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Preface

The introduction (Chapter I) is a review of our current understanding of the UPR

field. (Cell Death Differ. 2006 Mar;13(3):374-84.) Chapter II is a copy of publication by

Jun Wu et al. (Developmental Cell, 2007 Sep;13(3):351-64, J. Wu, D.T. Rutkowsk and

R. Kaufman jointly conceived and designed the experiments, performed experiments,

analyzed data and wrote the paper).  Chapter III is composed of the mouse genetics part

of a research article (Cell. 2006 Feb 10;124(3):587-99) and further work on ER stress

and inflammation that is being prepared for submission for publication and will be

credited to Jun Wu, Kezhong Zhang, Sung Hoon Back, D. Thomas Rutkowski and

Randal Kaufman et. al.
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CHAPTER I

INTRODUCTION

The Endoplasmic Reticulum (ER) is the entry site for proteins destined to the

endo/exocytotic pathway, and provides an optimal and unique environment for protein

folding, assembly and disulfide bond formation prior to exposure to the extracellular

space. The concentration of proteins within the ER lumen is extremely high,

approximately 100mg/ml 1.  The protein synthesis rate is also astonishingly high in

professional secretory cells, where it is estimated that hepatocytes and pancreatic

exocrine cells synthesize approximately 13 million and 2.6 million secretory proteins per

minute, respectively 2. To accomplish such a thermodynamically unfavorable process in

an overwhelmingly crowded environment, the cell expends a large amount of energy to

ensure that this quantitative achievement does not come at the price of quality.

Homeostasis within the ER lumen is meticulously monitored and elegantly maintained.

A broad spectrum of insults can lead to the activation of a coordinated adaptive program

called the unfolded protein response (UPR). In response to the accumulation of unfolded

proteins in the ER, the rate of general translation initiation is attenuated, the expression of

ER resident protein chaperones and protein foldases is induced, the ER compartment

proliferates, and ER-associated degradation (ERAD) is activated to eliminate the

irreparably misfolded proteins.  When the pro-survival efforts are exhausted, ER-stress

related apoptosis commences. A number of insults lead to protein misfolding in the ER.
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 These include nutrient deprivation, alterations in the oxidation-reduction balance,

changes in calcium concentration, failure of post-translational modifications, or simply

increases in secretory protein synthesis 3. Pharmacological reagents were initially

employed to elucidate how cells cope with immediate and severe challenges to the

protein folding quality control system. These approaches have led to our present

knowledge of the molecular logic of UPR signaling pathways, which has been thoroughly

reviewed 4. However, as analysis of increasing numbers of murine genetic models created

with mutations in major UPR components proceeds, it is becoming apparent that a wide

diversity of physiological fluctuations and pathological conditions can also disrupt the

protein folding efficiency in the ER in a relatively subtle and chronic manner to activate

the UPR. For professional secretory cells that harbor an extensive, highly-evolved ER

structure, such as antibody-secreting plasma cells, collagen-secreting osteoblasts, and

cells within the endocrine/exocrine organs, emerging evidence suggests the UPR is

indispensable and actively involved to ensure proper function and survival.

I. The temporal sequential activation of UPR sub-pathways upon acute ER stress

a. Response initiation: one master regulator

During the pre-stress state, nascent, folding-competent polypeptides are

maintained in a soluble form by interaction with ER lumenal chaperones. BiP/GRP78

(immunoglobulin heavy chain binding protein/glucose regulated protein of molecular

weight 78 kDa) is one of the most highly expressed ER resident chaperones.  BiP is a

member of the heat-shock protein (Hsp70) family, and is localized to the ER through an

N-terminal cleaved signal peptide and a C-terminal ER retention motif (KDEL).  The C-

terminal domain of BiP binds to exposed hydrophobic patches on protein-folding
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intermediates with rather low substrate specificity.  The N-terminal domain of BiP

functions as a peptide-dependent ATPase that uses ATP hydrolysis to promote a

conformational change in the C-terminal region that promotes high affinity peptide

binding.  Upon exchange of ATP for bound ADP, BiP reverts back to the low-affinity

peptide binding state.  In this way, the cell couples substrate binding and release with the

expenditure of cellular energy 5-7.

To date there are three identified proximal sensors of the UPR: the PKR-like ER

protein kinase/pancreatic eIF2α (eukaryotic translation initiation factor 2, α subunit)

kinase (PERK/PEK); the  activating transcription factor 6 (ATF6); and the inositol-

requiring enzyme 1 (IRE1) (Figure 1-1).  All of these sensors associate with BiP in their

inactive states. It is proposed that when ER homeostasis is perturbed, BiP preferentially

binds to and is sequestered by unfolded/misfolded proteins that accumulate in the ER

lumen.  As a consequence, BiP dissociates from the UPR transducers to permit their

signaling. The major support for this hypothesis is that BiP is found in association with

each stress transducer under non-stress conditions and is released upon accumulation of

unfolded proteins 8-11.  In addition, over-expression of BiP inhibits signaling through all

three sub-pathways 12. Unfortunately, there is little direct data to support this model

where BiP inhibits UPR activation. However, it remains an attractive hypothesis because

this model implies that the peptide-dependent ATPase activity of BiP can function as an

unfolded protein sensor to mechanistically link UPR activation with the cellular energy

status and/or nutrient level.

In contrast to the simultaneous activation of the three UPR transducers upon

severe, acute ER stress, selective UPR sub-pathways function under various
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physiological and pathological ER stresses (see section II). Two groups recently proposed

that the ER stress transducers Ire1p and ATF6 themselves are actively involved in the

dissociation from BiP and the consequent activation, contrary to being passively

competitive deprived of BiP 13,14. It is also conceivable that there are other regulators

involved in response initiation, for example, co-chaperones such as the DnaJ family

members that stimulate the ATPase activity of the Hsp70 family members, or other

tissue-specific adaptor proteins that may facilitate activation of specific UPR sub-

pathways in response to different physiological conditions. Alternatively, it is possible

that the affinity of each UPR transducer for BiP varies from cell type to cell type.

b. Signal diversification: unique signal transduction from three proximal

transducers

Although the three UPR sub-pathways are simultaneously activated upon severe

ER stress, the immediate response occurs through the PERK/eIF2α pathway. PERK is a

type I ER transmembrane protein kinase.  Upon release from BiP, PERK dimerizes to

promote its autophosphorylation and activation. Activated PERK phosphorylates

eIF2α to attenuate the rate of general translation initiation 15,16. The rapid and reversible

regulation of mRNA translation provides an “emergency brake” to prevent further

synthesis of proteins when the ER lumen is compromised in its protein-folding capacity.

Paradoxically, phosphorylation of eIF2α preferentially increases the translation of

selective mRNAs that contain inhibitory upstream open-reading frames (uORFs) within

their 5’ untranslated region (UTR).  The best studied example in mammalian cells is the

eIF2α phosphorylation-dependent translation of activating transcription factor 4 (ATF4)

mRNA 17,18.
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Coincident with PERK activation upon BiP release, BiP release from IRE1

permits its dimerization and autophosphorylation to activate its site-specific

endoribonuclease (RNase) activity 19. The RNase activity of IRE1 initiates splicing of a

26 base intron from X-box binding protein 1 (XBP1) mRNA.  This non-conventional

splicing reaction introduces a translational frameshift into the XBP1 mRNA that alters

the C-terminus of the protein to create a potent transcription factor 20-23.

ATF6 is a type II transmembrane protein of the ER. BiP release allows the transit

of ATF6 to the cis-Golgi compartment, where it is cleaved by site-1 protease (S1P) and

site-2 protease (S2P), the same enzymes that process the sterol-response-element binding

protein (SREBP) upon cholesterol deprivation 24-26. The cleaved cytosolic N-terminal

fragment of ATF6 migrates to the nucleus and acts as an active transcription factor,

together with ATF4 and XBP1 derived from spliced Xbp1 mRNA, to increase the

expression of the genes encoding proteins that function to augment the ER protein-

folding capacity. These gene targets include ones encoding ER chaperones such as

BiP/GRP78, GRP94, calreticulin, and ones encoding proteins that catalyze protein-

folding such as the protein disulfide isomerases PDI, ERP57, and ERP72. In addition,

UPR-activated genes stimulate ER biogenesis to compensate for the increased demand

for the protein-folding machinery and accelerate ERAD to remove terminally misfolded

proteins 27-31. The specificity and diversity of downstream transcriptional responses upon

different conditions is likely a result of combinatorial interactions between these

transcription factors at the promoters of target genes.

This transcriptional adaptive program requires mRNA translation and therefore, a

mechanism to recover from the PERK-mediated translational suppression.
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c. Termination of the UPR signaling: negative feedback regulators

Translational recovery is mediated through dephosphorylation of PERK and/or

eIF2α. To preclude the destructive translation attenuation mediated by

eIF2α phosphorylation upon cell stress, mammalian cells evolved both a constitutively

active regulator of p-eIF2α  phosphatase, e.g. CreP (constitutive repressor of eIF2α

phosphorylation) and a stress-induced regulator of p-eIF2α  phosphatase, GADD34

(growth arrest and DNA damage gene 34). Both proteins act as subunits of the protein

phosphatase holoenzyme PP1. In addition, p58IPK (58 kDa PKR inhibitor) is a UPR-

induced gene product that inhibits the eIF2α kinases PERK and the double stranded-

RNA activated protein kinase PKR 32-36.  It is unknown how the mRNAs of GADD34 and

p58IPK escape translational repression before dephosphorylation of eIF2α occurs, but

CreP may mediate this function.

In yeast, inactivation of Ire1p/Hac1p pathway is achieved by an Ire1p

phosphatase, Ptc2p 37. The mechanism of deactivation of the ATF6 and IRE1/XBP1

pathways in higher eukaryotes has not been established. However, as the UPR remains

activated, the level of BiP increases so that it can bind and prevent further activation of

ATF6, IRE1, as well as PERK.  The mechanisms for inactivation of ATF6 and XBP1

transcriptional functions are also not known, but may involve targeted degradation by the

proteasome.

d. ER stress-mediated apoptosis

When all the pro-survival efforts fail to correct the protein-folding defect,

apoptosis is activated.  It is not clear at what point and by which mechanism the cell

commits to death in response to excessive ER stress.  Both mitochondrial- dependent and
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independent cell death pathways likely mediate apoptosis in response to ER stress. The

ER might actually serve as a site where apoptotic signals are generated through several

mechanisms including Bak/Bax regulated Ca2+ release from the ER, cleavage and

activation of procaspase-12, and IRE1-mediated activation of ASK1 (apoptosis signal-

regulating kinase 1) / JNK (c-Jun amino terminal kinase) (Figure 1-2).

The available data suggest that upon encountering ER stress, pro-apoptotic Bcl2-

related proteins, Bak and Bax undergo conformational alteration in the ER membrane to

permit Ca2+ efflux into the cytoplasm 38,39. In vitro experiments support the idea that the

increase in Ca2+ concentration (from micromolar to millimolar) in the cytoplasm activates

the calcium-dependent protease m-Calpain, that subsequently cleaves and activates the

ER-resident procaspase-12 40.  Activated caspase-12 cleaves and activates procaspase-9

and consequently leads to activation of the caspase cascade 41.  The Ca2+ released from

the ER enters mitochondria leading to depolarization of the inner membrane, cytochrome

c release, and activation of Apaf-1(apoptosis protease activating factor 1)/procaspase-9

regulated apoptosis 42,43. CHOP (CEBP homologous protein) is a downstream

transcriptional target of ATF6 and PERK/ eIF2α/ATF4.  CHOP is a basic leucine zipper-

containing transcription factor that inhibits the expression of Bcl-2 and thereby is

proposed to promote apoptosis  44,45.

IRE1α is proposed to play a role in ER stress-mediated apoptosis by interaction

with TRAF2 (TNF receptor associated factor-2) and ASK1 leading to the activation of

ASK1 and JNK, and subsequent cell death 46. It has also been suggested that

IRE1/TRAF2 association releases procaspase-12 from TRAF2, which is required for the

activation of procaspase-12 47.
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Analysis of gene-deleted mice has provided insight into ER stress-induced

apoptosis.  Cells from Apaf-1 deficient mice are susceptible to ER stress-induced

apoptosis, indicating that non-mitochondrial death pathways exist. Bak/Bax double

knock-out, caspase-12-/- and chop-/- murine embryonic fibroblasts (MEFs) all show

partial resistance to ER stress induced apoptosis, further supporting the idea that they

facilitate the apoptotic response upon ER stress 44,48,49. Although, caspase-12-deficient

and CHOP-deficient mice show no developmental defects, they display protection to

genetically-imposed or environmentally-imposed ER stress 49,50.

II. The role of the UPR in professional secretory cell development and function

The adaptive aspects of the UPR signaling are better understood than the

apoptotic pathways. However, in vivo analyses of these pathways under physiological

and pathological contexts constantly surprise researchers and have inspired the current

popular hypothesis that UPR pathways are regulated in a finely-tuned manner with

selectivity and additional specificity to meet the complexity of various developmental

and metabolic demands. The best understood physiological requirements for the UPR

were elucidated in studies performed in professional secretory cells, which are under

greater demand to fold and process large quantities of proteins   (Table 1-1).

a.  Lessons from plasma cell differentiation

Analysis of the differentiation of B lymphocytes into plasma cells has suggested

that the UPR drives ER biogenesis in response to high-level secretory protein synthesis 51.

Extensive studies have elucidated the relationship between the UPR and plasma cell

differentiation. The results from these studies established the fundamental principle that
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the UPR provides an essential physiological role in professional secretory cell

differentiation.

It was reported over 20 years ago that the expression level of chaperones in the

ER lumen is increased during lipopolysaccharide (LPS)-induced B cell differentiation

52,53. BiP was originally characterized as a protein that interacts with immunoglobulin (Ig)

heavy chains to prevent their secretion in pre-B lymphocytes prior to light chain gene

rearrangement 54. Subsequent studies demonstrated that BiP acts as a chaperone to assist

Ig heavy chains interact with Ig light chains.  In parallel studies, it was observed that

GRP78 is one of a number of gene products that reside in the ER and that are induced

upon glucose deprivation.  The products of these genes were thus termed glucose-

regulated proteins. When it was discovered that BiP is the same protein as GRP78, it

became evident that many of the GRPs provide protein chaperone function in the ER.  At

that point, investigators began to test whether the UPR may be involved in the process of

B lymphocyte differentiation into high-level Ig secreting plasma cells. B cell

lymphopoiesis consists of an antigen-independent phase in the bone marrow (pro-B cell,

pre-B cell) and an antigen-driven phase of differentiation that is completed in the

periphery (mature B cell, plasma cell). In pre-B cells, the ER exists as a minimal

structure, most of which is nuclear envelope.  Plasma cell differentiation in the periphery

is accompanied by a 5-fold expansion of the ER compartment, into stereotyping

ribosome-studded stacked membrane sheets, presumably to accommodate the high level

of Ig secretion.  The first factor identified to be required for B lymphocyte differentiation

into plasma cells was the transcription factor XBP1.  When it was discovered that the

mammalian substrate for the endoribonuclease activity of IRE1 is XBP1 mRNA, it was
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proposed that the IRE1 sub-pathway of the UPR provides an important physiological role

to drive plasma cell differentiation 55.

LPS- or interleukin-4 induced differentiation of B lymphoma cells into plasma

cells provides a unique experimental system to study the general involvement of the

UPR. Results from in vitro lymphoma or splenic B cell differentiation assays showed that

the classical UPR target genes, such as BiP and GRP94 are dramatically induced 55,56.

Stimulation of primary splenic B cells from different mouse genetic backgrounds can

identify the unique requirements for individual gene products in this differentiation.  In

addition, the ability to reconstitute the B cell lineage in immunodeficient mice (such as

recombination activating gene RAG1- or RAG2- deficient mice), provides a method to

directly test the role of different genes in B cell differentiation. RAG-1 and RAG-2 are

essential for the rearrangement of Ig (immunoglobin) heavy and light chain gene loci 57,

as well as the T cell receptor gene loci. As a consequence, RAG-2-deficient mice lack

mature T cells and B cells. Analysis of chimeric mice created by injection of

homozygous deficient embryonic stem cells into RAG-2-deficient blastocysts or of RAG-

2 deficient mice transplanted with hematopoietic stem cells deleted in specific

components of the UPR pathway has provided insights into the requirement of the

IRE1α/XBP1 pathway in this system.

XBP1 transcription is induced during B cell differentiation and xbp1-/- B cells fail

to differentiate into antibody-secreting plasma cells in vivo 58. XBP1 splicing correlates

with plasma cell differentiation and ectopic expression of the spliced form of XBP1

restores Ig production in XBP1-deficient B cells in vitro 55. The important role that XBP1

plays in plasma cell differentiation suggested that IRE1α is also essential for this process.
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This idea was well supported by the observation that Ire1α-/- B cells did not differentiate

into antibody secreting plasma cells 59. Unexpectedly, the same set of experiments

discovered that IRE1α is also required at the first stage of B cell lymphopoiesis to induce

Ig gene rearrangements.  More intriguing, is that the cytoplasmic domain, but not the

protein kinase or endoribonuclease catalytic activities, was required for this novel

function 59. The IRE1α protein was required to activate expression of Rag1, Rag2, and

terminal deoxynucleotidyl transferase (TDT).

These findings have led to several important questions. First, what signals activate

IRE1α to promote Ig gene rearrangement? Second, is BiP dissociation from

IRE1α required? Certainly, the analysis of plasma cell differentiation in B cells that

express different mutants of IRE1α will provide important insight into this process 55.

Finally, what role does IRE1α /XBP1 play in the late stage of B cell

differentiation? To address these issues, it is important to elucidate the temporal

hierarchy of the increase in antibody production to create ER load and the expansion of

the protein folding capacity. Does ER stress actually drive the ER differentiation process?

Although this question has created a considerable debate, most reports support the

hypothesis that expansion of the ER protein-folding capacity occurs at least

simultaneously, if not prior to, initiation of Ig protein secretion 56,60, suggesting that the

UPR activation may not solely depend on BiP dissociation from IRE1 in this case.

However, it should be noted that Ig gene rearrangements associated with B cell

differentiation produce a number of non-productive alleles that would produce misfolded

Ig chains.  It is possible that expression of folding-defective Ig intermediates from

incorrectly rearranged alleles potently activates the UPR to contribute to ER expansion at
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an early time in differentiation, after the first Ig heavy chain gene V-D rearrangement

occurs.

The unsolved mysteries of B cell differentiation also raise the question of why the

PERK/eIF2α pathway is not as essential as the IRE1α/XBP1 pathway.  In the absence of

eIF2α phosphorylation, B cells can completely differentiate into functional plasma cells

59. Since BiP appears to associate with the lumenal domains of IRE1α and PERK in a

similar manner to regulate the UPR upon severe ER stress 61, the in vivo disparity in the

roles of these two pathways supports the idea that a more sophisticated mechanism of

regulation exists for the physiological UPR in specific cell types. The other UPR

transducer, ATF6 is cleaved and activated during B cell differentiation into plasma cells

56.  In addition, inhibition of the ATF6 pathway by expression of a dominant-negative

form of ATF6 reduced IgM production in differentiating B cells 62.

The physiological function of ATF6 in the UPR and plasma cell differentiation is

under question because knock-down of both isoforms of ATF (ΑΤF6α and ATF6β) did

not interfere with UPR gene induction 63, despite the finding that over-expression of

ATF6 induced a significant set of UPR target genes. Cells lacking both XBP1 and

ATF6α are defective in UPR activation 63, suggesting that these two pathways may

overlap.

Another very appealing possibility is that the UPR is activated through interplay

between the conventional UPR pathway and other signal transduction pathways. During

plasma cell differentiation, XBP1 is downstream of BLIMP1 (B lymphocyte-induced

maturation protein 1), a transcription factor required for plasma cell differentiation which

is regulated by interleukin (IL)-4 at a transcriptional level 55,64. It has also been proposed
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that XBP1 is upstream of IL-6 during plasma cell differentiation 55. Meanwhile, activated

XBP1 increases the protein-folding machinery in the cell, at least in part by increasing

the expression of ER chaperones and foldases. A recent report links XBP1 activation to

ER membrane biogenesis 65.

 b. Pancreatic beta cell function and survival

The pancreatic beta cell has been under intense investigation ever since its pivotal

role in the pathogenesis of diabetes mellitus was recognized 66. Extensive research is

directed to understand what unique properties beta cells have to confer glucose

responsive insulin production and secretion. The hallmark of pancreas dysfunction in

non-insulin dependent diabetes mellitus is diminished glucose-responsive insulin

secretion, which is regulated by signals derived from mitochondrial metabolism 67.  In

order to maintain adequate intracellular insulin stores, beta cells must adapt their acute

and chronic rates of insulin biosynthesis to compensate for insulin release. Chronic

elevation in extra-cellular glucose concentration further stimulates the synthesis of insulin

by increasing expression of the mRNA encoding preproinsulin, increasing proinsulin

translation and processing, and induction of additional components of the secretory

pathway to support processing, transport and glucose-regulated secretion of insulin.

