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CHAPTER I

INTRODUCTION, BACKGROUND AND OBJECTIVES

The development of thermal protection systems (TPS) for winged flight vehicles origi-

nated with the breaking of the sound barrier in 1947 by the Bell X-1 vehicle [14]. Since then,

research in hypersonic vehicles has progressed at a rapid pace, from the X-2 supersonic re-

search aircraft flying at a maximum speed of Mach 3.2, to the Apollo capsule at Mach 36,

and the Space Shuttle at Mach 27. During this time, it became evident that TPS is a critical

component of any hypersonic vehicle and it is often one of the limiting technologies in

hypersonic vehicles design.

Severe aerodynamic heating during high-speed flight induces elevated temperatures

in the vehicle that adversely affect the structural components by degrading the material

properties. This also induces time-dependent changes in material properties, including

potentially complex effects such as creep and chemical reactions. The increase in tem-

peratures also induces thermal stresses and strains, which influences the buckling and

aerothermoelastic behaviors. Thus, it is critical to maintain the temperatures of the load-

bearing structural components of hypersonic vehicles within operational limits to avoid

catastrophic failure – this is role of TPS.

1
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1.1 Thermal Protection Systems

The primary function of the TPS is to protect the vehicle and its payload by keeping

the temperatures to within acceptable limits. Three TPS concepts have been successfully

employed on several hypersonic vehicles:

1. Heat sink/Hot structures: structural components made with high temperature ma-

terials with high emissivity surface coating for heat rejection.

2. Ablation: ablative heat shields made with a resinous composite materials that slowly

vaporizef during descent, allowing the heat to dissipate along with the ashes.

3. Insulated structures: structural components made from conventional materials (e.g.

aluminum) and insulated from aerodynamic heating by a layer of non-load bearing

insulation materials.

The choice of the TPS concept used depends on the flight envelope of the hypersonic

vehicle, shown in Figure 1.1, which determines the flight duration and maximum tem-

peratures imposed on the vehicle, shown in Figure 1.2. There are many factors involved

in selecting materials for a TPS. While strength and stability at operating temperatures are

obvious factors, other requirements, like costs, weight efficiency and thermal compatibility

with underlying structure, are also important concerns.

A substantial segment of current research on hypersonic vehicles is focused on reusable

launch vehicles (RLV), since these have the potential to provide low-cost access to space.

The Space Shuttle is the closest to a true RLV, however it has not met the goal of low cost

access to space. For RLVs, the long re-entry time, combined with the requirements on

reusability, maneuverability, and low weight led to the selection of insulated structures as
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the most suitable TPS concept. To survive multiple launches, the TPS has to withstand

not only thermal loads, but also mechanical loads as well as harsh chemical environments

repeatedly without failure. These conflicting requirements result in some form of compro-

mise, leading to the development of several different types of TPS. An overview of the

structural and material technologies that are currently in use, as well as those that may be

potential candidates for TPS in RLVs is presented in Reference 42. Some of the future sys-

tems include concepts using ceramics, metals, and carbon-, ceramic- and metallic-matrix

composites.

1.1.1 NASA Space Shuttle Thermal Protection System

NASA’s Space Shuttle is the first and only partially reusable orbital spacecraft. Capable

of carrying 5 – 7 astronauts and up to 50, 000 lbs of payload to low earth orbit, it was

also designed to recover payloads from orbit back to Earth. The Space Shuttle system

consists of three main components: the reusable orbiter vehicle, the expendable external

tank and two partially reusable Solid Rocket Boosters. The discarded external tank and the

extensive overhaul required between flights are reasons why the Shuttle is only considered

to be partially reusable.

The airframe of the Space Shuttle Orbiter was built primarily from conventional alu-

minum alloys, so as to reduce development cost and risk. Aluminum structures have

a maximum operating temperature of 175 ◦C, which is substantially below the tempera-

tures encountered during re-entry flight. Previous re-entry vehicles were not meant to be

reusable and thus employed ablative heat shields. Materials used for these heat shields

are heavy; however, this was not a big disadvantage due to the relative small size of the

vehicles. The Shuttle orbiter is much larger and has a substantial surface area, thus new
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light-weight, high-performance TPS had to be developed.

Figure 1.3 shows the approximate re-entry surface temperature contours for the Space

Shuttle Orbiter that can vary between 315 ◦C and 1500 ◦C. The wide range of temperatures

combined with the need for minimizing structural weight led to a design utilizing several

materials. Initially, four materials, as shown in Figure 1.5, were used for the TPS of the

orbiter:

1. Felt reusable surface insulation (FRSI)

2. High-temperature reusable surface insulation (HRSI) tiles

3. Low-temperature reusable surface insulation (LRSI) tiles

4. Reinforced carbon-carbon (RCC)

Each material has different heat protection, impact resistance and weight characteris-

tics, and thus are used on different location on the vehicle as shown in Figure 1.4

Felt reusable surface insulation

FRSI blankets protect the orbiter against temperatures between 175 and 400 ◦C. These

flexible felt blankets, shown in Figure 1.5(a), are made of a nylon material called Nomex

that is coated with a waterproof silicone elastomer to achieve required thermal and optical

properties. These blankets have a density of 5.4 lb/ft3 and are bonded directly to the shut-

tle surface using a room-temperature vulcanizing (RTV) silicone adhesive. The blankets

are manufactured in sheets of 3 to 4 square feet and in thicknesses from 0.16” to 0.40”.
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Reusable Surface Insulation Tiles

Two types of RSI tiles are used on orbiter’s surfaces that experience temperatures be-

tween 400 ◦C and 1260 ◦C. They are essentially made from the same base material: high

purity silica fibers. These fibers are bonded together via a sintering process, which give

rise to solid billets that are extremely porous, where fibers only make up about 10% by

volume. This results in a material, called LI-900, with a density of only 9 lbs/ft3, and

very low thermal conductivity for thermal protection. It also has low coefficient of ther-

mal expansion and stiffness, which minimizes thermal stresses and allows the material to

resist thermal shock damage from repeated and drastic temperature changes during op-

eration. These properties, combined with the ability to retain its shape while subjected to

aerodynamic loads under high temperatures, make it an ideal TPS material for the winged

Shuttle Orbiter, since it allows the aerodynamic surfaces to maintain their shape during

re-entry. This component is used on up to 70% of the exterior surface of the shuttle. These

desirable properties compromise the overall strength of the material. Therefore, the brittle

LI-900 cannot be used around high stress areas around landing gear doors and windows.

A higher strength version, the LI-2200, with density of 22 lb/ft3, was developed for use

in these areas. The high porosity of the tiles causes moisture absorption that can lead

to degradation in thermal properties. This is prevented by coating the tiles with water-

proof compounds that also enhance their heat rejection capabilities. The difference be-

tween HRSI and LRSI tiles, as shown in Figures 1.5(b) and 1.5(c) respectively, lies in the

coating used.

The black coating on HRSI tiles is made from a mixture of powdered tetrasilicide and

borosilicate glass and is often referred to as reaction-cured glass (RCG). The HRSI tiles
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usually have a 6” by 6” square configuration with thicknesses that vary from 1 to 5 inches

depending on the heat load encountered during re-entry. They provide protection for

temperatures between 650 ◦C and 1260 ◦C.

The LRSI tiles are coated with a mixture of silica compounds combined with aluminum

oxide, which give them a white appearance. This coating has high thermal reflectivity

that minimizes the heat absorbed from the sun while the shuttle is in orbit. They are

used in areas where temperatures vary between 400 ◦C and 650 ◦C. Due to the lower heat

load in these areas, LRSI tiles are larger and thinner and usually have of 8” by 8” square

configuration and their thicknesses vary between 0.2” and 1.0”.

The tiles are brittle, thus they cannot be attached directly to the surface of the vehicle,

because they cannot withstand the mechanical and thermal strains sustained by the un-

derlying airframe. A strain isolator pad (SIP) is used to isolate the tiles from the strains

of the underlying structure. The three layers are attached to each other using a silicone

RTV adhesive. A schematic illustration of the lay-up is shown in Figure 1.6. The SIP is

a felt pad of randomly oriented horizontal Nomex fibers, a family of fibers produced by

DuPont. The pad has a very low modulus of elasticity which absorbs the strains of the

underlying airframe and greatly reduces the strains transferred to the tiles.

Reinforced Carbon-Carbon

The RCC is a composite consisting of carbon matrix reinforced with graphite fibers. The

outer layers of the RCC are converted to silicon carbide to resist oxidation. The material, as

shown in Figure 1.5(d), has high strength and stiffness that are retained up to a maximum

service temperature of 1650 ◦C. Furthermore, the RCC has good fatigue resistance and
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therefore, is used in areas where the highest temperatures, aerodynamic and vibrational

loads are expected to occur; typical locations include nose cap, wing leading edges and

external tank attachment points.

A series of floating joints are used to mechanically attach the RCC panels to the obiter

in order to minimize loading. The high conductivity of the RCC panels requires the in-

stallation of insulating blankets and HRSI tiles beneath the panels to protect the joints and

underlying structure from excessive temperatures.

Other Shuttle Thermal Protection System Materials

As technology advances, new materials were developed to better serve the flight and

operational requirements of the shuttle. These materials include Advanced Flexible Reusable

Surface Insulation (AFRSI) blankets, Fibrous Refractory Composite Insulation (FRCI) tiles,

and Toughened Unipiece Fibrous Insulation (TUFI) tiles.

AFRSI blankets, shown in Figure 1.7, were developed to replace the FRSI blankets and

majority of the LRSI tile on the upper surface of the shuttle. These blankets consist of low-

density fibrous silica batting material sandwiched between a layer of silica fabric on the

hot side and a layer of glass fabric, stitched together to give a quilt-like appearance. These

blankets have the same thermal performance as the LRSI tiles, but with better durability

and lower operational costs. They are manufactured in 3 by 3 feet squares and vary in

thicknesses from 0.45” to 0.95”.

FRCI tiles are made the same way as LI-900 tile except that alumina-borosilicate fibers

are added for higher strength and they are used to replace the LI-2200 HRSI tiles. The FRCI

tiles have a much lower density at 12 lb/ft3 and provide better strength and durability.
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TUFI tiles are essentially LI-900 tile with a more durable surface coating. The coating

permeates the pores near the surface of the tile, creating a strong, crack-resistant outer

surface. However, this process also increases the conductivity of the tile. Thus, these tiles

have only replaced the HRSI tiles in areas where higher impact resistance are required, e.g.

near main engines and the upper body flap.

1.1.2 Other Thermal Protection Systems

The effectiveness of the TPS on the shuttle has been demonstrated, however, their

fragility and high maintenance cost remain an important issue. This has motivated new

research on TPS for vehicles, such as X-33 [26] and X-34 [24]. The new TPS envisioned for

these vehicles are expected to be more robust, lightweight, and low maintenance. Some

of the new TPS concepts are metallic such as titanium multiwall TPS [43], superalloy hon-

eycomb TPS [21] and most recently the Adaptable, Robust, Metallic, Operable, Reusable

(ARMOR) TPS [4].

1.2 Literature Review

The majority of studies on TPS deal with the Space Shuttle since it is the only opera-

tional reusable spacecraft. The maiden flight of the shuttle took place in April, 1981 [37].

Until then, only a limited number of studies on the structural aspects of the Space Shuttle

tiles were conducted. Preflight thermal stress analysis of the Space Shuttle Orbiter TPS

and skin panel was conducted using a one-dimensional temperature profile across the

tile’s thickness [19]. Tension, and combined tension and bending tests were conducted on

the RSI tile specimen by incorporating photoelastic material to determine the nature of
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stress-transfer between SIP and tile [33]. Static and fatigue strength of the TPS tile were

determined using both static and cyclic load tests [41]. The dynamic response of the TPS

was also investigated [17, 25].

During subsequent flights, the operational performance of the Space Shuttle RSI TPS

were understood and certified [10,32]. The availability of flight data allowed an improved

evaluation of the analytical tools used to predict TPS thermal performance. Numerical

predictions using three-dimensional finite-volume models were found to match flight data

well [31, 36].

Early flights exposed several shortcomings in the structural performance of the TPS.

This motivated studies aimed at the verification of the structural integrity of the TPS as

well as potential improvements. In these studies, fracture properties for the tiles were

characterized [20], and the effect of SIP modulus on in-plane strains was determined ex-

perimentally [39]. Simulated mission load tests, consisting of a series of combined static

and random dynamic loads with substructure deformations, were also conducted to de-

termine the integrity of the TPS [7, 23, 27, 38].

Other studies examined new metallic TPS concepts. The Multiwall TPS was studied

using a combined analytical and experimental approach that include radiant-heat, wind-

tunnel and lightning strike tests [43]. Numerical simulation were conducted on superalloy

honeycomb TPS to determine its thermoelastic response [21]. The ARMOR TPS concept

was evaluated using one-dimensional finite volume thermal analysis to determine the re-

sultant deformations [8], followed by thermal, structural and creep FE analyses [4].

The recent Space Shuttle Columbia incident highlighted the vulnerability of the TPS to

damage associated with impact of debris such as foam. The initial uncertainty as to which
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TPS was affected and the precise nature of the damage motivated the need for research on

damaged TPS. Extensive investigation has attributed the cause for the accident to a dam-

aged RCC panel on the left wing leading edge [1]. The accident resulted in a few studies on

damaged TPS, however, most of these studies only sought to either determine and charac-

terize types of damage caused by debris impact via experiments [18] or numerical meth-

ods [11,13,46], or determine the change in aerothermal loading due to TPS defects [12,34].

Thus, there are no systematic studies on the effect of damage on the thermomechanical

response of TPS, except for one study [44], where aerothermal tests on a couple of dam-

aged TPS were conducted in a high temperature wind tunnel. This study was primarily

qualitative and post-test inspection of the TPS specimens could not be performed because

they were destroyed accidentally during the experiment.

1.3 Objectives of the Dissertation

From the literature review provided in the previous section, it can be seen that there

have been limited published research on the thermomechanical behavior of damaged TPS.

In particular, systematic studies of the effects of damage on the thermomechanical re-

sponse of a TPS do not exist. With the exception of Reference 44, where surface-heating

test was conducted on damaged TPS, there had been no other studies on the performance

and structural response of damaged TPS.

The main objective of this research is to determine the effects of damage on the perfor-

mance and structural integrity of a representative TPS. This study has both analytical as

well as experimental objectives, and the Space Shuttle Columbia accident combined with

the availability of actual test articles for the TPS that were provided by NASA, caused the
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study to focus on the TPS of the Space Shuttle. The specific objectives of this dissertation

are:

1. Develop two finite element (FE) models capable of analyzing the effects of damage

induced by impact on the performance of the TPS, and the structural integrity of the

underlying structure. The first FE model is an approximate axisymmetric model that

yields a two-dimensional representation of the TPS and the underlying structure.

The second FE model is a complete three-dimensional model of a rectangular tile and

associated elements of the TPS. The goal of this part of the research is to determine

the relative accuracy of the two models and their ability to represent the behavior of

the TPS system under a set of simplifying assumptions.

2. Replace the initial set of simplifying assumptions in the FE models by a more re-

alistic set of assumptions, and determine the role and validity of these simplifying

assumptions.

3. Develop a thermal structural test facility and use it to determine the validity and ac-

curacy of the three-dimensional FE model of undamaged and damaged TPS system

under conditions that simulate re-entry.

4. Extend the three-dimensional FE analysis to include a more realistic representation

of the thermal loading by considering the interaction between the damaged tile and

the external high speed flow using both computational fluid dynamics (CFD) as well

as some experimental data gleaned from a number of recent papers [12, 34].
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1.4 Principal Contributions of the Dissertation

The research produces several new and original contributions to the analysis and test-

ing of damaged TPS:

1. Development of two FE models, an approximate axisymmetric model and a more ac-

curate 3D model described in the previous sections, that are capable of representing

damage due to impact in a TPS.

2. A careful examination and comparison of the role of various assumptions in model-

ing TPS damage using FE modeling.

3. Construction of a thermal structure testing facility in the Department of Aerospace

Engineering of the University of Michigan and its use in validating FE analysis of

undamaged and damaged TPS.

4. Incorporation of interaction between external high speed flow and damage geometry

into thermomechanical analysis of a damaged TPS.

1.5 Outline of Dissertation

This dissertation contains seven chapters. It should be noted that the tables and figures

associated with each chapter are presented at the end of the particular chapter.

Chapter II describes the preliminary FE analysis on damaged Shuttle HRSI tile TPS

system using an approximate axisymmetric model using a number of simplifying assump-

tions.

In Chapter III, a more accurate three-dimensional FE model was developed and results
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from this model are compared to those from the approximate axisymmetric model to de-

termine the accuracy of the axisymmetric model. The validity of the simplifying assump-

tions used in Chapter II are systematically examined, by using more accurate assumptions,

which are incorporated into the 3D model. The improved FE model is subsequently used

to determine the effects of damage location on the thermomechanical response of the TPS.

Development of a thermal structures test facility is described in Chapter IV. The cal-

ibration of the facility as well as its performance are also considered. The facility, which

uses radiant heaters, allows high-temperature experiments to be conducted on undam-

aged and damaged TPS. These experiments, described in Chapter V, provide the basis for

validating the FE model that was developed and improved in previous chapters.

Subsequently, the validated model is extended to include modified heat loads that take

into account the interactions of high-speed flow past a cavity in Chapter VI. Using the

improved model, the relative effects of damage on the thermal protection capability and

thermal stress within the TPS are determined by comparing the thermal and structural

response of damaged configurations with the undamaged configuration.

The last chapter, Chapter VII contains the conclusions gleaned from the research con-

ducted and the recommendations for future research.
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Figure 1.1: Flight envelopes for hypersonic vehicles
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Figure 1.2: Temperatures and exposure times for hypersonic vehicles(Ref. 48, Pg. 19)
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(a)

(b)

Figure 1.3: Approximate maximum re-entry temperatures on outer surface of Space Shut-
tle Orbiter (Ref. 5, Pg. W-98)



17

Figure 1.4: Locations of various TPS
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(a) (b)

(c) (d)

Figure 1.5: Initial materials used for Space Shuttle TPS)
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Figure 1.6: Space Shuttle HRSI Tile and Airframe (Ref. 5, Pg. W-102)
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Figure 1.7: Advanced Flexible Reusable Surface Insulation



CHAPTER II

DAMAGE MODELING AND AXISYMMETRIC FINITE

ELEMENT MODEL

Many studies utilize a one-dimensional model for the heat transfer analysis to size the

TPS [4, 28], or to obtain approximate temperatures in vehicle structures for stress analy-

sis [47]. While a one-dimensional model is generally sufficient to model non-damaged

TPS, these models are insufficient when damage or heat shorts exist. For such cases, ap-

proximate two-dimensional models [24, 32] and full three-dimensional models [21, 26, 31]

have to be used instead. Complete three-dimensional models are the most accurate, how-

ever they are more complex and entail more associated computational cost.

In this chapter, thermomechanical analysis on a damaged TPS is conducted using an

approximate axisymmetric FE model. The TPS chosen for study is the HRSI tile system

used on the space shuttle orbiter. The HRSI tiles are extensively used TPS on the shuttle

and together with the RCC panels, protect the orbiter from the most severe aerodynamic

heating sustained by the vehicle. However, unlike the RCC panels, HRSI tiles have low

strength and are highly susceptible to damage.

21
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2.1 TPS Damaged Model and Finite Element Mesh

The TPS is modeled as a discrete three layered system, shown in Figure 2.1, that resem-

bles the actual configuration of the Shuttle Orbiter HRSI tile system shown in Figure 1.6 in

the previous chapter. The axisymmetric model is based on the assumption that the system

can be modeled as a circular segment, which for the specific case considered, has a diam-

eter of 6”, as shown in Figure 2.2. The damage profile depicted in Figure 2.2 simulates the

so-called ”hypervelocity impact” [6], which has an actual damage profile shown in Fig-

ure 2.3. For convenience, the actual damage configuration is replaced by an approximate

damage profile that consists of a cylindrical hole, ending with a spherical cap. The total

depth of the damaged region is equal to its diameter as shown in Figure 2.2.

The same mesh is used in both the heat transfer and thermal stress analyses, therefore

it is important to ensure that the mesh produces converged results for both analyses. The

presence of damage, material discontinuities, and corners give rise to stress concentrations

that has to be taken into account during mesh generation. The mesh has to be sufficiently

fine to capture the rapid variations. It should be noted that the stress concentration asso-

ciated with the damaged region is less severe than those present at the edges and corners

of the material interfaces. Figure 2.4(a) shows the finest mesh that was used in the con-

vergence study. From the figure, it can be seen that the mesh is refined near the damaged

region, as well as the edges and corners of the material interfaces. This axisymmetric FE

mesh consists of 5, 523 elements with 16, 850 nodes. However, even with such consider-

able refinement, the mesh is unable to produce converged results. This suggests that stress

singularities exist within the model and they were found to occur at the edges and corners

of material interfaces. The presence of geometric and material discontinuities at these re-
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gions gives rise to what is often called the ”boundary-layer effect”, where stress gradient

changes rapidly.

