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CHAPTER 1 
 

INTRODUCTION 

Prostate cancer displays considerable clinical, morphological and biological 

heterogeneity.  The discrete genetic events that lead to prostate cancer development are 

unclear.  Classical genetic techniques have provided only limited information about the 

pathogenesis of prostate cancer progression. Nevertheless, several candidate genes and 

pathways have been implicated in prostate cancer development, such as GSTP1, PTEN, 

NKX3.1, AR, c-Myc and the hedgehog pathway.  High throughput techniques have 

expanded the number of candidate genes exponentially, including some whose role in 

prostate cancer pathogenesis has been studied, including HPN, AMACR, FASN and 

EZH2.  However, the techniques used to study the prostate cancer genome, transcriptome 

and proteome generate massive amounts of data that have yet to be integrated and 

explored.  In order to move beyond candidate gene identification and develop a 

comprehensive understanding of cancer pathogenesis, integrative approaches will be 

needed to analyze this data on a global level.  Here we review candidate genes involved 

in prostate cancer pathogenesis in biological and clinical context and demonstrate how 

integrated analysis of high throughput data can augment our understanding of prostate 

cancer. 

Although prostate cancer (PCA) has surpassed lung cancer as the most common 

non-cutaneous cancer in American men, its etiology remains largely unknown. 

Retrospective studies have suggested that by the age of 80, more than half of all 

American men have some cancer in their prostate (1), yet most men shown no symptoms 

and clinical treatment is not needed.  However, some PCAs are very aggressive and 

quickly spread locally and metastasize throughout the body.  The advent of the prostate 

specific antigen (PSA) screening test has led to increasing number of cancers being 

detected at an early stage.  Together, these factors have complicated treatment decisions 
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and a more thorough understanding of PCA progression and pathogenesis is urgently 

needed.     

Marked incidence differences between industrialized Western countries and East 

Asian countries suggest that lifestyle components contribute to PCA development.  The 

higher incidence in Western countries is commonly attributed to dietary factors, such as 

increased meat and dairy intake along with reduced fruit and vegetable consumption, 

although this is a matter of some controversy.  In addition, although there is evidence for 

a strong genetic component of PCA and several genetic loci have been implicated in 

hereditary PCA, the functional role of these genes in PCA pathogenesis is speculative (2).  

Classically, most human cancers are thought to develop through a series of sequentially 

accumulated genetic events, culminating in carcinoma and metastatic disease, and these 

results are reflected at the histologic, genetic, and clinical level.  Unfortunately, many 

aspects of PCA biology do not fit with this model and it is unclear if this conceptual 

framework should be applied to understanding PCA pathogenesis.   

Histologically, PCA demonstrates a progression to carcinoma somewhat 

reminiscent of other epithelial cancers.  In the normal prostate, the glandular epithelium 

consists of two cell layers, the basal layer and the differentiated luminal secretory layer, 

with rare neuroendocrine (NE) cells distributed mostly in the basal layer.  Prostatic 

intraepithelial neoplasia (PIN), characterized by nuclear and architectural changes in 

luminal epithelial cells with maintenance of the basal epithelium and basement 

membrane, is an accepted precursor lesion of frank adenocarcinoma.   Proliferative 

inflammatory atrophy (PIA) is a lesion that has recently been proposed to be a candidate 

precursor lesion to PIN and/or PCA, based on the hypothesis that inflammation drives 

PCA development (3-6).  This hypothesis is consistent with epidemiological data, as the 

Western diet is presumed to be high in potential carcinogens and low in protective 

antioxidants.  Further, some candidate loci implicated in hereditary PCA encode viral and 

bacterial response genes and some genetic events in sporadic cancer (see GSTP1 below) 

are also consistent with this hypothesis (5).     

PCA is also often multifocal, as several distinct foci of PIN and/or PCA can be 

found in a single prostate gland, each showing different degrees of cellular dysplasia and 

tissue disorganization.  PCA is most commonly graded as described by the method of 
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Gleason (7), which assigns a score based on the glandular architecture (lower scores 

indicate a well differentiated glandular pattern).  Reflecting the multifocal nature of PCA, 

the Gleason score is composed of the two most common patterns, as PCA is often 

multifocal with distinct patterns present in the same tumor.  Even so, histologically 

identical tumors of the same stage can show remarkably different clinical courses, 

ranging from an indolent disease to rapidly invasive and metastatic.  At present, it is 

unclear whether these histologic and clinical differences are driven by corresponding 

molecular differences and what the implications are for the pathogenesis of PCA.    

The histological and clinical heterogeneity of PCA is also reflected at the 

molecular level.  Little evidence exists for a clearly defined series of genetic events 

leading to PCA development.  There are no obvious syndromes predisposing to PCA and 

while classical methods of identifying candidate genes have provided important 

candidates, very few PCAs share all or even many of the same alterations.  However, 

molecular studies have identified several candidate genes and pathways that are likely to 

be important in PCA pathogenesis and progression that are consistent with important 

aspects of epidemiological and biological features of PCA.  The candidate genes and 

pathways described below are shown in the context of the histological progression of 

PCA in Figure 1.1.        

Decreased expression of the pi-class glutathione S-transferase through somatic 

hypermethylation of the GSTP1 locus is one of the most frequently reported events in 

PCA.  Glutathione S-transferases are enzymes that protect against cancer development by 

catalyzing the conjugation of the chemical scavenger glutathione to reactive chemical 

species.  While GSTP1 is normally expressed in basal cells but not in luminal secretory 

cells in benign prostate epithelium, GSTP1 is transcriptionally silenced in almost all PCA 

cells (8).  This silencing, mediated by hypermethylation of the CpG island sequences in 

the GSTP1 promoter, occurs in more than 90% of PCA cases (9).  However, GSTP1 does 

not appear to act as a classical tumor suppressor, as PCA lines forced to express GSTP1 

grow well in vitro and in vivo (10).  Although the mechanism by which GSTP1 is 

selectively targeted for methylation is not known, this phenomenon provides important 

information about PCA pathogenesis. 
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Importantly, up to 60% of PIN, the accepted precursor lesion of PCA, also display 

loss of GSTP1 expression through CpG island hypermethylation (8).  Further, PIA 

lesions, the recently described candidate precursor to PIN and PCA, typically display 

high levels of GSTP1 expression (4), although approximately 6% show GSTP1 

hypermethylation (11).  These observations have provided support for the hypothesis that 

inflammation is important to the pathogenesis of PCA as described above.  The 

consequence of GSTP1 loss in PIN and PCA is thought to be increased vulnerability to 

electrophilic or oxidant carcinogens, such as 2-amino-1-methyl-6-phenylimidazo[4,5-

b]pyridine (PhIP), which is found in well done or charred meats.  For example, PCA cell 

lines overexpressing GSTP1 form significantly fewer PhIP-DNA adducts upon exposure 

to activated PhIP than do control cells (12).  GSTP1 expression in androgen-dependent 

LNCaP cells also significantly inhibits the oxidation of DNA bases upon exposure to 

oxidant stresses (5).  While the mechanism of GSTP1 silencing is unknown, the 

frequency of occurrence in the context of known risk factors for PCA supports roles for 

GSTP1 and inflammation in PCA development.   

In 1997, phosphatase and tensin homolog (PTEN ) was cloned and mapped to 

10q23, a region undergoing frequent deletion in a variety of tumors, including PCA (13-

15).  Germline PTEN mutations in families with the related hamartoma syndromes, 

Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome, were shortly identified, 

confirming PTEN as a classic tumor suppressor gene (16, 17).  The region containing 

PTEN is a frequent target for heterozygous deletion in primary and metastatic prostate 

tumors, where loss of heterozygosity (LOH) is found up to 60% of the time.  Point 

mutations and deletions of the PTEN gene have also been reported in PCA cell lines and 

xenografts, as well as primary and metastatic tumors (18).  Although the rate of second 

mutational events is generally less frequent than the LOH incidence, second PTEN 

mutations have been found in up to 50% of metastatic tumors (19).  However, loss of 

PTEN protein expression also occurs in 20% of primary tumors, particularly those with 

advanced grade or stage (20).  Epigenetic inactivation of PTEN through promoter 

hypermethylation has been described in PCA xenografts, however the same phenomenon 

has not been identified in primary human tumors (18).        
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The protein encoded by PTEN antagonizes the phosphoinositide 3-kinase 

(PI3K)/Akt pathway.  A summary of the PI3K/Akt pathway in prostate cancer is depicted 

in Figure 1.2.  PI3K phosphorylates phosphatidylinositol-4,5-biphosphate (PIP2) 

generating phosphatidylinositol-3,4,5-triphosphate (PIP3).  PIP3 acts as a second 

messenger that activates multiple downstream effectors including Akt (Protein kinase B), 

a serine threonine kinase which promotes cell growth, survival, invasiveness and 

angiogenesis (18).  Thus, PTEN serves to suppress the PI3K/Akt signaling pathway and 

the loss of PTEN results in PI3K signaling activation.   

PTEN null mice are embryonic lethal (21), and PTEN +/- mice develop PIN with 

varying penetrance, although development of carcinoma is rare (one report of a 65 week 

old mouse with invasive cancer showing LOH at the wild type allele) (21-23).  Consistent 

with its role in PCA development, the age of prostate tumorigenesis is accelerated in 

different PIN/PCA prone backgrounds with PTEN haploinsufficiency, including NKX3.1-

/- (24, 25), transgenic adenocarcinoma of mouse prostate (TRAMP, prostate specific 

expression of simian virus (SV) 40 early genes) (26) and p27-/- (CDKN1B) (27, 28).   

Further, prostate specific deletion of both PTEN alleles in two mouse models resulted in 

completely penetrant high grade PIN and carcinoma with varying rates of metastatic 

disease (29, 30).  Recently, a hypomorphic PTEN mutant mouse series demonstrated that 

the extent of PTEN inactivation controls PCA incidence and progression in a dose 

dependent manner (31).  Consistent with the importance of downstream PI3K signaling 

events to the development of PCA, expression of an activated allele of Akt in the mouse 

prostate results in a highly penetrant PIN phenotype (32).  Treatment with the rapamycin 

derivative RAD001 eradicated the PIN, demonstrating that the mammalian target of 

rapamycin kinase (mTOR), which is known to mediate Akt signaling pathways, controls 

PIN development in this model (33).  Other lines of evidence from mouse and xenograft 

models implicate PTEN as specifically controlling the progression to metastasis from 

localized PCA (34, 35).   

 Further mechanisms for the observed effects of PTEN specific to the prostate 

have been investigated.  Recently, neutral endopeptidase (NEP), also known as MME, a 

protein frequently showing loss of expression in primary PCA (36), has been shown to 

directly bind PTEN (37).  NEP recruits PTEN to the plasma membrane, which increases 
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the stability and phosphatase activity of PTEN, resulting in Akt inactivation.  In four 

PCA cell lines that were characterized, NEP and PTEN were never expressed 

simultaneously and PC-3 cells, which express neither NEP nor PTEN, showed the 

strongest activation of Akt (37).  Taken together, these results demonstrate the 

importance of PTEN loss to PCA pathogenesis and support dysregulation of PI3K 

signaling as a general feature of PCA.      

A two megabase region surrounding 8p21 is one of the most frequent sites of 

LOH in PCA (up to 90%) as well as PIN (up to 60%) (38, 39).  Although it does not act 

as a classic tumor suppressor, the androgen regulated NKX3.1 homeobox gene was 

localized to this region (40) and has been demonstrated to play roles in both prostate 

development and PCA pathogenesis.  NKX3.1 is the earliest known marker of prostate 

formation during embryogenesis and its expression in luminal epithelium continues 

through adulthood.  Loss of NKX3.1 causes defects in prostatic secretion and ductal 

morphogenesis in mice (41).  Like other NKX homeobox proteins, NKX3.1 acts a 

transcriptional regulator and cell line experiments suggest that NKX3.1 can regulate PSA 

transcription (42).  Although expression of NKX3.1 in prostatic epithelium precedes 

androgen receptor expression, subsequent NKX3.1 expression is dependent on androgen 

signaling (41).  Depletion of androgen in cell culture medium down-regulates NKX3.1 

expression in human PCA cells, and numerous studies have confirmed that NKX3.1 is 

androgen regulated (40).  

In addition to developmental defects, NKX3.1 null mice also display increasing 

prostatic epithelial hyperplasia and dysplasia with age.  By 1 to 2 years of age, the mice 

develop features similar to PIN, however they do not develop carcinoma (41).  NKX3.1’s 

role in the promotion of PIN is independent of prostate development, as a prostate 

specific deletion of a NKX3.1 allele in adult mice results in PIN formation (43).  

Consistent with the idea that LOH at NKX3.1 promotes PCA pathogenesis, NKX3.1 has 

been shown to cooperate with other tumor suppressors in mouse models of cancer.  As 

described above, compound PTEN +/-;NKX3.1 -/- mutant mice show increased 

development of high grade PIN with strong activation of Akt and older mice show 

invasive carcinoma and develop metastases (24, 25, 44).   
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Although 8p21 is deleted at high frequency in PCA as described above, the 

remaining NKX3.1 allele has not been demonstrated to undergo mutational inactivation, 

as would be expected for a classical tumor suppressor (45).  PTEN +/-;NKX3.1 +/- 

compound heterozygotes are consistent with this idea, as the wild type PTEN allele is 

lost, while the wild type NKX3.1 allele remains intact (24).  However, NKX3.1 protein 

expression is down-regulated in approximately 20% of PIN and localized PCA along 

with 78% of metastases (46), although a recent study did not confirm the loss of 

expression (47).  However, heterozygous NKX3.1 +/- mice also demonstrate dysplasia and 

PIN formation and display loss of NKX3.1 protein expression after the development of 

PIN (43).  Recent evidence also suggests that NKX3.1 may be selectively methylated in 

PCA (48).     

By utilizing NKX3.1 +/- and NKX3.1 -/- mice, Magee and colleagues clarified the 

mechanism of NKX3.1 dosage dependent tumor suppression (49).  They demonstrated 

that NKX3.1 controls the rate that proliferating luminal epithelial cells exit the cell cycle 

and that deletion of one or both alleles extends the proliferative phase during prostate 

regeneration.  Through gene expression profiling, they identified discrete clusters of 

haploinsufficient and nonhaploinsufficient target genes.  Interestingly, not all 

haploinsufficient genes exhibited the same response to loss of one NKX3.1 allele, as some 

targets showed complete loss of expression, while others were less affected.  Taken 

together, results from these experiments demonstrate a role for NKX3.1 as a 

haploinsufficient tumor suppressor during the early pathogenesis of PCA.            

During the normal development of the prostate and the development of PCA, cell 

survival depends primarily on the androgen receptor (AR).  The steroid receptor is 

normally bound to heat-shock proteins in the cytoplasm of prostate cells.  Binding of the 

cognate ligand, dihyrotestosterone, causes dissociation of the AR which translocates to 

the nucleus.  After translocating to the nucleus, the AR dimerizes, binds to regulatory 

sequences of specific target genes and activates their transcription.  Most prostate tumors 

are initially responsive to androgen ablation, however almost all tumors eventually 

become androgen independent and proliferate despite androgen ablation.  Determining 

how PCA cells become androgen independent is an intense area of investigation and 

many studies have focused on the role of the androgen receptor.   
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Recent evidence suggests that the mechanisms of androgen independence can 

either involve or bypass the androgen receptor, and that both types of mechanisms may 

co-exist in the same cancer.  Pathways involving the androgen receptor include 

amplification or mutation of the receptor, dysregulation of growth factors or cytokines 

and alterations of coactivators.  Several excellent reviews cover this subject in more 

detail than can be presented here, including those pathways that do not involve the 

androgen receptor gene directly (50, 51).  A summary of the role of the androgen receptor 

in the development of hormone refractory PCA is presented in Figure 1.3.    

Continued expression of the androgen receptor despite resistance to anti-androgen 

therapy occurs frequently in metastatic PCA.  Independent studies have found increased 

androgen receptor mRNA in hormone refractory cancers compared to hormone 

dependent cancers and 20-30% of hormone refractory cancers have been shown to have 

an amplification of the AR gene (52-54).  Androgen-refractory tumors have also been 

shown to contain a variety of mutations in the AR, increasing the number of ligands that 

can activate the receptor, although there is some controversy as to how often this occurs 

in vivo (55).  Interestingly, prostate specific expression of a mutant androgen receptor in 

mice, AR-E231G, resulted in completely penetrant PCA and lung metastases, 

demonstrating the oncogenic effects of AR mutations (56).  Recently, evidence from a 

DNA microarray study by Chen and colleagues elegantly demonstrates the importance of 

the AR to PCA progression, as summarized in Figure 1.3.  By comparing microarray 

profiles of hormone-sensitive and hormone-refractory pairs of human prostate xenografts, 

the authors reported a two- to five-fold increase in the AR as the only gene expression 

change consistently associated with androgen independence (57).  Further, this modest 

increase was shown to be necessary and sufficient for hormone independent progression 

in the animal models.  Cells with the modest increased androgen receptor expression 

were also highly sensitive to androgens, and AR antagonists acted as agonists.  Taken 

together, the importance of the AR to the development of hormone refractory disease 

suggests that strategies to down regulate the androgen receptor may also be important 

clinically.  Studies on the role of the AR in PCA pathogenesis and progression will 

continue to be pursued with great interest.     
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Dysregulation of the Myc family of genes is one of the most common events in 

human cancer.  In PCA, c-Myc, a strong positive regulator of cellular proliferation 

located at 8q24, appears to play a role in PCA pathogenesis.  Gains in chromosome 8 are 

one of the most common amplifications in human prostate tumors, even at the early stage 

of PIN (58).  However, entire copies of chromosome 8 are often gained and many genes 

localized to 8q24 are also amplified in PCA, suggesting that other target genes in the 

region may be important (59-61).  However, high level amplification of Myc has been 

consistently identified during the progression to androgen independent metastatic disease 

(62-64).  Cell culture work has shown that androgen-dependent LNCaP cells over-

expressing Myc form colonies in soft agar independently of androgens and Myc appears 

to be an essential downstream target of the androgen receptor (65).   

Two mouse models over-expressing Myc specifically in the prostate also suggest 

an earlier role in PCA progression.  These models demonstrated that Myc over-

expression induced PIN (66) or overt carcinoma (67) depending on the targeting 

promoter.  In mice over-expressing Myc that develop carcinoma, microarray expression 

profiling studies defined a mouse Myc-PCA expression signature that shares features 

with human PCA as shown in Figure 1.4.  NKX3.1 gene expression was shown to be lost 

during the transition from PIN to carcinoma and this was confirmed at the protein level.  

Further, one of the most consistently regulated genes in the mouse Myc-PCA signature 

that was also coexpressed in human cancers showing a “Myc like” signature was PIM-1, 

which has been shown to cooperate with Myc in other cancers (68).  Increased PIM-1 

protein expression had been shown previously to predict recurrence in patients with 

localized PCA (69, 70).  These results suggest that Myc controls aspects of PCA 

progression, similar to its role in other human cancers.     

Recent evidence has also implicated the sonic hedgehog (SHH) pathway, known 

for its important role in prostate development, as being crucial to the development of 

PCA metastasis (Figure 1.5).  Secreted SHH molecules bind to the patched receptor 

(PTCH), relieving PTCH-mediated inhibition of smoothened (SMO), a seven 

transmembrane G-protein coupled receptor.  SMO signaling leads to activation of 

downstream target genes through GLI-dependent transcription.  PTCH is also a target 

gene of GLI, forming a negative feedback mechanism (71).  Hedgehog signaling is 
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required for proper growth, patterning and tissue polarity during prostate development, 

although hedgehog signaling has not been reported in normal adult prostate (72).   

In 2004, four groups reported that the hedgehog pathway is activated in advanced 

PCA (73-76).  Expression of GLI-1, SHH, and PTCH mRNA were reported with varying 

frequencies in benign prostate, localized PCA or metastatic PCA, however increased 

expression during the progression to advanced or metastatic cancer was consistently 

reported (73, 75, 76).  Furthermore, treatment of PCA cell lines or xenografts with 

cyclopamide, a SHH pathway inhibitor, consistently inhibited growth, invasion and 

metastasis both in vitro and in vivo (73, 75, 76).  Sheng and colleagues also demonstrated 

that suppressor of fused (SUFU), an inhibitor of SHH pathway activity, showed 

decreased expression in high grade tumors, and identified two somatic mutations 

suggesting a possible regulatory role for SUFU in PCA (76).  Karhadkar and colleagues 

also demonstrated that constitutive activation of the SHH pathway can transform 

primitive prostate epithelial progenitor cells (75). 

As this pathway has just begun to be studied, there are some discrepancies that 

will need to be resolved to completely understand the contribution of the SHH pathway to 

PCA pathogenesis.  For example, Fan and colleagues demonstrated by in situ 

hybridization on human benign and cancerous tissue samples that SHH expression 

localized to the epithelium, while GLI-1 expression localized to the surrounding stroma 

(74).  This pattern was maintained in their xenograft models using LNCaP cells.  

However Sanchez and colleagues reported that GLI1, PTCH, and SHH are normally 

coexpressed in epithelial cells and not in the surrounding stroma (73).  Karhadkar and 

colleagues also demonstrated high levels of SHH and PTCH in the DU145 cell line, and 

treatment of these cells with cyclopamide significantly inhibited cell growth (75), while 

Sanchez and colleagues reported that DU145 cells did not express SHH or PTCH and 

they found these cells to be insensitive to cyclopamide (73).  It is interesting to note that 

although quantitative PCR revealed 10- to 100-fold changes between expression levels of 

SHH pathway members, no microarray studies have identified pathway members as 

being dysregulated between low and high grade tumors or localized and metastatic 

samples.  The reasons for this discrepancy are unclear.   
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In addition to establishing a role for the SHH pathway in the development of 

metastatic PCA, Karhadkar and colleagues also demonstrated that the SHH pathway is 

required for epithelial cell regeneration after androgen ablation followed by androgen re-

treatment.  Taken together with their other observations, the authors suggest that PCA 

may develop from the trapping of normal prostate stem cells in a SHH pathway-

dependent state of continuous renewal (75).  The involvement of prostate stem cells in 

PCA has been proposed previously (77) and the recent identification of cells with stem 

cell like properties in other cancers has led to speculation that tissue-specific stem cells, 

through the SHH pathway, may drive many cancers, including PCA (78-80).  The 

possibility of the SHH pathway mediating prostate stem cell behavior is consistent with 

several aspects of PCA.  Consistent with the idea that inflammation drives PCA, the 

cycling between tissue damage and regeneration would promote the prolonged expansion 

of the stem cell pool.  Subsequent genetic events could lock the stem cells into a state of 

continuous proliferation (78).  A role for stem-cells in PCA is also consistent with the 

clinical course of androgen-ablation therapy, if the prostate tumor is thought to contain 

androgen independent cancer stem cells and differentiated tumor cells that have become 

androgen dependent.  The initial clinical response would result from selective killing of 

differentiated tumor cells that are androgen-dependent, while the relapse results from the 

expansion of androgen-independent stem cells (77).  While the hypothesis that stem cells 

are important to PCA is consistent with other observations, prospective markers to 

identify and isolate potential PCA stem cells will be needed to for experimental 

confirmation.   

Although the candidate genes and pathways described above have provided 

profound insight into the pathogenesis of PCA, we are still far from understanding the 

key transitions in the progression and development of PCA.  Due to the observed clinical 

and biological heterogeneity, many groups have attempted to globally characterize PCA 

at the molecular level, particularly using DNA microarrays.  DNA microarrays have 

become the standard research tool for high-throughput examination of genome-wide 

expression changes in PCA, with over twenty five published studies examining various 

aspects of PCA biology (catalogued at www.oncomine.org).  Most of these studies have 

focused on distinguishing PCA from benign prostate tissue and almost all studies report 
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distinct expression profiles separating cancerous from benign tissues.  Unfortunately, due 

to differences in technology, experimental design, and the output of hundreds to 

thousands of candidate genes, translating these profiles to candidate genes and pathways 

involved in the pathogenesis of PCA has been much more difficult.  Nevertheless, several 

attractive candidates, including HPN, AMACR and EZH2, have been identified and 

functional studies have provided evidence for their involvement in the pathogenesis of 

PCA progression.  Further, recent studies have shown the existence of distinct classes of 

tumors based on their expression profiles (81-84), supporting the observed clinical 

heterogeneity of prostate tumors and suggesting that these profiles might represent 

underlying genetic changes during PCA pathogenesis and progression.    

Marked over-expression of the type II serine protease hepsin (HPN) has been 

identified in nearly every DNA microarray study profiling PCA (85).  HPN mRNA is up-

regulated in ~90% of prostate tumors, with expression confined to epithelial cells, 

however the role of HPN in PCA progression is still unclear.  In humans, HPN protein 

expression is the strongest at the PIN stage and decreases during the transition to 

metastatic cancer.  Intensity of HPN protein expression in localized tumors has also been 

inversely correlated with PSA recurrence after surgical treatment (70).  However other 

studies found that HPN mRNA is highest in high grade and stage tumors, although 

metastatic tissues were not examined (86, 87).  Cell line experiments support a role for 

HPN early in PCA pathogenesis, as forced expression of HPN in PC-3 cells, a metastasis 

derived cell line that does not express endogenous HPN, decreased cell proliferation and 

invasion (88).   

In an effort to understand the function of HPN in PCA, Klezovitch and colleagues 

created transgenic mice with forced expression of HPN specifically in the prostate (89). 

While these mice showed no obvious abnormalities in proliferation or apoptosis in the 

prostate, weakening of epithelial-stromal adhesion and disorganization and disruption of 

the basement membrane were observed.  To determine the effect on cancer progression, 

these transgenic mice were crossed with the LPB-Tag mouse, which express the SV40 

large T antigen specifically in the prostate.  LPB-Tag mice develop high grade PIN and 

limited adenocarcinoma by 20 weeks of age, with no metastases.  However, in addition to 

developing focal carcinoma, up to 55% of hepsin/LPB-Tag mice developed prominent 
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metastases.  While these metastatic lesions showed NE differentiation, it is unclear if this 

is due to hepsin, as other metastases from LPB-Tag driven models also show NE 

differentiation.  Crossing these transgenic hepsin mice with other mouse models that do 

not develop NE differentiation (NKX3.1 -/- or PTEN +/-) should clarify the role of hepsin 

in PCA progression.  In addition to these experimental results, the magnitude and 

consistency of over expression in PCA suggest that HPN plays a role in PCA 

pathogenesis.                

The enzyme α-methylacyl-CoA racemase (AMACR), which is involved in 

peroxisomal β-oxidation of dietary branched-chain fatty acids, has also been identified as 

an important contributor to PCA.  The functionally active protein is specifically over-

expressed in PCA epithelium compared to benign epithelium and DNA microarrays 

consistently reveal AMACR to be one of the most up-regulated transcripts from normal to 

cancerous tissue (85, 90-92).  AMACR has also been found to be over-expressed, 

although not as frequently, in PIN (90, 91, 93).  In addition to studies demonstrating it to 

be a possible biomarker (94-96), epidemiologic, genetic, and functional studies point to a 

role for AMACR and fatty acid metabolism in general in PCA pathogenesis.   