Type 2 diabetes results from failure of beta cells to adequately adapt to the increasing

demand for insulin production as a consequence of peripheral insulin resistance.

i.  ER overload leads to beta cell dysfunction.

As a professional secretory cell, the vulnerability of the beta cell to ER stress was

suggested in early studies that induced beta-cell damage by over-expression of major

histocompatibility complex (MHC) class II protein in islets of transgenic mice 68.
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Characterization of the Akita mouse further supported the hypothesis that ER stress could

be one cause for beta cell death. There are two insulin genes in the murine genome (Ins1

and Ins2).  In the Akita mouse, a highly conserved cysteine in the Ins2 gene is replaced

by a tyrosine, thereby disrupting formation of one essential disulfide bond in proinsulin-

2. The mutant protein cannot be processed and secreted normally and is retained within

the ER. Although the islets from newborn Akita mice do not show detectable defects,

later in development a progressive beta cell loss occurs that correlates with early onset

diabetes 69. Since the complete absence of Ins2 expression does not lead to a similar

diabetic phenotype and the Akita phenotype is dominant, the Akita mutation represents a

gain-of-function.  It is believed that the mutant protein is toxic due to induction of the ER

stress response 70. This notion is further supported by the findings that the ER in the Akita

beta cells is distended and the UPR target genes BiP and CHOP are induced.  In addition,

deletion of the CHOP gene delayed the onset of beta-cell destruction and of

hyperglycemia in heterozygous Akita mice 69,71. The absence of CHOP was also reported

to increase resistance to nitric oxide-induced apoptosis in pancreatic beta cells 72. Since

nitric oxide production is implicated in the pathogenesis of type I diabetes 73,

development of specific inhibitors that either block CHOP expression or its transcription

factor activity, for example preventing CHOP dimerization or DNA binding activity, may

yield potential therapeutics for the prevention of diabetes.

ii. Defective regulation of the PERK/eIF2α pathway leads to beta cell dysfunction

Recent studies also indicate that the UPR is required to maintain beta cell

function. Compared to other differentiated cells, the beta cell requires periodic increases

in the capacity to fold and secrete insulin in response to post-prandial increases in blood
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glucose. This regulation of insulin synthesis is immediate and reversible and may be

mediated by the PERK/eIF2α UPR sub-pathway. PERK was first identified as a highly

expressed eIF2α protein kinase in the pancreas.  Deletion of PERK results in progressive

destruction of pancreatic beta cells in both humans and mice 15,74,75. In humans, mutations

in the PERK gene cause Wolcott-Rallison syndrome which manifests as an infantile-

onset, insulin-requiring diabetes 74. perk-/- mice experience a progressive loss of beta

cells and develop diabetes within the first few weeks after birth 75. It is proposed that in

the absence of PERK, mRNA translation cannot be attenuated so the protein-folding load

cannot be properly coupled with the protein-folding capacity of the ER.  As a

consequence, perk-/- mice have defects in beta cells as well as in other highly specialized

secretory cells, such as exocrine pancreatic acinar cells, hepatocytes and osteoblasts 75.

Islets isolated from perk-/- mice secrete more insulin when they are switched from low

glucose to high glucose conditions 75.  This is presumably due to the inability to down-

regulate protein synthesis in response to increased insulin production.  The eventual

outcome results in accumulation of unfolded proinsulin in the ER with loss of beta cell

secretion potential.

Mice that are resistant to regulation by all eIF2α  kinases were generated by

introducing a serine51alanine point mutation, the residue phosphorylated by all eIF2α

kinases, into the eIF2α gene 31. Homozygous eIF2α S51A knock-in mice develop a more

severe β-cell dysfunction prior to birth, compared to perk-/- mice 31. The more severe

beta cell defect in the eIF2α mutant mice may indicate that other eIF2α kinases, such as

the general control of amino acid biosynthesis kinase GCN2 or the double-stranded (ds)
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RNA-activated protein kinase PKR, may partially compensate for eIF2α phosphorylation

in the absence of PERK 76-78.

Heterozygous eIF2α S51A mice, where eIF2α  phosphorylation regulation is

reduced to approximately 50%, have no significant phenotype.  However, when these

mice are challenged with a high-fat diet, they develop insulin resistance, obesity, and

diabetes with pancreatic beta cell failure associated with a loss of glucose-stimulated

insulin secretion.  The beta cells in the heterozygous high-fat fed mice exhibit abnormal

distension of the ER lumen, defective folding and trafficking of proinsulin, and a reduced

number of insulin granules 79.  The reduced number of insulin granules can account for

the loss of glucose-stimulated insulin secretion. It is proposed that the partial defect in the

PERK/eIF2α pathway compromises the ability to couple proinsulin synthesis with

proinsulin folding in the ER, leading to defective insulin secretion.

Mice with a defect in down-regulating PERK-mediated eIF2α phosphorylation by

deletion of p58IPK also show increased pancreatic beta cell apoptosis concurrent with a

gradual onset of glucosuria and hyperglycemia 80. On the other hand, developmental or

metabolic defects were not observed in mice with homozygous GADD34 mutation to

prevent regulated p-eIF2α dephosphorylation 81. The divergence between the gadd34Δc/Δc-

and p58IPK- deleted mice may indicate that these two negative regulators play different

physiological roles in vivo.

c. The UPR in hepatocytes

The liver is one of the major secretory organs in the body. Its functions include

regulation of glucose homeostasis, lipid metabolism and drug detoxification. Although
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the role of the UPR in the liver has not been significantly studied, preliminary results

suggest that the UPR is essential for hepatocyte function.

Both IRE1α− and XBP1- deficient mice display a hypoplastic fetal liver. Growth

is severely diminished and prominent apoptosis occurs in XBP1-null hepatocytes 59,82.

UPR activation is observed in the livers of diet-induced or genetically obese and/or

diabetic mice 83,84. For example, PERK activation, eIF2α phosphorylation, and BiP

expression were increased compared to lean controls. In addition, heterozygous XBP1-

deleted mice were more susceptible to insulin resistance, associated with chronic ER

stress and JNK1 hyperactivation 83. It has been reported that ER stress leads to JNK

activation 85 and inhibition of JNK1 signaling was shown to increase insulin sensitivity 86.

In hepatoma cells, it is proposed that the UPR initiates activation of JNK1 which

subsequently phosphorylates serine residue 307 of the insulin receptor substrate-1 (IRS-

1), consequently reducing insulin receptor signaling 83. Recent work has shown that

protein-tyrosine phosphatase 1B (PTP-1B) interacts with the IRE1/XBP1 pathway 87. The

absence of PTP-1B attenuates ER stress-induced apoptosis, JNK-activation and XBP1-

splicing. The potential involvement of PTP-1B in the physiological UPR is particularly

interesting because of its predominant localization to the ER 88, and its role in insulin

signaling and metabolism 89. Although data support a role for XBP1 and JNK1 in insulin

signaling, it is presently not known whether signaling from these transducers emanates

from ER stress and activation of IRE1.

Recent work has shown that ATF6 antagonizes the lipogenic functions of

SREBP2 in the liver 90. Glucose deprivation to induce ATF6 cleavage and activation, as

well as ectopic expression of the cleaved form of ATF6, attenuates the activity of the
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transcription factor SREBP2.  This inhibitory effect can be reversed by over-expression

of BiP, suggesting the signal emanates from the ER.

The Caenorhabditis elegans homologue of Creb-H, a liver-specific b-ZIP

transcription factor that shares significant homology with ATF6, is a UPR responsive

gene and is regulated by ire-1 and xbp-1 in the nematode 91.  Like ATF6, mammalian

CREBH is cleaved upon ER stress by S1P/S2P, and the liberated N-terminal cytosolic

fragment transits to the nucleus. Instead of inducing expression of the UPR target genes,

CREBH acts with ATF6 to synergistically activate the transcription of the acute phase

response genes, including serum amyloid P-component (SAP) and C-reative protein

(CRP) in response to ER stress. CREBH knockdown in transgenic mice demonstrated

CREBH may not be required for hepatocyte differentiation, although there was a defect

in the acute inflammatory response 92. These observations identify a novel link between

ER stress and some previously-thought-non-related physiological processes.

The mechanism by which misfolded proteins affect liver function is also

illustrated in some cases of α1-antititrypsin deficiency. The Z allele of the α1-antitrypsin

(α1-AT)(Glu342Lys mutation) produces a protein that polymerizes and is retained in the

ER.  Although this protein interacts with calnexin, there is questions about whether it

significantly interacts with BiP and activates the UPR 93.  However, analysis of α1-AT

expression in transfected fibroblasts isolated from affected patients suggests that defects

in ERAD are associated with a greater severity of liver pathology 94.

 d. The physiological role of the UPR in osteoblasts

The osteoblast is the only cell type responsible for extracellular matrix deposition

during bone formation. One of the major ER stress markers, ATF4 has been reported to
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regulate the onset of osteoblast differentiation, type I collagen synthesis, osteoblast-

specific gene expression, and osteoblast terminal differentiation 95. Osteoblasts express

high levels of ATF4 protein compared to most other tissues 96. This observation is

surprising given that ATF4 mRNA is present in a rather broad range of organs 96. It is

tempting to speculate that this discrepancy is related to stress-induced translational

regulation. Mice and humans deficient in PERK have the same abnormal thinning of

bone trabeculae that was observed in ATF4-deficient mice 74,97. It will be informative to

investigate whether tissue-specific knock-in of the eIF2α S51A mutation in osteoblasts

produces a similar defect as the ATF4-null and PERK-null mice. In contrast, osteoporosis

and deficient bone mineralization occur during osteogenesis imperfecta (OI), which is a

disease where misfolded mutant procollagen binds to BiP and activates the UPR 98.

Therefore, a proper balance of UPR activation may be required for optimal osteoblast

function.

The initial stage of tooth enamel development is a secretory event. The columnar

ameloblast cells of the enamel organ are responsible for dental enamel development.

During the secretory stage, the ameloblasts are tall, contain an extensive ER and secret

large amounts of protein into the enamel matrix. It was reported that the UPR plays a role

in the ameloblast, especially for its susceptibility to the toxic effects of fluoride exposure

99.
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Figure 1-1. Adaptive signaling of the unfolded protein response. The three proximal
UPR transducers, ATF6, IRE1 and PERK all associate with BiP in their inactivate state.
Upon accumulation of unfolded/misfolded proteins in the ER lumen, these sensors are
released and activated. ATF6 transits to the Golgi where it is cleaved by S1P/S2P and the
cytosolic fragment of ATF6 migrates to the nucleus. Both IRE1 and PERK are
oligomerized and autophosphorylated. Phosphorylated IRE1 catalyzes the splicing of
XBP1 mRNA, which generates a more potent transcription factor. Activated PERK
phosphorylates eIF2α, which attenuates the general translation rate while inducing the
translation of selective mRNAs with inhibitory uORFs in their 5’UTR. The downstream
effectors of these three sub-pathways combinatorially induce the expression of the genes
encoding proteins that function to augment the ER protein-folding capacity. Meanwhile,
ERAD is accelerated to remove terminally misfolded proteins.
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Figure 1-2. ER stress mediated apoptotic pathways. Upon ER stress, Bak and Bax in
the ER membrane undergo conformational alteration and permit Ca2+ efflux, which
activates m-Calpain in the cytoplasm and subsequently cleaves and activates ER-resident
procaspase-12 and leads to activation of the caspase-cascade. The Ca2+ efflux also leads
to the activation of Mitochondria-dependent apoptosis. CHOP, one of the UPR
downstream effectors, inhibits the expression of Bcl-2 and thus promotes apoptosis.
Activated IRE1 binds to c-Jun-N-terminal inhibitory kinase (JIK) and recruits TRAF2,
which leads to the activation of ASK1/JNK and also the release of the procaspase-12
from the ER.
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Table 1-1. Genetic models studied for the physiological roles of the unfolded protein
response.

Cells/tissues/organs Genetic Models References
Professional secretory cell
development/differentiation

B cell IRE1α-/-, RAG2-/-
XBP1-/-, RAG2-/-

59
58

Professional secretory cell
function

Pancreatic beta cell

Liver

Osteoblast

Akita
CHOP-/-Akita
PERK-/-
eIF2αAA
eIF2αSA
p58IPK-/-

eIF2αAA
IRE1α-/-
XBP1-/-
XBP1+/-

PERK-/-
ATF4-/-

69
71
74, 75
31
79
80

31
59
82
83

74, 97
95

Professional secretory cell
death

Renal tubular
epithelium

Caspase12-/-
CHOP-/-
GADD34 mutant

49
50, 81
81
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CHAPTER II

ATF6 ALPHA OPTIMIZES LONG-TERM ENDOPLASMIC RETICULUM
FUNCTION TO PROTECT CELLS FROM CHRONIC STRESS

Abstract

In vertebrates, three proteins—PERK, IRE1α , and ATF6α—sense protein

misfolding stress in the ER and initiate ER-to-nucleus signaling cascades to improve

cellular function. The mechanism by which this unfolded protein response (UPR) protects

ER function during stress is not clear. To address this issue, we have deleted Atf6α in the

mouse. ATF6α is neither essential for basal expression of ER protein chaperones nor for

embryonic or postnatal development. However, ATF6α is required in both cells and

tissues to optimize protein folding, secretion, and degradation during ER stress, and thus

to facilitate recovery from acute stress and tolerance to chronic stress. Challenge of

Atf6α-null animals in vivo compromises organ function and survival despite functional

overlap between UPR sensors. These results suggest that the vertebrate ATF6α pathway

evolved to maintain ER function when cells are challenged with chronic stress, and

provide a rationale for the overlap amongst the three UPR pathways.

Introduction

The potential toxicity of accumulated unfolded or misfolded proteins demands

that cells respond to protein folding stresses with adaptive programs that restore

homeostasis, or with the initiation of apoptosis to protect the organism. Stresses may be

of two general types: either acute stresses that require immediate adjustments to the
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 cellular protein folding environment, or chronic stresses that persistently tax the folding

apparatus and necessitate long-term changes in gene expression to improve the folding

capacity in a quasi-permanent manner.

Protein folding stress in the endoplasmic reticulum (ER) is sensed principally by

three ER-resident transmembrane proteins—PERK, IRE1α, and ATF6α—that initiate a

series of signaling cascades known as the unfolded protein response (UPR) 1,2. The UPR

alleviates protein folding stress in two ways, one of which is by reduction in ER protein

influx. Classically, this reduction is mediated by activation of PERK, which

phosphorylates the alpha subunit of the eukaryotic translation initiation factor eIF2,

bringing about a rapid but reversible inhibition of global protein synthesis 3-5. More

recently described are ER-selective mechanisms for reducing protein load 6,7. None of

these events requires changes in gene expression, and so each is ideally suited to the

alleviation of acute stress.

Activation of PERK, IRE1α, and ATF6α also initiates ER-to-nucleus signaling

cascades that culminate in the transcriptional upregulation of genes that enhance the

protein processing capacity of the cell, which encompasses processes such as protein

folding, degradation, and trafficking. ATF6α-dependent transcriptional induction is

regulated by ER stress-induced trafficking of ATF6α from the ER to the Golgi. In the

Golgi, ATF6α is cleaved by the proteases S1P and S2P to release a cytosolic fragment

that migrates to the nucleus to activate transcription 8-14. ATF6β, which is weakly

homologous to ATF6α , is activated in a similar fashion, and might function as a

transcriptional repressor 15-17. PERK activation and subsequent eIF2α phosphorylation

lead to production of the ATF4 transcription factor 18-20, while IRE1α activation results in
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splicing of Xbp1 mRNA and its subsequent translation into the XBP1 transcription factor

21-24.

Paradoxically, activation of PERK, IRE1α, and ATF6α also leads to the initiation

of apoptotic signaling cascades 25. While the mechanisms that allow cells to escape

apoptosis and adapt are not well understood, this “decision” appears to require, at a

minimum, the improvement of ER protein folding and processing, that serves to attenuate

further UPR signaling even as a stressful stimulus persists 26. How the three limbs of the

UPR manage adaptation to chronic stress is not understood.

Although it is proposed that ATF6α mediates UPR transcriptional activation 16,27-

29, the actual requirement for ATF6α in the ER stress response is not known, because

Atf6α-deleted cells were not heretofore available. To understand the role of ATF6α in

UPR signaling, we characterized cells and mice that are deleted in Atf6α. ATF6α is not

essential for embryonic or postnatal development. However, despite functional overlap

between gene targets of ATF6α and those of the IRE1α and PERK UPR subpathways,

ATF6α  is needed both in cells and animals for induction of the protein folding,

processing, and degradation capacity of the ER. ATF6α  deletion compromises the

functionality of the secretory pathway during conditions of ER stress and impairs

adaptation to chronic ER stress. These results suggest that the UPR evolved as a three-

limbed stress-sensing pathway to protect against both acute and chronic stress, and that

ATF6α provides an essential role in the chronic adaptive response.

Results and Discussion

ATF6α is dispensable for embryonic and postnatal development
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The strategy for creating an ATF6α conditional allele in the mouse is outlined in

Figure 2-1A. Exon IV was targeted for Cre-mediated deletion, which should alter the

reading frame of the Atf6α transcript and result in a nonsense mutation and production of

a truncated protein product (containing only the 72 N-terminal amino acids of ATF6α)

that lacks the functional elements of the protein. Exon IV was targeted directly in

C57BL/6J animals (see Experimental Procedures) (Figure 2-1B), and was deleted by

mating with EIIa-Cre-expressing transgenic mice in the C57BL/6J background.

Intercrossing of Atf6α+/- animals produced progeny in the expected genotypic ratios

(Figure 2-1C).

Timed matings were used to isolate several lines of Atf6α-/- and littermate-

matched wild-type mouse embryonic fibroblasts (MEFs). Northern blot of total RNA

from these cells, and also from liver tissue isolated from wild-type and Atf6α-/- animals,

revealed a reduction in full-length Atf6α  mRNA from Atf6α -/- cells (probably

attributable to nonsense-mediated decay), and no evidence for a knockout-specific

alternatively spliced mRNA (Figures 2-1D and 2-2). Quantitative real-time RT-PCR

using Exon IV-specific primers confirmed the deletion of this region in the knockout

MEFs, and amplification with primers specific for other regions of Atf6α mRNA

confirmed that expression of a putative Atf6α transcript was significantly reduced in the

knockouts (Figure 2-1E). Immunoblot of total protein lysates from Atf6α-/- MEFs did not

detect ATF6α protein (Figure 2-1F and data not shown).

Mice lacking Atf6α show no obvious developmental defects through 7 months of

age. Thus, Atf6α is not essential for embryonic or postnatal development, although a

more detailed characterization is ongoing. Likewise, Atf6α-/- MEFs displayed normal
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growth and morphology relative to wild-type controls, and no significant alteration in the

basal expression of a sampling of stress-related proteins (Figure 2-1G). These data

suggest that Atf6α  is not essential for basal chaperone expression, leading us to

investigate its role in response to ER stress.

Atf6α optimizes ER stress-mediated induction of UPR target genes

Previous studies describing UPR-mediated transcriptional regulation have

suggested that it might be possible to categorize many UPR target genes as Atf6α-

dependent, Ire1α-dependent, or Perk-dependent 20,28,30,31. Our deletion of Atf6α allowed

us to more directly describe the contribution of Atf6α to changes in the expression of

these genes.

