase (HMT) complex.  SET1-type complex mediates trimethylation of K4 

on the N-terminal tail of histone H3 (H3K4Me3) that marks transcription initiation (Dehe 

and Geli, 2006).  In agreement, association of several subunits in SET1 complex and 

trimethylation of H3K4 were observed on c-Myc enhancer concomitant with the β-cat 

binding.  The recruitment of β-cat and SET complex to the c-Myc WRE is transient, 
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while elevated H3K4Me3 is more persistent.  This prolonged elevation of H3K4Me3 

was also observed for some activated genes in yeast, which was correlated to 

transcriptional memory (Ng et al., 2003).  RNAi knockdown of MLL2, a subunit in 

SET1 complex, caused a modest reduction of c-Myc expression, suggesting that SET1 

complex is functionally important for Wnt signaling. 

In contrast to the limited knowledge we have gained for the role of chromatin 

factors in Wnt target activation, we know very little about the role of these proteins in 

Wnt target repression.  I have extensively discussed the function of a variety of 

transcriptional repressors in Wnt signaling, and only a few of them (Brm/Osa, HDAC, 

Reptin) bear activities of chromatin modulation.  Studies on these factors are either 

contradictory or incomplete so the definitive explanation of their roles in mediating 

repression is lacking.  Further investigation is needed in this perspective. 

 

Summary of my work in this dissertation 

The work of my PhD study focuses on the genetic and molecular study of several 

ISWI family chromatin remodeling proteins in Wnt signaling, using Drosophila as a 

model organism.  A series of analyses in both flies and cultured cells suggest that these 

proteins, including ISWI, ACF1 and Tou, are involved in transcriptional repression of 

Wnt target genes. 

My interest in ISWI family chromatin remodelers came initially from the 

identification of toutatis (tou) in a misexpression screen for negative regulators of the 
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Wg pathway performed in the fly eye (Parker et al., 2002).  tou encodes a fly 

homologue of TIP-5, a subunit of a ISWI-type complex in mammals (Strohner et al., 

2001).  Overexpression of tou blocks Wg signaling in the adult eye and developing 

wing.  However, a null tou mutant, which is semi-lethal, displays no obvious Wg 

phenotypes.  Considering the possibility that Tou acts redundantly with other protein(s), 

I began to study Tou’s closest partner ACF1, which associates with at least two 

ISWI-type complexes (Langst and Becker, 2001).  While acf1 null mutants are viable, 

tou/acf1 double mutants die at late pupal stage, suggesting that they act redundantly in 

animal development.  Nevertheless, no obvious Wg defects were observed in tou/acf1 

mutant flies.  I also carried out loss of function studies in both fly and human culture 

cells, and found that Tou and ACF1 act redundantly to repress Wnt targets.  This data 

suggests a cell-specific role of these proteins in Wnt signaling.  In chapter II, I will 

recapitulate results from the genetic analysis of tou and acf1 in flies and cultured cells. 

I was not satisfied with the weak phenotype revealed by tou/acf1 mutant.  At 

least four ISWI containing complexes have been identified in flies (Fig. 1.2), two of 

which contain Tou and ACF1 as cofactors, respectively.  Depletion of the shared 

component ISWI will presumably cripple all four complexes, and likely give a more 

severe phenotype than that of tou/acf1 mutant.  Indeed, characterization of iswi mutant 

led to a breakthrough for this project: loss of iswi causes the expansion of several Wg 

targets in the developing wing, suggesting a role in repression of Wg targets.  Loss of 

iswi and acf1 also results in significant derepression of several Wg targets in fly cultured 
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cells, and a line of evidence argues that the derepression is not due to a defect of 

post-mitotic chromatin assembly.  ACF1 broadly binds to several Wg targets, and the 

binding is reduced upon Wg stimulation, leading us to propose a model where Wg 

signaling activates target gene expression by overcoming the chromatin barrier 

maintained by ACF1.  This story will be elaborated in chapter III. 

In the last chapter, I will summarize all the results and propose future directions, 

mainly to extend the story in Chapter III, for a further understanding of the mechanism of 

ISWI/ACF1’s action in Wg target repression. 
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CHAPTER II 

 

TOUTATIS AND ACF1, TWO RELATED CHROMATIN REMODELERS, 
REDUNDANTLY ANTAGONIZE WINGLESS SIGNALING IN DROSOPHILA 

 

Abstract 

Increasing evidence suggests that chromatin plays an important role in 

transcriptional regulation of eukaryotic genes.  We have identified Tou and Acf1, two 

closely related proteins in ISWI family chromatin remodeling complexes, as novel 

antagonists of Wnt signaling.  Overexpression of tou or acf1 consistently blocks Wg 

signaling in fly eyes and wings.  Loss of tou or acf1 has subtle or no detectable 

phenotype, respectively.  In contrast, tou/acf1 double mutants have a more severe 

phenotype, indicating functional redundancy between these two genes.  Consistent with 

the fly data, Tou and Acf1 redundantly repress Wnt targets expression in both fly and 

human cells.  We conclude that Tou and Acf1 are not absolutely required for Wnt 

signaling, yet they might act as modulators in fine-tuning the pathway.  The possibilities 

that a third protein acts redundantly with Tou/Acf1 in flies and that Tou and Acf1 repress 

Wnt targets in a tissue/cell specific manner are discussed. 
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Introduction 

Eukaryotic DNA is packaged into a highly organized chromatin structure, which 

presents an inhibitory barrier for protein-DNA interactions (Khorasanizadeh, 2004).  

Regulation of chromatin influences many biological processes that require specific 

protein-DNA contacts, such as transcription.  The “opening” and “closing” of chromatin 

have been linked to the transcriptional activation and repression, respectively.  Previous 

studies showed that two major mechanisms, covalent modification of histone tails and 

ATP-dependent chromatin remodeling, play pivotal roles in altering the structure and 

position of nucleosomes to regulate transcription (Narlikar et al., 2002; Li et al., 2007). 

ATP-dependent chromatin remodeling complexes utilize the energy of ATP 

hydrolysis to regulate the DNA accessibility to the interacting proteins (Becker and Horz, 

2002).  Based on the identity of their conserved ATPase subunit, they can be classified 

into several families, including SWI/SNF, ISWI, CHD and INO80.  All family members 

have been implicated in transcriptional regulation, though the specific mechanisms of the 

regulation and the particular biological events in which they are involved differ between 

families (Bouazoune and Brehm, 2006). 

Several ISWI family chromatin remodeling complexes have been identified in 

Drosophila, including ACF, CHRAC and NURF (Langst and Becker, 2001; Corona and 

Tamkun, 2004).  Besides the shared ATPase ISWI, these complexes contain additional 

cofactors which endow them with unique biochemical activities.  In the case of 

ATP-utilizing chromatin assembly and remodeling factor (ACF) which consists of ISWI 
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and ACF1, it has been shown that interaction of ACF1 with ISWI increases nucleosome 

sliding efficiency by an order of magnitude (Ito et al., 1999; Eberharter et al., 2001; 

Eberharter et al., 2004).  This suggests that the ACF1 subunit significantly contributes to 

the chromatin remodeling activity of ISWI.  The ACF complex was initially purified 

from fly embryos, and extensive biochemical analysis has revealed that it exhibits strong 

chromatin assembly and nucleosomal remodeling activities in vitro (Fyodorov and 

Kadonaga, 2002).  The mammalian counterpart of ACF has been indicated in regulating 

heterochromatic DNA replication in several cell lines (Collins et al., 2002; Poot et al., 

2004).  Surprisingly, acf1 mutant flies survive to adulthood, only displaying mild 

phenotypes (Fyodorov et al., 2004).  This suggests that ACF1 act redundantly with at 

least one additional factor to mediate chromatin remodeling in vivo. 

The closest protein to ACF1 in the fly genome is called Toutatis (Tou).  tou was 

initially found in a genetic screen where a tou mutant suppresses the extra-sex-combs 

phenotype of polyhomeotic (ph).  Since ph is a gene in the polycomb group, whose 

function is thought to maintain the repression state of homeotic genes, tou was considered 

to be a new trithorax group gene, which presumably is involved in transcriptional 

activation of homeotic genes (Fauvarque et al., 2001).  Recently, a more rigorous study 

of Tou has shown that it interacts with ISWI, and they cooperate with the GATA factor 

Pannier (Pnr) to positively regulate preneural gene expression in vivo (Vanolst et al., 

2005).  One human homologue of Tou is TIP5 (also called BAZ2A), which has been 

shown to be co-purifed with a human ISWI (SNF2h) in a complex termed NoRC 
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(nucleolar remodeling complex) (Strohner er al., 2001).  Extensive studies of this 

complex revealed that NoRC remodels chromatin similarly as ACF in vitro, and that 

NoRC silences ribosomal genes transcription in vivo (Zhou et al., 2002; Strohner et al., 

2004).  The repression of rDNA is thought to be achieved through NoRC mediated 

histone H4 deacetylation, histone H3K9 dimethylation, and DNA methylation (Santoro et 

al., 2002).  This provides a good example that covalent modification of DNA/histone 

tails and ATP-dependent chromatin remodeling coordinately regulate transcriptional 

repression. 

These previous studies suggest that Tou/TIP5 are versatile proteins that might be 

involved in a wide array of biological processes.  One context we are particularly 

interested in is the Wg/Wnt signaling pathway, which is important for many aspects of 

animal development (Logan and Nusse, 2004).  The transcriptional regulation of Wnt 

targets revolves around the DNA-binding protein TCF/LEF-1 and its binding partner 

Armadillo//β-catenin (Arm/β-cat).  In the quiescent state, TCF interacts with the 

co-repressor Groucho and represses Wnt target expression.  Upon Wnt stimulation, 

Arm/β-cat becomes stabilized and enters the nucleus, where it complexes with TCF to 

activate Wnt targets by displacing Groucho and recruiting additional co-activators 

(Parker et al., 2007).  It has been shown that chromatin structure is important for these 

regulations, and several chromatin remodelers have been implicated in the pathway 

(Tutter et al., 2001).  These include the SWI/SNF type ATPase Brg-1/Brahma and its 

binding partner Osa, and the INO80 subfamily proteins Pontin52 and Reptin52 (Collins 
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and Treisman, 2000; Barker et al., 2001; Rottbauer et al., 2002).  The mechanisms of 

these proteins’ action in mediating Wnt targets expression remain elusive. 

In this study, we implicate Tou and ACF1 as transcriptional repressors in Wg 

signaling in Drosophila.  Overexpression of Tou or ACF1 antagonizes Wg signaling in 

the eye and wing.  However, neither tou nor acf1 mutants reveal misregulation of Wg 

targets.  Interestingly, mutation of both tou and acf1 exhibits a stronger phenotype in 

flies.  In addition, depletion of these factors causes activation of Wnt target genes in 

both fly and mammalian cell culture.  These results provide the first evidence that Tou 

and ACF1 act redundantly in fine-tuning the repression of Wnt targets. 

 

Results 

A misexpression screen in the Drosophila eye designed to identify antagonists of Wg 

signaling 

Drosophila has a typical insect compound eye (Fig. 2.1A).  When wingless (wg) 

is placed under the control of the eye-specific promoter GMR, a severe reduction in eye 

size is observed (Fig. 2.1B).  To identify novel negative regulators in the Wg pathway, a 

misexpression screen was performed by crossing the GMR-Gal4/UAS-wg line to 

transposon insertion lines, which contain a single P-element transposon with UAS sites 

upstream of a proximal promoter (Rorth, et al., 1998).  These transposons, called EP 

elements, are known to preferentially insert into the 5’ promoter region of genes, placing 

them under Gal4 control.  As a result, wg and the gene near the EP insertion are  
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Figure 2.1 Misexpression of tou (via the A145 insertion) suppresses a Wg 
signaling-dependent small eye phenotype.  Pictures are micrographs of adult 
Drosophila eyes.  P[GMR-Gal4]; P[UAS-lacZ] eyes are identical to wild-type (A).  
P[GMR-Gal4], P[UAS-wg] eyes are greatly reduced (B), while P[GMR-Gal4], 
P[UAS-wg]; GSV[A145] eyes are significantly bigger (C).  Overexpression of three 
other GSV insertions (A41, A80, A428) at tou locus also suppresses GMR-wg induced 
small eye (data not shown).  All crosses were performed at 25°C.  Figure (A) and (B) 
are courtesy from Parker et al., 2002. 
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co-overexpressed in the fly eye, and the EP lines with an obvious suppression of the 

small eye phenotype were selected. 

The primary screen performed by Kenneth Cadigan and Jemileh Jemison identified 

about 100 lines that significantly increase the size of GMR/wg eyes.  Several of these 

lines are inserted into known negative regulators in the pathway (e.g. Axin and GSK3).  

One insertion was in a novel gene called pygopus (pygo), which has since been shown to 

be an essential factor in Wg signaling (Parker et al., 2002; Kramps et al., 2002; 

Belenkaya et al., 2002; Thompson et al., 2002).  Two other genes identified from this 

screen, the histone acetyltransferase Creb-binding protein (CBP) and C-terminal-binding 

protein (CtBP), also provided fruitful insights on the transcriptional mechanisms of Wg 

signaling (Fang et. al., 2006; Li et. al., 2007).  There are four lines from the screen that 

are inserted into a gene called toutatis (tou).  My work has been focusing on the 

characterization of its role in Wg signaling. 

 

Overexpression of Toutatis (Tou), a chromatin remodeling protein, blocks Wg 

signaling 

GSV lines are the derivatives of EP lines (Toba et al., 1999), and have UAS sites 

engineered onto both ends of P-element, allowing them to drive gene expression on both 

sides of P-element.  Consistently, our lab has identified more positives from the primary 

screen with GSV lines than positive EP lines.  Four GSV lines, A41, A145, A80 and 

A428 are inserted in the first intron of tou locus (Fig. 2.3A).  Given the close proximity 
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of GSV insertions to tou, we considered tou as the most likely gene responsible for the 

overexpression phenotypes. 

Overexpression of tou in the eye significantly suppresses the GMR/wg induced 

small eye phenotype (Fig. 2.1C), suggesting that it antagonizes Wg signaling.  

Overexpression of tou also suppresses the small eye phenotype induced by a stabilized 

form of Arm, implying that Tou acts downstream of Arm stabilization in Wg signaling 

(data not shown).  In addition, tou overexpression in the wing imaginal disc gives 

phenotypes consistent with a loss of Wg signaling.  Before pupation, the Drosophila 

wing imaginal disc is a flat columnar epithelia sheet with wg expressed in a stripe at the 

dorsal/ventral boundary (Cadigan, 2002; Fig. 2.2A).  Wg signaling represses its own 

expression in this region (Rulifson et al., 1996; Cadigan et al., 1998) and activates the 

proneural gene senseless (sens) on either side of the Wg stripe (Parker et al., 2002; Fig. 

2.2B).  Loss of Wg signaling leads to a derepression of Wg and loss of Sens.  This is 

exactly what was observed when tou was misexpressed in the posterior half of the wing 

disc using the Engrailed-Gal4 (En-Gal4) driver (Fig. 2.2A-C).  Taken together, analysis 

of three Wg readouts in the eye and wing suggests that when overexpressed, Tou blocks 

Wg signaling. 

A cartoon of the tou locus including several adjacent genes is depicted in Fig. 2.3.  