The major dietary sources of branched chain fatty acids, meat and dairy products, 

have been implicated in the increased incidence of PCA in Western countries as 

described in the introduction.  Recent evidence also suggests that PCA patients have 

higher levels of phytanic acid, which is primarily obtained from dietary intake of dairy 

and red meat and requires AMACR for its metabolism, than controls (97).  Branched 

chain fatty acids themselves have also been shown to induce AMACR protein expression, 

but not transcript expression, in PCA cells in vitro (98).  In addition, other enzymes 

involved in fatty acid metabolism, including D-bifunctional protein (99), fatty acid 

synthase (FASN) (100), and sterol-CoA desaturase (101) are also dysregulated in PCA.  

These observations suggest that general dysregulation of lipid metabolism, possibly 

though the generation of reactive oxygen species during beta-oxidation, as a feature of 

PCA.  Genome scans for linkage in families with hereditary PCA suggest that the locus 

of AMACR (5p13) contains a PCA susceptibility gene (102, 103) and AMACR single 

nucleotide polymorphisms (SNP) cosegregate with PCA in hereditary PCA families 

(104).  Finally, knockdown of AMACR expression in an androgen dependent PCA cell 
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line has also been shown to inhibit cellular proliferation (105).  Future experiments, 

including the generation of transgenic mice which express AMACR in the prostate, 

should provide more information about the role of AMACR in PCA pathogenesis.           

Although most microarray studies profiling PCA were designed to identify genes 

differentially expressed between normal and cancerous tissues, recent studies have also 

focused on identifying genes specifically dysregulated in metastatic cancer (83, 106, 

107).  Enhancer of Zeste homolog 2 (EZH2), a member of the polycomb group family of 

transcriptional repressors, has recently emerged as a candidate gene that is specifically 

over-expressed in metastatic and aggressive localized PCAs (69, 106, 107).  In addition 

to being over-expressed in PCA, EZH2 has been found to be over-expressed or amplified 

in other cancers, suggesting that EZH2 may act as an oncogene (108).  Recently, EZH2 

expression in the content of a polycomb complex was examined during PCA progression 

in the NKX3.1 +/-; PTEN +/- mouse model described previously.  PIN lesions displayed 

moderate elevation in the number of cells expressing EZH2 and cancerous tissues 

displayed further elevation as assayed at the transcript and protein level (109).   

Besides acting as a histone methyltransferase responsible for gene silencing, 

recent evidence has demonstrated that EZH2 expression, controlled by the pRB/E2F 

pathway, is essential for proliferation in transformed and primary human cells, including 

PCA cells (107, 108, 110-112).  EZH2 expression has also been shown to be down-

regulated by activated p53 through p53/p21Waf1-mediated repression of the EZH2 

promoter, resulting in inhibition of cell growth (110).  These results, along with DNA 

microarray array results demonstrating that EZH2 transcripts are often increased in PCAs 

with increased proliferation as assessed by Ki67 staining (83, 106) have prompted 

speculation that EZH2 expression may merely be a marker of proliferation.  

However, several lines of evidence suggest that EZH2 has roles in cancer 

pathogenesis besides its role in controlling cell proliferation.  In normal breast tissue 

sections examined with double immunoflourescence, EZH2 protein expression was only 

found in rare cells, which were always Ki67 positive.  However, in poorly differentiated 

ductal carcinoma in situ and carcinoma, the majority of EZH2 positive cells were not 

Ki67 positive (113).  EZH2 over-expression in immortalized normal breast cells had no 

effect on cell proliferation, however it caused increased invasion and promoted anchorage 
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independent growth (114).  Finally, in the NKX3.1 +/-; PTEN +/- mouse model, increased 

EZH2 expression did not correlate with increased Ki67 levels (109).  These results, along 

with the frequent amplification in various cancers, suggest that EZH2 has functional roles 

in cancer pathogenesis besides regulating proliferation, although further investigations 

are needed to determine the extent of its function in PCA pathogenesis and progression.   

As described above, thousands of genes have been identified that are dysregulated 

during PCA progression.  In addition to the marked difficulties in identifying which 

genes represent causal candidates rather than merely being markers of the neoplastic 

state, technological and experimental differences also complicate the comparison of 

multiple data sets (115, 116).  Our group has recently developed a web site that 

catalogues expression profiling studies (www.oncomine.org) (117) and developed a 

meta-analysis method to compare expression profiling studies from different platforms 

(85).  Analyzing four of the earliest profiling studies, a cohort of genes, including 

AMACR, Myc, FASN and HPN, were found to be significantly dysregulated across the 

data sets.  Besides developing an improved way to identify candidate genes from 

profiling studies, bioinformatic approaches were also applied in an attempt to discover 

biologic pathways represented in the consistently dysregulated genes.  Significant 

involvement of the polyamine biosynthesis pathway at a number of steps was identified, 

with enzymes directing substrates towards polyamines being over-expressed and the 

enzyme directing polyamine precursors toward an alternate pathway being under-

expressed in PCA (85).  Polyamines have been implicated in PCA biology and enzymes 

involved in their biosynthesis are candidates for chemotherapeutic agents (118).  As an 

update to our previous work, we have performed a meta-analysis (85) of 8 studies 

profiling PCA vs. benign prostate tissue and identified 216 genes present in 6 of 8 studies 

that were dysregulated at a Q value (estimated false discovery rate) < 0.10.  A heatmap of 

the 69 genes identified as being over-expressed in PCA compared to benign tissue are 

shown in Figure 1.6.  Taken together, these results indicate that bioinformatic mining of 

the massive amounts of data generated by microarray experiments can identify candidate 

genes and pathways involved in PCA progression  

Other techniques that measure genome or proteome wide changes during the 

development of PCA are also being used to identify candidate genes.  Many of the 
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candidate genes described above were identified by their consistent loss or amplification 

during PCA progression.  Recently developed techniques, such as array comparative 

genomic hybridization (CGH) (119) and SNP arrays (120), are allowing for global 

monitoring of gains and losses as well as LOH at increased resolutions.  Although these 

studies have only recently begun in prostate, they have confirmed previous studies and 

are identifying novel chromosomal regions that may harbor important genes involved in 

PCA pathogenesis.  A recent study using array CGH profiling 64 primary tumors 

identified 8p21.2, the location of NKX3.1, as the most frequently lost locus in the data set 

(121).  Interestingly, amplifications at 11q13.1 were able to predict PSA recurrence 

independent of other clinical parameters, suggesting that this region may harbor a gene or 

genes controlling tumor aggressiveness.  Using SNP arrays, Lieberfarb and colleagues 

confirmed that LOH at 8p21 as well as 10q23, the locus of PTEN, were amongst the most 

consistently observed events in 50 PCA samples (122).  Further, they clustered the 

tumors based on their patterns of LOH and identified distinct genetic subtypes amongst 

the cancers.  The lack of overlapping regions of LOH between the different tumor 

samples suggests that many sets of genetic lesions may lead to PCA development, rather 

than progression through a defined series of events.  Although studies in this area are still 

in their infancy, these results support clinical and expression profiling results suggesting 

that PCA is a heterogeneous disease.  Further technologic advances in these areas should 

also aid the search for candidate genes controlling various aspects of PCA progression.    

As the ultimate effectors in most cellular processes are proteins, characterizing the 

PCA proteome should greatly facilitate understanding the disease pathogenesis.  

Technological developments, including tissue microarrays (123) and reverse phase 

protein microarrays (124), have allowed for high throughput assaying of a single 

protein’s expression across hundreds of samples simultaneously and have been used 

extensively to validate PCA candidate genes.  Alternatively, mass spectrometry (MS) 

based profiling has enormous potential to characterize and quantify large numbers of 

proteins.  Although MS has recently been applied to various aspects of PCA, it has yet to 

provide much insight into PCA pathogenesis (125).  Much MS work has focused on 

identifying protein changes in serum for diagnostic and prognostic applications, and 

while these studies have shown the ability to differentiate patients with cancer from 
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control patients, the identity of discriminatory peaks have not been determined (126, 

127).  Studies have also quantified the secreted proteins generated from androgen 

stimulation of human PCA cells in culture in attempt to discover biomarkers (128).  Two 

recent studies profiling PCA tissue specimens demonstrate the potential of proteomics for 

characterizing PCA pathogenesis, similar to the role that DNA microarray technology has 

recently played (129, 130).  Both groups generated protein profiles by surface-enhanced 

laser desorption/ionization-time of flight (SELDI-TOF) MS from benign and cancerous 

tissues.  As this method does not identify the analyzed proteins, both groups used 

alternative techniques to identify and validate differentially expressed proteins between 

cancer and normal samples, although they did not characterize them functionally.  

Interestingly, the differential protein identified by Cheung and colleagues, growth 

differentiation factor 15, did not show differential expression at the transcript level using 

the same samples analyzed by MS (130).  These results call attention to the fact that post 

translational regulation can result in protein expression changes during disease 

progression that cannot be measured by genomic or expression profiling studies, 

demonstrating the importance of characterizing the proteome for understanding PCA 

pathogenesis.    

Other high throughput techniques with the potential to identify underlying causes 

of PCA are being developed at a rapid rate, including methods to analyze genome wide 

methylation (131-134) and genome wide RNA interference screens (135-137).  Advances 

in these high throughput techniques have the potential to revolutionize the understanding 

of PCA pathogenesis, through cataloguing the PCA genome, transcriptome and 

proteome.  Unfortunately, the problems inherent in comparing DNA microarray studies, 

differences in experimental conditions, platforms and output formats, are expanded when 

attempting to integrate data from these different fields (138).  In an attempt to understand 

PCA progression, our group has recently conducted an integrative transcriptomic and 

proteomic analysis, as outlined in Figure 1.7.  Using high throughput immunoblotting 

employing antibodies against over 1,300 proteins or post-translational modifications, we 

interrogated benign prostate, localized PCA and metastatic PCA tissue extracts.  Sixty 

four proteins were altered in localized PCA compared to benign tissue and 156 additional 

proteins were dysregulated between localized and metastatic PCA.  Candidate 
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progression markers were then evaluated using conventional Western blotting and tissue 

microarrays.  Finally, in order to combine these proteomic alterations with the wealth of 

PCA expression data, we performed an integrative analysis with eight PCA profiling 

studies.  Interestingly, this analysis demonstrated only 60% concordance between 

transcript and protein levels.  Most importantly, differential proteomic alterations 

between localized and metastatic PCA that were concordant with expression data served 

as predictors of clinical outcome in PCA.  Thus, in addition to serving as attractive 

biomarker candidates, these genes and their encoded proteins may represent important 

candidates for understanding the clinical heterogeneity of PCA and disease progression.   

Classical genetic techniques have identified several candidate genes involved in 

the pathogenesis of PCA, however a clear picture of PCA development has not emerged.  

As described in this review, high throughput techniques have been used to expand our 

knowledge of the function of these genes, as well as identify thousands of other candidate 

genes, few of which have been demonstrated to have a functional role in PCA 

development.  In order to identify the most promising candidates from the wealth of 

genomic, transcriptomic and proteomic data being generated, integrative methods must 

be developed.  Clinical, histological and genetic observations reveal PCA to be a 

heterogeneous disease.  Future work should be able to identify whether the development 

and progression of PCA has a single underlying series of genetic events or whether PCA 

is really a group of genetically distinct subtypes that cannot be distinguished at the 

histological level.  The development of high throughput techniques and the careful 

integration of the data they produce should help to answer the unsolved etiology of PCA.   
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Figure 1.1.  Genetic alterations during the histologic progression of prostate cancer.  
Photomicrographs of H&E stained sections representative of the indicated tissue or lesion (10x original 
magnification, 40x inserts).  Arrows indicate proposed routes of progression from benign prostate glands 
(NOR) to precursor lesions (PIN or PIA) to localized cancer (PCA) to metastatic disease (MET).  Pathway 
and candidate gene names in green or red represent genes and pathways under-expressed or over-expressed, 
respectively, during the indicated transition. 
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Figure 1.2.  Components of the PI3K/PTEN pathway involved in prostate cancer development.  
Members of the phosphoinositide 3-kinase (PI3K) pathway are indicated, with genes/protein products 
represented in ellipses, lipid signaling molecules in rectangles and phosphate groups in purple circles.  
PI3K is recruited to the cell membrane by activated receptor tyrosine kinases, where it catalyzes the 
transfer of a phosphate group to phosphatidylinositol-4,5 bisphosphate (PIP2), yielding 
phosphatidylinositol-3,4,5 trisphosphate (PIP3).  PIP3 transmits signals through the kinase Akt and 
downstream members such as mammalian target of rapamycin (mTOR).  The phosphatase PTEN inhibits 
the activity of the PI3K pathway through inactivation of PIP3 to PIP2, and neutral endopeptidase directly 
binds and stabilizes PTEN.  As described in the text, proteins indicated in red indicate increased activity in 
PCA development or mouse models predisposed to PCA development, while proteins in green show 
decreased activity in PCA through deletion or inactivation.         
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Figure 1.3.  The role of the androgen receptor (AR) in the development of hormone refractory 
prostate cancer.  A.  Although PCA treated with hormone ablation initially responds clinically, almost 
invariably hormone refractory disease develops.  The AR is thought to play a crucial role in this 
progression and possible mechanisms as described (51) are shown in red, while mechanisms not involving 
the AR are shown in green.    B.  As described in the text, Chen et al. identified a modest increase in the 
androgen receptor as the only consistent gene expression change through gene expression profiling of 7 
isogenic pairs of hormone dependent/refractory xenografts.  In animal models, the authors demonstrated 
that a modest increase in the level of AR expression resulted in hormone-refractory disease involving two 
of the mechanisms shown in A.   
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Figure 1.4.  Integrative analyses reveal conserved MYC activation signatures in human prostate 
cancer and mouse models.  A.  As described in the text, during the transition from benign prostate to PCA 
and metastatic disease, multiple techniques including CGH have demonstrated that one of the most 
frequently gained regions is 8q24, the locus of MYC.  Gene expression profiling of localized and metastatic 
PCA also demonstrate increased expression of MYC, often in parallel with increased expression of PIM1, a 
gene known to cooperate with MYC in other malignancies.  B.  Prostate specific expression of MYC in 
mouse models also resulted in PCA development, and gene expression profiling of these tumors revealed 
increased PIM1 expression as seen in human tissue samples.  Importantly, these tumors also showed 
decreased expression of NKX3.1, a prostate dosage dependent tumor suppressor as described in the text.         
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Figure 1.5.  Activation and targeting of the hedgehog pathway in advanced prostate cancer.  
Components of the hedgehog pathway that have been implicated in advanced PCA are indicated.  Protein 
components are indicated in ellipses and specific pathway inhibitors are indicated in rectangles.  The color 
of the ellipse indicates transcript abundance in advanced PCA as described in the text, with red and green 
representing increased and decreased activity respectively.  Positive (→) and negative (┤) regulation 
between pathway members is indicated.   
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Figure 1.6.  Meta-analysis of genes over-expressed in prostate cancer compared to benign prostate 
tissue.  A meta-analysis as described (85) was performed on eight studies profiling PCA vs. benign prostate 
tissue (Dhanasekaran et al. (70), Lapointe et al. (83), Luo et al. (139), Yu et al. (81) Welsh et al. (140), 
Singh et al. (84), LaTulippe et al. (106) and Luo JH et al. (141)).  216 genes present in at least 6 of 8 
studies were identified at a significance threshold of Q (estimated false discovery rate) < 0.10, and the 69 
up-regulated genes are depicted.  Rows represent the indicated genes and columns represent individual 
profiled samples, with benign or PCA samples indicated in blue or magenta respectively.  Gray cells 
indicate missing values or genes that were not monitored in individual studies and expression values are 
indicated by the color bar.       
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Figure 1.7.  Schema of an integrative transcriptome and proteome analysis of prostate cancer.  Steps 
in an integrative analysis combining high throughput proteome and expression data to characterize PCA 
progression are presented.  We used high throughput immunoblotting to interrogate protein expression in 
benign prostate, localized PCA and metastatic PCA tissue extracts.  Proteins showing altered expression 
were validated using conventional immunoblotting and tissue microarrays.  Protein expression changes 
were then compared to transcript data from eight PCA profiling studies.  We identified a signature of 
concordant transcript and protein changes between localized and metastatic PCA.  This signature was able 
to identify localized tumors at increased risk for PSA recurrence after surgical resection.     
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CHAPTER 2 

 

RECURRENT FUSION OF TMPRSS2 AND ETS TRANSCRIPTION FACTOR 
GENES IN PROSTATE CANCER 

 
Recurrent chromosomal rearrangements have not been well characterized in 

common carcinomas. We used a bioinformatics approach to discover candidate 

oncogenic chromosomal aberrations based on outlier gene expression. Two ETS 

transcription factors, ERG and ETV1, were identified as outliers in prostate cancer. We 

identified recurrent gene fusions of the 5’ untranslated region of TMPRSS2 to ERG or 

ETV1 in prostate cancer tissues with outlier expression. Using fluorescence in situ 

hybridization, we demonstrated that 23 of 29 prostate cancer samples harbor 

rearrangements in ERG or ETV1. Cell line experiments suggest that the androgen-

responsive promoter elements of TMPRSS2 mediate the over-expression of ETS family 

members in prostate cancer. These results have implications in the development of 

carcinomas and the molecular diagnosis and treatment of PCA. 

 A central aim in cancer research is to identify altered genes that play a casual role 

in cancer development. Many such genes have been identified through the analysis of 

recurrent chromosomal rearrangements that are characteristic of leukemias, lymphomas 

and sarcomas (1). These rearrangements are of two general types. In the first, the 

promoter/enhancer elements of one gene are aberrantly juxtaposed to a proto-oncogene, 

thus causing altered expression of an oncogenic protein. This type of rearrangement is 

exemplified by the apposition of immunoglobulin (IG) and T-cell receptor (TCR) genes 

to MYC leading to activation of this oncogene in B- and T-cell malignancies, respectively 

(2). In the second, the rearrangement fuses two genes, resulting in the production of a 

fusion protein that may have a new or altered activity. The prototypic example of this 

translocation is the BCR-ABL gene fusion in chronic myelogenous leukemia (CML) (3, 

4). Importantly, this finding led to the development of the promising cancer drug imatinib 
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mesylate (Gleevec) (5). In contrast to leukemias, epithelial tumors (carcinomas) display 

many nonspecific, but few recurrent chromosomal rearrangements (6). This karyotypic 

complexity is thought to reflect secondary genomic alterations acquired during tumor 

progression. 

We hypothesized that rearrangements and high-level copy number changes that 

result in marked over-expression of an oncogene should be evident in DNA microarray 

data, but not necessarily by traditional analytical approaches. In the majority of cancer 

types, heterogeneous patterns of oncogene activation have been observed; thus, 

traditional analytical methods that search for common activation of genes across a class 

of cancer samples (e.g., t-test or signal-to-noise ratio) will fail to find such oncogene 

expression profiles. Instead, a method that searches for marked over-expression in a 

subset of cases is needed. Toward this end, we developed a method termed Cancer 

Outlier Profile Analysis (COPA). COPA seeks to accentuate and identify outlier profiles 

by applying a simple numerical transformation based on the median and median absolute 

deviation of a gene expression profile (7).   

We applied COPA to the Oncomine database (8), a compendium of 132 gene 

expression datasets representing 10,486 microarray experiments. COPA correctly 

identified several outlier profiles for genes in specific cancer types in which a recurrent 

rearrangement or high-level amplification is known to occur. We focused our analyses on 

outlier profiles of known causal cancer genes, as defined by the Cancer Gene Census (9), 

that ranked in the top 10 outlier profiles in an Oncomine dataset, as we felt these genes to 

be the most likely to participate in uncharacterized alterations.  The general COPA 

methodology can be applied to any expression data and detailed results from the 

application of COPA to Oncomine datasets can be explored at www.oncomine.org.  

Strikingly, in several independent datasets, COPA identified strong outlier 

profiles in prostate cancer for ERG (21q22.3) and ETV1 (7p21.2), two genes that encode 

ETS family transcription factors and are involved in oncogenic translocations in Ewing’s 

sarcoma and myeloid leukemias (10, 11). In total, COPA ranked ERG or ETV1 within the 

top 10 outlier genes in six independent prostate cancer profiling studies.   

Fusion of the 5’ activation domain of the EWS gene to the highly conserved 3’ 

DNA binding domain of an ETS family member, such as ERG (t(21;22)) or ETV1 

 36

http://www.oncomine.org/


(t(7;22)), is characteristic of Ewing’s sarcoma (10, 12, 13). Because translocations 

involving ETS family members are functionally redundant in oncogenic transformation, 

only one type of translocation is typically observed in each case of Ewing’s sarcoma. We 

hypothesized that if ERG and ETV1 are similarly involved in the development of prostate 

cancer, their outlier profiles should be mutually exclusive—that is, each tumor should 

over-express only one of the two genes.  

Thus, we examined the joint expression profiles of ERG and ETV1 across several 

prostate cancer datasets and found that they invariably showed mutually exclusive outlier 

profiles, consistent with our hypothesis. Exclusive outlier expression of ERG and ETV1 

were identified in two large-scale transcriptome studies (14, 15), which profiled grossly 

dissected prostate tissues using different microarray platforms (Figure 2.1). Similar 

results were obtained in prostate tissue samples obtained by laser capture microdissection 

(LCM). In addition to exclusive outlier expression of either ERG or ETV1 in epithelial 

cells from prostate cancer or metastatic prostate cancer, ETV1 and ERG were not over-

expressed in the precursor lesion prostatic intraepithelial neoplasia (PIN) or adjacent 

benign epithelia. The observed exclusive outlier pattern is consistent with other 

translocations where an activating gene can fuse with multiple partners, such as the 

fusion of the immunoglobulin heavy chain promoter to CCND1 or FGFR3, t(11,14) or 

t(4,14) respectively, in specific subsets of multiple myeloma (16).  

To determine the mechanism responsible for ERG and ETV1 over-expression, we 

identified prostate cancer cell lines and clinical specimens that over-expressed ERG or 

ETV1 by quantitative PCR (QPCR) (Figure 2.2). The LNCaP prostate cancer cell line 

and two specimens obtained from a patient with hormone refractory metastatic disease 

(MET26-RP, residual primary carcinoma in the prostate and MET26-LN, a lymph node 

metastasis) over-expressed ETV1. A lymph node metastasis from a second patient (MET-

28LN) and two prostate cancer cell lines, VCaP and DuCaP, over-expressed ERG. We 

did not find consistent amplification of ERG or ETV1 in samples with respective 

transcript over-expression, so we considered the possibility of DNA rearrangements. We 

measured the expression level of ETV1 exons by exon-walking QPCR in samples that 

displayed ETV1 over-expression. We utilized five primer pairs spanning ETV1 exons 2 

through 7 and found that while LNCaP cells showed essentially uniform over-expression 
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of all measured ETV1 exons, both MET26 specimens showed > 90% reduction in the 

expression of ETV1 exons 2 and 3 compared with exons 4-7 (Figure 2.2).  

To characterize the complete 5’ ETV1 transcript, we performed 5’ RNA ligase-

mediated rapid amplification of cDNA ends (RLM-RACE) on LNCaP cells and MET26-

LN. In addition, we also performed RLM-RACE to obtain the complete 5’ transcript of 

ERG in MET28-LN. Sequencing of the cloned products revealed fusions of the prostate- 

specific gene TMPRSS2 (17) (21q22.2) with ETV1 in MET26-LN and with ERG in 

MET28-LN (Figure 2.2). In MET26-LN, two RLM-RACE PCR products were 

identified. The first product, TMPRSS2:ETV1a, resulted in a fusion of the complete exon 

1 of TMPRSS2 with the beginning of exon 4 of ETV1 (Figure 2.2). The second product, 

TMPRSS2:ETV1b, resulted in a fusion of exons 1 and 2 of TMPRSS2 with the beginning 

of exon 4 of ETV1. Both products are consistent with the exon-walking QPCR described 

above, where MET26-LN showed loss of over-expression in exons 2 and 3. In MET28-

LN, a single RLM-RACE PCR product was identified and sequencing revealed a fusion 

of the complete exon 1 of TMPRSS2 with the beginning of exon 4 of ERG 

(TMPRSS2:ERGa) (Figure 2.2).       

Based on these results, we designed QPCR primer pairs with forward primers in 

TMPRSS2 and reverse primers in exon 4 of ERG or ETV1. We performed SYBR Green 

QPCR using both primer pairs across a panel of samples from 42 cases of clinically 

localized prostate cancer and metastatic prostate cancer, with representative results 

depicted (Figure 2.2). These 42 cases were selected based on previous cDNA microarray 

or QPCR results indicating over-expression of ERG or ETV1.  We were limited to 

samples with remaining material and thus this cohort does not represent a random 

sampling. In addition to QPCR, we also performed standard reverse transcription PCR 

(RT-PCR) with the same primers used for QPCR, or with a different forward primer in 

TMPRSS2 and reverse primers in exon 6 of ERG and exon 7 of ETV1 on a subset of the 

samples with or without fusions as determined by QPCR. Electrophoresis of QPCR 

products and sequencing of cloned RT-PCR products from MET-26RP and MET-26LN 

revealed the presence of both TMPRSS2:ETV1a and TMPRSS2:ETV1b. By QPCR melt 

curve analysis and gel electrophoresis of QPCR and RT-PCR products, PCA4 produced a 

larger amplicon than TMPRSS2:ERGa. Subsequent RLM-RACE analysis and sequencing 
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of the RT-PCR product confirmed a fusion of the complete exon 1 of TMPRSS2 with the 

beginning of exon 2 of ERG (TMPRSS2:ERGb). Evidence for the TMPRSS2:ERG and 

TMPRSS2:ETV1 fusions were only found in cases that over-expressed ERG or ETV1 

respectively, by QPCR or DNA microarray. These results are also in agreement with the 

exclusive expression observed in our outlier analysis.           

 We used interphase fluorescence in situ hybridization (FISH) to validate the 

rearrangements at the chromosomal level on formalin fixed paraffin embedded (FFPE) 

specimens from the two cases initially used for RLM-RACE, MET26 and MET28 

(Figure 2.3). Using probes for TMPRSS2 and ETV1, normal peripheral lymphocytes 

(NPLs) demonstrated a pair of red and a pair of green signals (Figure 2.3). However, 

MET26 showed fusion of one pair of signals, indicative of probe overlap (Figure 2.3), 

consistent with the expression of the TMPRSS2:ETV1. Due to the proximity of TMPRSS2 

to ERG on chromosome 21, ~3 megabases, we utilized probes spanning the 5’ and 3’ 

region of the ERG locus to assay for gene rearrangements. Using these probes, we 

observed a pair of yellow signals in NPLs (Figure 2.3), however, in MET28, one pair of 

probes split into separate green and red signals, indicative of a rearrangement at the ERG 

locus (Figure 2.3), consistent with the expression of the TMPRSS2:ERG.  We next 

performed both individual FISH analyses described above on serial tissue microarrays 

containing cores from 13 cases of localized prostate cancer and 16 cases of metastatic 

prostate cancer (Figure 2.3). Of 29 cases, 23 (79.3%) showed evidence of 

TMPRSS2:ETV1 fusion (7 cases) or ERG rearrangement (16 cases).  