Of most interest was the expression of the ER chaperone BiP, which is the classic

sentinel for UPR gene activation 32, and which can be upregulated by overexpression of

the active form of ATF6α  28,31. Quantitative real-time RT-PCR showed that BiP

upregulation was reduced, though not completely abrogated, in Atf6α-/- cells challenged

with the ER stress-inducing agents tunicamycin (TM) or thapsigargin (TG) (Figure 2-3A

and data not shown). Real-time RT-PCR analysis also showed a reduction in Chop

mRNA upregulation, consistent with a proposed role for Atf6α in coregulating this Atf4-

dependent gene 33,34. Surprisingly, we also found Atf6α-/- cells largely defective in the

upregulation of the Edem1 and p58IPK genes as well (Figure 2-3A), both of which were

previously described as Ire1α/Xbp1-dependent 31,35,36. In contrast, upregulation of the

presumptively Atf4-dependent tryptophanyl tRNA synthetase 30,31 (Wars) was not

attenuated in Atf6α-/- cells (Figure 2-3A), and the putative CHOP target Gadd34 37 was
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more highly induced in Atf6α-/- cells. The attenuated upregulation of BiP, p58IPK, and

Chop was confirmed by immunoblot (Figures 2-3B and 2-4).

Because of possible overlap in the binding specificities of ATF6α, XBP1, and

ATF4 for the various stress-dependent promoter regulatory sequences 13,22,29,38,39, the role

of ATF6α in their regulation is not known. Using reporter constructs driven by tandem

copies of either a UPR element (UPRE) 13,22 or by the BiP promoter, which contains three

ER stress response element (ERSE) sites 29,40, we found that Atf6α deletion compromised

stress-dependent upregulation through both elements (Figures 2-3C). Confirming the role

of ATF6α  in the regulation of BiP  expression, the BiP  promoter could be

immunopurified by antisera to crosslinked ATF6α in wild-type but not Atf6α-/- cells, and

BiP regulation was directly dependent upon the BiP ERSE sites (Figure 2-5).  The

attenuation of ERSE- and UPRE-dependent upregulation was seen regardless of whether

the stressor was pharmacological or caused by overexpression of the null Hong Kong

(NHK) variant of α1-antitrypsin, a misfolded secretory protein 41 (Figure 2-3D). The

stress inducibility of both of these reporter constructs could be restored by transfection of

Atf6α-/- cells with a plasmid encoding full-length human Atf6α (Figure 2-3E), and

regulation of the UPRE-dependent reporter, but not the BiP promoter reporter, could also

be restored by overexpression of XBP1 (Figure 2-6 and data not shown). Taken together,

our data suggest that genes containing either ERSE or UPRE sequences in their

promoters require ATF6α binding for their full stress-dependent activation.

Functional overlap between the ATF6α and the PERK and IRE1α pathways

Our data suggest that Atf6α is necessary for the full upregulation of a subset of

UPR target genes, but that other mechanisms regulate UPR gene expression in its
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absence. We found that ATF6β cleavage (Figure 2-7A), PERK activation (measured by

translational inhibition—Figure 2-7B), and IRE1α activation (assessed by Xbp1 mRNA

splicing—Figure 2-7C) all occurred to similar extents in Atf6α+/+ and Atf6α-/- cells soon

after challenge by diverse ER stressors. We then monitored the stress-dependent

upregulation of UPR sentinel genes in Perk-/- and Ire1α-/- MEFs. Ire1α deletion had

little effect on the upregulation of most genes analyzed in response to TM challenge, with

the exception of Edem (Figure 2-7D and data not shown), consistent with previous

reports 31,36. In contrast, Perk was required for upregulation of a broad group of UPR

genes (Figure 2-7E) 20,30,42. siRNA knockdown of Atf6β in Atf6α-/- cells had no effect on

the stress-dependent upregulation of BiP and CHOP, which is consistent with the protein

having a non-redundant role with ATF6α 16,17 (Figure 2-8). Taken together, these data

suggest that the ATF6α pathway at least partially overlaps functionally with the PERK

pathway and to a lesser extent the IRE1α pathway.

ATF6α regulates genes that protect ER protein processing capacity

To characterize the global function of Atf6α and its relative contribution to UPR

signaling, we used mRNA expression profiling to identify Atf6α-dependent genes.

Remarkably, no gene except for Atf6α itself was significantly altered in its expression in

Atf6α-/- cells in the absence of ER stress (Figure 2-9A and data not shown). Conversely,

TM treatment of wild-type cells resulted in the upregulation of approximately 250 genes.

Of these, at least 45 were upregulated by TM to a significantly lesser extent in Atf6α-/-

MEFs, approximately half of which lost stress-dependent upregulation completely in

knockout cells (Figures 2-9B and 2-9C). Importantly, our array data for specific genes

(Figure 2-10), such as BiP, Edem, etc., agree well with the Atf6α-dependencies identified
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by our real-time analysis, and were only excluded from Figure 2-9C based on our

statistical criteria. These results suggest that the data presented in Figure 2-9C represent a

conservative estimate of putative ATF6α-dependent genes. Notably, nearly half of the

genes with known or likely functions have roles in preserving ER function, including

protein folding, protein degradation, and maintenance of general ER homeostasis (Figure

2-9C). Taken together, our gene expression experiments suggest a role for ATF6α in

optimizing the protein folding and processing capacity of the ER during stress.

Impaired protein degradation and processing in Atf6α-/- cells

Most surprising among the genes identified as Atf6α-dependent in our array and

real-time analyses were those involved in ERAD, as this function was proposed to be

controlled by the IRE1α/XBP1 pathway 31,36. To test whether the ERAD capacity of

Atf6α-/- cells was compromised, we monitored the degradation of NHK, which is a well-

characterized ERAD substrate. NHK overexpression itself activates the UPR (Figure 2-

3D), yet in the absence of an exogenous stress, its rate of degradation was no different in

wild-type versus Atf6α-/- cells (Figure 2-11A). However, when NHK-expressing cells

were pretreated with a low concentration of TG, the rate of NHK degradation was slowed

in Atf6α-/- cells relative to wild-type counterparts (Figure 2-11B). We also observed that,

despite comparable levels of NHK synthesis in TG-treated cells, the steady-state

expression of intracellular NHK was greater in Atf6α-/- cells than in wild-type cells,

which supports the idea that its degradation is attenuated (Figure 2-11B).

We also monitored the maturation of a cell-surface glycoprotein, the transferrin

receptor (TfR), by its acquisition of resistance to deglycosylation by endoglycosidase H

(EndoH). TfR was quantitatively resistant to EndoH digestion in untreated wild-type or
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Atf6α-/- cells. ER stress led to accumulation of a significant amount of EndoH-sensitive

TfR in Atf6α-/- cells, but much less-so in wild-type cells (Figure 2-11C).

Finally, we compared the efficiency of protein secretion in Atf6α-/- versus wild-

type cells by monitoring the secreted and intracellular amounts of overexpressed secreted

alkaline phosphatase (SEAP). SEAP was secreted with similar efficiencies in Atf6α-/-

cells and wild-type cells in the absence of stress. However, after cells were treated with

TG, the ratio of secreted to intracellular SEAP was reduced in Atf6α-/- cells compared to

wild-type cells (Figure 2-11D), suggesting Atf6α-/- cells are defective in secretion in

response to ER stress. Collectively, these observations support the notion that ER protein

processing operates suboptimally in stressed Atf6α-/- cells.

Compromised adaptation in Atf6α-/- cells

Improved protein processing function of the ER has been proposed to suppress the

perpetuation of UPR signaling and prevent the stressed cell from committing to execution

of UPR-dependent apoptotic programs during exposure to chronic stress 26. To assess the

consequences of Atf6α deletion in terms of cell survival, recovery, and adaptation, we

took advantage of the rapid reversibility of the reducing agent dithiothreitol (DTT),

which disrupts oxidative protein folding in the ER but can be readily removed by

washing. As cells recover from acute exposure to stress, or adapt to chronic stress,

splicing of Xbp1 mRNA is downregulated 26,37. Thus, we measured the relative

abundance of spliced Xbp1 mRNA as one indicator of whether Atf6α-/- cells were less

able to recover from acute DTT treatment. While treatment of cells with DTT for 1 hour

resulted in similar levels of Xbp1 mRNA splicing in wild-type and Atf6α-/- cells, the

knockout cells returned to homeostasis much more slowly than wild-type cells, as seen in
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the persistence of Xbp1 mRNA splicing 4 and 8 hours after removal of DTT (Figure 2-

12A).

Expression of the CHOP protein is also rapidly downregulated as the cellular

stress burden diminishes, as a consequence of the rapid degradation of the mRNAs and

proteins encoding both CHOP and its upstream effector ATF4 26. Atf6α-/- cells

upregulated CHOP to a lesser extent than wild-type cells following acute exposure to

DTT. However, despite this initially attenuated induction of CHOP (up to 8 hours after

DTT removal), Atf6α-/- cells failed to fully suppress CHOP expression at 24 hours after

DTT removal (Figure 2-12B). Therefore, by these two independent assays we conclude

that UPR activation is prolonged in Atf6α-/- cells, and that ATF6α therefore facilitates

recovery from stress. In comparison, Perk-deficient cells were profoundly deficient in

their recovery from DTT treatment (Figure 2-12C), while Ire1α-/- cells, despite a defect

in ERAD, recovered from DTT treatment with kinetics similar to wild-type cells (Figure

2-12D). These results are consistent with the nature of the genes regulated by ATF6α,

versus the relatively small group that requires XBP1 and the relatively large and diverse

group that requires PERK.

Exposure to either brief or persistent but mild ER stress protects cells against

subsequent challenge by the same or a heterologous stress agent 26,43,44. This

phenomenon, termed preconditioning, can be observed most readily as a reduced

activation of ER stress sensors in response to exposure to a given stress, relative to non-

preconditioned cells. The impaired ability of Atf6α-/- cells to restore homeostasis after

acute exposure to ER stress predicts that they will also be less able to tolerate challenge

with a secondary stressor. To test this prediction, we pretreated cells with DTT for one



42

hour, allowed them to recover, and then challenged them with either TM or TG. As

expected, DTT pretreatment protected wild-type cells from challenge by either TM or

TG, assessed by Xbp1 mRNA splicing (Figure 2-12E). However, Atf6α-/- cells failed to

fully recover from DTT pretreatment, and as a consequence showed little or no protection

from secondary stress (Figure 2-12E).

The inability of Atf6α-/- cells to be preconditioned suggests that they should be

less able to tolerate and adapt to persistent or repeated stress. To test this hypothesis, we

cultured wild-type or Atf6α-/- cells for up to 4 days in the continued presence of low

concentrations of either TG or TM that allowed for the adaptation and proliferation of

wild-type cells 26. In the absence of stress, both cell types proliferated at comparable rates

(Figure 2-12F, NT 4d). However, chronic exposure to either TG or TM significantly

reduced the proliferative capacity of Atf6α-/- cells relative to wild-type cells (Figure 2-

12F, compare 1d and 4d to 0d). Repeated DTT treatment produced similar results. A

single exposure to DTT did not alter the growth of Atf6α-/- cells relative to wild-type

cells (Figure 2-12G; 4d 1x); however, wild-type cells were able to tolerate repeated DTT

exposure and proliferate over the time-course, while Atf6α-/- cells could not (Figure 2-

12G; 4d). Similar results were obtained in both clonogenic and MTT-based proliferative

assays (Figure 2-13). Therefore, Atf6α deletion impairs the ability of cells to tolerate

persistent exposure to mild ER stress.

We also found that, while wild-type cells suppressed CHOP expression

concomitant with adaptation to persistent mild stress (10 or 25 ng/ml TM for 3 days),

Atf6α-/- cells did not do so fully (Figure 2-12H). This result is consistent with our

previous observation that expression of CHOP serves as a sentinel for the failure of cells
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to adapt to chronic stress 26, and correlates with ongoing activation of the UPR in Atf6α-/-

, but not wild-type cells (Figure 2-14). Upon chronic exposure to relatively mild stress,

Atf6α-/- cells also displayed more PARP cleavage, a late marker of apoptosis (Figure 2-

12I). We conclude from these results that functional redundancy within the UPR allows

Atf6α-/- cells to tolerate brief mild stresses, but that the cellular effects of Atf6α deletion

are exacerbated by repeated insult, possibly as a cumulative consequence of defects in

protein folding, degradation, and trafficking.

ATF6α protects from ER stress in vivo

Our results in MEFs lead to the conclusion that ATF6α is required to protect cells

against ongoing stress despite the ability of other UPR signaling pathways to partially

compensate for its absence. To determine whether these conclusions could be extended to

protection from stress in vivo, we challenged mice by intraperitoneal injection with TM,

which leads to ER stress in both the liver and kidney 37,45,46, and the ER stress response in

both organs was monitored. Inhibition of glycosylation of the ER-resident glycoprotein

TRAPα confirmed the efficacy of injection. As in MEFs, the upregulation of BiP,

GRP94, and p58IPK was attenuated in Atf6α-/- livers compared to wild-type and

heterozygous controls over the entire time course (Figure 2-15A).  These results were

also seen in Atf6α-/- mice in which the neomycin selection cassette was deleted by FLP-

mediated recombination, confirming that the phenotype is not due to secondary effects of

the neomycin cassette (Figure 2-15A and 2-2). Similar results were observed in the

kidney (Figure 2-15B). These results were corroborated by real-time RT-PCR analysis, as

was a defect in Edem1 mRNA upregulation in the livers of Atf6α-/- animals (Figure 2-16

and data not shown).
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As in cultured cells, we observed that CHOP expression was lower in Atf6α-/-

animals early after injection (8 hours) but was elevated relative to wild-type and

heterozygous animals at later time-points (Figures 2-15A, 2-15B).  Also as in cultured

cells, expression of the negative regulator of eIF2α, GADD34, was higher in Atf6α-/-

animals at all time points (Figures 2-15A and 2-14); consistent with this result, eIF2α

phosphorylation was reduced to basal (i.e., non-stressed) levels in the livers of Atf6α-/-

animals, despite persistent splicing of Xbp1 mRNA selectively in these animals,

suggesting ongoing stress (Figures 2-15A, B). These results reveal that, while ATF6α is

not strictly necessary for eIF2α phosphorylation in the immediate aftermath of exposure

to stress (Figure 2-7B and data not shown), it does appear to potentiate the ability of

eIF2α to remain persistently phosphorylated during chronic stress.

TM was found to be markedly more toxic to Atf6α-/- animals than wild-type or

heterozygous controls. We found that, even fairly shortly after injection (18 hours), TM

elicited more cell death, assessed by histological staining to detect cleaved caspase-3, in

knock-out than in wild-type livers (Figures 2-15C and 2-15D). Increased toxicity was

also observed at the organismal level; while all wild-type and heterozygous animals

survived TM challenge (n = 8), most Atf6α-/- animals succumbed (n = 4/5) (Figure 2-

15E). By 72 hours after injection, the livers of Atf6α-/- animals were grossly discolored

consistent with hepatic lipidosis (Figure 2-15F). The most likely explanation for these

results is that wild-type animals are better protected from ER stress in vivo than Atf6α-/-

animals, and so an equivalent pharmacological insult produces adaptation (i.e., higher

expression of chaperones and maintenance of organ function) and less overall stress (less

splicing of Xbp1 mRNA, lower expression of CHOP, and less apoptosis) in wild-type
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animals. As in cultured cells, this difference in sensitivity to ER stress is manifested more

at later points after insult when Atf6α-/- animals are unable to recover and/or adapt.

Taken together, these data support a role for ATF6α in regulating ER protein processing

capacity to protect tissues from ER stress in vivo.

Conclusions and Perspectives

By deleting Atf6α in the mouse and exploring the responsiveness to stress of

Atf6α-/- cells, we have uncovered a role for ATF6α in mediating adaptation to chronic

stress. This role is likely filled by ATF6α because of its function in regulating the

expression of genes that facilitate ER protein folding and processing. At first glance,

functional overlap between the PERK, IRE1α and ATF6α pathways would seem to make

ATF6α dispensable for the ER stress response, since many of the genes downstream of

this protein are nonetheless upregulated by stress in its absence, albeit to a lesser extent.

Accordingly, Atf6α-/- cells do not show evidence of basal stress (Figure 2-1G and 2-9A),

do not appear to initially suffer a greater stress burden than wild-type cells given an

equivalent stimulus (Figure 2-7A-C), and appear to be no more sensitive to short term

stresses (Figure 2-12F, G). Yet Atf6α-/- cells do not return to equilibrium as efficiently as

wild-type cells when a stressor is removed (Figure 2-12A, B, E). Accordingly, persistent

or recurring stress exacts a cumulative toll on Atf6α-deficient cells such that they are less

able to survive. This impairment correlates with lower chaperone expression, more

persistent CHOP expression, and increased apoptosis (Figure 2-12F-I). This impairment

is manifested dramatically as failure to recover from challenge in vivo (Figure 2-15).

Thus, the absence of Atf6α appears to adjust the threshold of tolerable chronic cellular

stress. While there is no overt phenotype in Atf6α-/- animals, the fact that ATF6α
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protects tissues against pharmacological ER stress suggests that unmasking of a

phenotype in vivo awaits only the proper challenge.

While each limb of the UPR doubtless regulates at least some genes and controls

some physiological responses uniquely 47,48, the overlap between the pathways appears to

be considerable. We propose, then, that ATF6α has evolved not to discretely regulate a

subset of genes during acute exposures to stress, but instead to augment the protective

mechanisms upregulated by the PERK and IRE1α (and perhaps ATF6β) pathways. This

augmentation raises the likelihood that the protein folding and processing capacity of the

cell will be able to withstand persistent insult and suppress apoptotic UPR signaling

cascades. It is telling that each limb of the UPR contributes to the protein folding,

maturation, and/or degradation capacity of the ER during stress. To the extent that

enhancement of these processes is the most critical element of adaptation to ER stress,

overlap ensures that cells have the greatest opportunity possible to adapt to stress rather

than succumb to it.

Beyond its role in regulating the long-term protein processing capacity of the ER,

ATF6α can also modulate the cellular response to chronic stress though its effects on the

other UPR pathways, in particular the PERK/eIF2α axis.  Although the mechanism is not

yet clear, ATF6α appears to suppress production of GADD34 during ER stress, allowing

PERK/eIF2α signaling to persist and presumably contribute to maintenance of ER and

general cellular function during chronic stress (Figure 2-15A). Interestingly, ATF6α has

the opposite effect on IRE1α signaling, as ATF6α deletion causes IRE1α to remain

activated during chronic stress (Figures 2-15 and 2-14), although it is not yet clear

whether this effect arises from direct interaction between the pathways or as an indirect
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consequence of alterations in the ER folding capacity in Atf6α-/- cells. These results raise

the possibility that activation of the proximal sensors of ER stress is managed differently

during chronic stress versus acute stress, and that one function of ATF6α is to regulate

this altered responsiveness.

From this work, we conclude that the idea that each limb of the UPR regulates the

functionality of discrete cellular processes needs to be reconsidered. Perhaps multiple

stress sensing pathways have evolved not so much for the division of labor as for the

generation of fail-safe mechanisms for surviving both short-term and long-term

environmental insult.

Supplemental notes

1. Deletion of exon IV of the Atf6α mRNA results in a shift of the reading frame,

resulting in a nonsense mutation. The predicted protein product contains the first 72

amino acids of ATF6α, followed by seven additional amino acids and a stop codon.

Thus, the predicted protein product ends …HFCSGGVGFVV-Stop. This protein contains

neither the transactivation domain of ATF6α , nor the bZIP dimerization domain;

consequently, it should have none of the normal function of ATF6α, nor should it

function as a dominant negative.  In support of this, heterozygous animals and cells

behave similarly to wild-type, and do not show any evidence of a dominant negative

effect (Figure 2-15 and data not shown). Alternative splicing could potentially restore the

reading frame of the targeted mRNA, producing a fully or partially functional protein

product.  However, we detected no RNA species in heterozygous or knockout animals

other than those present in the wild-type (exon IV is 101 nucleotides, and so its loss from

the mRNA would not likely result in a significant shift of the ~7.5 kb primary transcript
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in an agarose gel), and real-time RT-PCR revealed similar expression levels of several

exons within the Atf6α mRNA (Figures 2-1 and 2-2). The reduction in the amount of full-

length Atf6α  mRNA in the knockout cells and liver is most likely attributable to

nonsense-mediated degradation of the targeted species. Finally, cryptic splice

donor/acceptor sites in the neomycin cassette could conceivably result in a protein that

was essentially like wild-type ATF6α, but with a portion of exon IV replaced in frame by

sequence from the cassette. However, Atf6α-/- mice with a deleted neomycin cassette

responded to TM challenge essentially identically to Atf6α-/- mice with the neomycin

cassette intact (Figure 2-15A). We also observed that the expression of Atf6α mRNA was

similar in the livers of Atf6α-/- neomycin-deleted and neomycin nondeleted animals

(Figure 2-2), ruling out any indirect effect of the neomycin cassette on Atf6α mRNA

expression. In addition, immunoblot using an antibody that recognizes amino acids 242-

253 of ATF6α, which is downstream of exon IV and recognizes both full-length and

cleaved ATF6α, failed to recognize any specific species in Atf6α-/- cells, during either

unstressed or stressed conditions (Figure 2-1). A polyclonal antiserum raised against the

active form of ATF6α gave similar results (data not shown).  Thus, although we cannot

exclude that a small protein product is made from the targeted Atf6α mRNA, we

conclude that we have generated a true Atf6α-null allele.

