
MECHANISMS OF HUMAN GENE EVOLUTION 

by 

Xiaoxia Wang 

 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Ecology and Evolutionary Biology) 

In The University of Michigan 
2007 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Doctoral Committee: 
 

Associate Professor Jianzhi Zhang, Chair 
Professor Jeffrey C. Long 
Professor David P. Mindell 
Professor Priscilla K. Tucker 
 
 
 

i 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my father and mother 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 ii



ACKNOWLEDGEMENTS 

 

My sincerest thanks go to my advisor, Jianzhi Zhang, for his continuous support in 

my Ph.D. program. For the past five years, he has always been there to listen, give 

valuable advice and bring out the good ideas in me. His patience and generosity gave me 

a lot of courage and confidence. His wisdom and intelligence opened my mind, so I 

learned to enjoy the beauty of science and experience the world in an entirely new way.  

I am also grateful to my dissertation committee for their patience, kindness, and 

constant guidance. Thanks also to my labmates and cohorts. Without their friendship and 

support, I cannot survive the competition in academic field. Particularly, Soochin Cho 

and Ondrej Podlaha offered me tremendous help on my study and work and kept me in 

good spirits. I am honored to work with so many intelligent people in Zhang lab, sharing 

my ideas with them and listening to their remarkable opinions.  

I also owe many thanks to Prosanta Chakrabarty, LaDonna Walker, Julia Eussen for 

helping me at any time and solving any unsolvable problems for me.  

Finally, I thank my parents for giving me my life in the first place, for supporting me 

to pursue my dream, and for listening to my complaints and frustrations. No matter how 

far I am away from them, I can feel their love surrounding me at any time.     

 
 
 
 
 

 iii



TABLE OF CONTENTS 
 

 
DEDICATION……………………………………………………………………... ii
ACNOWLEDGEMENTS……………………………………………………….....  iii
LIST OF FIGURES……….………………………………………………………. vi
LIST OF TABLES…………………………………………………………………. viii
ABSTRACT………………………………………………………………………... ix
INTRODUCTION………………………………………………………………..... 1
CHAPTER 1: RAPID EVOLUTION OF MAMMALIAN X-LINKED 
TESTIS-EXPRESSED HOMEOBOX GENES………………………………….. 9
      1.1 ABSTRACT...…………………………………………………………... 9
      1.2 INTRODUCTION……………………………………………………… 10
      1.3 RESULTS……………………………………………………………….. 11
      1.4 DISCUSSION…………………………………………………………... 19
      1.5 MATERIALS AND METHODS……………………………………….. 22
      1.6 ACKNOWLEDGMENTS…………………………………………......... 25
      1.7 LITERACTURE CITED………………………………………………... 32
CHAPTER 2: RAPID EVOLUTION OF PRIMATE ESX1, AN X-LINKED 
PLACENTA- AND TESTIS-EXPRESSED HOMEOBOX GENE....................... 35
      2.1 ABSTRACT...…………………………………………………………... 35
      2.2 INTRODUCTION……………………………………………………… 36
      2.3 RESULTS……………………………………………………………….. 38
      2.4 DISCUSSION…………………………………………………………... 45
      2.5 MATERIALS AND METHODS……………………………………….. 48
      2.6 ACKNOWLEDGMENTS………………………………………………. 50
      2.7 LITERACTURE CITED………………………………………………... 59
CHAPTER 3: RELAXATION OF SELECTIVE CONSTRAINT AND LOSS 
OF FUNCTION IN THE EVOLUTION OF HUMAN BITTER TASTE 
RECEPTOR GENES……………………………………………………………… 62
      3.1 ABSTRACT...…………………………………………………………... 62
      3.2 INTRODUCTION……………………………………………………… 62
      3.3 RESULTS…….…………………………………………………………. 64
      3.4 DISCUSSION…………………………………………………………... 72
      3.5 MATERIALS AND METHODS……………………………………….. 76
      3.6 ACKNOWLEDGMENTS………………………………………………. 78
      3.7 LITERACTURE CITED………………………………………………... 85
CHAPTER 4: ADAPTIVE PSEUDOGENIZATION OF CASPASE12 IN 
HUMAN EVOLUTION…………………………………………………………… 89
      4.1 ABSTRACT...…………………………………………………………... 89

 iv



      4.2 INTRODUCTION……………………………………………………… 89
      4.3 RESULTS……………………………………………………………….. 92
      4.4 DISCUSSION…………………………………………………………... 98
      4.5 MATERIALS AND METHODS……………………………………….. 101
      4.6 ACKNOWLEDGMENTS………………………………………………. 105
      4.7 LITERACTURE CITED………………………………………………... 113
 

 v



LIST OF FIGURES 
 
 
Figure 1.1  Phylogenetic tree of TGIFLX, TGIF2, and TGIF genes………………… 26

Figure 1.2  Alignment of TGIFLX sequences of 16 primates………………………. 27

Figure 1.3  Pairwise comparisons of dS and dN among 16 primate TGIFLX 
sequences for (A) the entire sequence, (B) nonhomeodomain regions, and (C) the 
homeodomain…………………………………………………………………………. 28

Figure 1.4  Numbers of synonymous (s) and nonsynonymous (n) substitutions in 
the evolution of primate TGIFLX genes……………………………………………… 29

Figure 1.5  Distribution of the evolutionary rate of 64 mammalian homeobox 
genes…………………………………………………………………………………... 30

Figure 2.1  Structures of the orthologous (A) human ESX1 and (B) mouse Esx1 
genes, adapted from (Fohn and Behringer 2001) and (Li et al. 1997)………………... 51
 
Figure 2.2  Alignment of human and chimpanzee ESX1 protein sequences……....... 52
 
Figure 2.3  Protein sequence alignment for exon 4 of ESX1 (Esx1) in (A) 12 
primates and (B) 4 Mus species………………………………………………………. 53
 
Figure 2.4  Pairwise synonymous (dS) and nonsynonymous (dN) nucleotide 
distances for (A) the entire exon 4 of ESX1 among 15 primates, (B) the C-terminal 
non-homeodomain region of ESX1 among 15 primates, and (C) the exon 4 of Esx1 
among 4 Mus species…………………………………………………………………. 54
 
Figure 2.5  Separate alignments of translated ESX1 exon 4 of (A) hominoids, (B) 
Old World monkeys, and (C) New World monkeys………………………………….. 55
 
Figure 2.6  Numbers of synonymous (s) and nonsynonymous (n) substitutions in 
the evolution of primate ESX1………………………………………………………... 56
 
Figure 3.1  Evolutionary relationships of 113 putatively functional TAS2R genes 
from the human, chimpanzee, mouse, and rat………………………………………… 79
 
Figure 3.2  Comparison of dN/dS among different functional domains of TAS2Rs…. 80

 vi



 
Figure 3.3  Expected and observed distributions of dN/dS among 25 human TAS2R 
genes…………………………………………………………………………………. 

 
81

 
Figure 4.1  Intraspecific DNA sequence variation in noncoding regions linked with 
the human CASPASE12 gene…………………………………………………………. 107
 
Figure 4.2  Genotypes of the 4 C/C homozygotes and 4 T/T homozygotes that were 
sequenced in all 9 noncoding regions………………………………………………… 108
 
Figure 4.3  Estimating the age of the null allele and the onset of the selective sweep 109

 vii



LIST OF TABLES 
 
 
Table 1.1  Protein p-distances between orthologous human and mouse homeobox 
genes………………………………………………………………………………... 31
 
Table 2.1  ESX1 exon 4 sequence variations among 32 men……………………… 57
 
Table 2.2  Primers used for amplifying different exons of ESX1 in primates and 
Esx1 in Mus species.………………………………………………………………... 58
 
Table 3.1  Intra- and inter- variations of human TAS2R genes.………...………….. 82
 
Table 3.2  Rates of synonymous and nonsynonymous nucleotide changes in 
human TAS2Rs……………………………………………………………………… 83
 
Table 4.1  Intraspecific variations in 9 noncoding regions linked to human 
CASPASE12………………………………………………………………………… 110
 
Table 4.2  Results from coalescent simulations.…………………………………... 111
 
Table 4.3  SNPs identified in the noncoding regions linked with CASP12……….. 112
 

viii 



ABSTRACT 
 

“What makes us humans?” is one of the most fascinating questions in evolution. The 

genetic basis of the phenotypic differences between humans and close evolutionary 

relatives has been a hot topic for molecular evolutionary studies. Investigating human 

genetic variations within the context of primates will provide valuable information about 

the development and function of important primate features and unique human features. 

In Chapter 1 and 2, I conducted detailed evolutionary studies on two homeobox 

genes, TGIFLX and ESX1. Evolutionary analysis provided evidence for positive selection 

acting on the two genes during primate evolution. Given the key roles played by 

homeobox genes in various developmental processes, the identification of non-conserved 

homeobox genes is interesting, because such homeobox genes may regulate important 

developmental processes that vary among relatively closely related species. TGIFLX and 

ESX1 are located on X chromosome and involved in male spermatogenesis process. The 

finding of positive selection in these genes suggests that even in the recent past of human 

and primate evolution, spermatogenesis has been subject to adaptive modifications.  

Characterizing genetic variations within humans is also a powerful way to detect the 

genetic basis of human uniqueness. Gene loss is an important source of human-specific 

genetic change. Genes related to chemoreception and immunity account for a large 

proportion of lost genes in the human lineage. In Chapter 3, I reported the relaxation of 

selective constraint and loss of function in the evolution of human bitter taste receptor 

genes, probably due to the change in diet, use of fire, and reliance on other means of 

 ix



toxin avoidance that emerged in human evolution. This finding provided further evidence 

for reduced sensory capabilities of humans in comparison to many other mammals. 

Gene loss or pseudogenization has also been proposed to serve as an engine of 

evolutionary change, especially during human origins (the “less-is-more” hypothesis). In 

Chapter 4, I focused on CASPASE12, a cysteinyl aspartate proteinase participating in 

inflammatory and innate immune response to endotoxins. My results provided population 

genetic evidence that the nearly complete fixation of a null allele at CASPASE12 has been 

driven by positive selection, probably because the null allele confers protection from 

severe sepsis. Furthermore, the identification and analysis of human-specific 

pseudogenes open the door for understanding the roles of gene losses in human origins, 

and the demonstration that gene loss itself can be adaptive supports and extends the 

‘‘less-is-more’’ hypothesis. 

 

 

x 



INTRODUCTION 

The finding of DNA double helix structure followed by dramatic achievements in 

biochemical techniques, such as PCR (Polymerase Chain Reaction), DNA sequencing, 

and genetic engineering opened a new era for evolutionary study. Characterizing genetic 

differences at the level of DNA molecules and its products (protein or RNA molecules) 

has moved the study of evolution into a brand new dimension. One of the most 

fascinating questions in evolution is what makes us humans. In addition to several 

well-known features, such as bipedalism, enlarged brains, language capability, and other 

high-order cognitive functions, numerous traits differentiate humans from other great 

apes (Varki and Altheide 2005). With rapid progress in human genetics, comparative 

genomes, and molecular evolution, the evolutioanry basis of these differences has begun 

to be unraveled.  

Investigating our “humanness” in the context of primates will tell us what is 

common to primates and what is unique to humans. Phylogenetic analysis of primate 

genomic data can provide valuable clues about the development and function of 

important primate features and the genetic basis of human uniqueness. So far, finished or 

draft primate genome sequences are available only for human, common chimpanzee, and 

rhesus macaque. No New World monkey has been sequenced in genomic scale despite 
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their evolutionary significance, one more step further the human-rhesus relationship. In 

order to learn the mechanism of molecular evolution in a phylogenetic framework 

encompassing the entire order Primates, I focused on candidate gene investigation in my 

dissertation work. A candidate gene approach takes advantage of a priori knowledge 

obtained from genetic, biochemical, or physiological assays about specific genes and can 

acquire striking outcomes (Varki and Altheide 2005). FOXP2 evolution is a good 

example. The conserved transcriptional factor FOXP2 is required for speech development 

in humans (Lai et al. 2001). Intriguingly, two adaptive amino acid replacements were 

found in hominin evolution, suggesting that these two substitutions were at least partially 

responsible for the emergence of human speech and language (Enard et al. 2002; Zhang 

et al. 2002).  

In the first half of this thesis (Chapter 1 & 2), I provide evidence for positive 

selection acting on two homeobox genes, TGIFLX and ESX1, during primate evolution. 

Homeobox genes are characterized by the presence of a sequence motif known as the 

homeobox, which encodes the ~60-amino-acid homeodomain, a helix-turn-helix DNA 

binding domain (Gehring et al. 1994). In humans, there are about 230 homeobox genes 

(Nam and Nei 2005), encoding a large family of transcription factors that play key roles 

in various developmental processes such as body-plan specification, pattern formation, 

and cell-fate determination (Gehring et al. 1994). Due to their functional importance, 

most homeodomain proteins are evolutionarily highly conserved in sequence (McGinnis 

et al. 1984; Gehring et al. 1994; Zhang and Nei 1996). Hence, the identification of 
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non-conserved homeobox genes would be particularly interesting, because such 

homeobox genes may regulate important developmental processes that vary among 

relatively closely related species.  

Two such rapidly-evolving homeobox genes are well known, from fruit flies (OdsH) 

and rodents (Rhox5), respectively. OdsH is an X-linked gene involved in spermatogenesis 

and it is partly responsible for the hybrid male sterility between Drosophila simulans and 

D. mauritiana (Ting et al. 1998). Mouse Rhox5 (also known as Pem) is expressed in both 

male and female reproductive tissues (Sutton and Wilkinson 1997). Targeted disruption of 

Rhox5 increases male germ cell apoptosis and reduces sperm production, sperm motility, 

and fertility (Maclean et al. 2005). In fact, Rhox5 is just one member of a recently 

expanded homeobox gene cluster known as the Rhox cluster on the mouse X 

chromosome (Maclean et al. 2005; MacLean et al. 2006; Morris et al. 2006; Wang and 

Zhang 2006). Several other members of the cluster are also expressed in reproductive 

tissues (Maclean et al. 2005) and evolve rapidly (Jackson et al. 2006; Wang and Zhang 

2006). Interestingly, each of the two cases involves a homeobox gene that is X-linked and 

testis-expressed. In my work, I identified rapid evolution in another two X-linked 

testis-expressed homeobox genes from primates, TGIFLX (Chapter 1) and ESX1 (Chapter 

2). Positive selection has been acting on both genes during primate evolution. The 

evolutionary patterns in light of the structure and function of these two genes are 

discussed. 

In the second half of this thesis (Chapter 3 & 4), I focus on human-specific gene 
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evolution by characterizing genetic variations within humans. In addition to amino acid 

replacements (like the cases presented in Chapter 1 & 2), gene expression modification, 

generation of new genes and loss of existing genes are also genetic mechanisms 

underlying human uniqueness. In particular, gene loss, or pseudogenization, leads to 

immediate loss of gene function, which probably affects organisms to a greater extent 

than most amino acid replacements do. A number of genes are known to have been lost in 

the human lineage since its divergence from the chimpanzee lineage (Chou et al. 1998; 

Szabo et al. 1999; Winter et al. 2001; Gilad et al. 2003; Hamann et al. 2003; Meyer-Olson 

et al. 2003; Stedman et al. 2004; Wang et al. 2004; Fischer et al. 2005; Go et al. 2005; 

Perry et al. 2005). Many of these genes are involved in chemoreception and immunity, 

such as the olfactory receptor (OR) genes (Gilad et al. 2003) and vomeronasal pheromone 

receptor genes (Zhang and Webb 2003; Grus et al. 2005). These cases of gene loss may 

reflect significant changes in the way humans interact with each other or with the 

environment, human diet, and human behavior during the past few million years. In 

Chapter 3, I present my finding of relaxation of selective constraint and loss of function 

in the evolution of human bitter taste receptor genes, which provide further evidence for 

reduced sensory capabilities of humans in comparison to many other mammals.  

Recently, Olson (1999) and Olson and Varki (2003) proposed the “less-is-more” 

hypothesis, suggesting that gene loss may serve as an engine of evolutionary change. This 

hypothesis is particularly intriguing for human evolution, as several human gene losses 

have been proposed to provide opportunities for adaptations and be responsible for 
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human-specific phenotypes. For example, the pseudogenization of the sarcomeric myosin 

gene MYH16 at the time of the emergence of the genus Homo is thought to be responsible 

for the marked size reduction in hominin masticatory muscles, which may have allowed 

the brain-size expansion (Stedman et al. 2004) (but also see Perry et al. 2005). In another 

example, the human-specific inactivation of the gene encoding the enzyme 

CMP-N-acetylneuraminic acid hydroxylase (CMAH) led to the deficiency of the 

mammalian common sialic acid Neu5Gc (N-glycolylneuraminic acid) on the human cell 

surface (Chou et al. 1998). This inactivation was due to an Alu-mediated sequence 

replacement (Hayakawa et al. 2001) that occurred ~2.7 million years ago (Chou et al. 

2002) and may have had several important consequences for human biology and 

evolution (Varki 2001). In Chapter 4, I present a case of adaptive gene loss in humans. I 

provide evidence that the nearly complete fixation of a null allele at CASPASE12 

(CASP12) has been driven by positive selection, probably because the allele confers 

lowered susceptibility to severe sepsis. This finding opens the door for understanding the 

roles of gene losses in human origins, and the demonstration that gene loss itself can be 

adaptive supports and extends the “less-is-more” hypothesis. 
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CHAPTER 1 
 

RAPID EVOLUTION OF MAMMALIAN X-LINKED TESTIS-EXPRESSED 
HOMEOBOX GENES 

 

1.1 ABSTRACT 

Homeobox genes encode transcription factors that function in various 

developmental processes and are usually evolutionarily conserved in their sequences. 

However, two X-chromosome-linked testis-expressed homeobox genes, one from rodents 

and the other from fruit flies, are known to evolve rapidly under positive Darwinian 

selection. Here we report yet another case, from primates. TGIFLX is an X-linked 

homeobox gene that originated by retroposition of the autosomal gene TGIF2, most likely 

in a common ancestor of rodents and primates. While TGIF2 is ubiquitously expressed, 

TGIFLX is exclusively expressed in adult testis. A comparison of the TGIFLX sequences 

among 16 anthropoid primates revealed a significantly higher rate of nonsynonymous 

nucleotide substitution (dN) than synonymous substitution (dS), strongly suggesting the 

action of positive selection. Although the high dN/dS ratio is most evident outside the 

homeobox, the homeobox has a dN/dS
 of 0.89 and includes two codons that are likely 

under selection. Furthermore, the rate of radical amino acid substitutions that alter amino 

acid charge is significantly greater than that of conservative substitutions, suggesting that 

the selection promotes diversity of the protein charge profile. More interestingly, an 

analysis of 64 orthologous homeobox genes from humans and mice shows substantially 

higher rates of amino acid substitution in X-linked testis-expressed genes than in other 
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genes. These results suggest a general pattern of rapid evolution of mammalian X-linked 

testis-expressed homeobox genes. Although the physiological function of and the exact 

selective agent on TGIFLX and other rapidly evolving homeobox genes are unclear, the 

common expression pattern of these transcription factor genes led us to conjecture that the 

selection is related to one or more aspects of male reproduction and may contribute to 

speciation. 

 

1.2 INTRODUCTION 

Homeobox genes are characterized by the presence of an 60-codon sequence 

motif known as the homeobox, which encodes a helix-turn-helix DNA-binding domain 

named the homeodomain (Gehring et al. 1994a). Initially identified from fruit flies 

(Mcginnis et al. 1984; Scott and Weiner 1984), homeobox-containing genes have now 

been found in fungi, plants, and animals and form a large gene superfamily (Kappen et al. 

1993; Bharathan et al. 1997; Kappen 2000; Banerjee-Basu and Baxevanis 2001). 