Since enhancers can act over long distances and independently of orientation, it is 

possible that some other gene(s) around the GSV insertion sites could be responsible for 

the phenotypes.  The fact that the GSV lines we used are bi-directional increases the  
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Figure 2.2 Overexpression of tou (via the A428 insertion) blocks Wg signaling in the 
wing.  Wg is expressed in a stripe pattern at the dorsal/ventral boundary (A).  Sens is 
activated by Wg signaling on either side of the D/V boundary (B).  Tou is overexpressed 
in the posterior part of the wing imaginal disc (anterior is to the left) using En-Gal4.  
Compared to the left half, Wg stripe (red) is expanded (A) and Sens expression (green) is 
greatly reduced (B).  Overexpression of three other GSV lines (A41/A80/A145) at the 
tou locus results in similar phenotypes.  All crosses were performed at 25°C. 
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Figure 2.3 All four GSV lines induce tou expression.  (A) Schematic diagram of the 
tou locus with three upstream genes included.  The closest annotated gene downstream 
of tou is engrailed (en), which is 50KB away (not shown).  The insertion sites of four 
GSV lines are also illustrated, and the light blue boxes on the P-elements denote UAS 
sites.  Although A145, A80 and A428 are drawn together for simplicity, their insertion 
sites are not exactly the same (within 100bp distance).  Arrows represents the 
transcriptional start sites of respective genes.  The red and blue boxes represent ORFs 
and UTRs of respective genes.  For simplicity, small introns of these genes are not 
shown.  (B-F) Each GSV line was crossed to heat-shock-Gal4, and the progenies at the 
third instar larva stage were subject to heat shock stimulation before the RNA was 
isolated for RT-PCR analysis.  UAS-lacZ line serves as a control for heat shock 
induction, and β1 tubulin serves as a loading control for PCR.  A series dilution of 
cDNA pool was tested to ascertain that PCR products were within the linear range (data 
not shown).  All data were collected in triplicate.  Evidently, only tou is induced by all 
four GSV line. 
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likelihood of such possibility.  I used heat-shock-Gal4 to induce each of the GSV lines 

in the tou locus, and examined which gene(s) are induced by semi-quantitative RT-PCR.  

As shown in Fig 2.3, tou is significantly induced in all four GSV lines.  Interestingly, 

one GSV line, A80, also induces the expression of two nearby genes (CG9006 and 

CG9005), supporting the notion that the UASs in P[GSV] can act over long distances 

(more than 30 kb) to drive gene expression.  Nevertheless, the observation that all four 

GSV lines give a qualitatively similar phenotypes in the eye and wing strongly suggests 

that tou is the responsible gene for these phenotypes.  Additional support came from the 

observation that when unidirectional EP lines inserted in the tou locus were used for 

phenotypic analysis, only those lines with the correct orientation for tou overexpression 

suppressed the GMR/wg induced small eye (data not shown). 

Gene finding programs and the EST database predict four isoforms of tou.  The 

largest isoform and one of the small isoforms are depicted in Fig. 2.5.  The largest 

isoform encodes a large protein (3109 amino acids) with several motifs consistent with a 

function in chromatin remodeling.  DDT and PHD domains are protein-protein 

interaction domains often found in transcription factors or chromatin remodeling 

molecules (Aasland et al., 1995; Doerks et al., 2001).  Proteins containing BROMO 

domains can bind acetylated histone tails (Zeng and Zhou, 2002).  The MBD domain 

can bind methylated DNA (Rountree et al., 2001), which is often related to gene silencing.  

The three small isoforms of tou encode proteins with the PHD and BROMO domains 

only.  The closest relative of tou in the fly genome is acf1, which encodes a protein  
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Figure 2.4 Diagram of Tou and its related protein ACF1, and their human 
homologues.  (A) Alignment of Tou and ACF1 proteins.  The numbers represent 
percentage of identity/similarity.  The two hatched boxes are two novel conserved 
regions termed WAC (blue checkers) and WAKZ (blue stripes), respectively (Ito et al., 
1999).  (B) Human homologues of Tou.  The two large dark-red boxes are regions 
conserved between all three proteins.  There are two smaller red hatched boxes 
conserved only between Tou and BAZ2B.  (C) Human homologues of ACF1.  Both 
WAC and WAKZ domains are conserved between all three proteins. 
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containing DDT, PHD and BROMO domains (Fig. 2.4A).  ACF1 was identified 

biochemically as a subunit of the ACF and CHRAC chromatin-remodeling complexes, 

which efficiently catalyze ATP-dependent chromatin assembly and nucleosomal sliding 

in vitro (Ito et al., 1999; Eberharter et al., 2001; Fyodorov and Kadonaga, 2002). 

tou null mutants reveal no obvious defect in Wg signaling. 

When overexpressed, Tou is a potent inhibitor of Wg signaling in the eye and 

wing.  However, the physiological significance of Tou in Wg signaling can best be 

determined by examining its loss-of-function phenotypes.  The original tou allele is a 

transposon insertion line ~900bp upstream of the tou transcriptional start site (Fauvarque 

et al., 2001).  It is homozygous viable with a subtle downward wing phenotype which 

may or may not be due to a change in Wg signaling.  To obtain stronger or null alleles 

of tou, I carried out an imprecise excision screen in flies.  The underlying principle is 

that when a transposon is mobilized, random deletions surrounding its insertion site can 

be generated (Robertson et al., 1988).  Using this strategy, I successfully obtained 

several deletions that take away the ATG of the largest Tou isoform.  The biggest 

deletion (tou20-4) reaches 6.6kB downstream of ATG, and both MBD and DDT domains 

are deleted (Fig. 2.5).  A smaller deletion (tou4-10), which reaches 3kB downstream of 

ATG, was also used for later analysis (Fig. 2.5). 

When tou20-4 flies were crossed to tou4-10 flies or several deficiencies which 

presumably remove the entire tou region (Df(SFX31), Df(enA), Df(enB)), the 

transheterozygous flies are semi-lethal with subtle downward or shriveled wing  
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Figure 2.5 Depiction of two isoforms of tou and tou mutants.  The white region and 
the light-blue region represent the UTR and ORF of tou, respectively.  The other colored 
boxes represent the indicated protein domains.  The first intron of tou is not drawn in 
proportion.  The insertion site of EP2532, used for imprecise excision of tou, is 
indicated in the first intron.  tou4-10 and tou20-4  have a 3.0kB and a 6.6kB deletion of tou, 
respectively.  Neither of these deletions removes the potential short isoforms of tou.  
The short yellow line at the 3’ end of tou ORF indicates the region targeted by tou RNAi. 
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Table 2.1 Summary of phenotypes of tou mutant.  Based on the cytogenetic 
information from flybase, all three deficiencies delete tou locus.  Df(enA) and Df(enB) 
gives stronger wing phenotype, possible due to the deletion of additional genes in these 
two deficiencies.  To calculate the percentage of lethality, the number of 
transheterozygote flies was counted, and was divided by the total number of F1 progenies.  
The resulting ratio was then normalized to that from a control cross, where a precise 
excision allele of tou from the same jumpout screen was used.  Compared to the control, 
tou mutant flies suffer at least 50% decrease of viability.  For each cross, 200-300 F1 
progenies were counted for calculation.  All crosses were performed at 25°C. 
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phenotypes.  Table 2.1. summarizes tou phenotypes that I observed.  Firstly, tou 

mutants are semi-lethal.  When tou20-4 or tou4-10 were crossed to various deficiencies or 

to each other, I found that more than half of the progeny are dead (Table 2.1).  The 

penetrance of lethality varies between crosses, probably due to different genetic 

backgrounds of deficiency lines or various residual Tou activities in tou mutants.  

Secondly, for those tou mutant flies that survive to adulthood, their wings bend 

downward and are held out, and in some extreme cases, their wings are deformed and 

shriveled.  It is unclear what causes this phenotype, though it is not indicative of a major 

disruption of Wg signaling.  Finally, I also carried out a backcross using 

transheterozygote female flies of the tou mutants, and did not observe a more severe 

phenotype in F2 progenies.  This result suggests that depletion of maternal tou does not 

significantly enhance the tou mutant phenotype. 

We suspect that tou20-4 may not be a null allele of tou, since it only deletes 5’-half 

of the largest transcript, and does not remove any sequences of the three predicted 

smaller transcripts.  RT-PCR experiments indicate that these messages (and/or a 

truncated form of the larger transcript) are still expressed in tou20-4/Df(tou)  

transheterozygotes (data not shown).  Those smaller messages still include PHD and 

BROMO domains and could contribute to its function.  To address this intragenic 

redundancy issue, I employed RNA interference under the control of inducible UAS 

promoter to conditionally knock down tou activity in flies (Lee and Carthew, 2003).  A 

sequence specific for 3’ portion of tou is used to target all four isoforms (indicated in Fig. 
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2.5).  I crossed UAS- tou-RNAi transgenic lines to different Gal4 drivers, and examined 

various Wg readouts in fly embryos, eye and wing.  For all tissues examined, no 

obvious Wg phenotypes were detected even when four strong lines of UAS-tou-RNAi 

were combined to boost the tou knockdown potential.  Furthermore, a combination of 

tou20-4 and tou-RNAi does not reveal more severe defects than the phenotype seen in 

tou20-4 mutants.  Collectively, these results suggest that tou20-4 is a null allele, and 

disruption of tou itself does not result in manifest defect in Wg signaling. 

 

Double mutant of tou and its potential redundant gene acf1 reveals no obvious 

defect in Wg signaling 

The lack of an obvious Wg signaling defect in tou mutants could be due to 

redundancy with another gene.  The closest relative of tou in the fly genome is acf1, 

which encodes a protein containing DDT, PHD and BROMO domains (Fig. 2.4A).  To 

address this intergenic redundancy issue, I performed both gain-of-function and 

loss-of-function analyses for acf1. 

Overexpression of acf1 under the control of the eye-specific promoter GMR 

suppresses the reduced eye phenotype caused by a stabilized form of Arm, suggesting 

that ACF1 plays an antagonistic role in Wg signaling, acting downstream of Arm 

stabilization (data not shown).  There is one EP line (EP1181), which is inserted in the 

first intron of acf1 gene downstream of ATG site (Fig 2.6).  By adopting the similar 

imprecise excision strategy used for making tou mutants, I generated several acf1  
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Figure 2.6 Depiction of acf1 mutant.  The white region and the light-blue region 
represent the UTR and ORF of acf1 respectively.  Other colored boxes are annotated 
domains of ACF1.  The insertion site of EP1181, used for imprecise excision of acf1, is 
indicated in the first intron.  acf14 has a 2.8kB deletion of acf1. 
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deletions via mobilizing EP1181.  The biggest deletion (acf14) excises 5’-half of the 

gene and is likely to be a null allele (Fig. 2.6). 

The acf14 homozygous flies survive to adulthood without any obvious phenotypes.  

Around the same time, another laboratory also generated several acf1 mutants using the 

same strategy, and reported that acf1 mutants are semi-lethal (Fyodorov et al., 2004).  

Since all their acf1 deletions are smaller than acf14 and their acf1 deletions are likely to 

be null alleles based on the Western blot, the discrepancy between two labs’ observation 

for acf1 mutant phenotype could be due to the different genetic backgrounds.  In either 

case, the acf1 mutant itself reveals only subtle phenotypes (Fyodorov et al., 2004). 

To examine whether tou and acf1 act redundantly, I generated tou/acf1 double 

mutant flies.  Interestingly, we observed that tou20-4/acf14 double homozygotes are lethal 

at late pupal stage, which is more severe than the phenotype seen in tou20-4 or acf14 flies.  

This result suggests that Tou and ACF1 act redundantly during animal development.  It 

is unclear what biological process is disturbed in tou/acf1 mutant for such a generic 

phenotype.  When the double mutant flies were dissected out from the pupal cases, we 

did not observe evident pattern defects for different tissues including the wing, the eye 

and the leg.  In addition, immunostaining of several known Wg targets (Sens, Wg and 

Dll) in the developing wing displays normal expression patterns in tou/acf1 mutants.  

We observed similar results when the maternal contributions of both tou and acf1 were 

removed (data not shown).  These data indicate that Wg signaling is not obviously 

disrupted in tou/acf1 mutants. 
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Tou and ACF1 act redundantly to repress Wnt targets in fly and human cell lines 

The relatively subtle phenotype of tou/acf1 mutants implies that Tou and ACF1 

are not essential factors in Wg signaling.  Some nuclear repressors in the Wnt pathway 

have been shown to act in a tissue/cell-specific manner or as modulators for fine-tuning 

of the pathway (Parker et al., 2007).  It is possible that Tou and ACF1 act in a similar 

fashion, and analysis of tou/acf1 mutant from a whole animal perspective may obscure a 

more subtle defect in Wnt signaling in certain tissues or cells.  Exploration of a 

Drosophila cell culture system might be helpful for us to understand the role of Tou and 

ACF1 in Wg signaling as well as the underlying mechanisms of their action. 

Previous work in our laboratory has shown that Drosophila embryonic Kc167 (Kc) 

cells have a strong transcriptional response to Wg signaling, including several 

endogenous targets (Fang et al., 2006; Li et al., 2007).  One of these targets is naked 

cuticle (nkd), which has been shown to be a Wg induced antagonist in flies (Zeng et al., 

2000).  In addition, RNAi works robustly in Drosophila cultured cells (Clemons et al., 

2000), which greatly facilitates the loss-of-function analysis.  To explore whether Tou 

and ACF1 play a role in Wg signaling in Kc cells, I knocked down the activity of tou, 

acf1 or tou/acf1 by RNAi, and observed a consistent derepression of nkd in the absence 

of Wg signaling revealed by quantitative RT-PCR (Fig.2.7A).  acf1 RNAi itself leads to 

a six-fold derepression of nkd, while tou RNAi itself has no obvious effect.  

Interestingly, acf1/tou RNAi results in a highest derepression of nkd (more than 10 fold), 

suggesting that they act redundantly.  These results are consistent with the tou or acf1  
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Figure 2.7 Depletion of tou and acf1 activate Wg targets in fly and human cells.  (A) 
tou and acf1 RNAi activates Wg target gene naked cuticle (nkd) in fly Kc cells.  Kc cells 
were treated with the indicated dsRNAs as described in Materials and methods.  The 
transcript level for nkd was monitored by real-time PCR and normalized to the 
β-tubulin56D control.  Experiments were done in duplicate.  (B) Knockdown of 
tou/acf1 homologues in human cells activates Wnt signaling.  Human 293 cells were 
transiently transfected with pSUPER plasmids to inhibit different human tou/acf1 
homologues, and the Wnt response was detected by TOPFLASH assay.  When 2.5ng 
β-cat was co-transfected, siRNA for all four human tou/acf1 homologs gave the highest 
activation of the Wnt reporter.  Each bar represents the result in duplicate with the 
standard deviation.  The experiments were done at least five separate times, and similar 
results were observed.  (C) β-cat level is not affected when human tou/acf1 homologues 
are inhibited by siRNA.  293 cells were transfected with siRNA constructs for all four 
human homologues of tou/acf1.  When no β-cat was co-transfected, no activation of 
TOPFLASH reporter could be observed.  When 1ng or 100ng β-cat was co-transfected, 
a consistent two-fold further activation of TOPFLASH was observed.  For all doses of 
β-cat tesed, no obvious change of its protein level was detected upon siRNA treatment. 
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overexpression phenotypes and the synthetic lethality phenotype of tou/acf1 mutant in 

flies. 

There are two genes in the human genome that appear to be homologues of tou.  

They have been called BAZ2A and BAZ2B and were identified in a database search (Jones 

et al., 2000; Fig 2.4B).  There are also two genes called BAZ1A (hACF1) and BAZ1B 

(WSTF) that are homologues of acf1 (Poot et al., 2000; Lu et al., 1998; Fig 2.4C).  To 

explore whether the role of Tou and ACF1 in Wnt signaling is conserved in humans, I 

targeted the mRNAs of these tou/acf1 human homologues for degradation by transfecting 

human embryonic kidney 293 cells with pSUPER plasmids expressing short RNA 

hairpins (McManus and Sharp, 2002).  The effects on Wnt signaling were assayed using 

the TOPFLASH reporter, which contains multiple TCF binding sites upstream of the c- 

fos proximal promoter and luciferase ORF (Korinek et al., 1997).  When a slight amount 

of β-catenin is co-transfected, reporter activation can be consistently observed when 

tou/acf1 homologues are knocked down (Fig. 2.7B).  The acf1 homologues appear to 

have more contribution for repression, and the activation is highest when all four mRNAs 

are inhibited, indicating functional redundancy.  Similar results were observed when a 

different Wnt-responsive reporter, cyclinD1-luc, was used (Tetsu and McCormick, 1999; 

data not shown).  In contrast, the FOPFLASH reporter, in which TCF sites are mutated, 

is not regulated by the same siRNA treatment, arguing that there is certain specificity for 

the action of tou/acf1 homologues (data not shown).  In sum, these results suggest that 

the role of Tou/ACF1 as negative regulators in Wnt signaling is conserved between flies 
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and humans.  