 As additional confirmation of the ERG rearrangement, we performed FISH on 

metaphase spreads of VCaP cells, which express the TMPRSS2:ERGa transcript. This 

assay revealed co-localization of 5’ TMPRSS2 and 3’ ERG probes, with splitting of the 5’ 

and 3’ ERG signals, supporting the molecular results. In addition, Southern blotting using 

a probe in the intron between exons 1 and 2 of TMPRSS2 revealed a unique band in 

VCaP cells, consistent with a rearrangement at this locus.            

TMPRSS2 is expressed in normal and neoplastic prostate tissue and is strongly 

induced by androgen in androgen-sensitive prostate cell lines (17-19). To investigate 

whether the TMPRSS2:ERG fusion results in the androgen regulation of ERG, we 

assessed the expression of ERG by QPCR in androgen treated VCaP cells, which express 
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TMPRSS2:ERGa, and LNCaP cells, which do not express a fusion transcript. Both VCaP 

and LNCaP respond to androgen stimulation with increased expression of PSA, which is 

expressed at a similar level in both cells and is sensitive to the androgen receptor 

antagonists bicalutamide and flutamide (Figure 2.4). However, in addition to expressing 

~2000 fold more ERG than LnCAP cells, only VCaP cells responded to androgen 

stimulation with increased ERG expression sensitive to bicalutamide and flutamide 

(Figure 2.4). A similar increase in ERG expression upon androgen stimulation was 

observed in DuCaP cells, which express TMPRSS2:ERGa, while RWPE, PC3, and PC3 

cells expressing the human androgen receptor express low levels of ERG that are not 

androgen responsive. These results suggest that the fusion with TMPRSS2 may explain 

the aberrant expression of ERG or ETV1 in specific subsets of prostate cancer.         

The existence of recurring gene fusions of TMPRSS2 to the oncogenic ETS family 

members ERG and ETV1 may have important implications for understanding prostate 

cancer tumorigenesis and developing novel diagnostics and targeted therapeutics. Several 

lines of evidence suggest that these rearrangements occur in the majority of prostate 

cancer samples and drive the ETS family member expression. Across three independent 

microarray datasets, ERG or ETV1 was markedly over-expressed in 95 of 167 (57%) 

prostate cancer cases, while over-expression was never observed across 54 benign 

prostate tissue samples. Furthermore, a recent study reported that ERG was the most 

commonly over-expressed oncogene by QPCR in prostate cancer, with 72.0% of cases 

over-expressing ERG (20). Using a combination of assays, we found evidence of fusion 

with TMPRSS2 in 20 of 22 (>90%) cases that over-expressed ERG or ETV1, suggesting 

that the fusion is the most likely cause for the over-expression. By FISH analysis on a set 

29 prostate cancer cases selected independently of any knowledge of ERG or ETV1 

expression, 23 of 29 (79%) had TMPRSS2:ETV1 fusions or ERG rearrangement. It is 

possible that this cohort is not reflective of all prostate cancer samples and this may be an 

over-estimate of the prevalence of TMPRSS2 fusions with ETS family members, as our 

split-signal approach can detect additional rearrangements involving ERG. However, the 

reported frequencies of ERG or ETV1 over-expression in prostate cancer with our fusion 

transcript and FISH results suggest that TMPRSS2 fusions with ETV1 or ERG occur in 

the majority of prostate cancer cases. Coupled with the high incidence of prostate cancer 
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(an estimated 232,090 new cases will be diagnosed in the U.S. in 2005 (21)) the 

TMPRSS2 fusion with ETS family members is likely to be the most common 

rearrangement yet identified in human malignancies and the only rearrangement present 

in the majority of one of the most prevalent carcinomas.  

Future efforts will be directed at characterizing the expressed protein products, 

including the effects of N-terminal truncation of ERG and ETV1, identifying downstream 

targets and the functional role of the fusions in prostate cancer development. In summary, 

we have shown that COPA may be a useful technique for identification of chromosomal 

rearrangements in tumors that are difficult to study by classical cytogenetic techniques. 

Importantly, the existence of TMPRSS2 fusions with ETS family members in prostate 

cancer suggests that causal gene rearrangements may exist in common epithelial cancers 

but may be masked by the multiple, non-specific chromosomal rearrangements that occur 

during tumor progression.    
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Figure 2.1. Cancer Outlier Profile Analysis.  Cancer Outlier Profile Analysis (COPA) of microarray data 
revealed ETV1 and ERG as outlier genes across multiple prostate cancer gene expression data sets. ETV1 
and ERG expression (normalized expression units) are shown from all profiled samples in two-large scale 
gene expression studies (upper panels, (14); lower panels, (15)). Visualization tools incorporated in 
Oncomine (www.oncomine.org) were used to generate graphical displays. Sample classes are indicated 
according to the color scale. In the data set from (15), prostate cancer samples were classified based on 
Gleason grade. Scatter plots of ERG and ETV1 expression across all of the profiled samples are shown 
(right panels).  
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Figure 2.2. Identification and characterization of TMPRSS2:ETV1 and TMPRSS2:ERG gene fusions 
in prostate cancer (PCA). (A)  Prostate cancer cell lines, hormone refractory metastatic (MET) prostate 
cancer tissues and pooled benign prostate tissue (CPP) were analyzed for ERG ( ) and ETV1 ( ) mRNA 
expression by QPCR. (B)  Reduced over-expression of ETV1 exons 2 and 3 in MET26 compared with 
exons 4-7 in MET26 samples as assessed by QPCR. (C) Schematic of 5’ RLM-RACE revealing fusion of 
TMPRSS2 with ETV1 in MET26-LN and ERG in MET28-LN. The numbers above the exons (indicated by 
boxes) indicate the last base of each exon. Untranslated regions are shown in corresponding lighter shades. 
(D) Validation of TMPRSS2:ETV1 expression using fusion-specific QPCR in MET26-LN and MET26-RP. 
(E)  Validation of TMPRSS2:ERG expression using fusion-specific QPCR in cell lines and PCA specimens.  
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Figure 2.3. Interphase FISH on FFPE tissue sections confirms TMPRSS2:ETV1 gene fusion and ERG 
gene rearrangement. (A and B)  Normal peripheral lymphocytes (NPL) showed two ETV1 (red) and two 
TMPRSS2 (green) signals, while MET26 showed fusion of the signals as indicated by the yellow signal 
(yellow arrowhead). (C and D)  For detection of ERG gene rearrangements, we utilized a split-signal 
approach, with two probes spanning the ERG locus. NPLs showed two yellow signals, indicating overlap of 
the 5’ (green signal) and 3’ (red signal) regions of ERG, while MET28 shows a rearrangement of ERG as 
indicated by the split signal of the 5’ and 3’ probes (red and green arrows). Scale bars for all images are 2.5 
μm. (E)  Matrix representation of FISH results using the same probes as (A-D) on an independent tissue 
microarray containing cores from clinically localized (PCA) and metastatic (MET) prostate cancer. Cores 
positive for TMPRSS2:ETV1 probe fusion or split-signal ERG probes are indicated by colored cells. All 
negative findings are indicated by grey cells. The number of positive cases for each feature is indicated to 
the right of the matrix.  
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Figure 2.4  Androgen regulation of ERG in VCaP prostate cancer cells carrying the TMPRSS2:ERG 
fusion. (A)  PSA expression relative to GAPDH in androgen sensitive LNCaP ( ) and VCaP ( ) cells was 
assessed by QPCR. (B)  ERG (exon 5-6) expression relative to GAPDH in LNCaP (left axis,  ) and VCaP 
(right axis, ) cells. Cell lines were incubated with vehicle or 10 μM of the androgen receptor antagonists 
bicalutamide or flutamide for 2 hours before treatment for 24 hours with 0.5 nM of the synthetic androgen 
R1881 or vehicle as indicated. Relative PSA or ERG for each sample was normalized to the amount in the 
LNCaP control.  
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CHAPTER 3 

 

TMPRSS2:ETV4 GENE FUSIONS DEFINE A THIRD MOLECULAR SUBTYPE 
OF PROSTATE CANCER 

 
While common in hematological and mesenchymal malignancies, recurrent gene 

fusions have not been well characterized in epithelial carcinomas. Recently, using a novel 

bioinformatic approach, we identified recurrent gene fusions between TMPRSS2 and the 

ETS family members ERG or ETV1 in the majority of prostate cancers. Here, we 

interrogated the expression of all ETS family members in prostate cancer profiling studies 

and identified marked over-expression of ETV4 in two of 98 of cases. In one such case, 

we confirmed the over-expression of ETV4 using quantitative PCR, and by rapid 

amplification of cDNA ends (RACE), quantitative PCR and fluorescence in situ 

hybridization (FISH), we demonstrate that the TMPRSS2 (21q22) and ETV4 (17q21) loci 

are fused in this case. This result defines a third molecular subtype of prostate cancer and 

supports the hypothesis that dysregulation of ETS family members through fusions with 

TMRPSS2 may be an initiating event in prostate cancer development.  

Despite their well defined role in hematological and mesenchymal malignancies, 

recurrent gene fusions have not been well characterized in epithelial carcinomas (1-3). 

Recently, in an effort to nominate candidate oncogenes from DNA microarray data, we 

developed a novel bioinformatics approach termed Cancer Outlier Profile Analysis 

(COPA) to identify genes markedly over-expressed in a subset of cancers. Applying the 

COPA approach to a compendium of tumor gene expression data, the ETS family 

transcription factors ERG and ETV1 were identified as outliers across prostate cancer 

profiling studies. Using a variety of molecular techniques, we characterized fusions of the 

5’-untranslated region of TMPRSS2 (21q22) with ERG (21q22) or ETV1 (7p21) in cases 

that over-expressed the respective ETS family member (4). TMPRSS2 has been 

characterized previously as being both androgen responsive and highly expressed in the 
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prostate, presumably through androgen response elements (AREs) in the promoter (5-7). 

As a possible mechanism driving the overexpression of ETS family members in cases 

with the gene fusions, we demonstrated that androgen can induce the over-expression of 

ERG (presumably through AREs) in a TMPRSS2:ERG positive cell line (4). Together, 

these results suggested that dysregulation of ETS family activity through AREs upstream 

of TMPRSS2 may drive prostate cancer development. Here, we describe a rare third 

molecular sub-type of prostate cancer, characterized by fusion of TMPRSS2 to another 

ETS family member, ETV4. 

While our initial COPA screen led to the characterization of TMPRSS2 fusions 

with ERG or ETV1, we hypothesized that prostate cancers negative for these gene fusions 

may harbor rearrangements involving other ETS family members. By interrogating the 

expression of all ETS family members monitored in prostate cancer profiling studies from 

the Oncomine database (www.oncomine.org) (8), we identified marked over-expression 

of the ETS family member ETV4 in a single prostate cancer case from each of two 

studies—one profiling grossly dissected tissues (9) (Figure 3.1) and the other profiling 

laser capture microdissected (LCM) tissues (Figure 3.1). As these cases did not over-

express ERG or ETV1, and no benign prostate tissues showed over-expression, we 

hypothesized that fusion with TMPRSS2 may drive the over-expression of ETV4 in these 

cases. Although ELF3 was also over-expressed in a fraction of prostate cancer cases, in 

both studies normal prostate tissue samples also showed marked ELF3 over-expression, 

suggesting that a gene fusion driving expression in both benign and cancerous tissue is 

unlikely.  Thus, we focused on characterizing the ETV4 over-expressing case (designated 

here as PCA5) in our LCM cohort. 

We isolated total RNA from PCA5 and used an exon-walking quantitative PCR 

(QPCR) strategy to confirm the over-expression of ETV4.  QPCR demonstrated that 

exons 3’ to exon 2 of ETV4 were markedly over-expressed in this case compared to 

pooled benign prostate tissue (CPP) (~900 fold) and prostate cancers that did not over-

express ETV4 and were either TMPRSS2:ERG positive (PCA1-2) or negative (PCA3-4) 

(Figure 3.2). However, we observed a dramatic decrease (>99%) in the expression of 

exon 2 of ETV4 relative to distal regions in PCA5, suggesting a possible fusion with 
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TMPRSS2, as observed previously in TMPRSS2:ERG and TMPRSS2:ETV1 positive cases 

(4).  

To identify the 5’ end of the ETV4 transcript in PCA5, we performed RNA-ligase 

mediated rapid amplification of cDNA ends (RLM-RACE) using a reverse primer in 

exon 7. RLM-RACE revealed two transcripts, each containing 5’ ends consisting of 

sequence located approximately 8 kb upstream of TMPRSS2 fused to sequence from 

ETV4 (Figure 3.2).  Specifically, the 5’ end of TMPRSS2:ETV4a consists of 47 base 

pairs from this region upstream of TMPRSS2, while the 5’ end of TMPRSS2:ETV4b 

consists of the same terminal 13 base pairs.  These 5’ ends of both transcripts were fused 

to the same contiguous stretch consisting of the 9 base pairs of the intron immediately 5’ 

to exon 3 of ETV4 and the reported reference sequence of exons 3 through the reverse 

primer in exon 7 of ETV4.   

We confirmed the existence of both transcripts in PCA5 and their absence in CPP 

and PCA1-4 using QPCR, however the results could not be quantified due to no 

detectable amplification after 40 cycles in CPP and PCA1-4 (Figure 3.2). To further 

exclude the presence of fusion transcripts involving known exons from TMPRSS2, we 

attempted QPCR using a forward primer in exon 1 of TMPRSS2 and the ETV4 exon 4 

reverse primer, and as expected, no product was detected in CPP or PCA1-5 (data not 

shown).  

Whether other prostate cancers with ETV4 dysregulation might contain 

TMPRSS2:ETV4 fusion transcripts structurally more similar to TMPRSS2:ERG and 

TMPRSS2:ETV1 transcripts (which involve known exons from TMPRSS2) is unknown. It 

is important to note that the TMPRSS2:ETV4 fusions reported here would not contain the 

well characterized AREs immediately upstream of TMPRSS2. However, evidence exists 

for androgen responsive enhancers located upstream of the TMPRSS2 sequences present 

in the TMPRSS2:ETV4 transcripts described here.  Nevertheless, the marked over-

expression of only ETV4 exons involved in the fusion transcript strongly suggests that the 

gene fusion is responsible for the dysregulation of ETV4. Together, the structure of the 

TMPRSS2:ETV4 fusion transcripts supports the conclusion that the regulatory elements 

upstream of TMPRSS2, rather than transcribed TMPRSS2 sequences, drive the 

dysregulation of ETS family members.   

 50



 To confirm the fusion of the genomic loci surrounding TMPRSS2 (21q22) and 

ETV4 (17q21) as demonstrated by RLM-RACE and QPCR, we used interphase 

fluorescence in situ hybridization (FISH). Using probes 5’ to TMPRSS2 and 3’ to ETV4, 

we identified fusion of TMPRSS2 and ETV4 loci in 65% of cancerous cells from PCA5 

(Figure 3.2). As further confirmation of the rearrangement of ETV4, using probes 5’ and 

3’ to ETV4, 64% of cancerous cells from PCA5 showed split signals. We also performed 

FISH on PCA5 using two probes 3’ to ETV4, ERG split signal probes and 

TMPRSS2:ETV1 fusion probes to exclude additional rearrangements, with negative 

results obtained for each hybridization. 

Taken together, the results from this study highlight the importance of carefully 

examining outlier profiles in tumor gene expression data, as most analytical methods 

discount profiles that do not show consistent deregulation (10-12) and would thus fail to 

identify ETV4 in prostate cancer, which appears rare (2 of 98 cases). Combined with the 

identification of TMPRSS2:ERG and TMPRSS2:ETV1 fusions, the results presented here 

support the hypothesis that dysregulation of ETS family members mediated by subversion 

of AREs or enhancers upstream of TMPRSS2 is a hallmark of prostate tumorigenesis. 

While the majority of ETS family members were represented in the profiling studies 

examined, other ETS family members that were not monitored may also be rearranged in 

prostate cancers for which gene fusions have not been ascribed. The reason for the 

observed frequencies of fusion partners with TMPRSS2 (ERG>ETV1>ETV4), which are 

consistent across independent sample sets, is unclear, although a similar situation is 

present in Ewing’s sarcoma, where EWS partners with ETS family members in unequal 

frequencies (FLI1>ERG>ETV1) (13). Lastly, these results establish a third molecular 

sub-type of prostate cancer which may have prognostic and/or therapeutic relevance in 

the future. 

Methods 

To investigate the expression of ETS family members in prostate cancer, we 

selected two prostate cancer profiling studies (Lapointe et al. (9) and Tomlins et al.) 

present in the Oncomine database (8). Genes with an ETS domain were identified by the 

Interpro filter ‘Ets’ (Interpro ID: IPR000418). Heatmap representations were generated in 

 51



Oncomine using the ‘median-center per gene’ option, and the color contrast was set to 

accentuate ERG and ETV1 differential expression.  

Prostate cancer tissues (PCA1-5) were from the radical prostatectomy series at the 

University of Michigan, which is part of the University of Michigan Prostate Cancer 

Specialized Program of Research Excellence (S.P.O.R.E.) Tissue Core. All samples were 

collected with informed consent of the patients and prior institutional review board 

approval. Total RNA was isolated with Trizol (Invitrogen, Carlsbad, CA) according to 

the manufacturer’s instructions. A commercially available pool of benign prostate tissue 

total RNA (CPP, Clontech, Mountain View, CA) was also used.  

QPCR was performed using SYBR Green dye on an Applied Biosystems 7300 

Real Time PCR system (Applied Biosystems, Foster City, CA) as described (4). The 

amount of each target gene relative to the housekeeping gene glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) for each sample was reported. The relative amount 

of the target gene was calibrated to the relative amount from the pool of benign prostate 

tissue (CPP). All oligonucleotide primers were synthesized by Integrated DNA 

Technologies (Coralville, IA). GAPDH primers were as described (14). Primers for exons 

of ETV4 were as follows (listed 5’ to 3’): ETV4_exon2-f: 

CCGGATGGAGCGGAGGATGA, ETV4_exon2-r: CGGGCGATTTGCTGCTGAAG, 

ETV4_exon3-f: GCCGCCCCTCGACTCTGAA,ETV4_exon4-r: 

GAGCCACGTCTCCTGGAAGTGACT, ETV4_exon11-f: 

CTGGCCGGTTCTTCTGGATGC, ETV4_exon12-r: CGGGCCGGGGAATGGAGT, 

ETV4_3’UTR-f: CCTGGAGGGTACCGGTTTGTCA, ETV4_3’UTR-r: 

CCGCCTGCCTCTGGGAACAC. Exons were numbered by alignment of the RefSeq for 

ETV4 (NM_001986.1) with the May 2004 freeze of the human genome using the UCSC 

Genome Browser. For QPCR confirmation of TMPRSS2:ETV4 fusion transcripts, 

TMPRSS2:ETV4a-f (AAATAAGTTTGTAAGAGGAGCCTCAGCATC) and 

TMPRSS2:ETV4b-f (ATCGTAAAGAGCTTTTCTCCCCGC), which detects both 

TMPRSS2:ETV4a and TMPRSS2;ETV4b transcripts, were used with ETV4_exon4-r.  

RLM-RACE was performed using the GeneRacer RLM-RACE kit (Invitrogen), 

according to the manufacturer’s instructions as described (4). To obtain the 5’ end of 

ETV4, first-strand cDNA from PCA5 was amplified using the GeneRacer 5’ Primer and 
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ETV4_exon4-r or ETV4_exon7-r (GAAAGGGCTGTAGGGGCGACTGT). Products 

were cloned and sequenced as described (4). Equivalent 5’ ends of the TMPRSS2:ETV4 

transcripts were obtained from both primer pairs. 

Formalin-fixed paraffin-embedded (FFPE) tissue sections were used for 

interphase FISH. Deparaffinized tissue was treated with 0.2 M HCl for 10 min, 2x SSC 

for 10 min at 80o C and digested with Proteinase K (Invitrogen) for 10 min. The tissues 

and BAC probes were co-denatured for 5 min at 94o C and hybridized overnight at 37o C. 

Post-hybridization washing was with 2x SSC with 0.1% Tween-20 for 5 min and 

fluorescent detection was performed using anti-digoxigenin conjugated to fluorescein 

(Roche Applied Science, Indianapolis, IN) and streptavidin conjugated to Alexa Fluor 

594 (Invitrogen). Slides were counterstained and mounted in ProLong Gold Antifade 

Reagent with DAPI (Invitrogen). Slides were examined using a Leica DMRA 

fluorescence microscope (Leica, Deerfield, IL) and imaged with a CCD camera using the 

CytoVision software system (Applied Imaging, Santa Clara, CA).  

All BACs were obtained from the BACPAC Resource Center (Oakland, CA) and 

probe locations were verified by hybridization to metaphase spreads of normal peripheral 

lymphocytes. For detection of TMPRSS2:ETV4 fusion, RP11-35C4 (5’ to TMPRSS2) was 

used with multiple BACs located 3’ to ETV4 (distal to ETV4 to proximal: RP11-266I24, 

RP11-242D8, and RP11-100E5). For detection of ETV4 rearrangements, RP11-436J4 (5’ 

to ETV4) was used with the multiple BACs 3’ to ETV4. For each hybridization, areas of 

cancerous cells were identified by a pathologist and 100 cells were counted per sample. 

The reported cell count for TMPRSS2:ETV4 fusions used RP11-242D8 and similar 

results were obtained with all 3’ ETV4 BACs. To exclude additional rearrangements in 

PCA5, we performed FISH with two probes 3’ to ETV4 (RP11-266I24 and RP11-

242D8), ERG split signal probes (RP11-95I21 and RP11-476D17) and TMPRSS2:ETV1 

fusion probes (RP11-35C4 and RP11-124L22). BAC DNA was isolated using a 

QIAFilter Maxi Prep kit (Qiagen, Valencia, CA) and probes were synthesized using 

digoxigenin- or biotin-nick translation mixes (Roche Applied Science). 
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Figure 3.1. Over-expression of ETS family members in prostate cancer. Expression of all monitored 
ETS family members in profiled benign prostate (blue), prostatic intraepithelial neoplasia (PIN) (green), 
clinically localized prostate cancer (PCa, yellow) and metastatic prostate cancer (Met PCa, orange) from 
grossly dissected tissue (A) (Lapointe et al. (9)) or tissue isolated by laser capture microdissection (B) 
(Tomlins et al.) was visualized using Oncomine (www.oncomine.org). Columns represent samples of the 
indicated class and rows represent the indicated gene. Blue and red cells indicate relative under- or over-
expression (in z-score units, median-centered per gene), respectively, as indicated by the color scale. Grey 
cells indicate features that did not pass filtering in the original study.  
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Figure 3.2. Fusion of TMPRSS2 and ETV4 loci in a prostate cancer case that over-expresses ETV4. A. 
QPCR was used to determine the relative expression of the indicated exons or region of ETV4 in pooled 
benign prostate tissue (CPP) or prostate cancers including the case from our cohort with ETV4 over-
overexpression (PCA5). B. RLM-RACE reveals fusion of sequences upstream of TMPRSS2 with ETV4 in 
PCA5. Sequencing of the cloned product revealed two transcripts beginning with 48 base pairs 
(TMPRSS2:ETV4a, dark and light blue) or 13 base pairs (TMPRSS2:ETV4b, light blue) located 
approximately 8 kb upstream of TMPRSS2, a single base pair that did not map to this region or ETV4 
(yellow), and a contiguous region composed of the 19 terminal base pairs in the intron before exon 3 of 
ETV4 (red) and the reference sequence of ETV4 from exons 3 to 7 (green). C. Expression of 
TMPRSS2:ETV4a and TMPRSS2:ETV4b in PCA5 by QPCR. D. Interphase fluorescence in situ 
hybridization on formalin-fixed paraffin-embedded tissue confirms fusion of TMPRSS2 and ETV4 loci in 
PCA5. Probes for TMPRSS2 (red) and ETV4 (green) demonstrate fusion of the genomic loci (yellow 
arrows) in cancerous cells from PCA5.  
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CHAPTER 4 

 

INTEGRATIVE MOLECULAR CONCEPTS MODELING OF PROSTATE 
CANCER PROGRESSION 

 
  Despite efforts to profile prostate cancer, the genetic alterations and biological 

processes that correlate with the observed histological progression are unclear. Using 

laser capture microdissection to isolate 101 cell populations, we report the profiling of 

prostate cancer progression from benign epithelium to metastatic disease. By analyzing 

expression signatures in the context of over 14,000 “molecular concepts”, or sets of 

biologically connected genes, we generated an integrative model of progression. 

Molecular concepts that demarcate critical transitions in progression include protein 

biosynthesis, ETS family transcriptional targets, androgen signaling, and cell 

proliferation. Of note, relative to low grade prostate cancer (Gleason pattern 3), high 

grade cancer (Gleason Pattern 4) exhibits an attenuated androgen signaling signature, 

similar to metastatic prostate cancer, which may reflect de-differentiation and explain the 

clinical association of grade with prognosis. Taken together, we demonstrate that 

analyzing gene expression signatures in the context of a compendium of molecular 

concepts has utility in understanding cancer biology. 

 Prostate cancer is the most common non-cutaneous malignancy in American men 

(1). Although numerous groups have profiled prostate cancer using DNA microarrays 

(reviewed in (2)), genetic changes and biological processes mediating important 

transitions in progression remain undefined. For example, due to the difficulty in 

profiling small lesions, little is known about gene expression in the putative precursor 

lesions prostatic intraepithelial neoplasia (PIN) and proliferative inflammatory atrophy 

(PIA) (3-6).  Prostate cancer is most commonly graded using the Gleason grading system 

(7), which relies entirely on the architectural pattern of cancerous glands (1 being the 

most differentiated and 5 being the least differentiated). As prostate cancer is often 
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mutlifocal, the overall Gleason score is the sum of the two most prevalent patterns, and 

patients with a higher Gleason score tend to have more aggressive cancer (8). Despite 

attempts to identify genetic signatures distinguishing low and high Gleason grade cancer, 

different signatures show little overlap between individual genes, and the processes 

driving the different architectural patterns are unknown (9-14). Furthermore, the 

relationship between different Gleason grades of clinically localized and metastatic 

prostate cancer is unclear.  