Homeobox genes function as transcription factors that regulate the expressions of their 

target genes in various developmental processes such as body-plan specification, pattern 

formation, and cell fate determination (Gehring et al. 1994a). Because of their 

fundamental importance in development, homeobox genes are of substantial interest to 

evolutionary biologists as they may provide key information on the evolution of 

development (Shepherd et al. 1984; Garciafernandez and Holland 1994; Zhang and Nei 

1996; Carroll et al. 2001). Earlier studies showed that homeobox genes, particularly the 

homeobox region, are conserved in evolution (Mcginnis et al. 1984; Gehring et al. 1994a), 

although two notable exceptions, Pem in rodents and OdsH in Drosophila, have been 

 10
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reported (Sutton and Wilkinson 1997; Ting et al. 1998). In both cases, high rates of amino 

acid substitution were found in the homeodomain and the action of positive selection was 

suggested. Interestingly, both genes are located on X chromosomes and are expressed in 

testis, although Pem is also expressed in female reproductive tissues. OdsH is in part 

responsible for the hybrid male sterility between Drosophila simulans and D. mauritiana 

(Ting et al. 1998). These intriguing findings suggest that homeobox genes may also be 

involved in developmental processes that vary among closely related species. Because 

such developmental variations may lead to reproductive isolation and speciation (Ting et 

al. 1998), it is of interest to identify new cases of rapidly evolving homeobox genes. Here 

we describe the identification of such a rapidly evolving homeobox gene, TGIFLX 

[TG-interacting factor (TGIF)-like X], from primates. TGIFLX is a member of TGIFs, a 

group of transcription factors of the three amino-acid loop extension (TALE) superclass 

of the homeodomain protein family (Bertolino et al. 1995; Blanco-Arias et al. 2002). 

Earlier evolutionary analyses suggested that the X-chromosome-linked TGIFLX gene 

originated by retroposition of the autosomal TGIF2 gene, a member of TGIFs 

(Blanco-Arias et al. 2002). In contrast to TGIF2, which is ubiquitously expressed, 

TGIFLX is specifically expressed in the germ cells of adult testis (Blanco-Arias et al. 

2002; Lai et al. 2002). In this report, we show that (1) the retroposition event predated the 

divergence of primates and rodents, (2) TGIFLX evolved rapidly in primates under 

positive selection, and (3) mammalian X-linked testis-expressed homeobox genes evolve 

rapidly in general. 

 

1.3 RESULTS 

 11



1.3.1 Retroposition predated the human-mouse separation 

To determine when the retroposition that generated TGIFLX occurred in evolution, 

we conducted a BLAST search in the GenBank for homologous sequences to TGIFLX 

and its mother gene TGIF2. We identified a homeobox gene Tex1 (also known as 

Tgifx1-pending) in the mouse that is mapped to a region of the X chromosome that is 

syntenic with human Xq21.3, where TGIFLX is located. Tex1 is also specifically 

expressed in the germ cells of mouse testis (Lai et al. 2002). These facts suggest that 

mouse Tex1 is orthologous to human TGIFLX. Furthermore, we obtained the gene 

sequences of human and mouse TGIF2 from GenBank and conducted a phylogenetic 

analysis of these sequences. The human and mouse TGIF sequences are used as 

outgroups. The gene tree shows high bootstrap support for the retroposition that gave 

birth to TGIFLX occurring in a common ancestor of primates and rodents (Figure 1.1).  

Although retroposition usually generates pseudogenes, a number of 

retroposition-mediated functional genes have been identified (Long 2001). TGIFLX is 

apparently a functional gene as its open reading frame has been maintained throughout 

mammalian evolution. Retroposition is a mutation-prone process due to a high error rate 

in retrotranscription. Also, newly duplicated genes often have elevated rates of evolution 

due to relaxation of functional constraints and/or positive selection (Zhang 2003). Thus, 

one may expect to see a burst of substitutions in the TGIFLX branch immediately 

following the retroposition. Interestingly, the phylogenetic tree (Figure 1.1) shows that 

TGIFLX evolves more rapidly than TGIF2 not only in this branch, but also throughout its 

evolutionary history. We found that the number of amino acid substitutions per site 

(Poisson distance) between the orthologous human and mouse TGIFLX genes is 0.814 ± 
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0.080, and the corresponding number for TGIF2 is 0.031 ± 0.013, their difference being 

statistically significant (P < 0.001). Of 1880 orthologous human and rodent genes 

analyzed by Makalowski and Boguski (1998), only 6 have substitution rates greater than 

that of TGIFLX, suggesting that it is evolving at an exceptionally high rate. To further 

characterize the substitution rate of TGIFLX, we conducted a detailed evolutionary study 

of this gene in primates.  

 

1.3.2 Positive selection on primate TGIFLX 

The TGIFLX coding sequences from five hominoids and four OW monkeys were 

reported by Blanco-Arias et al. (2002). We here determined the orthologous sequences in 

two additional OW monkeys and five NW monkeys. Thus, a total of 16 primate 

sequences are analyzed here. The alignment of these 16 protein sequences shows that they 

are highly variable (Figure 1.2). The nonhomeodomain regions show the highest 

variability, although 25 of the 63 amino acid positions in the homeodomain are also 

variable among the 16 primates. Hydrophobic amino acids are usually conserved in 

homeodomains; in the present case 22 of the 29 hydrophobic sites are completely 

conserved among the primate sequences, and the remaining 7 also involve only 

hydrophobic amino acid changes. In the third helix of the homeodomain, four amino 

acids (W51, F52, N54, and R56; positions in the homeodomain) are known to be 

conserved (Banerjee-Basu and Baxevanis 2001), which is also the case here. Position 53 

is usually occupied by a polar amino acid in homeodomains, but was found to have a 

small, nonpolar amino acid in a previous analysis of TALE homeodomains (Burglin 

1997). In our sequences, position 53 is variable with either polar or nonpolar amino acids. 
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To examine whether the high sequence variability is a result of positive selection, we 

computed the synonymous (dS) and nonsynonymous (dN) distances between each pair of 

the sequences. For the entire coding region, higher dN than dS is observed in 93 of 120 

pairwise comparisons (Figure 1.3A), suggesting the possible action of positive selection. 

This pattern is more apparent when only the nonhomeodomain regions are analyzed, as 

98 of the comparisons show dN > dS (Figure 1.3B). For the homeodomain, however, only 

39 of the comparisons show dN > dS (Figure 1.3C). These results indicate that the 

substitution rate and pattern may be different between amino acid positions inside and 

outside the homeodomain.  

To test the hypothesis of positive selection more rigorously, we used a 

phylogeny-based approach (Zhang and Nei 1997). The phylogentic relationships of the 16 

primates are assumed to follow the tree in Figure 1.4 . This phylogeny is relatively well 

established, especially for the major divisions (Goodman et al. 1998; Page and Goodman 

2001; Singer et al. 2003; Steiper and Ruvolo 2003), and use of alternative trees does not 

affect our main conclusion. On the basis of this tree, we inferred the ancestral TGIFLX 

gene sequences at all interior nodes of the tree and counted the numbers of synonymous 

(s) and nonsynonymous (n) substitutions on each tree branch (Figure 1.4). We found that 

the sums of n and s for all branches are 195.5 and 58.5, respectively, for the 

nonhomeodomain regions. The potential numbers of nonsynonymous (N) and 

synonymous (S) sites are 322 and 128, respectively. Thus n/s = 3.34 is significantly 

greater than N/S = 2.51 (P = 0.031, binomial test). The binomial test used here is more 

conservative than Fisher's exact test used in Zhang et al. (1997) and is more appropriate 

here because of multiple substitutions that may have occurred at individual sites (Zhang 
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and Rosenberg 2002). Fisher's exact test would have given a P value of 0.002 here. We 

also analyzed n/s in hominoids, OW monkeys, and NW monkeys separately, but did not 

find significant differences (Figure 1.4). The average number of synonymous 

substitutions per site is 0.155 between hominoids and New World monkeys and 0.0819 

between hominoids and Old World monkeys. These values are virtually identical to the 

corresponding numbers obtained from multiple intron and noncoding sequences of 

primate genomes (0.149 and 0.079, respectively; Li 1997, pp. 221–224), suggesting that 

the synonymous substitution rate in TGIFLX is normal. Thus, our results strongly suggest 

that positive selection is responsible for the rapid evolution at nonsynonymous sites of the 

nonhomeodomain regions.  

For the homeodomain, we found that n/s (2.42) is slightly lower than N/S (2.73) 

and that the null hypothesis of n/s = N/S cannot be rejected. This may suggest that the 

homeodomain is under no functional constraints. It may also suggest that some sites in the 

homeodomain are under positive selection while other sites are under purifying selection, 

giving an overall pattern of similar average substitution rates at synonymous and 

nonsynonymous sites (see below). When we examine the substitution patterns of 

hominoids, OW monkeys, and NW monkeys separately, we find that the n/s ratio is 

higher among hominoids and OW monkeys (23.5/4.5 = 5.22) than among NW monkeys 

(25/12 = 2.08; Figure 1.4). However, this difference is not significant (P = 0.132). The n/s 

ratio is not significantly different from N/S for hominoids and OW monkeys (P = 0.150). 

Statistical methods for identifying individual codons that are under positive 

selection have been developed in recent years (Suzuki and Gojobori 1999; Yang et al. 

2000). We first applied the likelihood method (Yang et al. 2000) to the TGIFLX data and 
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compared the likelihoods under models 7 and 8. Here model 7 assumes that the dN/dS 

ratio for individual sites follows a ß-distribution between 0 and 1, while model 8 adds an 

extra class of sites to model 7. We found that model 8 fits the data significantly better 

than model 7 ( 2 = 15.2, d.f. = 2, P < 0.001), with an additional class of sites of dN/dS
 = 

2.42. Four codons were identified to be under positive selection with posterior 

probabilities >90%, and they are marked on the sequences shown in Figure 1.2. Similar 

results were obtained when models 1 and 2 were compared (see Yang et al. 2000) for 

details of the model description). Because the likelihood method has been shown to 

generate false-positive results occasionally (Suzuki and Nei 2002), we examined the 

evidence for selection at the four codons by a more conservative parsimony-based 

method (Suzuki and Gojobori 1999). None of the four codons show significant results of 

positive selection when they are tested individually (P = 0.19–0.59). When they are tested 

together, however, significant evidence for positive selection is found (average dN/dS = 

5.10, P = 0.021), suggesting that one or more of the four codons are under positive 

selection. It is interesting to note that two of the four codons are located within the 

homeodomain while the other two are adjacent to the 3' end of the homeodomain, 

suggesting that the homeodomain may indeed be under positive selection (Figure 1.2). 

The two residues within the homeodomain are not among the completely conserved 

residues of all homeodomains, indicating that substitutions at these sites are unlikely to 

disrupt the basic structure and function of homeodomains. Furthermore, crystal structures 

of homeodomains show that the first of the two residues is involved in DNA-protein 

binding and that it contributes significantly to the functional specificity of homeodomains 

(Gehring et al. 1994b). The second of the two residues belongs to helix I of the 
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homeodomain, and it may also be involved in DNA-protein binding, although a more 

specific molecular function has yet to be defined.  

1.3.3 Selection promotes the diversity of charge profile 

To investigate what types of nonsynonymous substitutions are favored by selection, 

we counted the numbers of conservative and radical nonsynonymous substitutions on 

each branch of the tree in Figure 1.4. Conservative nonsynonymous substitutions are 

those that do not alter the charge of the encoded amino acids and radical substitutions are 

those that alter the charge of the amino acids. We found a total number of r = 91.5 radical 

substitutions and c = 104 conservative substitutions in the tree for the nonhomeodomain 

regions. The potential numbers of radical and conservative sites are R = 128 and C = 195, 

respectively. The radical substitution rate (r/R = 0.715) is significantly greater than the 

conservative substitution rate (c/C = 0.533) at P = 0.027 (binomial test). This is in sharp 

contrast to the situation in most mammalian genes where the radical substitution rate is 

below the conservative rate (Zhang 2000). This result suggests that selection may favor 

alterations of amino acid charge in TGIFLX evolution. We also tested the hypothesis that 

selection may favor an alternation of amino acid polarity, but obtained no supporting 

evidence. For the homeodomain, there is no evidence for selection promoting the 

diversity of either amino acid polarity or charge.  

In the above, we compared the number of radical substitutions per radical site (r/R) 

with the number of conservative substitutions per conservative site (c/C). This 

comparison provides information on differential selections at radical vs. conservative sites, 

as long as the four parameters (r, c, R, and C) are correctly estimated (Smith 2003). In 

contrast, comparisons between r and c can be misleading, because the potential numbers 

 17

http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#FIG4#FIG4


of radical (R) and conservative (C) sites in a gene sequence are usually different and they 

are affected by many factors unrelated to selection (Dagan et al. 2002).  

 

1.3.4 Rapid evolution of mammalian X-linked testis-expressed homeobox genes 

As mentioned, two other homeobox genes, Pem and OdsH, were reported to evolve 

rapidly (Sutton and Wilkinson 1997; Ting et al. 1998). The dN/dS ratio of Pem ranges 

from 0.65 to 1.56 for the homeodomain between Mus musculus and several related 

rodents (Sutton and Wilkinson 1997). We reanalyzed the OdsH homeodomain sequences 

from D. simulans and D. mauritiana (Ting et al. 1998) and obtained a dN/dS ratio of 1.55. 

Interestingly, TGIFLX, Pem, and OdsH are all located in X chromosomes and are all 

testis expressed. This observation prompted us to wonder whether it is a general pattern 

for X-linked testis-expressed homeobox genes to evolve rapidly. To test this hypothesis, 

we searched for orthologous homeobox genes from the human and mouse genome 

sequences. Our search was not exhaustive, but random. Of the 64 genes found, 4 are 

X-linked and testis expressed, 3 are X-linked and non-testis expressed, 13 are autosomal 

and testis expressed, and 44 are autosomal and non-testis expressed. Note that there 

appear to be only 7 X-linked homeobox genes, as a further exhaustive search did not find 

additional genes. Here "testis expression" simply means that the gene is expressed in 

testis, regardless of its expression in other tissues. We aligned the sequences and 

computed the amino acid p-distance for each orthologous pair. As shown in Table 1.1 and 

Figure 1.5A , when the entire protein is considered, autosomal homeobox genes 

(regardless of the expression pattern) and X-chromosomal non-testis-expressed 

homeobox genes have similar amino acid p-distances on average, which are an order of 

magnitude lower than those of X-linked testis-expressed homeobox genes, and their 

 18

http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#TBL1#TBL1
http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#FIG5#FIG5


difference is statistically significant (P < 0.0001, permutation test). The same pattern is 

observed when only the homeodomain or nonhomeodomain regions are considered 

(Table 1.1; Figure 1.5, B and C). These results suggest that it is a general pattern for 

mammalian X-linked testis-expressed homeobox genes to evolve rapidly. In addition to 

TGIFLX, the other X-linked testis-expressed homeobox genes are ESX1L, OTEX, and 

PEPP-2. While the mouse ortholog of human ESX1L is clearly defined by a phylogenetic 

analysis (data not shown) and chromosomal locations, the orthologs of human OTEX and 

PEPP-2 are not uniquely defined, probably because of independent gene duplications in 

rodents and primates after their separation (Wayne et al. 2002). From the mouse genome 

sequence, we identified a total of 15 homologs of the human OTEX and PEPP-2 genes 

and conducted a phylogenetic analysis of these genes. The phylogeny is not well resolved 

and has low bootstrap supports (not shown). To be conservative, we computed protein 

p-distances for the human OTEX with each of the 15 mouse genes and presented the 

smallest distance in Table 1.1. We also did the same for the human PEPP-2 gene. 

Considering possible nonindependent comparisons involved, we also repeated all the 

statistical tests when only one of the OTEX and PEPP-2 genes was used. We found that 

the statistical results remain unchanged. 

 

1.4 DISCUSSION 

In this report, we provide evidence that TGIFLX evolves rapidly under positive 

selection in primates and that the selection favors diversity in charge profile. Although 

positive selection acts mainly in the nonhomeodomain regions of the protein, it may also 

operate at a few sites in the homeodomain. The homeodomain is used in binding DNA 
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sequences in transcription regulation, while the nonhomeodomain regions in TGIFLX 

might be used in protein-protein interaction as in the case of TGIF and TGIF2 (Bertolino 

et al. 1995; Melhuish and Wotton 2000; Melhuish et al. 2001). Rapid evolution at these 

sites thus may alter the DNA- and protein-binding properties of TGIFLX. In mouse, the 

TGIFLX ortholog Tex1 is exclusively expressed in the germ cells at the spermatid stage 

(Lai et al. 2002) and apparently escapes the inactivation that most X-linked genes are 

supposed to experience in spermatogenesis (Lifschyt and Lindsley 1972). Although the 

physiological function of TGIFLX is unknown, the restricted temporal and spatial 

expression pattern suggests a role of this gene in spermatogenesis and the detected 

positive selection on TGIFLX may be related to spermatogenesis as well.  

Our analysis of homeobox genes of humans and mice revealed a general pattern of 

rapid evolution of X-linked, testis-expressed homeobox genes, although the number of 

such genes is relatively small. It is interesting to note that among autosomal homeobox 

genes, testis-expressed genes and non-testis-expressed genes show similar rates of amino 

acid substitution (Figure 1.5). Thus, testis expression alone does not explain high rates of 

protein evolution. Among non-testis-expressed homeobox genes, there is also no 

significant difference in substitution rate between autosomal genes and X-linked genes, 

suggesting that chromosomal location alone also does not explain the difference in amino 

acid substitution rate. We noted in collecting the expression pattern data that 3 of the 4 

X-linked testis-expressed genes (TGIFLX, OTEX, and PEPP-2), but only 1 (NKX3.1) of 

the 13 autosomal testis-expressed genes, have exclusive or highly selective expressions in 

testis. This difference suggests that the majority of the autosomal testis-expressed genes 

may be under greater functional constraints due to their multifaceted roles in many tissues 
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and developmental processes and thus evolve more slowly. Indeed, NKX3.1, which is 

expressed only in testis, has the highest substitution rate among the 13 autosomal 

testis-expressed genes (Table 1.1). On the contrary, most of the X-linked testis-expressed 

homeobox genes are expressed exclusively or highly in testis and may thus be specifically 

involved in male reproduction. Many authors showed that genes involved in male 

reproduction evolve rapidly under positive selection (e.g. Lee et al. 1995; Swanson and 

Vacquier 1995; Metz and Palumbi 1996; Tsaur and Wu 1997; Rooney and Zhang 1999; 

Wyckoff et al. 2000; Swanson and Vacquier 2002; Podlaha and Zhang 2003). In 

particular, Torgerson and Singh (2003) recently showed that mammalian X-linked sperm 

proteins evolve faster than autosomal ones. Our finding of rapid evolution of mammalian 

X-linked testis-expressed homeobox genes is thus consistent with these previous 

observations. 

Wang et al. (2001) reported that the mammalian X chromosome harbors 

disproportionately more spermatogonia-expressed genes than autosomes. Spermatogonia 

are the mitotic germ cells of the testis from which sperm arise by spermatogenesis. 

Spermatogonia-expressed genes are probably involved in male reproduction. In our 

random sample of 64 homeobox genes, 57% of the 7 X-linked genes and 23% of the 57 

autosomal genes are testis expressed. Thus, even for homeobox genes, the X chromosome 

appears to harbor a higher proportion of testis-expressed genes than autosomes (P = 

0.074). If only those genes that are exclusively (or highly selectively) expressed in testis 

are considered, the X chromosome harbors an even higher percentage of such genes (3/7 

= 43%) than autosomes (1/57 = 2%), and their difference is significant (P = 0.003). 

Sex-chromosome meiotic drive and/or sexual antagonism have been invoked as possible 
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explanations for a higher proportion of X-linked genes to function in male reproduction, 

and these hypotheses have been discussed extensively in Wang et al. (2001).  

It has also been proposed that X-linked genes evolve more rapidly than autosomal 

genes (Charlesworth et al. 1987). This is particularly so when the X-linked genes are 

expressed only in males, because all newly arising advantageous alleles, dominant or 

recessive, are exposed to positive Darwinian selection. In contrast, recessive 

advantageous alleles at autosomal loci are effectively neutral when the allele frequencies 

are very low. This might explain the effectiveness of positive selection on X-linked 

testis-expressed genes.  