One possible mechanism that Tou/ACF1 homologues act to attenuate Wnt 

signaling in 293 cells is that they down-regulate β-catenin stability.  To test this 

possibility, Western blot for β-catenin was performed in cells where all four mRNAs of 

tou/acf1 homologues were inhibited by RNAi.  We did not observe a significant change 

of β-catenin protein level in RNAi treated cells, suggesting that the human homologues 

of Tou/ACF1 antagonize Wnt signaling independently of β-catenin stability (Fig. 2.7C). 

 

Discussion 

The role of Tou and ACF1 in flies 

Through an misexpression genetic screen for antagonists in Wg signaling, we 

identified a chromatin remodeling protein called Toutatis (Tou).  Overexpression of Tou 

consistently blocks several Wg readouts in the adult eye and developing wing, suggesting 

it acts as a repressor in the Wg pathway.  In contrast, loss of tou only reveals subtle 

phenotypes.  We believe that our tou mutant (tou20-4), which deletes N-terminal half of 

Tou protein, is likely to be a null allele based on two reasons.  Firstly, a RNAi construct 

targeting the 3’-end of tou does not enhance the tou20-4 phenotype.  Secondly, a different 

tou mutant (touE44.1) that deletes C-terminal of Tou protein including PHD fingers and 

BROMO domain does not reveal a more severe phenotype than that of tou20-4 (Vanolst et 

al., 2005). 

Mutants of tou20-4 are semi-lethal with more than half of flies dying at a late pupal 
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stage.  For those flies that survive to adulthood, they exhibit downward or shriveled 

wing phenotype, which could reflect a modest defect in Wg signaling.  Interestingly, 

previous report demonstrated that tou mutant flies have decreased number of dorsocentral 

(DC) bristles on notum (Vanolst et al., 2005).  The formation of DC bristles is 

controlled by Wg signaling (Phillips and Whittle, 1993).  Therefore, Tou could act as a 

tissue-specific regulator of Wg signaling to mediate DV sensory organ development. 

By all means, these subtle phenotypes of tou mutant do not indicate a major 

perturbation of Wg signaling, suggesting the existence of redundant gene(s).  When both 

tou and its closest gene acf1 are disrupted, a more severe phenotype (i.e. late pupal lethal) 

is observed, supporting that Tou and ACF1 act redundantly in certain biological 

processes.  The fact that no evident Wg phenotypes can be detected in tou/acf1 mutant 

flies made us suspect that a third protein act redundantly with Tou/Acf1.  This could be 

Nurf301, the second closest protein to Tou in the fly genome.  Consistent with this 

notion, we found that tou/acf1/nurf301 triple mutant flies die earlier than either tou/acf1 

mutant or nurf301 mutant (data not shown).  It has been shown that Nurf301 interacts 

with ISWI, and regulates transcription in specific contexts (Xiao et al., 2001; Badenhorst 

et al., 2002).  Since Tou, ACF1 and Nurf301 all associate with ISWI, we reasoned that 

disruption of the shared component ISWI might result in the equivalent effect as 

disruption of Tou/ACF1/Nurf301 altogether, while technique-wise it is much easier to 

achieve the former one.  In fact, loss of iswi in the wing leads to derepression or further 

activation of several Wg targets, suggesting that ISWI is required to repress Wg targets in 
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vivo.  Details on the characterization of ISWI’s role in Wg signaling will be elaborated 

in Chapter III. 

The role of Tou and ACF1 in fly and human cells 

We also performed loss-of-function analysis for tou and acf1 in both fly and 

human cell lines.  Consistent with what was observed in flies, we found that Tou and 

ACF1 redundantly repress Wg targets in both systems.  These results indicate that the 

role of Tou and ACF1 is evolutionarily conserved.  We also noticed an interesting 

disparity regarding the contribution of Tou or ACF1 in repressing Wg targets between 

flies and cultured cells.  In flies, Tou appears to play a predominant role as 

overexpression of tou blocks several Wg readouts and tou mutant causes semi-lethality 

and abnormal wing, while acf1 mutant has no manifest phenotype.  In contrast,depletion 

of acf1 results in a greater activation of Wg targets than depletion of tou in culture cells 

(Fig. 2.7).  It is important not to overemphasize this discrepancy because the incomplete 

knockdown of gene’s activity by RNAi thwarts a clear interpretation of results in cell 

culture and tou mutant phenotypes are not strongly correlated to Wg signaling defect.  

Despite these caveats, it is still suggestive that requirement of Tou and ACF1 differs in 

different tissues. 

We also observed a difference between fly and human cell culture systems.  In 

fly Kc cells, activation of Wg target nkd upon tou/acf1 depletion occurs both in the 

absence and presence of Wg stimulation (Fig 2.7A, data not shown).  In human 293 

cells, only when the Wnt pathway is activated can a further activation of Wnt reporter be 
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observed upon depletion of tou/acf1 homologues (Fig 2.7C).  This disparity can be 

reconciled since different readouts, an endogenous gene vs. an engineered reporter, are 

used in the two systems.  We suspect that TOPFLASH reporter might be too “naïve” to 

be derepressed especially considering that ACF1 can repress Wg targets independent of 

TCF (Chapter III).  We favor a model where Tou and ACF1 are required for both 

maintaining the silent state of Wnt targets and “buffering” the activation of Wnt targets 

once the signal is received. 

 

Mechanism of Tou and ACF1’s action 

Our genetic studies from both flies and cell culture have implicated Tou and 

ACF1 as negative regulators in Wg signaling.  Then, are these two proteins directly 

involved in the pathway?  Several lines of evidence suggest that they are.  Firstly, 

overexpression of tou or acf1 suppresses the small eye phenotype induced by an activated 

form of Arm, excluding the possibility that Tou/ACF1 activates a Wg antagonist 

upstream or at the level of Arm stabilization (e.g. Axin) to indirectly block Wg signaling.  

Secondly, RNAi of tou/acf1 homologues in 293 cells activates TOPFLASH reporter, 

which only contains TCF binding sites and therefore is highly Wnt-specific.  This result 

indicates that Tou/ACF1 are directly involved in the pathway, at least through regulating 

the TCF-dependent process.  Finally, we have some convincing data from chromatin 

immunoprecipitation analysis (ChIP) that ACF1 directly binds to the chromatin of nkd 

locus (Chapter III).  Given the sequence similarity between Tou and ACF1, We 
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speculate that Tou may directly bind to Wg targets as well.  Several peptide antibodies 

for Tou have been generated in the lab, and it is tempting to perform ChIP analysis for 

Tou to test such a hypothesis. 

Previous studies have shown that ACF1 plays an important role in chromatin 

assembly (Fyodorov and Kadonaga, 2002).  However, two pieces of evidence argue 

against that the defect we saw in Wnt signaling is the non-specific effect of chromatin 

organization.  Firstly, two genes adjacent to nkd locus are not derepressed upon tou/acf1 

knockdown, suggesting that there is no widespread chromatin disorganization around nkd 

locus when tou and acf1 are depleted.  Secondly, neither a FOPFLASH reporter where 

TCF sites are mutated nor a reporter responsive to insulin signaling is affected by 

knockdown of tou/acf1 homologues in 293 cells (data not shown).  This result suggests 

that there exists certain specificity in Tou/ACF1’s action.  

On a whole, this project is somewhat handicapped by a modest phenotype of 

tou/acf1 mutant in flies.  One possibility is redundancy, which we have proposed in the 

preceding section.  It appears that this is not the only example where mechanism of 

redundancy is employed by the negative regulators in the pathway.  A recent report 

shows that p66, a component in the NURD chromatin-remodeling/histone deacetylase 

complex, may have redundant partner(s) for its repression of Wg targets, since p66 

mutant has no detectable Wg phenotype (Kon et al., 2005).   

Another possibility is that Tou/ACF1 are not “essential” components in Wg 

signaling, meaning they are not required in every tissue where Wg is expressed.  Their 
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action could be tissue or cell specific, and the effect could be too subtle, not necessarily 

unimportant, to affect the whole animal biology.  Our results from cell culture system 

definitely support this idea.  A similar example has been reported previously for Ryk, a 

Wnt co-receptor.  While Ryk is certainly an important factor in Wnt signaling in 293 

cells and is required for Wnt induced neurite outgrowth in dorsal root ganglion (DRG) 

neurons, Ryk knockouts in mice or worms do not have dramatic defects in Wnt signaling 

(Lu et al., 2004; Halford et al., 2000; Inoue et al., 2004).  Therefore, both Ryk and 

Tou/ACF1 could fall in the category of tissue/cell specific regulators of Wnt signaling. 

 

Materials and methods 

Drosophila strains 

The P[GMR-Gal4] stock was provided by M. Freeman (Freeman, 1996).  The 

P[UAS-wg] stock was provided by H. Krause.  The bidirectional P[GSV] (Toba et al., 

1999) was mobilized by transposase P[Δ2-3] and the subsequent insertions were screened 

for suppression of P[GMR-Gal4]P[UAS-wg] induced small eye.  The insertion sites of 

A41, A80, A145 and A428 were mapped by using inverse PCR (http://www.fruitfly.org/ 

about/methods/inverse.pcr.html).  EnGal4 and UAS-lacZ lines were from the 

Bloomington Stock Center. 

Generation of tou and acf1 deletions, and touRNAi lines 

Deletion mutants of tou and acf1 were generated by imprecise excision of 

EP(2)2532 and EP(3)1181, respectively.  A modified approach to screen deletions was 
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adopted compared to what was employed previously (Parker et al., 2002).  The male w- 

jumpout flies from dysgenic crosses were pooled in 30-40s and crossed to wild-type 

female flies.  DNA was isolated from the progenies (at the embryonic stage) and subject 

to PCR characterization for deletions.  Once a positive pool was identified, the parental 

jumpout males were separated and isogenic crosses were set up.  A second round of 

PCR was performed to identify the particular jumpout event in that pool.  Phenotypic 

analysis of the positive jumpout events followed the molecular characterization of them.  

For tou, about 1500 jumpout flies were screened, and 7 deletion alleles were identified.  

For acf1, about 1600 jumpout flies were screened, and 4 deletion alleles were identified.  

A detailed protocol of this modified screen for imprecise excision is available upon 

request.   

The UAS-touRNAi transgene was generated by cloning an inverted repeat of a 

700bp sequence at the 3’ end of tou, including the BROMO domain and 3’UTR, into the 

pWIZ vector (Lee and Carthew, 2003) .  The sequence is shared by all four predicted 

tou isoforms.  Primers used for PCR this 700bp fragment are 5’GCTCATGAAGGAG 

CT-GGCTGTCTGCAA3’ and 5’GGTCTTTACCGACGTAGGACGTTGAA3’.  

Transgenic flies were generated by using the standard methodology.  More than 20 

independent lines were obtained.  Four of the strongest lines were used for phenotypic 

analysis. 

Immunostaining 

Immunostaining of wing imaginal discs was as described previously (Cadigan et 
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al., 1998).  Guinea pig anti-Sens was described elsewhere (Fang et al., 2006).  Mouse 

anti-Wg (4D4) was from the Developmental Studies Hybridoma Bank at the University 

of Iowa.  The dilution factors were: anti-Sens (1:1000) and anti-Wg (1:100).  Cy3 and 

Alexa488 conjugated secondary antibodies were obtained from Jackson 

Immunochemicals and Molecular Probes, respectively.  All fluorescent pictures were 

generated with a Zeiss Axiophot coupled to a Zeiss LSM510 confocal apparatus. 

Drosophila cell culture 

Drosophila embryonic Kc167 (Kc) cells were cultured at room temperature in the 

Schneider’s Drosophila media (invitrogen) containing 5% FBS and Penicillin/ 

Streptomycin antibiotics.  RNAi mediated knockdowns of genes’ activities were 

achieved as described elsewhere (Clemens et al., 2000) with modifications.  Briefly, 

when Kc cells approximated confluent status after 4-5 days of culture (~8×106/ml), they 

were resuspended at 1×106/ml in standard media and seeded onto 12-well plates 

(1ml/well).  dsRNA for each targeted gene was then added at a concentration of 9µg/ml.  

After 4 days, cells were resuspended, diluted into 1×106/ml with fresh media and 

reseeded onto 12-well plates.  Cells were harvested after 2 additional days incubation.  

dsRNAs with a typical length of 500-700 bp were synthesized using the MEGAscript T7 

in vitro transcription kit (Ambion).  The sequences of the PCR primers for the dsRNA 

synthesis are: tou (5’GCTCATGAAGGAGCTGGCTGTCTGCAA3’ and 

5’GGTCTTTACCGACGTAGGACGTTGAA3’) acf1 (5’-CGACCACGTAACTCTTTG 

CGCCTATCTA-3’ and 5’-GCGTGTGCTGAACTTAGAACTGACAT-3’).  The 
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sequences of primers for control dsRNAs have been published previously (Fang et al., 

2006). 

Quantitative real-time PCR (q-PCR) 

Samples were analyzed using an iCycler iQ real-time PCR detection system.  

For RT-PCR, Trizol (Invitrogen) was used to extract total RNA from 1-5×106 cells.  

Reverse transcription was performed using Stratascript reverse transcriptase (Stratagene) 

followed by q-PCR analysis.  β-tubulin56D was used to normalize the transcripts.  

q-PCR primers for nkd and β-tubulin56D were designed by using the online program 

Primer3 (http://frodo.wi.mit.edu/), and their sequences have been published previously 

(Fang et al., 2006). 

Human cell culture 

293HK cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) 

containing 10% FBS at 37°C.  For transient transfection, 1 million 293HK cells were 

seeded onto 12-well plates 24 hours prior to transfection.  Lipofectimin 2000 was used 

as the transfection reagent according to the protocol provided by Invitrogen.   

The 64-nucleotide oligos containing the 19-nucleotide targeting sequence for each 

tou/acf1 homolog were synthesized and annealed in vitro before cloned into the pSUPER 

vector provided by Duan’s lab (Brummelkamp et al., 2002).  As suggested, the 19nt 

target sequence is flanked in the mRNA with AA at the 5’ and TT at the 3’, and is in the 

coding region 100-300bp from the termination codon (targeting BROMO domain of 

respective genes).  The sequences are as following: BAZ2B (5’CTCATGAG 
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GATGCATGGCC3’), BAZ2A (5’TCCCATGATGCAGCCTGGC3’), BAZ1A 

(5’TACAACCCTCGTAACACAA3’), BAZ1B (5’CAGTGTCTAGTGGCTCTGT3’). 
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CHAPTER III 

 
THE CHROMATIN REMODELERS ISWI AND ACF1 DIRECTLY 

REPRESS WINGLESS TRANSCRIPTIONAL TARGETS  
 

Abstract 

The highly conserved Wingless (Wg)/Wnt signaling pathway controls many 

developmental processes by regulating the expression of target genes, most often through 

members of the TCF family of DNA-binding proteins.  In the absence of signaling, many 

of these targets are silenced, by mechanisms involving TCFs that are not fully understood.  

Here we report that the chromatin remodeling proteins ISWI and ACF1 are required for 

basal repression of Wg target genes in Drosophila.  This regulation is not due to global 

repression by ISWI/ACF1 and is distinct from their previously reported role in chromatin 

assembly.  We found that ACF1 binds to broad regions of several Wg targets and 

regulates TCF binding to chromatin, while a TCF-independent role of ISWI/ACF1 in 

repression was also observed.  Finally, we showed that Wg signaling reduces ACF1 

binding to Wg targets, and ISWI/ACF1 regulates repression by antagonizing histone H4 

acetylation.  Our results argue that Wg signaling activates target genes expression partly 

by overcoming the chromatin barrier maintained by ISWI/ACF1. 
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Introduction 

The Wnt/β-catenin pathway is an evolutionarily conserved signaling cascade that 

controls a large array of processes in animal development, including cell specification, 

proliferation and apoptosis, as well as stem cell fate maintenance in adult tissues (Logan 

and Nusse, 2004).  Misregulation of the pathway has been causally linked to several 

human cancers and osteoporosis (Clevers, 2006).  Further insights into how Wnt/β-

catenin signaling specifically regulates its transcriptional targets are crucial for our 

understanding of its role in development and disease. 