2. It was previously proposed that ATF6α-dependent transcriptional activation from the

UPRE is indirect and mediated through transcriptional activation of Xbp1 mRNA during

ER stress 22,24. However, our analysis demonstrated that the induction of Xbp1 mRNA

during either mild or severe ER stress is quite modest, and not significantly attenuated in

Atf6α-/- cells (Figure 2-6). Further, the levels of XBP1 protein translated from the spliced
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mRNA were actually higher in Atf6α-/- cells than in wild-type cells upon stress (Figure

2-6). Therefore, it seems likely that UPRE-dependent transcription requires direct

activation by both XBP1 and ATF6α, consistent with the original identification of the

UPRE as an ATF6α binding site 13.

3. GADD34 protein upregulation is observed in TM-injected Atf6α-/- animals but not in

wild-type or heterozygous controls (Figure 2-15). This result mirrors an elevation of

Gadd34 mRNA and protein in Atf6α-/- MEFs (Figures 2-3A and 2-14). While CHOP has

been proposed to regulate Gadd34 expression, and CHOP is also elevated in Atf6α-/-

cells and animals at later points after ER stress, the increase in Gadd34 seems to precede

Chop upregulation in the knockouts, as it is evident at early time points when expression

of Chop is lower in the Atf6α-/- cells and animals than wild-type controls (for example,

only 8h after TM injection—Figure 2-15A). Thus, it seems likely that a protein in

addition to CHOP is capable of regulating Gadd34 expression. Indeed, this result is

consistent with the observation that Chop-/- cells still upregulate Gadd34, albeit to a

lesser extent than wild-type cells 37. The apparent consequence of persistently elevated

GADD34 in the Atf6α-/- animals is attenuated eIF2α phosphorylation despite enhanced

Xbp1 splicing (a parallel phenomenon probably operates in MEFs as well, but the overall

increase in eIF2α phosphorylation in response to chronic TM treatment falls below the

level of detection—Figure 2-14 and 26. CHOP is short-lived at both the mRNA and

protein levels 26, which suggests that its persistence in Atf6α-/- animals and cells reflects

active and ongoing synthesis. Therefore, absent both eIF2α phosphorylation and ATF6α,

which have been proposed as the regulators of CHOP expression, we conclude that there

is also an additional as yet unidentified regulator of CHOP.  The putative role of such a
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regulator might be to ensure the perpetuation of an apoptotic signal during unresolved

stress, as a way of circumventing GADD34-mediated negative feedback of eIF2α

signaling.

4.The efficacy of TM injection is monitored by inhibition of glycosylation of the ER-

resident protein TRAPα (Figure 2-15A). All mice were given a uniform dose of TM (1

mg/kg body weight).  The apparent difference in inhibition of glycosylation for Atf6α-/-

animals is likely due to ER stress-related differences in the turnover of TRAPα 49 and not

to any difference in pharmacological sensitivity to TM. Note that the increased

production of CHOP in the livers of Atf6α-/- animals 24h after injection (Figure 2-15A)

would be inconsistent with a lower sensitivity to TM.

Experimental Procedures:

General notes. A total of three wild-type and three Atf6α-/- MEF lines were isolated.

Most of the experiments using Atf6α+/+ and -/- cells were confirmed in at least one other

independent pair of cell lines, and in all cases the resultant data were essentially identical.

All experiments were carried out using cells plated at similar confluence, the night prior

to stress treatments. Both immunoblots and autoradiographs were collected on film,

documented by scanning, and quantitated by densitometric analysis of scanned films

when all quantitated bands of interest were within the linear range of intensity. Band

arrangement was in some instances altered by cut-and-paste manipulations. Bands shown

together were always taken from the same exposure, except where indicated in the figure

legend.

Targeting the ATF6 alpha gene in mice. A targeting vector was constructed to replace

the ATF6α gene exon IV, with the sequence of exon IV flanked by LoxP sites, for in vivo
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specific-promoter-Cre recombinase-mediated deletion 50. The G418 resistance gene

cassette was inserted in the sense orientation and was flanked by FRT sites, for in vivo

FLP recombinase-mediated deletion. The target sequence and the homologous arms were

PCR amplified from C57BL/6J mouse genomic DNA and confirmed by sequencing

comparing to the NCBI mouse genome sequences. An Embryonic Stem (ES)-cell line

derived from the C57BL/6J substrain BL/6 51 was used for homologous recombination 52.

Electroporated ES cells were subjected to G418 selection. The surviving clones were

screened by southern blot analysis of genomic DNA. The 5’ end was determined by

digestion with HindIII and probing of the blot with a 436 bp external fragment, which

results in a 7.327 kb endogenous and a 6.673 kb homologous recombinant band. The 3’

end was determined by digestion of DNA with PstI and probing of the blot with a 475 bp

external fragment which results in a 6.432 kb endogenous and a 5.158 kb homologous

recombinant band. The correctly targeted ES cells were injected into Albino B6

(C57BL/6J-Tyr<c-2J>) blastocysts to generate chimeric mice. The chimeras were mated

with Albino B6 (C57BL/6J-Tyr<c-2J>) mice. Male offspring showing germ line

transmission of the mutant allele were crossed with female EIIa-Cre transgenic mice that

had been highly backcrossed into C57BL/6J. The heterozygous progeny bearing a

knockout Atf6α allele are therefore in a pure C57BL/6J genetic background (from

C57BL/6J embryonic stem cell lines), and no further backcrossing is needed. Routine

genotyping was performed by PCR. All protocols for animal use were reviewed and

approved by the University Committee on Use and Care of Animals at the University of

Michigan.
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Materials. All purchased materials were of the highest quality available commercially.

TM and TG were from EMD Biosciences, and were dissolved in DMSO and aliquoted

before use. DTT was from Invitrogen, and was made fresh prior to use. Antibody sources

have been previously described 26, except as follows: anti-α1-antirypsin was from Dako;

anti-PARP was from Cell Signaling Technologies; anti-TRAPα was a gift of R. S. Hegde

(NICHD, NIH). ATF6α polyclonal antiserum was raised against a KLH-conjugated

peptide with the amino acid sequence NGKLSVTKPVLQC corresponding to amino acids

242-253 of murine ATF6α; it was then purified by peptide affinity chromatography.

Polyclonal ATF6β antiserum was raised against a KLH-conjugated peptide with the

amino acid sequence EIADPTRFFTDNC corresponding to amino acids 9-20 of murine

ATF6β. Antibody specificities were verified by overexpression and/or knockout controls

wherever possible. Plasmid pcDNA hα1-ATHK was created using Quickchange Site

Directed Mutagenesis Kit (Stratagene) to reproduce a CT dinuncleotide deletion within

the Leu318 codon that results in a frameshift and early termination of the wild-type α1-AT

gene 41.

Preparation and characterization of MEFs. MEFs derived from 14.5 day embryos

were prepared as described 20. MEFs were maintained in Dulbecco’s Modified Eagle

Medium containing 4.5-g/l glucose (Invitrogen catalog 11995–065; Carlsbad, California,

United States) supplemented with 10% FBS, L-glutamine, 1% penicillin G/streptomycin,

at 37 °C in a 5% CO2 incubator. For Perk-/- and matched wild-type cells, βME was

added to a final concentration of 50 µM.

Genotype analysis. Isolated embryonic stem (ES) cell DNA or mouse tail DNA was

digested with the appropriate restriction enzyme, electrophoresed in a 1% agarose gel,
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and transferred to positively charged nylon membranes (Roche). The blot was hybridized

sequentially with digoxigenin (DIG)-labeled DNA probes as indicated in Figure 2-1

prepared with the PCR DIG probe synthesis kit according to the manufacturer’s

instructions (Roche). Figure 2-2 shows the locations of primer sets designed to identify

different locus modifications. The PCR primers used for genotyping were: WT:

ctactgggcactgaggaagc and ggtggccagtctcttgtgat; Deleted: aagggggaggattgggaagaca and

actgggcactgaggaagcaagaac. To delete the G418 resistance gene cassette, male offspring

with one mutant allele were crossed with female F L P 1  mice. (B6; J-

Tg(ACTFLPe)9205Dym/J from the Jackson Laboratory).  The Exon IV-deleted, Neo-

deleted allele was genotyped by PCR using the following primers:

gctgctgcttattcatggttcctg and actgggcactgaggaagcaagaac.

Array analysis. Passage 3 primary fibroblasts from three separate pairs of wild-type and

Atf6α-/- embryos were left untreated or treated with tunicamycin (50 ng/ml) for 24 hours.

Total RNA was isolated using RNeasy (QIAgen). cDNA synthesis, hybridization, and

laser scanning of the array were carried out at the University of Michigan Comprehensive

Cancer Center (UMCCC) Affymetrix and cDNA Microarray Core Facility with the

GeneChip Mouse Genome 430v2.0 Array that had over 39,000 transcripts (Affymetrix)

as recommended by the manufacturer. The primary image analysis was done using

GCOS (Affymetrix). Raw data were analyzed using Bioconductor 53. One TM-treated

sample of each genotype was discarded before analysis because of a failure to pass

internal quality control standards.  Statistical significance was assessed by two-tailed

student’s t-test.
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RNA analysis. RNA was isolated using TRIzol RNA reagent (Invitrogen) or RNeasy

(QIAgen), according to the manufacturers’ protocols. Poly(A) mRNA was isolated from

total RNA using the Oligotex mRNA kit (QIAgen).   For Northern analysis, total RNA

from MEFs (5 µg) or poly(A) RNA from liver (0.5 µg) was denatured, electrophoresed,

and transferred to positively charged nylon membranes (Roche). The blot was hybridized

sequentially with digoxigenin (DIG)-labeled DNA probes prepared with the PCR DIG

probe synthesis kit (Roche). The probes hybridized to either nucleotides 719-1149 (exons

7-9) or 1592-2208 (exons 13-16) of the Atf6α cDNA. Before hybridization the membrane

was stained in 0.03% (w/v) methylene blue in 0.3M sodium acetate, pH 5.2, for 45

seconds and destained in diethyl pyrocarbonate treated water for 2 min to visualize 18S

and 28S rRNA. Real-time RT-PCR analysis, including primer sequences and applicable

control/piloting experiments, has been described 26. Additional real-time primer

sequences were as follows:  Edem: aagtctcaggagctcagagtcattaa and cgatctggcgcatgtagatg;

Wars: ccttggactacacagccagga and ctaggaccgaggcctgcag; Ero1β: gggccaagtcattaaaggaa

and tttatcgcacccaacacagt; Erp72: agtcaaggtggtggtgggaaag and tgggagcaaaatagatggtaggg;

Herpud1 : agcagccggacaactctaat and cttggaaagtctgctggaca; Atf6α  exons 2/3:

gagtcgacgttgtttgctga and ccaaggcatcaaatccaaat; Atf6α exons 12/13: ccaacagaaagcccgcatt

and  tggacagccatcagctgaga; At f6α  exons 4/5: cttcctccagttgctccatc and

caactcctcaggaacgtgct; Atf6α 3’ UTR: ccaccctcagtgttggaact and aggagtatgctctgggctga. For

Xbp1 RT-PCR, the Titan One-Tube RT-PCR kit (Roche) was used along with primers

flanking the Xbp1 intron to amplify both spliced and unspliced Xbp1 26.

Cell culture and analysis. Treatment of cells with TM or TG was as described 26,

including chronic treatments. The cell proliferative rate was measured by washing cells
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twice in PBS, perfectly aspirating the second wash, lysing in 1% SDS, and heating to

100°C for 10 minutes with intermittent vortexing. The protein concentration of the lysate

was then measured using the BioRad RC-DC protein assay kit. Results obtained in this

way closely mirrored cell proliferative rate measured by cell counting (data not shown).

For the clonogenic assay, 5,000 cells were seeded onto 10 cm dishes, allowed to rest

overnight, and then treated either continuously for three days with TM or vehicle (with

media and stressor refreshed daily), or for one hour out of every twelve hours with 10

mM DTT, followed by rinsing and washing, for three days.  Cells were then allowed to

recover in complete media for seven additional days before staining with crystal violet.

MTT assays used the CellTiter Aqueous One kit (Promega). Immunoblots were carried

out as described 26. For luciferase assays, cells were transfected using FuGene 6 (Roche),

with plasmids pcDNA CMV-lacZ and either 5x UPRE-luciferase (formerly known as 5x

ATF6-luciferase), or BiP-luciferase (containing the proximal 340 bp of the rat BiP

promoter), as well as overexpression constructs where indicated. The Grp78-luciferase

construct (Figure 2-5) contained the proximal rat BiP promoter up to position –169 54 or

–79. Luciferase activity was measured using the Dual Light assay kit (Applied

Biosystems) according to the manufacturer's instructions. Chromatin

immunoprecipitation (Figure 2-5) was carried out exactly according to a protocol from

Upstate Biotechnology using primers tactggccgagacaacactg and cagacgaagcacagaggagg

(BiP promoter) or tggagagatggctggttagg and aaaattcgtaggtgtaccgt (control sequence).

Antibodies used were the affinity-purified ATF6α peptide antibody described above, a

polyclonal ATF6α antibody (Santa Cruz), or an irrelevant antiserum against interferon

gamma (Pierce).
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For SEAP assays, cells were cotransfected with pcDNA CMV-lacZ (to verify

equivalent efficiency of transfection) and a vector encoding SEAP driven by a CMV

promoter (pcDNA 3.1 SEAP). This construct was subcloned from pSEAP2-Control

(Clontech) by standard methods. 24 hours after transfection, transfection media was

replaced with fresh media containing or lacking 5 nM TG, and after a further 24 hours

media and lysates were collected and SEAP activity was monitored using the Phospha-

Light System kit (Applied Biosystems) according to the manufacturer’s instructions. For

NHK immunoprecipitations, cells were transfected with pcDNA hα1-ATHK using

FuGene 6. The next day, transfection media was replaced with normal or TG-containing

media and cells were incubated overnight. For pulse labeling, cells were preincubated in

Met/Cys-free media for 20 minutes, followed by labeling for 1 hour using 200 µCi/ml of

TranSlabel (MP Biomedicals). Cells were rinsed twice in complete media and chased in

complete media for the indicated times before lysis in Tris/SDS as described above.

Lysates were diluted in 10 volumes of IP buffer (1% Triton X-100, 100 mM NaCl, 100

mM Hepes pH 7.5) precleared for 30 minutes with protein A-agarose (Pierce), and the

supernatants, equalized by the total amount of TCA-precipitable radioactivity for each

time point, were incubated overnight with anti-α1-antitrypsin antibody (Dako). Protein

A-agarose was then added for 2 hours, and beads were washed twice in IP buffer and

once in distilled deionized H2O before elution in loading buffer. Gels were stained with

coomassie blue to verify equivalent antibody recovery; experiments with unequal

recovery were not analyzed further. For EndoH digestion (Figure 2-11C), cells were

lysed in unbuffered 1% SDS with 100 mM DTT, denatured by boiling for 10 minutes,

and diluted into an equal volume of 100 mM NaCitrate pH 5.2 prior to digestion with 500
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U of EndoH (NEB) at 37°C for 1 hour. To measure the rate of protein synthesis (Figure

2-3B), cells were treated with TG for 30 minutes and labeled with TranSlabel for 10

minutes, followed by lysis in Tris/SDS, and precipitation of aliquots on a filter and

scintillation counting as described 20.

Tissue preparation and analysis. Mice were injected intraperitoneally with 1 mg/kg

body weight of TM, or vehicle, exactly as described 46 and liver and kidney were isolated

at the indicated times after injection. Briefly, tissue was homogenized using an electronic

homogenizer in RIPA buffer containing protease inhibitors, and centrifuged twice at

15,000 rpm for 10 minutes in a microfuge at 4°C. Samples were diluted into 1% SDS, 0.1

M Tris pH 8.8 prior to addition of loading buffer and electrophoresis.

Histological analysis of tissues. Liver specimens were fixed in 10% formalin for

embedding in paraffin. Sections of 4 µm were cut and mounted on slides. The cleaved

form of caspase 3 was detected using a kit (Abcam) according to the manufacturer’s

instructions, by the University of Michigan Morphology Core Facility. Livers were

visualized in situ using a Leica MZ16FA stereomicroscope.

Knockdown of Atf6β in wild-type and Atf6α -/- MEFs. A vector that expresses hairpin

siRNAs under the control of the mouse U6 promoter was constructed by inserting a pair

of annealed DNA oligonucleotides into the LentiLox3.7 vector (provided by Dr. Luk Van

Parijs) between the HpaI and XhoI restriction sites 55. The sequence used for ATF6β

RNAi is: GCTCAGAGTCCTCACATCTTT. The clone and packaging vectors including

VSVG, RSV-REV, and pMDL g/p RRE were cotransfected into 293T cells. The

supernatants containing virus were concentrated by ultracentrifugation. Then the wild-

type and Atf6α-/- MEFs were infected at 50% confluence with polybrene (8 µg/ml)-
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supplemented virus. High infection efficiency (>95%) was achieved by second infection