The X chromosome has been shown to be of special importance in hybrid sterility 

between closely related species (reviewed in Coyne 1992). The importance of homeobox 

genes in hybrid sterility, however, is not well recognized, probably because most 

homeobox genes are evolutionarily conserved. It was thus a surprise to identify the 

rapidly evolving OdsH, an X-linked testis-expressed homeobox gene that is in part 

responsible for the hybrid male sterility between D. simulans and D. mauritiana (Ting et 

al. 1998). This study showed that it is a general pattern for mammalian X-linked 

testis-expressed homeobox genes to evolve rapidly. This suggests the intriguing 

possibility that it is a rule rather than an exception that homeobox genes such as OdsH 

play important roles in reproductive isolation. In the future, it will be of great interest to 

work out the developmental pathways in which these homeobox genes function and the 

biological significance of their rapid pace of evolution. 

 

1.5 MATERIALS AND METHODS 

 22

http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#BIB45#BIB45
http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#BIB45#BIB45
http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#BIB45#BIB45
http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#BIB45#BIB45
http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#BIB45#BIB45
http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#BIB45#BIB45
http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#BIB45#BIB45
http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#BIB45#BIB45
http://www.genetics.org/cgi/content/full/167/2/879?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&author1=wang%2Cx&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT#BIB45#BIB45


1.5.1 DNA amplification and sequencing 

The TGIFLX coding region does not contain introns. The coding region was 

amplified from genomic DNAs of two Old World (OW) monkeys (green monkey 

Cercopithecus aethiops and douc langur Pygathrix nemaeus) and five New World (NW) 

monkeys (marmoset Callithrix jacchus, tamarin Saguinus oedipus, owl monkey Aotus 

trivirgatus, squirrel monkey Saimiri sciureus, and woolly monkey Lagothrix lagotricha), 

using polymerase chain reaction (PCR). For green monkey and douc langur, primers 2XL 

(5'-TTTGAATATGGAGGCCGCTG) and 2XR (5'-CATCATCAATCATGGATTAG) were 

used; for tamarin, woolly monkey, and marmoset, primers 2XL and XIA1 

(5'-GGATTAGACTCTTGCTTCTTCT) were used; for owl monkey and squirrel monkey, 

primers X2 (5'-ATATGGAGGCCGCTGCAgAAGAC) and X3 

(5'-GGCTCTTGCTTCTTCTCTAGC) were used. PCRs were performed with MasterTaq 

under conditions recommended by the manufacturer (Eppendorf, Hamburg, Germany). 

The products were then purified and sequenced from both directions, using the dideoxy 

chain termination method with an automated sequencer. 

 

1.5.2 Analysis of TGIFLX gene sequences 

The DNA sequences of the TGIFLX coding region from five hominoids (humans 

and apes) and four OW monkeys (Blanco-Arias et al. 2002) were obtained from GenBank. 

The accession numbers are: human (Homo sapiens), AJ427749; chimpanzee (Pan 

troglodytes), AJ345073; gorilla (Gorilla gorilla), AJ345074; orangutan (Pongo 

pygmaeus), AJ345075; gibbon (Hylobates lar), AJ345076; talapoin (Miopithecus 

talapoin), AJ345077; rhesus monkey (Macaca mulatta), AJ345078; crab-eating macaque 
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(M. fascicularis), AJ345079; and baboon (Papio hamadryas), AJ345080. These publicly 

available sequences are analyzed together with those determined in this study. Seven 

amino acids at the N terminus and 10 amino acids at the C terminus of the sequences are 

encoded by the primer sequences and were not included in data analysis. A total of 16 

TGIFLX protein sequences were aligned using the software DAMBE (Xia and Xie 2001) 

followed by manual adjustments. The DNA sequence alignment was then made following 

the protein alignment. The MEGA2 program (Kumar et al. 2001) was used for 

phylogenetic analysis. The number of synonymous nucleotide substitutions per 

synonymous site (dS) and that of nonsynonymous substitutions per nonsynonymous site 

(dN) were computed using the modified Nei-Gojobori method (Nei and Gojobori 1986; 

Zhang et al. 1998), with an estimated transition/transversion ratio of 1.6. On the basis of 

the phylogeny of the 16 primates, we inferred ancestral TGIFLX sequences at all interior 

nodes of this tree, using the distance-based Bayesian method (Zhang and Nei 1997). The 

numbers of synonymous (s) and nonsynonymous (n) substitutions on each branch of the 

tree were then counted. Radical and conservative nonsynonymous substitutions with 

regard to amino acid charge and polarity were computed following Zhang (2000). 

Positive selection at individual codons was tested using the likelihood-based (Yang et al. 

2000) and parsimony-based (Suzuki and Gojobori 1999) methods. 

 

1.5.3 Analysis of other homeobox genes of human and mouse 

We searched for homeobox genes from the human genome resources 

(http://www.ncbi.nlm.nih.gov/genome/guide/human/) and then found their mouse 

orthologs using the UniGene tool 
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(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene). We downloaded the human 

and mouse protein sequences, aligned them using DAMBE, and computed protein 

p-distances (proportional differences; Nei and Kumar 2000) between human and mouse 

orthologs. The information on gene location and expression pattern was found using 

human genome resources and the LocusLink tool 

(http://www.ncbi.nlm.nih.gov/LocusLink/).  
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Figure 1.1 Phylogenetic tree of TGIFLX, TGIF2, and TGIF genes. The tree is 
reconstructed with the neighbor-joining method with the protein Poisson distances. 
Bootstrap percentages from 1000 replications are shown on tree branches. Branch lengths 
show the numbers of amino acid substitutions per site. TGIF genes are used as outgroups. 
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Figure 1.2 Alignment of TGIFLX sequences of 16 primates. A dot indicates identity to the human sequence and a dash indicates a 
gap. The first 7 and last 10 amino acid positions are primer encoded in various sequences and are not used in subsequent sequence 
analysis. The four positively selected sites with posterior probabilities >90% (see text) are in boldface type. 
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Figure 1.3 Pairwise comparisons of dS and dN among 16 primate TGIFLX sequences for 
(A) the entire sequence, (B) nonhomeodomain regions, and (C) the homeodomain. 
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Figure 1.4 Numbers of synonymous (s) and nonsynonymous (n) substitutions in the 
evolution of primate TGIFLX genes. Shown above each branch is n/s for the 
nonhomeodomain regions and below each branch is n/s for the homeodomain. N and S 
are the potential numbers of nonsynonymous and synonymous sites, respectively (see 
text). 
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Figure 1.5 Distribution of the evolutionary rate of 64 mammalian homeobox genes. 
The evolutionary rate is measured by protein p-distance between the human and mouse 
orthologous genes for (A) the entire sequence, (B) the homeodomain, and (C) 
nonhomeodomain regions. Solid bars, X-linked testis-expressed genes; shaded bars, 
X-linked non-testis expressed; hatched bars, autosomal testis expressed; open bars, 
autosomal non-testis expressed. 
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Table 1.1 Protein p-distances between orthologous human and mouse homeobox 
genes. 
 
 
 

    Protein p-distance  

Gene name          Protein length 
(amino acids) Entire protein homeodomain Non-homeodomain 

region 
X-linked, testis expressed 
TGIFLX   

222 
 

0.550 
 

0.456 
 

0.582 
ESX1L  310 0.565 0.333 0.620 
OTEX   176 0.625 0.544 0.664 
PEPP-2  208 0.606 0.526 0.636 
Mean±s.e.m   0.587±0.018 0.465±0.048 0.626±0.017 

   
X-linked, non-testis expressed     
ARX  560 0.036 0.000 0.040 
CDX4  282 0.167 0.017 0.207 
POU3F4  361 0.011 0.000 0.013 
Mean±s.e.m   0.071±0.048 0.006±0.006 0.087±0.061 

   
Autosomal, testis expressed     
IRX2  471 0.104 0.000 0.119 
LHX2  389 0.010 0.000 0.012 
LHX9  321 0.006 0.000 0.007 
NKX3.1  230 0.322 0.000 0.435 
NKX6-2  277 0.029 0.000 0.036 
PBX2  430 0.021 0.000 0.024 
PKNOX2  305 0.011 0.000 0.012 
TIX1 a  949 0.144 0.037 0.175 
ZHX3 a 522 0.123 0.030 0.154 
SIX1  273 0.015 0.000 0.019 
TGIF  272 0.103 0.000 0.134 
TGIF2  237 0.063 0.000 0.084 
ZFHX1B  1214 0.034 0.017 0.035 
Mean±s.e.m   0.076±0.024 0.006±0.004 0.096±0.033 

   
Autosomal, non-testis expressed     
ALX3  343 0.085 0.000 0.102 
ALX4  397 0.111 0.000 0.129 
BAPX1  333 0.153 0.000 0.187 
BARX2  254 0.130 0.000 0.162 
CRX  299 0.033 0.000 0.042 
DLX4  168 0.274 0.017 0.417 
GHS-2  303 0.092 0.000 0.114 
HHEX  303 0.070 0.018 0.085 
IPF1  283 0.120 0.000 0.150 
IRX3  501 0.102 0.000 0.116 
IRX4  512 0.158 0.000 0.180 
IRX5  417 0.113 0.000 0.132 
IRX6  438 0.233 0.048 0.263 
LHX1  406 0.005 0.000 0.006 
LHX3  398 0.101 0.000 0.117 
LHX4  367 0.008 0.000 0.010 
LHX5  402 0.012 0.000 0.014 
LHX6  340 0.168 0.000 0.201 
LMX1A  382 0.029 0.000 0.034 
LMX1B  372 0.003 0.000 0.003 
OTX1  354 0.025 0.000 0.030 
PHOX2A  280 0.021 0.000 0.027 
PHOX2B  314 0.000 0.000 0.000 
PITX1  314 0.035 0.000 0.043 
PITX2  317 0.013 0.000 0.015 
PITX3  302 0.017 0.000 0.020 
PKNOX1  314 0.039 0.000 0.045 
PROP1  223 0.265 0.070 0.331 
PROX1  736 0.023 0.000 0.025 
PRX2  246 0.077 0.000 0.102 
RAX  342 0.140 0.000 0.170 
SHOX2  330 0.015 0.000 0.019 
SIX2  436 0.014 0.023 0.012 
SIX3  332 0.024 0.000 0.029 
SIX4  753 0.089 0.000 0.103 
SIX5  657 0.139 0.000 0.150 
SIX6  246 0.024 0.017 0.027 
TLX1  330 0.027 0.000 0.033 
TLX2  284 0.070 0.000 0.088 
TLX3  291 0.010 0.000 0.013 
VAX1  279 0.029 0.000 0.036 
VAX2  290 0.121 0.000 0.150 
VSX1  354 0.229 0.040 0.260 
ZFH4  3525 0.082 0.009 0.087 
Mean±s.e.m   0.080±0.011 0.006±0.002 0.097±0.014 

  

         a The mouse sequence is not available. Instead, the rat sequence is analyzed here. 
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CHAPTER 2 
 

RAPID EVOLUTION OF PRIMATE ESX1, AN X-LINEKD PLACENTA- AND 
TESTIS-EXPRESSED HOMEOBOX GENE 

 

2.1 ABSTRACT 

Homeobox genes encode transcription factors that play important roles in various 

developmental processes and are usually evolutionarily conserved. Here we report a case 

of rapid evolution of a homeobox gene in humans and non-human primates. ESX1 is an 

X-linked homeobox gene primarily expressed in the placenta and testis, with 

physiological functions in placenta/fetus development and spermatogenesis. ESX1 is 

paternally imprinted in mice, but is not imprinted in humans. We provide evidence for a 

significantly higher nonsynonymous substitution rate than synonymous rate in ESX1 

between humans and chimps as well as among a total of 15 primate species. Population 

genetic data also show signals of recent selective sweeps within humans. Positive 

selection appears to be concentrated in the C-terminal non-homeodomain region, which 

has been implicated in regulating human male germ cell division by prohibiting the 

degradation of cyclins. By contrast, mouse Esx1 has a substantively different C-terminal 

region subject to strong purifying selection. These and other results suggest that even the 

fundamental process of spermatogenesis has been targeted by positive selection in 

primate and human evolution and that mouse may not be a suitable model for studying 

human reproduction. 
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2.2 INTRODUCTION 

Homeobox genes are characterized by the presence of a sequence motif known as 

the homeobox, which encodes the ~60-amino-acid homeodomain, a helix-turn-helix 

DNA binding domain (Gehring et al. 1994). In humans, there are about 230 homeobox 

genes (Nam and Nei 2005), encoding a large family of transcription factors that play key 

roles in various developmental processes such as body-plan specification, pattern 

formation, and cell-fate determination (Gehring et al. 1994). Due to their functional 

importance, most homeodomain proteins are evolutionarily highly conserved in sequence 

(McGinnis et al. 1984; Gehring et al. 1994; Zhang and Nei 1996). Hence, the 

identification of non-conserved homeobox genes would be particularly interesting, 

because such homeobox genes may regulate important developmental processes that vary 

among relatively closely related species. Three such rapidly-evolving homeobox genes 

are known, from fruit flies (OdsH), rodents (Rhox5), and primates (TGIFLX), 

respectively. OdsH is an X-linked gene involved in spermatogenesis and it is partly 

responsible for the hybrid male sterility between Drosophila simulans and D. mauritiana 

(Ting et al. 1998). Mouse Rhox5 (also known as Pem) is expressed in both male and 

female reproductive tissues (Sutton and Wilkinson 1997). Targeted disruption of Rhox5 

increases male germ cell apoptosis and reduces sperm production, sperm motility, and 

fertility (Maclean et al. 2005). In fact, Rhox5 is just one member of a recently expanded 

homeobox gene cluster known as the Rhox cluster on the mouse X chromosome 

(Maclean et al. 2005; MacLean et al. 2006; Morris et al. 2006; Wang and Zhang 2006). 

Several other members of the cluster are also expressed in reproductive tissues (Maclean 

et al. 2005) and evolve rapidly (Jackson et al. 2006; Wang and Zhang 2006). TGIFLX is a 
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retroduplicate formed in the common ancestor of primates and rodents by retroposition of 

the autosomal gene TGIF2 to the X chromosome, and is specifically expressed in the 

germ cells of adult testis (Wang and Zhang 2004). Interestingly, each of the three cases 

involves a homeobox gene that is X-linked and testis-expressed. Here we report yet 

another case of rapid evolution of an X-linked testis-expressed homeobox gene, ESX1. 

Human ESX1, also known as ESX1L and ESXR1, is a paired-like homeobox gene 

located on Xq22.1 (Fohn and Behringer 2001). ESX1 protein contains two functional 

domains, the homeodomain and the proline-rich domain (Figure 2.1A) (Fohn and 

Behringer 2001). Esx1, the mouse ortholog, has an extra domain known as the PN/PF 

motif, located at the C-terminus (Figure 2.1B) (Yan et al. 2000). In humans, ESX1 is 

specifically expressed in placenta from 5 weeks of gestation until term (Figueiredo et al. 

2004) and in adult testis (Fohn and Behringer 2001). A recent study shows decreased 

ESX1 expression in human pre-term idiopathic fetal growth restriction, a clinically 

significant pregnancy disorder in which the fetus fails to achieve its full growth potential 

in utero (Murthi et al. 2006). In mice, Esx1 is also expressed in placenta and testis 

(Branford et al. 1997; Li et al. 1997). More specifically, during embryogenesis, it is 

expressed in the extraembryonic tissues, including the endoderm of the visceral yolk sac, 

the ectoderm of the chorion, and subsequently the labyrinthine trophoblast of the 

chorioallantoic placenta (Li et al. 1997). In adults, Esx1 is expressed in male germ cells 

only, particularly the spermatogonia/preleptotene spermatocytes and round spermatids of 

spermatogenic stages IV-VII (Branford et al. 1997; Li et al. 1997). These restricted 

temporal and spatial expression patterns suggest that ESX1/Esx1 is involved in placental 

development and spermatogenesis. Mouse Esx1 is paternally imprinted in the placenta, 
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with only the maternally derived allele expressed (Li and Behringer 1998). Heterozygous 

female mice inheriting a null Esx1 allele from their mother are born 20% smaller than 

normal, suggesting that Esx1 is required for placental development and fetal growth in 

mice (Li and Behringer 1998). By contrast, biparental expression of ESX1 is found in 

human placenta (Grati et al. 2004).  

Our preliminary comparison between human ESX1 and mouse Esx1 proteins 

showed an unexpectedly high level of sequence divergence (34%), suggesting that the 

gene might be evolving rapidly in primates and/or rodents as a result of positive 

Darwinian selection (Wang and Zhang 2004). Below we first describe the evolutionary 

pattern of ESX1 in primates and then compare it to the evolutionary pattern in rodents. 

We show that positive selection has acted on ESX1 within humans, between humans and 

chimpanzees, and among a large array of primate species, whereas purifying selection has 

dominated Esx1 evolution in rodents. We discuss these evolutionary patterns in light of 

the structure and function of the gene. 

 

2.3 RESULTS  

2.3.1 Comparison of ESX1 sequences between humans and chimps and within 

humans  

We obtained the ESX1 gene sequence from the chimpanzee genome sequence 

(http://genome.wustl.edu/) and compared it with the human ESX1 sequence available in 

GenBank (AY114148). The alignment shows a high level of sequence divergence. Of the 

aligned 406 amino acid sites, there are 25 amino acid replacements, in addition to two 

gaps totaling 12 amino acids (Figure 2.2). A comparison of synonymous (dS) and 
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nonsynonymous (dN) nucleotide distances between gene sequences can inform us about 

the nature and strength of selection acting on a gene. A higher dN than dS indicates 

positive selection, whereas a lower dN than dS indicates negative or purifying selection. 

The vast majority of genes in the human genome are under negative selection, with a 

genomic average dN/dS ratio of 0.26 (Bakewell et al. 2007). In ESX1, however, dN (0.031) 

is significantly greater than dS (0.009) (P = 0.028; Fisher’s exact test (Zhang et al. 1997)). 

Because the dS value of ESX1 is not significantly different from the genomic average dS 

of 0.012 (Consortium 2005), the above observation strongly suggests that positive 

selection has promoted nonsynonymous substitutions in ESX1 during the divergence 

between humans and chimps. 

To identify the regions where positive selection has been operating, we divided the 

ESX1 protein sequence into three segments, the N-terminus, homeodomain, and 

C-terminus (Figure 2.2). The homeodomain is completely identical in amino acid 

sequence between human and chimp and thus has not been targeted by positive selection 

(dN = 0, dS = 0.019, P = 0.29; Fisher’s exact test). In the N-terminus, dN (0.024) and dS (0) 

are not significantly different (P = 0.1) and hence neutrality cannot be rejected. In the 

C-terminus, however, dN (0.047) is significantly greater than dS (0.012) (P = 0.035). Thus, 

positive selection has been concentrated in the C-terminus. As aforementioned, the 

C-terminus is mainly composed of proline-rich repeats. The two alignment gaps between 

human and chimp also occur in the C-terminus (Figure 2.2). Compared to the human 

sequence, the chimp sequence lost a complete nine-amino-acid repeat and part of another 

repeat. 
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To further examine whether the positive selection might have happened in the 

recent history of human evolution, we sequenced exon 4 of ESX1 in 32 unrelated male 

humans of diverse geographic origins (4 Pygmy Africans, 6 African Americans, 12 

Caucasians, 3 Southeast Asians, 2 Chinese, 2 Pacific Islanders, and 3 Andes Indians). 

Exon 4 encodes 14 amino acids of the homeodomain, corresponding roughly to the third 

helix of the homeodomain, and the complete C-terminus of ESX1, the likely target of 

positive selection (Figures 2.1 and 2.2). From the 32 alleles, we observed 4 

insertion/deletion (indel) polymorphisms and 9 single nucleotide polymorphisms (SNPs). 