Traditionally, expression profiling analysis has focused on identifying individual 

genes dysregulated during the disease process. More recently, several techniques, 

including gene set enrichment analysis (GSEA) and other “modular” approaches, have 

been developed to identify sets of dysregulated genes that share a biological function (15-

19). Here, we analyzed prostate cancer progression using an alternative resource, the 

Molecular Concepts Map (MCM), an analytical framework for exploring the network of 

inter-relationships among a growing collection of molecular concepts, or biologically 

related gene sets. In addition to being the largest collection of gene sets for association 

analysis, the MCM is unique in that it computes pair-wise associations among all gene 

sets in the database, allowing for the identification and visualization of “enrichment 

networks” of linked concepts. This is especially useful for complex gene expression 

signatures. Integration with the MCM allowed us to systematically link our signatures to 

over 14,000 molecular concepts. 
We used laser capture microdissection (LCM) to isolate 101 specific cell 

populations from 44 cases representing prostate cancer progression. Isolated total RNA 

was amplified using OmniPlex Whole Transcriptome Amplification (WTA), before 

expression profiling on 20,000 element cDNA microarrays. We have recently validated  

WTA for expression profiling (20), and several lines of evidence support the validity of 

our signatures as described below.  

To identify expression signatures, we loaded our dataset into Oncomine 

(www.oncomine.org), a bioinformatics resource developed by our group to catalog and 

analyze microarray studies (21). To identify molecular correlates of prostate cancer 

progression, we analyzed our expression signatures using the MCM. In total, data from 
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12 databases and 340 high-throughput datasets were collected and analyzed, yielding 

over 14,000 molecular concepts. Our experimental approach is shown in Figure 4.1.   

We employed LCM to interrogate epithelial cells and minimize the bias of 

stroma. By profiling 12 stromal and 89 epithelial cell populations, we defined a stromal 

signature, determined the extent of stromal bias in studies using grossly dissected tissues, 

and assessed the epithelial purity of our specific LCM-isolated cell populations. To 

define a comprehensive progression signature, we also sought to incorporate putative 

precursor lesions. As described below, through several analyses, our results demonstrate 

that high grade PIN and prostate cancer share remarkably similar expression signatures. 

However, these same analyses indicate that atrophic lesions, including PIA, share few 

genetic changes with prostate cancer, suggesting that PIA may only be a very early 

precursor or unrelated to cancer progression. Although enrichment analysis indicated that 

our PIA samples were biased by contaminating stroma, the epithelial PIA signature was 

still more similar to benign epithelium than prostate cancer. Further profiling studies will 

be needed to define the role of PIA in progression. Thus, we defined our progression 

signature as genes whose expression correlates with increased or decreased expression 

from benign epithelium to PIN to prostate cancer to metastatic prostate cancer.  

We identified robust over- and under-expressed progression signatures (661 and 

862 features at Q <0.05, respectively) (Figure 4.2). Several lines of evidence support the 

accuracy of our progression signature. For example, the most enriched Oncomine 

signatures in our over- and under-expressed progression signatures are Varmbally et al.’s 

over- (P =  1.7E-68) and under-expressed (P =  2.7E-82) prostate cancer progression 

signatures, respectively, from our group’s previous study on an independent set of grossly 

dissected samples (22). The most enriched chromosome arm in our over-expressed in 

progression signature is 8q (P = 4.5E-4), which is one of the most frequent gains during 

progression (23). The MYC oncogene, located at 8q24, which ranks 24th in our over-

expressed progression signature, is thought to be one of the targets of this amplification 

and has been shown to be amplified during progression (23, 24). 

Importantly, stroma confounds the identification of truly under-expressed genes 

(such as tumor suppressors) in studies using grossly dissected tumors, due to masking by 

large numbers of stromal transcripts whose decreased expression during progression 
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reflect the decrease in the percentage of stroma (25-27). For example, MME, which ranks 

8th in our under-expressed progression signature, is known to be lost during prostate 

cancer progression and is thought to function as a tumor suppressor (28). Although MME 

is significantly under-expressed in previous  progression signatures from studies using 

grossly dissected tissue (Lapointe et al. (11), P = 2.5E-10, Dhanasekaran et al. (29), P = 

1.5E-05, Vanaja et al. (14), P = 0.005) it ranks no higher than 639th in these studies due to 

stromal masking. Together, these results indicate that while signatures derived from 

grossly dissected and LCM isolated samples share substantial overlap, our LCM based 

progression signature can serve as a more specific resource for identifying genes under-

expressed in epithelial cells during progression.         

We also validated the differential expression of genes not previously implicated in 

progression using QPCR on an independent sample set. We validated the over-expression 

of two transcripts, ZIC2 (which is involved in the hedgehog signaling pathway (30)) and 

a noncoding transcript at 11q13.1 (a region where amplification predicts progression to 

metastatic disease (31)). We also validated the under-expression of NPAL3, which ranks 

10th in our signature and maps to 1p36, a region lost in metastatic prostate cancer (32).  

To move beyond the single gene or concept approach, we analyzed our 

progression signatures and enriched concepts using the MCM, which allows for the 

identification of enrichment networks. Analyzing our over-expressed progression 

signature revealed an enrichment network containing proliferation related concepts 

(including the most enriched gene ontology (GO) Biological Process "cell cycle" (P = 1.6 

E-6) and the most enriched literature concept "Differentially expressed genes in Hela 

cells during the cell cycle" (P = 1.7E-10)) (Figure 4.2).  

MCM analysis of our under-expressed progression signature revealed an 

interconnected androgen signaling concept set (Figure 4.2). These concepts represent 

both in vitro (including the most enriched literature concept, “Upregulated genes in 

prostate cancer cells in response to synthetic androgen R1881” (P = 2E-14)) and in vivo 

measures of androgen signaling (“Downregulated genes in prostate cancer after androgen 

ablation therapy” (P = 1.7E-4)). The enrichment of genes normally up-regulated by 

androgen in the under-expressed progression signature is consistent with decreased 
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androgen signaling activity in the androgen-ablated state, as our metastatic prostate 

cancers have recurred after androgen ablation therapy.  

We also attempted to identify molecular correlates of individual histological 

transitions in prostate cancer progression. For individual transitions, we observed far 

fewer differentially expressed genes (Q < 0.05) between PIN and prostate cancer (1.2% 

of measured features) than between benign and PIN (13.4%) or localized and metastatic 

prostate cancer (15.7%), suggesting that PIN and prostate cancer share similar expression 

signatures. Additional analyses, including clustering and Prediction Analysis of 

Microarrays and MCM analysis as described below, support this observation, suggesting 

that key processes driving progression occur from benign prostate epithelium to PIN. 

 We identified robust expression signatures for genes over- and under-expressed 

(1,213 and 1,335 features at Q < 0.05) in PIN vs. benign epithelium (Figure 4.3). MCM 

analysis of our over-expressed in PIN vs. benign epithelium signature identified an 

enrichment network of protein biosynthesis concepts (Figure 4.3), including the most 

enriched GO Biological Process (“protein biosynthesis”, P = 1.3 E-7) and KEGG 

Pathway (“ribosome”, P = 4.9 E-5). This network also contained the most enriched 

Transfac promoter binding site concept, the ETS transcription factor “Elk-1” (P = 2.1 E-

9), representing genes with defined Elk-1 binding sites in their proximal promoters. 

Transcriptional targets of other ETS family members, including c-Ets-1 (P = 1.3E-8) and 

NRF-2 (also known as GABPA) (P = 7.6 E -8), also show strong enrichment due to 

overlapping transcription factor matrices. These results suggest that a major process 

occurring from benign epithelium to PIN is increased protein biosynthesis, likely through 

ETS target genes. MCM analysis also supports the genetic similarity of PIN and prostate 

cancer, as in addition to marked overlap (P < 1E-100), the signatures shared enrichment 

of the protein biosynthesis and ETS target genes concepts. Furthermore, genes over-

expressed in PIN vs. benign epithelium also displayed enrichment of concepts indicating 

increased androgen signaling (Figure 4.3), suggesting a link between androgen signaling, 

ETS transcription factors and protein biosynthesis as described below.  

We identified a limited number of dysregulated transcripts in localized prostate 

cancer vs. high grade PIN (199 over- and 23 under-expressed features at Q < 0.05). This 

was intriguing in the context of our work demonstrating that the ETS family members 
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ERG, ETV1, and ETV4 are markedly over-expressed in prostate cancer through fusions 

with the androgen-regulated gene TMPRSS2 (33, 34) and our observation that ETS target 

genes involved in protein biosynthesis are over-expressed in PIN (and prostate cancer) 

compared to benign prostatic epithelium. We observed mutually exclusive over-

expression of ERG, ETV1 or ETV4 (>3.5 normalized z-score units) in 20 of 30 localized 

prostate cancer samples (from 12 of 19 cases) but in contrast, 0 of the 22 benign or 13 

PIN samples. Importantly, our data set contains 3 cases where we captured both PIN and 

prostate cancer lesions, and an ETS family member (ERG) was markedly over-expressed 

in the prostate cancer samples. The magnitude of ERG up-regulation in prostate cancer 

relative to PIN was dramatic in each case, with ERG being the most up-regulated feature 

in cases 5 and 7 and the second most in case 17. In addition, in cases where multiple 

prostate cancer foci were profiled, either all or no foci over-expressed ERG, ETV1 or 

ETV4, suggesting that this is a clonally selected event occurring early in prostate cancer 

development.  

It is unclear if tumors with or without TMPRSS2:ETS fusions have distinct 

expression signatures. Thus, in our study and two others (11, 35), we divided localized 

prostate cancers into ETS over-expressing (ERG, ETV1 or ETV4) and non-ETS over-

expressing and attempted to identify expression signatures. In each study, we identified 

molecular signatures differentiating ETS and non-ETS tumors (this study = 157 features, 

Lapointe et al. (11) = 524 features, Glinsky et al. (35) = 3,328 at Q < 0.05). Importantly, 

the three signatures were highly overlapping (Figure 4.4). For example, the over-

expressed in ETS vs. non-ETS signatures from Glinsky et al. (35) and this study were the 

two most enriched Oncomine signatures in Lapointe et al.’s (11) over-expressed in ETS 

vs. non-ETS signature (P = 3E-74 and 1.6E-54, respectively). Although few concepts 

were significantly enriched across all three studies,  “6q21” was the most enriched 

chromosome sub-arm in all three over-expressed in ETS vs. non-ETS signatures (this 

study, 1.20E-04; Lapointe et al. (11) = 1.80E-08; Glinsky et al. (35) = 8.30E-06) (Figure 

4.4). This suggests a cooperating amplification at 6q21 in TMPRSS2:ETS tumors or loss 

of 6q21 in non-TMPRSS2:ETS tumors; intriguingly, multiple studies have identified loss 

of 6q21 in approximately half of localized prostate cancers  (36). Thus, down-regulation 

of genes at 6q21 may be important to tumor development in TMPRSS2:ETS negative 
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prostate cancers, providing an important direction for future studies. For example, 

FOXO3A, which showed reduced expression in non-ETS tumors in all three studies, has 

been proposed as a prostate cancer tumor suppressor through promoting the expression of 

CDKN1B (p27kip1) and BCL2L11 (BIM) (37, 38).   

Metastatic prostate cancer is generally considered incurable and treatment 

becomes palliative in nature. Treatment with anti-androgens usually results in regression; 

unfortunately, the cancer almost invariably progresses with a hormone-refractory (HR) 

phenotype. Thus, identifying signatures and concepts differentiating clinically localized 

from untreated, or hormone naïve (HN), and HR metastatic prostate cancer is essential to 

understanding progression. As our study set did not contain enough HN metastatic 

samples (n =3) for comprehensive analysis, we used two data sets in Oncomine 

containing benign prostate, localized and HN metastatic prostate cancer (Lapointe et al. 

(11) and Vanaja et al. (14)). MCM analysis of these studies revealed two distinct 

interaction networks—centered on protein biosynthesis and proliferation concepts— 

enriched in over-expressed in progression (benign to localized to HN metastatic prostate 

cancer) and in HN metastatic  vs. localized prostate cancer signatures (Figure 4.5). For 

example, “protein biosynthesis” was the most enriched GO Biological Process in both 

Vanaja et al. (14) and Lapointe et al.’s (11) over-expressed in progression signatures (P = 

2.29E-29 and 7.0E-13,  respectively). Similarly, “Differentially expressed genes in Hela 

cells during the cell cycle” was the most enriched literature concept in the over-expressed 

in HN metastatic vs. localized prostate cancer signatures from both studies (Vanaja et al. 

(14) P = 1.3E-19 and Lapointe et al. (11) P = 3.0E-15) (Figure 4.5). Importantly, in both 

studies, progression signatures are more strongly linked to protein biosynthesis, while 

HN metastatic vs. localized prostate cancer signatures are more strongly linked to 

proliferation concepts. Increased protein biosynthesis defined our PIN vs. benign and 

localized prostate cancer vs. benign signatures, suggesting that protein biosynthesis 

concepts are similarly over-expressed in HN metastatic prostate cancer, while increased 

proliferation distinguishes HN metastatic from localized prostate cancer.  

To understand the transition from HN to HR metastatic prostate cancer, we 

compared the HN metastatic enrichment networks just described to corresponding HR 

metastatic signatures from our study and Varmabally et al.’s (22) study. Progression to 
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HR metastatic prostate cancer and HR metastatic vs. localized prostate cancer signatures 

from both studies were highly enriched with the proliferation network (Figure 4.5). For 

example, “Differentially expressed genes in Hela cells during the cell cycle” was the 

most enriched literature concept in both over-expressed in progression signatures (this 

study, P = 1.7E-10; Varambally et al. (22) P = 2.4E-36) and in Varambally et al.’s HR 

metastatic vs. localized prostate cancer signature (P = 3.2E-28). However, these 

signatures did not show significant enrichment of protein biosynthesis concepts. Rather, 

our under-expressed in HR metastatic vs. localized prostate cancer signature showed 

strong enrichment with protein biosynthesis concepts (Figure 4.5). Additionally, the 

strongest enrichment in this signature was for decreased androgen signaling concepts, 

consistent with the castrated HR state. For example, “Upregulated genes in prostate 

cancer cells in response to synthetic androgen R1881” was the most enriched literature 

concept (P = 2.1E-31). These results suggest that while HR and HN metastatic prostate 

cancer share increased proliferation, only HR metastatic cancers show marked decrease 

of androgen signaling and protein biosynthesis concepts. As protein biosynthesis 

decreased with decreased androgen signaling, while increased protein biosynthesis and 

androgen signaling activity occur from benign to PIN, this supports a link between 

androgen signaling, ETS transcriptional targets and protein biosynthesis. This is in 

agreement with studies showing that androgen ablation causes reduction in nucleloar size 

and regression of PIN (39). 

Utilizing LCM also allowed us to profile distinct Gleason patterns of cancerous 

epithelium. We divided our cancer samples into two classes, low (only Gleason pattern 3) 

and high (samples with Gleason patterns > 3). We did not identify robust signatures 

distinguishing low and high grade samples (2 features at Q < 0.05) (Figure 4.6). 

However, Lapointe et. al’s (11) over- (P = 6.4E-49) and under-expressed (P = 1.5E-36) in 

high Gleason grade signatures are the most enriched Oncomine signatures in our over- 

and under-expressed in high Gleason grade signatures, respectively, supporting the 

existence of more subtle multi-gene signatures. We also validated several of the most 

differentially expressed features using QPCR on an independent set of grossly dissected 

tumors (Figure 4.6). We further validated the under-expression of SLC22A3 in high 

Gleason grade tumors by immunohistochemistry (IHC) on tissue microarrays. SLC22A3 
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ranked 15th in our under-expressed in high Gleason grade signature and 47th in our under-

expressed in progression signature. IHC confirmed the decrease in SLC22A3 expression 

during progression (benign to prostate cancer, P = 0.003; localized to metastatic prostate 

cancer, P = 0.009) as well as decreased expression in high compared to low Gleason 

grade cancer (P = 1.1E-5) (Figure 4.6). A recent report defining LCM-isolated signatures 

from low and high Gleason grade prostate cancer also found marked under-expression of 

SLC22A3 in high Gleason grade cancer (ranking 3rd by fold change) (9), further 

validating SLC22A3 as a marker for Gleason grade. 

 Although few transcripts were differentially expressed between low and high 

Gleason grade cancer, MCM analysis identified strong enrichment of decreased androgen 

signaling in high Gleason grade cancers (Figure 4.6). For example, “Upregulated genes 

in prostate cancer cells in response to synthetic androgen R1881” (which includes 

SLC22A3), was the most enriched literature concept in our and Lapointe et al.’s (11) 

under-expressed in high vs. low Gleason grade signature (P = 1E-11 and 1.8E-16).  

By combining LCM-based profiling with an integrative molecular concepts 

analysis, we identified genes, concepts and enrichment networks correlating with the 

histologic progression of prostate cancer, leading to a unified molecular model (Figures 

7 & 8). We confirmed the dysregulation of several genes (including TMPRSS2:ETS gene 

fusions, AMACR, MYC, EZH2, PTEN, GSTP1, NKX3-1, MME and AZGP1) and concepts 

(including increased expression of genes on 8q and proliferation genes) previously linked 

to prostate cancer progression (40, 41). We also identified molecular concepts correlating 

with known histological features of prostate cancer progression. For example, the 

defining histological characteristic of PIN is an enlarged nucleolus (4, 42), the organelle 

responsible for controlling protein biosynthesis, consistent with our concept analyses.  

Our concepts-based analysis allowed us to make several insights into prostate 

cancer progression. MCM analysis identified strong enrichment of ETS transcription 

factor targets in genes involved in protein biosynthesis. Although we are unaware of 

direct evidence linking ETS target genes to protein biosynthesis regulation in prostate 

cancer, our results suggest that this pathway is up-regulated during the transition from 

benign epithelium to PIN and down-regulated from localized to HR metastatic prostate 

cancer.  
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This result is important in light of our recent discovery of TMRPSS2:ETS gene 

fusions in the majority of prostate cancers (33, 34). Our analysis suggests that this is one 

of the few expression changes distinguishing PIN and prostate cancer, consistent with the 

similar histological appearance of PIN and prostate cancer cells. As ETS targets are 

dysregulated in PIN, possibly through subtle direct dsyregulation of ETS family members 

or through a distinct genetic lesion with overlapping targets (such as MYC or PTEN, 

which can regulate protein biosynthesis (43)), these gene fusions may serve to lock in the 

dysregulation of this pathway and allow for the development of overt carcinoma. 

Additionally, as ETS targets are already over-expressed in PIN, TMPRSS2:ETS fusions 

may bypass feedback mechanisms, dysregulating a limited number of targets, or result in 

modest expression changes.  

 Our study confirms the central role of androgen signaling in prostate cancer. We 

identified increased androgen signaling from benign to PIN, and decreased androgen 

signaling from PIN to localized cancer, low to high Gleason grade prostate cancer and 

localized to HR metastatic prostate cancer. Furthermore, enrichment analysis suggests 

that decreased androgen signaling also occurs from clinically localized to HN metastatic 

prostate cancer, as “Upregulated genes (time dependent) in prostate cancer cells in 

response to androgen” is the most enriched literature concept in Lapointe et al.’s under-

expressed in HN metastatic vs. localized prostate cancer signature (P = 2.9E-14). A 

recent report by Hendriksen et al. (44) utilized an experimentally derived set of androgen 

regulated genes to analyze the Lapointe et al. study (11), and the authors also observed 

decreased androgen signaling in high vs. low Gleason grade cancers and HN metastatic 

vs. localized prostate cancer. The authors proposed a model where localized prostate 

cancer cells become more aggressive by selectively down-regulating androgen responsive 

genes resulting in increased proliferation, de-differentiation or reduced apoptosis. An 

alternative explanation is that the relative amount of androgen signaling during 

progression reflects the differentiation status of prostatic epithelium, while separate 

lesions drive the increased proliferation seen late in progression. For example, 8q was the 

most enriched chromosome arm in both our and Lapointe et al.’s (11) over-expressed in 

high Gleason grade signatures, and 8q is significantly enriched across progression 

signatures along with proliferation related concepts (see Figure 4.5). As described above, 
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MYC (8q24), a master regulator of cell cycle control, has been shown to be amplified in 

progression, with amplification correlating with increased Gleason grade and progression 

to metastatic prostate cancer (23, 24).    

 The marked decrease in androgen signaling concepts observed from localized to 

HR metastatic prostate cancer is consistent with a recent profiling study (45), which the 

authors attributed to the castrated state. Importantly, they noted that although 

dramatically down-regulated in HR metastatic cancer, androgen-regulated genes were 

still major transcripts in the cancerous cell. HR metastatic cancers select for mechanisms 

to maintain androgen signaling (such as androgen receptor amplifications or mutations 

(46, 47)), consistent with survival of cancerous prostate cells requiring minimal androgen 

signaling. This is consistent with TMPRSS2:ETS gene fusions driving prostate cancer 

development, as even minimal androgen signaling activity would result in inappropriate 

expression of ETS family members, due to the strong androgen promoter/enhancer 

elements regulating TMPRSS2 expression (48). Our results support a model where 

genetic changes resulting in increased proliferation drive the transition to HN metastatic 

prostate cancer, while androgen ablation forces the selection of lesions that restore a 

minimal level of androgen signaling to allow continued survival in the castrated state.  

By combining specific profiling with an integrated analysis, we identified 

concepts correlating with observed histological transitions in prostate cancer progression. 

By utilizing the MCM, we identified enrichment networks of linked concepts 

dysregulated during progression, such as ETS target genes and protein biosynthesis. As 

all concepts in the MCM are automatically tested for association, we were also able to 

identify distinct enrichment networks by their lack of association, such as the 

proliferation and protein biosynthesis networks, which are both enriched in the 

progression to HN metastatic disease without sharing significant overlap. Our work also 

demonstrates that enriched signatures and concepts can be identified across studies, 

microarray platforms, and signatures from grossly dissected and LCM isolated tissues. 

More broadly, our work demonstrates that integrative analysis of expression profiles with 

a compendium of molecular concepts provides insight into biological and disease 

processes. 
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Methods 
Tissues were from the radical prostatectomy series at the University of Michigan 

and from the Rapid Autopsy Program, which are both part of University of Michigan 

Prostate Cancer Specialized Program of Research Excellence (S.P.O.R.E.) Tissue Core. 

Tissues were also obtained from a radical prostatectomy series at the University Hospital 

Ulm (Ulm, Germany). All samples were collected with informed consent of the patients 

and prior institutional review board approval at each institution. For the reference sample 

in all hybridizations, a commercially available pool of benign prostate tissue total RNA 

(CPP, Clontech) was used.  

 Sample classes include: stroma from patients with no history of prostate disease 

(STROMA_NOR), stromal nodules of benign prostatic hyperplasia (BPH) 

(STROMA_BPH), stroma adjacent to prostate cancer foci (STROMA_PCA), epithelium 

from patients with no history of prostatic disease (EPI_NOR), epithelium from nodules of 

BPH (EPI_BPH), epithelium from patients with prostate cancer (EPI_ADJ_PCA), 

atrophic epithelium (EPI_ATR) including PIA (EPI_ATR_PIA), PIN, localized prostate 

cancer, and hormone naïve or refractory metastatic prostate cancer (MET_HN or 

MET_HR, respectively). For this study, we defined benign epithelium to include 

EPI_NOR, EPI_BPH and EPI_ADJ_PCA. As described in the text, due to the low 

number of PIA and HN metastatic samples, we excluded them from all signatures except 

for the stromal vs. epithelial signature.  
 Laser Capture Microdissection (LCM) was performed from frozen tissue sections 

with the SL Microtest device using microCUT software (MMI). Approximately 10,000 

cells were captured for each sample. Serial sections were used if cells could not be 

obtained from a single section. Total RNA was isolated from captured cells with the 

RNAqueous Micro kit (Ambion) and treated with DNAse I according to the 

manufacturer's instructions. RNA quantification was performed using Ribogreen 

(Molecular Probes)..   

 Exponential RNA amplification was performed using a TransPlex Whole 

Transcriptome Amplification (WTA) kit (Rubicon Genomics, Ann Arbor, MI) as 

described (20) and complete details are provided in the MIAME checklist. Complete 

details of printing the 20K element spotted cDNA microarrays used, post-processing, 
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labeling hybridization and normalization of the arrays are available in the MIAME 

checklist. A single commercially available pool of benign prostate tissue (Clontech) was 

used as the reference (Cy3) in all hybridizations and was amplified in parallel to LCM 

isolated samples (Cy5). Arrays were auto-gridded by GenePix 4.0. Features flagged by 

GenePix as not found during grid alignment and areas of obvious defects were manually 

flagged and both were excluded from further analysis. To create the data set for 

uploading into the Oncomine database, features were ranked based on the Sum of the 

Medians (Cy3 + Cy5 intensity for each feature) and the bottom 10% were excluded. The 

Median of Ratios (log2 of Cy5/Cy3) for each included feature was normalized using 

locally weighted regression (lowess) with a window of 0.6 using custom software written 

in Perl and R. To exclude unreliable features, features showing an average normalized 

Median of Ratios of > 1.5 or < 0.75 across a series of self-self hybridizations (including 

unamplified and WTA amplified samples performed for both print runs utilized in this 

study) were removed from all arrays in the individual print run. Finally, to remove biases 

associated with the use of two print runs, all features were median centered per print run 

before compilation into the final data set. The pairs of individual hybridizations 

representing the replicate hybridizations (as described in the MIAME checklist) were 

averaged before utilization of the data.  

A complete description of the methods used to identify gene signatures in the 

Oncomine database and gene set enrichment in the context of the Molecular Concepts 

Map (MCM) is available ((19, 21, 49) and www.oncomine.org). All gene expression 

studies catalogued in Oncomine, including this study, are normalized in the same manner. 

All data were log-transformed, median centered per array, and standard deviation 

normalized to one per array. For differential expression, a Student’s t-test was used for 

two class differential expression analyses (e.g. high grade  vs. low grade) and Pearson’s 

correlation was used for multi-class ordinal analyses (e.g. benign, PIN, localized prostate 

cancer and metastatic prostate cancer) and genes were rank-ordered by P values. P-values 

for expression signatures are also corrected for multiple hypothesis testing (Q-value) 

using the false discovery rate method (50). The top 1%, 5%, 10% and 20% of each 

expression signature was used for enrichment analysis against all concepts in the MCM. 

Each pair of molecular concepts was also tested for association using Fisher’s exact test. 
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Each Oncomine generated gene signature, including those described here, generated four 

molecular concepts based on the 1%, 5%, 10% and 20% cutoffs. Each concept was 

analyzed independently and the most significant of the four was reported. Results were 

stored if a given test had an odds ratio > 1.25 and p-value < 0.01. P-values < 1E-100 were 

set to 1E-100. Q-values were computed for all enrichment analyses. Concepts enriched in 

our signatures were identified in Oncomine and enrichment networks were visualized 

using the MCM.  

Quantitative real time PCR (QPCR) was performed on an independent set of 

grossly dissected benign, localized prostate cancer and metastatic prostate cancer tissue 

samples essentially as described using SYBR Green dye on an Applied Biosystems 7300 

Real Time PCR system (33). Standard curves of pooled cDNA were run for each primer 

pair, and the amount of target gene in each sample was normalized to the amount of 

HMBS or the average of HMBS and GAPDH, as indicated, in the corresponding sample. 

Tissues were homogenized in Trizol (Invitrogen) and total RNA was isolated using the 

standard Trizol protocol.  