3 days after first infection. Infected cells were sorted by GFP expression from the RNAi

vector.
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Figure 2-1. Generation of Atf6α deficient mice. (A) Schematic drawings of the structure of Atf6α cDNA,
the wild-type allele showing Exon IV, the targeted allele and the deleted allele. The exons encoding the
basic region leucine zipper domain (bZIP) and transmembrane domain (TM) of ATF6α, the neo cassette,
the FRT (F) and loxP (L) sites, the restriction sites used for Southern screening (PstI: P, HindIII: H), and
the 5’/3’ external probes (5’P/3’P) are indicated. (B) Southern blot analysis of control and correctly
targeted ES clones. The size of each band (in kilobases) is indicated. (C) The genotypes of pups from
Atf6α+/- intercrosses were tabulated and compared against expected percentages. (D) Atf6α+/+ and -/-
MEFs were probed by Northern blot for expression of Atf6α mRNA. Non-specific probe hybridization to
18S and 28S rRNA is indicated. The 18S background band demonstrates equivalent loading. Note that
Northern hybridization produces two species (arrowheads), one of the predicted ~7.5 kb length and another
minor species of ~4 kb.  Relatively inefficient transfer of large RNAs (>5 kb) means that the full-length
Atf6α mRNA is probably underrepresented. The probe was complementary to exons 13-16 of Atf6α
mRNA. (E) Total RNA was isolated from wild-type and Atf6α-/- MEFs and the expression of Atf6α mRNA
was analyzed by real-time RT-PCR, using primers either targeting exons 2/3, exons 4/5 (overlapping the
deleted region), exons 12/13, or the 3’ UTR. Expression was normalized against 18S rRNA. N.D. = Not
Detected. (F) Atf6α+/+ and -/- MEFs were probed by immunoblot for expression of ATF6α protein and α-
actin as a loading control.  Asterisk represents a nonspecific band. (G) Cellular lysates from two pairs of
independent wild-type and Atf6α-/- MEFs were probed by immunoblot for BiP, p58IPK, GRP94, PDI and
CNX to compare the basal expression levels of these ER chaperones and cochaperones, with α-actin as a
loading control.
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Figure 2-2. Further molecular characterization of ATF6α deficient mice. (A) Schematic
drawings of the structures of the wild-type Atf6α allele, the Exon IV-deleted allele, and the Exon
IV- and Neo-deleted allele, with the locations of genotyping PCR products shown (black bars).
(B) Results of PCR analysis of wild-type and Exon IV-deleted Atf6α alleles from tail genomic
DNA. (C) Results of PCR analysis of wild-type and Exon IV-deleted, Neo-deleted alleles from
tail genomic DNA. (D) Mouse liver poly(A) mRNA was probed by Northern blot as in Figure 2-
1D, using a probe specific for exons 7-9 of the Atf6α mRNA. Asterisks denote nonspecific
hybridization to residual 18S and 28S rRNA. (E) Exon IV-deleted mice were mated with FLP
recombinase-expressing mice to delete the neomycin cassette (genotyping as in (C) above). Total
RNA was isolated from the livers of wild-type, heterozygous, Exon IV-deleted (-/-), and Exon
IV-deleted, Neo-deleted (-/- ΔNeo) animals and the expression of Atf6α mRNA was analyzed by
real-time RT-PCR, using primers either targeting exons 2/3, exons 4/5 (overlapping the deleted
region), exons 12/13, or the 3’ UTR. Expression was normalized against 18S rRNA.
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Figure 2-3. Atf6α deficient MEFs are responsive to ER stress but defective in chaperone upregulation. (A) Wild-
type and Atf6α-/- MEFs were treated with 50 ng/ml TM for 24 hours. Total RNA was isolated and the expression of
BiP, Chop, Edem, p58IPK, Gadd34 and Wars was quantitated by real-time RT-PCR, normalizing against 18S rRNA
expression. Error bars represent means ± SDM from RNA isolated from three independent plates. Basal expression of
these genes was not found to consistently vary between experiments. (B) Wild-type and Atf6α-/- MEFs were treated for
16 hours with increasing concentrations of TG (2.5-100 nM), followed by cell lysis and immunoblot for BiP, CHOP or
α-actin. (C) Two separate lines each of wild-type and Atf6α-/- MEFs were cotransfected with 5XUPRE- or BiP
promoter-dependent luciferase reporters and a constitutive β-galactosidase reporter. Cells were treated with 50 ng/ml
TM 24 hrs post-transfection and lysates were analyzed for luciferase expression, normalized against β-galactosidase,
after 24 hrs of TM treatment. Luciferase expression is given as a fold-change relative to untreated cells of the same
genotype. Luciferase expression after treatment is shown in blue for wild-type cells and purple for knockout cells. Note
that the basal expression of the BiP-luciferase reporter is high, and its stress inducibility low, likely because this
construct contains approximately 340 bp of the rat BiP promoter, which encompasses regulatory regions upstream of
the ERSE sites. A construct driven by a more minimal BiP promoter was more robustly induced by ER stress (Figure 2-
5). (D) Wild-type and Atf6α-/- MEFs were transfected as in (C), and also with an α1-antitrypsin null Hong Kong
(NHK) variant or empty vector control. Lysates were analyzed for luciferase expression 48 hrs post-transfection and
normalized as in (C). (E) Wild-type and Atf6α-/- MEFs were transfected as in (C), a constitutive β-galactosidase
reporter, and also with full-length human Atf6α or empty vector. Cells were treated with TM and assayed and
normalized as in (C). The inset panel shows the non-normalized luciferase expression in vector-transfected (left pair) or
Atf6α-transfected (right pair) Atf6α-/- cells, which demonstrates that Atf6α transfection stimulates significant reporter
transcription even in the absence of stress. Error bars represent means ± SDM from three independent plates. The
variation in inducibility of each construct varies between experiments, but the relative effects of ATF6α deletion
remain consistent.
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Figure 2-4. Attenuated upregulation of UPR targets by TM and TG in Atf6α-/- cells.
Wild-type and Atf6α-/- MEFs were treated with increasing concentrations of TG (2.5-100
nM) or TM (25-1000 ng/ml) for 16 hrs, followed by cell lysis and immunoblot for BiP
(A), p58IPK (B), and CHOP (C). The expression of these three ER stress marker proteins
was quantitated by densitometry and normalized against α-actin expression, and is shown
in graphical form for each concentration.
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Figure 2-5. Direct regulation of ERSE-dependent expression by ATF6α. (A) A
minimal version of the rat BiP promoter, containing only the proximal 169 nucleotides of
the promoter which encompasses the three ERSE sites, could be upregulated by overnight
TM treatment in wild-type but not Atf6α-/- cells. Deletion of these sites (-79 Luc) renders
the construct unresponsive to ER stress. (B) Protein-DNA complexes in wild-type or
Atf6α-/- cells were crosslinked using formaldehyde, followed by denaturation and
chromatin immunoprecipitation using either of two antibodies against ATF6α (Ab1 and
Ab2) or an irrelevant antiserum against interferon gamma (irrel). Recovered material was
quantitated by real-time RT-PCR with primers specific for either the BiP promoter or a
control sequence located 6 kb upstream of the BiP promoter.  Recovery was quantitated
as a percentage of immunoprecipitation input.  Note that the BiP promoter but not the
control sequence is enriched with ATF6α antisera but not irrelevant antisera, that this
interaction is strengthened by ER stress, and that this enrichment is lost in Atf6α-/- cells.
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Figure 2-6. ATF6α-XBP1 pathway interactions. (A) The expression of Xbp1 mRNA was determined in
the presence or absence of 50 ng/ml TM for 24 hours using array expression profiling. Error bars represent
means ± S.D.M. from one plate each of three independent Atf6α+/+ or Atf6α-/- cell lines. (B) Wild-type
and Atf6α-/- MEFs were treated with TG or TM at the indicated concentrations for 24 hours, followed by
cell lysis and immunoblot for BiP, XBP1 derived from spliced Xbp1 mRNA, and α-actin. The asterisk
represents a nonspecific band. Note that the wild-type is shown on the right for each pair. (C) Wild-type
and Atf6α-/- MEFs were cotransfected with a 5XUPRE dependent luciferase reporter, a constitutive β-
galactosidase reporter, and either the unspliced form of mouse Xbp1 or empty vector control. Cells were
treated with TM and assayed as in Figure 2-3E.



65

Figure 2-7. The PERK and IRE1α pathways functionally overlap with ATF6α. (A)
Wild-type and Atf6α-/- MEFs were treated with increasing concentrations of TG (2.5-100
nM) or TM (25-1000 ng/ml; blot not shown) for 16 hrs, followed by cell lysis and
immunoblot for ATF6β. Uncleaved (f.l.) and cleaved (clvd) forms are indicated, as well
as a non-specific band (asterisk). The extent of ATF6β cleavage relative to full-length
was quantitated by densitometry, and is shown in graphical form for each concentration
to the right of the blots. (B) Wild-type and Atf6α-/- MEFs were treated for 30 minutes
with 5 nM TG. Cells were then pulse-labeled for 10 min with 35S Cys/Met. Precipitable
counts were normalized against incorporation for nontreated Atf6α+/+ cells. Error bars
represent means ± SDM from three independent plates. (C) Total RNA was isolated from
wild-type and Atf6α-/- MEFs treated for 1 hr with 10 mM DTT. RT-PCR was used to
simultaneously detect both spliced (spl) and unspliced (us) Xbp1 mRNA. The image is
presented in black-and-white inverted form for greater visual clarity. (D) and (E)  Total
RNA was isolated from Ire1α+/+  and -/- MEFs (D) and Perk +/+ and -/- MEFs (E)
treated with 50 ng/ml TM for 24 hrs and the expression levels of the indicated genes were
quantitated by real-time RT-PCR, normalizing against 18S rRNA expression. Data from
Perk cells were taken from two separate experiments. Error bars represent means ± SDM
from RNA isolated from three independent plates.
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Figure 2-8. Atf6β knockdown does not exacerbate Atf6α-/- defects in BiP and CHOP
upregulation. Atf6α-/-: Atf6βi MEFs were generated as described in experimental
procedures. (A) Cellular lysates were collected and probed for expression of ATF6β. The
asterisk indicates a nonspecific band that demonstrates equal protein loading. (B)
Atf6α+/+, Atf6α-/-, and Atf6α-/-:Atf6βi MEFs were treated with increasing concentrations
of TM for 24 hours. Protein lysates were collected and probed for the expression of BiP,
CHOP and α-actin.
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Figure 2-9. Transcriptional profiling reveals defective induction of a subset of ER
stress-dependent genes in Atf6α-/- fibroblasts. (A) and (B) Cluster analysis of gene
expression and transcriptional profile analysis were performed as described in the
Experimental Procedures. Graphic representation of the average expression level of 8334
significantly expressed genes in untreated (A) and 249 stress regulated genes in
tunicamycin-treated (B) wild-type and Atf6α -/- MEFs is shown. Each vertical bar
represents a single gene. Green coloration indicates relatively low level expression, and
red indicates a relatively high level of expression of a given mRNA. (C) List of genes
upregulated (>1.5-fold, p<0.05) by TM in wild-type cells that are less induced in Atf6α-/-
fibroblasts (<2/3 induction level, p<0.05). Data are presented as means ± SDM of the
expression level relative to wild-type nontreated cells; thus the expression values for
these genes in Atf6α-/- cells in the absence of stress are essentially identical to those in
wild-type cells. The highlighted values indicate those genes whose stress responsiveness
is completely lost in Atf6α-/- MEFs.
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Figure 2-10. Additional validation of microarray data. (A) The average expression
levels of BiP, Grp94, Chop, Gadd34, Wars, and Edem1 from microarray analysis are
shown, normalized against nontreated wild-type cells. Error bars represent means ±
SDM. Note that the expression values for all of these genes in the absence of stress is not
significantly different between wild-type and Atf6α-/- cells. (B) The induction levels of
additional genes identified as Atf6α-dependent (Figure 2-9C) were determined upon
treatment of wild-type and Atf6α-/- MEFs with 50 ng/ml TM for 24 hours, followed by
quantitative real-time RT-PCR and normalization exactly as in Figure 2-3A.
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Figure 2-11. Atf6α deficient cells are defective in ER protein processing. (A) and (B) Wild-type and
Atf6α-/- MEFs transfected with NHK were otherwise untreated (A) or pretreated with 5 nM TG overnight
(B), pulse-labeled for 1 hr and then chased for the indicated times. NHK was isolated by
immunoprecipitation. The results of two experiments are shown in each case. The rate of NHK degradation
was quantitated from three experiments and is shown ± SDM in the graphs below the autoradiographs. In
(B), a portion of the IP input was probed by immunoblot to detect NHK (arrowhead).  The asterisk
represents a nonspecific band that demonstrates equivalent total protein loading. (C) Atf6α+/+ and -/-
MEFs were left untreated or treated overnight with 5 nM TG. Lysates were then divided into aliquots for
digestion with EndoH as indicated, and probed by immunoblot. The EndoH-resistant (closed arrowhead)
and EndoH-sensitive (open arrowhead) species of transferrin receptor (TfR) are shown. Deglycosylation of
the ER-resident protein TRAPα is also shown. (D) At f6α+/+ and -/- MEFs were transfected with
constitutively-expressed SEAP and treated for 24 hours in the presence or absence of 5 nM TG. Media and
lysates were collected and SEAP activity was measured by a luminescence assay. The ratio of secreted to
cellular SEAP activity is provided. Error bars represent means ± SDM from three independent plates.
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Figure 2-12. Atf6α-/- MEFs do not efficiently adapt to chronic ER stress. (A) Wild-type and Atf6α-/- MEFs were treated with 10
mM DTT for 1 hr followed by chase in DTT-free media. Total RNA was isolated at the indicated time points during recovery, for RT-
PCR amplification of Xbp1 mRNA as in Figure 2-7C. The extent of Xbp1 mRNA splicing relative to the unspliced form was
quantitated by densitometry, and is shown beneath the gel. (B) Cells were treated as in (A), and cellular lysates were probed for
expression of BiP, CHOP and α-actin by immunoblot. The expression level of CHOP protein normalized against α-actin is quantitated
and shown beneath the blots. In both (A) and (B), essentially identical data were obtained in independent cell lines. Note that CHOP
induction depends upon multiple transcriptional and translational steps, and so is not first seen until approximately two hours after
removal of DTT. (C) Total RNA was isolated from Perk+/+ and -/- MEFs treated and assayed as in (A), except that 1 mM DTT was
used. (D) Protein lysates were collected from Ire1α+/+ and -/- MEFs treated and assayed as in (B). (E) Wild-type and Atf6α-/- MEFs
were treated with 10 mM DTT for 1 hr and recovered for 16 hrs. Cells were then rechallenged as indicated with 50 ng/ml TM for 8
hours or 5 nM TG for 2 hours. Total RNA was isolated for RT-PCR amplification of Xbp1 mRNA as in Figure 2-7C. (F) Proliferation
during chronic stress is impaired by Atf6α deletion. Wild-type and Atf6α-/- MEFs were treated with 5 nM TG or 50 ng/ml TM for 1 or
4 days, or left untreated. Cell lysates were collected and cell number was estimated by protein concentration (see experimental
procedures). Cell number is expressed relative to untreated Atf6α+/+ cells at day 0. (G) Wild-type and Atf6α-/- MEFs were treated
with 10 mM DTT for 1 hr and allowed to recover for 11 hours before retreatment. This process was repeated over 4 days, after which
lysates were collected to estimate cell proliferation as in (F). Alternatively, cells were treated only once with DTT and allowed to
recover for the remainder of the time-course (4d 1x). (H) Lysates were prepared from either wild-type or Atf6α-/- MEFs treated with
TM of the indicated concentrations for 3 days as in (F), and probed for expression of BiP, CHOP, p58IPK and α-actin by immunoblot.
(I) Cells were treated for 4 days with 5 nM TG or 250 ng/ml TM, and PARP cleavage was assessed and quantitated by densitometry.
The graph presents PARP cleavage from three independent plates, ± SDM. The PARP immunoblot corresponding to treatment of both
genotypes with 250 ng/ml TM was taken from a longer exposure because of protein underloading.
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Figure 2-13. Impaired adaptation to chronic stress in Atf6α-/- cells. (A) Wild-type and Atf6α-/- MEFs
were seeded in equal numbers on 10 cm plates and treated either for three days with 50 ng/ml TM or
vehicle, or for one hour out of every twelve hours, for three days, with 10 mM DTT. Cells were then
allowed to recover for seven days, after which colonies were visualized using crystal violet staining.
Representative data from three independent experiments are shown. In the absence of stress, Atf6α-/- cells
form somewhat larger colonies than wild-type cells. Nonetheless, their growth in markedly impaired by
both TM and DTT, while that of wild-type cells is affected very little. (B) Wild-type and Atf6α-/- cells, and
also Perk+/+ and Perk-/- MEFs, were seeded onto 96 well plates and treated for either one hour (top panel),
or repeatedly for three days (one hour out of every 24 hours—bottom panel) with 10 mM DTT. Cell
viability/proliferation was then assessed three days after the first treatment by MTT reduction, which
measures respiratory capacity. Error bars represent means ± SDM from six wells.  Asterisks represent p
values less than 0.001, using a two-tailed student’s t-test.
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Figure 2-14. Persistence of UPR signaling in Atf6α-/- cells exposed to chronic stress.
(A) Cells were treated with TM for up to 72 hours, with stressor refreshed daily, and
lysates were harvested at the indicated times for immunoblot. (B) RNA was isolated from
cells treated for 72 hours as in (A) and Xbp1 mRNA splicing was assessed by RT-PCR as
in Figure 2-7C. (C) The extent of eIF2α phosphorylation in cells treated for 72 hours as
in (A) was probed by immunoblot.  Treatment of cells with a more robust stress produced
enhanced reactivity with this antibody (see Figure 2-15A; also data not shown),
confirming the functionality of the reagent. (D) Cells exposed to TM for 48 or 72 hours
as in (A) were probed for cleavage of ATF6β as in Figure 2-7A. The low concentration
of stressor used (necessary for cells to survive treatment for more than 24 hours) makes
the cleaved form of ATF6β fairly faint. Nonetheless, a greater ratio of cleaved to
uncleaved ATF6β can be seen at both time-points in Atf6α-/- cells. Asterisk represents a
nonspecific band.
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Figure 2-15. ATF6α regulates stress-dependent chaperone expression in vivo. (A) and (B) Wild-type and Atf6α
heterozygous and homozygous mutant mice were injected intraperitoneally with TM (1 mg/kg body weight) or vehicle.
Protein lysates from liver (A) and kidney (B), isolated 8, 24, 48, or 72 hours after injection, were probed by
immunoblot as indicated. Efficacy of the TM was reflected in inhibition of TRAPα glycosylation (TRAPα versus
TRAPαCHO). RNA was prepared from the same liver tissue samples and assayed by RT-PCR of Xbp1 mRNA as in
Figure 2-7C. The right panel shows liver samples taken from mice mated with FLP recombinase-expressing animals to
delete the neomycin cassette, 24 hours after injection with TM. (C) Paraffin-embedded sections (4 µm) of the fixed
livers of unchallenged and TM challenged animals (18h) were stained with an antibody that recognizes the cleaved
form of caspase-3, and were visualized at 400x magnification to detect apoptotic cells. Representative staining is shown
in (C), with caspase-3-positive cells indicated by arrowheads. Inset shows a magnified view of the area outlined in the
white box. The percentage of stained cells in each microscopic field is shown in (D). Error bars represent means ± SEM
(n=3 animals). (E) Atf6α-/- (n = 5) or wild-type and heterozygous control (n = 8) mice were injected with TM as above,
and lethality was followed over 13 days. (F) Livers of mice injected with TM were visualized in situ.
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Figure 2-16. Lack of upregulation of Edem1 in Atf6α-/- mice. The expression level of
Edem mRNA was determined by real-time RT-PCR of livers from vehicle- or TM-
injected animals (containing the neomycin cassette). Data were normalized against β-
actin expression. The results of two independent experiments are shown.
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 CHAPTER III

ENDOPLASMIC RETICULUM STRESS AND INFLAMMATION

Part I. UPR and the acute phase response

Abstract

CREBH was recently identified as an ER stress-induced basic leucine Zipper

(bZIP) transcription factor that shares significant structural homology with ATF6α. Here

we found that in response to bacterial lipopolysaccharide (LPS) or ER stressor

tunicamycin (TM) challenge, the expression and secretion of acute phase response (APR)

markers were significantly reduced in CREBH knockdown mice compared to control

mice. Our preliminary data also demonstrated reduced serum levels of APR markers in

TM-injected Atf6α-/- mice and defective hepatic induction of APR markers in LPS-

injected conditional Ire1α-/- mice compared to control mice. These findings elucidate an

intimate relationship between inflammatory responses and ER stress responses.

Introduction

ATF6α is activated by regulated intramembrane proteolysis (RIP) in response to

ER stress to initiate the UPR 1-3. ATF6α is a type II ER transmembrane protein that

contains a basic leucine zipper (bZiP) domain in the cytosol and a stress-sensing domain

in the ER lumen 1. Under normal conditions, ATF6α is retained in the ER through

interaction with the ER protein chaperone BiP/GRP78 2. Upon accumulation of unfolded

or misfolded proteins in the ER lumen, ATF6α is released from BiP and transits to the
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Golgi compartment where it is cleaved by the processing enzymes S1P and S2P. The

cleaved ATF6α cytosolic domain traffics to the nucleus to activate transcription of UPR

target genes.

Recently, researchers identified several new members of the membrane-bound

transcription factor family that are structurally similar to ATF6α. These new members,

including Luman, OASIS and CREBH, all possess a transcription activation domain, a

bZiP domain in close proximity to a hydrophobic transmembrane domain, and a domain

that resides in the ER lumen 4-7. CREBH was identified as a hepatocyte-specific bZiP

transcription factor belonging to the cyclic AMP response element binding protein

transcription factor (CREB/ATF) family 4. Recent reports suggested that CREBH

requires proteolytic cleavage for its activation 4,6. However, the stimuli that activate

CREBH, the mechanism of CREBH cleavage, and the physiological role that CREBH

provides in the liver are unknown.

The innate immune response is an ancient metazoan adaptation mechanism

initiated by chemical structures presented by invading microorganisms or revealed by

damage to the host. The systemic inflammatory component of innate immunity is called

the acute phase response (APR) 8-10. C-reactive protein (CRP) is the major component of

the acute phase response in humans, whereas it is a minor one in the mouse. In contrast,

serum amyloid P-component (SAP), the structural homolog pentraxin of CRP, is the

major component of the acute phase response in the mouse, but is a minor one in humans

11-14.  In mice, both SAP and CRP are inducible by stimulation with inflammatory stimuli

such as LPS and cytokines IL6 and/or IL1β 15. Another acute phase protein (APP), serum

amyloid A (SAA), has been identified in all vertebrates investigated to date and are
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highly conserved. Its mRNA can increase by as much as 1000-fold during inflammation

16.