Tong and Pian [49] concluded that refining meshes and increasing order of element

formulation when using conventional finite elements, is inadequate for producing con-

vergence in elasticity problems with singularities. Thus, the use of the finest mesh pos-

sible may not produce an accurate solution. Wang and Yuan [50] developed a singular

composite-edge element which uses stress intensity factors to characterize singular edge

stress field. The results in Reference 50 indicate that stress results based on the singular

element start to deviate from results based on the conventional element when one is ap-

proaching within 5% (based on specimen length) of the location of the singularity. Assum-

ing that the boundary layer effects in the TPS are confined to a region of similar propor-

tions, a modified portion of the axisymmetric model with the boundary region shaded in

grey is depicted in Figure 2.5. This boundary region is located at the periphery of the TPS

with a width of 5% of its diameter near the material interfaces. Since the computational

results are based on conventional elements, results in the shaded region are deemed to be

unreliable. Thus, the meshes used ensure converged results only in the regions excluding

the shaded areas in Figure 2.5.

The resultant converged FE mesh for the axisymmetric model with D = 1” damaged

configuration is shown in Figure 2.4(b). This mesh consists of 1, 280 elements with 3, 963

nodes, which represent a significant reduction in the size of the problem when compared

to the refined mesh in Figure 2.4(a).

The finite element model is used with ABAQUS code version 6.4 [15]. The DCAX8

elements are used for the heat transfer problem and the CAX8 elements for the thermal
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stress problem. Both types of elements are eight-node biquadratic elements, shown in Fig-

ure 2.6, available in ABAQUS element library for axisymmetric analyses [15]. The DCAX8

has one degree of freedom per node, which is the temperature at the node. The CAX8

element has two degrees of freedom, ur and uz at each node representing the appropriate

displacements.

2.2 Finite Element Analysis

All FE simulations in this dissertation are based on the ABAQUS code version 6.4 [15]

to generate the thermomechanical response of damaged TPS. Thermal-mechanical cou-

pling, which represents the conversion of mechanical energy to thermal energy, is ne-

glected, compared to the large amount energy supplied to the system via thermal loading.

Thus, the thermomechanical response of the system is obtained in two independent steps.

In the first step, the heat transfer problem is solved to obtain the time-dependent temper-

ature distribution in the TPS system due to the applied thermal loads and the boundary

conditions. In the second step, the thermal stresses caused by the temperature distribu-

tions are determined. The solutions are facilitated by using the same mesh for both the

heat transfer and thermal stress problems.

2.2.1 Heat Transfer Analysis

In the heat transfer analysis, the transient heat flux profile, qATS(t) shown in Figure 2.7,

is applied to the top surface of the TPS. The represents the re-entry heat flux profile for the

Access to Space (ATS) reference vehicle [28]. The sides and the inner surface of the under-

lying structure are assumed to be perfectly insulated, representing a worst case scenario.
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For the damaged configurations, there is considerable uncertainty regarding the effect

of damage on the flow field and thus the heat load experienced by the TPS. To deal with

this uncertainty, two thermal loading conditions, q1(t) and q2(t), which represent the lower

and upper bounds of the heat load, respectively, are applied. On the undamaged surface,

Su shown in Figure 2.8, the ATS heat flux profile is applied. On the surface of the damaged

region, Sd in Figure 2.8, no heat flux is applied for the lower bound case, while the ATS

heat flux profile is applied for the upper bound case, thus:

Lowerbound : q1(t) =


qATS(t) on Su

0 on Sd

(2.1)

Upperbound : q2(t) = qATS(t) on Su and Sd (2.2)

The primary mode of heat loss in the TPS is due to radiation from the top surface of the

tile. Emissivity (ε) of the tile surface is 0.85, and is assumed to be unaffected by damage.

Convection heat loss is not considered in the analysis. On the undamaged surface, all radi-

ated heat is lost to open space. However, in the damaged region, some of the heat radiated

from the damaged surface is intercepted by opposite surfaces, as shown schematically in

Figure 2.9, resulting in lower net heat loss to space. This cavity radiation in the damaged

region is taken into account in the analysis by using the keyword commands *CAVITY

DEFINITION and *RADIATION VIEWFACTOR in ABAQUS, which determines the heat

exchange between element surfaces within the damage.

The unsteady heat transfer problem is solved in the time domain by using a suitable

time-step, which is selected carefully so as to ensure convergence of the transient solution.
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The magnitude of the time-step is determined by repeatedly solving the heat transfer prob-

lem with time-steps that are progressively reduced until convergence is achieved. When

the difference in the temperature results between two consecutive time-steps is less than

1.0%, the solution is considered converged. New nodal temperatures are computed at each

time-step based on the time-dependent thermal loading conditions as well as the temper-

ature distribution obtained from the previous time step. The nodal temperatures at each

time step are stored for subsequent use by the thermal stress analysis.

2.2.2 Thermal Stress Analysis

The thermal stress analysis is conducted for two types of boundary conditions, (a) the

unrestrained, BC1, and (b) the restrained, BC2, boundary conditions. The schematic de-

scription of these boundary conditions is shown in Figure 2.10. These boundary conditions

represent the upper and lower bounds for the actual condition that may exist in practice.

The boundary conditions are applied only to the underlying structure since the tile and SIP

are attached to the underlying structure in such a manner that they are not load bearing

elements. Symmetric boundary conditions are applied to nodes lying on the axisymmetric

line in the axisymmetric configurations.

The displacements and stresses at each time-step are computed using the time-dependent

nodal temperatures from the heat transfer solution.

2.2.3 Material Properties and Simplifying Assumptions

A number of assumptions on material properties are used to simplify the analysis:

1. Emissivity of the LI-900 tile is unaffected by damage and is constant
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2. Conductivities of the tile and SIP are functions of only temperature

3. LI-900 tile is isotropic

4. Mechanical properties of all materials are constant

The material properties of the LI-900 tile, SIP and underlying structure (aluminum

2024) can be found in Tables 2.1 – 2.3 respectively. The thicknesses of the SIP and un-

derlying structure are 0.173” and 0.063” respectively. The thickness of the tile, 3.09”, is

chosen such that the maximum temperature attained by the underlying structure for the

undamaged configuration is limited to 150 ◦C. The thermal emissivity of the tile surface is

constant and equal to 0.85.

2.3 Results and Discussion

In this section, the damaged configurations are examined for three different levels of

damage which are characterized by damage diameters, D = 0.5”, 1” and 1.5”. The results

for the damaged configurations are compared to the undamaged case, which represents

the baseline case.

2.3.1 Axisymmetric Finite Element Results

The maximum temperatures that occur in the tile, SIP and underlying structure, and

the times at which they occur for the undamaged and damaged configurations are shown

in Table 2.4. Two values are listed for each damaged configurations: one for the q1 ther-

mal loading case in the left column and the other the q2 thermal loading case, in the right
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column. The percentage changes in the temperatures in the damaged configurations com-

pared to the undamaged configuration are also indicated in the table.

In the tile, the maximum temperatures due to heat load q1, are found to be unaffected

by damage, while the maximum temperatures, due to heat load q2, are found to increase

with increasing damage size. For the SIP and underlying structure, the corresponding

temperatures decrease and increase with increasing damage size. It should be noted that

the maximum temperatures in the SIP and structure are reached long after the vehicle

has landed, as implied by the duration of 2, 100 seconds given in Figure 2.7. This is a

well-known behavior in return-from-space type of vehicles which experience temperature

soaking after landing, and it can cause damage to the structure.

Figure 2.11 depicts the contour plots of the temperature distribution, in ◦C, at times

when the maximum von Mises stresses for the tile occur for both the restrained and un-

restrained boundary conditions. The color-coded contour bands for all plots represent the

same values to allow comparison. These figures provide a comparison of the undamaged,

and the D = 1” damaged configurations. The temperature contours for the q1 thermal

loading case are similar to the undamaged case except for changes due to the presence of

damage. The temperatures associated with the damage for the q2 thermal loading case

are much higher, as evident in the presence of the yellow, orange and red contour bands

shown in Figure 2.11(c).

The corresponding contour plots for the von Mises stresses in Pascal are shown in

Figure 2.12. The von Mises stress [3], σE for the axisymmetric analysis is defined as

σEaxi =
√

σ2
rr + σ2

zz − σzzσrr + 3σ2
zr (2.3)
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This quantity is sometimes denoted as the equivalent tensile stress. The von Mises the-

ory states that a ductile material will yield when the von Mises stress reaches the materials

yield stress in uniaxial tension.

All three layers of the system are shown in Figure 2.12. A deformation magnification

factor of 50 is applied in all figures. Since the maximum stress in the structure is two to

three times larger than that in the tile, stresses larger than 140 kPa are represented by the

maximum band, color-coded in red, while the rest of the contour bands are equally divided

to represent the stresses below 140 kPa. The locations where the maximum stresses occur

for the tile are also shown in the figures. Note that the contour plots between the restrained

and unrestrained configurations for both q1 and q2 thermal loading cases are very similar.

The principal effect of the boundary conditions is on the underlying structure, as will be

shown later.

There are two time instances, denoted as t1 and t2 for convenience, where high von

Mises stresses in the tile are observed. The precise value of t1 and t2 is dependent on the

configuration and the level of damage. Table 2.5 shows the maximum von Mises stress

in the tile and the times at which they occur for both thermal loading cases at t1. In the

table, two maximum stresses, one for the unrestrained boundary condition, BC1, and one

for the restrained boundary condition, BC2, are provided. The percentage changes in these

stresses in the damaged configurations, with respect to the undamaged configuration, are

also indicated.

The maximum stresses in the tile are found to increase with damage for both q1 and q2

thermal loading cases, and the times when these stresses occur appear to be insensitive to

damage size. These stresses occur approximately when the increasing surface heating rate



30

reaches a plateau, associated with the highest heat flux, as shown in Figure 2.7. For the

q1 heating case, the maximum stresses decrease with increasing damage size. These max-

imum stresses occur at the upper surface of the damaged region, shown in Figures 2.12(c)

and (d). For the q2 heating case, the maximum tile stresses occur inside the damaged

region, as shown in Figures 2.12(d) and (e), and these stresses increase with increasing

damage size.

High von Mises stresses in the tile at t2 are only evident in cases with the unrestrained

boundary condition. The maximum von Mises stresses for the tile at time t2 are shown in

Table 2.6. The maximum von Mises stress in the tile at t2 occurs at the edge of the tile, at

the tile-SIP interface which is a site of stress concentration. The maximum stresses for the

SIP occur at the edge of the SIP, but depending on the configuration, either at the tile-SIP

or SIP-underlying structure interface which are also regions of stress concentration.

The maximum von Mises stresses and the times at which they occur for the SIP for both

the restrained and unrestrained boundary conditions are shown in Table 2.7, while that for

the underlying structure are in Table 2.8. Damage decreases the maximum stresses in the

SIP as well as in the underlying structure for the lower bound thermal loading case, q1, but

increases the maximum stresses for the upper bound thermal loading case, q2.
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T  
(°C) 

c 
(J/kg °C) 

k 
(W/m °C)  

-73.2 787.0 163.0 
26.9 875.0 177.0 

126.9 925.0 186.0 
326.9 1042.0 – 

  
r = 2770 kg/m3 

E = 30 kPa 
n = 0.33 
a = 18 μ 10-6/°C 

 

                       Table 1. Material properties of the underlying structure (Aluminum 2024) 
 
 

T  
(°C) 

c 
(J/kg °C) 

k 
(W/m °C) 

-17.6 1306.3 0.03271 
93.5 1339.8 – 

204.6 1402.6 0.04636 
315.7 1444.5 0.04636 

  
r = 194 kg/m3 
E = 30 kPa 
n = 0.3 
a = 18 μ 10-6/°C 

Table 2. Material properties of SIP 

 
 

T  
(°C) 

c 
(J/kg °C) 

k  
(W/m °C) 

-17.6 628.0 0.03165 
121.3 879.2 0.03894 
260.2 1055.1 0.04779 
399.1 1151.4 0.05626 
538.0 1205.8 0.06791 
676.9 1239.3 0.08536 
815.7 1256.0 0.1065 
926.9 1264.4 – 
954.6 1268.6 0.1327 
1093.5 – 0.1632 
1260.2 – 0.2006 

  
 
 

 
r = 144  kg/m3 
E = 172.4  MPa 
n  = 0.16 
a = 606 μ10-6/°C 

Table 3. Material properties of LI-900 tiles 

 
 
 
 
 
 
 
 

TPS 
Element 

D 
(inch) 

Temperature 
(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1462 0 49.0 850 850 
1.0 981 1501 0 53.0 850 850 

 
Tile 

1.5 981 1516 0 54.5 850 850 
0 150 NA 6600  0.5 148 158 -1.3 5.3 6600 6550 

Table 2.1: Material properties of the underlying structure (Aluminum 2024)
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T  
(°C) 

c 
(J/kg °C) 

k 
(W/m-°C) 

-17.6 1306.3 0.03271 
93.5 1339.8 - 

204.6 1402.6 0.04636 
615.7 1444.5 0.06604 

  
r = 194 kg/m3 
E = 807 kPa 
n = 0.3 
a = 18 μ 10-6/°C 

 

 

Table 2.2: Material properties of SIP
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T  
(°C) 

c 
(J/kg °C) 

k 
(W/m °C)  

-73.2 787.0 163.0 
26.9 875.0 177.0 

126.9 925.0 186.0 
326.9 1042.0 – 

  
r = 2770 kg/m3 

E = 30 kPa 
n = 0.33 
a = 18 μ 10-6/°C 

 

                       Table 1. Material properties of the underlying structure (Aluminum 2024) 
 
 

T  
(°C) 

c 
(J/kg °C) 

k 
(W/m °C) 

-17.6 1306.3 0.03271 
93.5 1339.8 – 

204.6 1402.6 0.04636 
315.7 1444.5 0.04636 

  
r = 194 kg/m3 
E = 30 kPa 
n = 0.3 
a = 18 μ 10-6/°C 

Table 2. Material properties of SIP 

 
 

T  
(°C) 

c 
(J/kg °C) 

k  
(W/m °C) 

-17.6 628.0 0.03165 
121.3 879.2 0.03894 
260.2 1055.1 0.04779 
399.1 1151.4 0.05626 
538.0 1205.8 0.06791 
676.9 1239.3 0.08536 
815.7 1256.0 0.1065 
926.9 1264.4 – 
954.6 1268.6 0.1327 
1093.5 – 0.1632 
1260.2 – 0.2006 

  
 
 

 
r = 144  kg/m3 
E = 172.4  MPa 
n  = 0.16 
a = 606 μ10-6/°C 

Table 3. Material properties of LI-900 tiles 

 
 
 
 
 
 
 
 

TPS 
Element 

D 
(inch) 

Temperature 
(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1462 0 49.0 850 850 
1.0 981 1501 0 53.0 850 850 

 
Tile 

1.5 981 1516 0 54.5 850 850 
0 150 NA 6600  0.5 148 158 -1.3 5.3 6600 6550 

Table 2.3: Material properties of LI-900 tiles
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TPS 

Element 
D 

(inch) 
Temperature 

(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1462 0 49.0 850 850 
1.0 981 1501 0 53.0 850 850 

 
Tile 

1.5 981 1516 0 54.5 850 850 
0 150 NA 6600 

0.5 148 158 -1.3 5.3 6600 6550 
1.0 143 188 -4.7 25.3 6450 6250 

 
SIP 

1.5 136 245 -9.3 63.3 6200 5600 
0 150 NA 7150 

0.5 148 158 -1.3 5.3 7150 7100 
1.0 142 187 -5.3 24.7 7050 6800 

 
Underlying 
structure 

1.5 135 244 -10.0 62.7 6850 6100 

Table 3. Maximum temperatures and times at which they occur in tile, SIP and underlying structure in 
axisymmetric configurations 

 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) BC1 BC2 BC1 BC2 BC1 BC2 

0 61.9 62.0 NA NA 350 350 
0.5 107.0 107.1 72.9 72.7 350 350 
1.0 94.7 94.8 53.0 52.9 350 350 

 
q1 

1.5 86.4 86.5 39.6 39.5 350 350 
0 61.9 62.0 NA NA 350 350 

0.5 133.4 133.6 115.5 115.5 400 400 
1.0 136.5 136.7 120.5 120.5 400 400 

 
q2 

1.5 152.0 152.1 145.6 145.3 400 400 

Table 4. Maximum von Mises stresses and times at which they occur in tile for the axisymmetric case at t1 
for the two different thermal loading conditions 

 
 

Thermal 
Loading 

D 
(inch) 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

0 47.0 NA 7050 
0.5 46.9 -0.2 7050 
1.0 44.9 -4.5 7000 

 
q1 

1.5 42.1 -10.4 6750 
0 47.0 NA 7050 

0.5 50.6 7.7 7050 
1.0 61.5 30.9 6700 

 
q2 

1.5 82.2 74.9 6000 

Table 5. Maximum von Mises stress and times at which they occur in tile for the axisymmetric case at t2 for 
the two different thermal loading conditions 

 

 
 

Table 2.4: Maximum temperatures and times at which they occur in tile, SIP and underly-
ing structure in axisymmetric models
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TPS 

Element 
D 

(inch) 
Temperature 

(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1462 0 49.0 850 850 
1.0 981 1501 0 53.0 850 850 

 
Tile 

1.5 981 1516 0 54.5 850 850 
0 150 NA 6600 

0.5 148 158 -1.3 5.3 6600 6550 
1.0 143 188 -4.7 25.3 6450 6250 

 
SIP 

1.5 136 245 -9.3 63.3 6200 5600 
0 150 NA 7150 

0.5 148 158 -1.3 5.3 7150 7100 
1.0 142 187 -5.3 24.7 7050 6800 

 
Underlying 
structure 

1.5 135 244 -10.0 62.7 6850 6100 

Table 3. Maximum temperatures and times at which they occur in tile, SIP and underlying structure in 
axisymmetric configurations 

 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) BC1 BC2 BC1 BC2 BC1 BC2 

0 61.9 62.0 NA NA 350 350 
0.5 107.0 107.1 72.9 72.7 350 350 
1.0 94.7 94.8 53.0 52.9 350 350 

 
q1 

1.5 86.4 86.5 39.6 39.5 350 350 
0 61.9 62.0 NA NA 350 350 

0.5 133.4 133.6 115.5 115.5 400 400 
1.0 136.5 136.7 120.5 120.5 400 400 

 
q2 

1.5 152.0 152.1 145.6 145.3 400 400 

Table 4. Maximum von Mises stresses and times at which they occur in tile for the axisymmetric case at t1 
for the two different thermal loading conditions 

 
 

Thermal 
Loading 

D 
(inch) 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

0 47.0 NA 7050 
0.5 46.9 -0.2 7050 
1.0 44.9 -4.5 7000 

 
q1 

1.5 42.1 -10.4 6750 
0 47.0 NA 7050 

0.5 50.6 7.7 7050 
1.0 61.5 30.9 6700 

 
q2 

1.5 82.2 74.9 6000 

Table 5. Maximum von Mises stress and times at which they occur in tile for the axisymmetric case at t2 for 
the two different thermal loading conditions 

 

 
 

Table 2.5: Maximum von Mises stresses and times at which they occur in tile for the ax-
isymmetric case at t1 for the two different thermal loading conditions
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TPS 

Element 
D 

(inch) 
Temperature 

(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1462 0 49.0 850 850 
1.0 981 1501 0 53.0 850 850 

 
Tile 

1.5 981 1516 0 54.5 850 850 
0 150 NA 6600 

0.5 148 158 -1.3 5.3 6600 6550 
1.0 143 188 -4.7 25.3 6450 6250 

 
SIP 

1.5 136 245 -9.3 63.3 6200 5600 
0 150 NA 7150 

0.5 148 158 -1.3 5.3 7150 7100 
1.0 142 187 -5.3 24.7 7050 6800 

 
Underlying 
structure 

1.5 135 244 -10.0 62.7 6850 6100 

Table 3. Maximum temperatures and times at which they occur in tile, SIP and underlying structure in 
axisymmetric configurations 

 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) BC1 BC2 BC1 BC2 BC1 BC2 

0 61.9 62.0 NA NA 350 350 
0.5 107.0 107.1 72.9 72.7 350 350 
1.0 94.7 94.8 53.0 52.9 350 350 

 
q1 

1.5 86.4 86.5 39.6 39.5 350 350 
0 61.9 62.0 NA NA 350 350 

0.5 133.4 133.6 115.5 115.5 400 400 
1.0 136.5 136.7 120.5 120.5 400 400 

 
q2 

1.5 152.0 152.1 145.6 145.3 400 400 

Table 4. Maximum von Mises stresses and times at which they occur in tile for the axisymmetric case at t1 
for the two different thermal loading conditions 

 
 

Thermal 
Loading 

D 
(inch) 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

0 47.0 NA 7050 
0.5 46.9 -0.2 7050 
1.0 44.9 -4.5 7000 

 
q1 

1.5 42.1 -10.4 6750 
0 47.0 NA 7050 

0.5 50.6 7.7 7050 
1.0 61.5 30.9 6700 

 
q2 

1.5 82.2 74.9 6000 

Table 5. Maximum von Mises stress and times at which they occur in tile for the axisymmetric case at t2 for 
the two different thermal loading conditions 