All of these polymorphisms occur in the C-terminus (non-homeodomain) region and 

none of them disrupt the open reading frame (Figure 2.2). Table 2.1 lists the 

polymorphisms and their associated allele frequencies. The polymorphic data allow us to 

compute the level of DNA polymorphism in exon 4. Nucleotide diversity per sequence (π) 

is 0.897 and Watterson’s polymorphism per sequence (θ) is 1.27. A comparison between 

expected and observed distributions of allelic frequencies can tell us whether a genomic 

region is likely to have been subject to recent selective sweeps, which render π lower than 

θ and high-frequency alleles enriched, generating negative values of Tajima’s D (Tajima 

1989) and Fay and Wu’s H (Fay and Wu 2000). Combining the information from D and 

H, Zeng and colleagues recently invented a new test known as the DH test of positive 

selection (Zeng et al. 2006). This test is superior to the individual D and H tests because 

it is more powerful and is insensitive to common confounding factors such as background 

selection, population growth, and population subdivision (Zeng et al. 2006). We found 

that the DH test rejects the neutral hypothesis for the exon 4 sequences of 32 humans 

(P<0.039). For samples with African, Caucasian, and Asian origins, the tail probability of 
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the DH test is 0.067, 0.31, and 0.26, respectively. Thus, selective sweeps might have 

occurred among Africans. Consistent with this result, the H test also yields a significant 

result for the African samples (P=0.044), and this P value is lower than 128 of the 132 

genes that were recently surveyed in Africans (Akey et al. 2004). In other words, ESX1 is 

among the bottom 3% of human genes for H value in Africans. These results support the 

hypothesis of recent selective sweeps at human ESX1 or linked genomic regions. We also 

sequenced exons 1, 2, and 3 of ESX1 in 8 male humans with diverse geographic origins 

(1 Pygmy African, 3 African Americans, 1 Caucasian, 2 Chinese, and 1 Pacific Islander), 

but observed no polymorphisms.  

 

2.3.2 Positive selection at the C-terminus of ESX1 in many primates 

To examine whether ESX1 has also been under positive selection in other primates, 

we obtained the rhesus monkey ESX1 gene sequence by searching its recently completed 

draft genome sequence (http://www.ncbi.nlm.nih.gov/). We then sequenced exon 4 of 

ESX1 in 12 additional primate species, including three hominoids, four Old World 

monkeys, and five New World monkeys (see Materials and Methods). Together with the 

three known sequences from human, chimp, and rhesus, a total of 15 primate sequences 

of exon 4 were conceptually translated and aligned by Clustal W with manual adjustment. 

DNA sequences were subsequently aligned by following the protein alignment (Figure 

2.3A). A gene tree of the 15 sequences was reconstructed using the neighbor-joining 

method (Saitou and Nei 1987). The tree topology is consistent with the known species 

tree, suggesting that the sequences analyzed are orthologous to each other. We found that 

the length of exon 4 is highly variable among species. The shortest proline-rich repeat 
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region is found in marmoset and tamarin, while the longest is observed in orangutan. The 

nine-amino-acid repeat unit has variable sequences among the primate species, although 

proline is always the most frequent amino acid.  

To examine the potential action of positive selection in exon 4 of primate ESX1, we 

computed pairwise dN and dS among the 15 sequences. Excluding alignment gaps, we 

analyzed a total of 312 nucleotide sites. Higher dN than dS is observed in 79 (75.2%) of 

105 pairwise comparisons (Figure 2.4A). There is no apparent difference in this pattern 

among hominoids, Old World monkeys, and New World monkeys. When only the 

(non-homeodomain) C-terminus is analyzed, 86 (81.9%) comparisons showed dN > dS 

(Figure 2.4B). In our dataset, the average dS is 0.12 between hominoids and Old World 

monkeys, 0.18 between hominoids and New World monkeys, and 0.16 between Old World 

monkeys and New World monkeys. All three numbers are greater than the corresponding 

values (0.08, 0.12 and 0.15, respectively) previously estimated from multiple different 

intron and noncoding sequences of the same species pairs (Li 1997). Thus, the 

synonymous substitution rate of ESX1 is not reduced and the overall higher dN over dS 

suggests positive selection.  

Due to the occurrence of many indels in the proline-rich region of primate ESX1, 

the sequence alignment may not be reliable. Because closely related species are more 

likely to share the same repeat sequence, which facilitates alignment, we made separate 

alignments for hominoids, Old World monkeys, and New World monkeys, respectively 

(Figure 2.5). The dN and dS values were then computed for species pairs within each of 

the three groups. It happened that each of the three groups has 5 species. Of the 30 
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pairwise comparisons, 23 (76.7%) show dN > dS. This finding is similar to the above 

result when all 15 sequences are aligned and analyzed together.  

To test positive selection in primate ESX1 more rigorously, we conducted a 

phylogeny-based analysis (22). We inferred the ancestral sequences for the C-terminus at 

all interior nodes of the primate tree (Figure 2.6) using PAML (Yang 1997) and then 

counted the numbers of nonsynonymous and synonymous substitutions on each tree 

branch. We found that the ratio of the total number of nonsynonymous substitutions and 

that of synonymous substitutions over all branches of the tree equals n/s = 139/38 = 3.66, 

significantly greater than the expected value of N/S=177/93=1.90 (P=0.002, Fisher’s 

exact test). Here N and S are the numbers of nonsynonymous and synonymous sites, 

respectively, in the C-terminus.  

We also conducted a likelihood-based analysis to detect positive selection on 

individual codons within the C-terminus using PAML. We compared the null model M8a 

with the alternative model M8. M8a, introduced by Swanson et al. (Swanson et al. 2003), 

assumes that the dN/dS ratio of individual codons follows a beta distribution between 0 

and 1, with an extra class of codons with fixed dN/dS of 1. M8 is identical to M8a except 

for the presence of an additional class of codons with any dN/dS. M8 is found to fit the 

data significantly better than M8a (χ2 = 49.63, df = 2, P < 10-10). M8 suggests that ~66% 

of codons in the C-terminus have been subject to positive selection with dN/dS = 4.04. 

Analysis using another pair of models, M1a and M2a, also supports a large proportion of 

codons under positive selection (χ2 = 49.77, df = 2, P < 10-10). Taken together, various 

analyses provide strong evidence that positive selection has acted in the C-terminus of 

primate ESX1 to promote amino acid substitutions. We note that although sequence 
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alignment is not easy for ESX1, alignment errors cannot render dN significantly greater 

than dS, because even when the alignment is completely random, dN is expected to be 

equal to dS. 

 

2.3.3 Purifying selection on rodent Esx1 

To test whether positive selection on ESX1 extends to non-primate mammals, we 

turn to rodents. We first obtained the Esx1 gene sequence of Mus musculus from 

GenBank and determined the sequence of exons 2 and 4 of Esx1 from M. spretus. Coding 

for only two and 15 amino acids, respectively, exons 1 and 3 are not studied here. Esx1 

possesses a unique PF/PN motif at its C-terminus, consisting of PF 

(proline-phenylalanine) tandem repeats followed by PN (proline-asparagine) tandem 

repeats (Figure 2.1B). An earlier study found that the PF/PN motif can inhibit both 

nuclear localization and DNA binding activity of the Esx1 protein (Yan et al. 2000). A 

comparison of exons 2 and 4 sequences of M. musculus and M. spretus shows strong 

purifying selection on Esx1, as dN (0.006) is significantly lower than dS (0.032) (P = 0.01, 

Fisher’s exact test). Exon 4 was also sequenced in M. cervicolor and M. cookii (Figure 

2.3B). Significantly lower dN than dS is observed in all pairwise comparisons among the 

four Mus species with the exception of the comparison between M. cervicolor and M. 

cookii, probably owing to the small number of substitutions involved (Figure 2.4C). 

Sequence length variation is observed in the PN/PF motif but not in the proline-rich 

region. Overall, our results suggest that Esx1 has been subject to purifying selection in 

the Mus genus of rodents. 
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2.4 DISCUSSION 

In this work, we provide evidence for positive selection acting in the C-terminus 

region of the homeodomain-containing protein ESX1 during primate evolution as well as 

in human populations. In adult humans, ESX1 is primarily expressed in testis. A previous 

study showed that ESX1 is proteolytically processed into a 45-kDa N-terminal fragment 

(including the homeodomain) and a 20-kDa C-terminal fragment. The C-terminal 

fragment is found in cytoplasm and can inhibit the degradation of cyclin A and B1, 

causing cell-cycle arrest in human cells (Ozawa et al. 2004). Cyclins are a family of 

proteins controlling transitions through different phases of the cell cycle. Thus, it has 

been proposed that the C-terminal fragment of ESX1 plays a role in spermatogenesis, 

functioning as a checkpoint in male germ cell division (Ozawa et al. 2004). In contrast, 

the N-terminal fragment, including the homeodomain, functions as a transcriptional 

repressor in nucleus (Ozawa et al. 2004; Yanagihara et al. 2005). Our observations of 

conserved sequences in the N-terminal fragment but rapid sequence changes in the 

C-terminal fragment are explainable by the distinct functions of the two regions. The 

finding of positive selection in the C-terminus of primate ESX1 suggests that even in the 

recent past of human and primate evolution, spermatogenesis has been subject to adaptive 

modifications (Wyckoff et al. 2000). Because different species reach sexual maturity at 

different ages, the optimal time of germ cell division may also vary among species. The 

observed positive selection on ESX1 may reflect such adaptations in individual species. 

In general, our finding is consistent with many reports of rapid evolution of proteins 

involved in animal male reproduction (Swanson and Vacquier 2002). Furthermore, 

mammalian sperm proteins on the X chromosome have been found to evolve faster than 
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those on autosomes (Torgerson and Singh 2003). Thus, the rapid evolution of ESX1 is 

likely related to its role in spermatogenesis as well as its location in the X chromosome.  

Interestingly, male mice with null Esx1 are fertile, indicating that Esx1 is not 

essential for spermatogenesis in mice (Li and Behringer 1998). The observation of 

purifying selection acting on the C-terminal region of Esx1 in mice may be explained by 

the fact that the gene function has changed between primates and rodents. It is likely that 

Esx1 is more important for placenta development rather than spermatogenesis in mice (Li 

and Behringer 1998). Biochemical studies also showed that the nuclear localization of 

mouse Esx1 is regulated by the presence of the PF/PN motif (Yan et al. 2000), which is 

lacking in primate ESX1, further suggesting functional differences between primate 

ESX1 and rodent Esx1. To examine the C-terminal sequence of ESX1 in other mammals, 

we TBLASTN-searched the GenBank with human ESX1 and mouse Esx1 as queries. We 

found putative orthologous Esx1 genes in rat, dog, and cow. In horse, only a partial 

sequence was identified by WISE2 (http://www.ebi.ac.uk/Wise2/). We did not find Esx1 

orthologs in opossum and chicken genome sequences. The estimated dN/dS ratio between 

mouse and rat in the C-terminal region of Esx1 is significantly lower than 1 (P<0.01), 

consistent with our findings in the Mus genus. Rat Esx1 has a similar domain structure as 

mouse Esx1, with the exception that all of the PF repeats are replaced by PN repeats in 

the PF/PN motif. By contrast, the C-terminus of cow and horse Esx1 proteins is similar to 

that of primates, with the proline-rich region but not the PF/PN motif. The putative Esx1 

in dog has neither the proline-rich region nor the PF/PN motif at its C-terminus. It seems 

likely that the PF/PN motif was acquired by Esx1 in rodent evolution.  
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The different evolutionary patterns of primate ESX1 and rodent Esx1 suggest that 

the utility of the mouse model for studying human reproduction may be limited. Previous 

studies also reported several other reproduction-related genes that show substantive 

human-mouse differences. For example, SED1, a protein involved in sperm-egg binding 

in mice, has lost an important protein-protein binding domain in ancestral primates, 

which was accompanied by rapid sequence changes in another domain by positive 

selection (Podlaha et al. 2006). In another example, three human X-linked homeobox 

genes, PEPP1, PEPP2, and PEPP3, correspond to a cluster to 30 Rhox genes in mouse, 

due to dramatic expansions of the gene cluster in rodent evolution (Wang and Zhang 

2006). The mouse Rhox genes are expressed in male and female reproductive tissues and 

at least one of them (Rhox5) is involved in male reproduction, evident from reduced 

fertilities of Rhox5-knockout mice (Maclean et al. 2005).  

Esx1 is paternally imprinted in mouse placenta and is functionally important to 

placenta morphogenesis and fetal growth (Li et al. 1997; Li and Behringer 1998). In 

contrast, ESX1 is not imprinted in human placenta (Grati et al. 2004). Imprinting is an 

important regulatory pathway involved in the development and function of the placenta in 

eutherian mammals. The imprinting of Esx1 is consistent with the general phenomenon in 

mice that the paternally derived X chromosome is preferentially inactivated in placental 

tissues of female embryos (West et al. 1977; Wagschal and Feil 2006). Recently, Monk 

and colleagues reported that several human orthologs of mouse placenta-imprinted genes 

are un-imprinted (Monk et al. 2006). In addition, an earlier investigation revealed a 

widespread reduction in the maintenance of imprinting in humans (Morison et al. 2005). 

If imprinted genes tend to be involved in intra-genomic conflict and hence evolve rapidly 
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by arms race (Haig 1993), our observation of rapid evolution of the un-imprinted primate 

ESX1 but slow evolution of imprinted rodent Esx1 is unexpected. While a change in 

spermatogenesis function might explain the unexpected evolutionary pattern for 

ESX1/Esx1, in the future, it would be interesting to test the genomic conflict hypothesis 

by comparing the evolutionary rates of all mouse imprinted genes with those of their 

un-imprinted human orthologs. 

 

2.5 MATERIALS AND METHODS 

2.5.1 DNA samples 

One individual from each of 12 primate species, 32 male humans, one Mus spretus, 

one Mus cookie, and one Mus cervicolor were surveyed. The 12 primate species include 

three hominoids (gorilla Gorilla gorilla, orangutan Pongo pygmaeus, and gibbon 

Hylobates lar), four Old World monkeys (green monkey Cercopithecus aethiops, langur 

Pygathrix nemaeus, talapoin Miopithecus talapoin, and baboon Papio hamadryas), and 

five New World monkeys (marmoset Callithrix jacchus, tamarin Saguinus oedipus, owl 

monkey Aotus trivirgatus, squirrel monkey Saimiri sciureus, and woolly monkey 

Lagothrix lagotricha). The animal DNA samples were from (Wang and Zhang 2004) and 

(Podlaha et al. 2005), whereas the human DNA samples were purchased from Coriell 

(http://ccr.coriell.org/),  

 

2.5.2 Gene amplification and DNA sequencing 

The amplified ESX1 regions in different species and the primers used for 

amplification are described in Table 2.2. Primers were designed according to the 
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published human (NT_011651) and mouse (NM_007957) sequences. Polymerase chain 

reactions (PCRs) were performed with MasterTaq or TripleMasterTaq under conditions 

recommended by the manufacturer (Eppendorf, Hamburg, Germany). DMSO (Dimethyl 

sulfoxide) was used in PCR amplification and DNA sequencing of exon 4. Amplified 

exon 4 sequences from 12 primates were cloned into PCR4TOPO vector (Invitrogen) and 

then sequenced from both directions. Other PCR products were purified and directly 

sequenced from both directions. The dideoxy chain termination method was used in DNA 

sequencing by an automated sequencer. Sequencher (GeneCodes) was used to assemble 

the sequences and identify DNA polymorphisms in humans. 

 

2.5.3 Human population genetic analysis 

The DH test was conducted by program DH.jar (Zeng et al. 2006). The population 

recombination rate used in the test was estimated to be R=3Nr 

=3×10,000×(0.18×10-6×723) = 4 per sequence per generation. Here N =10,000 is the 

effective population size of humans, 0.18×10-6 is the pedigree-based recombination rate 

per generation per nucleotide at the ESX1 locus (Kong et al. 2002), and 723 is the number 

of nucleotides of the human ESX1 exon 4 sequence. For samples of African, Caucasian, 

and Asian origins, we used N =10,000, 4,000, and 4,000, respectively, as their effective 

population sizes (Tenesa et al. 2007). The chimpanzee ESX1 sequence was used as the 

outgroup in computing DH except for one site where the gorilla sequence was used as the 

outgroup because the chimpanzee sequence is different from both human alleles. P values 

in the DH test and H test were estimated using 100,000 replications of coalescent 

simulation.  

 49

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=89060003
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=6679696


 50

 

2.5.4 Evolutionary analysis 

The coding sequences of human ESX1 and mouse Esx1 were obtained from 

GenBank with accession numbers AY114148 and NM_007957, respectively. Clustal W 

(Thompson et al. 1994) was used to conduct sequence alignment for the primates and the 

Mus species, respectively. MEGA3 (Kumar et al. 2004) was used for phylogenetic 

analysis. Pairwise synonymous (dS) and nonsynonymous (dN) distances were calculated 

using the modified Nei-Gojobori method (Zhang et al. 1998), with estimated 

transition/transversion ratios. Based on the phylogeny of 15 primates, we inferred 

ancestral ESX1 sequences at all interior nodes of the tree by using the likelihood method 

under the M8 model in PAML3.15 (Yang 1997). The number of synonymous (s) and 

nonsynonymous (n) substitutions on each branch of the tree were then counted. The 

numbers of synonymous (S) and nonsynonymous (N) sites were also estimated by 

PAML.  
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Figure 2.1 Structures of the orthologous (A) human ESX1 and (B) mouse Esx1 genes, adapted from (Fohn and Behringer 2001) 
and (Li et al. 1997). Exons are boxed, with coding regions shown in grey and homeobox shown by hatches. The approximate length of 
each intron is given in parentheses. Pro-rich and PN/PF motifs are indicated underneath the gene structure.  
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Figure 2.2 Alignment of human and chimpanzee ESX1 protein sequences. The human sequence is from GenBank (accession 
number AY114148). The homeodomain is boxed. Single nucleotide polymorphisms (SNPs) detected in humans are shaded. For each 
nonsynonymous SNP, the alternative amino acid is shown above the human sequence. For each synonymous SNP, no alternative 
amino acid is shown. Triangles indicate indel polymorphisms observed in humans, with deletions shown by triangles pointing 
upwards and insertions shown by triangles pointing downwards. The width of the triangle shows the size of the indel. “.” indicates 
identity to the human sequence and “-” indicates a gap.  
 
 
 
 
 

    

52 

 

 
 
 
 
 
 
 

  



Figure 2.3 Protein sequence alignment for exon 4 of ESX1 (Esx1) in (A) 12 primates and (B) 4 Mus species. “.” indicates identity 
to the first sequence in each alignment. “-” indicates an alignment gap, and “*” indicates a stop codon. The partial homeodomain 
region is indicated. “OW”, Old World; “NW”, New World.  
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Figure 2.4 Pairwise synonymous (dS) and nonsynonymous (dN) nucleotide distances 
for (A) the entire exon 4 of ESX1 among 15 primates, (B) the C-terminal 
non-homeodomain region of ESX1 among 15 primates, and (C) the exon 4 of Esx1 
among 4 Mus species.  
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Figure 2.5 Separate alignments of translated ESX1 exon 4 of (A) hominoids, (B) Old 
World monkeys, and (C) New World monkeys. “.” indicates identity to the top sequence, 
“-” indicates a gap, and “*” indicates a stop codon. 
 
A 
 
Human          VWFQNRRAKW KRNQRVLMLR NTATADLAHP LDMFLGGAYY AAPALDPALC VHLVPQLPRP PVLPVPPMPP 
Chimpanzee     ---------- .......... .......... .....VE... .......... ...M.EV... .......... 
Gorilla        .......... .......... .....A.... S........N .......... .......... .A........ 
Orangutan      .......... .......... .I.A.T..R. S........N .......... .......... .........L 
Gibbon         .......... .......... .I.A.A.... E.T....P.D ........F. ...M.EI... ......S... 
 
Human          RPPMVPMPPR PPIAPMPP-- -MAPVPPGSR MAPVPPGPRM APVPPWPPMA PVPPWPPMAP VPTGPPMAPV 
Chimpanzee     ---....Q.. ........-- -.......PH ......W... .......... .......... ..PW...... 
Gorilla        .......Q.. ........-- -.......P. ........C. .....G.... ....G..... ..P.....RM 
Orangutan      .......Q.. ..M.....GP R.......P. .......... .....G.R.V ....G....R M.P....... 
Gibbon         G......Q.G ..M.....GP P.......PC ...M...... .....G...V HM..G...VH M.P....VHM 
 
Human          P--------- PGPPMARVPP GPPMARVPPG PPMAPLPPGP PMAPLPP--- GPPMAPLPPG PPMAPLPPRS 
Chimpanzee     .--------- ---------. .....P...W .....V.... ....V..--- W.....V... .....M...P 
Gorilla        .--------- ---------. .....P.... ....RV.... ....V..--- ......V... .....VA.GP 
Orangutan      .--------- .......M.. .....L.... .....G.... ....G..MAL ......V... .....M...P 
Gibbon         .--------- ---------. ....TPM... .....V.... ....M..--- ......V... .LV..M...P 
 
Human          HVPHTGLAPV HITWAPVINS YYACPFF* 
Chimpanzee     ......---- ---------- -------- 
Gorilla        .......... P...T..... ...R.... 
Orangutan      R...P..... R......... ...G.... 
Gibbon         .......... R......... ...G.... 