 In unstimulated cells, β-catenin has a short half-life due to phosphorylation and 

subsequent degradation by the proteasome (Daniels et al, 2001; Ding and Dale, 2002).  

Binding of Wnt to a cell surface receptor complex blocks β-catenin phosphorylation, 

leading to its accumulation in the cytoplasm (Cadigan and Liu, 2006).  This stabilized β-

catenin then translocates to the nucleus, where it can bind to members of the TCF family 

of specific DNA-binding proteins to activate target gene expression (Städeli et al, 2006; 

Parker et al, 2007a). 

 In the absence of β-catenin, TCFs are thought to mediate transcriptional 

repression.  This silencing activity is important in several development contexts.  In 

invertebrates, these include patterning of the embryonic epidermis of Drosophila 

(Cavallo et al, 1998) and mesodermal cell fate specification in C. elegans embryos 

(Rocheleau et al, 1997; Thorpe et al, 1997).  In amphibians, TCF repression is important 

for inhibiting dorsal cell fate in ventral blastomeres (Houston et al, 2002; Standley et al, 

2006) as well as mesoderm induction (Liu et al, 2005).  In fish and mice, repression by 

TCF3 is important for anterior structure specification and AP axis formation (Kim et al, 
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2000; Merrill et al, 2004).  Loss of TCF1 in mice causes spontaneous tumors in the 

intestine and mammary glands, consistent with inappropriate activation of Wnt/β-catenin 

targets (Roose et al, 1999).  Combined with the abundant evidence of TCFs acting as 

transcriptional activators, these findings suggest a model where TCFs act as switches, 

silencing Wnt target gene expression until β-catenin converts them to transcriptional 

activators (Parker et al, 2007a). 

 Although many co-activators have been identified which are recruited to Wnt 

regulated enhancers (WREs) by β-catenin (Städeli et al, 2006; Parker et al, 2007a), not as 

much is known about the factors that mediate repression of Wnt targets in the absence of 

signaling.  Transcriptional co-repressors of the Groucho (Gro)/TLE family can bind to 

TCFs and antagonize their ability to activate Wnt-responsive reporter genes (Cavallo et al, 

1998; Roose et al, 1998).  Consistent with this, loss of gro leads to derepression of 

Wingless (Wg, a fly Wnt) targets in the absence of signaling (Cavallo et al, 1998; Fang et 

al, 2006).  β-catenin binds competitively with TLE to TCFs (Daniels and Weis, 2005), 

suggesting that β-catenin displaces this co-repressor from WREs upon pathway activation 

(Sierra et al, 2006; Wang and Jones, 2006). 

 While Gro/TLE is recruited to WREs through direct binding to TCFs, other 

factors act in parallel with TCFs to repress target gene expression.  Kaiso, a protein 

containing BTB/POZ and zinc finger domains, represses several Wnt targets in Xenopus 

by binding to TCF and specific sites in WREs (Park et al, 2005).  In Drosophila cell 

culture, the co-repressor C-terminal binding protein (CtBP) is recruited to WREs 

independently of TCF, where it represses expression in parallel with TCF/Gro (Fang et al, 
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2006).  Whether these factors act in a general or gene-specific manner in repressing Wnt 

targets remains to be determined. 

The regulation of eukaryotic transcription is considered inextricably connected to 

chromatin structure, which is tightly controlled by chromatin modification and 

remodeling factors (Li et al, 2007a).  Therefore, it is likely that some of these factors are 

involved in the repression of Wnt targets.  For example, two subunits of a SWI/SNF-like 

chromatin remodeling complex, Brahma and Osa, have been shown to repress Wg targets 

in vivo (Collins and Treisman, 2000).  However, it is not clear if this regulation is direct.  

In this report, we explore the role of two other chromatin remodelers, ISWI and ACF1, in 

repressing Wg targets. 

ISWI and ACF1 belong to the ISWI family of ATP-dependent chromatin 

remodelers, which have been implicated in a variety of biological processes including 

transcription regulation, DNA replication and chromosome organization (Corona and 

Tamkun, 2004).  ISWI and ACF1 form the ACF complex, while the CHRAC complex 

consists of ISWI, ACF1 and two additional subunits (Langst and Becker, 2001).  Both 

ACF and CHRAC exhibit chromatin assembly and nucleosome sliding activity in vitro 

(Langst and Becker, 2001).  

Genetic studies also reveal a role for ISWI in regulating chromosome architecture.  

Flies genetically null for acf1 are semi-viable with several chromatin defects (Fyodorov 

et al, 2004), while iswi mutant flies die as larvae and display decondensation of the entire 

male X chromosome (Deuring et al, 2000).  This iswi phenotype is dependent on the 

activity of the dosage compensation complex, with ISWI possibly acting antagonistically 
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to the acetylation of histone H4 at lysine 16 (AcH4K16) to mediate global gene 

repression and chromatin compaction (Corona et al, 2002; Shogren-Knaak et al, 2006).   

ISWI has also been suggested to act in more localized gene repression in flies 

based on the observation that the distributions of ISWI and RNA polymerase II on 

polytene chromosomes do not generally overlap (Deuring et al, 2000).  Consistent with 

this, the mammalian ISWI homologue SNF2H is required for repression of thyroid 

hormone receptor targets in the absence of ligand (Alenghat et al, 2006).  In addition, 

there are several reports demonstrating that the yeast ISWI homologues, Isw1 and Isw2 

are directly involved in transcriptional repression (Goldmark et al, 2000; Moreau et al, 

2003; Zhang and Reese, 2004). 

 In this report, we implicate ISWI and ACF1 as important repressors in Wg 

signaling in Drosophila.  Loss of iswi/acf1 causes derepression or further activation of 

several Wg transcriptional targets in both cultured cells and fly wings.  The derepression 

is still observed in non-dividing cells, ruling out that the effect is due to a post-mitotic 

chromatin assembly defect. iswi/acf1 is required for maximal TCF binding to WREs and 

to antagonize histone acetylation in the absence of signaling.  ACF1 is directly associated 

with broad regions of several Wg target loci and this binding is reduced upon activation 

of Wg signaling.  These results are consistent with a model where ISWI/ACF1 silences 

target gene expression in unstimulated cells and modulates the switch to transcriptional 

activation by Wg signaling  
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Results 

 ISWI/ACF1 represses Wg targets in the absence of signaling in Drosophila cultured 

cells 

Wg signaling can be studied in cell culture using Drosophila Kc167 (Kc) cells, 

which we have previously shown to be responsive to Wg signaling (Fang et al, 2006; Li 

et al, 2007b).  Microarrays were used to identify genes whose expression increased upon 

stimulation of the pathway (T. Blauwkamp and K. Cadigan, unpublished data).  Three 

activated targets, naked cuticle (nkd), Notum and homothorax (hth), were chosen for 

further study.  nkd and Notum are feedback antagonists induced by Wg signaling in most 

fly tissues (Zeng et al, 2000; Giraldez et al, 2002; Gerlitz and Basler, 2002), while hth is 

activated only in select tissues (Azpiazu and Morata, 2000; Casares and Mann, 2000; 

Wernet et al, 2003).  In Kc cells, treatment with Wg conditioned media (Wg-CM) 

significantly induced the transcript levels of all three genes (Fig. 3.1A). 

To examine whether ISWI/ACF1 plays a role in regulating Wg targets, cells were 

depleted of these factors via RNA interference (RNAi).  Both ISWI and ACF1 are 

expressed in Kc cells, and their expression can be efficiently inhibited by the respective 

dsRNA (Fig. 3.1B).  In general, inhibition of iswi or acf1 caused an increased expression 

of nkd, Notum and hth in unstimulated cells, while simultaneous knockdown of both iswi 

and acf1 led to even higher levels of derepression (Fig. 3.1C).  Two dsRNAs targeted to 

different portions of the iswi and acf1 transcripts were used, with similar results obtained 

(data not shown). 

For individual Wg targets, differences are observed in the iswi and acf1 single 

RNAi treatments.  ISWI and ACF1 equally contribute to the repression of nkd, while 
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ACF1 plays a greater role in inhibiting Notum.  In contrast, repression of hth mainly 

depends on ACF1 (Fig. 3.1C).  It is unclear whether these results reflect real mechanistic 

differences between the functions of these factors or threshold effects of the RNAi 

depletion. 

To explore whether ISWI and ACF1 specifically repress Wg targets, three genes 

that are not responsive to Wg signaling were examined.  Two of these, Mkp3 and 

CG18135, are located upstream and downstream of nkd, respectively, and a third one, 

p53, was picked from the non-Wg-target pool of the aforementioned microarray analysis.  

Depletion of iswi and/or acf1 had no effect on these genes (Fig. 3.1D).  In addition to 

demonstrating specificity towards Wg targets, these results argue against the increase in 

nkd expression being caused by a general loosening of the chromatin, since the genes 

adjacent to this locus are not affected. 

Several negative regulators of the Wg/Wnt pathway act through antagonizing 

Arm/β-catenin binding to TCF (Parker et al, 2007a).  ISWI/ACF1 represses Wg targets in 

the absence of exogenously added Wg, suggesting that they do not act by this mechanism.  

This was confirmed by the finding that the derepression of nkd expression caused by 

iswi/acf1 depletion remained unchanged with the additional knockdown of arm (Fig. 

3.1E).  It was confirmed that arm transcript levels were effectively knocked down in both 

arm single RNAi and iswi/acf1/arm triple RNAi cells (data not shown).  Thus, 

ISWI/ACF1 is acting as a bona fide silencer of Wg targets in the absence of signaling. 

 Since ISWI/ACF1 represses the steady state levels of target gene transcripts, it is 

possible that they regulate RNA stability.  In this scenario, the elevated expression of Wg 

targets upon iswi/acf1 RNAi is due to the decreased turnover of transcripts rather than the 
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Figure 3.1.  ISWI/ACF1 represses Wg targets in the absence of Wg signaling.  (A) 
Kc cells were treated with control media or Wg-CM for 5 hours.  Transcript levels of nkd, 
Notum and hth were measured by Q-RT-PCR and results were normalized to β-
tubulin56D expression.  Wg-CM significantly induced the expression of all three genes.  
(B) Western blot analysis of ISWI and ACF1 in control or corresponding RNAi-treated 
cells.  iswi RNAi and acf1 RNAi dramatically reduced ISWI and ACF1 expression, 
respectively.  Arrows indicate the positions of ISWI and ACF1 proteins, and asterisks 
indicate nonspecific bands.  (C) Derepression of nkd, Notum and hth by iswi or/and acf1 
RNAi.  Kc cells were treated with the indicated dsRNAs as described in Materials and 
methods, and transcripts of Wg targets were measured by Q-RT-PCR.  Results were 
normalized to the average of β-tubulin56D, arm and TCF expression.  Each bar 
represents the mean (+ S.E.) of duplicate cultures with duplicate Q-PCR reactions.  (D) 
Two genes adjacent to nkd locus, Mkp3 and CG18135, and p53 were not derepressed by 
iswi/acf1 RNAi.  The same normalization strategy was used as in (C).  (E) arm RNAi did 
not affect the derepression of nkd by iswi/acf1 RNAi.  (F) Kc cells incubated with control 
RNAi or iswi/acf1 RNAi for six days were treated with α-amanitin (10ug/ml) for an 
additional 0-5 hours, and cells were harvested and nkd expression was analyzed without 
normalization.  nkd transcripts in iswi/acf1 RNAi treated cells had a faster turnover than 
that of control cells (P<0.01).  Data shown here were the means of triplicates (+ S.E.), 
and the lines were deduced from linear regression analysis.  All experiments have been 
performed at least three separate times with similar results. 
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increased transcription.  To test this hypothesis, the half-life of nkd transcripts was 

determined in control or iswi/acf1 depleted cells where transcription was blocked with α-

amanitin.  Knockdown of iswi/acf1 did not decrease nkd turnover (Fig. 3.1F).  Rather, it 

significantly decreased nkd stability (t1/2=5.2 hrs compared to control t1/2=9.3 hrs, p<0.01).  

Therefore, we conclude that ISWI/ACF1 regulates Wg target gene expression at the level 

of transcription. 

 

ISWI specifically represses Wg targets in the developing wing 

To determine whether ISWI or ACF1 plays a physiological role in Wg signaling 

in flies, we analyzed the phenotype of wing imaginal disc cells lacking iswi or acf1.  In 

this tissue, Wg is expressed in a stripe at the Dorsal/Ventral (D/V) boundary of the disc 

(Phillips and Whittle, 1993).  Wg diffusing from the D/V stripe activates several genes, 

including Senseless (Sens; Parker et al, 2002), nkd (Zeng et al, 2000), Notum (Giraldez et 

al, 2002; Gerlitz and Basler, 2002) and Dfz3 (Sivasankaran et al, 2000).  The expression 

of these targets could be monitored by immunostaining (Sens), an enhancer trap (Dfz3) or 

lacZ reporters (nkd and Notum; see Materials and methods for more details). 

 Wing discs from flies homozygous for several null alleles of acf1 were examined 

with no detectable misregulation of the Wg targets mentioned above (Chapter II).  

Because iswi homozygous mutants died during early to mid third instar, clones of a 

molecular null allele (iswi1; Deuring et al, 2000) were generated by mitotic 

recombination (Xu and Rubin, 1993).  Two thirds of the clones had no detectable effect 

on the expression of Wg at the D/V stripe (Fig. 3.2C) and no ectopic Wg was found in 

clones removed from the D/V boundary (Fig. 3.2G, K, O).  In one third of clones 
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Figure 3.2.  Loss of iswi results in an expansion/derepression of Wg targets in wing 
imaginal discs.  (A-P) Confocal images of wing imaginal discs of late third instar larva 
stained for Wg (C, G, K, O), Notum-lacZ (B, F), Sens (J) and Nkd-lacZ (N).  Mitotic 
clones of iswi1 were marked by the absence of GFP (green).  Notum-lacZ expression is 
expanded in clones along the Wg expression domain (A-D, 95% penetrance, n=39), and 
is derepressed in clones far away from the D/V boundary (E-H, 64% penetrance, n=22).  
Ectopic expression of Sens and Nkd-lacZ was observed in some clones along the D/V 
boundary (I-L, 46% penetrance, n=13; M-P, 43% penetrance, n=7). 
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at the D/V boundary, the Wg stripe was kinked (data not shown), and these clones were 

not included in our analysis. 

The removal of iswi gene activity resulted in a dramatic increase in Notum-lacZ 

expression in the developing wing.  In iswi mutant clones near the D/V border, the 

Notum reporter was expanded (Fig. 3.2A-D).  In clones further away from the Wg stripe, 

ectopic expression of Notum-lacZ was observed in the majority of the clones (Fig. 3.2E-

H), consistent with derepression of this Wg target.   

Ectopic expression of other Wg targets were also seen in iswi mutant clones, 

though the level of expansion and penetrance is not as great as for Notum-lacZ.  In 

approximately half of the clones that are close to the Wg D/V stripe, a modest activation 

of Sens and Nkd-lacZ can be seen (Fig. 3.2I-P).  Similar results were also observed for 

another Wg target, Dfz3-lacZ (data not shown).  Taken together, the iswi clonal analysis 

suggests that ISWI represses several Wg targets in the wing. 

Since Wg is a target of the Notch signaling pathway in the wing (Diaz-Benjumea 

and Cohen, 1995), our finding that Wg expression was not affected in iswi clones (Fig. 

3.2C, G, K, O) indicates some degree of specificity for genes activated by Wg signaling.  