 

 
 

Table 2.6: Maximum von Mises stress and times at which they occur in tile for the axisym-
metric case at t2 for the two different thermal loading conditions
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Thermal 
Loading 

D 
(inch) 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

0 47.0 NA 7050 
0.5 46.9 -0.2 7050 
1.0 44.9 -4.5 7000 

 
q1 

1.5 42.1 -10.4 6750 
0 47.0 NA 7050 

0.5 50.6 7.7 7050 
1.0 61.5 30.9 6700 

 
q2 

1.5 82.2 74.9 6000 

Table 6. Maximum von Mises stress and times at which they occur in tile for the axisymmetric case at t2 for 
the two different thermal loading conditions 

 

 
 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 22.0 4.04 NA NA 7200 6750 

0.5 21.6 3.97 -1.8 -1.7 7150 6750 
1.0 20.7 3.80 -5.9 -5.9 7050 6650 

 
q1 

1.5 19.4 3.56 -11.8 -11.9 6800 6400 
0 22.0 4.04 NA NA 7200 6750 

0.5 23.3 4.28 5.9 5.9 7100 6700 
1.0 28.4 5.20 29.1 28.7 6800 6400 

 
q2 

1.5 38.0 6.95 72.7 72.0 6050 5700 

Table 7. Maximum von Mises stress and times at which they occur in the SIP for the axisymmetric case for 
the two different thermal loading conditions 

 

 
Max. von Mises stress 

(MPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 1.05 281.2 NA NA 7350 7150 

0.5 1.04 277.0 -1.0 -1.5 7350 7150 
1.0 0.99 265.1 -5.7 -5.7 7350 7050 

 
q1 

1.5 0.93 248.5 -11.4 -11.6 7100 6850 
0 1.05 281.2 NA NA 7350 7150 

0.5 1.12 298.5 6.7 6.2 7300 7100 
1.0 1.36 363.1 29.5 29.1 7000 6800 

 
q2 

1.5 1.82 486.0 73.3 72.8 6300 6100 

Table 8. Maximum von Mises stress and times at which they occur in underlying structure for the 
axisymmetric case for the two different thermal loading conditions 

 
 
 

Table 2.7: Maximum von Mises stress and times at which they occur in the SIP for the
axisymmetric case for the two different thermal loading conditions
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Thermal 
Loading 

D 
(inch) 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

0 47.0 NA 7050 
0.5 46.9 -0.2 7050 
1.0 44.9 -4.5 7000 

 
q1 

1.5 42.1 -10.4 6750 
0 47.0 NA 7050 

0.5 50.6 7.7 7050 
1.0 61.5 30.9 6700 

 
q2 

1.5 82.2 74.9 6000 

Table 6. Maximum von Mises stress and times at which they occur in tile for the axisymmetric case at t2 for 
the two different thermal loading conditions 

 

 
 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 22.0 4.04 NA NA 7200 6750 

0.5 21.6 3.97 -1.8 -1.7 7150 6750 
1.0 20.7 3.80 -5.9 -5.9 7050 6650 

 
q1 

1.5 19.4 3.56 -11.8 -11.9 6800 6400 
0 22.0 4.04 NA NA 7200 6750 

0.5 23.3 4.28 5.9 5.9 7100 6700 
1.0 28.4 5.20 29.1 28.7 6800 6400 

 
q2 

1.5 38.0 6.95 72.7 72.0 6050 5700 

Table 7. Maximum von Mises stress and times at which they occur in the SIP for the axisymmetric case for 
the two different thermal loading conditions 

 

 
Max. von Mises stress 

(MPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 1.05 281.2 NA NA 7350 7150 

0.5 1.04 277.0 -1.0 -1.5 7350 7150 
1.0 0.99 265.1 -5.7 -5.7 7350 7050 

 
q1 

1.5 0.93 248.5 -11.4 -11.6 7100 6850 
0 1.05 281.2 NA NA 7350 7150 

0.5 1.12 298.5 6.7 6.2 7300 7100 
1.0 1.36 363.1 29.5 29.1 7000 6800 

 
q2 

1.5 1.82 486.0 73.3 72.8 6300 6100 

Table 8. Maximum von Mises stress and times at which they occur in underlying structure for the 
axisymmetric case for the two different thermal loading conditions 

 
 
 

Table 2.8: Maximum von Mises stress and times at which they occur in underlying struc-
ture for the axisymmetric case for the two different thermal loading conditions
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Figure 2.1: Schematic view of square segment of the three-layered TPS configuration



38

Figure 2.2: Approximate circular axisymmetric configuration
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Figure 2.3: Damage geometry associated with hypervelocity impact
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(a) Finest mesh used in convergence study

(b) Converged mesh used in FE analysis

Figure 2.4: FE meshes of axisymmetric model illustrating damage geometry and coordi-
nate system
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Figure 2.5: Boundary layer region for axisymmetric model
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Figure 2.6: 8-node biquadratic elements used for axisymmetric model
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Figure 2.7: Re-entry heat flux loading profile for the ATS vehicle
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Figure 2.8: Cross section of TPS showing the undamaged and damaged surfaces subjected
to thermal loading
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Figure 2.9: Schematic representation of radiation heat loss in the tile



46

r r   

(a) Unrestrained boundary condition, BC1

r  r  

(b) Restrained boundary condition, BC2

Figure 2.10: Structural boundary conditions applied to underlying structure
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(a) Undamaged configuration (350 s) 

  
(b) D = 1” damage configuration with q1 loading 

(350 s) 
(c) D = 1” damage configuration for q2 loading 

(400 s) 

Figure 2. Temperature contour plots for the undamaged and D = 1" damaged axisymmetric configurations 
for the two different heat loads at times when the maximum von Mises stress in tile occurs. Legend 
indicates temperatures in °C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11: Temperature contour plots for the undamaged and D = 1” damaged axisym-
metric models for the two different heat loads at times when the maximum
von Mises stress in tile occurs. Legend indicates temperatures in ◦C
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 Max stress 
location 

 

 Max stress 
location 

 
(a) BC1 undamaged configuration 

(350 s) 
(b) BC2 undamaged configuration 

(350 s) 
 Max stress 

location 

 

 Max stress 
location 

 
(c) BC1 D = 1” damage configuration with q1 loading 

(350 s) 
(d) BC2 D = 1” damage configuration with q1 loading 

(400 s) 
 Max stress 

location 

 

 Max stress 
location 

 
(d) BC1 D = 1” damage configuration with q2 loading 

(400 s) 
(e) BC2 D = 1” damage configuration with q2 loading 

(400 s) 

Figure 3. von Mises stress contour plots for the undamaged and D = 1" damaged axisymmetric 
configurations for the two different heat loads at times when the maximum von Mises stress in tile occurs. 
Legends indicate stresses in Pascal. 

 
 

Figure 2.12: von Mises stress contour plots for the undamaged and D = 1” damaged ax-
isymmetric models for the two different heat loads at times when the maxi-
mum von Mises stress in tile occurs. Legends indicate stresses in Pascal



CHAPTER III

THREE DIMENSIONAL FINITE ELEMENT MODEL

In this chapter, a three-dimensional (3D) FE model is developed to determine the ther-

momechanical behavior of damaged TPS. The 3D model is a more realistic representation

of the actual configuration of the Shuttle Orbiter HRSI tile system and thus, is more accu-

rate than the axisymmetric model. Results generated from the 3D model are used to assess

the accuracy of the axisymmetric model. Simiplifying assumptions used in the previous

chapter are also replaced with more accurate assumptions to ensure that the 3D model is

capable of representing the TPS under realistic conditions.

The 3D model is also used to determine the influence of damage location on the thermo-

mechanical behavior of the TPS. In the axisymmetric model, damage is assumed to occur

at the center of the tile, since off-center damage cannot be accurately modeled. However,

the 3D model is not subjected to such limitations. Influence of damage location is deter-

mined by moving the damage location from the center of the tile by an offset distance,

δ = 1” or 2”, as shown in Figure 3.1.

49
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3.1 Finite Element Analysis and Meshing Considerations

The TPS is the same discrete three-layered structure described in the previous chap-

ter and shown in Figure 2.1. Due to symmetry considerations, TPS with centrally located

damage can be represented by a quarter model, while TPS with off-centered damage re-

quires a half model. The idea of boundary layer introduced in the previous chapter is used

again and the boundary layer for the 3D model is shown in Figure 3.2. The FE meshes

generated for TPS with damage of size D = 1” located centrally, and displaced from cen-

ter by δ = 1” are shown in Figure 3.3. The quarter model consists of 57, 702 elements and

96, 184 nodes, and the half model consists of 112, 697 elements with 164, 368 nodes. The

DC3D10 and C3D10 elements are used for the heat transfer and thermal stress analysis,

respectively. These are ten-node quadratic tetrahedron elements shown in Figure 3.4. The

DC3D10 elements have one degree of freedom per node, which is the temperature at the

node, and the DC3D10 element has three degrees of freedom, ux, uy and uz , at each node

representing the appropriate displacements.

The FE procedures used to determine the temperature distribution and thermal stress

of the TPS are similar to those described in Chapter II. Similar boundary conditions, shown

in Figure 3.5, are also used.

3.2 Simplifying Assumptions

Recall the simplifying assumptions that were used in the previous chapter:

1. Emissivity of the LI-900 tile is unaffected by damage and is constant.

2. Conductivities of the tile and SIP are assumed to be functions of only temperature.
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3. LI-900 tile is assumed to be isotropic.

4. Mechanical properties of all materials are constants.

While these assumptions have facilitated the FE solution obtained earlier, the model

based on these assumptions may be inaccurate. Thus, the limitations introduced by these

simplifying assumptions are removed in this chapter by introducing more realistic as-

sumptions that enhance the accuracy of the model. The consequences of replacing these

simplifying assumptions on FE results are examined. The improved assumptions are given

below:

1. Emissivity of damaged surface of LI-900 tile is a function of temperature.

2. Conductivities of tile and SIP are functions of both temperature and pressure.

3. LI-900 tile is transversely isotropic.

4. Mechanical properties can be functions of temperature.

3.3 Results and Discussion

The results are presented in four sections: first, results generated using the 3D model

with assumptions used in Chapter II are presented and these results are compared with

those generated by the axisymmetric model to determine the relative accuracy of the ax-

isymmetric model. Second, the validity of assumptions used in the previous chapter is ex-

amined systematically. Third, the thermomechanical behavior of TPS using the 3D model

with improved assumptions are described. Last, the effect of damage location on the ther-

momechanical response of the TPS is discussed.
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3.3.1 Results for 3D Model Using Assumptions From Previous Chapter

The maximum temperatures that occur in the tile, SIP and underlying structure, and

the times at which they occur for the undamaged and damaged configurations are shown

in Table 3.1. The general dependence of the temperatures on damage size resembles that

for the axisymmetric case; temperatures are found to decrease with increasing damage size

for the q1 loading case and they increase with increasing damage size for the q2 loading

case. The lower bound maximum temperatures in the tile occur outside of the damaged

area and are not affected by cavity radiation, thus these temperatures are insensitive to

damage. The upper bound maximum temperatures for the tile, which occur within the

damaged area of the tile, increased significantly. For the 3D model, the D = 1.5” damage

increases the temperature by 54.4% to 1515 ◦C, which is below the melting temperature of

the tile, 1700 ◦C, but above its softening temperature of 1370 ◦C.

For the SIP and underlying structure, the lower bound temperatures are found to de-

crease with increasing damage size. However, the upper bound maximum temperatures

for these layers increase with increasing damage size. Since no heat flux is applied to the

damaged surface for the q1 case, the presence of damage reduces the surface area subjected

to heating. Therefore, the total heating rate is reduced, resulting in lower amount of energy

supplied to the TPS. For the q2 case, the presence of damage increases the surface area sub-

jected to the thermal loading, at the same time allowing the heat load to penetrate deeper

into the system resulting in higher temperatures. For the D = 1.5” damaged configuration,

the temperature in the structure is found to increase by 49.3%.

Contour plots of the temperature, in ◦C, and the von Mises stress, in Pascal, similar to

those presented in the previous section, are shown in Figures 3.6 and 3.7, respectively. The
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von Mises stress [3], for the 3D case is defined as

σE3D
=

√
σ2

xx + σ2
yy + σ2

zz − σxxσyy − σyyσzz − σzzσxx + 3σ2
xy + 3σ2

yz + 3σ2
zx (3.1)

The contour plots for the restrained and unrestrained cases are similar. Thus only the

unrestrained configurations are shown in Figure 3.7. Note the similarities in the contour

features between the axisymmetric and 3D models close to the damaged region. These

similarities diminish as one moves away from the damaged region towards the edge.

The maximum von Mises stresses for the tile at t1 are shown in Table 3.2. In the q1

case, the highest temperature associated with the damaged region is found on the upper

surface of the damage. Even though the temperature is approximately equal to that in the

undamaged configuration, the stress increases due to the stress concentration of the dam-

age. Unlike the stress concentrations caused by material discontinuities and sharp corners,

the stress concentration in the damaged region is mild and can be adequately resolved by

the mesh. In the q2 case, the maximum temperature occurs within the damaged region.

The higher temperatures, coupled with the stress concentration introduced by the dam-

age, increase the stresses significantly. For the axisymmetric model, the maximum stress

in the tile at t1 for the q2 thermal loading case increases with respect to damage size, but

for the 3D model, the maximum stress for the D = 0.5” damaged configuration is larger

than that for the D = 1” damaged configuration, even though temperatures are higher in

the D = 1” damaged configuration.

The maximum tile stresses that occur at t2 are given in Table 3.3 and the maximum von

Mises stresses in the SIP and underlying structure are shown in Tables 3.4 and 3.5, respec-

tively. As evident, the maximum values occur approximately at the time when the SIP
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and structure reach their maximum temperatures, and they are caused predominantly by

the mismatch in the coefficients of thermal expansion associated with the different layers.

These maximum stresses depend on the maximum temperatures reached by the SIP and

structure, and the total heat applied to the system. Increasing damage decreases these

stresses for the q1 loading case and increases that for the q2 loading case. These high

stresses do not show up in the tile and SIP for the restrained case, because the bound-

ary condition prevents the structure layer from expanding, and thus reduces the effect of

mismatch in the coefficients of thermal expansion. This constraint in thermal expansion

of the underlying structure in the restrained case also induces much higher stresses in the

underlying structure than those present in the unrestrained case.

The differences in maximum temperature and stress results between the axisymmetric

and 3D model are shown in Figures 3.8 through 3.11. The percentage difference in maxi-

mum temperatures and stresses, ET and Eσ, respectively, are defined as

ET =
Taxi − T3D

T3D
· 100% (3.2)

Eσ =
σaxi − σ3D

σ3D
· 100% (3.3)

where Taxi and T3D are the maximum temperatures for the axisymmetric and 3D models,

respectively, and σaxi and σ3D are the maximum von Mises stress for the axisymmetric and

3D model, respectively.

The maximum temperatures in the tile for both axisymmetric and 3D cases are very

similar. The simplification due to the axisymmetric case is equivalent to removing mate-

rial from the corners of the 3D model and modifying the boundary conditions accordingly.

The maximum temperatures in the tile occur on the undamaged tile surface or the surface
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within the damaged region. The axisymmetric assumption does not influence the sur-

face properties and damage geometry, therefore the differences between the maximum tile

temperatures of the two analyses are small, less than 0.35%.

The difference in temperature results between the axisymmetric and 3D cases for the

SIP and structure layers are more significant. The size and geometry of the damaged re-

gion are the same in both models, so the change in energy experienced by the TPS is the

same. The reduction in mass for the axisymmetric model allows the SIP and structure

to experience a larger change in temperatures for the same amount of heat input or loss.

Thus, the changes in maximum temperatures present in the SIP and underlying structure,

due to damage, are higher for the axisymmetric case than in the 3D case.

The differences in maximum stresses in the tile at t1 are relatively small, up to about

11%. These stresses occur in the damaged region that is distant from the edges, it is rela-

tively insensitive to the simplifying assumptions associated with the axisymmetric model.

For the 3D models, the maximum SIP stresses and tile stresses at t2, occur at the corners of

the material interfaces, which are not modeled in the axisymmetric case. Thus, the stresses

in the tile at t2 and the SIP selected for comparison in the axisymmetric and 3D models are

from different locations. The stress concentrations in the 3D model are also more substan-

tial than the axisymmetric case, thus differences in these stresses are larger.

Like for the SIP, the maximum stresses for the unrestrained structure in the 3D model

also occur at the corners, but not at the material interface. Thus, the differences in the max-

imum stresses are large. The restrained boundary condition results in very high stresses,

with little variation, in the underlying structure. While the locations of maximum stresses

in the underlying structure for the restrained axisymmetric and square cases are different,
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the small variation in the stress results produces smaller differences. Note that these differ-

ences are approximately of the same magnitude as those for temperatures in the structure.

For the maximum temperature results, the axisymmetric model yields relatively good

results for the damage sizes considered, with differences less than 9%. For the stress re-

sults, the differences can be as high as 57%, because these stresses in the 3D models occur in

regions that are not captured by the axisymmetric model. It should be noted however, that

the 3D models require approximately 15 times more degrees of freedom when compared

to the axisymmetric cases. Therefore the approximate axisymmetric models are useful for

rapid trend-type studies where accuracy is less important than computational efficiency.

3.3.2 Validity of Assumptions Used in The Previous Chapter

The axisymmetric model is used to determine the validity of the simplifying assump-

tions used in the previous chapter. While the axisymmetric model is not as accurate as the

3D one, it is, nonetheless, capable of predicting correct trends without excessive computa-

tional cost.

Starting with the analysis carried out in the previous chapter, each of the simplifying

assumptions described earlier is replaced with more accurate assumption one at a time.

Using this systematic approach, the results from the approximate analysis are compared

to the improved results to assess the influence of each simplifying assumption. For the

results in this section, the q2 thermal load and BC2 boundary condition are used, since

they represent the more severe case.

The thickness of the tile is chosen such that the maximum temperature attained by

the underlying structure is limited to 150 ◦C. Depending on whether its conductivity is
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assumed to be a function of both temperature and pressure, or just a function of tempera-

ture, the required tile thicknesses are different. The material properties, density (ρ), specific

heat (c), thermal conductivity (k), Young’s modulus (E), Poissons ratio (ν) and coefficient

of thermal expansion (α) used in the analyses for the underlying structure (Aluminum

2024) are given in Table 3.6. The conductivity of the SIP as a function of pressure and tem-

perature are given in Table 3.7 and its other material properties are shown in Table 3.8. The

conductivity of the LI-900 tile as a function of pressure and temperature can be found in

Table 3.9. The tile is transversely isotropic, which implies that its in-plane (xz-plane) prop-

erties are different from the out-of-plane (y-direction) properties. The first value listed is

the in-plane conductivity and the value in parentheses is the out-of-plane conductivity.

Other material properties of the tile are given in Table 3.10. These material properties are

collected from a number of sources [2, 40, 40]

Emissivity of damaged surfaces as a function of temperature

In the previous chapter, the emissivity of the tile (ε = 0.85) was assumed to be unaf-

fected by damage. In reality, the tile is coated by a reaction cured glass (RCG) that en-

hances the emissivity characteristics of the tile and limits moisture absorption. Since dam-

age breaches the tile coating, it affects the emissivity. The emissivity of the uncoated tile

is a function of temperature (See Table 3.11) and it decreases with increasing temperature.

Assuming that damage totally removes the coating, a new analysis using the axisymmet-

ric, D = 1” damage configuration is conducted. The emissivity of the damaged region is

now assumed to be temperature-dependent and the emissivity values used correspond to

those of an uncoated tile.

The maximum temperatures reached by each TPS component are shown in Table 3.12.
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The rapid decrease in emissivity in the damaged region, coupled with the effect of cav-

ity radiation, severely reduces the radiation heat lost from the surface resulting in very

high temperatures in the TPS. The results clearly indicate that assuming emissivity to be

unaffected by damage leads to an under-prediction of the maximum temperatures in the

system by as much as 31% and this error is likely to increase with increasing damage size.

Conductivity of Tile as a Function of Both Temperature and Pressure

Previously, the conductivity of the tile and SIP were assumed to be only a function

of temperature, i.e. k = f(T ) and the conductivity at P = 1013.3 Pa in Table 3.9 was

used. However, due to the porous nature of the tile, its conductivity is actually a function

of both temperature and pressure, i.e. k = g(T, P ). During re-entry, the static pressure

changes from almost zero to atmospheric pressure, which affects the conductivity. To de-

termine effect of the previous assumption, a new analysis using the undamaged axisym-

metric model, with the tile and SIPs conductivities that depend on both temperature and

pressure, is conducted.