 
 

B 
 
Baboon          VWFQNRRAKW KRNQRVLMLR NIAAAALARP TEVFLGGPYN ATPSLDPALC VHLVPQLPRP PVPPMPPRPP 
Green monkey    .......... .......... .......... .......... .......... .......... .......... 
Rhesus monkey   .......... .......... .......... A......... .......... .......... .......... 
Langur          ....Y..... .......... ......V.P. A......... .......... ...M....T. .......... 
Talapoin        .......... .......... .......... A......... .......... ........T. .....Q.... 
 
Baboon          MVPMQPRP-- ---------- PMAPVPPRPP MVPMQPRPPM VRMP------ ---------P RPPMAPVPTG 
Green monkey    ........PM APMPPGPPRP .......... .......... ....------ ---------. ........P. 
Rhesus monkey   ........PM APMPPGP--- ....G..... V......... ....------ ---------. ........P. 
Langur          ....P.G.PM APMPPGP--- S.V.M..... V......... .H..PMAPVP PGPSMAPMP. ...VV.MQPR 
Talapoin        .A..P...-- ---------- .......... V......... ....------ ---------. ........P. 
 
Baboon          PPMVPMPPRP PMAPVPPRPP MAPMPPRPPV PRIGLAPVRI TWAPVINSYY AGPFF* 
Green monkey    .......--- .......... .....---.. .......... .......... ...... 
Rhesus monkey   .......... .......... .......... .......... .......... ...... 
Langur          ....H..... .......... .......... .......... .......... T..... 
Talapoin        .......... .......... .......... .......... .......... ...... 

  
 

C 
 
Marmoset        VWFQNRRAKW RRNQRMLM-R NVAALALAPA VEMILGAPYD AVPVLDPAWC VHLAPR---P PRPPVAPVPH 
Tamarin         .......... ........-. .......... ........H. .......... ......---. .......... 
Owl monkey      .......T.. ........L. .M.DD..P.. ..V..DM... .......... .....QPLG. .G...V.M.P 
Squirrel monkey .......... ........L. .M..AP.V.P ..V....... .......... .N...Q---. .....P.MQP 
Woolly monkey   .......... ........L. .L..A..... ..V....... .......... .....Q---. ..Q..L.MAP 
 
Marmoset        TAP------- --MPAGP--- PMAP------ ---------- ---------- ---------- ---MPVGPPM 
Tamarin         M..------- --.....--- ....------ ---------- ---------- ---------- ---....... 
Owl monkey      M..AQARPPM AG.....PVV ..P.GAPMAP MPPMARTQAR PPMARMQARP PMAGMPAGPP VVP..P.A.. 
Squirrel monkey M..MQARPPM AG...R.--- ..P.------ ---------- ---------- ---------- ---..PEQ.. 
Woolly monkey   MQAGPP---I AG.....--- ....------ ---------- ---------- ---------- ---..P.... 
 
Marmoset        APMPPGPPVV PMPPGAPMP- HFGLAPVGIA WAPFNNSYYV GPFF* 
Tamarin         .......... .........- .......... .......... ..... 
Owl monkey      .......... ....R....- DI.Q..L... ...VI.G.H. ..... 
Squirrel monkey .......--- ....R....- YI.......T ...VI.G... ...Y. 
Woolly monkey   ........AA ....R....H .I........ ...VI.G... R.... 
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Figure 2.6 Numbers of synonymous (s) and nonsynonymous (n) substitutions in the 
evolution of primate ESX1. Shown on each branch are the n and s values for the 
C-terminal non-homeodomain region. The numbers of nonsynonymous (N) and 
synonymous (S) sites for the same region are also given. 
 
 

 

 n / s = 139/38 
N / S = 177/93 
(n/N) / (s/S) = 1.92 2/0

3/1
5/1

5/1
5/1

4/1

6/1

8/3

14/3

1/0

0/0
28/6

0/0
1/0

23/5 

15/3

6/1

1/0
0/0

0/0

4/1

0/0
2/0

2/0

8/2
8/2

4/1

 

Human 
 
Chimpanzee 
 
Gorilla 
 
Orangutan 
 

Gibbon 
 
Rhesus monkey 
 
Baboon 
 
African green monkey 
 
Talapoin 
 
Langur 
 
Marmoset 
 
Tamarin 
 
Owl monkey 
 
Squirrel monkey 
 
Woolly monkey 
 

Hominoids 
 
 
 
 
 
 
 
 

Old World 
monkeys 

 
 
 
 
 
 
New World 
monkeys 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 56



Table 2.1 ESX1 exon 4 sequence variations among 32 men. The position of each 
polymorphism follows the GenBank sequence AY114148, starting from the first 
nucleotide of exon 4. The polymorphisms and their corresponding allele frequencies are 
given. For each polymorphism, we present the allele from the GenBank sequence, 
followed by the deviating allele. Polymorphisms are classified into synonymous (s), 
nonsynonymous (n), insertion (i), and deletion (d) types. The indel length in nucleotides 
is shown for each indel polymorphism. 
 

Nucleotide 
position 

Polymorphism Type Frequency 

68 C(Ala)/T(Val) n 0.97/0.03 
164 C (Pro)/T (Leu) n 0.97/0.03 

361-387 27/- d 0.97/0.03 
407 C(Pro)/G(Arg) n 0.94/0.06 
447 G(Gly)/C(Gly) s 0.97/0.03 

460-486 27/- d 0.94/0.06 
488 C(Pro)/G(Arg) n 0.59/0.41 
490 C(Leu)/G(Val) n 0.59/0.41 
504 G(Pro)/A(Pro) s 0.97/0.03 

After 513 -/27 i 0.97/0.03 
before 514 -/27 i 0.37/0.63 

549 A(Pro)/G(Pro) s 0.97/0.03 
571 C(Leu)/G(Val) n 0.94/0.06 
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Table 2.2 Primers used for amplifying different exons of ESX1 in primates and Esx1 
in Mus species. 
 

Species Primers Exons amplified Length (bp) 
L: 5'-tgcctcactcgctttaccctagt-3' 
R: 5'-tgcacagctttatcgacagcgc-3' Exons 1 and 2 424 

L: 5'-tggagagaaagacagatacag-3' 
R: 5'-atccacaactccaaatactg-3' Exon 3 46 Human 

 
L: 5'-cacaatttctatctggcagg-3' 
R: 5'-atagcttcacctgttgcagt-3' 642,669,696,723 

Gorilla L: 5'-agcatctaacgaattacttg-3' 
R: 5'-aaagtctcagtggcatatag-3' 642 

Orangutan 687 
Gibbon 

L: 5'-ccaacgtactattaagtcac-3' 
R: 5'-ctcctctaagatatttcagc-3' 651 

Rhesus monkey 534 
Baboon 507 

African green monkey 525 
Talapoin 507 
Tamarin 387 

Marmoset 387 
Squirrel monkey 408 
Woolly monkey 411 

Owl monkey 

L: 5'-cacaatttctatctggcagg-3' 
R: 5'-aaagtctcagtggcatatag-3' 

552 

Langur L: 5'-ccaacgtactattaagtcac-3' 
R: 5'-atagcttcacctgttgcagt-3' 

Exon 4 

579 

Mus spretus L: 5'-caccaacgagctggtcttg-3' 
R: 5'-agtctgcctgccacatggt-3' Exon 2 436 

Mus spretus 450 
Mus cervicolor 402 

Mus cookii 

L: 5'-gacattcatggtccaatatcc-3' 
R: 5'-gcgtgatagtgtttacaaacg-3' Exon 4 

396 
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CHAPTER 3 
 

RELAXATION OF SELECTIVE CONSTRAINT AND LOSS OF FUNCTION IN 
THE EVOLUTION OF HUMAN BITTER TASTE RECEPTOR GENES 

 

3.1 ABSTRACT 

Bitter taste perception prevents mammals from ingesting poisonous substances 

because many toxins taste bitter and cause aversion. We hypothesize that human bitter 

taste receptor (TAS2R) genes might be relaxed from selective constraints because of the 

change in diet, use of fire, and reliance on other means of toxin avoidance that emerged 

in human evolution. Here we examine the intraspecific variations of all 25 genes of the 

human TAS2R repertoire. Our data show hallmarks of neutral evolution, including 

similar rates of synonymous (dS) and nonsynonymous (dN) nucleotide changes among 

rare polymorphisms, common polymorphisms, and substitutions, no variation in dN/dS 

among functional domains, segregation of pseudogene alleles within species, and 

fixation of loss-of-function mutations. These results, together with previous findings of 

large numbers of loss-of-function mutations in olfactory, pheromonal, and visual 

sensory genes in humans, suggest surprisingly reduced sensory capabilities of humans 

in comparison to many other mammals.  

 

3.2 INTRODUCTION 

Humans and most mammals can perceive and discriminate among five major 

taste modalities: sweet, sour, bitter, salty, and umami (the taste of sodium glutamate) 
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(Kinnamon and Cummings 1992; Lindemann 1996). Among these, bitter perception has 

a special role of preventing animals from ingesting poisonous substances, because many 

toxins taste bitter and cause aversion (Garcia and Hankins 1975; Glendinning 1994). 

The sense of the bitter taste begins by binding of bitter compounds to bitter taste 

receptors that are found on the surface of the taste receptor cells of the tongue and 

palate epithelium (Lindemann 1996; Chandrashekar et al. 2000). The receptors are 

encoded by a large family of seven-transmembrane G protein-coupled receptor genes 

named TAS2Rs (or T2Rs) and the roles of TAS2Rs in bitter taste have been demonstrated 

by both in vitro and in vivo functional assays (Adler et al. 2000; Chandrashekar et al. 

2000; Matsunami et al. 2000; Bufe et al. 2002; Behrens et al. 2004). Unlike visual 

pigment genes or olfactory receptor genes for which only one gene is expressed in each 

visual or olfactory receptor cell, multiple TAS2R genes are found to be expressed in 

each bitter taste receptor cell in rodents, providing a plausible explanation for the 

uniform taste of many structurally distinct toxins (Chandrashekar et al. 2000). TAS2R 

genes do not contain introns in their protein-coding regions, which facilitated their 

detection in sequenced genomes. Twenty-five putatively functional TAS2R genes (with 

open reading frames [ORFs]) and 8 pseudogenes (with disrupted ORFs) have been 

identified from the human genome sequence and they are mapped to chromosomes 5, 7, 

and 12 (Shi et al. 2003). In comparison, the mouse genome contains 33 functional 

Tast2r genes and 3 pseudogenes (Shi et al. 2003). A phylogenetic analysis of these 

genes suggested considerable variation in the TAS2R repertoire among different 

mammalian lineages (Shi et al. 2003). Although only a minority of these TAS2R genes 

has been functionally characterized, their chromosomal location, sequence similarity, 

 63



and phylogenetic relationships strongly suggest that they are involved in bitter 

perception. 

Because TAS2Rs are directly involved in the interaction between mammals and 

their dietary sources, it is likely that the evolution of these proteins responds to and 

reflects dietary changes in organismal evolution. For example, there were significant 

changes in diet during human evolution (Harris 1992; Leonard 2002; Milton 2003). In 

particular, the amount of meat in hominid diet began to increase about 2 million years 

(MY) ago, while the amount of plant materials decreased (Harris 1992; Leonard 2002; 

Milton 2003). This dietary shift may have caused a reduction in the importance of bitter 

taste and TAS2R genes because animal tissues contain fewer bitter and toxic compounds 

than plant tissues (Glendinning 1994). Detoxification of poisonous foods by controlled 

use of fire starting ~0.8 MY ago (Goren-Inbar et al. 2004) may trigger a further 

functional relaxation in TAS2Rs. We thus hypothesize that patterns of intra-specific 

polymorphism and recent evolution of human TAS2R genes should exhibit low selective 

constraints. Here we characterize the intra- and inter-specific variations of all 25 

members of the human TAS2R repertoire and provide strong evidence supporting this 

hypothesis. 

 

3.3 RESULTS  

3.3.1 Equal levels of synonymous and nonsynonymous polymorphisms in human 

TAS2R genes 

To examine the genetic variation of TAS2Rs within humans, we sequenced all 25 

functional genes in 22 humans of diverse geographic origins and one chimpanzee. 
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Because synonymous nucleotide changes do not alter protein sequences and are more or 

less neutral whereas nonsynonymous changes could be subject to natural selection, a 

comparison between them can reveal signals of selection (Li 1997; Nei and Kumar 

2000). In most genes, the majority of nonsynonymous sites are under selective 

constraints, resulting in lower rates of polymorphisms and substitutions at 

nonsynonymous sites than at synonymous sites (Li 1997; Nei and Kumar 2000). In 

human TAS2Rs, we identified 72 nonsynonymous and 33 synonymous polymorphic 

sites from 21,408 nucleotide sites, including 15,242 nonsynonymous and 6,166 

synonymous sites, respectively (Tables 3.1 and 3.2, Figure online at 

http://hmg.oxfordjournals.org/cgi/data/ddh289/DC1/1 ). The number of polymorphisms 

per nonsynonymous site (4.72×10-3, Watterson’s θ =1.09×10-3) is 88% of that per 

synonymous site (5.35×10-3, θ = 1.23×10-3), indicating that the overall selective 

constraints on the two types of sites are similar (P=0.31; Fisher’s exact test) in TAS2R 

genes. Consistent with this observation, the nucleotide diversity per site (Li 1997; Nei 

and Kumar 2000) is virtually identical between nonsynonymous (πN=1.22×10-3) and 

synonymous (πS=1.19×10-3) sites (Table 3.1). Furthermore, while the TAS2R πS is close 

to the average synonymous nucleotide diversity observed from a large number of 

human genes (1.1×10-3) (Cargill et al. 1999), πN is about 4 times the corresponding 

average (0.28×10-3) (Cargill et al. 1999). These comparisons suggest that the similar 

magnitudes of πN and πS at TAS2Rs are likely due to reduced selective constraints on 

nonsynonymous sites.  

Alternatively, high πN may result from balancing selection, which retains 

beneficial alleles in a population for a long time (Hughes and Nei 1988). Balancing 
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selection has been suggested to account for the high πN of the TAS2R38 (also called 

PTC) gene (Wooding et al. 2004), which is largely responsible for the well known 

human polymorphism in tasting the synthetic compound phenylthiocarbamide (PTC) 

(Kim et al. 2003). A characteristic of balancing selection is the positiveness of π −θ, 

which can be measured by Tajima’s D statistic (Tajima 1989). For the present data, D is 

positive in 12 genes, 0 in one gene, and negative in 12 genes, with an overall value of -

0.048 for all the genes analyzed together (Table 3.1). D is not significantly different 

from 0 for the 25 genes, individually or collectively. When the synonymous and 

nonsynonymous sites were separated, one gene (TAS2R48) had a significantly positive 

D at synonymous sites (P<0.05) and another (TAS2R45) had a significantly positive D 

at nonsynonymous sites (P<0.05). But the two significant cases may simply be due to 

multiple testing as 50 tests were conducted and 2.5 significant cases (at 5%) were 

expected by chance. These observations do not support the balancing selection 

hypothesis for the human TAS2R repertoire, although failure to detect balancing 

selection here does not preclude its operation at a few TAS2R genes. Similar results 

were obtained by Fu and Li’s tests (Fu and Li 1993) (data not shown). Wooding et al. 

(Wooding et al. 2004) suggested the action of balancing selection on TAS2R38 largely 

because the observation of a positive Tajima’s D (1.55). This D value was not 

significantly higher than 0 under the assumption that the population size is constant, but 

it became significantly higher than 0 under specific models of population expansion 

(Wooding et al. 2004). They suggested that an instant population expansion from the 

effective size of 10,000 to 1,000,000 that occurred 100,000 years ago is most 

appropriate for humans (Rogers 1995; Wooding et al. 2004) (see also the manual of the 
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DFSC program of S. Wooding at 

http://www.xmission.com/~wooding/DFSC/README). We evaluated this model by 

computing D for 6 apparently neutral loci (see Table 3.3) of the human genome under 

this model. Surprisingly, 5 of the 6 loci (except the locus at Xq13.3) show significantly 

positive D values. Thus, we believe that use of the above population expansion model 

leads to false positive detection of balancing selection. Although this does not mean that 

use of the constant-population model is correct, it is certainly a more conservative and 

safer test for balancing selection, particularly when the details of human population 

expansion is still unclear. 

Possible natural selection on human TAS2Rs can be further scrutinized by 

comparing rare and common polymorphisms (Fay et al. 2001). We used the chimpanzee 

as the outgroup of humans to determine which human alleles are derived and which are 

ancestral, and then classified each polymorphism to either rare or common using 10% 

frequency for the derived allele as the cutoff (Table 3.2). We found that the ratio of the 

number of nonsynonymous polymorphisms to that of synonymous polymorphisms was 

similar between rare (33/15=2.20) and common (39/18=2.17) categories (P=0.57). This 

is consistent with the lack of purifying selection on TAS2Rs, because purifying selection 

would prevent deleterious nonsynonymous mutations from becoming common and thus 

generate a lower nonsynonymous/synonymous ratio for common polymorphisms than 

for rare ones (Fay et al. 2001). 

 

3.3.2 Pseudogenization of human TAS2Rs 
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In addition to the many nonsynonymous polymorphisms, two nonsense 

polymorphisms were observed in human TAS2Rs. The first was a C→T mutation at 

position 640 of TAS2R7 that changed an Arg residue to a premature stop codon and 

resulted in a receptor that contains only five transmembrane domains (Figure online at 

http://hmg.oxfordjournals.org/cgi/data/ddh289/DC1/1 ). This apparently nonfunctional 

allele was observed once (in Andes Indian) in the 22 individuals surveyed. The 

relatively low frequency (2.3%) of the allele makes it difficult to distinguish whether it 

is neutral (but newly emergent) or deleterious. The second nonsense polymorphism 

(G→A at position 749) changed a Trp to a premature stop codon in TAS2R46, resulting 

in a truncated receptor with six transmembrane domains (Figure online at 

http://hmg.oxfordjournals.org/cgi/data/ddh289/DC1/1 ). This nonfunctional allele was 

observed 11 times in our samples. The moderate frequency (0.25) of this allele and its 

presence in various human populations (African Americans, Caucasians, Southeast 

Asians, Chinese, and Pacific Islanders) demonstrates that it is not under purifying 

selection. A comparison between the human and chimpanzee genome sequences 

indicates that chimpanzees have 6 TAS2R pseudogenes, while humans have two 

additional ones (hps1 and hps2 in (Shi et al. 2003)), both having been fixed, as revealed 

by our sequencing of 22 humans (Figures online at 

http://hmg.oxfordjournals.org/cgi/data/ddh289/DC1/2 and 

http://hmg.oxfordjournals.org/cgi/data/ddh289/DC1/3 ). We also confirmed that the 

chimpanzee orthologs of hps1 and hps2 have intact ORFs by sequencing one individual. 

Therefore, in the 6-7 million years (MY) since the human-chimpanzee split (Brunet et 

al. 2002), two functional TAS2R genes have turned into pseudogenes in the hominid 
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lineage and another one or two are becoming pseudogenes in present-day humans. By 

contrast, no new TAS2R pseudogenes have been fixed in the chimpanzee lineage.  

There are three residues that are absolutely conserved among all 63 mouse and rat 

Tas2rs (see below), suggesting that these residues are required for proper functioning of 

bitter taste receptors. However, two of them have changed in human TAS2Rs. Position 

103 of human TAS2R13 is fixed with Phe, while this position is Leu in all mouse and 

rat Tas2rs. Similarly, human TAS2R14 is fixed with Met at position 205, while it is Leu 

in rodents. An in vitro study showed that human TAS2R14 responds to multiple bitter 

compounds (Behrens et al. 2004). It will be interesting to examine if human TAS2R13 

is functional. 