IHC was performed using a goat polyclonal antibody against SLC22A3 (sc-

18516, Santa Cruz Biotechnologies, Santa Cruz, CA) on a prostate cancer progression 

tissue microarray (TMA). The staining intensity of epithelial cells in each core was 

scored as strong (3), moderate (2), weak (1), or negative (0), and multiplied by the 

percentage of epithelial cells stained in the core.  

The complete microarray data set is available from GEO (GSE6099) and 

Oncomine. 
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Figure 4.1. Integrative analysis of molecular concepts in prostate cancer progression. A. Samples 
representing different aspects of progression, such as prostatic intraepithelial neoplasia as shown, were 
obtained by laser capture microdissection and hybridized to cDNA microarrays. Normalized data was 
loaded into the Oncomine database for analysis. B. Using the tools available in Oncomine, gene signatures 
were identified for pairwise comparisons, such as low vs. high Gleason grade prostate cancer, or correlation 
analyses, such as genes correlating with progression from benign epithelium to prostate cancer (PCA) to 
metastatic prostate cancer (Met). C. Expression signatures were automatically compared to all concepts in 
the Molecular Concept Map (MCM), a resource containing approximately 15,000 molecular concepts 
(biologically related genes), for enrichment by disproportionate overlap. D. Enrichment networks were then 
visualized using the MCM for significant links between concepts.   
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Figure 4.2. Expression signatures and molecular concept analysis of cancer progression in 
microdissected prostatic epithelia. A. Genes correlating with progression from benign to PIN to prostate 
cancer (PCA) to hormone refractory metastatic prostate cancer (Met) were identified. B-C. Network view 
of the molecular concept analysis of our over-expressed (B) or under-expressed (C) during progression 
signatures defined in A. Each node represents a molecular concept, or set of biologically related genes. The 
node size is proportional to the number of genes in the concept. Each edge represents a significant 
enrichment (P < 5E-4). The most enriched concept of each type in the progression signature is indicated by 
a thick edge. Enrichments with “androgen concepts”, indicating decreased androgen signaling during 
prostate cancer progression, are indicated by green edges. Enrichments with “proliferation” concepts are 
indicated by orange edges.           
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Figure 4.3. Molecular concepts analysis comparing benign epithelium to prostatic intraepithelial 
neoplasia (PIN).  A. The top 20 over- (left panel) and under-expressed features (right panel) in PIN 
compared to benign are indicated. B. Network view of the molecular concepts enriched in our over-
expressed in PIN vs. benign signature. Enrichments with interconnected “androgen concepts”, indicating 
increased androgen signaling in PIN vs. benign, are indicated by red edges. Enrichments with 
interconnected “protein biosynthesis concepts”, indicating increased protein biosynthesis in PIN vs. benign, 
are indicated by blue edges.  
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Figure 4.4. Prostate cancers with and without ETS family over-expression have distinct expression 
signatures involving chromosome 6q21. Oncomine was used to determine if prostate cancers with or 
without over-expression of ETS transcription factors (ERG, ETV1 or ETV4) have distinct expression 
signatures. A. Network view of molecular concepts enriched in ETS vs. non ETS cancers. B-D. Heat map 
of genes from the 6q21 concept enriched in ETS-over-expressing tumors in (B) this study, (C) Lapointe et 
al.(11) and (D) Glinsky et al.(35). In each study, cancers over-expressing ERG (red), ETV1 (green) or 
ETV4 (yellow) were compared to cancers without ETS family over-expresison (black). 
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Figure 4.5. Differential expression of proliferation, protein biosynthesis and androgen signaling 
concepts in clinically localized, hormone naïve metastatic and hormone refractory metastatic 
prostate cancer. To identify concepts dysregulated between localized, hormone naïve (HN) and hormone 
refractory (HR) metastatic prostate cancer, we identified enrichment networks for progression signatures 
(as defined in the text) and metastatic vs. localized prostate cancer signatures from our study and three 
others indicated by the last name of the first author.   
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Figure 4.6. Molecular concepts analysis of low and high Gleason grade prostate cancer. A. Molecular 
Gleason signatures. B. Heat map of QPCR validation experiments in an independent panel of grossly 
dissected prostate cancer samples containing > 90% of Gleason pattern 3 (black) or 4 (white) cells. C. 
Validation of decreased SLC22A3 expression in progression and high grade prostate cancer. Expression of 
SLC22A3, which ranks highly in our under-expressed in high Gleason grade signature (15th) and 
progression signature (49th), was measured using immunohistochemistry on a tissue microarray. d. 
Androgen signaling is decreased in high Gleason grade prostate cancer.  
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Figure 4.7. Molecular concepts heatmap of prostate cancer progression.   
Concept view of expression profiles for epithelial cells from the histological transitions in prostate cancer 
progression.  
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Figure 4.8. Molecular concepts model of prostate cancer progression.  
The relative expression of enriched concepts identified by expression profiling of specific cell populations 
was used to develop a molecular concepts model of prostate cancer (PCA) progression to hormone naïve 
(HN) and hormone refractory (HR) metastatic PCA. Molecular concepts are indicated according to the 
legend.    
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CHAPTER 5 

 

DISTINCT CLASSES OF CHROMOSOMAL REARRANGEMENTS CREATE 
ONCOGENIC ETS GENE FUSIONS IN PROSTATE CANCER 

 
Recently, we identified recurrent gene fusions involving the 5’ untranslated 

region of the androgen-regulated gene TMPRSS2 and the ETS family genes ERG, ETV1 

or ETV4, in the majority of prostate cancers (1, 2). While TMPRSS2:ERG  fusions are 

predominant, fewer TMPRSS2:ETV1 cases have been identified than expected based on 

the frequency of ETV1 outlier-expression (3-13). Here we explored the mechanism of 

ETV1 outlier-expression in prostate tumors and prostate cancer cell lines.  We identified 

novel 5’ fusion partners in prostate tumors with ETV1 outlier-expression, including 

untranslated regions from a prostate-specific androgen-induced gene (SLC45A3) and 

endogenous retroviral element (HERV-K_22q11.23), a prostate-specific androgen-

repressed gene (C15ORF21), and a strongly expressed housekeeping gene (HNRPA2B1). 

To study aberrant activation of ETV1, we identified two prostate cancer cell lines, LNCaP 

and MDA-PCa 2B, with ETV1 outlier-expression. Through distinct mechanisms, the 

entire ETV1 locus (7p21) is rearranged to a 1.5MB prostate-specific region at 14q13.3-

14q21.1 in both LNCaP (cryptic insertion) and MDA-PCa 2B (balanced translocation). 

As the commonality of these rearrangements is aberrant ETV1 over-expression, we 

recapitulated this event in vitro and in vivo, demonstrating that ETV1 over-expression in 

benign prostate cells and the mouse prostate confers neoplastic phenotypes. Identification 

of distinct classes of ETS gene rearrangements demonstrates that dormant oncogenes can 

be activated in prostate cancer by juxtaposition to tissue-specific or ubiquitously active 

genomic loci. Subversion of active genomic regulatory elements may serve as a more 

generalized mechanism for carcinoma development. Furthermore, the identification of 
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androgen-repressed and insensitive 5’ fusion partners may have implications for the anti-

androgen treatment of advanced prostate cancer. 

Recurrent chromosomal rearrangements have been causally implicated in 

hematologic and mesenchymal malignancies; while predicted to occur in common 

epithelial carcinomas, they have not been well characterized (14, 15). Using a 

bioinformatics strategy to nominate genes showing high (“outlier”) expression in a subset 

of  cancers, we identified fusions of the 5’-untranslated region of TMPRSS2 (21q22) to 

ERG (21q22), ETV1 (7p21), or ETV4 (17q21) in cases that over-expressed the respective 

ETS family member (1, 2). TMPRSS2 had previously been characterized as androgen-

regulated (16), and its androgen-responsive regulatory elements drive ETS family 

member outlier-expression (1, 17). Thus, TMRPSS2:ETS fusions are functionally similar 

to hematological malignancy rearrangements where tissue-specific promoter or enhancer 

elements of one gene are juxtaposed to proto-oncogenes (15, 18). 

Multiple studies have confirmed the presence of TMPRSS2:ERG fusions in 36-

78% of prostate cancers from PSA-screened surgical cohorts. Approximately 90% of 

samples with ERG outlier-expression harbor TMPRSS2:ERG fusions (1, 19), confirming 

this as the predominant mechanism driving ERG over-expression.  In contrast, while 

microarray studies show ETV1 outlier-expression in 6-16% of prostate cancer samples, 

only 2 of 205 (1.0%) analyzed samples harbored TMPRSS2:ETV1 fusions.  

Here we addressed this discrepancy between ETV1-outlier and TMPRSS2:ETV1 

frequencies. By quantitative PCR (qPCR) across two cohorts, 26 and 3 of 54 localized 

prostate cancer samples showed ERG (48%) and ETV1 (5.5%) outlier-expression, 

respectively.  Additionally, two hormone-refractory metastatic prostate cancer samples, 

MET26 (our TMPRSS2:ETV1 index case (1)) and MET23, showed ETV1 outlier-

expression. However, besides MET26, no samples expressed TMPRSS2:ETV1 fusion 

transcripts. 

To characterize the ETV1 transcript in outlier cases, we performed 5’ RNA ligase 

mediated rapid amplification of cDNA ends (RLM-RACE). Rather than 5’ exons from 

TMPRSS2, the other four samples contained unique 5’ sequences (Figure 5.1). In 

PCa_ETV1_1, exons 1-4 of ETV1 were replaced with two exons from 22q11.23 with 

homology to human endogenous retrovirus family K (referred to as HERV-K_22q11.23). 
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In PCa_ETV1_2, exon 1 of ETV1 was replaced with exon 1 from HNRPA2B1 (7p15), 

while in PCa_ETV1_3, exons 1-4 of ETV1 were replaced with a 5’-extended exon 1 of 

SLC45A3 (1q32). In MET23, exons 1-5 of ETV1 were replaced with exons 1-2 from 

C15ORF21 (15q21) (Figure 5.1). We confirmed these fusion transcripts by qPCR and 

genomic fusions by fluorescent in situ hybridization (FISH). 

HERV-K_22q11.23:ETV1, SLC45A3:ETV1 and C15ORF21:ETV1 fusions contain 

no predicted translated sequences from the 5’ partner, and HNRPA2B1 would only 

contribute two residues to a HNRPA2B1:ETV1 fusion protein. As their regulatory 

elements likely drive aberrant ETV1 expression, we characterized the tissue specificity 

and androgen-regulation of these 5’ partners by microarray or massively parallel 

signature sequencing (MPSS). Similar to TMPRSS2, SLC45A3 showed marked over-

expression in prostate cancer (median = 2.45 standard deviations above the median per 

array) compared to other tumor types (median = 0.33, P = 2.4E-7) in a large DNA 

microarray study. C15ORF21 showed similar over-expression in prostate cancer (P = 

3.4E-6). By contrast, HNRPA2B1 showed high expression in prostate and other tumor 

types (median = 2.36 vs. 2.41, P > 0.05) (Figure 5.1). By MPSS, HERV-K_22q11.23 was 

highly expressed in normal prostate (94 transcripts per million) compared to the 31 other 

normal tissues (median = 9 transcripts per million) (Figure 5.1). By qPCR, endogenous 

expression of SLC45A3 (21.6 fold, P = 6.5E-4) and HERV-K_22q11.23 (7.8 fold, P = 

2.4E-4) in the LNCaP prostate cancer cell line are strongly increased by the synthetic 

androgen R1881, similar to TMPRSS2 (14.8 fold, P = 9.95E-7). Conversely, the 

expression of C15ORF21 is significantly decreased (1.9 fold, P = 0.0012) and the 

expression of HNRPA2B1 is not effected by R1881 stimulation (1.17 fold, P = 0.29)) 

(Figure 5.1).  

We next sought to identify cell line models of ETV1 outlier-expression. 

Previously, we reported that LNCaP markedly over-expressed ETV1, however RLM-

RACE revealed expression of only the wild type transcript (1). We hypothesized that 

LNCaP may harbor a novel rearrangement affecting the expression of ETV1, and utilized 

a split-probe FISH strategy to look for gross rearrangements (Figure 5.2). On LNCaP 

metaphase spreads, this assay revealed two pairs of co-localizing signals at the ETV1 

locus (7p), and two split signals where the 5’ signals remained on 7p, while the 3’ probes 
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(overlapping the ETV1 locus) were inserted into another chromosome (Figure 5.2).We 

identified this rearrangement as a cryptic insertion of a minimal region around ETV1 into 

intronic sequence from the MIPOL1 locus at 14q13.3-14q21.1 in LNCaP (Figure 5.2). 

Screening additional prostate cancer cell lines for ETV1 over-expression, we 

identified ETV1-outlier expression in MDA-PCa 2B. A previous analysis of MDA-PCa 

2B demonstrated the presence of a balanced t(7;14)(p21;q21) (20), the locations of the 

ETV1 and MIPOL1 loci. We demonstrate that MDA-PCa 2B also harbor a rearrangement 

involving ETV1, as the ETV1 locus translocates to the d14 (Figure 5.2). The 1.5 MB 

14q13.3-14q21.1 region is the partner of this balanced translocation, as the telomeric 

14q13.3-14q21.1 probe localizes to the d7.   

The existence of mechanistically distinct rearrangements resulting in the 

localization of ETV1 to 14q13.3-14q21.1 (Figure 5.2) in prostate cancer cell lines with 

ETV1 outlier-expression suggests that elements at this region mediate the aberrant 

expression. By characterizing the tissue specificity and androgen regulation of the four 

contiguous genes at the 14q13.3-14q21.1 breakpoint (SLC25A21, MIPOL1, FOXA1 and 

TTC6 ) (Figure 5.2) and ETV1 in LNCaP and its androgen insensitive derivative C4-2B, 

we demonstrate that this region is both prostate specific and coordinately regulated by 

androgen.     

As the 5’ partners do not contribute coding sequence to the ETV1 transcript, the 

common result of the different ETV1 rearrangements in clinical samples and prostate 

cancer cell lines is aberrant over-expression of truncated ETV1. We recapitulated this 

event in vitro and in vivo to determine the role of aberrant ETS family member expression 

in prostate cancer. We designed adenoviral and lentiviral constructs to over-express ETV1 

as expressed in our index TMPRSS2:ETV1 fusion positive case, MET26. In RWPE and 

PrEC cells, ETV1 over-expression had no detectable effect on proliferation. ETV1 over-

expression had no effect on the percentage of RWPE cells in S phase of the cell cycle and 

was not sufficient for transformation.   

However, ETV1 over-expression markedly increased invasion in a basement 

membrane invasion assay  in RWPE (3.4 fold, P = 0.0005) (Figure 5.3) and PrEC (6.3 

fold, P = 0.0006). Additionally, ETV1 knockdown in LNCaP using either siRNA or 

shRNA inhibited invasion (Figure 5.3), consistent with previous work (21). To 
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investigate the transcriptional program regulated by ETV1, we profiled stable RWPE-

ETV1 cells and analyzed the expression signatures using the Oncomine Concepts Map 

(OCM, www.oncomine.org). The OCM is a resource to look for associations between 

more than 20,000 biologically related gene sets by disproportionate overlap (10, 22). As 

shown in Figure 5.3, OCM analysis identified a network of molecular concepts related to 

cell invasion that were enriched in our ETV1 over-expressed signature, consistent with 

the phenotypic effects described above.  

  We next determined the effects of ETV1 over-expression in vivo. We generated 

transgenic mice expressing FLAG-tagged, truncated version of  ETV1 under the control 

of the modified probasin promoter (ARR2Pb-ETV1), which drives strong transgene 

expression exclusively in the prostate under androgen regulation (23). This transgene is 

functionally analogous to the androgen-induced gene fusions of ETV1 we identified in 

human prostate cancer. By 12-14 weeks of age, 6 of 8 (75%) ARR2Pb-ETV1 mice 

developed mouse prostatic intraepithelial neoplasia (mPIN) (Figure 5.4). Consistent with 

the definition of mPIN (24), we observed focal proliferative lesions contained within 

normal glands in the prostates of ARR2Pb-ETV1 mice (Figure 5.4), exhibiting nuclear 

atypia, including stratification, hyperchromasia and macronucleoli. mPIN was observed 

in all three prostatic lobes (anterior, ventral and dorsolateral) of ARR2Pb-ETV1 mice, and 

most commonly in the ventral lobe (7/11, 63.6%). By immunohistochemistry in 

ARR2Pb-ETV1 mice, we observed strong ETV1-FLAG expression exclusively in mPIN 

foci and not benign glands (data not shown). While we have not observed progression to 

invasive carcinoma in ARR2Pb-ETV1 mice, we have only characterized 4 mice at greater 

than 19 weeks of age, 3 of which (75%) also had mPIN, suggesting that additional 

genetic lesions are required for the development of carcinoma. Combined with our in 

vitro observations, these results demonstrate that ETV1 induces a neoplastic phenotype in 

the mouse prostate and supports an oncogenic role for ETS gene fusions in human 

prostate cancer.    

Including TMPRSS2:ETS fusions, we have now identified five classes of ETS 

rearrangements in prostate cancer. Identification of untranslated regions from the 

prostate-specific androgen-induced gene TMPRSS2 provided a mechanism for aberrant 

ETS family member expression. Thus, TMPRSS2:ETS gene fusions (Class I) represent 
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the predominant class of ETS rearrangements in prostate cancer. Rearrangements 

involving fusions with untranslated regions from other prostate-specific androgen-

induced 5’ partner genes (Class IIa) or endogenous retroviral elements (Class IIb), are 

likely functionally similar to TMPRSS2:ETS rearrangments. Similar to 5’ partners in class 

I and II ETS rearrangements, C15ORF21 is markedly over-expressed in prostate cancer, 

however as C15ORF21 is repressed by androgen, this represents a novel class of 

rearrangements (Class III) involving prostate-specific androgen-repressed 5’ partners.  

By contrast, HNRPA2B1, which encodes a member of the ubiquitously expressed 

heteronuclear ribonuclear proteins, did not show prostate-specific expression or 

androgen-responsiveness. Thus, HNRPA2B1:ETV1 represents a novel class of ETS 

rearrangements (Class IV), where non-tissue specific promoter elements drive ETS 

expression. While class I-III ETS rearrangements are functionally analogous to IGH-MYC 

rearrangements in B cell malignancies, HNRPA2B1:ETV1 is more analogous to 

inv(3)(q21q26) and t(3;3)(q21;q26) in acute myeloid leukemia, which are thought to 

place EVI under the control of enhancer elements of the constitutively expressed RPN1 

gene (25, 26). 

 Screening prostate cancer cell lines with ETV1 outlier-expression, we identified 

rearrangements in LNCaP and MDA-PCa 2B resulting in the localization of ETV1 to 

14q13.3-14q21.1. As this aberration is recurrent in prostate cancer cell lines, we 

hypothesize that characterizing additional prostate cancer cases with ETV1-oultier 

expression will identify clinical specimens with similar rearrangements (class V), where 

the entire ETS gene is rearranged to prostate-specific regions. The identification of 

distinct classes of 5’ fusion partners has implications for the detection of gene fusions in 

prostate cancer and may be important for management, particularly with regard to the 

effects of androgen ablation on the expression of the different ETS rearrangement 

classes.  

Multiple classes of gene rearrangements in prostate cancer suggest a generalized 

role for chromosomal rearrangements in common epithelial cancers. For example, tissue 

specific promoter elements may be fused to oncogenes in other hormone driven cancers, 

such as breast cancer. Additionally, while prostate specific fusions would not provide a 

growth advantage and be selected for in other epithelial cancers, fusions involving strong 
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promoters of ubiquitously expressed genes, such as HNRPA2B1, could result in the 

aberrant expression of oncogenes across tumor types. In summary, this study supports a 

role for chromosomal rearrangements in common epithelial tumor development through a 

variety of mechanisms, similar to hematological malignancies.   

 

Methods 

Quantitative PCR, RLM-RACE for ETV1 fusions, androgen stimulation of 

LNCaP cells and interphase FISH were performed essentially as described (1, 2). Tissue 

specific expression of 5’ fusion partners was determined using the International 

Genomics Consortium’s expO dataset accessed in the Oncomine database (27) and the 

Lynx Therapeutics MPSS dataset (GSE1747). Expression profiling was performed using 

Agilent Whole Human Genome Oligo Microarrays. Adenoviruses and lentiviruses 

expressing ETV1 were generated by the University of Michigan Vector Core. Transgenic 

ARR2Pb-ETV1 mice were generated by the University of Michigan Transgenic Animal 

Model Core.  

The primary microarray data have been deposited in NCBIs Gene Expression 

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO 

Series accession numbers GSE7701 and GSE7702. Sequences of the ETV1 fusion 

transcript junctions identified by RACE have been deposited in GenBank with accessions 

EF632109-EF632112. 

Prostate tissues were from the radical prostatectomy series at the University of 

Michigan and from the Rapid Autopsy Program (28), which are both part of University of 

Michigan Prostate Cancer Specialized Program of Research Excellence (S.P.O.R.E.) 

Tissue Core. All samples were collected with informed consent of the patients and prior 

institutional review board approval.  

The benign immortalized prostate cell line RWPE and the prostate cancer cell 

lines LNCaP, Du145 NCI-H660 and PC3 were obtained from the ATCC. Primary benign 

prostatic epithelial cells (PrEC) were obtained from Cambrex Bio Science (Walkersville, 

MD). The prostate cancer cell lines C4-2B, LAPC4 and MDA-PCa 2B were provided by 

Evan Keller (University of Michigan). The prostate cancer cell line 22-RV1 was provided 
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by Jill Macoska (University of Michigan). VCaP was derived from a vertebral metastasis 

from a patient with hormone-refractory metastatic prostate cancer (29).  

For androgen stimulation experiments, LNCaP cells were grown in charcoal-

stripped serum containing media for 24 hours before treatment for 24 hours with 1% 

ethanol or 1 nM of methyltrienolone (R1881, NEN Life Science Products, Boston, MA) 

dissolved in ethanol. For all samples, total RNA was isolated with Trizol (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s instructions. 

Quantitative PCR (QPCR) was performed using Power SYBR Green Mastermix 

(Applied Biosystems, Foster City, CA) on an Applied Biosystems 7300 Real Time PCR 

system as described (1, 2). All oligonucleotide primers were synthesized by Integrated 

DNA Technologies (Coralville, IA). HMBS and GAPDH (30), and PSA (31) primers 

were as described. Androgen stimulation reactions were performed in quadruplicate, 

siRNA knockdown reactions were performed in triplicate and all other reactions were 

performed in duplicate. 

RLM-RACE was performed using the GeneRacer RLM-RACE kit (Invitrogen), 

according to the manufacturer’s instructions as described (1, 2). To obtain the 5’ end of 

ETV1, first-strand cDNA was amplified with Platinum Taq High Fidelity (Invitrogen) 

using the GeneRacer 5’ primer and ETV1_exon4-5-r. For amplification from MET23, 

ETV1_exon7-r was used with the GeneRacer 5’ primer. Products were cloned and 

sequenced bidirectionally as described (1, 2). RLM-RACEd cDNA was not used for other 

assays. 

   Interphase FISH on formalin-fixed paraffin-embedded (FFPE) tissue sections was 

performed as described (2). A minimum of 50 nuclei per assay were evaluated. For 

metaphase FISH, spreads of LNCaP and MDA-PCa 2B were prepared using standard 

cytogenetic techniques. Slides were pre-treated in 2x SSC for 2 min, 70% ethanol for 2 

min and 100% ethanol for 2 min, and air dried. Slides and probes were co-denatured at 75 

degrees for 2 min, and hybridized overnight at 37 C. Post-hybridization was in 0.5x SSC 

at 42 C for 5 min, followed by 3 washes in PBST. Fluorescent detection was performed 

using anti-digoxigenin conjugated to fluorescein (Roche Applied Science, Indianapolis, 

IN) and streptavidin conjugated to Alexa Fluor 594 (Invitrogen). Slides were 

counterstained and mounted in ProLong Gold Antifade Reagent with DAPI (Invitrogen). 
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Slides were examined using a Zeiss Axio Imager Z1 fluorescence microscope (Zeiss, 

Thornwood, NY) and imaged with a CCD camera using ISIS software (Metasystems, 

Altlussheim, Germany). At least 5 metaphases were assessed, and reported aberrations 

were observed in all interpretable spreads. BACs were obtained from the BACPAC 

Resource Center (Oakland, CA), and probes were prepared as described (2). Pre-labeled 

chromosome 7 centromere and 7p telomeric probes were obtained from Vysis (Des 

Plaines, IL). The integrity and correct localization of all probes were verified by 

hybridization to metaphase spreads of normal peripheral lymphocytes. 

To determine the tissue specific expression of 5’ fusion partners and genes at 

14q13-q21, we interrogated the International Genomics Consortium’s expO dataset 

(https://expo.intgen.org/expo/public/downloaddata.jsp), consisting of expression profiles 

from 630 tumors of 29 distinct types, using the Oncomine database (www.oncomine.org) 

(27). To interrogate the expression of HERV-K_22q11.23, which is not monitored by 

commercial array platforms, we queried the Lynx Therapeutics normal tissue massively 

parallel signature sequencing (MPSS) dataset (GSE1747) with the MPSS tag 

“GATCTTTGTGACCTACT”, which unambiguously identifies HERV-K_22q11.23, as 

described (32).  

Expression profiling of LNCaP, C4-2B, RWPE-ETV1 and RWPE-GUS cells were 

performed using the Agilent Whole Human Genome Oligo Microarray (Santa Clara, 

CA). Total RNA isolated using Trizol was purified using the Qiagen RNAeasy Micro kit 

(Valencia, CA). One ug of total RNA was converted to cRNA and labeled according to 

the manufacturer’s protocol (Agilent). Hybridizations were performed for 16 hrs at 65°C, 

and arrays were scanned on an Agilent DNA microarray scanner. Images were analyzed 

and data extracted using Agilent Feature Extraction Software 9.1.3.1, with linear and 

lowess normalization performed for each array. For the LNCaP and C4-2B 

hybridizations, the reference for each cell line was pooled benign prostate total RNA 

(Clontech, Mountain View, CA). A dye flip for each cell line was also performed. 

Features were ranked by average expression (Log Ratio) in the two LNCaP arrays 

divided by the average expression in the two C4-2B arrays after correction for the dye 

flip. For RWPE cells, four hybridizations were performed (duplicate RWPE-

ETV1/RWPE-GUS and RWPE-GUS/RWPE-ETV1 hybridizations).  Over and under-
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expressed signatures were generated by filtering to include only features with significant 

differential expression (PValueLogRatio < 0.01) in all four hybridizations and 2 fold 

average over- or under-expression (Log Ratio) after correction for the dye flip. Over-and 

under-expressed in RWPE-ETV1/RWPE-GUS signatures were loaded into the Molecular 

Concepts Map (MCM) (22), resulting in concepts containing 527 and 558 unique genes, 

respectively.  Each signature was tested against all contained concepts in the MCM for 

association using Fisher’s exact test as described (10, 22).  