The TPS is assumed to be exposed to the pressure profile shown in Figure 3.12, which

is the re-entry profile of the ATS vehicle. There is relatively small increase in pressure in

the initial 2, 400 seconds, followed by a rapid rise to atmospheric pressure at about 3, 000

seconds. Thus, in the previous analysis, the conductivity of the tile used is higher initially,

until about 965 seconds, and becomes lower in the later stage of the analysis.

The thickness of the tile is determined by the limit on the maximum temperature at-

tained by the underlying structure, which is assumed to be 150 ◦C. The inclusion of pres-

sure dependency for conductivity in the tile reduces the required thickness by approxi-
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mately 5%, from 3.09” to 2.94”.

Figure 3.13 depicts the transient temperature results for both the approximate and im-

proved analyses at the surface and center of the tile, as well as at the underlying struc-

ture. The surface temperature of the tile is largely unaffected by the previous simplifying

assumption. However, the temperature distributions within the TPS changed by a signif-

icant extent. The higher initial conductivity used in the previous analysis allowed heat

to penetrate faster, resulting in higher temperatures at the center of the tile as seen in the

Figure 3.13(b). For the later times, the reduced conductivity slows the heat penetration

into the underlying structure, increasing the time required before the structure reaches its

maximum temperature as indicated in Figure 3.13(c). The lower conductivity also reduces

the heat loss from the TPS by preventing the heat that has penetrated into the TPS from

being conducted back to surface of the tile as the surface cools. This aggravates the effects

of temperature soaking, and thus the tile had to be thicker in the previous analysis.

The temperature results from the improved analysis are used to determine the thermal

stresses in the TPS. The maximum von Mises stresses that occur in the tile, SIP and un-

derlying structure subjected to the BC2 boundary condition using the previous and new

temperature results are presented in Table 3.13. When neglecting the pressure dependence

of the conductivity, the von Mises stress in the tile is underestimated by 13.8%. The higher

initial conductivity for the simplifying assumption results in less severe thermal gradi-

ents, which yield lower stresses. However, the increased thickness requirement of the tile

produces higher stresses in the SIP and underlying structure.

The assumption that the conductivities of the tile and SIP is only a function of tem-

perature yields conservative results in TPS sizing and the heat transfer analysis, however,
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it underestimates the maximum stresses in the tile significantly. Thus, it is important to

include the pressure dependence of conductivity, in order to obtain conservative thermal

stress results.

Tile as a Transversely Isotropic Material

In the previous analysis, the tile was assumed to be isotropic. The tile is actually trans-

versely isotropic, where its out-of-plane properties are different from its in-plane prop-

erties. In the heat transfer analysis, only conductivity of the material is affected by this

assumption and in the thermal stress analysis, only the elastic material properties are af-

fected. To determine these effects, results from analyses using isotropic and transversely

isotropic material properties are compared. In these analyses, improved assumptions from

the previous two sections are included.

While trying to incorporate the assumptions of temperature dependency in emissiv-

ity, and pressure and temperature dependency in conductivity, some problems with the

ABAQUS code were encountered. To include the temperature dependency in emissivity

using ABAQUS requires that the heat transfer analysis be conducted in two stages. An

analysis where conductivities of the materials are only a function temperature was con-

ducted as a first stage. The temperature results in the damaged region are then stored.

In a subsequent analysis, representing the second stage, conductivities of the materials are

functions of both temperature and pressure, the temperature results from the first stage are

used to govern the selection of emissivity values for the calculations in the second stage.

This ensures the correct emissivity data is used. This approximate method yields satisfac-

tory results since the surface temperatures were found to be only marginally affected by

the inclusion of pressure dependency on conductivity.



61

In the previous heat transfer analysis the out-of-plane conductivity was used. From Ta-

ble 3.9, it can be seen that the in-plane conductivity used in the previous analysis is about

42% to 55% lower. Using the transversely isotropic properties with the D = 1” axisym-

metric model, the maximum temperature results were found to be largely unaffected even

though temperature distributions in the tile are slightly modified.

The results from the heat transfer analysis described above are used to determine

the thermal stress. In the previous analysis, the in-plane stiffness was used for the as-

sumed isotropic properties, thus the out-of-plane stiffness used was approximately 2.5

times higher. The maximum von Mises stresses that occur in the tile, SIP and underlying

structure subjected to BC2 using isotropic and transversely isotropic properties are shown

in Table 3.14. For the D = 1” axisymmetric case, the maximum stresses in the TPS are only

slightly modified (< 6%). In the undamaged case, where the heat transfer results between

the isotropic and anisotropic tile analyses are the same, the thermal stress results show a

much larger difference in the tile (14.2%).

Assuming an isotropic tile was found to influence the results in most cases and the

changes are not all conservative. It should also be noted that von Mises stress is generally

not used as a failure criterion for anisotropic materials. For this class of materials, the Hill

criterion [16] is applied.

Temperature Dependent Mechanical Properties

The coefficient of thermal expansion (CTE) for the tile, and the CTE and Youngs mod-

ulus of the underlying structure are actually functions of temperature. For the underlying

structure, the CTE increases with temperature while the modulus decreases. The CTE of
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the LI-900 tile does not increase monotonically with temperature; instead it increases with

temperatures up to about 540 ◦C, and afterwards it decreases. In the previous chapter,

all mechanical properties are assumed to be constants. The room temperature CTE and

modulus were used for the underlying structure. For the tile, an average value of CTE

(6.06× 10−7/ ◦C) was used.

The maximum von Mises stresses that occur in the tile, SIP and underlying structure

for the undamaged and D = 1” axisymmetric model subjected to BC2 for constant and

temperature dependent mechanical properties are shown in Table 3.15. For the undam-

aged configuration, using constant mechanical properties produces lower maximum von

Mises stresses in the tile and underlying structure, however, for the damaged configura-

tion, these stresses are higher.

In the structure, the decrease in stiffness produces a decrease in maximum stresses, but

this is overcome by the increase in stress due to the increase in CTE. Thus higher stresses

are obtained in the analyses where mechanical properties are functions of temperature. For

the damaged configuration, where the temperature reached in the structure is higher, the

effects of the decreasing modulus outweigh that of the increasing CTE, so lower stresses

are obtained. However, these differences are modest (< 10%).

For the tile, the different CTE used, as shown in Figure 3.14, gives rise to interesting

results. For the undamaged configuration, the maximum von Misses stress using constant

mechanical properties is lower by 3% while the stress is higher by 80% for the damaged

configuration. The maximum temperature reached in the undamaged configuration is rel-

atively low, 980 ◦C. The maximum stress for the analysis based on constant mechanical

properties is reached when the maximum temperature occurs. This is not true for the case
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with temperature dependent properties. In this case, the maximum stress was reached

when the maximum temperature in the tile was 540 ◦C, which corresponds to the temper-

ature where CTE is the highest. In the damaged configuration, however, the maximum

temperature in the tile is so high that the maximum stresses occur when the maximum

temperature is reached, even with the reduction in CTE at these high temperatures. The

high maximum temperatures also produce a large over-prediction in maximum stresses

when the average constant CTE is used.

3.3.3 Thermomechanical Behavior with Improved Assumptions Based on the 3D Model

and Comparison with Previous Results

The maximum temperatures that occur in the tile, SIP and underlying structure, includ-

ing the times when they occur are shown in Table 3.16. Two values are provided for each

damaged configuration: one for the q1 thermal loading case (left column) and the other

for the q2 thermal loading case (right column). The percentage changes in the maximum

temperatures for the damaged configurations compared to the undamaged (baseline) con-

figuration are also provided in the tables.

The lower bound temperatures for all TPS components are relatively insensitive to the

changes in the assumptions. For the upper bound temperatures, the reduction in emis-

sivity in the damaged region raises the temperatures significantly. The effects of damage

size on these temperatures are also more severe with the new assumptions. Maximum

temperatures in the SIP and underlying structure also occur at earlier times.

Tables 3.17 through 3.19 provide the maximum von Mises stresses in the tile, SIP and

underlying structure, together with the times at which they occur for both thermal load-
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ing cases using the improved assumptions. In the tables, two maximum stresses, one for

the unrestrained boundary condition, BC1, and one for the restrained boundary condition,

BC2, are provided. The percentage changes in these stresses in the damaged configura-

tions, with respect to the baseline configuration, are also indicated.

For the lower bound loading case, the maximum stresses in the tile from the improved

and previous sets of results are quite similar. The maximum difference between the two

sets of results is approximately −5.5%. For the upper bound loading case, the differences

are larger. The higher temperatures in the tile as a result of the new assumptions did not

produce higher maximum stresses. The maximum stresses are actually lower due to the

lower CTE used. The differences in the results are between 13% and 44%.

In the SIP, maximum stresses using the new assumptions are higher in the BC1 cases

while that for the BC2 cases are generally lower. The differences in results vary between

−51% and 50%. These differences are due to a combination of higher temperatures and the

larger CTE mismatch between the tile and the underlying structure.

With the new assumptions, the maximum stresses in the underlying structure for the

BC1 cases are generally lower while those for the BC2 cases are all higher. Differences

in these results are between -36% and 26%. The higher temperatures and the changing

CTE and stiffness of the underlying structure with respect to temperature are the primary

causes of the differences.

It is evident that the simplifying assumptions used in the previous chapter produced

results that have substantial errors. For the TPS considered, which include three very dis-

similar materials operating under a wide range of temperatures and pressures, these sim-

plifying assumptions were found to affect the accuracy of the results in a fairly complicated
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manner. It is not possible to choose simplifying assumptions that guarantee conservative

results for both heat transfer and thermal stress analysis. Therefore, it is important to use

the refined models that incorporate realistic assumptions. The simplifying assumptions

should be avoided.

3.3.4 Effects of Damage Location

Using a damage size of D = 1” and the 3D model with q2 thermal loading, the maxi-

mum temperatures reached in each TPS component for each value of δ, representing dif-

ferent damage locations is presented in Table 3.20. The maximum temperature in the tile

increases by only 4.4% with increasing damage offset distance from the center. This is

probably due to the insulated boundary condition on the side of the TPS. The maximum

temperatures in the SIP and structure were found to remain almost unchanged. Thus,

for the cases considered, the results indicate that the maximum temperatures in the TPS

remain practically unchanged.

The maximum von Mises stresses that occur in the tile, SIP and underlying structure

are shown in Table 3.21. For the BC1 case, the stress in the tile was found to decrease by up

to 5.9% when damage was displaced from the center. For the BC2 case, the stress in the tile

was found to decrease by up to 21.3%. For the SIP and underlying structure, the changes

in stresses are very small (< 3.5%).

These results indicate that damage location has a minor influence on the SIP and un-

derlying structure, but is more significant for the tile. Note,however, that the results for

δ = 0” are the most severe. This implies that central damage appears to be the worst-case,

therefore only this damage location will be used in the calculations that are presented in
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the rest of the disssertation.
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TPS 
Element 

D 
(inch) 

Temperature 
(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1457 0 48.5 850 850 
1.0 981 1499 0 52.8 850 850 

 
Tile 

1.5 981 1515 0 54.4 850 850 
0 150 NA 6600 

0.5 149 156 -0.7 4.0 6550 6550 
1.0 145 180 -3.3 20.0 6450 6300 

 
SIP 

1.5 139 225 -7.3 50.0 6250 5800 
0 150 NA 7150 

0.5 148 156 -1.3 4.0 7150 7100 
1.0 144 179 -4.0 19.3 7100 6850 

 
Underlying 
structure 

1.5 138 224 -8.0 49.3 6900 6300 

Table 9. Maximum temperatures and times at which they occur in the tile, SIP and underlying structure in 
square configurations 

 
 
 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 63.4 63.6 NA NA 350 350 

0.5 111.2 111.6 75.4 75.5 350 350 
1.0 99.5 99.9 56.9 57.1 400 400 

 
q1 

1.5 96.4 96.8 52.1 52.2 400 400 
0 63.4 63.6 NA NA 350 350 

0.5 138.1 138.3 117.8 117.5 400 400 
1.0 136.8 137.1 115.8 115.6 400 400 

 
q2 

1.5 149.9 150.0 136.4 135.8 400 400 

Table 10. Maximum von Mises stresses and times at which they occur in tile for the square configurations 
at t1 for the two different thermal loading conditions 

 
 
 

Thermal 
Loading 

D 
(inch) 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

0 75.0 NA 7100 
0.5 71.3 -4.9 7100 
1.0 68.9 -8.1 7050 

 
q1 

1.5 65.5 -12.7 6850 
0 75.0 NA 7100 

0.5 75.6 0.8 7100 
1.0 88.6 18.1 6750 

 
q2 

1.5 113.5 51.3 6250 

Table 11. Maximum von Mises stresses and times at which they occur in tile for the square configurations 
at t2 for the two different thermal loading conditions 

 

Table 3.1: Maximum temperatures and times at which they occur in the tile, SIP and un-
derlying structure in 3D models
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TPS 
Element 

D 
(inch) 

Temperature 
(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1457 0 48.5 850 850 
1.0 981 1499 0 52.8 850 850 

 
Tile 

1.5 981 1515 0 54.4 850 850 
0 150 NA 6600 

0.5 149 156 -0.7 4.0 6550 6550 
1.0 145 180 -3.3 20.0 6450 6300 

 
SIP 

1.5 139 225 -7.3 50.0 6250 5800 
0 150 NA 7150 

0.5 148 156 -1.3 4.0 7150 7100 
1.0 144 179 -4.0 19.3 7100 6850 

 
Underlying 
structure 

1.5 138 224 -8.0 49.3 6900 6300 

Table 9. Maximum temperatures and times at which they occur in the tile, SIP and underlying structure in 
square configurations 

 
 
 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 63.4 63.6 NA NA 350 350 

0.5 111.2 111.6 75.4 75.5 350 350 
1.0 99.5 99.9 56.9 57.1 400 400 

 
q1 

1.5 96.4 96.8 52.1 52.2 400 400 
0 63.4 63.6 NA NA 350 350 

0.5 138.1 138.3 117.8 117.5 400 400 
1.0 136.8 137.1 115.8 115.6 400 400 

 
q2 

1.5 149.9 150.0 136.4 135.8 400 400 

Table 10. Maximum von Mises stresses and times at which they occur in tile for the square configurations 
at t1 for the two different thermal loading conditions 

 
 
 

Thermal 
Loading 

D 
(inch) 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

0 75.0 NA 7100 
0.5 71.3 -4.9 7100 
1.0 68.9 -8.1 7050 

 
q1 

1.5 65.5 -12.7 6850 
0 75.0 NA 7100 

0.5 75.6 0.8 7100 
1.0 88.6 18.1 6750 

 
q2 

1.5 113.5 51.3 6250 

Table 11. Maximum von Mises stresses and times at which they occur in tile for the square configurations 
at t2 for the two different thermal loading conditions 

 

Table 3.2: Maximum von Mises stresses and times at which they occur in tile for the 3D
models at t1 for the two different thermal loading conditions
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TPS 
Element 

D 
(inch) 

Temperature 
(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1457 0 48.5 850 850 
1.0 981 1499 0 52.8 850 850 

 
Tile 

1.5 981 1515 0 54.4 850 850 
0 150 NA 6600 

0.5 149 156 -0.7 4.0 6550 6550 
1.0 145 180 -3.3 20.0 6450 6300 

 
SIP 

1.5 139 225 -7.3 50.0 6250 5800 
0 150 NA 7150 

0.5 148 156 -1.3 4.0 7150 7100 
1.0 144 179 -4.0 19.3 7100 6850 

 
Underlying 
structure 

1.5 138 224 -8.0 49.3 6900 6300 

Table 9. Maximum temperatures and times at which they occur in the tile, SIP and underlying structure in 
square configurations 

 
 
 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 63.4 63.6 NA NA 350 350 

0.5 111.2 111.6 75.4 75.5 350 350 
1.0 99.5 99.9 56.9 57.1 400 400 

 
q1 

1.5 96.4 96.8 52.1 52.2 400 400 
0 63.4 63.6 NA NA 350 350 

0.5 138.1 138.3 117.8 117.5 400 400 
1.0 136.8 137.1 115.8 115.6 400 400 

 
q2 

1.5 149.9 150.0 136.4 135.8 400 400 

Table 10. Maximum von Mises stresses and times at which they occur in tile for the square configurations 
at t1 for the two different thermal loading conditions 

 
 
 

Thermal 
Loading 

D 
(inch) 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

0 75.0 NA 7100 
0.5 71.3 -4.9 7100 
1.0 68.9 -8.1 7050 

 
q1 

1.5 65.5 -12.7 6850 
0 75.0 NA 7100 

0.5 75.6 0.8 7100 
1.0 88.6 18.1 6750 

 
q2 

1.5 113.5 51.3 6250 

Table 11. Maximum von Mises stresses and times at which they occur in tile for the square configurations 
at t2 for the two different thermal loading conditions 

 
Table 3.3: Maximum von Mises stresses and times at which they occur in tile for the 3D

models at t2 for the two different thermal loading conditions
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Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 30.1 4.61 NA NA 7150 6050 

0.5 30.0 4.31 -0.3 -6.5 7250 5600 
1.0 29.0 4.20 -3.7 -8.9 7200 5450 

 
q1 

1.5 27.6 3.94 -8.3 -14.5 7000 5150 
0 30.1 4.61 NA NA 7150 6050 

0.5 31.8 4.65 5.6 0.9 7200 5900 
1.0 37.3 5.45 23.9 18.2 6800 5700 

 
q2 

1.5 47.7 6.99 58.5 51.6 6350 5250 

Table 12. Maximum von Mises stresses and times at which they occur in SIP for the square configurations 
for the two different thermal loading conditions 

. 

 
 

Max. von Mises stress 
(MPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 2.32 283.1 NA NA 7300 7150 

0.5 2.34 277.9 0.8 -1.8 7300 7150 
1.0 2.26 268.6 -2.6 -5.1 7250 7100 

 
q1 

1.5 2.16 255.5 -6.9 -9.7 7100 6900 
0 2.32 283.1 NA NA 7300 7150 

0.5 2.48 294.6 6.9 4.1 7300 7100 
1.0 2.91 345.5 25.4 22.0 6900 6850 

 
q2 

1.5 3.73 442.3 60.8 56.2 6450 6300 

Table 13. Maximum von Mises stresses and times at which they occur in underlying structure for the 
square configurations for the two different thermal loading conditions 

 
 

 
Figure 1. Space Shuttle TPS and Airframe (from Callister, W.D., “Materials Science and Engineering: An 

Introduction”, John Wiley and Sons Inc., New York, 2003, Pg. S-349) 

Table 3.4: Maximum von Mises stresses and times at which they occur in SIP for the 3D
models for the two different thermal loading conditions
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Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 30.1 4.61 NA NA 7150 6050 

0.5 30.0 4.31 -0.3 -6.5 7250 5600 
1.0 29.0 4.20 -3.7 -8.9 7200 5450 

 
q1 

1.5 27.6 3.94 -8.3 -14.5 7000 5150 
0 30.1 4.61 NA NA 7150 6050 

0.5 31.8 4.65 5.6 0.9 7200 5900 
1.0 37.3 5.45 23.9 18.2 6800 5700 

 
q2 

1.5 47.7 6.99 58.5 51.6 6350 5250 

Table 12. Maximum von Mises stresses and times at which they occur in SIP for the square configurations 
for the two different thermal loading conditions 

. 