To extend this analysis, several genes not regulated by Wg were examined in mutant 

clones.  Engrailed (En)/Invected (Inv) is expressed in the posterior compartment of the 

wing (Patel et al. 1989).  Decapentaplegic (Dpp)-lacZ is activated by Hedgehog (Hh) 

signaling in a stripe on the anterior side of the Anterior/Posterior (A/P) boundary, while 

Spalt is activated by Dpp signaling in a broad region surrounding the A/P boundary 

(Tabata, 2001).  No significant alteration of the expression of any of these genes was 

observed in iswi mutant clones (Fig. 3.3), except for an occasional (<10%) reduction of  
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Figure 3.3.  iswi mutant cells do not affect several non-Wg targets in wing imaginal 
discs.  (A-I) Confocal images of wing imaginal discs of late third instar larva stained for 
En/Inv (B), Dpp-lacZ (E) and Spalt (H).  The majority of iswi clones created in the 
posterior area displayed unchanged En/Inv expression (A-C, 91% penetrance, n=23), 
while 9% of the clones showed decrease/loss of En/Inv expression (data not shown).  No 
derepression of En/Inv was ever seen in the anterior area (n>20).  All iswi clones 
examined show normal Dpp-lacZ and Spalt expression (D-F, n=24; G-I, n=24). 
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En/Inv levels.  These results demonstrate that ISWI is not a general repressor of gene 

expression,displaying substantial specificity for Wg targets.   

 

ACF1 binds to broad regions of several Wg transcriptional targets 

The nkd and Notum loci appear to be direct targets of the pathway, as judged by 

analysis of TCF binding using chromatin immunoprecipitation (ChIP).  There is a major 

peak of TCF binding in a WRE in the first intron of nkd, approximately 5 kb downstream 

of the transcriptional start site (TSS; Fang et al, 2006).  This intronic nkd WRE contains 

several TCF binding sites required for its induction by Wg signaling (Li et al, 2007b).  In 

addition, there is an additional area bound by TCF 10 kb upstream of the nkd TSS (Parker 

et al, 2007b) that corresponds to the Nkd-lacZ reporter used in the wing imaginal disc 

(Fig. 3.2N).  TCF binds to two areas in the Notum locus (Parker et al, 2007b).  One site is 

4 kb upstream of the TSS, corresponding to the Notum-lacZ construct activated by Wg in 

the wing imaginal disc (Fig. 3.2B, F) and cultured cells (Städeli et al, 2005).  The second 

is in the first intron, about 6 kb downstream of the TSS. 

In contrast to the binding by TCF to specific areas of the nkd and Notum genes, 

ACF1 was found more broadly across these loci.  ACF1 binding was observed over the 

entire nkd locus, including the two aforementioned WRE sites (Fig. 3.4C).  The ACF1 

ChIP signal was significantly reduced by acf1 RNAi, indicating that it was specfic for 

ACF1 (Fig. 3.4C).  Interestingly, two genes adjacent to nkd, Mkp3 and CG18135, were 

also bound by ACF1, although they were not regulated by ACF1 (Fig. 3.1D).  Similar to 

the binding profile of nkd, ACF1 was also bound to the two WREs in Notum, as well to 

chromatin 15 kb downstream of the Notum TSS (Fig. 3.6B) , a region not bound by TCF 
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Figure 3.4.  ACF1 binds to the broad regions of the nkd and hth genes.  (A, B) 
Schematic diagrams of the nkd and hth loci with the illustrated sites used for ChIP 
analysis.  Arrows indicate the TSSs.  The numbers in parenthesis indicate the distance (in 
kb) from the TSS.  N(–10) and N(+5) indicated the location of the two WREs of nkd.  
H(+16) is an area of hth bound by TCF.  (C, D) ChIP analysis shows ACF1 binding to 
nkd and hth.  Kc cells were treated with control dsRNA or acf1 dsRNA for 6 days before 
they were harvested for ChIP analysis.  For nkd, ACF1 binds to a broad region as well as 
the genes adjacent to it (C).  For hth, there is a three-fold enrichment of ACF1 binding at 
H(+16) that was reproducibly observed (D).  Each bar represents the mean (+ S.E.) of 
duplicate cultures with duplicate Q-PCR reactions.  (E) Depletion of TCF has no effect 
on ACF1 binding to nkd and hth.  ChIP signals for control RNAi treated cells were 
normalized to 1.  The efficiency of TCF RNAi was confirmed by Western blot and ChIP 
with α-TCF (data not shown).  (F) Depletion of iswi/acf1 reduces TCF binding to nkd 
and hth.  The same normalization strategy was used as in (E).  Depletion of acf1 alone 
also reduces TCF binding to nkd and hth, but to a lesser degree compared to iswi/acf1 
double knockdown cells (data not shown).  (G) Depletion of TCF and iswi cooperately 
derepresses nkd and hth transcript levels in Kc cells.  All experiments have been 
performed three separate times with similar results. 
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 (Parker et al, 2007b).  These results suggest that ACF1 physically associates with Wg 

targets in the absence of Wg signaling in a broader pattern than TCF. 

 The third Wg target characterized in this report, hth, has a transcription unit 

nearly 130 kb in length (Fig. 3.4B) and the cis-acting elements controlling its expression 

have not been characterized.  Using an online tool called Target Explorer 

(http://trantor.bioc.columbia.edu/ Target_Explorer; Sosinsky et al, 2003), we identified 

several clusters of putative TCF binding sites in the intronic regions of hth.  ChIP 

analysis revealed strong TCF binding to one of these clusters, 16kb downstream of hth 

TSS, which was reduced to background levels upon TCF RNAi treatment (Fig. 3.5A).  

As was seen in the other Wg targets, ACF1 was bound to the entire hth locus (Fig. 3.4D).  

In contrast to nkd and Notum, we did observe greater ACF1 binding at the site bound by 

TCF than at other areas.  Although the ACF1 ChIP signal at this site was only partially 

abolished by acf1 RNAi, it was more dramatically reduced when both acf1 and iswi were 

knocked down (data not shown).  We conclude from these results that ACF1 directly 

binds to a large portion of the hth locus, with enrichment at the region also bound by TCF. 

 Since TCF and ACF1 share overlapping binding sites for all three Wg targets, we 

examined whether the binding of ACF1 is influenced by TCF, or vice versa.  When TCF 

was depleted by RNAi, we did not observe a significant change of ACF1 binding to the 

WREs of nkd/Notum or the TCF bound region of hth (Fig. 3.4E, 3.6D).  In contrast, TCF 

binding to these sites was significantly reduced when iswi and acf1 were knocked down 

(Fig. 3.4F, Fig. 3.6D).  iswi/acf1 depletion did not reduce TCF expression as determined 

by Western blot (Fig. 3.5B).  These results suggest that ISWI and ACF1 facilitate TCF 

binding to Wg targets in the absence of signaling. 
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Figure 3.5  TCF preferentially binds to a specific site in the hth gene.  (A) Kc cells 
were treated with control RNAi or TCF RNAi for six days before being harvested for 
TCF ChIP analysis.  A 7-fold enrichment of TCF binding was seen in a region 16 kb 
downstream of the hth TSS, and the ChIP signal was reduced to background levels upon 
TCF RNAi.  Data represent the means of duplicates (+ S.E.), and the experiment has been 
performed two separate times with similar results.  (B) Western blot of TCF protein was 
performed in control dsRNA or iswi/acf1 dsRNA treated cells.  As a control, TCF RNAi 
significantly reduced TCF protein levels.  Asterisks indicate nonspecific bands. 
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Figure 3.6.  ACF1 binds to Notum in a similar fashion as to nkd.  (A) Schematic 
diagram of the Notum locus with the illustrated sites used for ChIP analysis.  Arrow 
indicates the TSS.  The numbers in parentheses indicate the distance (in kb) from the TSS.  
Not(–4) and Not(+6) are two WREs in Notum.  (B) ChIP analysis shows that ACF1 binds 
to a broad region on Notum.  (C) Wg-CM has a modest influence on ACF1 binding to 
Notum.  Same experimental conditions were used as in Fig. 3.8A, B.  (D) Similar to what 
was seen for nkd and hth, ACF1 binding to Notum is not reduced by TCF RNAi, yet TCF 
binding to Notum is significantly reduced by iswi/acf1 RNAi.  The same experimental 
conditions were used as for Fig. 3.4E, F.  Data represent the means of duplicates (+ S.E.), 
and experiments have been performed two separate times with similar results. 
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TCF is thought to repress nkd expression with the transcriptional corepressor Gro 

(Fang et al, 2006) and the same is true for hth (Fig. 3.4G and data not shown).  When 

TCF and iswi were depleted simultaneously, greater derepression of nkd and hth was 

observed than with either factor alone (Fig. 3.4G).  This result suggests that ISWI acts in 

parallel with TCF to repress Wg target genes.  Similar results were also observed upon 

depletion of iswi or acf1 with gro (data not shown).  These data suggest that ISWI/ACF1 

has TCF-independent activities in repressing Wg targets. 

 

 ISWI/ACF1 represses Wg targets independent of chromatin assembly 

Because of its role in chromatin assembly (Ito et al, 1999; Fyodorov and 

Kadonaga, 2002), it is possible that the derepression of Wg targets observed in cells 

lacking iswi/acf1 is due to incomplete packaging of chromatin after mitosis, rather than 

specific transcriptional regulation.  To test this possibility, the effect of iswi/acf1 

depletion on Wg targets in non-dividing Kc cells was examined.  When hydroxyurea 

(HU), an inhibitor of DNA synthesis, was applied to Kc cells for 48 hours, cell division 

was effectively blocked (Fig. 3.7A).  Derepression of nkd or hth by iswi/acf1 knockdown 

was unaffected in the HU treated cells (Fig. 3.7B).  Similar results were obtained using 

aphidicolin (Aph), a different DNA synthesis inhibitor (Fig. 3.7C, D).  These data argue 

that the repression of Wg targets by ISWI/ACF1 is not due to the role of ACF/CHRAC in 

post-mitotic chromatin assembly. 

The results described above suggest that repression of Wg targets by ISWI/ACF1 

is unlikely due to their active assembly of chromatin after DNA replication.  However, it 

is also possible that ISWI/ACF1 is required for maintaining histone/DNA integrity during 
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Figure 3.7.  ISWI/ACF1 represses Wg targets independent of post-mitotic 
chromatin assembly.  (A) Hydroxyurea (HU) effectively blocks cell division.  Kc cells 
incubated with control or iswi/acf1 dsRNA for four days were treated with H2O or 5mM 
HU for an additional 48 hours.  Cells stopped dividing, judged by cell number, upon HU 
treatment.  In the control group, iswi/acf1 RNAi decreases the cell division rate.  A 
similar decrease in cell division was also observed with acf1 RNAi, but not with iswi 
RNAi (data not shown).  (B) Derepression of nkd and hth by iswi/acf1 RNAi is not 
abolished after HU treatment.  Same experimental conditions were used as in (A), and 
transcript levels of nkd and hth were measured by RT-Q-PCR.  (C) Aphidicolin (Aph) 
also inhibits cell division.  Kc cells incubated with control dsRNA or iswi/acf1 dsRNA 
for four days were treated with DMSO or 25µM Aph for an additional 24 hours.  
Effective blockage of cell division was seen in Aph treated cells.  (D) iswi/acf1 RNAi 
still derepresses nkd and hth after Aph treatment.  (E, F) iswi/acf1 RNAi does not 
significantly affect H4 binding to the nkd and hth genes.  ChIP analysis for pan-H4 was 
performed in control dsRNA or iswi/acf1 dsRNA treated cells.  Multiple sites including 
the nkd WREs and TCF binding region of hth were tested for H4 binding, and no obvious 
change was observed between control RNAi and iswi/acf1 RNAi.  Data shown were the 
means of duplicates (+ S.E.), and all experiments have been performed two separate 
times with similar results. 
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interphase.  To explore this possibility, ChIP analysis using histone H4 antibody was 

performed on the nkd and hth loci in iswi/acf1 depleted cells.  No significant change of 

H4 binding to various regions of nkd and hth, including the regions bound by TCF, was 

detected when iswi and acf1 were knocked down (Fig. 3.7E, F).  Taken together, these 

data lead us to favor a model where ISWI/ACF1 specifically repress Wg target gene 

transcription independently of chromatin assembly or maintenance. 

 

Wg signaling reduces ACF1’s binding to Wg targets 

ACF1 is important in maintaining the silent state of Wg target genes (Fig. 3.1C) 

and is physically present at these loci in the absence of signaling (Fig. 3.4C, D; Fig. 3.6B).  

Therefore, we were curious to see whether ACF1 binding to Wg targets was regulated by 

Wg signaling.  After a 5 hr treatment with Wg-CM, a consistent but modest reduction of 

ACF1 was observed at various regions for all three Wg targets (hth, nkd and Notum; Fig. 

3.8A, B; Fig. 3.6C). 

Although this result implies that ACF1’s binding to Wg targets is not significantly 

regulated by Wg signaling, it is possible that only a portion of the cultured cells were 

responding to the Wg-CM stimulation.  The unstimulated cells would elevate the 

background level of ACF1 ChIP signal and obscure a greater decrease of ACF1 binding 

by Wg signaling.  Activation of Wg targets is correlated with the acetylation of histones  

H3/H4 throughout these loci (Parker et al, 2007b).  This suggests that the Wg-stimulated 

chromatin could be selected by precipitation with acetylated H4 (AcH4) antibody, 

followed by an ACF1 re-ChIP to determine the binding of ACF1 on activated Wg targets.  

As a control, a pan-H4 ChIP followed by an ACF1 re-ChIP was performed.  For hth, we 
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Figure 3.8.  ACF1 binding to Wg targets is modestly reduced by Wg signaling.  (A, 
B) Cells were treated with control media or Wg-CM for 5 hours before harvesting for 
ACF1 ChIP analysis.  A modest decrease of ACF1 binding was observed across the nkd 
and hth loci.  (C) Less ACF1 binds to AcH4 on hth upon Wg-CM treatment.  Cells 
treated with Wg-CM for 5 hours underwent ChIP with either α-H4 antibody or α-AcH4 
antibody, followed by a secondary ChIP with α-ACF1 antibody.  The α-AcH4 antibody 
recognizes acetylated K5/8/12/16 on histone H4.  The re-ChIP signal was normalized to 
the eluted solution from the first immunoprecipitate, termed the 2nd input.  (D) 
ISWI/ACF1 antagonizes AcH4 levels on hth in the absence of Wg signaling.  Cells were 
treated with control dsRNA or iswi/acf1 dsRNA for six days before harvested for AcH4 
ChIP analysis.  An increase of AcH4 on hth, most prominently at the site bound by TCF, 
was observed.  In general, data represent the means of duplicates (+ S.E.), and all 
experiments have been performed at least two separate times with similar results. 
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 observed a pronounced decrease of ACF1 binding to the AcH4 associated chromatin 

compared to its binding to the pan-H4 associated chromatin, with the greatest reduction 

observed at the location of TCF binding (H(+16); Fig. 3.8C).  These results suggest that 

Wg signaling reduces ACF1 binding to the activated Wg target genes.  

 Our results are in agreement with previous studies that have shown that 

acetylation of H4 N-terminal tails may interfere with ISWI/ACF1 function (Corona et al. 

2002; Shogren-Knaak et al. 2006).  To further explore the relationship between 

ISWI/ACF1 activity and histone H4 acetylation at Wg targets, we performed AcH4 ChIP 

on unstimulated cells depleted for iswi/acf1.  An increase of AcH4 binding to hth, 

especially at the TCF binding site, was observed when iswi/acf1 was inhibited (Fig. 3.8D).  

This result suggests that ISWI/ACF1 antagonizes the acetylation of histone H4 on Wg 

targets in the absence of Wg signaling.  

 

Discussion 

ISWI/ACF1 transcriptionally represses Wg target genes 

In the present study, loss-of-function analyses for iswi and acf1 revealed that they 

play a negative role in regulating Wg targets in cell culture (Fig. 3.1C) and the wing 

imaginal disc (Fig. 3.2).  The elevation of nkd transcripts observed in iswi/acf1 depleted 

Kc cells was not due to a decrease in transcript turnover (Fig. 3.1F).  Furthermore, 

reporter constructs for several Wg targets (i.e., Notum-lacZ, Nkd-lacZ and Dfz3-lacZ) 

were expressed ectopically in iswi mutant cells in the developing wing (Fig. 3.2B, F, N 

and data not shown).  These data strongly argue that ISWI and ACF1 act as 

transcriptional repressors of Wg target genes. 
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 Examination of genes not regulated by Wg signaling suggests that ISWI/ACF1 is 

not a general repressor of gene expression.  In Kc cells, several genes were not affected 

by iswi/acf1 depletion, including those adjacent to the nkd locus (Fig. 3.1D).  In the wing 

imaginal disc, ISWI did not regulate Wg, Dpp-lacZ or Spalt expression (Fig. 3.3D-I), 

targets of Notch, Hh and Dpp signaling, respectively.  These results suggest some degree 

of specificity for ISWI/ACF1 towards Wg targets. 