We have demonstrated that the expression levels of Crp, Sap and Saa3 mRNAs

are significantly reduced in embryonic livers of transgenic CREBH knockdown mice and

CREBH plays an essential role in the activation of the acute phase response. We found

that besides inflammatory stimuli such as LPS and cytokines IL6 and/or IL1β, the ER

stress inducer tunicamycin (TM) can activate the APR in vivo. Our preliminary data also

suggest that the activation of the APR is defective in both Atf6α-/- and conditional-Ire1α-

/- mice.

These studies provide molecular links between intracellular stress and

inflammation, and indicate that pharmacological intervention to prevent UPR activation

may be beneficial to control inflammatory responses in disease states.

Results and Discussion

Generation of CREBH knockdown mice

CREBH is an ER-localized liver-specific basic leucine zipper (bZIP) transcription

factor of the CREB/ATF family and shares significant homology with ATF6α (Figure 3-

1A). Upon ER stress, membrane-anchored CREBH is cleaved by Golgi-resident site-1

and site-2 proteases to liberate an amino-terminal cytosolic fragment that transits to the

nucleus. Instead of inducing the expression of UPR genes, cleaved CREBH activates a

subset of acute phase response genes to initiate an inflammatory response. Furthermore,

CREBH binds to a promoter element in specific acute phase responsive genes and

induces transcription of the human CRP gene and the murine SAP gene upon ER stress in

hepatocytes.
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To explore the physiological function of CREBH, we silenced the CREBH gene

in the mouse by using a lentivirus-based system that expresses CREBH-specific hairpin

small interfering RNAs (siRNAs). CREBH-specific RNAi lentivirus was injected into

single-cell mouse embryos to generate CREBH-knockdown mice. As a control, empty

vector lentivirus was also injected into single-cell mouse embryos. The mice were

screened by examining expression of CREBH and green fluorescence protein (GFP), a

marker for expression from the lentiviral vector (Figure 3-1B). CREBH siRNA

specifically targeted and degraded CREBH mRNA in the livers of the knockdown mice.

Histopathological analysis of the CREBH knockdown embryos at E14.5 did not reveal

any morphological or developmental defects (Figure 3-1C).

To identify potential target genes for CREBH action in the liver, we performed

gene chip analysis of RNA samples from CREBH knockdown or control fetal livers at

gestation stage E14.5. At this time in embryogenesis, the CREBH gene is highly

expressed. Knockdown of the CREBH gene in the fetal liver reduced expression of genes

involved in the APR and lipid metabolism (data not shown). Northern blot and

quantitative real-time RT-PCR analyses confirmed that expression of mRNAs encoding

CRP and its structural homologue pentraxin, SAP, were significantly reduced in the fetal

livers of the CREBH knockdown mice compared to the RNAi control mice (Figure 3-

2A). Additionally, the expression levels of mRNAs encoding SAA3 and apolipoprotein

B-100 (ApoB) were reduced by 3-5 fold in the CREBH knockdown mice compared to

that of the control mice. In contrast, mRNA levels of other major APR proteins including

serum amyloid A 1 (SAA1), serum amyloid A2 (SAA2), fibrinogen and α1-acid
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glycoprotein were similar in CREBH knockdown and control fetal livers (data not

shown).

In mice, both SAP and CRP are inducible by stimulation with pro-inflammatory

cytokines or bacterial LPS during the APR. The reduced mRNA levels of Crp and Sap in

CREBH knockdown mice suggested that CREBH might be required to activate the APR.

To test this hypothesis, we examined the response of CREBH knockdown mice to stimuli

of inflammatory cytokines, LPS or TM. The basal serum levels of SAP and CRP in the

CREBH knockdown mice were detectable, but lower than those in the control RNAi

mice. At 24 hours after injection of LPS or IL6 plus IL1β, serum levels of SAP in the

control RNAi mice were significantly increased, to a level of approximately 4.5- and 9-

times that of the untreated control mice. In contrast, serum levels of SAP in the CREBH

knockdown mice were only slightly increased after challenged with LPS or IL6 plus

IL1β. Injection of TM increased serum levels of SAP in the control mice approximately

12-fold whereas TM injection increased serum SAP in the CREBH knockdown mice

approximately 2-fold (Figure 3-2B). Furthermore, while injection of pro-inflammatory

cytokines, LPS or TM increased serum levels of CRP approximately 2-fold in control

RNAi mice, there was no such increase in the treated CREBH knockdown mice (Figure

3-2C). These results support the hypothesis that CREBH is required to potently activate

transcription of the SAP and CRP genes in response to ER stress as well as pro-

inflammatory cytokines in vivo.

Together, our studies delineate a molecular mechanism for activation of a novel

ER-localized transcription factor CREBH that is essential for transcriptional induction of



85

innate immune response genes, and reveal an unprecedented link by which ER stress

initiates an acute inflammatory response.

ATF6 alpha is essential to acute phase response markers secretion in response to an

ER stress-induced inflammatory response

In Chapter II, we demonstrated that wild-type and heterozygous mutant mice can

survive challenges with TM whereas most of Atf6α-/- mice succumbed to the same dose

TM injection within a week (Figure 2-15). Studies with CREBH RNAi transgenic mice

shown that TM can effectively induce the acute phase response in vivo. We therefore

monitored the acute phase response markers in the TM-challenged wild-type, Atf6α+/-

and Atf6α-/- mice. SAP, one of major murine APR markers, was significantly induced in

the sera of the TM-challenged wild-type and heterozygous mice (4-6 folds induced at 24

hrs post-injection compared to the vehicle-injected control mice) whereas such induction

was absent in the TM-injected Atf6α-/- mice (Figure 3-3B). At the same time, we

detected significant amount of SAP protein in the liver samples of Atf6α-/- mice at 24, 48

and 72 hrs post TM-injection by western blot analysis. In contrast, the hepatic levels of

SAP in both wild-type and heterozygous mutant Atf6α mice were marginally detectable

only at 24hrs time point (Figure 3-3A).

When the animals were challenged with the inflammatory stimuli LPS, which

leads to an even higher induction of SAP (around 10 times more compared to that of TM

challenged wild-type mice), SAP was significantly induced to similar levels in both livers

and sera of all the wild-type, Atf6α+/- and Atf6α-/- mice that were injected with LPS

(Figure 3-4).
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The serum levels of another APR marker, CRP, were induced approximately 2-

folds in LPS or TM challenged wild-type and Atf6α+/- mice, whereas such increase was

only observed in the LPS treated Atf6α-/- mice but not in the TM challenged Atf6α-/-

mice (data not shown).

Further experiments are necessary to elucidate the molecular mechanism(s) for

the preliminary observations in Atf6α-/- mice. We have demonstrated that efficiency of

protein secretion is reduced in the presence of an exogenous stress in Atf6α-/- cells,

(Figure 2-11). So it is tempting to speculate that while hepatocytes in Atf6α-/- mice are

capable of upregulating Sap and Crp expression upon both TM and LPS challenges, the

former severely disturbs ER homeostasis and in the absence of ATF6α, the processing

and secretion of SAP are impaired. With less secretion of SAP into the blood, Atf6α-/-

mice lost the defense from the acute phase response and the defects in the protective APR

may partly result in the lethality of Atf6α-/- mice injected with the normally sublethal

dose of TM.

IRE1α/XBP1 pathway activates the inflammatory response upon intracellular stress

Where ER stress activates both ATF6α  and CREBH through regulated

intramembrane proteolysis (RIP), ER stress induces IRE1α-dependent splicing of Xbp1

mRNA to produce an active transcription factor. XBP1 is another ER stress-inducible

bZIP transcription factor of CREB/ATF family. We determined whether IRE1α/XBP1

UPR subpathway is required for expression of acute phase proteins in the liver in

response to inflammatory stimuli. Mice were engineered with temporally-controlled

deletion or tissue-specific deletion of the IRE1α gene. A loxP-flanked IRE1α transgene

was introduced into IRE1α knock-out mice 17 to rescue embryonic lethality associated
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with homozygous deletion of the IRE1α gene. To generate temporally-controlled (Ire1α-

/-:tg/+:Mx1-cre) or hepatocyte-specific (Ire1α-/-:tg/+:Alb-cre) IRE1α conditional

knockout mice, the IRE1α transgene-rescued mice with homozygous deletion of the

endogenous IRE1α gene were mated with transgenic mice expressing recombinase CRE

under the control of the Mx1 promoter or the albumin promoter. We first injected

Ire1α+/-:tg/+:Mx1-cre mice and Ire1α-/-:tg/+:Mx1-cre mice intraperitoneally with poly

I-C to delete IRE1α transgene to produce animals with Ire1α+/- and Ire1α-/- genotypes,

respectively. After 4 weeks of Poly I-C injection, southern blot analysis demonstrated

~82% of the transgene was deleted in the whole liver tissue of Ire1α+/-:tg/+:Mx1-

cre mice or  Ire1α-/-:tg/+:Mx1-cre mice. To test whether IRE1α is required for the liver

inflammatory response, Poly I-C-injected Ire1α+/-:tg/+:Mx1-cre mice and Ire1α-/-

:tg/+:Mx1-cre mice were challenged with LPS (3 µg/gram body weight) for 24 hours.

Total RNAs were isolated from the livers at 24 hours post-injection, and subjected to

quantitative real-time PCR analysis to determine levels of Ire1α, Sap and Saa3 mRNAs.

As shown in Figure 3-6, Ire1α  mRNA levels in IRE1α-deleted animals were

dramatically reduced compared to those of Ire1α+/-:tg/+:Mx1-cre mice. Prior to LPS

injection, the basal levels of Sap and Saa3 mRNAs in the liver were very low. At 24

hours after LPS challenge, the levels of Sap and Saa3 mRNAs in the control mice were

dramatically increased, whereas the levels of Sap and Saa3 mRNA in the IRE1α-deleted

mice were only marginally increased after LPS challenge (Figure 3-5). This suggests that

IRE1α is required for transcriptional induction of the major acute phase proteins SAP and

SAA3 in the liver in response to inflammatory stimuli. Following these results, we

challenged Ire1α+/-:tg/+:Alb-cre and Ire1α-/-:tg/+:Alb-cre mice with the same
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inflammatory stimuli by intraperitoneal injection of LPS (3µg/gram body weight for 24

hours). Similar to the temporally-controlled IRE1α-deleted animals, the expression levels

of the Sap and Saa3 mRNAs in the animals with liver-specific deletion of the IRE1α

gene were significantly reduced in response to LPS challenge (data not shown), thus

further confirming the requirement of the major ER stress transducer IRE1α for the acute

inflammatory response in the liver.

Our observations from conditional Ire1α-/- mice support the hypothesis that ER

homeostasis, as well as the protein folding status in the ER, may signal an inflammatory

response. Our findings suggest that, under many physiological and pathological

conditions, ER stress-triggered activation of CREBH and IRE1α significantly contribute

to the acute inflammatory response.

Experimental Procedures:

Generation of CREBH knockdown mice

Generation of RNA interference transgenic mice was performed as described

previously 18. Briefly, vectors that express hairpin siRNAs under the control of the mouse

U6 promoter were constructed by inserting pairs of annealed DNA oligonucleotides into

the LentiLox3.7 vector (kindly provided by Dr. Luk Van Parijs) between the HpaI and

XhoI restriction sites. The sequence used for CREBH RNAi is:

TCGAGAAAAAAGACATAGCGGCTGGAAAGATCTCTTGAATCTTTCCAGCCGC

TATGTCA. The clones and packaging vectors including VSVG, RSV-REV, pMDL g/p

RRE were co-transfected into 293T cells. The supernatants containing virus were

concentrated by ultracentrifugation. A small volume of high-titer RNAi lentivirus

(approximately 5x106 IU ml-1) was transferred into the perivitelline space of single-cell
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C57BL/6J mouse embryos through microinjection. The injected single-cell embryos were

implanted into pseudopregnant recipient mice for generating CREBH knockdown

embryos and pups.

Generation of transgenic rescued Ire1α-/- mice

To generate transgenic mice that express wild type IRE1α in all tissues, we used

the pCX-EGFP vector (gift of Dr Masaru Okabe, Osaka University) that contains the

cytomegalovirus enhancer, chicken β-actin promoter, β-actin intron, enhanced green

fluorescence protein (EGFP), and followed by bovine globin polyadenylation signal 19.

The 2.7 kb mouse Ire1α cDNA from pcDNA3.1-mIRE1α  20 was inserted into between

Sal I and Xma I site of pDNR-CMV plasmid (CLONTECH) to generate pDNR-CMV-

LoxP-mIRE1α which has one loxP site in front of mouse Ire1α cDNA. To generate

pCMV-LoxP-mIRE1α-LoxP which is surrounded by two loxP sites,  the Not I fragment

from pDNR-CMV was inserted into the site of Xma I of pDNR-CMV-LoxP-mIRE1α. To

generate pCMV-LoxP-mIRE1α-LoxP-EGFP, the Not I and Sal I fragment of pCMV-

LoxP-mIRE1α-LoxP was then inserted into pEGFP-N1 to get EGFP sequence behind of

Ire1α cDNA. The 3.9 kb (LoxP-mIRE1α-LoxP-EGFP) fragment digested with Not I

from pCMV-LoxP-mIRE1α-LoxP-EGFP was inserted into pCX-EGFP digested with

EcoR I to generate pCX-LoxP-mIRE1α-LoxP-EGFP. The 6.5 kb fragment of the (LoxP-

mIRE1α-LoxP-EGFP) transgenic construct was obtained by digestion of pCX-LoxP-

mIRE1α-LoxP-EGFP plasmid with Ssp I and Sfi I restriction enzymes, followed by gel

purification. The transgenic construct was microinjected into C57BL/6xSJL fertilized

embryos and implanted into pseudopregnant females.
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Transgenic founder mice were identified by a PCR based genotyping of tail

DNAs with the following three different primer sets: For Enhancer-promoter primers

(~370 bp fragments), Forward: cgacattgattattgactag, Reverse: gtaatagcgatgactaatac; For

GFP primers (~200 bp fragment), Forward: tatatcatggccgacaagca, Reverse:

gaactccagcaggaccatgt; For mIRE1α-EGFP primers (~600 bp fragment), Forward:

gatggactggcgggagaacatc, Reverse: gcggacttgaagaagtcgtg. From 15 PCR positive-

transgenic founders, one transgenic founder (#402) was chosen. The transgene was

confirmed by Southern blot analysis. The expressed LoxP-mIRE1α-LoxP-EGFP mRNAs

were confirmed by Northern blot analysis in most tissues.

The IRE1α  knockout (Ire1α-/-:Tg/+) mice expressing the transgenic LoxP-

IRE1α-LoxP-EGFP mRNA were generated by crossing the transgenic Ire1α+/+:Tg/+

mice strain into heterozygous Ire1α+/- mice. Presence of the LoxP-IRE1α-LoxP-EGFP

transgene was determined by PCR methods described above. Presence of the

Ire1α mutant allele was identified by a PCR based genotyping with the following two

different primer sets: For NEO cassette primers (~500 bp fragments), Forward:

aggatctcctgtcatctcaccttgctcctg, Reverse: aagaactcgtcaagaaggcgatagaaggcg; For

Exon14/15 primers (~850 bp fragment from wild type allele or ~200 bp fragment from

transgene).  After the Ire1α-/-:Tg/+  mice were generated, the strain was maintained by

interbreeding of Ire1α-/-:Tg/+  mice.

To delete the transgene in hepatocytes, Albumin-Cre transgenic mice were breed

with the transgenic Ire1α-/-:Tg/+ mice. The Alb-Cre transgene led to a hepatocyte-

specific deletion, starting from late gestation and leading to nearly complete deletion in

adult mice (Ire1α-/-:tg/+:Alb-cre).
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To achieve temporally-controlled deletion of the IRE1α in the transgenic Ire1α-/-

:Tg/+ mice, Mx1-Cre transgenic mice were breed with the transgenic Ire1α-/-:Tg/+ mice.

Then we injected Ire1α+/-:tg/+:Mx1-cre and Ire1α-/-:tg/+:Mx1-cre mice

intraperitoneally with poly I-C (300µg/mouse) every 48 hrs for total 4 times to delete

IRE1α transgene to produce animals with IRE1α+/- and IRE1α -/- genotypes,

respectively. The deletion is nearly complete 4 weeks after Poly I-C injection.

Administration of proinflammatory cytokines, LPS, and TM and measurement of

serum CRP and SAP in mice

Proinflammatory cytokines recombinant murine IL6 (BD Pharmingen),

recombinant murine IL1β (R&D System, Mineapolis, MN) and bacterial LPS (Sigma, St.

Louis, MO) were re-suspended in sterile pyrogen-free 0.9% NaCl (Abbott Laboratories,

North Chicago, IL). Mice at age of 3-month were given a single intraperitoneal injection

of IL6 (25ng/gram body weight) plus IL1β (25ng/gram body weight) or LPS (3mg/kg

body weight). Mice were injected intraperitoneally with TM (2mg/kg body weight for

CREBH knockdown and control RNAi mice and 1mg/kg body weight for wild-type,

heterozygous and homozygous Atf6α mice) in 150mM dextrose solution. Sera from

blood samples were collected from the mice by cardiac puncture at indicated times after

injection, using BD Microtainer with serum separator™ (BD, Franklin Lakes, NJ, USA).

For CREBH knockdown and control RNAi mice, serum levels of murine CRP were

determined using a murine CRP ELISA kit (ALPCO Diagnostics, Windham, NH, USA).

Serum levels of murine SAP were determined by ELISA analysis using sheep anti-Mouse

SAP as the capture antibody (Alpha Diagnostic Intl., San Antonio, Texas), and murine

SAP reference serum was purchased from the same company. For wild-type,
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heterozygous and homozygous mutant Atf6α mice, serum levels of murine CRP and SAP

were determined using murine CRP and SAP ELISA kits (Immunology Consultants

Laboratory, Inc. Newberg, OR, USA).

Tissue preparation and analysis

Livers were isolated from challenged mice at indicated times. Briefly, tissue was

homogenized using an electronic homogenizer in RIPA buffer containing protease

inhibitors, and centrifuged twice at 15,000rpm for 10 minutes in a microfuge at 4°C.

Histological analysis

CREBH knockdown and control RNAi embryos were fixed in 4% paraformalin

for embedding in paraffin. Sections of 4µm were cut and mounted on slides. Sections

were stained by conventional hematoxylin and eosin staining for light microscopic

observation.

Western Blot Analysis

Sera or liver RIPA lysates were diluted into 1%SDS, 0.1M Tris pH8.8 prior to

addition of loading buffer and electrophoresis. Antibodies were supplied by BD

Biosciences (BiP, used at 1/5,000; San Diego, California, United States), Santa Cruz

Biotechnology (tubulin, used at 1/5000; Santa Cruz, California, United States), R&D

system (Rat-anti-mouse SAP monoclonal antibody, Cat#: MAB2558,

Minneapolis, MN) and Stressgen (CNX, used at 1/20,000).

Northern Blot Analysis and Quantitative Real-time RT-PCR

RNA was isolated using TRIzol RNA reagent (Invitrogen) according to the

manufacturer’s protocols. Northern blot analysis was performed according to standard

procedures 21. 32P-labeled probes were prepared using a random prime labeling system
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(Amersham Pharmacia, Piscataway, NJ, USA). A 210 bps murine CREBH cDNA

fragment, a 250 bps murine CRP cDNA fragment and a 260 bps murine SAP cDNA

fragment were amplified from murine total RNA by a reverse transcription-PCR system

(Roche Applied Science), respectively, and were used as probes for Northern blot

analysis. Total RNA (15µg) per sample purified from tissues was used for Northern blot

analysis. Quantitative real-time RT-PCR was performed as previously described 22.

Additional real-time primer sequences were as follows: Ire1α: catgctcaaggacatggcta and

gctcagggggtaagtgatga; Sap: tgtctgggattgagatcttacaaca and ctgccgccttgacctcttac; saa3:

cgggacatggagcagagg and ttgccactccggccc.
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Part II. Lipopolysaccharide+Galactosamine  (LPS+GalN) induced acute liver injury

requires phosphorylation of the alpha subunit of eukaryotic translation

initiation factor 2

Abstract

The PERK/eIF2α pathway couples protein synthesis with ER protein folding

capacity. Mice with a hepatocyte-specific homozygous mutation at the PERK-

phosphorylation site in eIF2α (Ser51Ala) exhibited significantly reduced liver injury

upon LPS + Galactosamine (LPS+GalN) challenge compared to control mice. This in

vivo protection was correlated with the defective upregulation of CHOP expression upon

LPS+GalN challenges. These findings suggest that pharmacological modulation of eIF2α

phosphorylation may provide therapeutic benefit during fulminate hepatitis or

hemorrhagic shock.