 
 

Max. von Mises stress 
(MPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 2.32 283.1 NA NA 7300 7150 

0.5 2.34 277.9 0.8 -1.8 7300 7150 
1.0 2.26 268.6 -2.6 -5.1 7250 7100 

 
q1 

1.5 2.16 255.5 -6.9 -9.7 7100 6900 
0 2.32 283.1 NA NA 7300 7150 

0.5 2.48 294.6 6.9 4.1 7300 7100 
1.0 2.91 345.5 25.4 22.0 6900 6850 

 
q2 

1.5 3.73 442.3 60.8 56.2 6450 6300 

Table 13. Maximum von Mises stresses and times at which they occur in underlying structure for the 
square configurations for the two different thermal loading conditions 

 
 

 
Figure 1. Space Shuttle TPS and Airframe (from Callister, W.D., “Materials Science and Engineering: An 

Introduction”, John Wiley and Sons Inc., New York, 2003, Pg. S-349) 

Table 3.5: Maximum von Mises stresses and times at which they occur in underlying struc-
ture for the 3D models for the two different thermal loading conditions
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T  

(°C) 
c 

(J/kg °C) 
k 

(W/m °C)  
E  

(GPa) 
a  

(10-6/°C) 
-73.2 787.0 163.0 – – 
-17.8 – – – 21.9 
21.0 – – 72.4 – 
26.9 875.0 177.0 – – 
37.8 – – 72.0 22.6 
93.3 – – 70.4 23.2 

126.9 925.0 186.0 – – 
148.9 – – 68.5 23.6 
204.4 – – 64.3 24.0 
260.0 – – 57.3 24.4 
315.6 – – 50.5 24.9 
326.9 1042.0 – – – 
371.1 – – – 25.4 
426.7 – – – 26.0 
482.2 – – – 26.7 

                        r = 2770 kg/m3 

                         n = 0.33 

Table 1. Material properties of the underlying structure (Aluminum 2024) 

 
 
 
 

 P (Pa) 
T (°C) 10.133 101.33 1013.3 10133 101330 
-17.6 0.009173 0.01904 0.03081 0.03427 0.03548 
38.0 0.009865 0.02146 0.03600 0.04067 0.04223 
93.5 0.01090 0.02337 0.04154 0.04725 0.04933 

149.1 0.01263 0.02631 0.04708 0.05504 0.05711 
204.6 0.01575 0.02908 0.05244 0.06421 0.06611 
315.7 0.02077 0.03548 0.06750 0.08308 0.08533 
426.9 0.02700 0.04327 0.08654 0.1052 0.1073 

Table 2. Conductivity of SIP (W/m-±C) with respect to temperature and pressure 

 
 
 
 

T  
(°C) 

c 
(J/kg °C) 

-17.6 1306.3 
93.5 1339.8 

204.6 1402.6 
615.7 1444.5 

  
r = 194 kg/m3 
E = 30 kPa 
n = 0.3 
a = 18 μ 10-6/°C 

 

Table 3. Material properties of SIP 

 
 
 

Table 3.6: Material properties of the underlying structure (Aluminum 2024)
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T  

(°C) 
c 

(J/kg °C) 
k 

(W/m °C)  
E  

(GPa) 
a  

(10-6/°C) 
-73.2 787.0 163.0 – – 
-17.8 – – – 21.9 
21.0 – – 72.4 – 
26.9 875.0 177.0 – – 
37.8 – – 72.0 22.6 
93.3 – – 70.4 23.2 

126.9 925.0 186.0 – – 
148.9 – – 68.5 23.6 
204.4 – – 64.3 24.0 
260.0 – – 57.3 24.4 
315.6 – – 50.5 24.9 
326.9 1042.0 – – – 
371.1 – – – 25.4 
426.7 – – – 26.0 
482.2 – – – 26.7 

                        r = 2770 kg/m3 

                         n = 0.33 

Table 1. Material properties of the underlying structure (Aluminum 2024) 

 
 
 
 

 P (Pa) 
T (°C) 10.133 101.33 1013.3 10133 101330 
-17.6 0.009173 0.01904 0.03081 0.03427 0.03548 
38.0 0.009865 0.02146 0.03600 0.04067 0.04223 
93.5 0.01090 0.02337 0.04154 0.04725 0.04933 

149.1 0.01263 0.02631 0.04708 0.05504 0.05711 
204.6 0.01575 0.02908 0.05244 0.06421 0.06611 
315.7 0.02077 0.03548 0.06750 0.08308 0.08533 
426.9 0.02700 0.04327 0.08654 0.1052 0.1073 

Table 2. Conductivity of SIP (W/m-±C) with respect to temperature and pressure 

 
 
 
 

T  
(°C) 

c 
(J/kg °C) 

-17.6 1306.3 
93.5 1339.8 

204.6 1402.6 
615.7 1444.5 

  
r = 194 kg/m3 
E = 30 kPa 
n = 0.3 
a = 18 μ 10-6/°C 

 

Table 3. Material properties of SIP 

 
 
 

Table 3.7: Conductivity of SIP (W/m-◦C) with respect to temperature and pressure
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 P (Pa) 

T (°C) 10.133 101.33 1013.3 10133 101330 
 

-17.6 0.02597 
(0.01298) 

0.03116 
(0.01731) 

0.04847 
(0.03168) 

0.05712 
(0.04328) 

0.06751 
(0.04760) 

 

121.3 0.03462 
(0.01593) 

0.03981 
(0.02164) 

0.05712 
(0.03895) 

0.07097 
(0.05470) 

0.08136 
(0.05903) 

 

260.2 0.04501 
(0.02164) 

0.05193 
(0.02891) 

0.07270 
(0.04778) 

0.08828 
(0.06924) 

0.09867 
(0.07495) 

 

399.1 0.06059 
(0.03029) 

0.06924 
(0.3739) 

0.08828 
(0.05626) 

0.1108 
(0.08517) 

0.1212 
(0.09244) 

 

538.0 0.08482 
(0.04033) 

0.09001 
(0.04760) 

0.1091 
(0.06786) 

0.1402 
(0.1039) 

0.1523 
(0.1139) 

 

676.9 0.1142 
(0.05331) 

0.1229 
(0.06059) 

0.1437 
(0.08517) 

0.1800 
(0.1255) 

0.1921 
(0.1354) 

 

815.7 0.1541 
(0.07201) 

0.1662 
(0.07945) 

0.1887 
(0.1068) 

0.2285 
(0.1515) 

0.2423 
(0.1631) 

 

954.6 0.2060 
(0.09815) 

0.2164 
(0.1056) 

0.2423 
(0.1328) 

0.2891 
(0.1835) 

0.3029 
(0.1956) 

 

1093.5 0.2648 
(0.1271) 

0.2804 
(0.1354) 

0.3116 
(0.1631) 

0.3670 
(0.2198) 

0.3826 
(0.2354) 

 

1260.2 0.3687 
(0.1672) 

0.3826 
(0.1766) 

0.4154 
(0.2008) 

0.4726 
(0.2683) 

0.4985 
(0.2891) 

 

1371.3 – 
(0.2008) 

– 
(0.2129) 

– 
(0.2406) 

– 
(0.3098) 

– 
(0.3358) 

 

1538.0 – 
(0.2666) 

– 
(0.2804) 

– 
(0.3116) 

– 
(0.3843) 

– 
(0.4189) 

 

1649.1 – 
(0.3289) 

– 
(0.3393) 

– 
(0.3791) 

– 
(0.4535) 

– 
(0.5020) 

Table 4. Conductivity of LI-900 tile (W/m-±C) with respect to temperature and pressure 

 
 
 
 

T  
(°C) 

c 
(J/kg °C) 

a  
(10-6/°C) 

-17.6 628.0 0.405 
121.3 879.2 0.540 
260.2 1055.1 0.648 
399.1 1151.4 0.720 
538.0 1205.8 0.792 
676.9 1239.3 0.576 
815.7 1256.0 0.480 
926.9 1264.4 0.432 
954.6 1268.6 – 
1093.5 – 0.360 

  
 

r =  144  kg/m3 
Ex, Ez  =  172.4  MPa 
Ey  =  48.3  MPa 
Gxy, Gyz =  20.7  MPa 
Gxz  =  72.4  MPa 
nxy  =  0.16 
nxz =  0.18 
nyz =  0.04 
 

Table 5. Material properties of LI-900 tiles 

 
 
 
 

Table 3.8: Material properties of SIP
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 P (Pa) 

T (°C) 10.133 101.33 1013.3 10133 101330 
 

-17.6 0.02597 
(0.01298) 

0.03116 
(0.01731) 

0.04847 
(0.03168) 

0.05712 
(0.04328) 

0.06751 
(0.04760) 

 

121.3 0.03462 
(0.01593) 

0.03981 
(0.02164) 

0.05712 
(0.03895) 

0.07097 
(0.05470) 

0.08136 
(0.05903) 

 

260.2 0.04501 
(0.02164) 

0.05193 
(0.02891) 

0.07270 
(0.04778) 

0.08828 
(0.06924) 

0.09867 
(0.07495) 

 

399.1 0.06059 
(0.03029) 

0.06924 
(0.3739) 

0.08828 
(0.05626) 

0.1108 
(0.08517) 

0.1212 
(0.09244) 

 

538.0 0.08482 
(0.04033) 

0.09001 
(0.04760) 

0.1091 
(0.06786) 

0.1402 
(0.1039) 

0.1523 
(0.1139) 

 

676.9 0.1142 
(0.05331) 

0.1229 
(0.06059) 

0.1437 
(0.08517) 

0.1800 
(0.1255) 

0.1921 
(0.1354) 

 

815.7 0.1541 
(0.07201) 

0.1662 
(0.07945) 

0.1887 
(0.1068) 

0.2285 
(0.1515) 

0.2423 
(0.1631) 

 

954.6 0.2060 
(0.09815) 

0.2164 
(0.1056) 

0.2423 
(0.1328) 

0.2891 
(0.1835) 

0.3029 
(0.1956) 

 

1093.5 0.2648 
(0.1271) 

0.2804 
(0.1354) 

0.3116 
(0.1631) 

0.3670 
(0.2198) 

0.3826 
(0.2354) 

 

1260.2 0.3687 
(0.1672) 

0.3826 
(0.1766) 

0.4154 
(0.2008) 

0.4726 
(0.2683) 

0.4985 
(0.2891) 

 

1371.3 – 
(0.2008) 

– 
(0.2129) 

– 
(0.2406) 

– 
(0.3098) 

– 
(0.3358) 

 

1538.0 – 
(0.2666) 

– 
(0.2804) 

– 
(0.3116) 

– 
(0.3843) 

– 
(0.4189) 

 

1649.1 – 
(0.3289) 

– 
(0.3393) 

– 
(0.3791) 

– 
(0.4535) 

– 
(0.5020) 

Table 4. Conductivity of LI-900 tile (W/m-±C) with respect to temperature and pressure 

 
 
 
 

T  
(°C) 

c 
(J/kg °C) 

a  
(10-6/°C) 

-17.6 628.0 0.405 
121.3 879.2 0.540 
260.2 1055.1 0.648 
399.1 1151.4 0.720 
538.0 1205.8 0.792 
676.9 1239.3 0.576 
815.7 1256.0 0.480 
926.9 1264.4 0.432 
954.6 1268.6 – 
1093.5 – 0.360 

  
 

r =  194  kg/m3 
Ex, Ez  =  172.4  MPa 
Ey  =  48.3  MPa 
Gxy, Gyz =  20.7  MPa 
Gxz  =  72.4  MPa 
nxy  =  0.16 
nxz =  0.18 
nyz =  0.04 
 

Table 5. Material properties of LI-900 tiles 

 
 
 
 

Table 3.9: Conductivity of LI-900 tile (W/m-◦C) with respect to temperature and pressure
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 P (Pa) 

T (°C) 10.133 101.33 1013.3 10133 101330 
 

-17.6 0.02597 
(0.01298) 

0.03116 
(0.01731) 

0.04847 
(0.03168) 

0.05712 
(0.04328) 

0.06751 
(0.04760) 

 

121.3 0.03462 
(0.01593) 

0.03981 
(0.02164) 

0.05712 
(0.03895) 

0.07097 
(0.05470) 

0.08136 
(0.05903) 

 

260.2 0.04501 
(0.02164) 

0.05193 
(0.02891) 

0.07270 
(0.04778) 

0.08828 
(0.06924) 

0.09867 
(0.07495) 

 

399.1 0.06059 
(0.03029) 

0.06924 
(0.3739) 

0.08828 
(0.05626) 

0.1108 
(0.08517) 

0.1212 
(0.09244) 

 

538.0 0.08482 
(0.04033) 

0.09001 
(0.04760) 

0.1091 
(0.06786) 

0.1402 
(0.1039) 

0.1523 
(0.1139) 

 

676.9 0.1142 
(0.05331) 

0.1229 
(0.06059) 

0.1437 
(0.08517) 

0.1800 
(0.1255) 

0.1921 
(0.1354) 

 

815.7 0.1541 
(0.07201) 

0.1662 
(0.07945) 

0.1887 
(0.1068) 

0.2285 
(0.1515) 

0.2423 
(0.1631) 

 

954.6 0.2060 
(0.09815) 

0.2164 
(0.1056) 

0.2423 
(0.1328) 

0.2891 
(0.1835) 

0.3029 
(0.1956) 

 

1093.5 0.2648 
(0.1271) 

0.2804 
(0.1354) 

0.3116 
(0.1631) 

0.3670 
(0.2198) 

0.3826 
(0.2354) 

 

1260.2 0.3687 
(0.1672) 

0.3826 
(0.1766) 

0.4154 
(0.2008) 

0.4726 
(0.2683) 

0.4985 
(0.2891) 

 

1371.3 – 
(0.2008) 

– 
(0.2129) 

– 
(0.2406) 

– 
(0.3098) 

– 
(0.3358) 

 

1538.0 – 
(0.2666) 

– 
(0.2804) 

– 
(0.3116) 

– 
(0.3843) 

– 
(0.4189) 

 

1649.1 – 
(0.3289) 

– 
(0.3393) 

– 
(0.3791) 

– 
(0.4535) 

– 
(0.5020) 

Table 4. Conductivity of LI-900 tile (W/m-±C) with respect to temperature and pressure 

 
 
 
 

T  
(°C) 

c 
(J/kg °C) 

a  
(10-6/°C) 

-17.6 628.0 0.405 
121.3 879.2 0.540 
260.2 1055.1 0.648 
399.1 1151.4 0.720 
538.0 1205.8 0.792 
676.9 1239.3 0.576 
815.7 1256.0 0.480 
926.9 1264.4 0.432 
954.6 1268.6 – 
1093.5 – 0.360 

  
 

r =  194  kg/m3 
Ex, Ez  =  172.4  MPa 
Ey  =  48.3  MPa 
Gxy, Gyz =  20.7  MPa 
Gxz  =  72.4  MPa 
nxy  =  0.16 
nxz =  0.18 
nyz =  0.04 
 

Table 5. Material properties of LI-900 tiles 

 
 
 
 

Table 3.10: Material properties of LI-900 tile
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Temperature (°C) Emissivity of Uncoated LI-900 Tile 

27 0.88050 
127 0.83613 
227 0.76578 
327 0.68410 
427 0.60390 
527 0.53177 
627 0.46981 
727 0.41785 
827 0.37477 
927 0.33918 
1027 0.30980 
1127 0.28548 
1227 0.26527 
1327 0.24841 

Table 6. Emissivity of uncoated tile with respect to temperature 

 
 

TPS 
Component 

Max. temperatures with constant 
emissivity 

(°C) 

Max. temperature with emissivity as 
function of temperature 

(°C) 
LI-900 1501 2178 

SIP 188.1 228.9 
Structure 187.3 228.1 

Table 7. Maximum temperature results for D = 1” axisymmetric configuration for analyses with or without 
temperature dependent emissivity 

 
TPS 

Component 
Max. von Mises stress with 

( )k f T=    (Pa) 
Max. von Mises stress with 

( , )k g T P=     (Pa) 
LI-900 6.20 × 104 7.17 × 104 

SIP 4.03 × 103 2.86× 103 
Structure 2.81 × 108 2.80 × 108 

Table 8. Maximum von Mises stresses attained for each TPS component for analyses with or without 
pressure dependency in conductivity 

 
 

D 

 

TPS 
Component 

Max. von Mises stress with 
isotropic properties 

(Pa) 

Max. von Mises stress with 
transversely isotropic properties 

(Pa) 
LI-900 7.17 × 104 6.15 × 104 

SIP 2.86 × 103 2.83 × 103 
 

0” 
Structure 2.80 × 108 2.79 × 108 

LI-900 2.11 × 105 2.09 × 105 
SIP 5.15 × 103 5.41 × 103 

 
1” 

Structure 5.04 × 108 5.34 × 108 

Table 9. Maximum von Mises stresses attained for each TPS component for the analysis using isotropic and 
transversely isotropic material properties 

 

Table 3.11: Emissivity (ε) of uncoated tile with respect to temperature
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Temperature (°C) Emissivity of Uncoated LI-900 Tile 

27 0.88050 
127 0.83613 
227 0.76578 
327 0.68410 
427 0.60390 
527 0.53177 
627 0.46981 
727 0.41785 
827 0.37477 
927 0.33918 
1027 0.30980 
1127 0.28548 
1227 0.26527 
1327 0.24841 

Table 6. Emissivity of uncoated tile with respect to temperature 

 
 

TPS 
Component 

Max. temperatures with constant 
emissivity 

(°C) 

Max. temperature with emissivity as 
function of temperature 

(°C) 
LI-900 1501 2178 

SIP 188.1 228.9 
Structure 187.3 228.1 

Table 7. Maximum temperature results for D = 1” axisymmetric configuration for analyses with or without 
temperature dependent emissivity 

 
TPS 

Component 
Max. von Mises stress with 

( )k f T=    (Pa) 
Max. von Mises stress with 

( , )k g T P=     (Pa) 
LI-900 6.20 × 104 7.17 × 104 

SIP 4.03 × 103 2.86× 103 
Structure 2.81 × 108 2.80 × 108 

Table 8. Maximum von Mises stresses attained for each TPS component for analyses with or without 
pressure dependency in conductivity 

 
 

D 

 

TPS 
Component 

Max. von Mises stress with 
isotropic properties 

(Pa) 

Max. von Mises stress with 
transversely isotropic properties 

(Pa) 
LI-900 7.17 × 104 6.15 × 104 

SIP 2.86 × 103 2.83 × 103 
 

0” 
Structure 2.80 × 108 2.79 × 108 

LI-900 2.11 × 105 2.09 × 105 
SIP 5.15 × 103 5.41 × 103 

 
1” 

Structure 5.04 × 108 5.34 × 108 

Table 9. Maximum von Mises stresses attained for each TPS component for the analysis using isotropic and 
transversely isotropic material properties 

 

Table 3.12: Maximum temperature results for D = 1” axisymmetric model for analysis
with or without temperature dependent emissivity
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Temperature (°C) Emissivity of Uncoated LI-900 Tile 

27 0.88050 
127 0.83613 
227 0.76578 
327 0.68410 
427 0.60390 
527 0.53177 
627 0.46981 
727 0.41785 
827 0.37477 
927 0.33918 
1027 0.30980 
1127 0.28548 
1227 0.26527 
1327 0.24841 

Table 6. Emissivity of uncoated tile with respect to temperature 

 
 

TPS 
Component 

Max. temperatures with constant 
emissivity 

(°C) 

Max. temperature with emissivity as 
function of temperature 

(°C) 
LI-900 1501 2178 

SIP 188.1 228.9 
Structure 187.3 228.1 

Table 7. Maximum temperature results for D = 1” axisymmetric configuration for analyses with or without 
temperature dependent emissivity 

 
TPS 

Component 
Max. von Mises stress with 

( )k f T=    (Pa) 
Max. von Mises stress with 

( , )k g T P=     (Pa) 
LI-900 6.20 × 104 7.17 × 104 

SIP 4.03 × 103 2.86× 103 
Structure 2.81 × 108 2.80 × 108 

Table 8. Maximum von Mises stresses attained for each TPS component for analyses with or without 
pressure dependency in conductivity 

 
 

D 

 

TPS 
Component 

Max. von Mises stress with 
isotropic properties 

(Pa) 

Max. von Mises stress with 
transversely isotropic properties 

(Pa) 
LI-900 7.17 × 104 6.15 × 104 

SIP 2.86 × 103 2.83 × 103 
 

0” 
Structure 2.80 × 108 2.79 × 108 

LI-900 2.11 × 105 2.09 × 105 
SIP 5.15 × 103 5.41 × 103 

 
1” 

Structure 5.04 × 108 5.34 × 108 

Table 9. Maximum von Mises stresses attained for each TPS component for the analysis using isotropic and 
transversely isotropic material properties 

 

Table 3.13: Maximum von Mises stresses attained for each TPS component with or without
pressure dependency in conductivity
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Temperature (°C) Emissivity of Uncoated LI-900 Tile 

27 0.88050 
127 0.83613 
227 0.76578 
327 0.68410 
427 0.60390 
527 0.53177 
627 0.46981 
727 0.41785 
827 0.37477 
927 0.33918 
1027 0.30980 
1127 0.28548 
1227 0.26527 
1327 0.24841 

Table 6. Emissivity of uncoated tile with respect to temperature 

 
 

TPS 
Component 

Max. temperatures with constant 
emissivity 

(°C) 

Max. temperature with emissivity as 
function of temperature 

(°C) 
LI-900 1501 2178 

SIP 188.1 228.9 
Structure 187.3 228.1 

Table 7. Maximum temperature results for D = 1” axisymmetric configuration for analyses with or without 
temperature dependent emissivity 

 
TPS 

Component 
Max. von Mises stress with 

( )k f T=    (Pa) 
Max. von Mises stress with 

( , )k g T P=     (Pa) 
LI-900 6.20 × 104 7.17 × 104 

SIP 4.03 × 103 2.86× 103 
Structure 2.81 × 108 2.80 × 108 

Table 8. Maximum von Mises stresses attained for each TPS component for analyses with or without 
pressure dependency in conductivity 

 
 

D 

 

TPS 
Component 

Max. von Mises stress with 
isotropic properties 

(Pa) 

Max. von Mises stress with 
transversely isotropic properties 

(Pa) 
LI-900 7.17 × 104 6.15 × 104 

SIP 2.86 × 103 2.83 × 103 
 

0” 
Structure 2.80 × 108 2.79 × 108 

LI-900 2.11 × 105 2.09 × 105 
SIP 5.15 × 103 5.41 × 103 

 
1” 

Structure 5.04 × 108 5.34 × 108 

Table 9. Maximum von Mises stresses attained for each TPS component for the analysis using isotropic and 
transversely isotropic material properties 

 Table 3.14: Maximum von Mises stresses attained for analysis using isotropic or trans-
versely isotropic material properties
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D 

 