En/Invected (Inv) expression was also largely unaffected in iswi mutant clones 

(Fig. 3.3A-C).  This is seemingly in conflict with a previous report showing that En 

expression was abolished in iswi mutant wing discs (Deuring et al, 2000).  Since the 

antibody used in our study recognized both En and Inv proteins (Patel et al, 1989), it is 

possible that the remaining Inv expression masked a reduction of En in the iswi clones.   

Previous studies have shown that ISWI associates with ACF1 in two distinct 

chromatin remodeling complexes (Langst and Becker, 2001).  Therefore, it is attractive to 

propose that ISWI and ACF1 act as a complex to repress Wg targets.  However, 

simultaneous knockdown of iswi and acf1 always resulted in higher derepression of 

targets than single RNAi treatments in Kc cells (Fig. 3.1C).  Because RNAi does not 

completely abolish gene expression, these results are equivocal but could indicate that 

ACF1 and ISWI can function independently of each other.  Interestingly, a human 

homologue of ACF1, WSTF, associates with a complex devoid of ISWI and regulates 

transcription (Kitagawa et al, 2003). 

While ISWI and ACF1 both contribute to Wg target gene repression in Kc cells, 

the situation is different in the wing imaginal disc.  In this tissue, complete removal of 

acf1 had no effect on Wg targets, while cells lacking iswi showed ectopic expression of 
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several Wg targets (Fig. 3.2; data not shown).  If ISWI and ACF1 act together to repress 

Wg targets in the developing wing, it is possible that ACF1 has a redundant partner.  The 

closest relative to acf1 in the fly genome is toutatis (tou), which has been implicated in 

Drosophila neural development (Vanolst et al., 2005).  While tou mutant flies were semi-

viable, flies homozygous for both acf1 and tou died during late pupal stages.  However, 

these double mutants did not display obvious aberrations in the expression of Wg targets 

(Chapter II).  Deciphering the relationship between ISWI, ACF1 and Tou requires 

additional genetic analysis in flies and molecular analysis in cell culture. 

A recent study revealed that ISWI was co-purified with β-catenin, implying that it 

plays a positive role in Wnt signaling (Sierra et al., 2006).  Further functional analyses 

are needed to corroborate such a role.  Since ISWI containing complexes have been 

implicated in both transcriptional repression and activation (Corona and Tamkun, 2004), 

it is possible that ISWI plays multiple roles in regulating Wnt targets in different 

biological contexts. 

 

Mechanism of ISWI/ACF1 regulation of Wg signaling 

The repression of Wg target gene expression by ISWI/ACF1 was independent of 

Arm (Fig. 3.1E).  This distinguishes ISWI/ACF1 from several other factors that 

antagonize Wnt/Wg by interfering with β-catenin/Arm binding to TCF, such as ICAT 

(Tago et al, 2000), Chibby (Takemaru et al, 2003), CtBP/APC (Hamada and Bienz, 

2004), and SOX9 (Akiyama et al, 2004).  Rather, ISWI/ACF1 is required for silencing of 

Wg targets in the absence of pathway activation, similar to CtBP and Gro in Kc cells 

(Fang et al, 2006) and Kaiso in Xenopus embryos (Park et al, 2005).  Consistent with a 
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role as a direct transcriptional repressor, ACF1 was found to be associated with Wg target 

gene chromatin (Fig. 3.4C, D; Fig. 3.6B). 

 ISWI and ACF1 are known to form a complex that can efficiently package DNA 

and nucleosomes into chromatin in vitro (Ito et al, 1999; Fyodorov and Kadonaga 2002) 

and there is evidence that they are required for some aspects of chromatin organization in 

vivo (Deuring et al, 2000; Corona et al, 2002; Fyodorov et al, 2004).  However, we found 

that iswi/acf1 were still required for silencing Wg targets in non-dividing cells (Fig. 3.7B, 

D).  This suggests that incomplete chromatin assembly after mitosis is not a major 

contributor to the derepression seen in iswi/acf1 depleted cells.  In addition, inhibition of 

iswi/acf1 did not alter the deposition of histone H4 on Wg targets (Fig. 3.7E-F).  These 

data lead us to favor a model where ISWI and ACF1 act as specific transcriptional 

repressors of Wg target genes.  

In the absence of Wg signaling, TCF contributes to target gene silencing (Cavallo 

et al, 1998; Fang et al, 2006).  We found that TCF’s binding to specific sites in Wg 

targets was significantly reduced upon the depletion of iswi/acf1 (Fig. 3.4F, Fig. 3.6D).  

While this suggests that ISWI and ACF1 act to repress these genes by promoting TCF 

binding, it is unlikely to be the whole story.  Depletion of iswi or acf1 with TCF or gro 

led to a non-additive derepression of Wg targets (Fig. 3.4G; data not shown), suggesting 

that ISWI/ACF1 acts independently of TCF in gene silencing.  It appears that ISWI and 

ACF1 repress Wg targets through multiple mechanisms, only some of which involve 

TCF. 

In general, ISWI/ACF1 is not found uniformly on chromatin in flies (Deuring et 

al, 2000), in murine thymocytes (Yasui et al, 2002), and in yeast (Gelbart et al, 2005).  
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Consistent with these findings, there are several examples in yeast and mammals where 

specific DNA-binding proteins recruit ISWI/ACF1 to chromatin (Goldmark et al, 2000; 

Yasui et al, 2002; Moreau et al, 2003; Bachman et al, 2005; Alenghat et al, 2006).  In 

contrast, we found that ACF1 binds across large regions (19-126 kb) of several Wg 

targets (Fig. 3.4C, D; Fig. 3.6B).  A previous study demonstrated widespread binding of 

yeast Isw2 to the DNA damage-inducible gene RNR3, though the region bound was less 

than 4 kb (Zhang and Reese, 2004).  For both RNR3 and the Wg targets identified in this 

report, it is not clear whether the widespread binding of ACF1 or Isw2 is required for 

efficient repression. 

Consistent with their ability to slide nucleosomes in vitro, Isw1 and Isw2 are 

required for nucleosome positioning at the promoters of several genes they repress 

(Goldmark et al, 2000; Moreau et al, 2003; Zhang and Reese, 2004; Sherriff et al, 2007).  

In the case of the PHO8 promoter, this activity is required to displace TBP under 

repressive conditions (Moreau et al, 2003).  While we have not yet examined the role of 

ISWI/ACF1 in regulating nucleosome distribution at Wg targets (in part because of the 

large regions bound by ACF1), it is likely that they also act at this level in our system. 

 

Regulation of ISWI/ACF1 by Wg signaling 

Does activation of Wg signaling effect ISWI/ACF1 binding to the target genes?  

A modest reduction of ACF1 binding to Wg target loci was observed after Kc cells were 

stimulated with Wg-CM (Fig. 3.8A, B).  A marked decrease of ACF1 association with 

AcH4 was observed compared to generic H4 (Fig. 3.8C) and depletion of iswi/acf1 

resulted in increased AcH4 at a Wg target (Fig. 3.8D).  These results suggest that 
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ISWI/ACF1 acts antagonistically with AcH4 to regulate the transcriptional response to 

Wg signaling.  Interestingly, a similar relationship has been suggested in dosage 

compensation (Corona et al, 2002; Shogren-Knaak et al, 2006).   

Our laboratory has recently shown that Wg signaling induces a widespread 

increase in histone acetylation throughout Wg targets (Parker et al, 2007b).  This 

chromatin modification requires CBP, a histone acetyltransferase that is recruited to 

WREs in a Wg and Arm-dependent manner and is required for target gene activation (Li 

et al, 2007b).  Therefore, it is tempting to propose that Wg signaling promotes 

displacement/inactivation of ISWI/ACF1, by activating histone acetylation, which is 

necessary for transcriptional activation of Wg targets.   

 Finally, it is possible that the residual binding of ACF1 to target genes after Wg 

stimulation has functional relevance.  In the presence of Wg signaling, Wg target genes 

were further activated upon depletion of iswi/acf1 in Kc cells and in the wing imaginal 

disc (Fig. 3.2 and data not shown).  Therefore, ISWI/ACF1 could have a dual function in 

regulating Wg targets.  In the absence of Wg signaling, they help maintain the silent state 

of Wg targets.  When Wg signaling is activated, the negative influence of ISWI/ACF1 

may help to set the threshold for the precise activation of Wg targets. 

Materials and methods 

Drosophila genetics 

The iswi mutant strain iswi1 was kindly provided by J. Tamkun (Deuring et al, 

2000).  For clonal analysis, iswi1 was recombined onto a FRT42D chromosome using 

standard methods (Xu and Rubin, 1993).  Somatic clones of iswi1 in wing imaginal discs 

were generated by crossing FRT42Diswi1 males to yw P[HS-Flp]; FRT42D P[Ubi-GFP] 
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females.  Clones were induced by one-hour 37°C heat shock at 48-72 hours after egg 

laying.   

 A 2.2kb fragment from approximately –4.1 to –1.9 kb upstream of the Notum TSS 

(Städeli et al, 2005) was cloned into pH-Pelican vector (Barolo et al, 2000), and the 

corresponding Notum-lacZ transgenic flies were generated by BestGene Inc (Chino Hills, 

CA).  In a similar fashion, an 864bp fragment upstream of the nkd TSS (–10.5 to –9.7 kb) 

was used to generate the Nkd-lacZ reporter.  Both reporters were positively regulated by 

Wg signaling in all tissues examined, including the wing imaginal disc (data not shown).  

The Dpp-lacZ line (Blackman et al, 1991) was obtained from the Bloomington Stock 

Center. 

Antibodies, immunoblot and immunostaining 

Rabbit and guinea pig α-ACF1 antisera were generously provided by D. 

Fyodorov.  Rabbit polyclonal α-ISWI was from J. Kadonaga (Ito et al, 1999).  Rabbit 

polyclonal α-TCF antisera and guinea pig α-Sens have been described previously (Fang 

et al, 2006).  Rabbit polyclonal α-acetyl-histone H4 (#06-866) and rabbit monoclonal α-

histone H4 (#05-858) were from Upstate.  Mouse α-β-galactosidase was from Sigma-

Aldrich.  Rabbit α-β-galactosidase was from Abcam.  Mouse α-Wg (4D4) and mouse α-

En/Inv (4D9) were from the Developmental Studies Hybridoma Bank at the University of 

Iowa.  Rabbit polyclonal α-Spalt was from R. Schuh and B. Mollereau (Kuhnlein et al, 

1994). 

 For immunobloting, α-rabbit ACF1 (1:5000), α-ISWI (1:2000) and α-TCF 

(1:2000) were followed by HRP-conjugated α-rabbit IgG (1:2000).  Signal was detected 

with the ECL kit (Amersham Bioscience).  Immunostaining of wing imaginal discs was 
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as described previously (Parker et al, 2002).  The dilution factors for the primary 

antibodies used were: α-Sens (1:1000), α-Wg (1:100), α-En/Inv (1:20), α-Spalt (1:100), 

rabbit α-β-galactosidase (1:200), mouse α-β-galactosidase (1:500).  Cy3- and Cy5-

conjugated secondary antibodies were from Jackson Immunochemicals, and Alexa 488-

conjugated secondary antibody was from Molecular Probes.  All fluorescent images were 

obtained with Olympus FV-500 Confocal microscope, and processed in Adobe 

Photoshop 8.0. 

Drosophila cell culture 

Drosophila embryonic Kc167 (Kc) cells were cultured at room temperature in the 

Schneider’s Drosophila media (Invitrogen) containing 5% FBS and 

Penicillin/Streptomycin antibiotics.  RNAi mediated knockdown of gene expressed was 

performed as described elsewhere (Clemens et al, 2000) with modifications.  Briefly, 

when Kc cells approached confluent status after 4-5 days of culture (~8×106/ml), they 

were resuspended at 1×106/ml in standard media and seeded onto 12-well plates 

(1ml/well) or T-25 flask (6ml/well).  RNA duplex was then added at a final concentration 

of 9µg/ml.  After 4 days, cells were resuspended, diluted into 1×106/ml with fresh media 

and reseeded onto 12-well plates or T-25 flask.  Cells were harvested after 2 additional 

days incubation.  dsRNAs with a typical length of 500-700 bp were synthesized using the 

MEGAscript T7 in vitro transcription kit (Ambion).  The sequences of the PCR primers 

for the dsRNA synthesis are: iswi (1st duplex: 5’-CCATCAGTTGCGGCTGCAATATGGT 

AA-3’ & 5’-GCGGCACGCAATAGTAATGTAGTCGGAT-3’; 2nd duplex: 5’-CCACTTCATG 

ACTAACAGCGCTAAGAGT-3’ & 5’-GCAGAATCTCCGACAGCTTCGACTTCT-3’), acf1 (1st 

duplex: 5’-CGACCACGTAACTCTTTGCGCCTATCTA-3’ & 5’-GCGTGTGCTGAACTT 
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AGAACTGACAT-3’; 2nd duplex: 5’-CGATGAATGCAACGCTGGCACTCACAT-3’ & 5’-

GGTCGCTTGAGGTGAACACATTCCA-3’).  The sequences of primers for control, arm and 

TCF dsRNAs have been published previously (Fang et al, 2006). 

 Wg-CM was collected from stable pTubwg S2 cells provided by R Nusse, and 

stored at -80°C.  For 1×106 cells, 5 hours treatment of 200µl-500µl Wg CM was typically 

performed prior to harvesting.  Media collected from Drosophila S2 cells was used as 

control.  The pharmacological reagents Hydroxyurea (Sigma-Aldrich H8627) and 

Aphidicolin (Sigma-Aldrich A0781) were added to the cells (final concentrations of 

5mM and 25µM, respectively) after they were reseeded at 1×106/ml on the 4th day of 

RNAi treatment.  For the α-amanitin experiment, cells were treated with α-amanitin 

(Sigma-Aldrich A2263) at a final concentration of 10µg/ml for the indicated times on the 

6th day of RNAi treatment. 

Real-time quantitative PCR (Q-PCR) 

Samples were analyzed using an iCycler iQ real-time PCR detection system.  For 

RT-PCR, Trizol (Invitrogen) was used to extract total RNA from 1-5×106 cells.  Reverse 

transcription was performed using Stratascript reverse transcriptase (Stratagene) followed 

by Q-PCR analysis.  β-tubulin56D or arm or TCF or the combination of all three were 

used to normalize the transcripts.  Q-PCR primers were designed by using the online 

program Primer3 (http://frodo.wi.mit.edu/), and their sequences are available upon 

request. 

Chromatin immunoprecipitation (ChIP) 

ChIP analysis was performed according to the protocol of Upstate with minor 

modifications.  An initial protein-crosslinking step was included by incubating cells in 



 

 131 

10mM DTBP solution (Pierce #20665) for 30 minutes on ice.  For each 

immunoprecipitation, 3×106 cells were used and the amounts of antibodies used are as 

following: 5µl guinea pig α-ACF1 (provided by D. Fyodorov), 10µl rabbit α-TCF (Fang 

et al, 2006), 3µl rabbit α-H4 (Upstate), 1µl rabbit α-AcH4 (Upstate).  All ChIP samples 

were quantified with Q-PCR.  The inputs refer to the samples that were not subject to 

immunoprecipitation.  The primer sequences for ChIP sites on nkd, hth and Notum loci 

are available upon request.  For the re-ChIP assay, DNA-protein complexes were eluted 

by incubation in 50µl 10mM DTT for 30min at 37°C.  After centrifugation, the 

supernatant was diluted into 1 ml (20 times) with ChIP dilution buffer.  Half of the eluted 

sample (500µl) was saved as the secondary input, and the other half was subject to 

immunoprecipitation by the second antibody. 