 

3.3.3 Equal rates of synonymous and nonsynonymous substitutions 

When did the functional relaxation in human TAS2Rs occur? This question may 

be addressed by comparing polymorphism and divergence data. A comparison between 

orthologous TAS2R genes from the 22 humans and one chimpanzee identified 104 

nonsynonymous and 42 synonymous substitutions that have been fixed between species 

(Tables 3.1, 3.2). These numbers translate into identical rates of nonsynonymous 

(6.82×10-3) and synonymous (6.82×10-3) substitutions per site (P=0.52). When we 

measured the human-chimpanzee distance by comparing a randomly picked human 

allele with a randomly picked chimpanzee allele, as normally conducted, the 

synonymous and nonsynonymous distances both became 8.3×10-3 per site. These 

numbers are significantly (P<0.05) lower than the average human-chimpanzee distance 

(0.012 per site) observed from large genomic data (Chen et al. 2001; Ebersberger et al. 
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2002) and may reflect mutation rate variation within genome (Ellegren et al. 2003). The 

McDonald-Kreitman test (Mcdonald and Kreitman 1991) did not detect any difference 

between the intraspecific and interspecific patterns of nonsynonymous and synonymous 

variations for human TAS2Rs (P=0.38; Table 3.2). From the single chimpanzee 

sequenced, 3 synonymous and 8 nonsynonymous polymorphisms were found. The 

nonsynonymous/synonymous ratio (8/3=2.67) is comparable to the ratio for human 

polymorphisms (72/33=2.18) and the ratio for fixed substitutions between species 

(104/42=2.48). We also conducted an HKA test (Hudson et al. 1987) by comparing the 

polymorphism and divergence data from human TAS2Rs and those from 6 noncoding 

regions of the human genome that are at least 3000 nucleotides long and are not known 

to be under natural selection, but no difference was found (Table 3.3). These results 

suggest that the functional relaxation already started in the common ancestor of humans 

and chimpanzees and that there is no detectable difference in selection between the 

human polymorphism and divergence data.  

An alternative explanation for the above between-species data is a more complex 

scenario involving purifying selection at some sites and positive selection at some other 

sites of TAS2Rs. Previous studies showed that transmembrane (TM) domains of 

TAS2Rs are more conserved than extracellular (EC) and intracellular (IC) domains and 

that EC domains may be subject to positive selection between rapidly diversifying 

paralogous genes, consistent with the presumable tastant-TAS2R binding sites being 

located in the EC domains (Shi et al. 2003). To test the hypothesis of positive and 

purifying selection on human and chimpanzee TAS2Rs, we estimated the dN/dS ratio in 

EC, TM, and IC domains, respectively. For comparison, we used Tas2r genes from the 
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mouse and rat. To obtain these genes, we searched the rat genome sequence using all 33 

mouse Tas2r genes as queries and identified 30 rat Tas2r genes. A phylogenetic tree of 

all putatively functional TAS2R genes from the human, chimpanzee, mouse, and rat was 

reconstructed (Figure 3.1, Figure online at 

http://hmg.oxfordjournals.org/cgi/data/ddh289/DC1/4 ). From this tree, 28 pairs of 

mouse and rat genes were apparently orthologous. We concatenated these 28 genes for 

the mouse and rat, respectively, and estimated the average dN and dS between them. 

Figure 3.2 shows that the dN/dS ratio is significantly lower than 1 for each of the three 

functional regions (EC, TM, and IC) in rodent Tas2r genes, demonstrating the operation 

of purifying selection between the orthologs. Among-domain variation in dN/dS, another 

characteristic of functional genes, is also evident, and TM domains show the lowest 

dN/dS. For both intraspecific and interspecific data of human TAS2Rs, dN/dS is not 

significantly different from 1 for any of the three functional regions or the entire genes. 

Furthermore, no variation in dN/dS among functional regions is seen. Compared with 

rodent Tas2rs, human TAS2Rs have significantly elevated dN/dS in the TM domains. 

These observations are consistent with the hypothesis of functional relaxation in 

humans (and chimpanzees), but do not support the alternative hypothesis of a 

combination of positive and purifying selection, because the latter predicts an elevation 

in dN/dS in EC domains while maintaining low dN/dS in functionally conserved TM 

domains.  

Similarly, one may hypothesize that some TAS2Rs of humans are under positive 

selection while some others are under purifying selection, giving an average dN/dS of ~1 

for the repertoire. Table 3.1 lists the dN/dS ratio for each of the 25 human TAS2R genes 
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and some ratios appear much higher than others, although none of them are significantly 

different from 1. We used computer simulation to test whether this among-gene 

variation was simply due to chance. In the simulation, we assumed that every gene has 

the expected dN and dS identical to the corresponding averages of the 25 human TAS2R 

genes and then generated an expected distribution of dN/dS from 5000 simulations 

(Figure 3.3). When this distribution was compared with the observed distribution, no 

significant difference was found (P=0.65, χ2 test; Fig. 3.3), suggesting that the apparent 

among-gene variation in dN/dS shown in Table 3.1 is explainable by chance alone. 

 

3.4 DISCUSSION  

In this work, we characterized the intra- and inter-specific variations of the entire 

human bitter taste receptor gene repertoire. Our intra-specific data show equal levels of 

synonymous and nonsynonymous polymorphisms, equal nonsynonymous/synonymous 

ratios for rare and common polymorphisms, equal nonsynonymous/synonymous ratios 

among functional domains, segregation of nonfunctional alleles in populations, and 

fixation of pseudogenes in the species. All these observations support the lack of 

selective constraint on human TAS2R genes. Our inter-specific comparison between the 

human and chimpanzee also suggests that TAS2R genes have been under neutral 

evolution without much constraint. If a complete functional relaxation occurred in the 

common ancestor of humans and chimpanzees, it is perplexing why fixations of 

mutations that disrupt TAS2R ORFs occurred only twice in humans and did not occur at 

all in chimpanzees. Using computer simulation (see Materials and Methods), we 

estimated that the average half-life of human TAS2R genes is 6.77 MY in the absence of 
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natural selection, meaning that after 6.77 MY of neutral evolution, a TAS2R gene has a 

50% chance of becoming a fixed pseudogene. From the observation that only two out of 

27 TAS2R genes have become fixed pseudogenes during hominid evolution, we 

obtained the maximum likelihood estimate of the starting time (T) of the complete 

functional relaxation to be 0.75 MY ago, though any T within 0.1 to 2.6 MY ago cannot 

be rejected at 5% significance level. It is likely that an incomplete functional relaxation 

started early in the ancestry of humans and chimpanzees but a second wave of more 

complete relaxation occurred recently in the hominid lineage alone. This would explain 

the lack of pseudogene formation in chimpanzees and the paucity of human 

pseudogenizations. Because each TAS2R recognizes multiple related toxic compounds 

(Bufe et al. 2002; Behrens et al. 2004) and each taste receptor cell expresses multiple 

TAS2R genes (Chandrashekar et al. 2000), it is possible that an incomplete functional 

relaxation occurs when the number or amount of toxins that a species encounters 

reduces. 

As mentioned, a dietary change that started 2 MY ago (Harris 1992; Leonard 

2002; Milton 2003) resulted in an increase of animal tissues and decrease of plant 

tissues in hominid diet, which reduced the number of toxic foods that hominids came 

across. Controlled use of fire was evident about 0.8 MY ago (Goren-Inbar et al. 2004); 

the reliance on TAS2Rs to detect toxins further diminished because cooking 

significantly detoxifies poisonous food (Harris 1992). It is interesting that the likelihood 

estimate of the starting time (0.75 MY ago) of the complete functional relaxation in 

human TAS2R genes coincides with the beginning of the fire use in hominid evolution, 

although our estimate has a large variance. Our data suggest that chimpanzee TAS2Rs 
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are likely under relaxed selective constraint as well, although to a lesser degree, as 

evident from the lack of pseudogenization. It has been noted that chimpanzees 

occasionally eat meat (2-13% of diet), whereas other great apes (gorillas and 

orangutans) almost never do so (Milton 2003). Furthermore, among the plant foods, 

chimpanzees eat mostly ripe fruits while gorillas and orangutans eat more leaves, unripe 

fruits, bark, and pith (Milton 2003). Ripe fruits contain considerably fewer toxins than 

do leaves and unripe fruits (Glendinning 1994). These factors, when combined, may 

have reduced the selective pressures on chimpanzee TAS2Rs. A broader survey of 

TAS2R genes in primates may provide a better understanding of the ecology and 

selective agents behind the evolution of TAS2R genes and the bitter taste.  

Our finding that the TAS2R bitter taste receptor gene repertoire of humans is 

under relaxed selective constraint has several implications. First, humans have lost and 

continue to lose TAS2R genes, which would result in a decrease in the number of bitter 

compounds that we can taste. Second, the segregation of nonfunctional TAS2R alleles in 

current human populations indicates among-individual variation in bitter sensitivity. 

Third, functional relaxation may also allow the appearance of new TAS2R alleles that 

can bind previously unrecognizable tastants. While the emergence of these new alleles 

may increase the diversity in bitter recognition among humans, it likely has little effect 

on fitness because of the neutral nature of the new alleles. It should be noted that loss of 

selective constraint does not result in loss of function instantly. Probably because of the 

relatively short time since the loss of selective constraints on human TAS2R genes, 

many human TAS2R genes may still be functional and we can still taste many bitter 
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compounds. But loss of function will result after sufficient time of evolution under no 

selective constraint. 

Our finding is intriguing when compared with the evolutionary patterns of other 

human sensory genes. Olfactory receptor genes have been inactivated in the human 

lineage at a higher rate than in chimpanzees and other primates. In humans, over 50% of 

olfactory receptor genes are pseudogenes, in contrast to 30-35% in other apes and less 

than 20% in rodents (Gilad et al. 2003; Gilad et al. 2004). In fact, humans have fewer 

than 400 functional olfactory receptor genes (Niimura and Nei 2003) and they appear to 

be under weak or no selective constraints (Gimelbrant et al. 2004), while mice have 

over 1000 functional genes (Zhang et al. 2004). Humans, apes, and Old World monkeys 

have lost important components of the vomeronasal pheromone signal transduction 

pathway and are insensitive to vomeronasal pheromones (Liman and Innan 2003; Zhang 

and Webb 2003). Humans also have an unusually high frequency of red/green color 

blindness (e.g., 8% in male Caucasians) that is not found in wild apes or Old World 

monkeys (Surridge et al. 2003). Deafness also occurs at a relatively high frequency 

(0.08%) in humans; nonfunctional GJB2 alleles, which are responsible for genetic 

deafness in many populations, have a total frequency of ~1.8% in United States (Nance 

and Kearsey 2004). Although genes involved in these sensory systems may have 

deteriorated at different times in the evolutionary lineage of humans, it is compelling 

that sensitivities to a number of sensory signals are weaker in humans than in many of 

our mammalian relatives. It is possible that in the evolution of apes, and particularly 

humans, sensory capabilities became a less important component of an individual’s 

fitness. 
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3.5 MATERIALS AND METHODS 

3.5.1 Sequencing human and chimpanzee TAS2R genes 

Genomic DNAs of one chimpanzee (Pan troglodytes) and 22 unrelated humans 

(Homo sapiens) of diverse geographic origins (3 Pygmy Africans, 6 African Americans, 

5 Caucasians, 3 Southeast Asians, 2 Chinese, 2 Pacific Islanders, and 1 Andes Indian) 

were purchased from Coriell Cell Repositories. Gene-specific primers for amplifying 

the 25 TAS2R genes were designed according to the human genome sequence. The 

protein-coding region of each TAS2R gene has 900-1,000 nucleotides, most of which 

were amplified in our experiments. After removing the primer-encoded regions, the 

total number of nucleotides examined here was 21,408, or on average 856 per gene. 

Polymerase chain reactions (PCRs) were performed with high fidelity DNA polymerase 

under conditions recommended by the manufacturer (Invitrogen). PCR products were 

separated on 1.5% agarose gel and purified using the Gel Extraction Kit (Qiagen), 

before being sequenced from both directions using the dideoxy chain termination 

method with an automated DNA sequencer. Sequencher (GeneCodes) was used to 

assemble the sequences and to identify DNA polymorphisms. Two human pseudogenes 

(hps1 and hps2) were also sequenced in the 22 humans and one chimpanzee. The primer 

sequences are available upon request. 

 

3.5.2 Evolutionary analyses 

Numbers of synonymous and nonsynonymous sites and numbers of synonymous 

and nonsynonymous nucleotide changes were counted following (Zhang et al. 1998). 
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The number of synonymous changes per synonymous site (dS) and the number of 

nonsynonymous changes per nonsynonymous sites (dN) were then computed (Nei and 

Kumar 2000). Watterson’s θ, nucleotide diversity π, Tajima’s D test (Tajima 1989), and 

HKA test (Hudson et al. 1987) were computed or conducted by DnaSP (Rozas et al. 

2003). Rare and common polymorphisms were defined using the cutoff of 10% 

frequency for the derived allele. Use of different cutoffs (5% and 15%) did not change 

our result. The sequence data of six noncoding regions used in the HKA test were from 

(Zietkiewicz et al. 1998; Harris and Hey 1999; Kaessmann et al. 1999; Fullerton et al. 

2000; Zhao et al. 2000; Yu et al. 2001). Mouse Tas2r gene sequences were obtained 

from (Shi et al. 2003). Rat Tas2r genes were identified by BLAST searches of the rat 

genome sequence using the mouse genes as queries. A neighbor-joining tree (Saitou and 

Nei 1987) of the putatively functional TAS2R genes of the human, chimpanzee, mouse, 

and rat was reconstructed using the protein Poisson distance (Nei and Kumaer 2000). 

The bootstrap test (with 2000 replications) was used to examine the reliability of the 

observed branching patterns (Felsenstein 1985). MEGA2 (Kumar et al. 2001) was used 

for the phylogenetic analysis. Twenty-eight pairs of orthologous Tas2r genes from the 

mouse and rat were identified and used for computing dS and dN. Functional domains in 

TAS2Rs were defined following (Adler et al. 2000). Computer simulation was used to 

evaluate the expected variation in dN/dS among TAS2R genes. Because the total numbers 

of fixed synonymous and nonsynonymous differences in the 25 orthologous genes of 

humans and chimpanzees were 42 and 104, respectively (Table 3.1), the average 

numbers per gene were 1.68 and 4.16, respectively. Since nucleotide substitution is a 

Poisson process, we generated a Poisson random number with the mean of 1.68 as the 
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number of synonymous substitution for a gene and an independent Poisson random 

number with the mean of 4.16 as the number of nonsynonymous substitution for the 

gene. The dN/dS ratio for the gene was then computed following (Zhang et al. 1998), 

using the average numbers of synonymous (246.64) and nonsynonymous (609.68) sites 

per gene for the TAS2R genes. When the number of synonymous substitution was 0, 

dN/dS was designated as NA. Such simulation was repeated 5,000 times and a 

distribution of dN/dS was generated. This distribution was compared with the observed 

distribution from the 25 TAS2Rs by a χ2 test. We used the program PSEUDOGENE 

(Zhang and Webb 2003) to estimate the half-life (t1/2) of each of the human TAS2R 

genes and obtained an average of 6.77±0.05 MY. In the computation, we used a point 

nucleotide substitution rate of 6.4×10-10 per site per year, which was estimated from the 

synonymous substitution rates in TAS2R genes under the assumption of 6.5 MY as the 

time since the human-chimpanzee split (Brunet et al. 2002). We also used a substitution 

rate of 0.81×10-10 per site per year for ORF-disruptive indels, which was estimated from 

human-chimpanzee genomic comparisons (Britten 2002; Podlaha and Zhang 2003; 

Zhang and Webb 2003). The starting time of the complete functional relaxation (T), as 

well as its confidence interval, was estimated using a likelihood approach (Zhang and 

Webb 2003).  
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Figure 3.1 Evolutionary relationships of 113 putatively functional TAS2R genes from 
the human, chimpanzee, mouse, and rat. The tree is reconstructed by the neighbor-
joining method with protein Poisson distances. Bootstrap percentages (≥50) from 2,000 
replications are shown at interior nodes. The mouse and rat genes with uncertain 
orthology are marked with triangles and are not used in computing the dN/dS ratios 
presented in Figure 3.2. The protein sequence alignment used for the tree reconstruction 
is provided in Figure online (http://hmg.oxfordjournals.org/cgi/data/ddh289/DC1/4) 
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Figure 3.2 Comparison of dN/dS among different functional domains of TAS2Rs. 
Black bars show the dN/dS ratios computed from the concatenated sequences of 28 pairs 
of orthologous Tas2r genes of the mouse and rat. Shaded bars show the dN/dS ratios of 
the fixed differences between human and chimpanzee for the concatenated sequences of 
25 pairs of orthologous TAS2R genes. White bars show the dN/dS ratios computed from 
the human polymorphisms at the 25 TAS2R genes. All comparisons are conducted using 
Fisher’s exact test following (Zhang et al. 1997). Significant levels: *, 5%; **, 0.5%; 
***, 0.05%. The test result of the null hypothesis of dN/dS=1 for each bar is indicated 
above the bar. Comparisons between two bars are indicated with brackets. Non-
significant results are not indicated. EC, four extracellular domains; TM, seven 
transmembrane domains; IC, four intracellular domains; Total, entire proteins. 

 

   

0.0

0.5

1.0

1.5

2.0

EC TM IC Total

d N/d S

***
P =0.059

***

***
*** ***

*
***

*** ***

 

 

 

 

 

 

 

 

 

 

 80



Figure 3.3 Expected and observed distributions of dN/dS among 25 human TAS2R 
genes. The expected distribution (white bars) under equal dN/dS ratios among genes was 
generated by computer simulation (see Materials and Methods), whereas the observed 
distribution (black bars) was from the dN/dS column in Table 3.1. NA, not applicable 
due to zero synonymous substitution. There is no significant difference between the two 
distributions (P>0.5; χ2 test). 
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Table 3.1 Intra- and inter- variations of human TAS2R genes. 
 
 
Table 1. Intra- and inter-specific variations of human TAS2R genes.

                        Sysnonymous changes                       Nonsynonymous changes      Total

Gene names Chr.1 L 2 S 3 π  (%)4 θ  (%)5 D 6 d 7
S π (%) θ (%) D d S π  (%) θ  (%) D d d N/d S

8

TAS2R1 5 825 1 0.04 0.10 -0.85 2 2 0.05 0.08 -0.56 4 3 0.05 0.08 -0.87 6 0.82
TAS2R3 7 864 2 0.22 0.18 0.37 2 0 0.00 0.00 0.00 1 2 0.06 0.05 0.37 3 0.21
TAS2R4 7 810 0 0.00 0.00 0.00 1 2 0.11 0.08 0.59 1 2 0.07 0.06 0.59 2 0.43
TAS2R5 7 801 1 0.04 0.10 -0.85 3 3 0.11 0.12 -0.15 7 4 0.09 0.11 -0.48 10 0.96
TAS2R7 12 876 0 0.00 0.00 0.00 2 0 0.00 0.00 0.00 4 0 0.00 0.00 0.00 6 0.82
TAS2R8 12 831 2 0.22 0.20 0.24 0 1 0.01 0.04 -1.12 2 3 0.07 0.08 -0.39 2 NA
TAS2R9 12 867 0 0.00 0.00 0.00 3 1 0.08 0.04 1.54 4 1 0.06 0.03 1.54 7 0.54
TAS2R10 12 849 2 0.12 0.20 -0.69 0 1 0.04 0.04 0.27 5 3 0.07 0.08 -0.40 5 NA
TAS2R13 12 837 0 0.00 0.00 0.00 2 2 0.09 0.08 0.36 11 2 0.07 0.05 0.36 13 2.14
TAS2R14 12 879 2 0.33 0.18 1.47 3 1 0.03 0.04 -0.53 4 3 0.11 0.08 0.57 7 0.53
TAS2R16 7 807 2 0.11 0.20 -0.83 2 3 0.12 0.12 -0.04 1 5 0.12 0.14 -0.48 3 0.20
TAS2R38 7 945 0 0.00 0.00 0.00 3 4 0.21 0.14 1.16 2 4 0.15 0.10 1.16 5 0.28
TAS2R39 7 957 1 0.02 0.08 -1.12 1 3 0.03 0.10 -1.57 2 4 0.02 0.10 -1.76 3 0.79
TAS2R40 7 918 0 0.00 0.00 0.00 1 1 0.03 0.04 -0.14 2 1 0.02 0.03 -0.14 3 0.80
TAS2R41 7 870 3 0.14 0.26 -1.00 1 1 0.04 0.04 0.27 5 4 0.07 0.11 -0.71 6 2.14
TAS2R43 12 870 2 0.00 0.19 -1.30 1 7 0.21 0.26 -0.47 2 9 0.17 0.24 -0.84 3 0.78
TAS2R44 12 888 3 0.23 0.27 -0.28 5 7 0.27 0.26 0.18 8 10 0.26 0.26 0.02 13 0.66
TAS2R45 12 828 1 0.02 0.10 -1.12 2 6 0.45 0.23 2.39* 5 7 0.32 0.19 1.82 7 1.01
TAS2R46 12 804 1 0.04 0.10 -0.85 3 2 0.12 0.80 0.05 6 3 0.10 0.11 -0.40 9 0.78
TAS2R47 12 867 2 0.18 0.18 -0.03 0 2 0.08 0.07 0.12 0 4 0.11 0.11 0.05 0 NA
TAS2R48 12 753 2 0.45 0.20 2.19* 0 6 0.10 0.26 -1.62 6 8 0.20 0.24 -0.47 6 NA
TAS2R49 12 855 3 0.38 0.28 0.75 0 9 0.50 0.34 1.37 2 12 0.47 0.32 1.35 2 NA
TAS2R50 12 831 2 0.29 0.19 0.97 1 3 0.09 0.12 -0.53 5 5 0.15 0.14 0.15 6 2.01
hT2R55 12 885 1 0.10 0.09 1.60 3 4 0.24 0.15 1.57 7 5 0.20 0.13 1.91 10 0.95
TAS2R60 7 891 0 0.00 0.00 0.00 1 1 0.01 0.04 -0.85 8 1 0.01 0.03 -0.85 9 3.34
Sum 21408 33 0.12 0.12 -0.05 42 72 0.12 0.11 0.09 104 105 0.12 0.11 -0.05 146 1.00
1 Chromosomal location.
2 Number of sequenced nucleotides.
3 Number of polymorphic sites.
4 Nucleotide diversity per site.
5 Watterson's θ per site.
6 Tajima's D.  *, P<0.05.
7 Number of fixed nucleotide differences between human and chimpanzee.
8 Number of fixed nonsynonymous differences per nonsynonymous site between human and chimpanzee, divided by the number of
fixed synonymous differences per synonymous site.  NA, not applicable because of zero synonymous differences. 
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Table 3.2 Rates of synonymous and nonsynonymous nucleotide changes in human 
TAS2Rs. 
 