TPS 
Component 

Max. von Mises stress with 
constant mechanical properties   

(Pa) 

Max. von Mises stress with 
mechanical properties as 

function of temperature (Pa) 
LI-900 6.15 × 104 6.34 × 104 

SIP 2.83 × 103 2.83 × 103 
 

0” 
Structure 2.79 × 108 3.09 × 108 

LI-900 2.09 × 105 1.16 × 105 
SIP 5.41 × 103 5.46 × 103 

 
1” 

Structure 5.34 × 108 5.05 × 108 

Table 10. Maximum von Mises stresses attained for each TPS component for the analyses with constant 
and temperature-dependent mechanical properties 

 
 

TPS 
component 

D 
(inch) 

Temperature 
(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1457 0 48.5 850 850 
1.0 981 1499 0 52.8 850 850 

 
Tile 

1.5 981 1515 0 54.4 850 850 
0 150 NA 6600 

0.5 149 156 -0.7 4.0 6550 6550 
1.0 145 180 -3.3 20.0 6450 6300 

 
SIP 

1.5 139 225 -7.3 50.0 6250 5800 
0 150 NA 7150 

0.5 148 156 -1.3 4.0 7150 7100 
1.0 144 179 -4.0 19.3 7100 6850 

 
Underlying 
structure 

1.5 138 224 -8.0 49.3 6900 6300 

Table 11. Maximum temperatures results for square configurations from Ref. 13 

 
 

TPS 
component 

D 
(inch) 

Temperature 
(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1846 0 88.2 850 850 
1.0 981 2048 0 108.8 850 850 

 
Tile 

1.5 981 2133 0 117.4 850 850 
0 150 NA 5000 

0.5 148 167 -1.3 11.3 5000 4900 
1.0 145 242 -3.3 61.3 4900 4550 

 
SIP 

1.5 140 382 -6.7 154.7 4750 3900 
0 150 NA 5450 

0.5 148 166 -1.3 10.7 5450 5350 
1.0 144 241 -4.0 60.7 5400 4950 

 
Underlying 
structure 

1.5 139 380 -7.3 153.3 5300 4200 

Table 12. Maximum temperatures results for square configurations using new assumptions 

 
 

Table 3.15: Maximum von Mises stresses attained for each TPS component with constant
or temperature-dependent material properties
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D 

 

TPS 
Component 

Max. von Mises stress with 
constant mechanical properties   

(Pa) 

Max. von Mises stress with 
mechanical properties as 

function of temperature (Pa) 
LI-900 6.15 × 104 6.34 × 104 

SIP 2.83 × 103 2.83 × 103 
 

0” 
Structure 2.79 × 108 3.09 × 108 

LI-900 2.09 × 105 1.16 × 105 
SIP 5.41 × 103 5.46 × 103 

 
1” 

Structure 5.34 × 108 5.05 × 108 

Table 10. Maximum von Mises stresses attained for each TPS component for the analyses with constant 
and temperature-dependent mechanical properties 

 
 

TPS 
component 

D 
(inch) 

Temperature 
(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1457 0 48.5 850 850 
1.0 981 1499 0 52.8 850 850 

 
Tile 

1.5 981 1515 0 54.4 850 850 
0 150 NA 6600 

0.5 149 156 -0.7 4.0 6550 6550 
1.0 145 180 -3.3 20.0 6450 6300 

 
SIP 

1.5 139 225 -7.3 50.0 6250 5800 
0 150 NA 7150 

0.5 148 156 -1.3 4.0 7150 7100 
1.0 144 179 -4.0 19.3 7100 6850 

 
Underlying 
structure 

1.5 138 224 -8.0 49.3 6900 6300 

Table 11. Maximum temperatures results for square configurations from Ref. 13 

 
 

TPS 
component 

D 
(inch) 

Temperature 
(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 981 1846 0 88.2 850 850 
1.0 981 2048 0 108.8 850 850 

 
Tile 

1.5 981 2133 0 117.4 850 850 
0 150 NA 5000 

0.5 148 167 -1.3 11.3 5000 4900 
1.0 145 242 -3.3 61.3 4900 4550 

 
SIP 

1.5 140 382 -6.7 154.7 4750 3900 
0 150 NA 5450 

0.5 148 166 -1.3 10.7 5450 5350 
1.0 144 241 -4.0 60.7 5400 4950 

 
Underlying 
structure 

1.5 139 380 -7.3 153.3 5300 4200 

Table 12. Maximum temperatures results for square configurations using new assumptions 

 
 
Table 3.16: Maximum temperature results for 3D models using improved assumptions
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Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 64.9 65.0 NA NA 200 200 

0.5 111.7 112.0 72.1 72.3 250 250 
1.0 105.3 105.5 62.2 62.3 250 250 

 
q1 

1.5 96.3 96.5 48.4 48.5 250 250 
0 64.9 65.0 NA NA 200 200 

0.5 96.4 96.6 48.5 48.6 400 400 
1.0 119.1 119.3 83.5 83.5 400 400 

 
q2 

1.5 132.2 132.4 103.7 103.7 400 400 

Table 16. Maximum von Mises stresses and times at which they occur in tile for the square configurations 
using new assumptions 

 
 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 32.2 3.08 NA NA 5450 5500 

0.5 31.9 3.05 -0.9 -1.0 5450 5500 
1.0 30.9 2.96 -4.0 -3.9 5400 5450 

 
q1 

1.5 29.5 2.85 -8.4 -7.5 5300 5350 
0 32.2 3.08 NA NA 5450 5500 

0.5 36.8 3.51 14.3 14.0 5350 5400 
1.0 56.7 5.38 76.1 74.7 4950 5000 

 
q2 

1.5 96.7 8.89 200.3 188.6 4200 4250 

Table 17. Maximum von Mises stresses and times at which they occur in SIP for the square configurations 
using new assumptions 

 
 
 

Max. von Mises stress 
(MPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 1.86 308.9 NA NA 5550 5450 

0.5 1.84 305.9 -1.1 -1.0 5550 5450 
1.0 1.79 297.0 -3.8 -3.9 5500 5400 

 
q1 

1.5 1.72 284.9 -7.5 -7.8 5400 5300 
0 1.86 308.9 NA NA 5550 5450 

0.5 2.11 347.0 13.4 12.3 5450 5350 
1.0 3.09 476.5 66.1 54.3 5050 4950 

 
q2 

1.5 4.88 688.8 162.4 123.0 4250 4200 

Table 18. Maximum von Mises stresses and times at which they occur in underlying structure for the 
square configurations using new assumptions 

 
 

Table 3.17: Maximum von Mises stresses and times at which they occur in tile for the 3D
models using improved assumptions

 
American Institute of Aeronautics and Astronautics 

13

 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 64.9 65.0 NA NA 200 200 

0.5 111.7 112.0 72.1 72.3 250 250 
1.0 105.3 105.5 62.2 62.3 250 250 

 
q1 

1.5 96.3 96.5 48.4 48.5 250 250 
0 64.9 65.0 NA NA 200 200 

0.5 96.4 96.6 48.5 48.6 400 400 
1.0 119.1 119.3 83.5 83.5 400 400 

 
q2 

1.5 132.2 132.4 103.7 103.7 400 400 

Table 16. Maximum von Mises stresses and times at which they occur in tile for the square configurations 
using new assumptions 

 
 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 32.2 3.08 NA NA 5450 5500 

0.5 31.9 3.05 -0.9 -1.0 5450 5500 
1.0 30.9 2.96 -4.0 -3.9 5400 5450 

 
q1 

1.5 29.5 2.85 -8.4 -7.5 5300 5350 
0 32.2 3.08 NA NA 5450 5500 

0.5 36.8 3.51 14.3 14.0 5350 5400 
1.0 56.7 5.38 76.1 74.7 4950 5000 

 
q2 

1.5 96.7 8.89 200.3 188.6 4200 4250 

Table 17. Maximum von Mises stresses and times at which they occur in SIP for the square configurations 
using new assumptions 

 
 
 

Max. von Mises stress 
(MPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 1.86 308.9 NA NA 5550 5450 

0.5 1.84 305.9 -1.1 -1.0 5550 5450 
1.0 1.79 297.0 -3.8 -3.9 5500 5400 

 
q1 

1.5 1.72 284.9 -7.5 -7.8 5400 5300 
0 1.86 308.9 NA NA 5550 5450 

0.5 2.11 347.0 13.4 12.3 5450 5350 
1.0 3.09 476.5 66.1 54.3 5050 4950 

 
q2 

1.5 4.88 688.8 162.4 123.0 4250 4200 

Table 18. Maximum von Mises stresses and times at which they occur in underlying structure for the 
square configurations using new assumptions 

 
 

Table 3.18: Maximum von Mises stresses and times at which they occur in SIP for the 3D
models using improved assumptions
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Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 64.9 65.0 NA NA 200 200 

0.5 111.7 112.0 72.1 72.3 250 250 
1.0 105.3 105.5 62.2 62.3 250 250 

 
q1 

1.5 96.3 96.5 48.4 48.5 250 250 
0 64.9 65.0 NA NA 200 200 

0.5 96.4 96.6 48.5 48.6 400 400 
1.0 119.1 119.3 83.5 83.5 400 400 

 
q2 

1.5 132.2 132.4 103.7 103.7 400 400 

Table 16. Maximum von Mises stresses and times at which they occur in tile for the square configurations 
using new assumptions 

 
 
 

Max. von Mises stress 
(kPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 32.2 3.08 NA NA 5450 5500 

0.5 31.9 3.05 -0.9 -1.0 5450 5500 
1.0 30.9 2.96 -4.0 -3.9 5400 5450 

 
q1 

1.5 29.5 2.85 -8.4 -7.5 5300 5350 
0 32.2 3.08 NA NA 5450 5500 

0.5 36.8 3.51 14.3 14.0 5350 5400 
1.0 56.7 5.38 76.1 74.7 4950 5000 

 
q2 

1.5 96.7 8.89 200.3 188.6 4200 4250 

Table 17. Maximum von Mises stresses and times at which they occur in SIP for the square configurations 
using new assumptions 

 
 
 

Max. von Mises stress 
(MPa) 

 

% change Time 
(s) 

 

Thermal 
Loading 

 

D 
(inch) 

BC1 BC2 BC1 BC2 BC1 BC2 
0 1.86 308.9 NA NA 5550 5450 

0.5 1.84 305.9 -1.1 -1.0 5550 5450 
1.0 1.79 297.0 -3.8 -3.9 5500 5400 

 
q1 

1.5 1.72 284.9 -7.5 -7.8 5400 5300 
0 1.86 308.9 NA NA 5550 5450 

0.5 2.11 347.0 13.4 12.3 5450 5350 
1.0 3.09 476.5 66.1 54.3 5050 4950 

 
q2 

1.5 4.88 688.8 162.4 123.0 4250 4200 

Table 18. Maximum von Mises stresses and times at which they occur in underlying structure for the 
square configurations using new assumptions 

 
 

Table 3.19: Maximum von Mises stresses and times at which they occur in underlying
structure for the 3D models using improved assumptions
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TPS 
Component 

Max. temperatures with 
δ = 0”   (°C) 

Max. temperatures with 
δ = 1”    (°C) 

Max. temperature with 
δ = 2” (°C) 

LI-900 2048 2080 2100 
SIP 242 244 241 

Structure 241 241 237 

Table 19. Maximum temperature attained for each TPS component for different d with q2 loading. 

 
Structural 

BC 
TPS 

Component 
Max. von Mises 

Stress with δ = 0”   
(Pa) 

Max. von Mises 
Stress with δ = 1”    

(Pa) 

Max. von Mises 
Stress  with δ = 2” 

(Pa) 
LI-900 1.19 × 105 1.12 × 105 1.14 × 105 

SIP 2.96  × 103 2.96 × 103 2.96 × 103 
 

BC1 
Structure 2.97 × 108 2.98 × 108 2.98 × 108 

LI-900 1.19 × 105 1.14 × 105 9.37 × 104 
SIP 5.38  × 103 5.37 × 103 5.27 × 103 

 
BC2 

Structure 4.77 × 108 4.76 × 108 4.71 × 108 

Table 20. Maximum von Mises stresses attained for each TPS component for BC1 and BC2 boundary 
conditions 

 

 
Figure 1. Space Shuttle TPS and Airframe (Callister, W.D., “Materials Science and Engineering: An 

introduction”, John Wiley and Sons Inc., New York, 2003, Pg. S-349) 

 

 
Figure 2. Schematic view of square segment of the three-layered TPS configuration 

Table 3.20: Maximum temperatures attained for each TPS component for different δ with
q2 thermal loading
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TPS 
Component 

Max. temperatures with 
δ = 0”   (°C) 

Max. temperatures with 
δ = 1”    (°C) 

Max. temperature with 
δ = 2” (°C) 

LI-900 2048 2080 2100 
SIP 242 244 241 

Structure 241 241 237 

Table 19. Maximum temperature attained for each TPS component for different d with q2 loading. 

 
Structural 

BC 
TPS 

Component 
Max. von Mises 

Stress with δ = 0”   
(Pa) 

Max. von Mises 
Stress with δ = 1”    

(Pa) 

Max. von Mises 
Stress  with δ = 2” 

(Pa) 
LI-900 1.19 × 105 1.12 × 105 1.14 × 105 

SIP 2.96  × 103 2.96 × 103 2.96 × 103 
 

BC1 
Structure 2.97 × 108 2.98 × 108 2.98 × 108 

LI-900 1.19 × 105 1.14 × 105 9.37 × 104 
SIP 5.38  × 103 5.37 × 103 5.27 × 103 

 
BC2 

Structure 4.77 × 108 4.76 × 108 4.71 × 108 

Table 20. Maximum von Mises stresses attained for each TPS component for BC1 and BC2 boundary 
conditions 

 

 
Figure 1. Space Shuttle TPS and Airframe (Callister, W.D., “Materials Science and Engineering: An 

introduction”, John Wiley and Sons Inc., New York, 2003, Pg. S-349) 

 

 
Figure 2. Schematic view of square segment of the three-layered TPS configuration 

Table 3.21: Maximum vom Mises stresses attained for each TPS component for BC1 and
BC2 boundary conditions
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Figure 3.1: Schematic of 3D model illustrating the change in location of damage from cen-
ter
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0.3"

3.0"

Figure 3.2: Illustration the boundary layer region in 3D model
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(a) 3D model with δ = 0”

(b) 3D model with δ = 1”

Figure 3.3: FE meshes for 3D models with D = 1” damage
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Figure 3.4: 10-node quadratic tetrahedron element used for 3D model
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 x  x oror z z 

(a) unrestrained boundary condition, BC1

 x  x oror z z 

(b) restrained boundary condition, BC2

Figure 3.5: Structural boundary conditions applied to underlying structure
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(a) Undamaged configuration (350 s) 

(b) q1 loading for D =1” damaged configuration 
(400 s) 

(c) q2 loading for D = 1” damaged configuration 
(400 s) 

Figure 4. Temperature contour plots for the undamaged and damaged (D = 1") square configurations for the 
two different heat loads at times when the maximum von Mises stress in tile occurs. Legends indicate 
temperatures in °C.  

 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: Temperature contour plots for the undamaged and damaged (D = 1”) 3D mod-
els for the two different heat loads at times when the maximum von Mises stress
in tile occurs. Legends indicate temperatures in ◦C
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(a) BC1 undamaged configuration (350 s) 

(b) BC1 D = 1” damaged configuration with q1 loading 
(400 s) 

(c) BC1 D = 1” damaged configuration with q2 loading 
(400 s) 

Figure 5. von Mises stress contour plots for the undamaged and D = 1" damaged square configurations for 
the two different heat loads at times when the maximum von Mises stress in tile occurs. Legends indicate 
stresses in Pascal 

 

 
 
 
 
 
 
 
 
 

Figure 3.7: von Mises stress contour plots for the undamaged and D = 1” damaged 3D
models for the two different heat loads at times when the maximum von Mises
stress in tile occurs. Legends indicate stresses in Pascal
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Figure 3.8: Comparison of maximum temperatures for axisymmetric and 3D models



87

Figure 3.9: Comparison of maximum von Mises stresses in the tile for axisymmetric and
3D models
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Figure 3.10: Comparison of maximum von Mises stresses in the SIP for axisymmetric and
3D models
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Figure 3.11: Comparison of maximum von Mises stresses in underlying structure for ax-
isymmetric and 3D models
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(a) unrestrained boundary condition, BC1  (b) restrained boundary condition, BC2 

Figure 12. Structural boundary conditions applied to underlying structure 
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Figure 13: Operating pressure profile used in analysis 

Figure 3.12: ATS vehicle operating pressure profile
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(a) Surface of tile 
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(b) Middle of tile 
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(c) Underlying structure 

Figure 14: Transient temperature results at the surface and middle of the tile and at underlying structure for 
analyses with and without pressure dependent conductivity 

Figure 3.13: Transient temperature results at the surface and middle of the tile and at un-
derlying structure for analyses with and without pressure dependent conduc-
tivity
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Figure 3.14: Previous and new values of CTE with respect to temperature



CHAPTER IV

DEVELOPMENT OF A THERMAL STRUCTURES TEST

FACILITY AND ITS CALIBRATION

A new facility for high temperature structures testing was designed and developed

in order to carry out experiments on undamaged and damaged HRSI tiles. The facility

resembles to some extent a test chamber that exists at NASA Langley [9]. The laboratory

and its calibration are described in this chapter.

4.1 Design Requirements

The goal of the laboratory is to carry out experiments to be conducted on TPS. The

objective is to obtain temperature and strain measurements that goven the thermal and

structural behavior for undamaged and damaged TPS.

As mentioned earlier, the function of the TPS is to protect the underlying structure

against high temperatures due to aerodynamic heating on the exposed surface of the TPS

during re-entry. For most high temperature insulation materials used in TPS, their con-

ductivities are also functions of pressure due to material porosity. Thus, the performance

for thermal protection is dependent on changes in pressures during re-entry. The precise

93
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re-entry conditions for testing TPS are difficult to duplicate. An alternative is to apply

a transient temperature boundary condition that approximates the temperatures experi-

enced during re-entry to the surface of the TPS test specimen, while simulating re-entry

static pressure in a vacuum chamber.

An approximate re-entry temperature profile based on the ATS heating rates can be ob-

tained from FE analysis conducted in previous chapters. This re-entry temperature profile

and its associated pressure profile are shown in Figure 4.1. Due to the large heat fluxes

and fast thermal rates required to simulate the temperature profile, radiant heaters are the

most suitable heat source for the following reasons: (i) they have fast temperature response

times, (ii) they offer uniform heat fluxes and thus uniform temperature distribution over

80% of their length, and (iii) they have been proven effective in previous TPS testing.

In order to simulate re-entry pressures, the experiments have to be conducted in a

vacuum chamber. This also allows an inert environment to prevent sensors (strain gages

and thermocouples) degradation at high temperatures.

4.2 Test Facility

The facility constructed is shown in Figure 4.2. It consists of the vacuum chamber,

pressure control system, radiant heater system, and data acquisition system.

The cylindrical steel vacuum chamber has a diameter of 33.5” and a length of 37”. The

chamber is equipped with feed-through for power, gas, and instrumentation for 20 pairs

of type K thermocouples and 12 pairs of strain gages. A vacuum of 40 millitorrs can be

achieved when equipped with a 24 cfm dual-stage rotary vacuum pump. Nitrogen is bled

into the chamber at a controlled rate to simulate re-entry pressures. This is done using
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the MKS Instruments type 244/245 control system which includes a control module and a

servo-controlled valve. The system has closed-loop feedback using pressure readings from

two capacitance manometers which cover a range of pressure from 1 millitorr to 760 torr.

The radiant heater is a high energy electric infrared heater system manufactured by

Innovative Industries, which has also provided a similar unit to NASA. The system uses

a quartz lamp radiant heating array capable of rapid changes in heating that is needed

for simulating transient re-entry temperatures. The 15” by 16” heating array can achieve

uniform heating on the surface of a specimen having a maximum dimensions of 12” by

12”. The system includes a temperature controller, which allows the user to govern the

time-dependent temperature profile during the experiments.

The data acquisition system consists of two PCI-6259 data acquisition cards, manufac-

tured by National Instruments. The two cards allow a total of 32 analog inputs for thermo-

couple and strain measurements and 8 analog outputs to specify the target pressure and

temperature profiles to the pressure and heater controller respectively. A program written

in LabVIEW [29] was used to synchronize the inputs and outputs to ensure accurate re-

entry temperature and pressure simulation. The program also ensures seamless switching

between the two manometers in the pressure control system.

4.3 Calibration Tests

Calibration tests were conducted to determine and fine-tune the overall performance

of the laboratory. The calibration test specimen consist of a LI-900 HRSI tile instrumented

with four type-K Nextel-insulated thermocouples (XC-24-K-30, Omega Engineering) as

shown in Figure 4.3. One of the thermocouples, designated Ts indicated in Figure 4.3, is



96

used for feedback control for the radiant heater system. Due to the smooth surface of the

RCG coating of the tile and the high temperatures reached during experiments, special

ceramic adhesive had to be used to connect the thermocouple to the specimen. In the tests,

it was determined that the best adhesive is the Omegabond-600 ceramic adhesive from

Omega Engineering.