Genomic DNA (10 µg) from LNCaP, VCaP, pooled normal human male DNA 

(Promega, Madison, WI) and normal placental DNA (Promega) was digested with EcoRI 

or PstI (New England Biologicals, Ipswich, MA) overnight. Fragments were resolved on 

a 0.8% agarose gel at 40 V overnight, transferred to Hybond NX nylon membrane, 

prehybridized, hybridized with probe and washed according to standard protocols. A 

series of 22 probes spanning the region of chr 7 implicated by FISH (between RP11-

313C20 and RP11-703A4) were generated by PCR amplification with Platinum Taq High 

Fidelity on pooled normal human male genomic DNA. Twenty-five ng of each probe was 

labeled with dCTP-P32 and used for hybridization. 

To identify the ETV1 breakpoint in LNCaP cells, we utilized an inverse PCR 

strategy based on the rearrangement identified by Southern blotting as described 

previously (33). Primers A1, A2, A3, which are reverse complemented from the wildtype 

sequence and are divergent to primers B1, B2, B3, were used for inverse PCR on PstI 

digested and religated (in order to promoter intramolecular ligation) LNCaP genomic 

DNA template.  Nested PCRs were performed in the following order of primer 

combinations: A1-B1, A2-B2 and A3-B3.  Expand 20 kbplus PCR system (Roche) was 

used for amplifying the fusion product according to the manufactures suggestions. The 

enriched 3Kb band observed in nested PCRs was cloned into pCR8/GW/TOPO 

(Invitrogen), miniprep DNA was screened for inserts and positive clones were sequenced 

(University of Michigan DNA Sequencing Core, Ann Arbor, MI).  The ETV1 insertion 

was confirmed by PCR with Platinum Taq High Fidelity using primers from 

chromosomes 7 and 14. 

cDNA of ETV1, as present in the TMPRSS2:ETV1 fusion to the reported stop 

codon of ETV1 (269-1521, NM_004956.3), was amplified by RT-PCR from MET26 (1) 

 91



and TOPO cloned into the Gateway entry vector pCR8/GW/TOPO (Invitrogen), yielding 

pCR8-ETV1. To generate adenoviral and lentiviral constructs, pCR8-ETV1 and a control 

entry clone (pENTR-GUS) were recombined with pAD/CMV/V5 (Invitrogen) and 

pLenti6/CMV/V5 (Invitrogen), respectively, using LR Clonase II (Invitrogen). Control 

pAD/CMV/LACZ clones were obtained from Invitrogen. Adenoviruses and Lentiviruses 

were generated by the University of Michigan Vector Core. The benign immortalized 

prostate cell line RWPE was infected with lentiviruses expressing ETV1 or GUS, and 

stable clones were generated by selection with blasticidin (Inivtrogen). Benign PrEC 

were infected with adenoviruses expressing ETV1 or LACZ, as stable lines could not be 

generated in primary PrEC cells. Cell counts were estimated by trypsinizing cells and 

analysis by Coulter counter at the indicated time points in triplicate. For invasion assays,  

PREC-ETV1 and -LACZ (48 hours after infection) or stable RPWE-ETV1 and -GUS cells 

were used. Representative results from three separate experiments are shown. 

For siRNA knockdown of ETV1 in LNCaP cells, the individual siRNAs 

composing the Dharmacon SMARTpool against ETV1 (MU-003801-01, Chicago, IL) 

were tested for ETV1 knockdown by qPCR, and the most effective single siRNA (D-

003801-05) was used for further experiments. siCONTROL Non-Targeting siRNA #1 

(D-001210-01) or siRNA against ETV1 was transfected into LNCaP cells using 

Oligofectamine (Invitrogen). After 24 hours we carried out a second identical transfection 

and cells were harvested 24 hours later for RNA isolation and invasion assays as 

described below. For shRNA knockdown of ETV1 in LNCaP cells, the shRNAmir 

construct against ETV1 from the pMS2 retroviral vector (V2HS_61929, Open 

Biosystems, Huntsville, AL) was cloned into an empty pGIPZ lentivral vector (RHS4349, 

Open Biosystems) according to the manufacturer’s protocol. pGIPZ lentiviruses with 

shRNAmirs against ETV1 or a non silencing control (RHS4346) were generated by the 

University of Michigan Vector Core. LNCaP cells were infected with lentiviruses, and 48 

hours later cells were used for invasion assays as described below. Representative results 

from 6 independent experiments are reported.     

Equal numbers of the indicated cells were seeded onto the basement membrane 

matrix (EC matrix, Chemicon, Temecula, CA) present in the insert of a 24 well culture 

plate, with fetal bovine serum added to the lower chamber as a chemoattractant. After 48 
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hours, non-invading cells and EC matrix were removed by a cotton swab. Invaded cells 

were stained with crystal violet and photographed. The inserts were treated with 10% 

acetic acid and absorbance was measured at 560nm.  

RWPE-ETV1 and RWPE-GUS cells were assessed by FACS for cell cycle 

characterization. Cells were washed with 2x PBS and approximately 2 x 106 cells were 

resuspended in PBS before fixation in 70% ethanol. Pelleted cells were washed and 

treated with RNase (100ug/ml final concentration) and propidium iodide (10ug/ml final 

concentration) at 37 C for 30 min. Stained cells were analyzed on a LSR II flow 

cytometer (BD Biosciences, San Jose, CA) running FACSDivia, and cell cycle phases 

were calculated using ModFit LT (Verity Software House, Topsham, ME).       

A 0.6% (wt/vol) bottom layer of low melting point agarose in normal medium was 

prepared in six-well culture plates. On top, a layer of 0.3% agarose containing 1 x 104 

RWPE-GUS, RWPE-ETV1 or DU145 (positive control) cells was placed. After 12 days, 

foci were stained with crystal violet and counted.  

  For in vivo over-expression of ETV1, a C terminal 3XFLAG-epitope tagged 

construct was generated by PCR using pCR8-ETV1 as the template with the reverse 

primer encoding a triple FLAG tag before the stop codon. The product was TOPO cloned 

into pCR8. To generate a prostate specific ETV1 transgenic construct, 3xFLAG-ETV1 

was inserted into pBSII (Stratagene, La Jolla, CA) downstream of a modified small 

composite probasin promoter (ARR2PB) and upstream of a bovine growth hormone 

polyA site (PA-BGH). The ARR2PB sequence contains the original probasin sequence 

PB (-426/+28) plus two additional androgen response elements (23). The construct was 

sequenced and tested for promoter inducibility by androgen in LNCaP cells upon 

transient transfection before microinjection into FVB mouse eggs. The ARR2PB-ETV1 

plasmid was linearized with PvuI/KpnI//SacII and microinjected into fertilized FVB 

mouse eggs and surgically transplanted into a pseudo-pregnant female by the University 

of Michigan Transgenic Animal Model Core. Transgenic founders were screened by PCR 

using genomic DNA isolated from tail snips. Multiple ARR2Pb-ETV1 transgenic 

founders were obtained and crossed with FVB mice, and transgene-positive male mice 

offspring were sacrificed at various time points. 
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 Prostates from transgenic mice were dissected using a Nikon dissection scope, 

fixed in 10% buffered formalin and embedded in paraffin. Five um sections were stained 

with hematoxylin and eosin, and evaluated by three pathologists (R.M., M.A.R. and 

R.B.S.) according to the criteria provided in The Consensus Report from the Bar Harbor 

Meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology 

Committee (24).  
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Figure 5.1. Identification of prostate-specific or ubiquitously active regulatory elements fused to 
ETV1. a. Structure of novel 5’ partners fused to ETV1 in outlier cases. Numbers above the exons (boxes) 
indicate the last base of each exon. Untranslated regions are in lighter shades. b. Tissue specificity of 5’ 
fusion partners was determined in normal tissues or cancers (blue) and normal prostate or prostate cancer 
(magenta) (Methods). c. Assessment of androgen regulation of 5’ fusion partners. Endogenous expression 
of 5’ fusion partners was assessed by qPCR in LNCaP cells with (+) or without (-) stimulation by the 
synthetic androgen R1881, (mean (n = 4) + S.E.). 
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Figure 5.2. ETV1 is rearranged to 14q13.3-14q21.1 in LNCaP and MDA-PCa 2B. a. Schematic of the 
ETV1 locus (purple) on chromosome 7 (blue) and BACs (rectangles) used for FISH (adapted from the 
UCSC Genome Browser. Genes are shown with the direction of transcription indicated by the arrowhead. 
b-c. FISH using the indicated BACs on b) LNCaP (tetraploid) and c) MDA-PCa 2B (diploid) metaphase 
spreads. Co-localized signals are indicated by yellow arrows and red and green split signals are indicated 
by red arrows and green arrowheads. Schematics of probe localization and chromosome structures as 
determined by spectral karyotyping(20, 34) are indicated. d. Schematic of 14q13.3-14q21.1 (orange) on 
chromosome 14 (yellow). The LNCaP breakpoints are indicated by asterisks. e. Structure of ETV1 and 
14q13.3-14q21.1 in LNCaP and MDA-PCa 2B. 
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Figure 5.3. ETV1 over-expression in prostate cells confers invasiveness. a. We infected the benign 
prostate cell line RWPE with lentiviruses expressing ETV1 or control (GUS). Stable clones were assayed 
for invasion through a modified basement membrane, mean (n = 3) + S.E.. b. LNCaP cells were treated 
with transfection reagent alone (Untreated), or transfected with non-targeting or ETV1 siRNA and assessed 
for invasion as in a; mean (n = 3) + S.E.. c. Oncomine concepts map of genes over-expressed in RWPE-
ETV1 compared to RWPE-GUS cells (yellow node).  
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Figure 5.4. Transgenic mice expressing ETV1 develop mouse prostatic intraepithelial neoplasia 
(mPIN). We generated transgenic mice expressing ETV1 under the control of the modified probasin 
promoter (ARR2Pb-ETV1). Mice were sacrificed at 12-43 weeks and mPIN was observed in 75% of 
ARR2Pb-ETV1 mice. a-d. Hematoxylin and eosin stained ARR2Pb-ETV1 prostates. Benign epithelia and 
areas of mPIN are indicated by yellow and black arrows, respectively. Consistent with the definition of 
mPIN, a) normal areas and b) mPIN were observed in the anterior prostate (AP) of an ARR2Pb-ETV1 
mouse. c. High power view of b. d. Normal glands and mPIN foci in the ventral prostate (VP) of an 
ARR2Pb-ETV1 mouse. Original magnification for a & b is 100x and c & d is 400x. 
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CHAPTER 6 

 

THE ROLE OF THE TMPRSS2-ERG GENE FUSION IN PROSTATE CANCER 
PROGRESSION 

 
Multiple groups have confirmed the high prevalence of TMPRSS2-ERG gene 

fusions in prostate cancer (1-15), suggesting that this lesion is a predominant molecular 

subtype.  Here we explored the role of the TMPRSS2-ERG gene fusion product using in 

vitro and in vivo model systems.  Transgenic mice expressing the ERG gene fusion 

product under androgen-regulation develop mouse prostatic intraepithelial neoplasia 

(mPIN), a precursor lesion of prostate cancer.  These results suggest that TMPRSS2-ERG 

may not be sufficient for transformation in the absence of secondary molecular lesions.  

In human tumors, TMPRSS2-ERG gene fusions occur early during prostate cancer 

progression in PIN lesions associated with or in close proximity to invasive cancer (4, 

16).  Introduction of the ERG gene fusion product into primary or immortalized benign 

prostate epithelial cells induced an invasion- associated transcriptional program but did 

not increase cellular proliferation or anchorage-independent growth.  To investigate the 

role of TMPRSS2-ERG in the context of pre-existing genetic lesions, we used RNA 

interference to knockdown ERG in the TMPRSS2-ERG positive cell line VCaP (1).   In 

addition to inhibiting invasion, transcriptional profiling revealed decreased expression of 

genes over-expressed in ETS positive prostate cancers. VCaP cells and benign prostate 

cells over-expressing ERG directly engage the plasminogen activation pathway to 

mediate cellular invasion, potentially representing a downstream ETS target susceptible 

to therapeutic intervention. ERG knockdown in VCaP cells also induced a transcriptional 

program consistent with prostate differentiation, suggesting that TMPRSS2-ERG 

maintains prostate cancer cells in a progenitor-like state.  Together, these results provide 

roles and functional models for TMPRSS2-ERG gene fusions in prostate cancer.  
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Based on a bioinformatics strategy that nominated genes showing high expression 

in a subset of  cancer cases, we identified fusions of the 5’-untranslated region of 

TMPRSS2 (21q22) to ERG (21q22), ETV1 (7p21), or ETV4 (17q21) in prostate cancer 

cases that over-expressed the respective ETS family member (1, 17). TMPRSS2-ERG 

fusions are the most predominant molecular subtype, with multiple studies showing that 

approximately 50% of prostate cancers from prostate specific antigen (PSA) screened 

surgical cohorts are TMPRSS2-ERG fusion positive, and greater than 90% of prostate 

cancers over-expressing ERG harbor TMPRSS2-ERG fusions (1-15, 18).  

As TMPRSS2 had previously been characterized as an androgen-regulated gene 

(19), and TMPRSS2 only contributes untranslated sequence to many TMPRSS2-ERG 

transcripts, we hypothesized that the androgen responsive regulatory elements of 

TMRPSS2 drive ERG over-expression in fusion positive cases. In support of this 

hypothesis, we observed that treatment of the TMPRSS2-ERG positive prostate cancer 

cell line VCaP with the synthetic androgen R1881 resulted in increased expression of the 

TMPRSS2-ERG fusion product (1, 20). Additionally, castration of mice with androgen 

dependent TMPRSS2-ERG positive xenografts resulted in decreased expression of ERG 

in the xenograft (21).  

Genomic fusion of the TMPRSS2 and ERG loci resulting in over-expression of 

ERG and TMPRSS2-ERG transcripts is highly specific for prostate cancer (1, 4, 18). 

However, functional roles for TMPRSS2-ERG fusions in prostate cancer are lacking. 

Here we recapitulated TMPRSS2-ERG fusions in vivo and in vitro and used an integrative 

expression profiling strategy to determine functional roles for TMRPSS2-ERG in prostate 

cancer.    

Fusion transcripts juxtaposing exon 1 of TMPRSS2 (NM_005656.2) to exon 2 of 

ERG isoform 1 (NM_182918.2; identical to exon 4 of ERG isoform 2, NM_004449.3) are 

the most commonly detected transcripts in TMPRSS2-ERG positive cases (TMPRSS2-

ERGa ) (1, 2, 6). As exon 1 of TMPRSS2 is entirely non-coding, this fusion transcript 

likely results in a truncated ERG protein product. Thus, we generated transgenic mice 

expressing the truncated ERG product from TMPRSS2-ERGa  (beginning at exon 2 

through the reported stop codon (base 1533) of NM_182918.2, C terminal FLAG-tagged) 

under the control of the modified probasin promoter (ARR2Pb-ERG) (Figure 6.1), which 
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drives androgen-regulated transgene expression exclusively in the prostate (22, 23). This 

transgene is functionally analogous to the TMPRSS2-ERGa fusion product. We obtained 

multiple ARR2Pb-ERG founders and lines were expanded for phenotypic analysis. By 

12-14 weeks of age, 3 of 8 (37.5%) ARR2Pb-ERG mice developed mouse prostatic 

intraepithelial neoplasia (mPIN) (Figure 6.1), the candidate precursor lesion of prostate 

cancer (24).  

We observed normal glands in the prostates of ARR2Pb-ERG mice containing 

focal proliferative lesions displaying nuclear atypia, including stratification, 

hyperchromasia and macronucleoli (Figure 6.1), consistent with the definition of mPIN 

(24). In 12-14 week old ARR2Pb-ERG mice, foci of mPIN were observed exclusively in 

the ventral lobe. Immunohistochemistry in ARR2Pb-ERG mice demonstrated strong 

ERG-FLAG expression primarily in mPIN foci and not benign glands (Figure 6.1), and 

qPCR confirmed that transgene expression was limited to the prostate (data not shown).  

All lesions were confirmed to be in situ by the presence of an intact fibromuscular 

layer, as demonstrated by contiguous smooth muscle actin staining (Figure 6.1). 

However, immunohistochemistry with the basal cell markers cytokeratin 5 and p63 

demonstrated loss of the circumferential basal epithelial layer in ARR2Pb-ERG mPIN 

compared to benign glands (Figure 6.1), indicating disruption of the basal cell layer. As 

loss of the basal layer is a hallmark of prostate carcinoma development in both mice and 

humans (25), ARR2Pb-ERG mice will be closely monitored for the development of 

invasive carcinoma at later time points. While we have not observed progression to 

invasive carcinoma in ARR2Pb-ERG mice, we have only characterized 3 mice at greater 

than 20 weeks of age, 1 of which (33.3%) also had mPIN in both the ventral and 

dorsolateral lobes. These results demonstrate that although ERG induces a neoplastic 

phenotype in the mouse prostate, providing support for an oncogenic role in human 

prostate cancer, it is not sufficient for the development of cancer at early time points. 

Next, we determined the effects of ERG over-expression in vitro, by generating 

adenoviruses and lentiviruses that express the same truncated ERG product from 

TMPRSS2-ERGa as in the ARR2Pb-ERG mice (Figure 6.2). We infected the benign 

immortalized prostate epithelial cell line RWPE with lentivirus expressing ERG and 

selected for stable RWPE-ERG cells, and transiently over-expressed ERG in primary 
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benign prostate epithelial cells (PrEC) by infection with adenovirus expressing ERG. By 

immunoblotting, we confirmed the expression of a protein product recognized by a 

commercial anti-ERG antibody in both RWPE and PrEC.  

In both RWPE and PrEC cells, over-expression of ERG did not increase 

proliferation, and ERG did not affect the percentage of RWPE cells in S phase by cell 

cycle analysis. Additionally, soft agar transformation assays showed that ERG over-

expression was not sufficient to transform RWPE cells. Finally, orthotopic xenograft 

assays using RWPE-ERG cells did not result in tumor formation (data not shown).  

However, ERG over-expression markedly increased invasion in a modified basement 

membrane invasion assay in both RWPE (5 fold, P = 0.001) (Figure 6.2) and PrEC cells 

(6.9 fold, P = 0.0016) (Figure 6.2). Transient over-expression of ERG in RWPE using 

ERG adenovirus similarly increased invasion. These results are similar to over-expression 

of ETV1, which we have previously shown to increase invasion in PrEC and RWPE cells 

(26). 

To investigate the transcriptional program regulated by ERG, we profiled stable 

RWPE-ERG and transiently expressing RWPE-ERG and PrEC-ERG cells using Agilent 

Whole Genome Oligo Expression Arrays, and identified 865, 854 and 221 features that 

were over-expressed in the respective cell lines (as described in the Methods). We have 

recently developed a resource termed the Oncomine Concepts Map (OCM, 

www.oncomine.org) to look for associations between more than 20,000 biologically 

related gene sets by disproportionate overlap (16, 27). Thus, we uploaded these 

expression signatures into the OCM to identify transcriptional programs induced by ERG. 

We began by seeding the OCM analysis with the ‘over-expressed in stable RWPE-ERG’ 

signature. OCM analysis identified the most significantly enriched concept as our 

previous ‘over-expressed in stable RWPE-ETV1 signature’ (26) (odds ratio (OR) = 59.43 

, P = 1E-100 ) (Figure 6.2), consistent with their similar phenotypes and supporting the 

functional redundancy of these ETS family members in gene fusions.  

The stable RWPE-ERG signature also shared significant enrichment with the 

‘over-expressed in transient RWPE-ERG’ (OR = 19.43, P = 1.1E-100) and ‘transient 

PrEC-ERG’ (OR = 5.77, P = 3.1E-10) signatures, demonstrating similarities in these 

transcriptional programs, as well as several molecular concepts related to invasion. These 
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concepts include the Interpro concept of gene products containing ‘Peptidase M10A and 

M12B, matrixin or adamalysin domains’ (OR = 5.27, P = 0.002), which includes matrix 

metalloproteinases (MMPs) and a disintegrin and metalloproteinasedomains (ADAMs), 

and a signature of genes ‘over-expressed in benign breast epithelial cells (HMLHT) over-

expressing the STAT3-C oncogene’ (OR = 4.04, P = 6.3E-5). In this system, STAT3-C 

over-expression did not increase proliferation, but increased invasion in an MMP9 

dependent manner (28).    

We identified several genes over-expressed in RWPE-ERG that were present in 

multiple concepts in this enrichment network and have been directly implicated in 

invasion in multiple cancers and models, including the metalloproteinases MMP3, MMP9  

and ADAM19, and urokinase plasminogen activator (PLAU) and the plasminogen 

activator inhibitor type 1 (SERPINE1, also known as PAI-1) (29, 30).  Both MMPs and 

the urokinase plasminogen pathway have been reported to be direct target of ETS 

transcription factors (29-31). By qPCR, we confirmed the over-expression of these genes, 

as well as the MMP cleavage target IGFBP3 in RWPE-ERG cells (Figure 6.2).  

By immunoblotting, we confirmed the over-expression of PLAU and MMP3 in 

RWPE-ERG cells (Figure 6.2). To determine if these genes are direct targets of ERG, we 

performed chromatin immunoprecipitation (ChIP), which demonstrated that ERG binds 

to the proximal promoter of both PLAU and MMP3 (Figure 6.2), but not PLAT (tissue 

plasminogen activator, which did not show altered expression in RWPE-ERG by 

microarray). No enrichment of ERG binding was observed in RWPE-GUS cells or 

LNCaP (ETV1 rearrangement positive (26)) for MMP3 or PLAU.  

We next assessed the role of both MMPs and the plasminogen activator pathways 

in the invasive phenotype of RWPE-ERG cells using small molecule MMP inhibitors, 

amiloride (a specific PLAU inhibitor (32)), ectopic PAI-1 (which inhibits plasminogen 

activators (33)) and siRNA knockdown of PLAU. As shown in Figure 6.2, while MMP 

inhibitors did not significantly inhibit invasion, both amiloride and PAI-1 significantly 

inhibited the invasiveness of RWPE-ERG cells. Similarly, siRNA knockdown of PLAU 

significantly inhibited the invasion of RWPE-ERG cells, while siRNA knockdown of the 

tissue plasminogen activator (PLAT) had no effect on RWPE-ERG invasion (Figure 6.2). 

Similar effects on invasion were seen with independent siRNA duplexes directed against 
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PLAU or PLAT. Cytosine arabinoside (ARA-C), which has recently been identified as an 

inhibitor of the EWS-FLI fusion found in Ewing’s sarcoma (34), also showed no effect 

on RWPE-ERG invasion (Figure 6.2). Together, this work demonstrates that ERG 

directly induces PLAU expression in RWPE cells, and inhibition of PLAU blocks ERG 

mediated invasion.  

Together, our in vivo and in vitro studies show that the most common TMPRSS2-

ERG fusion product is unable to transform benign prostatic epithelial cell lines or induce 

the development of frank adenocarcinoma in the mouse prostate. These results support 

our previous work, including expression profiling on laser captured microdissected cell 

populations and a FISH-based study on prostate cancer progression, which suggest that 

TMPRSS2-ERG gene fusions occur during the PIN to carcinoma transition or very early 

in carcinoma development (4, 16). Thus, in human prostate cancer development, 

TMPRSS2-ERG gene fusions likely occur in the context of earlier lesions that induce the 

development of PIN. 

To investigate the role of TMPRSS2-ERG in this context of pre-existing genetic 

lesions, we utilized short interfering (si) RNA to knock down ERG in VCaP (VCaP-

siERG) cells that harbor the TMPRSS2:ERG gene fusion (1). Immunoblotting confirmed 

that siRNA directed against ERG reduced expression compared to non-targeting control 

siRNA (Figure 6.3). qPCR also demonstrated  a 63% decrease in ERG transcript 

expression in VCaP-siERG (P = 0.009). ERG knockdown also significantly inhibited the 

invasion of VCaP cells (Figure 6.3) without affecting proliferation, similar to ERG over-

expression in RWPE cells. Similar results were seen using a second siRNA targeting an 

independent sequence in ERG. 

To determine the transcriptional profile mediated by TMPRSS2-ERG in VCaP, we 

profiled VCaP-siERG cells. We identified 265 and 291 features over- and under-

expressed (as described in the Methods), respectively, in VCaP-siERG compared to 

VCaP treated with non-targeting siRNA, and uploaded these signatures into the OCM. 

The two most significantly enriched concepts in our ‘under-expressed in VCaP-siERG’ 

signature were two signatures of genes ‘over-expressed in ETS positive vs. negative 

prostate cancers’ (GSE8218, OR = 5.73, P = 2.5E-19 and Vanaja et al (35), OR = 3.49, P 

= 3.9E-11) (Figure 6.3). All other ‘over-expressed in ETS positive vs. negative prostate 
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cancer’ signatures (16, 36, 37) in the Oncomine database were also enriched in our 

‘under-expressed in VCaP-siERG” signature, supporting VCaP as a highly relevant 

model of TMPRSS2-ERG positive prostate cancers. Our under-expressed in VCaP-siERG 

signature also shared enrichment with our previous signature of genes ‘over-expressed in 

laser captured prostate cancer vs. PIN’ (OR = 3.79, P = 4.5E-6). In that study, we 

observed that PIN and prostate cancer had very similar expression signatures and 

hypothesized that TMPRSS2-ERG fusions occurred during the PIN to prostate cancer 

transition and dysregulated a limited number of transcripts, likely involved in invasion 

(16). 

Our under-expressed in VCaP-siERG signature also shared significant enrichment 

with our ‘over-expressed in transient PrEC-ERG’ and ‘transient RWPE-ERG’ signatures 

(Figure 6.3, OR = 6.89 and 3.21, P = 1.4E-5 and 7E-5, respectively), suggesting common 

transcriptional programs controlled by ERG across cell types and genetic context. 

However, the PrEC and RWPE signatures were not strongly linked to ETS positive vs 

negative prostate cancer signatures, supporting the use of VCaP as a more relevant 

system to identify downstream targets of TMPRSS2-ERG in human prostate cancers.  

Interestingly, the most strongly down regulated feature in VCaP-siERG cells was 

the tissue plasminogen activator PLAT. Similar to PLAU, which we showed to be 

strongly over-expressed and a direct target of ERG in RWPE cells, we confirmed that 

PLAT was strongly down-regulated and a direct target of ERG in VCaP-siERG cells 

(Figure 6.3). Intriguingly, although microarray analysis showed that VCaP-siERG cells 

did not have reduced expression of PLAU (and VCaP cells express very low levels of 

PLAU at baseline) ChIP identified PLAU as a direct target of ERG in VCaP-siERG cells 

(Figure 6.3). Additionally, while ectopic PAI-1, amiloride (which inhibits PLAU but not 

PLAT (32)) (Figure 6.3) and siRNA knockdown of PLAU inhibited the invasion of VCaP 

cells, siRNA knockdown of PLAT had no effect on VCaP invasion (Figure 6.3). 