 
 
 
 

Table 2. Rates of synonymous and nonsynonymous nucleotide changes in human TAS2R s. 
Nonsynonymous Synonymous N/S ratio

Number of sites sequenced 15242 6166 2.47
Rare polymorphisms 33 15 2.20
Common polymorphisms 39 18 2.17
Fixed changes 104 42 2.48
None of the N/S ratios are significantly different from each other (Fisher's test).  
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Table 3.3 Comparison between TAS2R genes and neutrally evolving human 
sequences in intra- and inter-specific variation. 
 
 
 
 

Table 3. Comparison between TAS2R  genes and neutrally evolving human sequences in intra- and inter-specific variations.

Genomic regions (references) Sequence length (nt.) π  (%)1 θ  (%)2  d  (%)3 θ /d HKA Prob.4

25 TAS2R  genes (this study) 21408 0.121 0.115 0.831 0.138

Noncoding region at 1q24 (42) 8991 0.058 0.095 0.623 0.152 0.669

β-globin initiation region at 11p15 (43) 6076 0.129 0.107 1.284 0.083 0.508

Noncoding region at 22q11 (44) 9091 0.088 0.139 1.353 0.103 0.312

Dystrophin intron-dys44 at Xp21 (45) 7475 0.135 0.102 0.604 0.169 0.779

PDHA1  introns at Xp22 (46) 3530 0.225 0.211 0.992 0.213 0.648

Noncoding region at Xq13.3 (47) 10200 0.045 0.083 0.922 0.090 0.369
1 Nucleotide diversity per site; for X chromosome data, it is corrected by multiplication by 4/3.
2 Watterson's estimate of polymorphism per site; for X chromosome, it is corrected by multiplication by 4/3.
3 Number of nucleotide differences per site between human and chimpanzee sequences. 
4 Probability from the HKA test (30), with comparison to the TAS2R  data.   
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CHAPTER 4 
 

ADAPTIVE PSEUDOGENIZATION OF CASPASE12 IN HUMAN 
EVOLUTION 

 

4.1 ABSTRACT 

Pseudogenization is a widespread phenomenon in genome evolution, and it has 

been proposed to serve as an engine of evolutionary change, especially during human 

origins (the “less-is-more” hypothesis). Here we provide population genetic evidence that 

positive selection drove the nearly complete fixation of a null allele of human 

CASPASE12, a gene implicated in susceptibility to severe sepsis. We estimate that the 

selective advantage of the null allele is ~0.9% and the pseudogenization started shortly 

before the out-of-Africa migration of modern humans. This adaptive gene loss might 

have occurred because of changes in our environment or genetic background that altered 

the threat from or response to sepsis. Our finding opens the door for understanding the 

roles of gene losses in human origins, and the demonstration that gene loss itself can be 

adaptive supports and extends the “less-is-more” hypothesis. 

 

4.2 INTRODUCTION 

Although humans are highly similar to chimpanzees at the genomic sequence and 

protein sequence levels (Chen and Li 2001; Britten 2002; Ebersberger et al. 2002; 

Wildman et al. 2003; Watanabe et al. 2004; The Chimpanzee Sequencing and Analysis 

Consortium 2005), the two species differ dramatically in many aspects of their biology 
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such as bipedalism, brain size, language/speech capability, and susceptibility to the 

human/simian immunodeficiency virus (HIV/SIV). With rapid progress in human 

genetics, comparative genomics, and molecular evolution, the genetic basis of these 

differences has begun to be unraveled. For example, the conserved transcriptional factor 

FOXP2 is required for speech development in humans (Lai et al. 2001) and it 

experienced two adaptive amino acid replacements in hominin evolution, suggesting that 

these two substitutions were at least partially responsible for the emergence of human 

speech and language (Enard et al. 2002; Zhang et al. 2002). Compared to such amino acid 

replacements, gene gains and losses are more dramatic genetic changes (Olson 1999; 

Olson and Varki 2003; Zhang 2003; Fortna et al. 2004; Li and Saunders 2005). In 

particular, gene loss, or pseudogenization, leads to immediate loss of gene function, 

which probably affects organisms to a greater extent than most amino acid replacements 

do. A number of genes are known to have been lost in the human lineage since its 

divergence from the chimpanzee lineage (Chou et al. 1998; Szabo et al. 1999; Winter et 

al. 2001; Gilad et al. 2003; Hamann et al. 2003; Meyer-Olson et al. 2003; Stedman et al. 

2004; Wang et al. 2004; Fischer et al. 2005; Go et al. 2005; Perry et al. 2005). Recently, 

Olson (Olson 1999) and Olson and Varki (Olson and Varki 2003) proposed the “less-is-

more” hypothesis, suggesting that gene loss may serve as an engine of evolutionary 

change. This hypothesis is particularly intriguing for human evolution, as several human 

gene losses have been proposed to provide opportunities for adaptations and be 

responsible for human-specific phenotypes. For example, the pseudogenization of the 

sarcomeric myosin gene MYH16 at the time of the emergence of the genus Homo is 

thought to be responsible for the marked size reduction in hominin masticatory muscles, 
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which may have allowed the brain-size expansion (Stedman et al. 2004) (but see (Perry et 

al. 2005). In another example, the human-specific inactivation of the gene encoding the 

enzyme CMP-N-acetylneuraminic acid hydroxylase (CMAH) led to the deficiency of the 

mammalian common sialic acid Neu5Gc (N-glycolylneuraminic acid) on the human cell 

surface (Chou et al. 1998). This inactivation was due to an Alu-mediated sequence 

replacement (Hayakawa et al. 2001) that occurred ~2.7 million years ago (Chou et al. 

2002) and may have had several important consequences to human biology and evolution 

(Varki 2001).  

There has been no demonstration of positive selection driving the loss of a human 

gene, although the loss may have subsequently allowed future adaptations. Such passive 

pseudogenization incidences are not themselves adaptations. To explore the possibility of 

adaptive pseudogenization, we focus on CASPASE12 evolution in human population. 

CASPASE12 belongs to the caspase family, which are cysteinyl aspartate proteinases 

that play important roles in the processing of inflammatory cytokines and the initiation 

and execution of apoptosis (Alnemri et al. 1996; Lamkanfi et al. 2002). In humans, 11 

functional caspase genes are known, CASPASE1-10 and CASPASE14. Human 

CASPASE12 (CASP12) was identified as a pseudogene following the cloning of mouse 

Caspase12 (Fischer et al. 2002). Compared with other mammalian orthologs, human 

CASP12 contains a premature stop codon due to a C to T nonsense mutation at nucleotide 

position 629 of exon 4 (Fischer et al. 2002; Saleh et al. 2004). This mutation leads to the 

production of truncated nonfunctional CASP12 in humans (Saleh et al. 2004). The null T 

allele is fixed in a sample of 347 non-Africans and has a frequency of 89% in 776 

individuals of African descent (Saleh et al. 2004). Interestingly, the T allele is associated 
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with a reduced incidence and mortality of severe sepsis (Saleh et al. 2004), suggesting 

that the loss of functional CASP12 is beneficial to present-day humans.  In this work, we 

provide evidence that the nearly complete fixation of a null allele at CASPASE12 (Fischer 

et al. 2002; Saleh et al. 2004; The Chimpanzee Sequencing and Analysis Consortium 

2005) has been driven by positive selection, probably because the allele confers lowered 

susceptibility to severe sepsis. 

 

4.3 RESULTS 

4.3.1 Adaptive loss of CASP12 in human evolution 

To test whether the nearly complete fixation of the null allele at CASP12 has been 

driven by positive selection, we looked for signals of recent (incomplete) selective 

sweeps by examining the intraspecific variation of putatively neutral regions surrounding 

the C/T polymorphism. The positive selection hypothesis predicts that the level of 

polymorphism in these regions is lower in the null T allele than in the C allele, especially 

in the proximity of the C/T polymorphism, due to the hitchhiking effect (Maynard Smith 

and Haigh 1974). Furthermore, the frequency distribution of the neutral polymorphisms 

in the T allele should deviate from the neutral expectation, generating negative values of 

Tajima’s D (Tajima 1989) and Fay and Wu’s H (Fay and Wu 2000).  

From a sample of 63 humans of African descent, we identified 4 C/C homozygotes 

and 43 T/T homozygotes. We sequenced the 4 C/C homozygotes and 4 randomly chosen 

T/T homozygotes in 9 noncoding regions of varying distances from the C/T 

polymorphism (Figure 4.1). The sequenced regions vary in size from ~600 to 2,400 

nucleotides. In total, 53 and 29 single nucleotide polymorphisms (SNPs) were identified 
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from 8,925 nucleotide sites in C/C and T/T individuals, respectively (Figure 4.2; Table 

4.1). Although the T allele is much more prevalent than the C allele in the population, the 

T allele has a significantly lower number of SNPs per nucleotide than the C allele in the 

linked regions (P<0.01, Fisher’s exact test). Nucleotide diversity per site (π) is also lower 

in the T alleles (πT=0.00131±0.00019) than in the C alleles (πC=0.00218±0.00031) 

(P=0.02, two-tail Z test). More strikingly, although the variation of πC across the 9 

regions is more or less random, that of πT exhibits a V shape, with the bottom of the 

valley located in region 4, which has its 3’ end only 607 nucleotides from the C/T 

polymorphism (Figure 4.1). When one moves ~10,000 nucleotides from this 

polymorphism, πT rises to a level comparable to πC. To exclude the possibility that the 

low πT observed around the C/T polymorphism was due to the use of a small sample, we 

sequenced 7 additional T/T individuals of African descent in regions 4, 5, and 6. The πT 

values obtained from the combined data of 11 individuals were either lower than or 

similar to those from the 4 individuals (Table 4.1), suggesting that the observation of low 

πT is not due to a small sample. In region 4, where the greatest reduction in 

polymorphism is observed, only 1 SNP is found across the 2413 nucleotide positions 

among the 22 T alleles sequenced. By contrast, 19 SNPs were found in the same region 

among 8 C alleles examined. Region 4 was also sequenced in 6 non-Africans (all non-

Africans are T/T homozygotes (Saleh et al. 2004)), but no SNP was detected and all non-

African T alleles are identical to the predominant T allele from Africans. This indicates a 

common origin of African and non-African T alleles.  

In a formal test of the selective sweep hypothesis, we used coalescent simulations 

to examine whether the polymorphisms observed in region 4 can be explained by neutral 
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models of evolution. Such tests require a sample that is representative of the population 

under investigation. We thus sequenced 20 additional African T/T homozygotes so that 

our sample comprises 62/70=89% of T alleles and 8/70=11% C alleles, expected in 

populations of African descent (Saleh et al. 2004). In the 70 chromosomes sequenced, the 

two most common haplotypes observed (with a total frequency of 61/70) are both from T 

alleles and these two haplotypes have only one nucleotide difference. Let k1 be the 

number of chromosomes with the most common haplotype in a sample and k2 be the 

number of chromosomes with the most frequent haplotype among those that are one 

nucleotide different from the most common haplotype in the sample. We first simulated 

the evolution of a population with a constant size. In 0.066% of the 50,000 replications, 

we observed k1+k2≥61. We also simulated various demographic changes to mimic the 

evolution of human populations, and k1+k2≥61 was observed in fewer than 1% of 

simulation replications in all models considered (Table 4.2). These demographic models 

included ancient or recent population expansions, severe bottleneck, repeated bottlenecks 

with subsequent expansion, and population subdivision and admixture (Evans et al. 2005) 

(see Materials and Methods). Previous studies suggested that the models used here are 

much more stringent than that associated with the real demographic history of humans 

(Zietkiewicz et al. 1998; Harpending and Rogers 2000). Hence, our tests are 

conservative. 

We also computed statistics D and H for regions 4 and 5 in the T allele, as these 

two regions have significantly lower πT than πC (Table 4.1). Both statistics were 

significantly negative in region 5 (D=-2.08, P<0.01; H=-4.71, P<0.025), consistent with 

the expectations from a selective sweep. D (-0.23, P=0.47) and H (-0.90, P=0.09) were 
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not significantly negative in region 4, probably because the number of SNPs is too small 

for the statistic tests to be powerful. It should be noted that the above tests are less 

rigorous than the coalescent simulations because the tests are conducted on subsets of the 

genealogy (Evans et al. 2005). Linkage disequilibrium (LD) can also be used to test 

recent selective sweeps if long-range haplotypes can be reliably inferred (Sabeti et al. 

2002). In the present case, however, long-range haplotypes are difficult to infer with 

certainty due to the small number of C/C homozygotes available. But the genotypes 

shown in Figure 4.2 provide a visual indication of longer LD in T alleles than in C alleles 

and a decay of LD when one moves away from the C/T polymorphism, consistent with 

the recent origin of T alleles. Taken together, our observations, especially the proximity 

of the πT valley to the C/T polymorphism and the coalescent simulations, strongly 

suggest that the spread of the T allele among Africans and non-Africans has been driven 

by positive selection and that the selective advantage was directly conferred by the C→T 

nonsense mutation.  

 

4.3.2 Dating the pseudogenization event and selective sweep in CASP12 

When did the pseudogenization of human CASP12 start? We took two approaches 

to estimate the age of the T allele. In the first method, we used the information of 

noncoding region 4, which is longest among the 9 sequenced regions and is also closest 

to the C/T polymorphism. The founding haplotype of T alleles is inferred, and the 

proportion (P) of present-day T alleles identical to the founding haplotype is estimated. It 

can be shown that P=(1-r)G, where G is the age of the T allele in generation and r is the 

total rate of mutation and recombination per sequence per generation (Stephens et al. 
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1998). In the present case, it is easy to infer the founding haplotype (for region 4) because 

of the low polymorphism and the availability of an outgroup (chimpanzee) sequence. P is 

estimated to be 0.811 based on the observation of 60 copies of the founding haplotype in 

a total of 74 T alleles sequenced (including both Africans and non-Africans). The 

mutation rate is estimated to be 23/(12×106)×25 = 4.792×10-5 per sequence per 

generation. Here 23 is the average number of nucleotide differences between human and 

chimpanzee in region 4, 12×106 is twice the divergence time in year between the two 

species (Brunet et al. 2002), and 25 is the average human generation time in years. The 

recombination rate is estimated to be 0.7×10-8×3720=2.269×10-5 per sequence per 

generation, where 0.7×10-8 is the pedigree-based recombination rate per generation per 

nucleotide at the CASP12 locus (Kong et al. 2002) and 3720 is the number of nucleotides 

between the 5’ end of region 4 and the C/T polymorphism. We thus estimated that 

G=2,970 generations (Figure 4.3A), which corresponds to 74,250 years. The 95% 

confidence interval for P is between 0.647 to 1. If we consider the sampling error of P, 

the 95% confidence interval for the estimated time is from 0 to 154 thousand years. The 

standard error of the estimated mutation rate is 1/ 23 =21% of the estimate, while the 

error of the recombination rate is difficult to evaluate. 

In the second method, we used a deterministic selection model (Hartl and Clark 

1997) to estimate the number of generations required for the T allele to rise to its present-

day frequency among individuals of African descent. It has been estimated that the 

incidence of severe sepsis is I=0.59% and the mortality rate is M=26.5% among African 

Americans (Alexander et al. 2004). The genotype frequencies among individuals of 

African descent are fC/C =1.675%, fC/T =18.6%, and fT/T =79.77%, respectively (Saleh et al. 
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2004). Here we used the genotype frequency data from ref. (Saleh et al. 2004) because 

their sample is considerably larger than ours. The proportions of the three genotypes 

among severe sepsis patients have been estimated to be P(C/C | sepsis)=10.5%, P(C/T | 

sepsis)=29.0%, and P(T/T | sepsis)=60.5% (Saleh et al. 2004). Using Bayes theorem, we 

calculated the survival rate (S) for a given genotype X by SX=1-MP(sepsis | X) =1-IMP(X 

| sepsis)/fX, and obtained SC/C=0.9902, SC/T=0.9976, and ST/T=0.9988. Here we assumed 

that the pre-reproductive-age incidence of sepsis in much of the human history is 

comparable to the total incidence of sepsis estimated today (Alexander et al. 2004). The 

relative fitness of C/C to the fitness of T/T is therefore WC/C =SC/C/ST/T=0.991. Similarly, 

WC/T =SC/T/ST/T=0.999 and WT/T =1. The selective disadvantage of C/C compared with 

T/T is s =1- WC/C =0.009 and the degree of dominance of the C allele relative to the T 

allele is h=(1-WC/T)/(1-WC/C)=0.11. The number of generations required for a given 

change in allele frequency was calculated using the differential equation dp/dt=p(1-

p)s[ph+(1-p)(1-h)] with the current T frequency p =0.891 (Saleh et al. 2004) and the 

initial T frequency p0 =1/(2N), where N is the effective population size of humans (Hartl 

and Clark 1997). The calculated number of generations is t =2,111 (Figure 4.3B), under 

the assumption of an effective population size of 104 individuals (Takahata et al. 1995; 

Harpending et al. 1998). In this computation, we ignored the effect of random genetic 

drift because 2Ns =180>>1 and the behavior of the alleles is dominated by selection 

(Kimura 1983). Because of the sampling error, the 95% confidence interval of p is 

[0.875, 0.907], which gave the 95% confidence interval of the time required for the T 

allele to reach today’s frequency to be 51 to 55 thousand years. Note that the actual error 

of the time estimate may be considerably larger because the estimation errors of h and s 
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are difficult to assess. Here we assumed that positive selection acted as soon as the null 

allele appeared. It is possible that the null allele was initially neutral, but later became 

beneficial due to a change in the genetic or environmental background. If this is the case, 

the appearance of the T allele would be earlier than dated by this method. 