The instrumented specimen was placed on top of a steel platform that was lined with

cerachem blanket, which is an alumina-silica-zirconia fiber based insulation manufactured

by Thermal Ceramics. The sides of the specimen were also covered with cerachem blan-

kets, leaving only the top surface exposed. The platform was placed underneath the ra-

diant heater, which is suspended from the ceiling of the vacuum chamber as shown in

Figure 4.4.

4.4 Calibration Results

A series of calibration tests were conducted and the final results are presented here.

The pressures measured during experiment are compared with the target re-entry pressure

profile shown in Figure 4.5. Due to the limitations of the pressure control system, there are

considerable differences between the measured and target profiles for the first 500 seconds.

Subsequently, the average difference between measured and target pressure is less than

2%. The average difference is defined as

1
n

n∑
i=1

∣∣∣∣Gi −Hi

Hi

∣∣∣∣ · 100% (4.1)

where Gi and Hi are data points in the profiles being compared and n is number of data

points.
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Figure 4.6 shows the temperatures measured on the top surface at three different loca-

tions on the specimen as well as the target re-entry temperature profile. Using the center

thermocouple, T1 in Figure 4.3, it is evident that temperature measured matches the tar-

get temperatures, with an average difference of 2.2% in the initial 2, 000 seconds. Beyond

that, the rapid drop in target temperature cannot be simulated without active cooling, a

feature that is not available in the current test facility. From Figure 4.6, it is evident that

the temperature uniformity on the surface of the specimen is very good up to 3, 000 sec-

onds. Subsequently, temperatures at the edge of the specimen diverge from the value at

the center.

The results indicate that the laboratory could not simulate the re-entry temperature

and pressure perfectly. However, the difference between target and simulated values was

small and results generated are useful for FE model validation.
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Figure 3. Overview of High Temperature Thermal Structures Testing Laboratory 
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Figure 4.2: Overview of High Temperature Thermal Structures Testing Laboratory
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Figure 4.3: Location of thermocouples on calibration specimen
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Figure 18. Schematic representation of radiation heat loss in the tile 

 
 

 

 

 
(a) unrestrained boundary condition, BC1  (b) restrained boundary condition, BC2 

Figure 19. Structural boundary conditions applied to underlying structure 
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Figure 20. Comparison of target and measured re-entry pressure 

Figure 4.5: Comparison of target and measured re-entry pressure
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CHAPTER V

EXPERIMENTS ON UNDAMAGED AND DAMAGED

SHUTTLE TILES AND CORRELATION WITH THE FINITE

ELEMENT MODEL

As mentioned in Chapter I, experimental data on the thermomechanical response of

damaged TPS is not available in literature. Such results are needed to validate the FE

models that have been developed. In this chapter, the experiments conducted on undam-

aged and damaged HRSI tiles are described. The experimental results are compared with

numerical results based on the FE model to determine the accuracy of the FE model.

5.1 Description of Experiments

The experiments are conducted in the Thermal Structure Testing Laboratory described

in the previous chapter. Specimen used for the experiments include undamaged and dam-

aged configurations with three different damage sizes, D = 1.0”, 1.5” or 1.875”. Due to the

limited number of specimen available, only two tests were conducted for each configura-

tion.

104



105

5.1.1 Test Specimen and Load Fixture

The TPS specimen is composed of the LI-900 HRSI tile, Nomex SIP and aluminum

panel, which simulates the underlying structure. The square tile has dimensions of 6.0”

by 6.0” and a thickness of 2.0”. It is coated on five sides with reaction-cured glass (RCG)

and the uncoated bottom surface is bonded to the SIP with RTV-560, which is a room-

temperature vulcanizing adhesive. The 0.173” thick SIP is also bonded to a square alu-

minum panel with dimensions 7.5” by 7.5” by 0.063” that represents the underlying struc-

ture. A larger aluminum panel is used to allow the use of a load fixture.

The load fixture is similar to that used in Reference 35. The load fixture is made up of

two identical square frames with an outer length of 9”. The inner window of the frame has

a length of 6.2”, which is marginally larger than the length of the tile (6.0”). The frames

are recessed to allow the aluminum panel to fit snugly. When the specimen and frames

are assembled, the underlying structure forms a 0.1” wide border around the tile and SIP,

so as to prevent the fixture from interfering with the thermal expansion of the tile and

SIP. The test assembly is shown in Figure 5.1. The stainless steel fixture has a different

CTE from that of the aluminum panel. When temperature increases, in-plane loads are

generated within the aluminum panel due to the mismatched CTE between the fixture

and specimen.

5.1.2 Instrumentation

The instrumented specimen and fixture for undamaged and damaged tiles are shown

in Figure 5.2. The undamaged specimen was instrumented with eight type-K Nextel-

insulated thermocouples (XC-24-K-30, Omega Engineering) and two high-temperature
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fully encapsulated Karma-based alloy strain gages (WK-13-062AP-350, Vishay Micromea-

surements). For specimen with damage, three additional metal-sheathed type-K thermo-

couples (XL-K-MO-040, Omega Engineering) were used to measure temperatures within

the damaged region. One of the thermocouples, designated Ts, was used for feedback

control for the radiant heater system. The procedure for post-processing the raw strain

readings from the gages is described in Appendix A. Post-processing of these readings is

required to account for the thermal expansion and the change in resistivity and gage factor

of the strain gages due to changing temperatures.

5.1.3 Specimen Assembly

The assembled specimen and fixture was placed on top of a steel platform that was

lined with cerachem blanket, which is an alumina-silica-zirconia fiber based insulation

manufactured by Thermal Ceramics. The sides of the specimen were also covered with

the cerachem blankets, leaving only the top surface exposed. The platform was placed

underneath the radiant heater which is suspended from the ceiling of the vacuum chamber.

Photographs and illustration of the assembly are shown in Figure 5.3.

5.1.4 Pressure and Temperature Profiles

The target re-entry static pressures and temperatures chosen for the experiments were

based on the re-entry profile of the Access-to-Space (ATS) reference vehicle. The ATS re-

entry pressure and temperature profile are shown in Figure 4.1.

It should be noted that the applied temperatures that would be obtained in the dam-

aged portion of the tile were not known a priori. The damaged surfaces, without the RCG
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coating, have different surface properties that affect radiation heat transfer, which is the

principal mode of heat transfer in the experiments. The emissivity of the uncoated tile,

listed in Table 3.11, decreases rapidly with temperature, while that for the RCG coating

remains relatively constant at 0.85. Moreover, uniform heating implemented with radiant

heater requires that the heated surface should be at a certain distance away from the heat

source and this distance should be at four times the bulb spacing. While the undamaged

surfaces are at the required distance from the bulbs, the damaged surfaces are at different

distance and orientation relative to the heater.

5.2 Finite Element Model

The FE meshes used for correlating experimental results are shown in Figure 5.4. Again,

the DC3D10 and C3D10 elements are used. The mesh in Figure 5.4 (a), consists of the tile,

SIP, aluminum panel, fixture and portion of the cerachem insulation, is used for correlating

the temperature results obtained in experiments. Due to symmetry, the specimen can be

represented by a quarter model of the TPS. Typically in heat transfer numerical analysis,

the lower surface of the underlying structure is assumed to be perfectly insulated. How-

ever, this cannot be achieved in practice, since all insulation conducts and absorbs heat.

Therefore, it is more appropriate to use the measured temperature at the lower surface

of the insulation as a boundary condition. The mesh in Figure 5.4 (b) is used for corre-

lating the strain results. In this mesh, the cerachem insulation is not included because it

is flexible and thus, it is assumed to have no effect on the stresses and strains in the sys-

tem. For this case, transient temperature distribution in the system is recalculated by using

the measured temperature at the lower surface of the underlying structure as the applied

boundary condition, so as to produce more accurate results.
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For the heat transfer analysis, the measured temperatures from experiments are ap-

plied as boundary conditions at the nodes on the top and bottom surfaces of the meshes,

as well as the nodes on the damaged surfaces. All side surfaces are assumed to be perfectly

insulated.

In the thermal stress analysis, thermal stresses in the FE model, subjected to structural

boundary condition shown in Figure 5.5, are calculated from pre-determined temperature

distributions from the heat transfer analysis.

5.3 Experimental Results

The measured temperatures in the damaged region of specimen with D = 1.5”, TD1,

TD2 and TD3, are shown in Figure 5.6. These temperatures are quite similar to the surface

temperatures, and the variations between the three measured temperatures are small, with

a standard deviation of less than 14 ◦C after the initial 500 seconds. Figure 5.7 shows the

measured temperature, TD3, at the base of the damaged region for damaged specimen

with D = 1.0”, 1.5” and 1.875”. The variation in size of the damaged region did not

seem to have a large effect on these temperatures, since their average stardard deviation

is less than 14 ◦C. These results indicate the limitations of testing damaged TPS in such

a facility, since elevated temperatures within damaged region and variations in applied

temperatures due to cavity radiation cannot be properly simulated.

As shown in the previous chapter, the temperature uniformity on undamaged surface

is very good. Based on these experimental results, the assumption that the applied tem-

peratures on the undamaged and damaged surfaces are uniform is used. The measured

temperatures from the center thermocouple (T1 in Figure 5.2) and the average tempera-
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ture of the three thermocouples within the damaged region, TD1, TD2 and TD3, are used

as boundary conditions in the FE analysis.

5.4 Validation of Finite Element Model

The material properties used in the model are the same as those in Tables 3.6 through 3.11,

except for the Young’s modulus for the SIP; since the SIP used in the experiments was not

proof-loaded [40]. Additional properties required for the cerachem insulation are shown

in Table 5.1.

The measured temperature at the center of the underlying structure, T4 in Figure 5.2, is

used for validation purposes. The measured temperature and predicted temperature from

FE analysis are shown in Figure 5.8. Since the differences in results for the undamaged

and damaged configuration with D = 1.0” for both experiments and FE analysis are very

similar, the D = 1.0” results are not plotted. The plots for the experiments in the figure

are the averaged data of the two tests conducted for each configuration, and the error

bars indicate the spread of the experimental results. No error bars is shown for the D =

1.875” experimental results, because only one test was successful. The presence of damage

allows the surface temperatures to be applied closer to the underlying structure, however,

the damaged size considered combined with the applied temperature load that can be

achieved in the test facility results only in modest increase in heat retained within the

system. Thus, the changes in temperatures within the structure due to damage are not

significant. However, the FE models are able to predict the measured temperatures well,

with an average difference (Equation 4.1) of 5.2%, 5.2% and 4.9% for the undamaged and

damaged configurations with D = 1.5” and 1.875” respectively. When predicting peak
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temperatures, the differences are even smaller at 1.4%, 2.8% and 3.2%

Figure 5.9 shows the predicted and measured strain results for the undamaged and

damaged (D = 1.5” and 1.875”) configuration. The FE models yield good results, with

an average differences of 5.9%, 5.9% and 10.1% for the undamaged and damaged con-

figurations respectively. The predictions of the peak strain results are even better with a

difference of 6.3%, 1.3% and −4.8%.

From Figures 5.8 and 5.9, it can be seen that the FE and experimental results for the

D = 1.875” specimen deviate from each other to a larger extent. While the difference is still

small, it should be noted that the FE results for this damaged configuration indicate that

the temperature limit of the SIP (371 ◦C) is exceeded, as shown in Figure 5.10, where the

FEA temperature results for the SIP just beneath the damage for the D = 1.5” and 1.875”

specimen are plotted. The figure also shows that SIP temperature limit is not exceeded

for the D = 1.5” specimen. Nomex fibers, which make up the SIP, do not have a melting

point, but they decompose above the temperature limit. This decomposition can be seen

in Figure 5.11 , where a charred area is evident for the D = 1.875” specimen, but not the

D = 1.5” specimen. This decomposition could be the reason for the lower temperatures,

since thermal energy is absorbed during the process. A close examination revealed that

the bond between the SIP and the tile at the charred area is compromised, however, the

bond line between the SIP and underlying structure is still intact. This may account for

the higher strains in the underlying structure since the SIP affected would allow larger

deformations in the structure. The results indicate that exceeding the temperature limit

of the SIP does not seem to have a significant effect on the TPS response. Thus, it can be

concluded that the FE model is in good agreement with the experiments, which represents

a verification of the FE analysis.
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Results from experiments illustrate the limitations of testing damaged TPS under ra-

diant heating. Due to the inability to reproduce non-uniform and elevated temperatures

within the damaged region, such tests have limited value. However, these results were

very useful for the validating the FE simulation model, which subsequently is extended to

incorporate more realistic heat loads based on interaction between flow and damaged TPS

that corresponds to a situation encountered under flight conditions.
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T  

(°C) 
c 

(J/kg °C) 
k  

(W/m-∞C) 
0 659.8 0.04 

260 1055 0.07 
538 1206 0.15 
816 1256 0.27 
955 1269 0.35 

1093 – 0.41 

  
 

 
 
r     =  96  kg/m3 
 

 

Table 5.1: Material properties for Cerachem blankets
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Figure 4. TPS specimen and load fixture  
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Figure 5. Location of thermocouples and strain gages on instrumented specimen 

Figure 5.1: TPS specimen and load fixture
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Figure 4. TPS specimen and load fixture  
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Figure 5. Location of thermocouples and strain gages on instrumented specimen 

Figure 5.2: Location of thermocouples and strain gages on instrumented specimen
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Figure 6. Illustration and Photographs of specimen assembly 
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Figure 7. Re-entry heat load and pressure profile of ATS vehicel 

Figure 5.3: Illustration and photographs of test setup
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(a)

(b)

Figure 5.4: FE meshes for correlation studies
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Figure 5.5: Unrestrained boundary condition applied to underlying structure
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(a) D = 1.5” specimen

(b) D = 1.875” specimen

Figure 5.11: Cross section of experimental specimen



CHAPTER VI

THERMOMECHANICAL BEHAVIOR OF DAMAGED TPS

SUBJECTED TO FLOW-DEPENDENT HEAT LOAD

The FE analysis described in previous chapters assumed that the aerodynamic heating

through the damaged region is spatially uniform. However, the heat load profile on the

damaged surface of the tile is dependent on the fluid dynamics of a high speed flow past a

cavity. The interaction between the damaged region and the high speed flow will modify

substantially the uniform heat load used for undamaged surfaces [30, 45]. To improve

on the thermomechanical analysis, the flow conditions in the damaged region must be

carefully considered.

6.1 Flow Dependent Thermal Loads

The temperature profiles on damaged TPS obtained in the experiments conducted are

quite different to what may be actually observed in actual re-entry flight. If the thermal

loads based on actual flight conditions are known, the experimentally validated FE models

can be extended to predict the TPS behavior more accurately.

124
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6.1.1 Hypersonic Cavity Flow

Hypersonic flow past a cavity on the surface of a vehicle is a challenging problem due

to complex flow characteristics, such as hypersonic flow separation [12, 30]. Flow sepa-

ration is important for the heat transfer problem since the aerodynamic heat load varies

spatially as the flow passes over the cavity representing the damaged region on the sur-

face of the TPS. For cavity geometries shown in Figure 6.1, this flow problem was studied

both computationally [34, 45], and experimentally [12, 30, 45]. Cavity flows are typically

denoted as either open or closed, depending on certain flow characteristics. In open cavity

flows, the external flow passes over the cavity and the separated shear layer re-attaches

near the top corner of the upstream-facing wall, thus producing circulation inside the cav-

ity, as shown in Figure 6.1. Conversely, for closed cavity flows, the separated shear layer

re-attaches to the cavity floor upon impingement and then separates again as it approaches

the upstream-facing wall [12, 34, 45]. The combination between the length to depth ratio

of the cavity and the speed of the flow determines whether the cavity flow will be open or

closed. Typically, supersonic and hypersonic cavity flows are open if the length to depth

ratio of the cavity varies from 1 to 10. Note that the damage considered in this study has a

length to depth ratio of 1, and thus it will produce an open cavity flow.

Two approaches to improve the heat load estimate on a damaged tile are considered

in this study. First, the aerothermodynamic flow conditions in the cavity were computed

using computational fluid dynamics (CFD) code CFL3D developed by NASA Langley Re-

search Center [22]. This approach is convenient since the computation can be performed

for any damage profile considered in the thermomechanical analysis. Two issues that limit

the accuracy of this approach are the lack of ability to model real gas effects and the limited
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information of local operating conditions near the damaged tile.

In the second approach, an approximate heat load profile was extracted from results

provided in recent studies [12, 34] dealing with the Columbia accident investigation and

Space Shuttle Return to Flight Program. The advantage of this approach is that both real

gas effects and local flow conditions are captured by this data. Another advantage is the

availability of experimental results for validation purposes. The disadvantage is the in-

ability to match the details of the required damage geometry.

6.1.2 Thermal Loads from CFL3D

The CFL3D code uses an implicit finite-volume algorithm based on upwind-biased spa-

tial differencing to solve the time-dependent Euler and Reynolds-averaged Navier-Stokes

equations. Multi-grid and mesh sequencing are available for convergence acceleration.

The algorithm, which is based on a cell-centered scheme, uses upwind-differencing based

on either flux-vector splitting or flux-difference splitting, and can sharply capture shock

waves. This study utilizes the flux-vector splitting scheme. The grid used to generate aero-

dynamic heating data for the damaged tile is shown in Figure 6.2. It consists of 2×433×225

grid points that extend from 3.5” in front of the damaged section to 2.5” behind the dam-

aged section, and 4.0” above the tile surface. Note that the damaged portion of the tile

considered here consists of a strip having a width of 1.0”, and a depth of 1.0”, and it con-

tains 2×151×140 grid points. This grid geometry implies that only two-dimensional flow

past the cavity is considered.

The operating conditions used to generate the aerodynamic heating on the tile are pro-

vided in Table 6.1. These operating conditions are based on those used in a previous exper-
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imental and computational study of hypersonic cavity flows [45]. They were selected since

the actual flow conditions on the ATS vehicle are not readily available. These conditions

produce laminar flow conditions [45], and therefore the laminar flow option in CFL3D was

implemented. The maximum heat load values for the ATS are assumed to occur during

laminar flow conditions, so the use of the laminar flow assumption is appropriate.

Figure 6.3 depicts the heat load ratio profile obtained from the CFL3D simulation. The

heat load ratio is defined as the local heating data (q) normalized by reference heating data

(q0) obtained from undamaged smooth surface configuration with the same simulation

conditions. The results are plotted as a function of a non-dimensional coordinate Xs/D.

According to the definition of Xs, the downstream-facing wall is located between 0 < Xs/D

< 0.5, the floor of the cavity is located between 0.5 < Xs/D < 2.07, and the upstream-facing

wall is located between 2.07 < Xs/D < 2.57.

Consistent with open cavity flows [12, 30, 45], the heat load ratios within the damage

region are generally less than 1.0 except for the portion near the upstream-facing lip of the

damage, where the reattachment of the flow occurs. High heat loads are also evident in a

region located a small distance downstream of the damaged region.

6.1.3 Thermal Loads from Published Data

In References 12 and 34, both computational and experimental aerothermodynamic re-

sults were generated for hypersonic flows past rectangular cavities. In Reference 34, CFD

was used to predict the hypersonic aerothermodynamic environment for a Shuttle Orbiter

with windside tile damage. Furthermore, the computations were performed at the peak

heating trajectory point, using the Langley Aerothermodynamic Upwind Relaxation Algo-
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rithm (LAURA) code. Note that this code is intended for simulating hypersonic re-entry

physics including chemistry [34]. In Reference 12, results from wind tunnel experiments

were generated for cavities and flow conditions similar to those studied in Reference 34.

The experiments were conducted in the Langley 31-inch Mach 10 tunnel. In both cases the

cavity length-to-depth ratio was 7.5 [12, 34].

Figure 6.4 depicts heat load ratio profile along the cross section where the maximum

heat load ratio is observed within the 3D rectangular cavity based on CFD simulation of

the flight conditions [34]. Due to the presence of corners in the cavity geometry, sharp dips

in heat load ratios are present in the profile.

6.1.4 Applied Thermal Loads for Finite Element Analysis

Figure 6.6 shows the heat load ratio profiles obtained using the two approaches de-

scribed above. The ”uniform” profile shown in the figure corresponds to the approximate

upper bound heat load used in earlier chapters. These profiles were used in the current

study as scaling factors to multiply the applied surface heat load in order to determine the

heat load in the damaged region.

The maximum heat load ratio from the CFL3D results due to flow reattachment at the

lip of the upstream-facing wall of the damage, was found to be very large (q/q0 = 21.5).

Such high peak heat load ratios were not observed in experiments [12, 30]. The maximum

heat load ratio for an open cavity observed in the experiments described in Reference 12

was approximately 4.5; therefore it was decided that the maximum heat load ratio for the

profiles used in this study was limited to 4.5.