Introduction

The liver plays an important physiological role in detoxification, in particular,

hepatocytes are involved in the clearance of endotoxin 23. In experimental shock models,

various agents can lead to hepatocyte damage and liver failure. Lipopolysaccharide

(LPS), present in the cell wall of gram-negative bacteria, can induce endotoxemia and

cause multi-organ failure including severe hepatic damage, which is characterized by

hepatocyte apoptosis and followed by massive hepatic necrosis and subsequent liver

failure 24. LPS interacts with toll-like receptor 4 (TLR4) on macrophages, and promotes

secretion of pro-inflammatory cytokines and chemokines 25,26. Among these cytokines

and chemokines, TNFα does not induce liver injury in normal hepatocytes in vivo

because of the strong activation of cytoprotective pathways such as NF-κB 27. However,
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hepatic TNFα  toxicity is induced when hepatic gene transcription is blocked by

coadministration of galactosamine (GalN), which mimics fulminate hepatitis in human

28,29.

It has been previously reported that phosphorylation at Ser 51 on the α-subunit of

eukaryotic translation initiation factor 2 (eIF2α) may play a pro-apoptotic role in certain

physiological and pathological conditions 30-33, although the detailed mechanisms for

these observations have not been elucidated. In higher eukaryotes, eIF2 is required to

deliver mettRNAi
 to the 40 S ribosomal subunit 34. Phosphorylation of eIF2α at Ser51

inhibits the guanine nucleotide exchange factor eIF2B to recycle the eIF2 complex to its

active GTP-bound form. The formation of the ternary translation initiation complex eIF2-

GTP-tRNAMet is required for AUG initiation codon recognition and joining the 60S

ribosomal subunit that occurs during initiation phase of polypeptide chain synthesis.

Therefore, phosphorylation of eIF2α reduces the efficiency of AUG initiation codon

recognition and attenuates translation initiation. However, reduced AUG initiation codon

recognition can increase the initiation efficiency at selective AUG codons, thereby

altering translation initiation for specific mRNAs. ATF4 is the best characterized

example of an mRNA for which translation requires eIF2α phosphorylation. ATF4 is a

basic leucine Zipper (bZIP) transcription factor that can form homodimers or heterdimers

with other bZIP transcription factors. Array studies in Atf4-/- mice demonstrated that

ATF4 most likely regulates expression of genes that encode proteins responding to

cellular stress in general.

Recent studies on the unfolded protein response (UPR) have presented a new

perspective on the physiological role of eIF2α  phosphorylation. In response to the
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accumulation of unfolded proteins in the ER, the rate of general translation initiation is

attenuated, the expression of ER resident protein chaperones and protein foldases is

induced, the ER compartment proliferates, and ER-associated degradation (ERAD) is

activated to eliminate the irreparably misfolded proteins 35.  When the pro-survival efforts

are exhausted, ER-stress-related apoptosis commences. Among all these cellular

responses, eIF2α phosphorylation not only directly functions as an emergency brake on

translation initiation, it also activates C/EBP homologous protein (CHOP)/growth arrest

and DNA damage-inducible gene 153 (GADD153) through upregulation of ATF4.

CHOP is a member of the C/EBP transcription factor family, and its expression correlates

with ER-stress-mediated apoptosis 22. More recent reports suggest that CHOP may

repress anti-apoptotic BCL2 expression leading to the oxidative stress induced cell death

36 and CHOP-/- mice are protected from LPS-induced lung inflammation 37.

Homozygous eIF2α S51A knockin mutant MEFs that are defective in eIF2α

phosphorylation were protected from TNFα-induced apoptosis in vitro 33. Homozygous

eIF2α mutant mice die neonatally 38. In this study we investigated the physiological role

the phosphorylation of eIF2α in vivo. The lethality of the eIF2α Ser51Ala homozygous

knock-in mouse was rescued by expression of a conditional wild-type eIF2α transgene

that can be deleted by Cre recombinase expression. Deletion of the transgenic eIF2α

cDNA by albumin promoter-driven Cre expression creates hepatocyte-specific

homozygous Ser51Ala mutation (eIF2αA/A:tg/+:Alb-cre). eIF2αA/A:tg/+:Alb-cre mice

displayed significantly reduced liver injury upon LPS+GalN challenge compared to

control mice. This protection correlated with the defective upregulation of CHOP

expression in the LPS+GalN challenged eIF2αA/A:tg/+:Alb-cre mice. Our findings
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suggest that pharmacological inhibition of eIF2α  phosphorylation may provide

therapeutic benefit during fulminate hepatitis or hemorrhagic shock.

Results and Discussion

Generation of hepatocyte-specific eIF2α Ser51Ala knock-in mice

A loxP flanked eIF2α wild-type cDNA transgene was introduced into eIF2α

Ser51Ala knockin mice (Figure 3-6A and Back and Kaufman, et. al. unpublished data).

The wild-type cDNA transgene rescued the lethality and eIF2αA/A:tg/+ mice were born in

the expected genotypic ratios and show no obvious developmental defects. eIF2αA/A:tg/+

mice were crossed into Alb-cre transgenic mice expressing Cre recombinase under the

hepatocyte-specific albumin promoter control 39 to generate eIF2αA/A:tg/+:Alb-cre mice.

Cre-mediated deletion was confirmed by the expression of the deletion-reporter GFP in

the transgene vector, (Figure 3-6 B and C) and deletion efficiency was assessed by

Southern blotting of genomic DNA from the liver and primary hepatocytes (Figure 3-

6D). In livers from neonates, the efficiency of albumin-cre mediated recombination was

approximately 50% 39, but increased to more than 80% in hepatocytes isolated from mice

at 4 months of age (Fig 3-6D and E). This is consistent with previously reports using this

cre-strain from other groups 40,41. Western blot analysis of the whole liver lysates further

confirmed that the phosphorylation of eIF2α at Ser51 is effectively disrupted by 3

months in this strain (Figure 3-6F). eIF2αA/A:tg/+:Alb-cre mice were born at Mendelian

frequencies and exhibited no developmental abnormalities or morbidity. This observation

is consistent with previous reports that heterozygous eIF2αS/A mice showed no apparent

defects 38.
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Disruption of eIF2α phosphorylation ameliorates acute liver injury induced by

LPS+GalN challenge in vivo

It has been reported that when cells were treated with LPS or its principal

mediator in vivo, TNFα, eIF2α  phosphorylation can be induced in cells, such as

macrophages, fibroblasts, Jurkat T cells, promonocytic U937 cells and fibrosarcoma

L929 cells 32,33,42,43. To study these effects in vivo, we intraperitoneally injected LPS to

GalN-sensitized control (eIF2α S/A:tg/+:Alb-cre and eIF2α A/A:tg/+) and

eIF2αA/A:tg/+:Alb-cre mice. Previous reports shown that co-administration of GalN

blocked transcription in the liver and precluded the protection from anti-apoptotic NF-κB

target genes. In the livers of LPS+GalN-challenged control mice, the phosphorylation of

eIF2α at Ser 51 in the whole liver was significantly induced at 5.5 hrs post injection

compared to PBS-injected mice, whereas in livers isolated from LPS+GalN-challenged

eIF2αA/A:tg/+:Alb-cre mice, phosphorylation of eIF2α was barely detectable. The low

level detection of eIF2α phosphorylation could be due to other cell types present in the

liver tissue (Figure 3-7).

It was previously demonstrated that homozygous eIF2α  mutant MEFs are

resistant to the apoptotic effects of TNFα in vitro 33. We further analyzed tissue injury in

LPS+GalN-challenged control (eIF2αS/A:tg/+:Alb-cre and eIF2αA/A:tg/+) and

eIF2αA/A:tg/+:Alb-cre mice. The livers of LPS+GalN-challenged control mice displayed

extensive apoptosis and hemorrhagic necrosis at 5.5 hrs (figure 3-8A, C). In contrast,

concomitant with the absence of the eIF2α phosphorylation, less tissue injury was

observed in the livers from the eIF2αA/A:tg/+:Alb-cre mice challenged with LPS+GalN.

Histological analysis of liver sections from LPS+GalN-challenged eIF2αA/A:tg/+:Alb-cre
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mice demonstrated less hepatocyte apoptosis and hemorrhagic necrosis compared to that

observed in control mice (figure 3-8A-C). As a marker for liver damage, we analyzed

serum levels of Alanine aminotransferase (ALT). Serum ALT levels in the LPS+GalN-

challenged eIF2αA/A:tg/+:Alb-cre mice were lower than that of LPS+GalN-challenged

eIF2αS/A:tg/+:Alb-cre and eIF2αA/A:tg/+ mice (Figure 3-8D), further confirming that the

absence eIF2α phosphorylation in hepatocytes ameliorates acute liver injury induced by

LPS+GalN-challenge in vivo. We also explored Caspase 3 cleavage, a marker of

apoptosis, by western blot analysis. There was detectable caspase 3 cleavage in the livers

of eIF2αA/A:tg/+:Alb-cre mice challenged with LPS+GalN, although less than that

observed in the control mice (Figure 3-8E). This observation is consistent with the

histological analysis where hepatic apoptosis is detectable but to a lesser extent in the

eIF2αA/A:tg/+:Alb-cre mice compared to the challenged control mice.

CHOP upregulation is defective in the LPS+GalN-challenged eIF2αA/A:tg/+:Alb-cre

mice

Upon eIF2α phosphorylation increased ATF4 translation leads to transcriptional

activation of Chop. Increased CHOP expression correlates with apoptosis, at least in the

context of UPR 22. We hypothesize that the protective phenotype we observed in the

LPS+GalN-challenged eIF2αA/A:tg/+:Alb-cre mice may be caused by defects in

upregulation of CHOP expression in the absence of eIF2α phosphorylation. Western blot

analysis demonstrated that the CHOP protein level was very low in vehicle injected mice

(undetectable by western blot) but significantly upregulated in the LPS+GalN-challenged

control mice (eIF2αS/A:tg/+:Alb-cre and eIF2αA/A:tg/+). In contrast, CHOP upregulation

was much reduced or absent in livers of LPS+GalN-injected eIF2αA/A:tg/+:Alb-cre mice
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(Figure 3-9A). Analysis by real-time RT-PCR demonstrated that Chop mRNA was

upregulated when the control mice were challenged by LPS alone. On the contrary, the

expression of Chop mRNA was not induced in the LPS challenged eIF2αA/A:tg/+:Alb-cre

liver. Since GalN inhibits transcription in hepatocytes by UTP depletion, the expression

levels of Chop mRNA were fairly low at 5.5 hrs post LPS+GalN injection in both control

and eIF2αA/A:tg/+:Alb-cre mice (Figure 3-9B). The upregulation of CHOP protein level

in the LPS+GalN challenged control mice could be due to rapid induction of Chop

mRNA that occurred prior to GalN-induced transcription inhibition.

Perspectives and future directions

Previous reports suggested that PKR-mediated eIF2α phosphorylation and general

translational inhibition can activate apoptosis in response to different stimuli 32,33,42. We

therefore tested the relationship between general translational inhibition and the

protective phenotype in the hepatocytes of the eIF2αA/A:tg/+:Alb-cre mice. When general

translation was blocked by cycloheximide (CHX) pretreatment, the control

(eIF2αS/A:tg/+:Alb-cre and eIF2αA/A:tg/+) and eIF2αA/A:tg/+:Alb-cre mice challenged

with LPS+GalN showed similar levels of ALT (data not shown). These data suggest that

the protective effect of the Ser51Ala mutation upon LPS+GalN induced liver injury is

mediated, at least partly, through translational inhibition. Further analysis is required to

elucidate how general translation inhibition mediates the LPS+GalN-induced liver injury.

The liver injury induced by LPS+GalN depends on the cross talk between

macrophages and hepatocytes (Figure 3-10). In the eIF2αA/A:tg/+:Alb-cre mice, we

observed that serum levels of TNFα and IL-6 were comparable to that of the control mice

(data not shown), which is expected since the eIF2α transgene expression is not deleted
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in macrophages. We also observed similar level of mRNA expression of TNFα, IL-6 and

IL-1β in the whole liver tissue (data not shown). We observed similar level of JNK

activation in both genotypes upon treatment (data not shown).  These data suggest that

protective phenotype in eIF2αA/A:tg/+:Alb-cre mice is achieved at the hepatocytes level.

Our data here demonstrated that general translation inhibition and upregulation of

pro-apoptotic marker CHOP through eIF2α phosphorylation plays an important role in

hepatic apoptosis induced by LPS+GalN in vivo and suggested that regulation of eIF2α

phosphorylation could provide an attractive target for therapeutic intervention.

Experimental Procedures

Generation of hepatocyte-specific eIF2α Ser51Ala knock-in mice

To generate conditional transgenic rescued eIF2α mice, a vector was constructed

with the sequence of eIF2α cDNA flanked by loxP sites, for in vivo specific-promoter-

Cre recombinase-mediated deletion. The 4.4 kb transgenic fragment of the (LoxP-

meIF2α-LoxP-EGFP) also contains EGFP as a deletion reporter. The transgenic construct

was microinjected into C57BL/6xSJL fertilized embryos and implanted into

pseudopregnant females. From 21 PCR positive-transgenic founder mice, one transgenic

founder mouse (#137) was chosen. Southern blot analysis confirmed this founder mouse

has ~ 1 copy of transgene construct and northern blot analysis confirmed the expression

of the transgenic LoxP-meIF2α−LoxP-EGFP mRNA in most tissues. The transgene was

introduced into homozygous eIF2α  S51A mutation background by crossing the

transgenic mice strain with heterozygous eIF2α-S51A mice.

To delete the transgene in hepatocytes, Albumin-Cre transgenic mice were breed

with the transgenic homozygous eIF2α  S51A mice (eIF2αA/A:tg/+). The Alb-Cre
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transgene led to a hepatocyte-specific deletion, starting from late gestation and leading to

nearly complete deletion in adult mice (eIF2αA/A:tg/+:Alb-cre).

Liver injury models

Mice were challenged by intraperitoneally injection with LPS  (Escherichia coli

O55:B5, Sigma-Aldrich) alone (4.5 µg/g body weight) or co-injection with LPS (100

ng/g body weight) and GalN (700 µg/g body weight) or co-injection with LPS (100 ng/g

body weight), GalN (700 µg/g body weight) and CHX (Sigma-Aldrich) (40µg/g body

weight). Mice were sacrificed, blood was collected by cardiac puncture, and livers were

surgically removed. Serum was separated using BD Microtainer with serum separator™

(BD, Franklin Lakes, NJ, USA).

Isolation of hepatocytes

Primary mouse hepatocytes were isolated by collagenase perfusion. Mouse liver

was perfused retrograde with Krebs Ringer buffer followed by perfusion of the liver with

Liberase Blendzyme 3 solution (Roche). Isolated hepatocytes were washed intensely with

Dulbecco’s Modified Eagle Medium (Invitrogen). After determination of viability by

trypan blue staining (>95%), 8×105 cells were plated collagen-coated dishes in M199

media (Invitrogen) with 10% heat inactivated FBS and 1% penicillin G/streptomycin at

37°C in a 5% CO2 incubator. The medium was freshed after over night incubation.

Histology and immnunohistochemistry

Liver tissues from adult mice were fixed in 10% buffered formalin solution

(Sigma) for over 12 hrs at 4 °C, dehydrated, embedded in paraffin, and sectioned at 4 µm

thickness. To detect Enhanced green fluorescence protein (EGFP), mouse anti-EGFP

(1/500 dilution, Clontech) was used and followed by FITC conjugated goat anti-mouse
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antibody (1/500 dilution, Jackson ImmunoResearch Laboratories, Inc.). The images were

captured with a cooled charge-coupled device camera and a Zeiss LSM 510 confocal

microscope (Jena, Germany). For light microscopic observation, sections were stained by

conventional hematoxylin and eosin staining. TUNEL staining was performed using

ApopTag® Peroxidase In Situ Apoptosis Detection Kit (CHEMICON), according to

manufacturer’s instructions. The images were captured with an Olympus BX51

microscope. The intrinsic EGFP expression from dissected liver was analyzed using a

Leica MZFLIII stereo-dissecting microscope (Leica Corp., Deerfield, IL). All data were

processed with Adobe photoshop software (Mountain View,Calif.).

Southern blot analysis

Southern blot analysis were followed as previously described 17,44. 32P-labeled

probes were prepared using a random prime labeling system (Amersham Pharmacia). For

Southern blot analysis, a 1 kb Bgl II fragment containing 0.8 kb PCR product containing

the EGFP cDNA from pCX-LoxP-eIF2α-LoxP-EGFP vector (for Figure 3-6) was used.

The PCR was done with Forward primer: 5’-GTCGACCGGTCGCCACCA-3’ and

Reverse primer: 5’-AGATCTCAGTGGTATTTG-3’.

RNA analysis

RNA was isolated using TRIzol RNA reagent (Invitrogen) according to the

manufacturers’ protocols. Real-time RT-PCR analysis, including primer sequences and

applicable control/piloting experiments, has been described 22.

Tissue preparation and analysis

Liver isolated from challenged or control mice, was homogenized using an

electronic homogenizer in RIPA buffer containing protease inhibitors, and centrifuged
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twice at 15,000 rpm for 10 minutes in a microfuge at 4°C. Samples were diluted into 1%

SDS, 0.1 M Tris pH 8.8 prior to addition of loading buffer and electrophoresis. Antibody

sources have been previously described 22.

Alanine aminotranferase (ALT) assay

Serum ALT was measured at the U-M Animal Diagnostic Lab by the IDEXX

VetTest Chemistry Analyzer from IDEXX Laboratories (www.idexx.com).