Strictly speaking, the first approach we used was to date the appearance of the T 

allele, whereas the second approach was to date the onset of the selective sweep. These 

two events were not necessarily simultaneous, although the appearance of the T allele 

was a prerequisite for the selective sweep. Despite the potentially large errors, the two 

estimates were close, suggesting that the T allele might have been beneficial since its 

appearance. Because the T alleles of Africans and non-Africans share the same origin, the 

C→T nonsense mutation must predate the out-of-Africa migration of modern humans, 

which is believed to have occurred 40-60 thousand years ago (Cavalli-Sforza and 

Feldman 2003). Our dating suggests that the pseudogenization of CASP12 began not long 

before this migration. As a comparison, it is interesting to compute the mean time 

required for a neutral allele to rise to the current frequency of p=0.891. This can be 

estimated by -4Np(lnp)/(1-p) =37,736 generations, or 943,000 years (Kimura and Ohta 

1973). In the above, N is the effective population size of humans and is assumed to be 

104. Thus, it would have taken a considerably longer time for the null allele to reach 

today’s frequency if it were neutral. 

 

4.4 DISCUSSION 

Our population genetic study provided strong evidence that the nearly complete 

fixation of a null allele at human CASP12 has been driven by positive selection, possibly 
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because it confers resistance to severe sepsis. CASP12 is a functional gene in all 

mammals surveyed except humans (Saleh et al. 2004), suggesting that it is indispensable 

in a typical mammal. The functional human CASP12 acts as a dominant-negative 

regulator of essential cellular responses including the NF-κB and IL-1 pathways; it 

attenuates the inflammatory and innate immune response to endotoxins (Saleh et al. 

2004). Because an appropriate level of immune response that is neither excessive nor 

insufficient is important to an organism, one can imagine that the immune suppression 

function of CASP12 becomes harmful when the immune system cannot fully respond to a 

challenge. It is likely that during human evolution alterations in our genetic and/or 

environmental background resulted in a malfunction of the immune response to 

endotoxins, which rendered the previously necessary function of CASP12 deleterious in 

humans and the null allele advantageous over the functional one. Identification of such 

genetic and/or environmental alterations will be valuable for understating human-specific 

immune functions. It is interesting to note that mouse Casp12 is implicated in amyloid-

induced neuronal apoptosis, whereas the functional form of human CASP12 does not 

have this function. The reasons and consequences of this difference, particularly in 

relation to the human-specific pathology of Alzheimer’s disease, are intriguing (The 

Chimpanzee Sequencing and Analysis Consortium 2005).  

The “less-is-more” hypothesis emphasized that gene loss can sometimes play an 

active role in evolution (Olson 1999), with the premise that gene loss may provide 

opportunities for future adaptations. Our finding that gene loss itself can be adaptive 

supports and extends the “less-is-more” hypothesis. In the context of pathogenic threats, 

it is interesting to mention two examples where human null alleles are selected for in 
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certain geographic areas (Stephens et al. 1998; Hamblin et al. 2002). In the first example, 

a null allele generated by a 32-nucleotide deletion in the CCR5 chemokine receptor gene 

was subject to positive selection in Caucasians in the recent human history (Stephens et 

al. 1998) (but see (Sabeti et al. 2005). CCR5 is used by pathogens, such as HIV, as a 

coreceptor to enter host cells; the null allele protects humans from attacks of these 

pathogens. The exact pathogens that were responsible for the spread of the CCR5 null 

allele, however, are still under debate (Galvani and Novembre 2005). In the second 

example, a null allele at the Duffy blood group locus was shown to be beneficial in some 

Africans, probably because it confers resistance to malaria (Hamblin et al. 2002). 

Nevertheless, in both of these examples, the null alleles appear to be less fit than the 

functional alleles when the pathogens are rare or absent. Thus, the positive selection for 

the null alleles is limited to small geographic areas and it is unlikely that they will lead to 

the eventual loss of the two human genes. By contrast, CASP12 has been lost in non-

Africans and is nearly lost in Africans. 

How often does adaptive gene loss occur in general? While this problem has not 

been investigated systematically, two non-human cases have been reported recently. The 

first occurred in a gene responsible for pheromone synthesis in insects and the 

pseudogenization led to the origin of a partially reproductively isolated race of 

Drosophila melanogaster (Takahashi et al. 2001; Greenberg et al. 2003). The second case 

involves a gene whose functional product prevents selfing in plants and the 

pseudogenization event allowed the evolution of self-pollination in Arabidopsis thaliana 

(Shimizu et al. 2004). Given the high frequency of pseudogenization in eukaryotic 

genomes, one may speculate that adaptive gene loss is not uncommon. Interestingly, two 

 100



of the three adaptive pseudogenizations so far documented happened to genes that are 

involved in chemoreception or immunity, consistent with the previous finding that genes 

of these functions tend to evolve rapidly with high rates of turnover (Hughes 1999; Grus 

et al. 2005). Although detection of adaptive gene loss is restricted due to a rapid decay of 

population genetic signals of selective sweeps (Przeworski 2003), it is possible that 

adaptive gene loss is more frequent than previously thought, especially from the above 

two functional categories. This said, the study of the roles that gene losses play in 

evolution has just begun; more empirical evidence is needed to demonstrate the 

importance of the “less-is-more” hypothesis during evolution in general and human 

evolution in particular. 

 

4.5 MATERIALS AND METHODS 

4.5.1 DNA amplification and sequencing of CASP12 alleles 

All human genomic DNA samples were purchased from Coriell Cell Repositories. 

The genotypes of 63 individuals of African descent at the C/T polymorphism (position 

629 of exon 4) were determined by sequencing a portion of exon 4. These individuals 

included 48 African Americans, 6 African pygmies, and 9 Africans (south of the Sahara). 

Four C/C homozygotes (3 African Americans and 1 African pygmy), 43 T/T 

homozygotes, and 16 C/T heterozygotes were identified. The T allele has a frequency of 

81±0.035% in our sample, slightly lower than that (89%) reported in a previous study, 

which was based on a much larger sample (Saleh et al. 2004). All 4 C/C individuals and 4 

randomly picked T/T individuals (3 African Americans and 1 African pygmy) were 

sequenced in 9 noncoding regions as shown in Figure 4.1. To ensure that the low 
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polymorphism found among T/T individuals in regions 4, 5, and 6 was not due to the 

small sample size, we sequenced 7 additional T/T individuals (all African Americans) in 

the three regions. The genotypes of 6 non-Africans (2 Caucasians, 1 Chinese, 2 Pacific 

Islanders, and 1 Andes) at the C/T polymorphism were also determined by the same 

approach and all were found to be T/T homozygotes. (Note that the fixation of the T 

allele in non-Africans was previously demonstrated in a sample of 347 individuals (Saleh 

et al. 2004).) Region 4 was sequenced in these 6 non-Africans and no SNPs were found. 

For conducting coalescent simulations by the ms program (Hudson 2002), we sequenced 

20 additional T/T individuals of the African descent for region 4, so that our sample of 

Africans comprised 4 C/C and 31 T/T individuals, with the frequency of T alleles being 

89%, which is expected for Africans (Saleh et al. 2004). Our sample can be treated as a 

random sample under the reasonable assumption of random mating with respect to the 

C/T polymorphism.  

The experimental procedure was as follows. Fragment-specific primers were 

designed according to the human genome sequence. Polymerase chain reactions (PCRs) 

were performed with MasterTaq (Eppendorf) under conditions recommended by the 

manufacturer. PCR products were separated on 1.5% agarose gel and purified using the 

Gel Extraction Kit (Qiagen). Amplified DNA fragments were sequenced from both 

directions in an automated DNA sequencer using the dideoxy chain termination method. 

Sequencher (GeneCodes) was used to assemble the sequences and to identify DNA 

polymorphisms. All singletons were confirmed by an independent PCR and sequencing 

experiment. After removing the primer regions, each sequenced fragment is 500-800 

nucleotides long. All the SNPs identified in this study are listed in Table 4.3.  
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4.5.2 Population genetic analysis  

Nucleotide diversity per site π (Tajima 1989), Tajima’s D (Tajima 1989), and Fay 

and Wu’s H (Fay and Wu 2000) were computed by DnaSP (Rozas and Rozas 1999). 

Gaps in the sequence alignments were excluded from the analysis. The chimpanzee 

genome sequence available in GenBank was used as an outgroup in computing H. 

Tajima’s test (Tajima 1989) and Fay and Wu’s test (Fay and Wu 2000) were conducted 

by DnaSP using coalescent simulations with 50,000 replications under the assumption of 

no recombination, which gave more conservative results than when recombination is 

considered. To test the hypothesis of selective sweeps more rigorously, we modeled 

various demographic scenarios of human populations by coalescent simulations (50,000 

replications per model). The parameters used in the coalescent simulations are described 

in Supplementary Methods. Two methods were used to estimate the age of the T allele, as 

described in detail in Results/Discussion.  

 

4.5.3 Demographic history simulation 

Our sample for region 4 included 4 C/C and 31 T/T individuals of African descent. 

Thus, the sample frequency of the T allele is 89%, same as the expected value for humans 

of African descent (Saleh et al. 2004). In the 70 chromosomes sequenced, 19 SNPs were 

found. The two most common haplotypes observed (with a total frequency of 61/70) are 

from T alleles and these two haplotypes have only one nucleotide difference. Let k1 be the 

number of copies of the most common haplotype in a sample and k2 be the number of 

copies of the most frequent haplotype among those that are one nucleotide different from 
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the most common haplotype in the sample. In coalescent simulations, we calculated the 

proportion of cases (out of 50,000 replications) in which k1+k2≥61. We used the ms 

program (Hudson 2002) to generate independent samples under a variety of neutral 

models with different demographic histories. The number of alleles and the number of 

segregating sites were set to be 70 and 19, respectively. The pedigree-based 

recombination rate of R=0.7×10-8
 per generation per nucleotide at the CASP12 locus 

(Kong et al. 2002) was used. We examined 9 demographic models following Evans and 

colleagues (Evans et al. 2005). We assumed an effective population size of N=104
 

(Takahata et al. 1995; Harpending et al. 1998), as the genetic variants of non-Africans are 

usually subsets of those of Africans. In the following command lines, 2413 is the length 

of region 4 in nucleotide, and 0.675 is the population recombination rate for region 4 

when N=104
 is used (ρ=4NR=4×104×0.7×10-8×2413=0.675). 

The 9 models tested and the command lines used in the ms program are: 

1) Constant population with an effective size of 104, 

./ms 70 50000 -s 19 -r 0.675 2413 

2) An ancient population expansion from 104
 at 5,000 generations ago exponentially to 

107
 today, 

./ms 70 50000 -s 19 -r 675 2413 -G 55262.04223 -eG 0.000125 0 

3) A recent population expansion from 104
 at 1,000 generations ago exponentially to 107 

today, 

./ms 70 50000 -s 19 -r 675 2413 -G 276310.2112 -eG 0.000025 

4) A severe bottle neck starting 5,000 generations ago that reduced the population from 

104
 instantly to 103

 and lasted until 2,500 generations ago at which point the population 
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started to expand exponentially to 107
 today, 

./ms 70 50000 -s 19 -r 675 2413 -G 147365.446 -eG 0.0000625 0 -eN 0.000125 0.001 

5) Repeated bottlenecks for five successive rounds starting 7000 generations ago, each 

from 104
 instantly to 103

 for 500 generations followed by exponential recovery back to 

104 over another 500 generations, except at the end of the fifth bottleneck 2500 

generations ago which was followed by exponential growth to 107
 today, 

./ms 70 50000 -s 19 -r 675 2413 -G 147365.446 -eG 0.0000625 0 -eN 0.000075 0.001 -eG 0.000075 

184206.8074 -eG 0.0000875 0 -eN 0.0001 0.001 -eG 0.0001 184206.8074 -eG 0.0001125 0 -eN 0.000125 0.001 -eG 

0.000125 184206.8074 -eG 0.0001375 0 -eN 0.00015 0.001 -eG 0.00015 184206.8074 -eG 0.0001625 0 -eN 0.000175 

0.001 

6) Population structure where the initial 70 chromosomes were split equally into 2 

different subpopulations under constant population size with 1 migration per generation, 

./ms 70 50000 -s 19 -r 0.675 2413 -es 0.0 1 0.5 -eM 0.0 1.0 

7) Population structure where the initial 70 chromosomes were split equally into 3 

different subpopulations with 1 migration per generation, 

./ms 70 50000 -s 19 -r 0.675 2413 -es 0.0 1 0.3333 -es 0.0 1 0.5 -eM 0.0 1.0 

8) Population structure where the initial 70 chromosomes were split equally into 4 

different subpopulations with 1 migration per generation, 

./ms 70 50000 -s 19 -r 0.675 2413 -es 0.0 1 0.25 -es 0.0 1 0.333 -es 0.0 1 0.5 -eM 0.0 1.0 

9) Population structure where the initial 70 chromosomes were split equally into 5 

different subpopulations with 1 migration per generation, 

./ms 70 50000 -s 19 -r 0.675 2413 -es 0.0 1 0.2 -es 0.0 1 0.25 -es 0.0 1 0.333 -es 0.0 1 0.5 -eM 0.0 1.0 
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Figure 4.1 Intraspecific DNA sequence variation in noncoding regions linked with the human CASPASE12 gene. CASPASE12 is 
shown in blue, with the exons depicted by solid blue bars on the chromosome. The premature stop codon generated by the C→T 
nonsense mutation is shown by an asterisk in exon 4. The 9 noncoding regions sequenced are indicated below the chromosome. 
Exons, introns, the 9 noncoding regions, and spaces between regions are drawn to scale as indicated. Red circles (connected by the red 
dotted line) show nucleotide diversity per site among African T alleles (πT) and the red boxes shows πT ± one standard error of πT. 
Green squares (connected by the green dotted line) show nucleotide diversity per site among African C alleles (πC) and the green 
boxes shows πC ± one standard error of πC. The broken green line shows the mean πC across the 9 noncoding regions sequenced. Black 
triangles (connected by the black solid line) show the ratio between πT and πC for each region. πC is estimated from 8 alleles. πT is 
estimated from 22 alleles for regions 4, 5, and 6, and from 8 alleles for the other regions. When only 8 alleles are used, πT is 
0.00018±0.00007, 0.00129±0.00071, and 0.00145±0.00057 for regions 4, 5, and 6, respectively. πT is significantly lower than πC in 
regions 4 and 5 (Table 4.1). 
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Figure 4.2 Genotypes of the 4 C/C homozygotes and 4 T/T homozygotes that were 
sequenced in all 9 noncoding regions. Each row represents one human individual and 
each column represents one SNP site. The top 4 individuals are homozygous for the 
functional CASP12 allele and the bottom 4 individuals are homozygous for the null allele. 
Blue, yellow, and green squares indicate homozygotes for the ancestral allele, 
homozygotes for the derived allele, and heterozygotes, respectively, at each SNP site. 
The nucleotide position of each SNP site is given at the bottom of the figure with the 
ancestral/derived nucleotides indicated. The nucleotide positions are relative to the start 
codon ATG. On the top of the figure is the chromosome, with the exons of CASP12 
depicted by solid blue bars on the chromosome. The premature stop codon generated by 
the C→T nonsense mutation is shown by an asterisk in exon 4. The 9 noncoding regions 
sequenced are indicated below the chromosome.  
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Figure 4.3 Estimating the age of the null allele and the onset of the selective sweep. 
(A) Decline of the frequency (P) of the founding haplotype of the null allele over 
generations (G). We used the formula P=(1-r)G , with the sum of the mutation and 
recombination rate r being 7.061×10-5 per generation. The dashed line shows the 
estimated P at present and its corresponding G. (B) The increase of the frequency (p) of 
the null allele over generations (t) by positive selection, based on the differential equation 
dp/dt=p(1-p)s[ph+(1-p)(1-h)]. Here we used p0=0.00005, h=0.11, s=0.009. The dashed 
line shows the estimated p at present and its corresponding t. 
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Table 4.1 Intraspecific variations in 9 noncoding regions linked to human 
CASPASE12. 

 

 

Region1 Length (nucleotide) Allele2 # of SNPs π Standard error of π Probability3

1 674 C (8) 5 0.00307 0.00067
T (8) 5 0.00413 0.00050 0.205

2 675 C (8) 3 0.00206 0.00049
T (8) 3 0.00206 0.00035 1.000

3 773 C (8) 2 0.00102 0.00033
T (8) 1 0.00069 0.00016 0.368

4 2413 C (8) 19 0.00280 0.00053
T (8) 1 0.00018 0.00007 <0.001
T (22) 1 0.00015 0.00004 <0.001

5 1553 C (8) 9 0.00233 0.00051
T (8) 8 0.00129 0.00071 0.234
T (22) 10 0.00069 0.00033 0.007

6 592 C (8) 3 0.00175 0.00071
T (8) 2 0.00145 0.00057 0.741
T (22) 4 0.00155 0.00041 0.807

7 730 C (8) 3 0.00127 0.00046
T (8) 3 0.00176 0.00069 0.555

8 738 C (8) 2 0.00106 0.00034
T (8) 3 0.00126 0.00038 0.695

9 777 C (8) 7 0.00267 0.00071
T (8) 3 0.00179 0.00046 0.298

1 The chromosomal locations of the 9 regions are shown in Figure 3.1
2 C is the (ancestral) functional allele and T is the (derived) null allele.  The number of chromosomes
sequenced is given in parentheses.  Eight T chromosomes were initially sequenced for all the regions.  
Subsequently, we sequenced another 14 T chromosomes for regions 4, 5, and 6.
3 The probability that the nucleotide diversity is identical between T and C alleles for the region
concerned (two-tail Z test).  

4.1. 
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Table 4.2 Results from coalescent simulations. 

 

Demographic models1 Probability (%)2

Constant population size 0.066
Ancient population expansion 0.006
Recent population expansion 0.068
Several bottlenecks 0.232
Repeated bottlenecks with subsequent expansion 0.126
Population structure with 2 subpopulations 0.066
Population structure with 3 subpopulations 0.116
Population structure with 4 subpopulations 0.358
Population structure with 5 subpopulations 0.824
1 The parameters used are detailed in Materials and Methods.
2 Proportion of cases with k 1+k 2 ≥ 61 in 50,000 simulation replications.

See main text for details.  
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Table 4.3 SNPs identified in the noncoding regions linked with CASP12. 

Nucleotide positions1 SNPs2 Allele frequency (%)3 Sample size4

-9705 C/T 37.5 8
-9612 A/G 12.5 8
-9598 C/T 62.5 8
-9548 G/A 43.7 8
-9499 C/T 37.5 8
-9150 G/A 6.3 8
-5519 C/T 6.3 8
-5194 T/C 37.5 8
-5042 C/T 62.5 8
-4993 A/G 18.8 8
233 A/G 25.0 8
657 T/C 31.3 8

2516 T/G 1.4 35
2621 C/A 1.4 35
2674 A/G 1.4 35
3000 G/A 91.4 35
3081 A/G 95.7 35
3142 A/C 91.4 35
3148 C/T 91.4 35
3869 T/C 1.4 35
3957 A/G 8.6 35
3980 G/A 8.6 35
4018 G/A 91.4 35
4045 C/T 1.4 35
4111 T/A 70.0 35
4181 T/C 1.4 35
4239 A/T 7.1 35
4706 T/A 91.4 35
4759 G/T 1.4 35
4855 T/C 1.4 35
5083 C/T 1.4 35
5175 C/T 8.6 35
8335 T/G 76.7 15
8453 C/G 76.7 15
8642 G/A 6.7 15
8667 A/T 3.3 15
8893 C/T 6.7 15
9440 C/A 13.3 15
9586 G/A 23.3 15
9854 T/C 23.3 15
9951 A/T 76.7 15
10168 G/A 23.3 15
10239 G/A 3.3 15
10250 C/T 3.3 15
11823 G/T 3.3 15
11867 T/C 73.3 15
11968 C/T 20.0 15
14642 T/C 18.8 8
14771 A/T 75.0 8
14959 C/T 18.8 8
18112 G/A 6.3 8
18374 T/C 6.3 8
18439 G/A 25.0 8
18716 T/C 18.6 8
20030 C/T 6.3 8
20093 C/T 6.3 8
20118 T/G 12.5 8
20133 A/C 68.8 8
20244 A/G 6.3 8
20298 C/G 37.5 8
20516 A/G 37.5 8

1 The nucleotide positions are relative to the start codon ATG of the CASP12 gene.
2 The ancestral/derived nucleotides are given for each SNP.
3 Frequency of the derived allele estimated from individuals of African descent.
4 Number of sequenced human individuals with African descent.  
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