The heat load ratio profile based on published data by Everhart et. al. [12] and Pul-
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sonetti et. al. [34] is denoted here as the EP profile. The heat load ratio results along the

vertical walls of the cavity were not presented in References 12 and 34. The variation of

the profile between 0 < Xs/D < 0.5 and 2.07 < Xs/D < 2.57 was obtained by assuming

that the results along the vertical walls are similar to those in the CFL3D profile. Thus, the

sharp dips in heat load ratios in Figure 6.4 are not present in the EP profile. The maximum

heat load ratio was limited again to 4.5 based on the experiments in Reference 12.

The EP profile is generally more severe than the CFL3D profile; this is probably due

to the fact that the cavity length-to-depth ratio for EP profile is much larger than that for

the CFL3D profile (7.5 vs. 1.0) and it had been noted that heating data in cavities increases

with their length-to-depth ratio [45]. The difference may also be due to the use of local

flow conditions in the EP profile, compared to freestream conditions used in the CFL3D

result. For the EP profile, the flow pass a cavity located on an actual vehicle is used. Be-

fore the flow reaches the cavity, it passes through a strong bow shock, thus resulting in a

lower Mach number and higher temperatures and pressures when compared to freestream

conditions.

6.2 Finite Element Mesh and Method

Figure 6.7 shows the FE mesh used for the analysis. A half-model is required in order

to capture the effects of the flow. In the analysis, heat flux boundary conditions are ap-

plied on the top surface of the mesh. The boundary conditions are based on the transient

aerodynamic surface heat load re-entry profile of the ATS reference vehicle as shown in

Figure 6.5. The sides and the inner surface of the TPS are assumed to be perfectly insu-

lated, which corresponds to a worst-case scenario. While this profile is appropriate for the
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undamaged portions of the tile, special consideration is required in the damaged region.

To apply the flow dependent heat loads, the tile surface is divided into several sections

as shown in Figure 6.8. On the undamaged surface, colored in green, a small region right

after the damage is separated to allow elevated heat loads to be applied. Within the dam-

age, the surface was divided into two sections: the downstream-facing section, colored

light blue, and the upstream-facing section, colored blue. These two sections are further

divided into sub-sections so that reasonable linear or polynomial curve fits can be obtained

for the heat load ratio profiles shown in Figure 6.6.

The curve fits for the heat load ratio profiles are obtained as functions of y only, i.e.

the heat load ratio varies only with the depth of the damage. In order to have a three-

dimensional variation of the heat load ratio, the curve fits for each subsection are multi-

plied by a bilinear function of y and z of the form:

F (y, z) = A1y + A2yz + A3z + A4 (6.1)

To determine the coefficients, A1 – A4, for each subsection, the following assumptions

are made:

1. Along the centerline of the damage (thick bold line in Figure 6.8), the heat load ratio

profile is the same as that in Figure 6.6.

2. At the outer edge of the damage, the heat load ratio is equal to 1.0, since the tangent

of the edge is parallel to the flow.

3. Along the dotted bold line in Figure 6.8, the heat load ratio at the corners of each

subsection is the average of the centerline heat load ratios from the upstream and
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downstream-facing sections.

Figure 6.9(a) shows the heat load ratios from the EP profile at the corners of each sub-

section within the damage. The exact values from the EP profile are in bold type, while the

values based on the assumptions above are in regular type.

Figure 6.9(b) shows the values that Equation 6.1 has to satisfy in order to obtain the

required heat load ratios at each corner of the subsections from the curve fits. Using these

values, the coefficients, A1 - A4, for each subsection can be calculated. Essentially, Equa-

tion 6.1 preserves the EP profile along the centerline of the damage while allowing it to

vary linearly with respect to z to the required values at the corners of each subsection.

The FE procedures and boundary conditions used in this chapter are similar to those

in Chapter III.

6.3 Results and Discussion

The flow dependent heat loads (CFL3D and EP) are generally of lower magnitude than

the surface heat load except for two regions: a very small region at the upper lip of the

downstream-facing section and a larger region on the upper lip of the upstream-facing

section. In these regions, the peak heat load for both flow dependent heat profiles are

larger than the surface heat load by a factor of 4.5. In previous chapters, it was deter-

mined that when subjected to the ”uniform” heat load, cavity radiation and the reduction

in emissivity due to the loss of the RCG coating resulted in very high temperatures within

the damage. Thus, it is not unreasonable to assume that the large spike in heat load due to

flow reattachment would generate much higher maximum temperatures in the tile. How-

ever, the maximum temperatures in the tile due to flow dependent heat loads are similar
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in magnitudes to those obtained from the ”uniform” heat load with the CFL3D heat load

producing results that are less than 7% lower and the EP heat load producing results less

than 9% higher. There are several explanations for this behavior. First, at such high tem-

peratures, heat loss by radiation is so efficient (∝ T 4) that even with a large increase in

heat load, the increase in temperatures are relatively modest. Second, the ”uniform” heat

profile, where all surfaces within the damaged region are subjected to the same heat load

as the surface, is actually quite severe. Third, for the flow dependent heat profiles, other

than the two small areas which experience higher heat loads, much of the surfaces within

the damaged region are subjected to substantially lower heat loads when compared to the

”uniform” profile.

Figure 6.10 illustrates the temperature contour plot of the damaged configuration, with

D = 1.0”, subjected to EP heat load when the maximum temperature in the tile is at-

tained. The non-uniformity of the heat load, coupled with cavity radiation, results in a

complex distribution of temperatures within the damaged region. Even though much of

the heat load within the damaged region is lower than the surface heat load, the effects

of cavity radiation retained substantial heat to elevate the temperatures to above surface

temperatures. It is also interesting to note that similar elevated heat load on the undam-

aged surface downstream of the damaged region, where there is neither cavity radiation

nor reduction in emissivity, produces maximum temperatures that are significantly lower

than those within the damaged region. Considering the experimental results that were

obtained, it can also be concluded that this complex temperature boundary conditions due

to flow effects cannot be achieved using radiant heaters. Thus, meaningful experiments

for damaged TPS can only be conducted in arc-jet hypersonic facilities where interactions

between damage and flow can be replicated.
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For the tile, the smallest damage considered with the CFL3D heat load increases the

maximum temperature by 73.6% to 1, 703 ◦C which is slightly lower than the melting

point of the tile (1, 704 ◦C). In all other cases, the melting temperature of the tile was ex-

ceeded. For the largest damage size, the EP heat load increases the maximum temperature

to 2313 ◦C, which represents a massive increase of 135.8%. However, it should be noted

that the EP profile was for a cavity that has a much larger length-to-depth ratio than the

CFL3D results. Temperatures in the SIP and underlying structure are also increased signif-

icantly, by up to 101%. However, the results indicate that the imposed limit temperature of

the underlying structure (150 ◦C) is exceeded while the vehicle is still in flight (< 3, 000 sec-

onds) only for the D = 1.5” cases. However, it should be noted that no heat loss through

the inner surface and sides of the system was assumed, which is a very conservative as-

sumption.

The thermal stress results are obtained disregarding the melting temperature of the tile.

The presence of damage increases the maximum von Mises stresses in the tile substantially.

The smallest damage size considered increases the maximum stresses by more than 30%.

The large increase in stresses is a result of the stress concentration due to damage as well

as the severe thermal gradients generated by the flow dependent heat loads. For the cases

based on CFL3D, maximum stresses in the tile decrease with damage size. With the EP

heat load, no discernible trends were observed. The failure strength of the tile was not

exceeded in all cases.

The maximum stresses for both the SIP and structure increase with increasing damage

size. For both SIP and underlying structure, the maximum stresses were found to be above

the failure strength of the material when D = 1.5” with both heat loads. However, this

should be viewed in light of the fact that conservative boundary conditions had been used.
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Damage changes the surface geometry of the TPS. This causes the flow to separate and

reattach, and elevate the thermal loads on the TPS. The damage also reduces the heat re-

jection capability of the TPS by removing the RCG coating and allowing cavity radiation

to take place. These effects raises the temperatures within the damaged TPS significantly

and can cause the melting point of the tile to be exceeded. While the damage sizes con-

sidered are unlikely to adversely affect the underlying structure and SIP during flight, the

exceeded melting point of the tile is a concern. The tile is not a load-bearing structure,

thus damage growth need not necessarily lead to catastrophic failure. As the maximum

temperature occurs at the upper lip of the damaged region, damage progression will likely

open up the cavity and alleviate the effects of cavity radiation. However, the nature of the

flow and heat load will also be changed.
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Temperature (°C) Emissivity of Uncoated LI-900 Tile 

27 0.88050 
127 0.83613 
227 0.76578 
327 0.68410 
427 0.60390 
527 0.53177 
627 0.46981 
727 0.41785 
827 0.37477 
927 0.33918 
1027 0.30980 
1127 0.28548 
1227 0.26527 
1327 0.24841 

Table 1. Emissivity of uncoated tile with respect to temperature 

 
 
 

Mach Number (M) 8.1 
Reynold’s Number (Re) 1.0 x 106 
Stagnation Temperature (T0) 1050 K 

Table 2. Operating conditions used to study the cavity flow of a damaged TPS 

 
 
 

T  
(°C) 

c 
(J/kg °C) 

k 
(W/m °C)  

E  
(GPa) 

a  
(10-6/°C) 

-73.2 787.0 163.0 – – 
-17.8 – – – 21.9 
21.0 – – 72.4 – 
26.9 875.0 177.0 – – 
37.8 – – 72.0 22.6 
93.3 – – 70.4 23.2 

126.9 925.0 186.0 – – 
148.9 – – 68.5 23.6 
204.4 – – 64.3 24.0 
260.0 – – 57.3 24.4 
315.6 – – 50.5 24.9 
326.9 1042.0 – – – 
371.1 – – – 25.4 
426.7 – – – 26.0 
482.2 – – – 26.7 

                        r = 2770 kg/m3 

                         n = 0.33 

Table 3. Material properties of the underlying structure (Aluminum 2024) 

 
 

Table 6.1: Maximum temperature results for all TPS components subjected to flow depen-
dent heat loads
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T  
(°C) 

c 
(J/kg °C) 

a  
(10-6/°C) 

-17.6 628.0 0.405 
121.3 879.2 0.540 
260.2 1055.1 0.648 
399.1 1151.4 0.720 
538.0 1205.8 0.792 
676.9 1239.3 0.576 
815.7 1256.0 0.480 
926.9 1264.4 0.432 
954.6 1268.6 – 
1093.5 – 0.360 

  
 

r =  194  kg/m3 
Ex, Ez  =  172.4  MPa 
Ey  =  48.3  MPa 
Gxy, Gyz =  20.7  MPa 
Gxz  =  72.4  MPa 
nxy  =  0.16 
nxz =  0.18 
nyz =  0.04 
 

Table 7. Material properties of LI-900 tiles 

 
TPS 

component 
D 

(inch) 
Temperature 

(°C) 

 

% change Time 
(s) 

0 981 NA 850 
0.5 1703 1940 73.6 97.8 850 850 
1.0 1898 2171 93.5 121.3 850 850 

 
Tile 

1.5 2080 2313 112.0 135.8 850 850 
0 150 NA 5000 

0.5 153 160 2.0 6.7 4950 4950 
1.0 173 206 15.3 37.3 4850 4700 

 
SIP 

1.5 215 302 43.3 101.3 4450 4150 
0 150 NA 5450 

0.5 153 159 2.0 6.0 5400 5450 
1.0 172 205 14.7 36.7 5250 5100 

 
Underlying 
structure 

1.5 213 300 42.0 100.0 4900 4500 
       CFL3D – bold, EP - italics 

  Table 8. Maximum temperatures results for all TPS components subjected to flow dependent heat loads 

 
TPS 

component 
D 

(inch) 
Max. von Mises stress 

(kPa) 
 

% change Time 
(s) 

0 65.0 NA 200 
0.5 99.8 87.9 53.5 35.2 150 150 
1.0 88.2 84.4 35.7 29.8 150 400 

 
Tile 

1.5 79.9 100.4 22.9 54.5 250 500 
0 172 NA 5450 

0.5 178 185 3.5 7.6 5400 5350 
1.0 197 228 14.5 32.6 5250 5050 

 
SIP 

1.5 232 284 34.9 65.1 4900 4500 
0 470,000 NA 5450 

0.5 493,000 514,000 4.9 9.4 5400 5400 
1.0 556,000 649,000 18.3 38.1 5250 5100 

 
Underlying 
structure 

1.5 665,000 834,000 41.5 77.4 4900 4500 
      CFL3D – bold,  EP - italics 

     Table 9. Maximum von Mises Stress for all TPS components subjected to flow dependent heat 
loads and BC2 boundary condition 

 

Table 6.2: Maximum temperature results for all TPS components subjected to flow depen-
dent heat loads
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SIP 

1.5 232 284 34.9 65.1 4900 4500 
0 470,000 NA 5450 

0.5 493,000 514,000 4.9 9.4 5400 5400 
1.0 556,000 649,000 18.3 38.1 5250 5100 

 
Underlying 
structure 

1.5 665,000 834,000 41.5 77.4 4900 4500 
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     Table 9. Maximum von Mises Stress for all TPS components subjected to flow dependent heat 
loads and BC2 boundary condition 

 
Table 6.3: Maximum von Mises stress results for all TPS components subjected to flow de-

pendent heat loads
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Figure 8. Different types of supersonic/hypersonic cavity flows.20  

 
 
 
 
 

 
Figure 9. Coarsened view of CFL3D computational domain for the damaged tile. 

 
 
 

Figure 6.1: Different types of supersonic/hypersonic cavity flows
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Figure 8. Different types of supersonic/hypersonic cavity flows.20  

 
 
 
 
 

 
Figure 9. Coarsened view of CFL3D computational domain for the damaged tile. 

 
 
 

Figure 6.2: Coarsened view of CFL3D computational domain for damaged tile
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Figure 10. Heat load ratio along damaged surface from CFL3D analysis  

 
 
 
 
 

 
Figure 11. Heat load ratio profile from Ref. 21 

 
 

Figure 6.3: Heat load ratio along damaged surface from CFL3D analysis
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Figure 10. Heat load ratio along damaged surface from CFL3D analysis  

 
 
 
 
 

 
Figure 11. Heat load ratio profile from Ref. 21 

 
 

Figure 6.4: Heat load ratio profile from Reference 34
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Figure 6. Illustration and Photographs of specimen assembly 
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Figure 7. Re-entry heat load and pressure profile of ATS vehicel 

Figure 6.5: Re-entry surface heat load and pressure of ATS vehicle
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Figure 6.6: Heat load ratio profiles based on CFL3D and published data (EP)
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Figure 14. Schematic representation of FE meshes used 
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Figure 15. 10 node quadratic tetrahedron element 

 
 

Figure 6.7: FE mesh used in analysis
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Figure 6.8: Half model of TPS showing the different sections required for application of
flow dependent heat load
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(a) Heat load ratios at corners of subsections

(b) Values for calculating coefficients of Equation 6.1

Figure 6.9: Schematic of subsections of damaged surface
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Figure 6.10: Temperature( ◦C) contour plot of D = 1.0 configuration subjected to EP heat
load when maximum temperature is reached



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE

RESEARCH

Research on the response of damaged TPS had been very limited and the recent ac-

cident of the Space Shuttle Columbia emphasized the need for research in this important

area. This study aims to fill in the gap by conducting experiments and FE analysis on a

TPS used on the NASA Space Shuttle by examining the HRSI tiles used extensively on the

underside of the space shuttle orbiter, where some of the severest aerodynamic heating

occurs.

Preliminary FE analysis using an approximate axisymmetric model, subjected to sev-

eral simplifying assumptions, was conducted on the TPS, which is modeled as a discrete

three-layered structure, consisting of the tile, SIP and underlying structure. The TPS was

subjected to the re-entry heat load and pressure of the ATS vehicle, and the temperature

and thermal stress distribution was obtained. The preliminary results were compared to

those obtained from a more accurate 3D model to determine the relative accuracy of the

axisymmetric model. Further analysis was then conducted to determine the validity of

the simplifying assumptions used in the preliminary analysis and improvements to the

148
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models were made. The influence of damage location on the temperature distribution and

thermal stresses results were also examined.

High-temperature experiments were conducted on damaged and undamaged HRSI

tiles using quartz radiant lamps. The effects of damage on the thermomechanical behavior

of the TPS under experimental conditions were determined. The limitations of the ex-

perimental setup do not allow realistic boundary conditions to be applied. However, the

results obtained allow the validation of FE models developed.

The validated FE models was used to incorporate more realistic aerodynamic heat

loads obtained from considering hypersonic flow past a cavity that models in an approxi-

mate manner, the interaction between external flow and the damage on the tile.

7.1 Conclusions

The principal conclusions obtained in the course of this research are summarized be-

low:

1. For heat transfer FE analysis, the axisymmetric model can predict temperatures ade-

quately, when compared to the more accurate 3D model. However, significant differ-

ences between thermal stress results exist that indicate the approximate results are

not conservative. Thus, the axisymmetric model, which has significantly reduced

computational requirements, could be useful for trend-type studies in preliminary

design calculations where accuracy is less important than computational turn around

time.

2. For the TPS considered, which consists of three very dissimilar materials operating

under a wide range of temperature and pressure, the use of simplifying assumptions
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can affect results in a complicated manner, and provides results that are not reliable.

Thus, results should be based on realistic material properties and loading conditions.

3. Damage location was found to have very modest effects on temperature and thermal

stress results.

4. High-temperature experiments on damaged TPS using radiant heaters have limited

value, because the non-uniform and elevated temperatures that is expected to occur

in the damaged regions due to cavity radiation cannot be replicated. Furthermore,

TPS behavior under heat load/temperature profile that results from the complex in-

teractions between flow and damage under realistic flight conditions cannot be stud-

ied in a thermal chamber. To obtain meaningful results, such tests have to be carried

out in a hypersonic arc-jet tunnel.

5. Presence of damage in TPS changes the flow field and elevates the heat load on the

TPS. The increase in heat load, coupled with the reduction in heat rejection capability

of the TPS due to the removal of coating, and cavity radiation, can raise the temper-

atures within the tile to above its melting point. However, material failure due to

thermal stresses alone is unlikely.

7.2 Recommendations for Future Research

This dissertation has examined the effects of damage on the transient temperature dis-

tributions and thermal stresses in a candidate TPS via experiments as well as FE studies.

While this work has made substantial contributions to our understanding on the thermal

protection capabilities and structural integrity of damaged TPS, a substantial amount of

research still need to be done:
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1. Consider damage progression associated with exceeding melting point of tile and

determine the outcome of such an event.

2. Determine complete three-dimentional flow-dependent thermal loads to replace the

approximate two-dimensional thermal loads used in FE analysis. These loads should

incorporate real gas effects as well as chemistry.

3. Consider other structural failure mechanisms such as cracks formation and bond-line

delamination.

4. Conduct experiments in arc-jet hypersonic tunnels, where interactions between flow

and damaged TPS could be replicated.

5. Incorporate structural loading into experiments to determine interactions between

thermal and mechanical loads.

6. Consider other forms of TPS, e.g. superalloy honeycomb and ARMOR TPS
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Appendix A

Determination of Actual Strains of Specimen in Experiments

For resistance strain gages, which were used in the experiments, strain measurements

are obtained by measuring the change in gage resistance due to the elongation or contrac-

tion of the material to which they are attached. For experiments under constant tempera-

ture, the raw measurements are sufficient to determine the actual strains in the material.

However, for the experiments with large changes in temperatures, as was the case in the

experiments in this study, errors are introduced into the strain readings via two sources: 1)

temperature dependence of gage factor (GF) and coefficient of resistivity (γ) of the strain

gage material and 2) thermal expansion of of the strain gage itself. Thus, the raw or ap-

parent strain reading from the gage is a function of the thermal expansion of the gage, the

strain in the material to which it is attached, and the change in resistivity of the gage due

to change in temperature. This is illustrated in Figure A.1.

Figure A.1(a) shows the original position of a strain gage attached to a specimen. In the

final position shown in Figure A.1(b), the specimen is subjected to loads and a temperature

change of ∆T , which result in a mechanical strain of εS-Mech and a thermal strain of αg ∆T .

However, due to the thermal expansion and the change in γ and GF of the strain gage, the

apparent strain registered is actually

εapp = εs − αg∆T +
γ

GF
(∆T ) (A.1)

The last two terms, which is referred as the apparent strain error, can be quantified by
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conducting free thermal expansion experiments on specimen of a material with known co-

efficient of thermal expansion (αs). Since the specimen is allowed to expand freely, εS-Mech

= 0 and thus εs = αg∆T . With the apparent strain readings from the experiment and the

calculated thermal strains in the specimen, the apparent strain error can be calculated from

Equation A.1. Once the apparent strain error is quantified for the required range of tem-

peratures, actual strains of the test specimen from subsequent experiments can be backed

out from the apparent strain measurements, assuming that the strain gages from the same

manufacturer’s lot are used.

Figure A.2 shows the apparent strains obtained in experiments described in Chapter V

for the undamaged specimen. The actual strains of the specimen after correcting the ap-

parent strain errors is shown in Figure 5.9. Note the large differences between the apparent

and actual strains.
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Figure A.1: Conceptual illustration of apparent strain
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