Additionally, inhibitors of MMPs and ARA-C had no significant effect on VCaP invasion 

(Figure 6.3), similar to RWPE-ERG. Together, these results support plasminogen 

activators as direct targets of ERG across multiple TMPRSS2-ERG model systems, and 

demonstrate that inhibition of PLAU blocks ERG induced invasion across TMPRSS2-

ERG cell line models.  
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Our ‘under-expressed in VCaP-siERG’ signature also shared significant 

enrichment with a cluster of 18 genes co-expressed across 72 prostate cancer tissue 

samples (36), with 8 genes shared (OR = 56.65, P = 7.2E-10). As this cluster contains 

ERG, this result supports ERG knockdown in VCaP modulating genes regulated by ERG 

in TMPRSS2-ERG positive tumors. To identify such genes, we examined genes co-

expressed with ERG across multiple prostate cancer profiling studies in the Oncomine 

database. We identified 4 genes, CACNA1D, KCNS3, LAMC2 and PLA1A, that showed 

greater than 0.5 correlation with ERG across multiple studies that were also down-

regulated in VCaP-siERG cells. CACNA1D was significantly down regulated in 3 of 4 

arrays, with the fourth array showing 0.54 fold expression in VCaP-siERG (P = 0.06). In 

addition, we also identified decreased expression of ARGHDIB in VCaP-siERG cells and 

over-expression in all ETS positive vs. negative expression signatures.  By qPCR, we 

confirmed the decreased expression of these genes in VCaP-siERG cells and ChIP 

identified LAMC2, KCNS3, and PLA1A as direct targets of ERG. By qPCR, we also 

confirmed the co-expression of ERG and PLA1A (R = 0.72, P = 6.1E-8) in an 

independent set of prostate tissues.  Thus, our work provides direct ERG target genes 

over-expressed in TMPRSS2-ERG positive prostate cancers for further functional study.      

We next examined our ‘over-expressed in VCaP-siERG’ signature using the 

OCM. Consistent with the results described above, all ‘under-expressed in ETS positive 

vs. negative prostate cancer’ signatures in the Oncomine database (GSE8218 and (16, 35-

37)) were enriched in our ‘over-expressed in VCaP-siERG’ signature (OR = 6.41-2.71, P 

= 5.2E-15 - 7.0E-5). Intriguingly, OCM analysis revealed that the most significantly 

enriched concept in our ‘over-expressed in VCaP-siERG’ signature was a signature of 

genes ‘over-expressed in prostate cancers compared to 28 other cancer types’ (GSE2109) 

(OR = 4.46, P = 5.8E-18 ) (Figure 6.4). Several other concepts representing genes over-

expressed in prostate cancer compared to other cancers, normal prostate tissue compared 

to other normal tissues and normal prostate compared to prostate cancer were also 

strongly enriched in our signature. Examining the genes common to these concepts and 

VCaP-siERG, we identified numerous archetypal prostate epithelial cell transcripts, 

including KLK3 (PSA), MSMB, NKX3-1, TMPRSS2, TRGV9 (also known as TARP) (38), 

SLC30A4 (also known as ZnT4) (39) and SLC45A3 (26) (Figure 6.4). We confirmed the 
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over-expression of this transcriptional program by qPCR  (Figure 6.4), and confirmed 

that these genes are normally expressed specifically in luminal epithelial prostate cells 

using a dataset containing expression profiling data from magnetically sorted prostate 

luminal epithelial, basal epithelial, stromal fibromuscular and endothelial cells (Figure 

6.4).  

As ERG knockdown in VCaP results in the increased expression of genes 

associated with differentiated luminal prostate epithelial cells, we hypothesized that 

TMPRSS2-ERG fusions may function to keep prostate cancer cells in a dedifferentiated 

state. Supporting this hypothesis, expression profiling revealed decreased expression of 

CD44 in VCaP-siERG cells (n = 40 features, median = 0.51 VCaP-siERG/VCaP-siNT, 

maximum P value = 0.0006). CD44 has been proposed as a prostate cancer stem cell 

marker, and prostate cancer cell populations with enriched for CD44 expression show 

cancer stem cell like properties (40) . We confirmed the decreased expression of CD44 in 

VCaP-siERG cells by qPCR (Figure 6.4).  Future experiments will be needed to further 

address this hypothesis.  

In this study, we demonstrated that over-expression of ERG in RWPE cells 

induces invasion through a PLAU dependent pathway, however, ERG over-expression 

was not sufficient for transformation. Over-expression of ERG in the mouse prostate 

resulted in mPIN, without the development of adenocarcinoma. These results are 

consistent with our previous work suggesting that in human prostate cancer development, 

TMPRSS2-ERG fusions likely occur in the context of potentially earlier lesions, such as 

loss of single NKX3-1 and/or PTEN alleles (41). The development of mPIN in ERG 

transgenic mice without early progression to carcinoma is similar to mouse models of 

these other early events in human prostate cancer, such as NKX3-1+/- and PTEN+/- mice 

(42-44). Crosses between ARR2Pb-ERG mice and these mice should produce highly 

relevant oncogene/tumor suppressor models mimicking early events in human prostate 

cancer development. In an effort to study TMPRSS2-ERG function in a more realistic 

cellular context, we confirmed VCaP as a highly relevant cell line model, as siRNA 

knockdown of ERG modulates transcriptional programs apparent in TMRPSS2-ERG 

positive tumors. Gene expression profiling and ChIP demonstrate that ERG regulates 

distinct genes in different cellular context, likely related to the expression of other ETS 
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transcription factors, which bind to similar consensus sequences, and the expression of 

other transcription factors required for DNA binding (45). For example, PLA1A and 

PLAT were both direct targets of ERG and down-regulated exclusively in VCaP but not 

RWPE-ERG cells.   

Our work here also supports the functional similarity between ERG and ETV1 

gene fusions, consistent with our initial observation of mutually exclusive ERG or ETV1 

over-expression in prostate cancers (1).  This includes the similar phenotypic and 

transcriptional programs induced by over-expression in benign prostate cells, the similar 

phenotype of transgenic mice expressing ERG or ETV1 in the prostate (26), and the 

enrichment of genes over-expressed in ERG or ETV1 positive vs. ETS negative prostate 

cancers in our VCaP-siERG signature (see Figure 6.3c).  In summary, our work has 

identified in vivo and in vitro models of TMPRSS2-ERG positive prostate cancer, 

highlighting the plasminogen activator pathway as crucial to ERG mediated invasion in 

multiple in vitro systems. This pathway warrants further investigation as a therapeutic 

target for TMPRSS2-ERG positive prostate cancer.  

 

Methods 

cDNA of ERG, as present in the TMPRSS2-ERGa fusion transcript to the reported 

stop codon (exon 2  to base 1533 of  NM_182918.2), was amplified by RT-PCR from the  

VCaP cell line and TOPO cloned into the Gateway entry vector pCR8/GW/TOPO 

(Invitrogen), yielding pCR8-ERG. For in vivo over-expression of ERG, a C terminal 

3XFLAG-epitope tagged construct was generated by PCR using pCR8-ERG as the 

template with the reverse primer encoding a triple FLAG tag before the stop codon. The 

product was TOPO cloned into pCR8, generating pCR8-3xFLAG-ERG. To generate a 

prostate specific ERG transgenic construct, 3xFLAG-ERG was inserted into pBSII 

(Stratagene, La Jolla, CA) downstream of a modified small composite probasin promoter 

(ARR2PB) and upstream of a bovine growth hormone polyA site (PA-BGH). The 

ARR2PB sequence contains the original probasin sequence PB (-426/+28) plus two 

additional androgen response elements (22, 23). The construct was sequenced and tested 

for promoter inducibility by androgen in LNCaP cells upon transient transfection before 

microinjection into FVB mouse eggs. The ARR2PB-ERG plasmid was linearized with 
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PvuI/KpnI//SacII and microinjected into fertilized FVB mouse eggs and surgically 

transplanted into a pseudo-pregnant female by the University of Michigan Transgenic 

Animal Model Core. Transgenic founders were screened by PCR using genomic DNA 

isolated from tail snips. Multiple ARR2Pb-ERG transgenic founders were obtained and 

crossed with FVB mice, and transgene-positive male mice offspring were sacrificed at 

various time points. 

 Prostates from transgenic mice were dissected using a Nikon dissection scope, 

fixed in 10% buffered formalin and embedded in paraffin. Five um sections were stained 

with hematoxylin and eosin, and evaluated by three pathologists (R.M., M.A.R. and 

R.B.S.) according to the criteria provided in The Consensus Report from the Bar Harbor 

Meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology 

Committee (24).  

For immunohistochemical detection of Erg-FLAG, the basal cell markers p63 and 

cytokeratin 5 (CK5), and smooth muscle actin, deparaffinized slides were subjected to 

microwave-citrate antigen retrieval and incubated with rabbit anti-FLAG polyclonal 

antibody (1:50 dilution, overnight incubation, Cell Signaling Technology,  #2368), mouse 

monoclonal anti-p63 antibody (1:100 dilution, 45' incubation, LabVision, MS1081P1), 

rabbit polyclonal anti-CK5 antibody (1:500 dilution, 30' incubation, AbCam, ab24647) 

and mouse monoclonal anti-smooth muscle actin antibody ( 1:50 dilution, 30' incubation, 

DakoAb M0851), respectively. Visualization of p63 and SMA was performed using a 

standard biotin-avidin complex technique using M.O.M Immunodetection kit (PK2200, 

Vector Laboratories). FLAG and CK5 were detected using Envision+System-HRP 

(DAB) kit (K4011, DakoCytomation).  

The benign immortalized prostate cell line RWPE was obtained from the ATCC. 

Primary benign prostatic epithelial cells (PrEC) were obtained from Cambrex Bio 

Science (Walkersville, MD). VCaP was derived from a vertebral metastasis from a 

patient with hormone-refractory metastatic prostate cancer (46), and provided by Kenneth 

Pienta (University of Michigan).  

Prostate tissues were from the radical prostatectomy series at the University of 

Michigan and from the Rapid Autopsy Program, which are both part of University of 

Michigan Prostate Cancer Specialized Program of Research Excellence (S.P.O.R.E.) 
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Tissue Core. All samples were collected with informed consent of the patients and prior 

institutional review board approval. For all samples and cell lines, total RNA was isolated 

with Trizol (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. 

To generate adenoviral and lentiviral constructs, pCR8-ERG and a control entry 

clone (pENTR-GUS) were recombined with pAD/CMV/V5 (Invitrogen) and 

pLenti6/CMV/V5 (Invitrogen), respectively, using LR Clonase II (Invitrogen). Control 

pAD/CMV/LACZ clones were obtained from Invitrogen. Adenoviruses and Lentiviruses 

were generated by the University of Michigan Vector Core. The benign immortalized 

prostate cell line RWPE was infected with lentiviruses expressing ERG or GUS, and 

stable clones were generated by selection with blasticidin (Inivtrogen). Benign PrEC cells 

were infected with adenoviruses expressing ERG or LACZ, as stable lines could not be 

generated in primary PrEC cells. RWPE cells were also infected with ERG or LACZ 

adenoviruses for transient over-expression.  

Cells were homogenized in NP40 lysis buffer containing 50 mM Tris-HCl (pH 

7.4), 1% NP40 (Sigma, St. Louis, MO), and complete proteinase inhibitor mixture 

(Roche). Fifteen ug of protein extracts were mixed with SDS sample buffer and 

electrophoresed onto a 10% SDS-polyacrylamide gel under reducing conditions. The 

separated proteins were transferred onto nitrocellulose membranes (Amersham 

Pharmacia Biotech, Piscataway, NJ). The membrane was incubated for 1 h in blocking 

buffer [Tris-buffered saline with 0.1% Tween (TBS-T) and 5% nonfat dry milk]. Primary 

antibody was applied at the indicated dilution in blocking buffer overnight at 4°C. After 

washing three times with TBS-T buffer, the membrane was incubated with horseradish 

peroxidase-linked donkey anti-mouse IgG antibody or donkey anti-rabbit IgG antibody 

(Amersham Pharmacia Biotech) at a 1:5,000 dilution for 1 h at room temperature. The 

signals were visualized with the enhanced chemiluminescence detection system 

(Amersham Pharmacia Biotech) and autoradiography.  

Rabbit polyclonal anti-ERG (sc-354, Santa Cruz Biotechnology, Santa Cruz) was 

applied at 1:500 dilution, mouse monoclonal anti-MMP-3 (IM36L, Calbiochem, San 

Diego) was applied at 1:500 dilution, mouse monoclonal anti-uPA (IM13L, Calbiochem) 

was applied at 1:500 dilution, and  mouse anti-GAPDH antibody (Abcam, Cambridge, 

MA) was applied at 1:30,000 dilution for loading control.  
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Cell counts were estimated by trypsinizing cells and analysis by Coulter counter 

(Beckman Coulter, Fullerton, CA) at the indicated time points in triplicate.  

RWPE-ERG and RWPE-GUS cells were assessed by FACS for cell cycle 

characterization. Cells were washed with 2x PBS and approximately 2 x 106 cells were 

resuspended in PBS before fixation in 70% ethanol. Pelleted cells were washed and 

treated with RNase (100ug/ml final concentration) and propidium iodide (10ug/ml final 

concentration) at 37 C for 30 min. Stained cells were analyzed on a LSR II flow 

cytometer (BD Biosciences, San Jose, CA) running FACSDivia, and cell cycle phases 

were calculated using ModFit LT (Verity Software House, Topsham, ME).       

A 0.6% (wt/vol) bottom layer of low melting point agarose in normal medium was 

prepared in six-well culture plates. On top, a layer of 0.3% agarose containing 1 x 104 

RWPE-GUS, RWPE-ERG or DU145 (positive control) cells was placed. After 12 days, 

foci were stained with crystal violet and counted.  

For invasion assays, PrEC and RWPE-ERG and –LACZ cells (48 hours after 

infection with adenoviruses), stable RWPE-ERG and –GUS cells, or VCaP cells were 

used. Equal numbers of the indicated cells were seeded onto the basement membrane 

matrix (EC matrix, Chemicon, Temecula, CA) present in the insert of a 24 well culture 

plate, with fetal bovine serum added to the lower chamber as a chemoattractant. After 48 

hours, non-invading cells and EC matrix were removed by a cotton swab. Invaded cells 

were stained with crystal violet and photographed. The inserts were treated with 10% 

acetic acid and absorbance was measured at 560nm.  

For inhibitor studies, amiloride (20 uM, EMD Biosciences, San Diego), MMP3 

inhibitor (10 uM, EMD Biosciences), MMP2/9 inhibitor (10 uM, EMD Biosciences), 

MMP8 inhibitor (10 uM EMD Biosciences), the pan MMP inhibitor GM 6001 (10 uM 

EMD Biosciences), the EWS:FLI inhibitor cytosine arabinoside (250 nM) (34) or vehicle 

control was added to VCaP and stable RWPE-ERG or -GUS cells for 24 hours, prior to 

trypisinization and seeding for invasion assays as described above. For PAI-1, VCaP and 

stable RWPE-ERG or -GUS cells were trypsinized and treated with the indicated amount 

of recombinant PAI-1 (EMD Biosciences, San Diego) for 15 minutes at indicated 

concentrations, before seeding as described above. 
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For siRNA knockdown of ERG, PLAT, or PLAU, the individual siRNAs 

composing the Dharmacon SMARTpool against ERG (MQ-003886-01, Lafayette, CO), 

PLAT (LQ-005999-00), or PLAU (LQ-006000-00), were tested for knockdown by qPCR, 

and the most effective single siRNA (ERG, D-003886-01; PLAT, J-005999-05; PLAU, J-

006000-07;) was used for further experiments. siCONTROL Non-Targeting siRNA #1 

(D-001210-01) or siRNA against ERG, PLAT, or PLAU was transfected into VCaP or 

RWPE-ERG cells as indicated using Oligofectamine (Invitrogen). After 24 hours we 

carried out a second identical transfection and cells were harvested 24 hours later for 

RNA isolation, invasion assays or proliferation assays as described above.  

Expression profiling was performed using the Agilent Whole Human Genome 

Oligo Microarray (Santa Clara, CA). Total RNA isolated using Trizol was purified using 

the Qiagen RNAeasy Micro kit (Valencia, CA). One μg of total RNA was converted to 

cRNA and labeled according to the manufacturer’s protocol (Agilent). Hybridizations 

were performed for 16 hrs at 65°C, and arrays were scanned on an Agilent DNA 

microarray scanner. Images were analyzed and data extracted using Agilent Feature 

Extraction Software 9.1.3.1, with linear and lowess normalization performed for each 

array. For all hybridizations involving ERG over-expression by adenovirus or lentivirus, 

the reference was the same cell line expressing LACZ or GUS, respectively. For profiling 

of ERG knockdown in VCaP, the reference was VCaP treated with non-targeting siRNA. 

All hybridizations were performed in duplicate with duplicate dye flips, for a total of four 

arrays, except for transiently expressing RWPE-ERG, which consisted of duplicate 

hybridizations and a single dye flip. Over and under-expressed signatures were generated 

by filtering to include only features with significant differential expression 

(PValueLogRatio < 0.01) in all hybridizations and 2 fold average over- or under-

expression (Log Ratio) after correction for the dye flip. For VCaP profiling, all features 

with significant differential expression (PValueLogRatio < 0.01) and Cy5/Cy3 ratios > or 

< 1 in all hybridizations were included in the over- and under-expressed signatures, 

respectively.  

All expression signatures were uploaded into the Oncomine Concepts Map 

(OCM, www.oncomine.org) (27) as molecular concepts, using all features on the Agilent 

Whole Human Genome Oligo Microarray as the null set.  Each signature was tested 
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against all contained concepts in the OCM for association using Fisher’s exact test as 

described (16, 27). Molecular concept maps and overlay maps of genes included in 

concepts were generated by the OCM. Datasets included in Oncomine without associated 

publications include the International Genomics Consortium’s expO dataset 

https://expo.intgen.org/expo/public/downloaddata.jsp (GSE2109) and the Yang et al. 

“Gene expression data from prostate cancer samples” dataset (GSE8218).  

For the assessment of prostate specific gene expression, the expO and 

Shyamsundar normal tissue (47) datasets were accessed using the Oncomine database. 

For the assessment of prostate cell type expression, the Oudes et al. (48) “Prostate cell 

specific expression” Affymetrix dataset was downloaded from GEO (GSE3998).  Data is 

reported as RMA normalized fluorescent intensity.  

Quantitative PCR (QPCR) was performed using Power SYBR Green Mastermix 

(Applied Biosystems, Foster City, CA) on an Applied Biosystems 7300 Real Time PCR 

system as described (1, 17). All oligonucleotide primers were synthesized by Integrated 

DNA Technologies (Coralville, IA). All reactions were performed in duplicate unless 

otherwise indicated. 

ChIP was performed according to published protocols with slight modifications 

(49). Briefly, formaldehyde was added directly to the cultured cells to a final 

concentration of 1%. Crosslinking was stopped by adding 1/20V of 2.5M Glycine to 

culture medium and cells were washed with 1xPBS and harvested in 1xPBS with 

proteinase inhibitors. Cells were then pelleted, washed once with 1xPBS plus proteinase 

inhibitors, and resuspended in cell lysis buffer containing protease inhibitors. After 

incubation in cell lysis buffer for 10 min, the samples were pelleted, resuspended in 

nuclei lysis buffer and sonicated to chromatins with an average size of 500bp. Chromatin 

was then precleared using Salmon sperm DNA/Protein A Agarose-50% flurry (Upstate) 

and incubated with anti-ERG (Santa Cruz, sc-354x) or rabbit anti-IgG (Santa Cruz, sc-

2027) antibodies overnight. The next day, the antibody-bound chromatin was pulled 

down using protein A/agarose, washed extensively and reverse-crosslinked. 

Immunoprecipitated DNA and whole cell extract input DNA were purified by treatment 

with RNase A, proteinase K and purified using a Qiaquick PCR purification kit, and and 

eluted in 25ul EB buffer (Qiagen, Valencia, CA). For PCR analysis of enrichment of 
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target gene promoters, 2ul each of input DNA, ERG-enriched, or IgG-enriched DNA 

were subjected to PCR using Platinum PCR Supermix (Invitrogen) and primers specific 

for target gene promoters. PCR conditions were 95oC for 3 min, followed by 25-35 cycles 

of 30 sec denaturation at 95oC, 30 sec annealing at 55-57oC, and 1 min extension at 75oC. 

PCR products were then analyzed by gel electrophoresis.   
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Figure 6.1. Transgenic mice recapitulating TMPRSS2-ERG in the prostate develop mPIN. A. We 
generated transgenic mice over-expressing the ERG gene fusion product  (C-terminal 3X-FLAG epitope 
tag) under the control of the enhanced probasin promoter (ARR2Pb). Mouse prostatic intraepithelial 
neoplasia (mPIN) was observed in 4 of 11 ARR2Pb-ERG mice. Benign epithelia and areas of mPIN are 
indicated by yellow and black arrows, respectively. B-D. Hematoxylin and eosin staining of ARR2Pb-ERG 
prostates for morphological assessment. Consistent with the focality of mPIN, B) benign glands and C-D) 
mPIN were observed in the ventral prostate (VP) of ARR2Pb-ERG mice. E-F. Immunohistochemistry 
(IHC) confirmed ERG-FLAG expression exclusively in areas of mPIN and not benign glands in ARR2Pb-
ERG mice. IHC with smooth muscle actin (SMA) demonstrates a continuous fibromuscular layer around 
G) benign glands and H) all mPIN lesions, while the basal cell markers I-J) cytokeratin 5 (CK5) and K-L) 
p63 demonstrate loss of circumferential basal cells in mPIN foci (J,L) compared to normal glands (I,K). 
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Figure 6.2. Over-expression of ERG in RWPE cells increases invasion through the plasminogen 
activator pathway. A. We generated adenoviruses and lentiviruses expressing the ERG gene fusion 
product. B-C. Infected B) RWPE and C) PrEC were assayed for invasion through a modified basement 
membrane. D. MCM analysis of the ‘over-expressed in RWPE-ERG compared to RWPE-GUS’ signature 
(ringed yellow node). E. qPCR confirmation of increased expression of genes involved in invasion. Inset 
shows immunoblot confirmation. F. Chromatin immunoprecipitation shows enrichment of ERG binding to 
the proximal promoters of PLAU and MMP3, but not PLAT, compared to IgG control. G. RWPE-ERG cells 
were treated with PLAU inhibitors, MMP inhibitors, or the EWS:FLI inhibitor ARA-C as indicated and 
assayed for invasion as in C. H. RWPE-ERG cells were treated with trasnfection reagent alone (untreated), 
or transfected with non-targeting, PLAU or PLAT siRNA as indicated and assayed for invasion.  For all 
invasion assays mean (n = 3) + S.E. are shown, asteriks indicate P < 0.05.  
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Figure 6.3. Knockdown of ERG in VCaP cells. A. The TMPRSS2-ERG positive prostate cancer cell line 
VCaP was treated with transfection reagent alone (untreated), or transfected with non-targeting or ERG 
siRNA (VCaP-siERG) as indicated. ERG knockdown was confirmed by immunoblotting. B. VCaP cells as 
indicated were assayed for invasion through a modified basement membrane. C. VCaP-siERG and VCaP 
cells treated with non-targeting siRNA were profiled and a molecular concept map of the ‘under-expressed 
in VCaP-siERG’ signature (ringed yellow node) was generated. Each edge represents a significant 
enrichment (P < 0.001). Blue edges indicate enrichments with in vivo ETS positive vs. negative prostate 
cancer signatures. D. ChIP identifies PLAT and PLAU as direct targets of ERG in VCaP cells. E. VCaP 
cells were treated with E) inhibitors or F) siRNAs as in Figure 6.2 and assessed for invasion. 
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Figure 6.4. ERG knockdown in VCaP cells de-represses a transcriptional program associated with 
normal prostatic epithelial cell differentiation. A. Molecular concept map of the ‘over-expressed in 
VCaP-siERG’ signature (ringed yellow node) was generated. Blue edges indicate enrichments with in vivo 
‘ETS positive vs. negative prostate cancer’ signatures. B. Overlay map identifying genes present (red cells) 
across multiple concepts in the over-expressed in VCaP-siERG enrichment network C. qPCR confirmation 
of increased expression in VCaP-siERG cells compared to VCaP-NT cells of transcripts strongly expressed 
in prostatic epithelial cells.  D. Analysis of prostate cell type specificity using a microarray dataset profiling 
magnetically sorted prostate cell populations. Asterisks indicate P < 0.05 for all pairwise t-tests involving 
luminal cells. E. Decreased expression of the proposed prostate cancer stem cell marker CD44 in VCaP-
siERG cells was identified by microarray analysis and confirmed by qPCR. 
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CHAPTER 7 

 

CONCLUSION 
 
 Chromosomal aberrations accompanying carcinogenesis have been documented 

for almost half a century, with gene fusions being the most prevalent type of aberration. 

Gene fusions leading to generation of aberrant fusion proteins or aberrant expression of 

normal proteins provide a potent route to carcinogenesis, and have recently emerged as 

attractive therapeutic targets. Intriguingly, while gene fusions have been widely observed 

in hematological malignancies, they have been far less frequently described in the more 

common epithelial carcinomas. Recently, scientists have proposed that technical issues, 

rather than any fundamental dichotomy between hematological and solid cancers, 

account for under-reporting of gene fusions in epithelial cancers. Recent reports from our 

group support this contention and provide evidence of widespread recurrent gene fusions 

in prostate cancer using a novel analysis of gene expression profiles. This review 

provides an appraisal of the state of our knowledge of gene fusions in epithelial cancers. 

Future implications of gene fusions in common epithelial cancers are also discussed.    

 A wide variety of recurrent chromosomal aberrations have been associated with 

cancers including polymorphisms, changes in gene copy number (amplifications/ 

deletions), point mutations, epigenetic modifications, and most commonly, gene fusions 

due to structural  chromosomal aberrations. Of the 291 genes named as ‘cancer genes’ 

based on documented causal association with oncogenesis, as many as 90% have 

recognized somatic mutations (1), and the most common class of somatic mutations 

affecting these cancer genes involve structural aberrations that often result in a gene 

fusion. This makes recurrent structural aberrations the most prevalent class of genetic 

aberrations causally associated with cancers. Two types of structural aberrations have 

been described. One involves the regulatory elements of a gene (promoter and/or 

enhancer) becoming aberrantly apposed to a proto-oncogene, driving deregulated 
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expression of the oncogene; for example, immunoglobulin and T cell receptor regulatory 

regions driving aberrant expression of the MYC oncogene in B and T cell malignancies, 

respectively (2). The other type of structural aberration results when the coding regions of 

two genes are juxtaposed, resulting in a chimeric transcript that produces a fusion protein 

with a new or altered activity; for example the t(9;22) resulting in the BCR-ABL1 gene 

fusion in chronic myelogenous leukemia (CML) (2,3). Recurrent chromosomal 

aberrations have causal roles in oncogenesis, therefore, it is not surprising that they 

provide specific therapeutic targets, including Trastuzumab for breast carcinoma with 

ERBB2 (HER2) amplification (4) and Imatinib for CML  (5, 6).  