Statistical analysis

Data are expressed as mean±SD, unless otherwise indicted.
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Figure 3-1. Generation of CREBH knockdown mice. (A) Structural comparison of
CREBH and ATF6. The domains are indicated by residue numbers of amino acids. (B)
Identification of CREBH knockdown mice. Total RNAs were isolated from the livers of
the CREBH RNAi or the control RNAi mice, and subjected to Northern blot analysis for
detecting levels of GFP mRNA and CREBH mRNA, respectively. (C) Morphology of
CREBH knockdown embryos at gestation stage E14.5. The paraffin-embedded embryo
sections were stained with hematoxylin and eosin.  Magnification: 20 X.
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Figure 3-2. CREBH is required to up-regulate expression of the CRP and SAP
genes. (A) Northern blot analysis of levels of CREBH, CRP and SAP mRNA in the livers
of the CREBH knockdown or the control mice. (B-C) SAP and CRP induction requires
CREBH. CREBH knockdown and control RNAi mice at 3-months of age were
challenged with IL6 (25 ng/gram body weight) plus IL1β (25 ng/gram body weight), LPS
(3 µg/gram body weight) or TM (2 mg/kg body weight). Serum levels of SAP and CRP
in the mice were determined before injection and at 24 hours after injection. Data points
are serum levels of SAP or CRP for individuals, n = 5 CREBH knockdown or 5 control
RNAi mice per injection. The differences in CREBH knockdown and control mice are
statistically significant (P < 0.001). CTL, control RNAi mice; KD, CREBH knockdown
mice.
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Figure 3-3. Attenuated secretion of SAP in TM challenged Atf6α-/- mice. (A) Wild-
type and A t f 6α  heterozygous and homozygous mutant mice were injected
intraperitoneally with TM (1 mg/kg body weight) or vehicle. Protein lysates from livers
isolated at 8, 24, 48 or 72 hours after injection, were probed by immunoblot as indicated.
(B) Serum levels of SAP were determined by ELISA. (One animal per time point)
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Figure 3-4. Atf6α-deficient mice are responsive to LPS challenge. (A) Wild-type and
Atf6α heterozygous and homozygous mutant mice were injected intraperitoneally with
LPS (3 mg/kg body weight) or vehicle. Protein lysates from livers or sera isolated 24
hours after injection, were probed by immunoblots as indicated. (B) Serum levels of SAP
were determined by ELISA. Data points are for individuals.
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Figure 3-5. Ire1α-deficient mice are defective in up-regulation of acute phase
response marker genes upon LPS challenge. Ire1α-/-:tg/+:Mx1-cre mice were injected
intraperitoneally with poly IC (300 µg/mouse) every 48 hours for 4 times to induce in
vivo cre-mediated deletion. Control mice and Ire1α-deficient mice were injected
intraperitoneally with LPS (3 mg/kg BW). Total RNAs isolated from the livers 24hrs post
injection were subjected to real-time RT-PCR analysis for expression levels of Ire1α (A),
SAP (B) and SAA3 (C). n = 5-6 control or 2-3 Ire1α-deleted LPS injected mice. Ctrl,
control mice. Error bars represent means ± SEM from individual animals.
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Figure 3-6. Generation of hepatocyte-specific eIF2α Ser51Ala knockin mice. (A) Schematic drawings
of the structure of eIF2α transgene. The loxP () sites, the restriction sites used for Southern analysis
(BglII: B, SpeI: S) and the probe are indicated. (B) Whole liver samples from 4 week old
eIF2αA/A:tg/+:Alb-cre mice were assessed for GFP expression under light (left panel) or fluorescence
macroscope (right panel) using Leica  MZFL III sterero/dissecting fluorescent microscope. Representative
pictures are shown. (C) Paraffin-embedded sections (4µm) of the fixed livers of 4 month old
eIF2αA/A:tg/+:Alb-cre mice were stained for EGFP and DAPI and visualized at 200× magnification.
Representative staining is shown. (D) Genomic DNA extracted out of whole liver tissue of 3 month old
mice (left panel)/or primary hepatocytes from 4 month old mice (right panel), were subjected to southern
blot analysis. The extent of Cre-mediated deletion was quantitated by densitometry and is shown
underneath the blots. (E) Total RNA was isolated from 3 month old tg/+ (n=2) or tg/+:Alb-cre (n=5) mice
and the expression level of the eIF2α transgene was quantitated by real-time RT-PCR, normalized against
18S rRNA expression. Error bars represent means± SDM from individual animals. (F) Protein lysates of
whole liver tissue, isolated from 3 month old control (eIF2αS/A:tg/+:Alb-cre or eIF2αA/A:tg/+) and
eIF2αA/A:tg/+:Alb-cre mice were probed by immunoblot with antibodies specific for phosphorylated eIF2α,
total eIF2α or α-tubulin as a loading control. The asterisk indicates a non-specific background band. (A-E
were contributed by S. Back)
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Figure 3-7. LPS+GalN challenge induces eIF2α phosphorylation in vivo. (A) Control
(eIF2αS/A:tg/+:Alb-cre and eIF2αA/A:tg/+) and eIF2αA/A:tg/+:Alb-cre mice were co-
injected intraperitoneally with LPS (0.1 µg/g body weight) plus GalN (0.7mg/g body
weight) or PBS. Protein lysates from livers isolated 5.5 hours after injection, were probed
for phosphorylated eIF2α, total eIF2α and total AKT as a loading control. (B) The extent
of phosphorylated eIF2α relative to total eIF2α was quantitated and is shown ± SDM in
the graphs below the blots.
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Figure 3-8. Disruption of eIF2α phosphorylation ameliorates acute liver injury induced by
LPS+GalN challenge. Control (eIF2αS/A:tg/+:Alb-cre and eIF2αA/A:tg/+) and eIF2αA/A:tg/+:Alb-
cre mice were injected intraperitoneally with PBS, or LPS (0.1µg/g body weight) plus GalN
(0.7mg/g body weight). Liver was surgically isolated 5.5 hrs post injection. Paraffin-embedded
sections (4 µm) of the fixed livers were assayed for apoptosis by TUNEL (A) or stained with
hematoxylin-eosin (C). Representative staining is shown and the magnifications are indicated.
The number of apoptotic positive cells in each microscopic field was scored double-blindly and is
shown in (B). Error bars represent means ± SDM (n=3-4, ** indicates statistical significance:
P<0.05). The liver injury was measured by determining serum ALT levels (D). Error bars
represent means ± SDM of independent animals (PBS injected, n=2, LPS+GalN coinjected, n=6,
* indicates statistical significance: P<0.1). (E) Protein lysates from the livers of LPS+GalN
challenged control (eIF2αS/A:tg/+:Alb-cre and eIF2αA/A:tg/+) and eIF2αA/A:tg/+:Alb-cre mice
were probed for full-length caspase-3, cleaved form of caspase 3 and tubulin as a loading control.
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Figure 3-9. CHOP upregulation is defective in the LPS+GalN challenged
eIF2αA/A:tg/+:Alb-cre mice.  (A) Control (eIF2αS/A:tg/+:Alb-cre and eIF2αA/A:tg/+) and
eIF2αA/A:tg/+:Alb-cre mice were injected intraperitoneally with PBS, LPS alone (4.5µg/g
body weight) or LPS (0.1µg/g body weight) plus GalN (0.7mg/g body weight). Livers
were surgically isolated 5.5 hrs post injection. Protein lysates were probed for CHOP, α-
actin as a loading control. (B) Total RNA was independently prepared from the same
liver tissue samples and the expression level of the CHOP mRNA was quantitated by
real-time RT-PCR, normalized against 18S rRNA expression. Error bars represent means
± SDM from individual animals (PBS injected, n=2, LPS injected, n=3-4, LPS+GalN co-
injected, n=6).



114

Figure 3-10. Diagrammatic representation of the cross talk of macrophages and
hepatocytes during LPS+GalN induced liver apoptosis in eIF2αA/A:tg/+:Alb-cre
mice.
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CHAPTER IV

CONCLUSIONS, PERSPECTIVES AND FUTURE DIRECTIONS

Introduction

In 1989, an Australian group reported severe dilation of cisternae of the rough

endoplasmic reticulum (ER) in hepatocytes and reduced concentrations of serum proteins

in tunicamycin-injected Guinea pigs 1. At the time, the researchers did not know the exact

molecular mechanism for this hepatic toxicity. Two decades and more than 5000

unfolded protein response (UPR) and ER stress related papers later, it is fairly safe to

infer at least one of the major toxicological/pathological causes for this observation is ER

stress in the hepatocytes and disturbed protein secretion from the ER in vivo.

In the last twenty years, tremendous progress has been made in the UPR field.

The unfolded protein response was first studied in yeast, in which Ire1p/Hac1p is the only

UPR signaling pathway 2,3. Genomic analysis suggests that although atf-6 and pek

emerged within the Caenorhabditis elegans UPR, the most significant UPR regulation

occurs through the ire-1/xbp-1 pathway in the worm 4. In higher eukaryotes, the UPR

expanded to a signal transduction nexus: IRE1 and ATF6 both contain alpha and beta

isoforms. Several basic leucine zipper (b-ZIP)-containing transcription factors that share

homology with ATF6, such as Luman 5, are reported to be ER stress responsive. To cope

with different types of ER stress in different tissues, vertebrates have also evolved tissue-

specific UPR regulators. For example, transcription factors regulated in a similar manner
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to ATF6 are CREBH, OASIS and Tisp40, that are selectively expressed in hepatocytes,

astrocytes and spermatids, respectively 6-8. More recent studies in plants and drosophila

9,10 further support the notion that the UPR signal transduction pathway is essential for,

most likely, all eukaryotes to cope with stress in the ER.

Our current knowledge of UPR signaling has benefited from studies in plants,

yeast, C. elegans, drosophila and genetically manipulated rodent models harboring

mutations in selective UPR components. Murine genetic models have most significantly

contributed to understanding the physiological roles of the UPR. Although deletion of

some of the UPR signaling pathways results in embryonic lethality, mice have recently

been engineered with conditionally-targeted gene mutations or conditional transgenes to

rescue null mutations to circumvent the embryonic or neonatal lethality and to define the

physiological role of each UPR subpathway.

In this thesis study, we have deleted the Atf6α gene in the mouse and, for the first

time, identified the unique role for this third UPR subpathway in ER function. Data

generated from this loss-of-function model in pure genetic background clarified some

long-debated questions on the role of ATF6α.

ATF6alpha is not essential for basal chaperone expression and embryonic and

postnatal development

The first surprising observation was that homozygous Atf6α-deficient mice are

born at the expected Mendelian ratio and show no obvious developmental defects.  This

is in contrast to the embryonic lethality observed in Ire1α-/or Xbp1-deficient mice and

neonatal homozygous mutant eIF2α Ser51Ala phosphorylation-resistant knock-in mice.

Further characterization demonstrated that ATF6α plays an essential role in adapting to
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chronic stress, and that IRE1α and PERK may compensate for ATF6α deficiency during

murine embryonic development. Recently, several proteins that share significant

structural homology with ATF6α were identified that are activated through stress-

induced regulated intramembrane proteolysis.  These tissue-specific or ubiquitously

expressed transcription factors may collaborate to manage vital functions throughout

development.

ATF6alpha optimizes protein processing in the ER

Our studies using genetically-deficient murine embryonic fibroblasts (MEFs)

have also elucidated novel features of the role of ATF6α in the ER stress response. Our

gene expression studies confirmed previous findings that suggested that ATF6α regulates

ER chaperone upregulation upon ER stress 11,12. However, our microarray analyses

demonstrated a much more significant role for ATF6α during the ER stress response as

ATF6α regulates almost every aspect of the ER function including protein folding,

protein degradation, protein trafficking, protein secretion and ER biogenesis. Although

regulation of ER-associated degradation (ERAD) gene expression was previously

considered to be IRE1α-dependent 13, our findings show that ATF6α is also required for

the stress-induced up-regulation of ERAD. Further characterization revealed that protein

processing and secretion were also defective when Atf6α-/- cells were subjected to ER

stress, suggesting that ATF6α function may be vital when professional secretory cells are

exposed to ER stress in vivo.

As a major secretory organ, the liver regulates glucose homeostasis, lipid

metabolism and drug detoxification. Our preliminary data have shown that when

challenged by a high-fat diet, Atf6α-deficient mice have lower levels of blood high-
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density lipoprotein (HDL) and total cholesterol, compared to wild-type mice (Data not

shown), reminiscent of previous reports that ATF6α may antagonize the lipogenic

functions of sterol-response-element binding protein 2 (SREBP2) in the liver 14. Further

study is ongoing to determine how the absence of ATF6α affects metabolic functions of

the liver. We have shown that when At f6α-deficient mice are challenged with

tunicamycin (1mg/kg body weight), the secretion of acute phase response markers SAP

and CRP from hepatocytes is defective. The defects in this protective response may be

one reason why the Atf6α-deficient mice succumb to the injection of sub-lethal doses of

tunicamycin.

Crosstalk between ATF6alpha and other UPR subpathways

As the last available loss-of-function model among the three proximal ER stress

sensors, Atf6α-deficient cells and mice have provided new insights into the crosstalk

between each of the UPR subpathways and have contributed to a more complete

understanding of UPR signal transduction (Figure 4-1). Upon severe and acute ER stress,

wild-type and Atf6α-/- cells exhibit similar activation of PERK, IRE1α/XBP1 and

ATF6β (Figure 2-7). However, in contrast to wild-type cells and/or mice, when Atf6α-/-

cells and/or mice were subjected to chronic or repetitive ER stress, the IRE1α/XBP1

pathway was continuously activated.  We interpret this finding that the mutant cells are

unable to adapt to the chronic stress (Figure 2-14 and Figure 2-15). This notion is

supported by the observation that upon chronic stress, Atf6α-/- cells displayed more

CHOP expression, more PARP cleavage and less BiP expression compared to the wild

type cells. In contrast to IRE1α/XBP1, the phosphorylation of eIF2α  was more

efficiently down-regulated in mutant cells than in wild-type control cells (Figure 2-15).



123

The reduced eIF2α phosphorylation may be a consequence of the increased expression of

GADD34, a regulatory subunit of the type 1 Ser/Thr phosphatase PP1, in the mutant

cells. GADD34 was previously proposed to be regulated through CHOP and function as a

negative regulator of the PERK/eIF2α signaling pathway 15.

GADD34 protein upregulation is observed in TM-injected Atf6α-/- animals but

not in wild-type or heterozygous controls (Figure 2-15). This result mirrors an elevation

of Gadd34 mRNA and protein in Atf6α-/- MEFs (Figures 2-3A and 2-14). CHOP is also

elevated in Atf6α-/- cells and animals at later points after ER stress. Both CHOP and

GADD34 are short-lived at the mRNA and protein levels 16, which suggests that their

persistence in Atf6α-/- animals and cells reflects active and ongoing synthesis. Therefore,

absent both eIF2α phosphorylation and ATF6α , which have been proposed as the

regulators of CHOP expression, we conclude that there is an additional as yet

unidentified regulator of CHOP.  The putative role of such a regulator might be to ensure

the perpetuation of an apoptotic signal during unresolved stress, as a way of

circumventing GADD34-mediated negative feedback of eIF2α signaling.

An appealing candidate for this CHOP regulator would be XBP1. Even though

there is no direct data to support that this bZIP transcription factor is involved in CHOP

activation, in the Atf6α-/- cells splicing of Xbp1 mRNA persists upon chronic stress

(Figure 2-15) and overexpression of XBP1 can rescue UPRE-reporter activation in the

absence of ATF6α (Figure 2-6). To study how the IRE1α/XBP1 subpathway may

compensate ATF6α , a tempting solution is to cross Atf6α-null allele into IRE1α

knockout background. However in order to circumvent the technical challenges from

Ire1α-/- mice embryonic lethality, we could either work with dominant-negative-IRE1α-
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stable-transfected Atf6α-/- cell lines or isolate fibroblasts from Atf6α-/-:Ire1α-fe/fe

embryos, in which the expression of Ire1α could be later deleted by adenoviral-cre

expression.

siRNA knockdown of Atf6β in Atf6α-/- cells had no effect on the stress-dependent

upregulation of BiP and CHOP, which is consistent with previous reports that the protein

has a non-redundant role with ATF6α 17,18. Our preliminary analyses on the homozygous

Atf6β-/- MEFs suggested that this protein may play an important role in maintaining

calcium homeostasis. To avoid the limitation of RNAi and elucidate the potential

functional overlapping between these two isoforms, we are currently underway to

generate double knockout mice deficient in both Atf6α and Atf6β.

Physiological roles of ATF6alpha

Experimental studies in cultured cells have revealed roles for each of the UPR

sensors protection against ER stress. However, ER stress that is encountered during

physiological, pathological and developmental contexts in vivo is likely quite distinct

from the relatively artificial conditions of the pharmacologically severe and acute

induction of ER stress that investigators have used to dissect UPR subpathways in vitro.

It is presently unknown how the UPR can mount a protective response during such

fundamental processes as the differentiation, development, and maintenance of

professional secretory cell function. Since deletions in IRE1α versus PERK have such

divergent phenotypes in the mouse suggests that signaling through each UPR subpathway

in vivo is highly-dependent upon the nature of the stress, as well as the cell type. Since

mice with deletions in each of the three of the proximal sensors of ER stress are now

available, future studies will be able to more directly address the physiological roles of
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each of these subpathways. Importantly, our unpublished results have already provided

new insights into the role of ATF6α in particular in the differentiation and maintenance

of professional secretory cells, and how this pathway interfaces with other UPR signaling

pathways during ER stress.

I. ATF6alpha in B cell differentiation

One well-studied experimental model of the ER stress response in the

differentiation of professional secretory cells is that of mature B lymphocytes upon

differentiation into antibody-producing plasma cells when challenged by antigen or

bacterial toxins such as lipopolysaccharide (LPS). Studies have demonstrated that the

expansion of the secretory apparatus and upregulation of ER chaperones require proper

UPR signaling. It is known that both IRE1α  and XBP1 are required for B cell

differentiation 19,20, though PERK appears dispensable for the process 21. On the other

hand, it remains elusive what is the nature of the stimulus that leads to UPR activation

during the process and how selective UPR subpathways can be activated without leading

to UPR-mediated cell death.

To investigate the role of ATF6α  in plasma cell differentiation, we isolated

primary splenic B cells from wild-type and Atf6α-/- mice.  When challenged with LPS,

BiP was robustly upregulated after 48 hours in wild-type B cells. In contrast, both the

basal level and the upregulation of BiP were significantly reduced in the absence of

ATF6α (Figure 4-2). Furthermore, CHOP, which has been suggested to be a marker for

ER stress-induced cell death, was significantly upregulated in Atf6α-/- B cells after 48

and 72hrs differentiation whereas CHOP expression is only marginally detectable in the

wild type cells (Figure 4-2). It is conceivable that the defective chaperone gene
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expression in the Atf6α-/- B cells cannot support the high-level antibody production and

secretion, and as a consequence, activates an apoptotic cell death program. However, the

levels of IgM and IgG1 secretion in the cell culture media were comparable between the

genotypes from these preliminary experiments (data not shown). It is possible that

reduced, but not completely abrogated, BiP expression in Atf6α-/- B cells is sufficient to

support antibody processing and secretion under these conditions. It is also conceivable

that, similar to what we observed in MEFs, the defect in the protein processing and

secretion will only be readily detectable in the context of additional ER stress (Figure 2-

11). It will be necessary to evaluate additional markers of plasma cell differentiation to

clarify the consequence of the defective chaperone upregulation in the absence of

ATF6α.

II. ATF6alpha in the pancreas

Numerous studies support the idea that ER stress, together with oxidative stress,

play important roles in pancreatic beta cell function and etiology of type-II diabetes 22.

Previous studies have shown that polymorphisms in the human Atf6α promoter may be

linked with type 2 diabetes 23. Our preliminary data have suggested that the insulin

secretion upon fasting and re-feeding is defective in Atf6α-/- mice (data not shown).

However, there is little difference in the glucose tolerance test (GTT) between wild-type

and Atf6α-/- mice, either on a regular CHOW diet or high-fat diet (data not shown). It

may be important to impose greater levels of ER stress on the beta cell to uncover a

specific requirement for ATF6α.  Future studies should challenge the Atf6α-/- mice with

streptozotocin (STZ), which is believed to damage beta cells through oxidative stress 24.

This could also shed insight into how Reactive Oxygen Species (ROS) disturb ER
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homeostasis, especially in stress-sensitive cells. While analysis of beta cell function in

older animals is underway, we measured expression of the ER chaperone BiP in the

whole pancreas (Figure 4-3). The basal level of BiP expression was reproducibly reduced

in the pancreas from the Atf6α-/- mice.  However, the reduced BiP may reflect decreased

BiP expression in pancreatic acinar cells, which constitute approximately 80% of the

cells of the pancreas. Earlier reports on Perk-/- and tissue-specific Xbp1 transgenic-

rescued Xbp1-deficient mice suggest that PERK and XBP1 are essential for the function

of the exocrine pancreas 25,26. Even though Atf6α-deficient mice do not display any

obvious digestive defects (similar body weight up to 7 months of age), have similar basal

levels of amylase and trypsin expression, and have normal acinar cell-ultrastructure (data

not shown), the decreased expression of BiP suggests some alteration ER function may

exist in the Atf6α-/- pancreas. Clinical studies have suggested acinar cell defects in

alcohol-related acute pancreatitis in human 27. One way to burden the Atf6α-/- pancreatic

acinar cells is to challenge the mice with ethanol, which will also provide a valuable

model to study the role of ATF6α in alcohol-induced liver disease.

Beyond ER stress

Twenty years of work on elucidating the mechanisms and roles of UPR signaling

has provided many unexpected insights into the significance of these pathways in human

disease. More detailed clinical studies are required to elucidate the relationship between

ER stress, oxidative stress, and the role of the UPR in cancer, metabolic disease,

neurological diseases, genetic disease, and infectious diseases will undoubtedly provide

new insights. All these questions could only be answered when researchers from different

fields collaborate closely and combine the power of various models.
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Figure 4-1. A schematic diagram depicting the relative roles of PERK, ATF6α and
IRE1α in regulating the functions responsible for adaptation to stress. Solid lines
indicate potentially major involvement of a sensor, and dashed lines minor involvement.
Note the degree of redundancy in the control of genes regulating ER function.
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Figure 4-2 Atf6α-/- primary splenic B cells do not efficiently adapt to physiological
stress during plasma cell differentiation. Primary splenic B cells were isolated from
wild-type and Atf6α-/- mice spleens as described 28 and treated for indicated time with
LPS, a direct plasma cell differentiation stimulus. Protein lysates were then extracted and
probed for BiP, CHOP and α-actin as a loading control.
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Figure 4-3. Basal pancreatic expression level of BiP is lower in Atf6α-/- mice. Protein
lysates from total pancreases of wild-type and Atf6α- heterozygous and homozygous
mutant mice were probed for BiP to compare the basal expression level of this ER
chaperone, with Sec61 as a loading control.
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