 

Acknowledgements 

We are deeply indebted to Dmitry Fyodorov, whose generous provision of a 

series of ACF1 antibodies was enormously helpful for this project.  We would also like to 

thank J. Tamkun, J. Kadonaga, the Bloomington Stock Center and the Hybridoma Bank 

for providing fly stocks and antibodies.  We want to thank T. Blauwkamp, who identified 

hth from his microarray analysis, S. Barolo, who provided Nkd-lacZ reporter, and M. 

Chang, who generated Notum-lacZ reporter.  We are very grateful to E. Fearon, D. 

Bochar, P. Raymond and members of the Cadigan lab for their stimulating comments and 

ceaseless encouragement for this project.  Y. I. L. was supported by a pre-doctoral 

fellowship from the American Heart Association (0315219Z), and this work was 

supported by NIH grant RO1 CA95869 to K. M. C.  



 

 132 

References 

 
Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, 

Nakamura T, Behringer RR, McCrea PD, de Crombrugghe B (2004)  Interactions 
between Sox9 and beta-catenin control chondrocyte differentiation.  Genes Dev 
18:1072-87 

 
Alenghat T, Yu J, Lazar, MA (2006)  The N-CoR complex enables chromatin remodeler 

SNF2H to enhance repression by thyroid hormone receptor.  EMBO J 25:3966-74 
 
Azpiazu N, Morata G (2000)  Function and regulation of homothorax in the wing imaginal 

disc of Drosophila.  Development 27:2685-93 
 
Bachman N, Gelbart ME, Tsukiyama T, Boeke JD (2005)  TFIIIB subunit Bdp1p is 

required for periodic integration of the Ty1 retrotransposon and targeting of 
Isw2p to S. cerevisiae tDNAs.  Genes Dev 19:955-64 

 
Barolo S, Carver LA, Posakony JW (2000)  GFP and beta-galactosidase transformation 

vectors for promoter/enhancer analysis in Drosophila.  Biotechniques 29:726-32 
 
Blackman RK, Sanicola M, Raftery LA, Gillevet T, Gelbart WM (1991)  An extensive 3' 

cis-regulatory region directs the imaginal disk expression of decapentaplegic, a 
member of the TGF-beta family in Drosophila.  Development 111:657-66 

 
Cadigan KM, Liu YI (2006)  Wnt signaling: complexity at the surface.  J Cell Sci 

119:395-402 
 
Casares F, Mann RS (2000)  A dual role for homothorax in inhibiting wing blade 

development and specifying proximal wing identities in Drosophila.  
Development 127:1499-508 

 
Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M, Bejsovec A 

(1998)  Drosophila Tcf and Groucho interact to repress Wingless signalling activity. 
Nature 395:604-8 

 
Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon 

JE (2000)  Use of double-stranded RNA interference in Drosophila cell lines to 
dissect signal transduction pathways.  Proc Natl Acad Sci USA 97:6499-503 

 
Clevers H (2006)  Wnt/beta-catenin signaling in development and disease.  Cell 127:469-80 
 
Collins RT, Treisman JE (2000)  Osa-containing Brahma chromatin remodeling complexes 

are required for the repression of wingless target genes.  Genes Dev 14:3140-52 
 
Corona DF, Clapier CR, Becker PB, Tamkun JW (2002)  Modulation of ISWI function by 

site-specific histone acetylation.  EMBO Rep 3:242-7 
 
Corona DF, Tamkun JW (2004)  Multiple roles for ISWI in transcription, chromosome 



 

 133 

organization and DNA replication.  Biochim Biophys Acta 1677:113-9 
 
Daniels DL, Eklof Spink K, Weis WI (2001)  beta-catenin: molecular plasticity and drug 

design.  Trends Biochem Sci 26:672-8 
 
Daniels DL, Weis WI (2005)  Beta-catenin directly displaces Groucho/TLE repressors 

from Tcf/Lef in Wnt-mediated transcription activation.  Nat Struct Mol Biol 12:364-
71 

 
Deuring R, Fanti L, Armstrong JA, Sarte M, Papoulas O, Prestel M, Daubresse G, Verardo 

M, Moseley SL, Berloco M, Tsukiyama T, Wu C, Pimpinelli S, Tamkun JW (2000)  
The ISWI chromatin-remodeling protein is required for gene expression and the 
maintenance of higher order chromatin structure in vivo.  Mol Cell 5:355-65 

 
Diaz-Benjumea FJ, Cohen SM. (1995)  Serrate signals through Notch to establish a 

Wingless-dependent organizer at the dorsal/ventral compartment boundary of the 
Drosophila wing.  Development 121:4215-25 

 
Ding Y, Dale T (2002)  Wnt signal transduction: kinase cogs in a nano-machine? Trends 

Biochem Sci 27:327-9 
 
Fang M, Li J, Blauwkamp T, Bhambhani C, Campbell N, Cadigan KM (2006)  C-terminal-

binding protein directly activates and represses Wnt transcriptional targets in 
Drosophila.  EMBO J 25:2735-45 

 
Fyodorov DV, Kadonaga JT (2002)  Dynamics of ATP-dependent chromatin assembly by 

ACF.  Nature 418:897-900 
 
Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT (2004)  Acf1 confers unique 

activities to ACF/CHRAC and promotes the formation rather than disruption of 
chromatin in vivo.  Genes Dev 18:170-83 

 
Gelbart ME, Bachman N, Delrow J, Boeke JD, Tsukiyama T (2005)  Genome-wide 

identification of Isw2 chromatin-remodeling targets by localization of a catalytically 
inactive mutant.  Genes Dev 19:942-54. 

 
Gerlitz O, Basler K (2002)  Wingful, an extracellular feedback inhibitor of Wingless.  

Genes Dev 16:1055-9 
 
Giraldez AJ, Copley RR, Cohen SM (2002)  HSPG modification by the secreted enzyme 

Notum shapes the Wingless morphogen gradient.  Dev Cell 2:667-76 
 
Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000)  The Isw2 

chromatin remodeling complex represses early meiotic genes upon recruitment by 
Ume6p.  Cell 103:423-33 

 
Hamada F, Bienz M (2004)  The APC tumor suppressor binds to C-terminal protein to 

divert nuclear beta-catenin from TCF.  Dev Cell 7:677-85 
 
Houston DW, Kofron M, Resnik E, Langland R, Destree O, Wylie C, Heasman J (2002)  

Repression of organizer genes in dorsal and ventral Xenopus cells mediated by 
maternal XTcf3.  Development 129:4015-25 



 

 134 

 
Ito T, Levenstein ME, Fyodorov DV, Kutach AK, Kobayashi R, Kadonaga JT (1999)  ACF 

consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-
dependent catalysis of chromatin assembly. Genes Dev 13:1529-39 

 
Kim CH, Oda T, Itoh M, Jiang D, Artinger KB, Chandrasekharappa SC, Driever W, 

Chitnis AB (2000)  Repressor activity of Headless/Tcf3 is essential for vertebrate 
head formation.  Nature 407:913-6 

 
Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, 

Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, 
Yanagisawa J, Kato S (2003)  The chromatin-remodeling complex WINAC targets a 
nuclear receptor to promoters and is impaired in Williams syndrome.  Cell 113:905-
17 

 
Kuhnlein RP, Frommer G, Friedrich M, Gonzalez-Gaitan M, Weber A, Wagner-Bernholz 

JF, Gehring WJ, Jackle H, Schuh R (1994)  spalt encodes an evolutionarily 
conserved zinc finger protein of novel structure which provides homeotic gene 
function in the head and tail region of the Drosophila embryo.  EMBO J 13:168-
79 

 
Langst G, Becker PB (2001)  Nucleosome mobilization and positioning by ISWI-

containing chromatin-remodeling factors.  J Cell Sci 114:2561-8 
 
Li B, Carey M, Workman JL (2007a)  The role of chromatin during transcription.  Cell 

128:707-19 
 
Li J, Sutter C, Parker DS, Blauwkamp T, Fang M, Cadigan KM (2007b)  CBP/p300 are 

bimodal regulators of Wnt signaling.  EMBO J 26: 2284-2294 
 
Liu F, van den Broek O, Destree O, Hoppler S (2005)  Distinct roles for Xenopus Tcf/Lef 

genes in mediating specific responses to Wnt/{beta}-catenin signalling in 
mesoderm development.  Development 132:5375-85 

 
Logan CY, Nusse R (2004)  The Wnt signaling pathway in development and disease.  Annu 

Rev Cell Dev Biol 20:781-810 
 
Merrill BJ, Pasolli HA, Polak L, Rendl M, Garcia-Garcia MJ, Anderson KV, Fuchs E 

(2004)  Tcf3: a transcriptional regulator of axis induction in the early embryo.  
Development 131:263-74 

 
Moreau JL, Lee M, Mahachi N, Vary J, Mellor J, Tsukiyama T, Goding CR (2003)  

Regulated displacement of TBP from the PHO8 promoter in vivo requires Cbf1 and 
the Isw1 chromatin remodeling complex.  Mol Cell 11:1609-20 

 
Park JI, Kim SW, Lyons JP, Ji H, Nguyen TT, Cho K, Barton MC, Deroo T, Vleminckx K, 

Moon RT, McCrea PD (2005)  Kaiso/p120-catenin and TCF/beta-catenin 
complexes coordinately regulate canonical Wnt gene targets.  Dev Cell 8:843-54 

 



 

 135 

Parker DS, Jemison J, Cadigan KM (2002)  Pygopus, a nuclear PHD-finger protein 
required for Wingless signaling in Drosophila.  Development 129: 2565-76 

 
Parker DS, Blauwkamp T, Cadigan KM (2007a)  Wnt/β-catenin-mediated transcriptional 

regulation.  In Wnt Signaling in Embryonic Development, Sokol S., (ed), 
Advances in Developmental Biology, Wassarman PM (ed), Vol. 17, pp. 1-61. San 
Diego: Elsevier. 

 
Parker DS, Ni Y, Li, J, Cadigna KM (2007b) Wingless signaling induces widespread 

chromatin remodeling of target loci.  Manuscript submitted. 
 
Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman 

CS (1989)  Expression of engrailed proteins in arthropods, annelids, and 
chordates.  Cell 58:955-68 

 
Phillips RG, Whittle JR (1993)  wingless expression mediates determination of peripheral 

nervous system elements in late stages of Drosophila wing disc development.  
Development 118:427-38 

 
Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha YH, Ali M, Priess JR, Mello 

CC (1997)  Wnt signaling and an APC-related gene specify endoderm in early C. 
elegans embryos.  Cell 90:707-16 

 
Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, van de Wetering M, 

Destree O, Clevers H (1998)  The Xenopus Wnt effector XTcf-3 interacts with 
Groucho-related transcriptional repressors.  Nature 395:608-12 

 
Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, Logtenberg 

T, Clevers H (1999)  Synergy between tumor suppressor APC and the beta-
catenin-Tcf4 target Tcf1.  Science 285:1923-6 

 
Schweizer L, Nellen D, Basler K (2003)  Requirement for Pangolin/dTCF in Drosophila 

Wingless signaling.  Proc Natl Acad Sci USA 100:5846-51 
 
Sherriff JA, Kent NA, Mellor, J (2007)  The Isw2 chromatin-remodeling ATPase 

cooperates with the Fkh2 transcription factor to repress transcription of the B-type 
cyclin gene CLB2.  Mol Cell Biol 27:2848-60 

 
Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006)  Histone H4-

K16 acetylation controls chromatin structure and protein interactions.  Science 
311:844-7 

 
Sierra J, Yoshida T, Joazeiro CA, Jones KA (2006)  The APC tumor suppressor counteracts 

beta-catenin activation and H3K4 methylation at Wnt target genes.  Genes Dev 
20:586-600 

 
Sivasankaran R, Calleja M, Morata G, Basler K (2000)  The Wingless target gene Dfz3 

encodes a new member of the Drosophila Frizzled family.  Mech Dev 91:427-31 
 



 

 136 

Sosinsky A, Bonin CP, Mann RS, Honig B (2003)  Target Explorer: An automated tool 
for the identification of new target genes for a specified set of transcription factors.  
Nucleic Acids Res 31:3589-92 

 
Städeli R, Basler K (2005)  Dissecting nuclear Wingless signalling: recruitment of the 

transcriptional co-activator Pygopus by a chain of adaptor proteins.  Mech Dev 
122:1171-82 

 
Städeli R, Hoffmans R, Basler K (2006)  Transcription under the control of nuclear 

Arm/beta-catenin.  Curr Biol 16:R378-85 
 
Standley HJ, Destree O, Kofron M, Wylie C, Heasman J (2006)  Maternal XTcf1 and 

XTcf4 have distinct roles in regulating Wnt target genes.  Dev Biol 289:318-28 
 
Tabata T (2001)  Genetics of morphogen gradients. Nat Rev Genet 2:620-30 
 
Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y, Adachi S, Ohwada S, 

Morishita Y, Shibuya H, Akiyama T (2000)  Inhibition of Wnt signaling by ICAT, a 
novel beta-catenin-interacting protein.  Genes Dev 14:1741-9 

 
Takemaru K, Yamaguchi S, Lee YS, Zhang Y, Carthew RW, Moon RT (2003)  Chibby, a 

nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway.  Nature 
422:905-9 

 
Thorpe CJ, Schlesinger A, Carter JC, Bowerman B (1997)  Wnt signaling polarizes an 

early C. elegans blastomere to distinguish endoderm from mesoderm.  Cell 
90:695-705 

 
Vanolst L, Fromental-Ramain C, Ramain P (2005)  Toutatis, a TIP5-related protein, 

positively regulates Pannier function during Drosophila neural development.  
Development 132:4327-38 

 
Wang S, Jones KA (2006) CK2 controls the recruitment of Wnt regulators to target genes 

in vivo. Curr Biol 16:2239-44 
 
Wernet MF, Labhart T, Baumann F, Mazzoni EO, Pichaud F, Desplan C (2003)  

Homothorax switches function of Drosophila photoreceptors from color to 
polarized light sensors.  Cell 115:267-79 

 
Xu T, Rubin GM (1993)  Analysis of genetic mosaics in developing and adult Drosophila 

tissues.  Development 117:1223-37 
 
Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T (2002)  SATB1 targets 

chromatin remodeling to regulate genes over long distances.  Nature 419:641-5 
 
Zhang Z, Reese JC (2004)  Ssn6-Tup1 requires the ISW2 complex to position 

nucleosomes in Saccharomyces cerevisiae.  EMBO J 23:2246-57 
 
Zeng W, Wharton KA Jr, Mack JA, Wang K, Gadbaw M, Suyama K, Klein PS, Scott MP 



 

 137 

(2000)  naked cuticle encodes an inducible antagonist of Wnt signalling.  Nature 
403:789-95 

 



 138 

 

 

 

CHAPTER IV 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 Wnt/β-cat signaling controls a large array of events in both developing and adult 

tissues, which is thought to be achieved through regulation of specific target gene 

expression.  Insight into how Wnt transcriptional targets are regulated will not only 

improve our knowledge of the pathway, but also provide an important context for 

understanding eukaryotic transcriptional control in general. 

 As a sizable body of work has been focusing on Wnt target activation, our 

knowledge of how these genes are silenced in the absence of signal is still limited.  By 

characterizing the role of several ISWI family chromatin remodelers in Wingless (Wg) 

signaling, I believe my dissertation makes significant contributions to understanding the 

repression mechanism for Wnt targets in the context of chromatin. 

 

ISWI/ACF1 specifically represses Wg targets 

 My studies showed that ISWI represses 4 Wg targets (Notum-lacZ, Sens, Nkd-

lacZ and Dfz3-lacZ) in the developing wing, and ISWI/ACF1 represses 3 Wg targets 

(nkd, Notum and hth) in cultured cells.  In contrast, ISWI does not affect 3 non-Wg 
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targets (En/Inv, Dpp-lacZ and Spalt) in the wing, nor does ISWI/ACF1 repress 3 non-Wg 

targets in cultured cells including two genes adjacent to nkd (Fig. 3.1-3.3).  These results 

suggest that ISWI/ACF1 has considerable specificity for repressing Wg targets, rather 

than acting as universal repressors. 

 On the other hand, ISWI and ACF1 are not required for repression of all Wg 

targets.  Loss of iswi does not affect the expression of Dll, a long-range Wg target in the 

wing (Zecca et al., 1996, data not shown).  Depletion of iswi/acf1 does not derepress 

CG6234, a direct target of Wg signaling in Kc cells (Fang et al., 2006, data not shown).  