A puzzling observation for cancer biologists has been that the recurrent structural 

aberrations and gene fusions typifying the majority of the ‘cancer genes’ have been 

predominantly observed in hematological malignancies (leukemias and lymphomas) and 

soft tissue tumors (sarcomas), which together represent only 10% of all human cancers.  

However, recurrent structural aberrations are relatively rare in the most common 

epithelial carcinomas, which account for 80% of cancer related deaths. Does this apparent 

discrepancy indicate that recurrent structural aberrations are truly rare in the epithelial 

carcinomas, perhaps due to some fundamental difference from hematological 

malignancies?  Or could this discrepancy simply indicate that epithelial carcinomas are 

not amenable to the same analytical techniques that are successfully used for detecting 

chromosomal aberrations in liquid or soft tissue tumors? This review summarizes the 

current status of this argument, favoring the latter view, as well as findings from our 

group that provide evidence of prevalent gene fusions in a common epithelial tumor. 

Recently, our group has reported the discovery of recurrent structural aberrations 

resulting in gene fusions in prostate cancer, a common epithelial carcinoma (7-9). This 

discovery was made using gene expression profiling data, which provides an alternative 

approach to identifying chromosomal aberrations including gene fusions and 

amplifications. Furthermore, this work provides compelling support to the idea that 

recurrent structural aberrations and gene fusions are as much of an etiological factor in 

epithelial carcinomas as in hematological malignancies.  

 Tracing the history of recurrent gene fusions in cancer, a clear skew towards 

hematological malignancies emerges. We examine possible reasons for such a skew, 
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provide a brief description of the well documented gene fusions in epithelial carcinoma, 

and discuss why such gene fusions are not more frequently described in epithelial 

cancers. The review then describes in detail the recent discovery of gene fusions in one of 

the most common epithelial carcinomas, prostate cancer, using a novel analytical 

approach involving gene expression profiling data. We conclude with a consideration of 

the open questions, and the outlook for future studies. 

In 1960, Peter Nowell, a pathologist at the University of Pennsylvania and David 

Hungerford, a cytogeneticist at the Institute for Cancer Research in Philadelphia, reported 

an abnormally small chromosome in all seven patients with chronic granulocytic 

leukemia, but not in normal cells or in the cells of other types of leukemia (10, 11). This 

was the first time a recurrent chromosomal aberration was described in a human 

neoplasm. Remarkably, Nowell and Hungerford also noted the presence of this 

aberration, later termed the “Philadelphia chromosome”, in the leukemia cells at the onset 

of the disease, pre-treatment, as well as in the leukemia cells of patients with persistent 

disease.  

Nowell and Hungerford used painstaking observations of metaphase chromosome 

preparations for their watershed work. About 10 years later, in 1970, quinacrine 

fluorescence/Giemsa based chromosome banding techniques were described. These 

techniques facilitated precise identification of specific chromosomal landmarks (12). 

Using chromosomal banding techniques, the Philadelphia chromosome was found to be 

generated as a result of a translocation of a large portion of the long arm of chromosome 

22 to chromosome 9. This was shown to be accompanied with a reciprocal translocation 

between a truncated portion of the proto-oncogene protein-tyrosine kinase c-abl from 

chromosome 9 to the bcr gene locus on chromosome 22 (13). The resulting fusion gene 

bcr-abl was found to encode a chimeric protein with tyrosine kinase activity (14) which 

could produce leukemia when expressed in mouse bone marrow cells (15).   This 

molecular insight formed the basis for development of specific inhibitors of the bcr-abl 

kinase, including the rationally designed drug Imatinib for the treatment of leukemia 

patients harboring the bcr-abl fusion (5, 6). The discovery of the bcr-abl fusion and it’s 

association with a specific malignancy, followed by causal linkage with a specific cancer 
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and molecular characterization has resulted in an enormous interest in identifying similar 

chromosomal aberrations and targeted therapeutics. 

 Karyotype analysis of leukemias and lymphomas using chromosome banding 

techniques led to widespread identification of numerous prevalent, recurrent 

chromosomal aberrations associated with specific clinical entities.  In 1973, the AML1-

ETO/t(8;21) translocation was described in acute myelogenous leukemia (16), AML1-

ETO (RUNX1/RUNX1T1)positive cases accounting for over 10% of AML patients. 

AML1 is a sequence-specific DNA binding protein that activates transcription of genes 

involved in myeloid maturation (17). AML1-ETO, on the other hand, inhibits 

transcription of AML1-responsive genes (18) presumably through the action of ETO 

which recruits transcriptional repressing machinery to the regulatory regions of AML1 

responsive genes (19).  

The fusion of the retinoic acid receptor alpha (RARA) gene to the PML gene as a 

result of translocation t(15;17) was associated with acute promyelocytic leukemia in 1991 

(20). Interestingly, the promyelocytic leukemia (PML) gene actually encodes a tumor 

suppressor that controls apoptosis, cell proliferation, and senescence (21), but the PML-

RARA fusion acts as a dominant-negative retinoic acid receptor, inhibiting the response 

to retinoic acid and blocking retinoic-induced differentiation of promyelocytes (22) 

through aberrant chromatin acetylation (23, 24). 

Numerous distinct gene fusions involving the MLL gene at 11q23 and 

approximately 20 partner genes have been identified in patients with AML and ALL (25, 

26). MLL is believed to regulate homeotic genes that are transcriptional activators of 

developmentally regulated gene families, and the different fusion partners, bring about 

modulation of MLL target genes through their effects on chromatin remodelling activity 

of MLL involving the SWI/SNF or histone acetylase complexes (27). 

A subset of AML is characterized by pericentric inversion of chromosome 16 

[inv(16)(p13q22)], resulting in fusion of upstream CBFB (PEBP2B) gene to downstream 

MYH11(SMHC), a smooth muscle myosin heavy chain gene, leading to synthesis of 

chimeric CBFB-MYH11 protein (28).  

 More recently, identification and fine mapping of additional recurrent 

chromosomal aberrations has been improved with refinements of molecular cytogenetic 
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tools, including fluorescence in situ hybridization (FISH) (29, 30) especially multicolor-

FISH techniques (31, 32), resulting in increasingly higher resolution and sensitivity.  

The development of specific diagnoses and classification of hematological 

malignancies using gene-fusion specific probes as well as development of targeted 

therapy specifically directed against fusion protein product (for example Imatinib against 

BCR-ABL1 protein) represent rare success stories in cancer biology where basic 

information has heralded clinically relevant developments.  

Since the advent of chromosome banding techniques over 30 years ago, more than 

600 acquired, recurrent, balanced chromosomal aberrations have been documented from 

more than 47,000 neoplasms representing all tumor tissue types (33, 34). The existing 

data strongly highlights that cancers are characterized by specific, recurrent chromosomal 

rearrangements with diagnostic and therapeutic implications.  In the Mitelman Database 

of Chromosome Aberrations in Cancer, the veritable ‘Yellow Pages’ of recurrent gene 

fusions, one remarkable discrepancy stands out: hematological malignancies, which 

constitute less than 10% of all human cancers, account for 74% of all known recurrent 

balanced chromosomal aberrations. On the other hand, malignant epithelial tumors which 

cause 80% of human cancer deaths, constitute only 10% of all known recurrent balanced 

chromosomal aberrations (35). Recurrent rearrangements and gene fusions have not been 

described in common epithelial cancers such as colon, breast, lung and prostate 

adenocarcinoma--until very recently. This disproportionately meager representation of 

structural aberrations in solid tumors, especially epithelial tumors, has lead to speculation 

that structural aberrations are not causally important in solid tumors. Alternatively, this 

discrepancy may simply reflect a technological limitation that has prevented the 

identification of recurrent structural aberrations in epithelial tumors. 

Before a discussion on the likely reasons for the lack of widespread identification 

of gene fusions in epithelial tumors, we will briefly survey the few but well documented 

structural aberrations resulting in gene fusions that characterize specific epithelial tumors. 

A comprehensive, tumor-wise account of cytogenetic aberrations have been compiled 

(36). 

ETV6-NTRK3: A gene fusion between the dimerization domain of the 

transcription factor ETV6 (TEL) with the tyrosine kinase domain of Neurotrophic tyrosine 
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kinase, receptor, type 3, NTRK3 (TRKC), originally associated with congenital 

fibrosarcoma (37), was identified in secretory breast carcinoma, a rare subset of breast 

cancer (38). Also expressed in hematopoietic adult AML (39) and mesenchymal cellular 

mesoblastic nephroma (40), the ETV6-NTRK3 protein has been shown to display potent 

transforming activity through activation of the Ras-MAP kinase and PI3 kinase-AKT 

pathways (41, 42). 

RET and NTRK1: As many as 50% of thyroid papillary carcinomas are believed 

to harbor structural aberrations between receptor tyrosine kinases RET (Rearranged 

during Transfection proto-oncogene) or NTRK1 (Neurotrophic tyrosine kinase, receptor, 

type 1) and various different partners (43-45). These fusion proteins are comprised of the 

C-terminal halves of RET or NTRK1 containing their tyrosine kinase domains linked to 

the N-terminal portions of various partner proteins. RET fusion protein partners include 

H4 (unknown function) (46, 47), R1alpha (PKA regulatory subunit) (48), ELE1 

(Androgen receptor-associated cotranscription factor) (49, 50) and RFG5 (golgi 

autoantigen) (51). Similarly, NTRK1 fusions have been reported with TPR  (Translocated 

promoter region; also known to be involved in tumorigenic rearrangements with the met 

and raf genes) (52, 53) and TFG (TRK-fused gene) (54) etc. The native RET and NTRK1 

proteins are membrane bound, and RET tyrosine kinase activity is activated as a result of 

multimerization upon ligand binding.  The gene fusions remove the N-terminal signal 

peptide of RET and NTRK1, rendering them cytoplasmic (55), and the various fusion 

partners with their dimerization or multimerization domains presumably account for their 

constitutive tyrosine kinase activity (56).     

PAX8:PPARgamma: Follicular thyroid carcinoma (FTC) accounts for 

approximately 20% of all thyroid cancers, and up to 40% of the deaths associated with 

this disease (57). Up to 50% of FTCs undergo a translocation event between chromosome 

regions 3p25 and 2q13 that fuses the DNA binding domain of the thyroid-specific 

transcription factor, paired box gene 8 (PAX8) with the peroxisome proliferator-activated 

receptor gamma, (PPARG), a ubiquitously expressed transcription factor. The 

Pax8/PPARG fusion gene (designated PPFP) acts as an oncogene in cell line 

experiments, where it accelerates cell growth, reduces rates of apoptosis and permits 

anchorage independent and contact uninhibited growth. PPFP is believed to act as a 
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dominant-negative inhibitor of the wild-type PPARG transcription factor, likely through 

competition for the genomic PPARG response elements, the endogenous ligand (57). 

Indeed, in a recent microarray analysis, PPAR target genes have been shown to be 

upregulated in PPFP-positive follicular carcinomas (58). 

PRCC:TFE3: A number of sporadic cases of papillary renal cell carcinoma 

affecting children and young adults have been found to harbor chromosomal 

translocations involving the TFE3 gene at chromosome Xp11.2.49-51 with the N-

terminal region of a novel gene designated PRCC (for papillary renal cell carcinoma) at 

1q21.2 (59-61). The TFE3 gene encodes a helix–loop–helix transcription factor related to 

the proto-oncogene product c-myc, and is suspected to be the oncogenic element fused to 

the novel gene PRCC containing proline rich regions. 

PLAG1 and HMGA2: Recurrent gene fusions resulting in pathogenetically 

relevant fusion oncogenes have been frequently found in both benign and malignant 

salivary gland tumors (62). The majority of translocations involve DNA-binding 

transcription factors PLAG1 (pleomorphic adenoma gene 1) and HMGA2 (High mobility 

group family protein), notably involved in growth factor signaling and cell cycle 

regulation.  Other important carcinoma associated fusion oncogenes described in salivary 

tumors include the CRTC1 (TORC1)-MAML2 fusion involving CREB regulated 

transcription coactivator 1, CRTC1 (TORC1) fused to mastermind like gene, MAML2, a 

coactivator of Notch. These fusions have also been observed in other soft tissue tumors as 

well as benign tumors (62). 

 BRD4 and NUT: Some of the poorly differentiated carcinoma of midline, head 

and neck or thoracic structures affecting young individuals, characterized by a highly 

aggressive and fatal clinical course have been reported to carry a translocation between 

chromosomes 15 and 19, i.e. t(15;19), resulting in the fusion oncogene BRD4 

(bromodomain-containing gene) and NUT (nuclear protein in testis) (63-65). French et al, 

have also described rarer, and somewhat less aggressive NUT-rearranged carcinomas 

(NRCs) among young patients with midline cancers that appear to have less aggressive 

clinical course and had longer average survival (96 weeks, n = 3) as compared to BRD4-

NUT carcinomas (28 weeks, n = 8) (66). Haruki et al, have cloned the fusion transcript of 

BRD4-NUT with the 3' end of BRD4 (chromosome 19p) fused to the 5' end of NUT 
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(chromosome 15q) from a lung cancer cell line, although none of the 128 lung cancer 

tissues screened with that probe using FISH demonstrated t(15;19) (67).  

 The above examples of gene fusions in epithelial carcinomas, although rare in 

absolute terms, provide tantalizing indication of a more widespread occurrence of similar 

gene fusions in other more common epithelial cancers. The big puzzle has been, why 

don’t we observe them as often?  

Overall, other than the above mentioned, relatively rare examples, the 

representation of gene fusions in more common epithelial carcinoma has been so scarce, 

it merits asking why? Previously identified aberrations in hematological malignancies 

have been identified by karyotyping, and candidate translocations followed up later by 

further molecular techniques. Karyotyping carcinomas has not been as feasible. The 

chromosome quality in epithelial neoplasms is particularly poor, often yielding only 

partial and poor quality karyotypes, leading to inaccurate analysis. Further, unlike 

hematological malignancies, which routinely display limited cytogenetic changes, 

carcinomas often present with multiple aberrations apparently acquired in the course of 

tumorigenesis. Whole genome analyses by recent high throughput techniques like array 

comparative genomic hybridization (aCGH) also reveal karyotypic complexity in 

epithelial tumors, complicating the identification of primary, causal aberrations from 

secondary acquired aberrations. Further, clonal heterogeneity due to the presence of 

cytogenetically unrelated clones, seen in less than 5% of leukemias, lymphomas, and 

mesenchymal tumors, but in up to 80% of epithelial carcinomas (68), renders epithelial 

tumors uniquely problematic in terms of identifying causal aberrations and gene fusions 

(69). While these difficulties may have impeded the determination of the true 

contribution of gene fusions in carcinomas, is there evidence to support the contention 

that the problem is only technical, not conceptual? Is there any evidence, for example, to 

suggest that the solid epithelial carcinomas are in reality not fundamentally different from 

the liquid and semi-solid cancers? This question was addressed by Mitelman et al. (see 

below), using all available data, and their conclusions have proved prophetic. 

In a study involving all of the more than 450 recurrent balanced aberrations 

documented from more than 45,000 cytogeneticaly characterized human neoplasms from 

different tissue types (35), Mitelman et al. noted that the number of fusion genes as well 
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as the broader subset of rearranged genes in each tumor category were “strictly 

proportional” to the total number of cases with an abnormal karyotype. In other words, 

since the incidence of recurrent chromosomal abnormalities, including gene fusions, in 

different tumor types is “simply a function of the number of cases with an abnormal 

karyotype”, fewer recurrent gene fusions observed in epithelial neoplasms is simply 

because far fewer accurately determined abnormal karyotypes have been documented 

from epithelial tumors, and not due to any fundamental tissue-specific differences. These 

somewhat unexpected observations lead Mitelman et al. to proclaim, rather boldly, in 

their own words, “the unorthodox concept”, that “cytogenetic aberrations resulting in 

deregulated or rearranged genes may be of greater importance as an initial step in 

epithelial tumorigenesis than generally believed”.  Another profound speculation made 

by the authors is that “the epithelial tumors are characterized by numerous but 

individually rare, pathogenetically important gene rearrangements that have not yet been 

identified”. The passages that follow bear out these predictions substantially.   

Using microarrays, gene expression signatures corresponding to different 

subgroups of cancers have been widely reported, including those associated with some 

known oncogenes (70, 71). Could a converse strategy be applied to discover novel 

rearranged or amplified oncogenes based on gene expression patterns? Recently, our 

group developed a novel bioinformatics algorithm in an effort to identify oncogenes. 

Rather than focusing on the routine broad based signatures of gene expression used to 

shortlist potential biomarkers, we chose to focus on the so called ‘outliers’ (7). As 

cancers are heterogeneous and also often display a heterogeneous pattern of oncogene 

expression, the conventional search for broad gene expression signatures across a class of 

cancer samples would fail to identify oncogene profiles that may be highly active in only 

a subset of cases (similar to the argument of Mitelman et al (35), referred in the previous 

subheading). For example, the breast cancer oncogene Her2/neu is amplified in 20-30% 

of breast cancers. So a ‘HER2 status naive’ microarray study involving 50 samples would 

likely show HER2 overexpression in only 10-15 samples, which would get overlooked 

using conventional analytical techniques in favor of genes uniformly over-expressed in 

all breast cancers.  Similarly, as E2A-PBX1 translocations are present in only 5-10% of 
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leukemia, it would be even more unlikely to be discovered by conventional analysis if 

cytogenetic studies were not performed. 

 In our recent study (7), we hypothesized that the expression profiles of cancers 

likely reflect marked overexpression of oncogenes (resulting from gene fusions or 

amplifications), albeit only in small subsets of samples. To systematically identify such 

small subsets with highly elevated levels of expression we developed a novel algorithm 

termed Cancer Outlier Profile Analysis (COPA) to interrogate gene expression profiles. 

The COPA transformation involves median centering all the expression values, setting 

each gene’s median expression value to zero. This is followed by calculation of the 

median absolute deviation (MAD) for each gene and the gene expression value is divided 

by its MAD to obtain the transformed expression value. This COPA transformation 

effectively compresses typical biomarker profiles characterized by general 

overexpression in cancer relative to normal tissue, whereas it accentuates the ‘outlier’ 

profiles characterized by general low expression with marked overexpression in a 

fraction of cancer samples. The 75th, 90th, and 95th percentiles of the transformed 

expression values are then tabulated and rank-ordered to provide a list of outlier genes.  

 We applied COPA to 132 gene expression data sets comprising more than 10,000 

microarray experiments (available in the Oncomine (72) database, www.oncomine.org). 

This analysis successfully identified several well known cancer genes in specific cancer 

types with well documented recurrent chromosomal rearrangements or amplifications. In 

addition, we observed that two ETS transcription factors known to be involved in gene 

fusions in Ewing’s sarcoma, ERG (21q22.3) and ETV1 (7p21.2), were highly ranked 

outliers in multiple independent prostate cancer profiling studies.   

The discovery of marked overexpression of ERG and ETV1 in prostate cancer was 

followed up by another intriguing observation; the outlier profiles of ERG and ETV1 

were mutually exclusive, similarly to Ewing’s sarcoma, where EWSR1-ERG and EWSR1-

ETV1 fusion genes are mutually exclusive in different cases (73). We used exon walking 

QPCR to show that samples with overexpression of the 3’ regions of ERG or ETV1 

showed markedly reduced expression of the 5’ regions, suggesting a possible gene fusion. 

Finally, using 5’ RNA ligase mediated RACE to identify the 5’ end of the ETV and ERG 

transcripts in cases over-expressing the respective ETS gene, we identified fusions with 
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the 5’ untranslated region (UTR) of a prostate specific, androgen responsive, 

transmembrane serine protease gene (TMPRSS2, 21q22.2) (74-76). The presence of these 

novel gene fusions in prostate cancer was confirmed at the chromosomal level when 

interphase fluorescence in situ hybridization (FISH) on tissue microarrays showed 23 out 

of 29 (79%) randomly selected prostate cancers were positive for one of the two gene 

fusions. These numbers, while small in absolute terms, are staggering in that prostate 

cancer is one of the most common epithelial carcinomas (affecting more than 200,000 

men per year in the US alone). Thus, TMPRSS2:ETS fusions might represent the most 

common recurrent structural aberration and gene fusion among all human malignancies! 

The finding of TMPRSS2:ETS fusions in the majority of prostate cancers has 

subsequently been confirmed by multiple indepdent groups. 

 More recently, our group has reported another rare chromosomal translocation 

involving TMPRSS2 and another ETS family member, ETV4, in a prostate cancer sample 

that did not harbor the previously identified fusions involving ERG or ETV1 (9). 

Additionally, we have also identified novel 5’ partners which result in distinct functional 

classes (8). While these recurrent aberrations result in the production of fusion genes, 

their structure indicates that TMPRSS2 and other 5’ partners do not contribute to the 

coding sequence. Instead, the androgen responsive and other promoter elements upstream 

of TMPRSS2 or other 5’ partners appear to drive the aberrant expression of the ETS gene 

in the prostate (Figure 7.1). Thus, these novel gene fusions appear to be more similar to 

the class of structural aberrations characterized by tissue specific regulatory element 

usurping control of proto-oncogenes, as has been well documented in lymphoid 

malignancies.   

The discovery of the first recurrent structural aberrations in the form of gene 

fusions in prostate cancer is exciting in and of itself, but the novel use of gene expression 

data to rationally identify putative gene rearrangements in epithelial tumors is a 

conceptual advance of profound impact, as it provides a long sought tool for discovery of 

gene fusions in all common epithelial tumors (9). It may be envisaged that using this 

approach, more gene fusions might be identified in other common epithelial carcinomas, 

such as breast, lung, colon, and brain tumors etc, where quality gene expression data is 

available. Recently, using a retroviral transformation assay from a cDNA library, EML4-
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ALK gene fusions have been identified in ~6% of non-small cell lung carcinoma (77), 

supporting a more generalized role for gene fusions in epithelial cells. Intriguingly, most 

tumors with fusion genes, such as secretary breast carcinoma, renal carcinoma, thyroid 

and myeloid malignancies, all tend to present more frequently in adolescence and young 

adulthood (78), unlike prostate and lung cancer, which are late onset malignancies. This 

could be yet another reflection of the global prevalence of gene fusions, as well as 

potentially reflect a more fundamental early role of gene fusions in carcinogenesis 

(Figure 7.2). 

Gene fusions accompanying cancers represent very useful diagnostic markers and 

potent therapeutic targets. The prototype gene fusion BCR-ABL1 described for over four 

decades in chronic myelogenous leukemia has contributed enormously to our 

understanding of such chromosomal aberrations in carcinogenesis as well as has served 

as a target for  effective therapeutic intervention. Similar progress is envisioned with 

respect to gene fusions in other hematological malignancies and soft-tissue tumors, and 

as described here, now even in epithelial carcinomas. It is tempting to propose that with 

increasing observations of gene fusions in solid cancers, some common gene fusion(s) 

might be found to be represented across different tumor types, potentially providing a 

broad-based therapeutic target. Indeed, gene fusions may provide a common mechanism 

for carcinogenesis. 
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Figure 7.1: A molecular basis for prostate cancer. The androgen responsive upstream regulatory 
sequences of TMPRSS2 driving ETS family of transcription factors could be representing a common theme 
for prostate carcinogenesis. A molecular analysis of this nexus might lead to a better understanding of the 
role of androgens in prostate cancers. 
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Figure 2: Subversion of tissue-specific promoters/enhancers to cause cancer. It is tempting to 
hypothesize that a genomic rearrangement causing a tissue specific regulatory element to usurp the control 
of an oncogene may be a common theme in tumorigenesis. A focused search for combinations of such 
tissue specific regulators and their oncogene counterparts, involved in common epithelial cancers would 
provide both, insights into the molecular basis of tumorigenesis as well as novel therapeutic targets. 
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sectioned tissue samples. Saravana Dhanasekarn isolated RNA from confirmatory 

prostate tissue samples. Ken Pienta, John Wei and Mark Rubin obtained prostate tissue 

samples. Rohit Mehra evaluated immunohistochemistry on tissue microarrays. Daniel 

Rhodes and Shanker Kalyana-Sundaram developed the Molecular Concepts Map and 

myOncomine.  
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CHAPTER 5 

Scott Tomlins and Arul Chinnaiyan conceived the experiments and wrote the 

manuscript represented in this chapter. Scott Tomlins, with technical assistance from 

Beth Helgeson, Xuhong Cao, David Morris, Anjana Menon, isolated RNA and performed 

qPCR for ETV1 expression from prostate tissues and cell lines, performed RLM-RACE, 

qPCR validation of ETV1 fusions and in silico characterization of fusion partners, 

generated and confirmed the localization of FISH probes, performed metaphase FISH on 

LNCaP and MDA-PCa 2B cells, generated probes for Southern blotting, performed 

microarray profiling of LNCaP and C4-2B cell lines, generated constructs for adenovirus 

and lentivirus generation, profiled RWPE-ETV1 cell lines and performed the Oncomine 

concepts analysis, and generated the transgenic mouse construct. The University of 

Michigan Vector Core generated the adenoviruses and lentiviruses. The University of 

Michigan Transgenic Model Core generatred the transgenic mice.  

Bharathi Laxman maintained, genotyped and dissected transgenic mice. Bharathi 

Laxman infected RWPE and PrEC cells with adenovirus and lentiviruses and generated 

stable cell lines. Saravana Dhanasekaran performed Southern blotting and inverse PCR to 

identify the LNCaP ETV1 breakpoint. Qi Cao performed invasion assays. Bo Han, Lucy 

Wang and Rohit Mehra performed interphase FISH hybridizations. James Montie and 

Ken Pienta obtained prostate cancer tissue samples. Mark Rubin, Rohit Mehra and Rajal 

Shah evaluated transgenic mice for prostate pathology. Diane Roulston provided 

interpretation for cytogenetic studies and generated LNCaP metaphase preparations. 

Jindan Yu performed CHIP on CHIP. Sooryanarayana Varambally performed siRNA, 

shRNA, inhibitor and androgen stimulation studies in LNCaP and RWPE cells.   

       

CHAPTER 6 

Scott Tomlins and Arul Chinnaiyan conceived the experiments and wrote the 

manuscript represented in this chapter. Scott Tomlins, with technical assistance from 

Xuhong Cao, Beth Helgeson and John Prensner, generated the transgenic mouse, 

adenovirus and lentivirus constructs, performed qPCR and expression profiling and 

performed the Molecular Concepts Map analyses. 
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Mark Rubin, Rajal Shah and Rohit Mehra evaluated transgenic mice pathology 

and performed and evaluated immunohistochemistry. Jindan Yu performed CHIP 

analyses. Bharathi Laxman maintained, genotyped and dissected the transgenic mice, 

infected RWPE and PrEC cells with adenoviruses and lentiviruses and generated stable 

clones, and performed proliferation and soft agar assays. Sooryanarayana Varambally 

performed siRNA and inhibitor studies, and performed Western blotting. Qi Cao 

performed invasion assays.  
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