These data are hardly surprising, as none of the characterized repressors in the pathway, 

including TCFs, represses all Wg target genes (Parker et al., 2007a).  The default 

repression of Wnt targets could be gene-specific possibly due to the different thresholds 

of basal expression levels for different genes. 

 Although ISWI and ACF1 have certain specificity for repressing Wg targets, it is 

unlikely that they are dedicated repressors in the pathway.  The kinked pattern of Wg 

expression seen in one third of iswi clones is probably not a defect of Wg signaling, as 

perturbation of Wg signaling does not lead to a distortion of Wg expression.  Also, 

patched, a direct target of Hth signaling, is significantly derepressed upon inhibition of 

iswi/acf1 in Kc cells (data not shown).  Therefore, ISWI/ACF1 could be involved in 

repressing target genes of other signaling pathways.  In fact, a recent report demonstrated 

that SNF2H, a human ISWI homologue, acts with histone deacetylase (HDAC) to repress 

thyroid hormone receptor (TR) regulated genes in cultured cells (Alenghat et al., 2006). 

 ISWI/ACF1 has been shown to participate in post-mitotic chromatin assembly 

and maintenance of higher-order chromosome structure (Corona and Tamkun, 2004).  
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Nevertheless, I observed that ISWI/ACF1 still represses Wg targets in non-dividing cells, 

and the integrity of histone H4 deposition is maintained upon depletion of iswi/acf1 (Fig. 

3.7).  These results suggest that repression of Wg targets by ISWI/ACF1 is independent 

of their activity in chromatin assembly and maintenance. 

A more comprehensive understanding of ISWI/ACF1’s role in transcription can 

be achieved by a whole genome expression analysis using microarray.  Previously, two 

microarray studies have been done for ISWI-type factors.  The first was performed in 

yeast isw2 mutant.  For the isw2 single mutant, only 3 genes in the whole genome are 

significantly derepressed (>3 fold).  In contrast, a much larger portion of genes (114) are 

derepressed in the absence of isw2 and rpd3, the latter encoding a histone deacetylase, 

suggesting the cooperation between these two proteins in repression (Fazzio et al., 2001).  

The second microarray was performed in fly Nurf301 (encoding a cofactor of an ISWI 

complex) mutant, where the expression of 477 genes (both activation and repression) is 

affected (Badenhorst et al., 2005).  These results indicate that ISWI-type factors are not 

global regulators of gene expression. 

To examine how specifically ISWI/ACF1 represses Wg targets, microarray 

analysis can be performed in Kc cells, and the expression profiles between control RNAi 

and iswi/acf1 RNAi can be compared.  Comparing the list of genes affected by iswi/acf1 

RNAi to the list of Wg-induced genes in a separate microarray (T. Blauwkamp, 

unpublished) will be informative on how prevalent ISWI/ACF1 mediated repression of 

Wg targets. 

 More experimental conditions can be added to the microarray analysis.  It would 

be interesting to examine the expression profiles of iswi RNAi alone and acf1 RNAi 
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alone, especially for the genes that are affected by acf1 RNAi but not by iswi RNAi.  

Since I have observed an ISWI-independent ACF1 activity for some Wg targets in Kc 

cells (see a separate section), it would be interesting to know to what extent this activity 

can be observed at the genome level. 

A cooperation between ISWI and TCF in repressing two Wg targets (nkd and hth) 

was observed in fly cells (Fig. 3.4G).  In contrast, another Wg target, Notum, appears 

predominantly repressed by TCF itself, since TCF RNAi causes >30 fold derepression of 

Notum in the absence of signal and no further derepression is seen upon iswi/TCF RNAi 

(data not shown).  Comparing the derepression profiles at the genome level between iswi 

RNAi, TCF RNAi and iswi/TCF RNAi conditions will be useful to determine how 

general a mechanism of parallel repression is adopted for Wg targets. 

 

Widespread binding of ACF1 to Wg targets 

 ACF1 was found bound to broad regions of several Wg targets (nkd, Notum and 

hth), spanning up to 130 kb.  In addition, the binding of ACF1 extends to two genes 

adjacent to nkd, even though they are not regulated by ISWI/ACF1 (Fig. 3.4).  This is 

reminiscent to a previous report showing that yeast Isw2 binds to a broad region of the 

DNA damage-inducible gene RNR3 (spanning 3.8kb).  The binding of Isw2 also 

extends to the regions where the nucleosome positioning is not regulated by Isw2 

(Zhang and Reese, 2004). 

 Upon Wg signaling stimulation, a modest reduction of ACF1 binding to Wg 

targets was observed (Fig. 3.8).  Moreover, less ACF1 binds to acetylated histones in 

the presence of signal, suggesting that histone acetylation antagonizes ACF1 binding 
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to Wg targets.  Combined with the previous observation in the lab that Wg signaling 

induces widespread histone acetylation on its targets (Parker et al., 2007b), we 

propose a model where this broad acetylation displaces or inactivates ACF1 binding, 

resulting in an alteration of chromatin conformation favorable for Wg target 

activation (Figure 4.1). 

How broadly does ACF1 bind to Wg targets, or does ACF1 bind everywhere in 

the genome reflecting its chromatin maintenance activity?  I consider the latter possibility 

less likely since there are quite a few good examples both in yeast and mammals 

showing that ISWI/ACF1 preferentially binds to the enhancers of its target genes, 

often recruited by specific DNA-binding proteins, to silence their expression 

(Goldmark et al., 2000; Yasui et al., 2002; Moreau et al., 2003; Alenghat et al., 2006). 

To explore how widespread the ACF1 binding is, loci further upstream and 

downstream of Wg targets can be tested by ACF1 ChIP, and it will be comforting to 

see that the binding of ACF1 on chromatin eventually drops off at some points away 

from Wg targets.  In addition, it will be interesting to explore how broadly the ACF1 

binding is reduced in the presence of signal, since this has not been tested especially 

for the areas outside of Wg targets.  If a more localized reduction of ACF1 binding to 

Wg targets is observed, it will argue that the reduction is due to a specific Wg 

signaling influence rather than a non-specific effect of Wg-CM. 

Is ACF1 bound broadly to Wg targets in flies as well?  From my studies, the 

best derepressable Wg target in iswi mutant clones is Notum-lacZ in the developing 

wing (Fig. 3.2E-H).  As my colleagues in the Cadigan lab are establishing the ChIP  
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Figure 4.1  Model of ISWI/ACF1’s action in Wnt signaling.  (A) In the absence of 
Wnt signaling, ACF1 binds to broad regions of Wnt targets (much broader than TCF 
binding) to repress Wnt target expression.  (B) Upon Wnt stimulation, binding of β-cat to 
TCF induces widespread acetylation of histones across Wnt targets (possibly by histone 
acetyltransferase CBP), which displaces/inactivates ACF1 to activate Wnt target 
expression. 
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assay in wing imaginal discs, the binding of ACF1 to this target and its regulation by 

Wg signaling can be examined in the foreseeable future.  To turn on or shut off the 

pathway in the wing, drivers expressed in the major domains of the wing (Vg-Gal4 or 

C96-Gal4) can be used to misexpress UAS lines of constitutively active form of Arm 

or dominant-negative form of TCF, respectively.  The validity of ACF1 ChIP signal 

can be confirmed by using acf1 mutant wing discs as a control.  One caveat for this 

experiment is the artificial nature of the reporter gene, which may bear different 

chromosome organization from the endogenous gene.  Therefore, it is worthwhile 

testing the ACF1 binding profile at the endogenous Notum locus as well, especially 

regarding how widely ACF1 binds to this locus. 

Is widespread binding of ACF1 important for Wg target repression?  One 

approach to address this question is to force ACF1 to bind locally to Wg targets, and 

test whether under these conditions it can still repress Wg targets.  For this purpose, 

ACF1 can be fused to TCF, and presumably this fusion protein recruits ACF1 to 

WREs due to the strong DNA binding ability of TCF.  As a control, a mutant form of 

TCF that does not bind DNA (HMG deletion) can be fused to ACF1, and this 

presumably abolishes the localized binding of the fusion protein to WREs.  After the 

establishment of stable cell lines for these two constructs, ACF1 ChIP can be done in 

these cells to see whether the localized vs. widespread binding of ACF1 to Wg targets 

is achieved.  This can be followed by a functional analysis to see whether the fusion 

proteins rescue the derepression of Wg targets caused by endogenous acf1 

knockdown.  If the mutant TCF fusion can rescue but the wild-type TCF fusion can 
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not, this will argue that widespread binding of ACF1 is functional important for 

repression.  Similar experiments can also be carried out in flies for Notum-lacZ, given 

the advantage that acf1 mutant is viable. 

 

Different activities between ISWI and ACF1 

 Thus far, all the genetic analysis in the wing centers on ISWI, while all the ChIP 

studies in Kc cells are oriented toward ACF1.  The dichotomous focus is due to a lack of 

Wg phenotypes in acf1 mutant flies for the former, and limited amount of ISWI 

antibodies available for the latter.  Even if people in the ISWI community consider that 

ACF1 usually acts with ISWI (not vise versa), we should be careful not to take it for 

granted since we did observe ISWI-independent activity for ACF1 in both flies and 

cultured cells.   

 In the developing wing, neither acf1 nor tou/acf1 displays obvious defects in Wg 

signaling.  In contrast, loss of iswi causes derepression of several Wg targets.  

Considering ISWI is found in multiple complexes (Fig. 1.2), it is curious to know which 

ISWI complex is responsible for the Wg phenotype.  NURF complex might be involved, 

as nurf301 (the unique factor in NURF complex) mutant reveals phenotypes similar to 

those of iswi mutant (Badenhorst et al., 2002).  Strong evidence supports the hypothesis 

that Nurf301 directly regulates gene activation, though a repression activity is also 

suggested in JAK/STAT signaling (Badenhorst et al., 2002; Badenhorst et al., 2005; 

Wysocka et al., 2006).  Interestingly, Nurf301 and ACF1 cooperately repress nkd in Kc 

cells (data not shown).  To further test the role of Nurf301 in Wg signaling in flies, 

nurf301 mutant clones can be induced in the wing and the effect on Wg targets can be 
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examined.  If no obvious defect is observed, nurf301 clones can also be generated in 

tou/acf1 mutant background to test whether these three related factors act redundantly 

repressing Wg targets, although it would be technically challenging to perform this 

experiment. 

 It is worth noting that even though iswi mutants display derepression of Wg 

targets, the penetrance is never 100% (varies from 43% to 95%).  Interestingly, iswi/acf1 

double mutant flies die earlier than iswi mutant flies, suggesting an ISWI-independent 

function of ACF1 during animal development (data not shown).  Generating iswi clones 

in acf1 mutant background will be informative to see whether they both contribute to 

repressing Wg targets, as we saw in cell culture. 

 In contrast to the broad binding of ACF1 to Wg target genes, preliminary results 

for ISWI ChIP reveal that ISWI preferentially binds to the area where TCF is bound at 

hth locus (Fig. 4.2).  Consistently, the ACF1 binding to this site (H16), and this site only, 

is partially reduced upon acf1 knockdown, but further reduced to background levels upon 

acf1/iswi knockdown (Fig. 3.4D).  These results suggest that ACF1 works with ISWI at 

localized site of Wg targets but binds to other regions independent of ISWI.  

Undoubtedly, more sites need to be examined for hth as well as for other Wg targets to 

confirm that ISWI has a distinct binding profile from ACF1.  In addition, other ChIP 

experiments we have done for ACF1 (dependency on TCF, Wg signaling influence, etc.) 

can also be done for ISWI (if more ISWI antibody is available) to see how similarly to or 

differently from ACF1 it behaves in Wg target repression. 
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Figure 4.2  ISWI preferentially binds to the site where TCF binds in the hth locus.  
Kc cells were treated with control RNAi or iswi RNAi for six days before subjecting to 
ISWI ChIP analysis.  A 3-4 fold enrichment of ISWI binding was seen in a site (H(+16)) 
where TCF preferentially binds, and the ChIP signal was reduced to background levels 
upon iswi RNAi.  Rabbit polyclonal α-ISWI was from J. Kadonaga (Ito et al., 1999). 
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Action of ISWI/ACF1 with other repressors 

 Given that ISWI/ACF1 does not have a specific DNA sequence recognition motif, 

it is unclear how these factors are recruited to Wg targets loci.  Since ACF1 and TCF 

synergistically repress Wg targets and the ACF1 binding to Wg targets is not affected 

upon depletion of TCF, it is unlikely that TCF recruits ACF1 (Figure 3.4E,G).  More 

experiments need to be done to see whether this is true for ISWI as well. 

 Previous studies in the lab showed that C-terminal binding protein (CtBP) 

represses Wg targets independently of TCF (Fang et al., 2006).  Interestingly, ISWI and 

CtBP synergistically repress nkd in Kc cells (data not shown).  As both ISWI and CtBP 

bind to the similar region of a Wg target hth, ChIP experiment can be done to determine 

whether one influences the binding of the other. 

 What factor(s) could recruit ISWI/ACF1 to Wg targets?  One candidate is 

Tramtrak (Ttk), a protein containing BTB/POZ and zinc finger domains (Kelly and 

Daniel, 2006).  It has been shown that a Ttk-like protein in Xenopus, xKaiso, can repress 

Wnt targets independently of TCF (Park et al., 2005).  Moreover, fly Ttk binds to CtBP in 

vitro (Wen et al., 2000).  Interestingly, Ttk works together with TCF to repress nkd in Kc 

cells (Fig. 4.3A).  In addition, depletion of ttk leads to a reduction of TCF or CtBP 

binding to a WRE of nkd (Fig. 4.3B).  These results suggest that like its vertebrate 

counterpart, Ttk plays a role in silencing Wg targets. 

 Several more experiments can be done to further dissect the function of Ttk in Wg 

signaling.  To see whether Ttk recruits ISWI/ACF1 to Wg targets, ISWI or ACF1 ChIP 

can be done in cells depleted of ttk.  Since we have obtained some Ttk antibody 

(Badenhorst, 2001), Ttk ChIP can be carried out to see whether it directly binds to Wg 
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Figure 4.3  Ttk represses nkd expression and facilitates CtBP/TCF binding to nkd.  
(A) Kc cells were treated with indicated dsRNAs for six days, and transcripts of nkd were 
measured by Q-RT-PCR.  TCF RNAi or ttk RNAi results in 5-7 fold derepression of nkd, 
while TCF/ttk RNAi leads to 20 fold derepression of nkd.  (B) ChIP analysis for CtBP or 
TCF was performed in cells treated with ttk RNAi.  Compared to the control, both CtBP 
and TCF’s binding to the intronic WRE of nkd (N(+5)) is reduced upon ttk depletion. 
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targets.  The study of Ttk can also be extended to flies, where Wg targets in the 

developing wing can be examined in ttk mutant clones (ttk mutant acquired from Lai and 

Li, 1999).  These genetic and molecular analyses will give us a better idea of how Ttk, 

TCF, ISWI/ACF1 work together to repress Wg target genes. 

 

Future perspectives 

Overall speaking, my study of several ISWI-type chromatin remodelers stays at 

genetic and molecular level.  A further understanding of ISWI/ACF1’s repression 

mechanism on Wg targets will be at the level of nucleosomes.  How do they position 

nucleosomes around Wg target loci in vivo?  How is nucleosome positioning regulated by 

Wg signaling?  These are intriguing questions, yet they can not be answered until the in 

vivo nucleosome positions around WREs have been mapped by micrococcal nuclease 

digestion assay.  There are good examples in both yeast and mammals demonstrating that 

establishing such a system is very helpful to dissect the nucleosome remodeling 

mechanism in the transcriptional context (Fazzio and Tsukiyama, 2003).  Yet in the Wnt 

field, this aspect of research has not been extensively explored especially for endogenous 

genes.  Therefore, I envision that my PhD work is not the end, but rather the prelude of a 

new chapter of studying transcriptional regulation of Wnt target genes in the chromatin 

context, where the combined insights from genetic, molecular and nucleosomal analyses 

will surely warrant plenty of fruitful discoveries. 
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