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ABSTRACT 

 

This dissertation describes the development of a bead-spring Brownian dynamics model 

for simulating the topological interactions between polymers and thin obstacles.  We 

apply this method to electrophoretically translating DNA strands interacting with an 

immovable post.  The use of a bead-spring method allows for the simulation of 

entanglement interactions of polymer chains too long to be simulated using bead-rod or 

pearl necklace models.  This new method determines the shortest distance between a 

spring and the post, calculates a repulsive force inversely related to this distance using an 

exponential potential, and corrects for the rare situation when a spring passes beyond the 

post despite the repulsive interaction. 

 

We consider single-chain collisions with a single post in weak electric fields.  We explore 

a wide range of chain lengths (

! 

25 " N
K
"1500) and field strengths (

! 

10
"4
# Pe

Kuhn
#10

0), 

and we find that the average delay produced by the collision is a function of both the 

chain length and the Peclet number.  Our results are consistent with published results for 

a 25 Kuhn-step chain at Peclet number 

! 

Pe
Kuhn

=1.0 .  Our new method is a general one 

that allows us to compute the effects of entanglements in systems with rare 

entanglements and long chains that cannot be simulated by other more microscopic 

methods.
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We find that the mean distance 

! 

" x  that the chain migration is held up by the 

entanglement interaction increases with higher fields and encompasses four distinct 

regimes.  The two fastest regimes exhibit the classic rope-and-pulley dynamics, in which 

the chain is draped around the entanglement and the longer of the two dangling ends pulls 

the shorter end around the obstacle.  In the highest field strength regime, the 

dimensionless delay distance reaches its theoretical upper limit at 

! 

" x N
K

= 0.5.  In the 

moderately high field strength regime, the ends of the chain remain balled up while the 

central portion is extended, creating a “ball and chain” configuration.  In the two slower 

regimes, the polymer retains a coil-like shape as it diffuses laterally and eventually clears 

the post without deforming.  We develop models that describe both the average delay and 

the distribution of delays for the three highest field regimes. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 CAPILLARY ELECTROPHORESIS 

Capillary electrophoresis is a process that has multiple applications.  It is widely used for 

the separation of polymer molecules based on their molecular size.  It is a successful 

procedure for quick and efficient separation of DNA segments.
[1]

  This technology has 

experienced rapid development in recent years, and it is utilized for the separation of 

biopolymers, polysaccharides, and proteins.  Medical diagnostics, drug development, 

forensics, and gene therapy all make use of capillary electrophoresis.
[2]

  

 

The process takes place in a small capillary tube.  Polyelectrolyte molecules translate 

through the tube under the influence of an electric field.  The strength of the field, namely 

the voltage difference between the ends of the tube, divided by the length of the tube, is 

one variable that controls how rapidly the polymers migrate along the distance.  If the 

capillary tube is filled only with solvent, the advancing polyelectrolyte behavior will be 

of the free-draining limit.  Size dependent separation will not be achieved.  Larger chains’ 

forward motion is retarded by their increased frictional drag, but their forward motion is 

also more greatly enhanced by the electric field.  Both of these effects scale linearly with 

the size of the polymer.  A longer chain, relative to a smaller chain, will have difficulty 
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advancing because of its weight, but it will be further driven by the electric potential, and 

no relative difference in rates of migration between long and short chains will be 

achieved.   

 

Some type of obstacle in the path of the polyelectrolyte is required to achieve the size 

dependent separation that is sought.  It is thus necessary to introduce a second level of 

flow retardation that will be a function of the chain length.  Sieving matrices are 

commonly established to impart a frictional drag on the DNA molecule proportional to its 

length.
[2]

   Electrophoretic separations are thus nearly always performed in the presence 

of a neutral support matrix.
[3]

   

 

 

1.1.1  Dense Solution 

The traditional procedure has been to use a gel or a network of cross-linked polymer as 

the sieving medium.  The gel is believed to act as a molecular sieve discriminating based 

on molecular size.
[4]

  This dense mesh severely hinders the motion of all size DNA 

progressing forward; however, it more heavily slows the longer chains as they have a 

higher probability of interacting with the mesh.   

 

Two theories exist to explain how a DNA molecule travels through this sieving matrix.  

The DNA in the absence of the imposed obstacle will be in a coiled conformation.  This 

is the most entropically favored conformation.  When the radius of gyration of the DNA 

coil is smaller than the average pore size in the mesh, the separation process is believed 
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to occur by Ogston sieving.  If the radius of gyration is greater than the average pore size 

in the mesh, the process is believed to occur by reptation.  Both of these processes result 

in making the mobility of a polymer chain a function of molecular size. 

 

The Ogston theory
[5]

 proposes that the DNA molecules move through the capillary tube 

maintaining their spherical shape.  As they attempt to penetrate the mesh they must move 

about until they find a pore size large enough to fit through.  This is sufficient to result in 

size dependent separation.  A longer strand of DNA will form a coiled sphere with a 

greater radius of gyration than that of a shorter strand, and a sphere with a greater radius 

of gyration will have a more challenging and time-consuming process of finding a pore 

though which to advance.   Longer strands of DNA will therefore take more time to 

translate the length of the capillary.  The Ogston theory claims that DNA coils having a 

radius of gyration greater than the average pore size will not be able to move through the 

tube.  Experiments have shown this to be false.  A second theory is needed to explain this 

phenomenon. 

 

The reptation theory proposes that the DNA molecules can leave their spherical shape to 

allow themselves to move through the open pores.  The polymer can stretch and shrink 

along its own backbone while confined to a tube defined by the neighboring presence of 

the sieving matrix on its sides.  A DNA molecule with a radius of gyration too large to fit 

through a pore may change its shape to achieve diffusion.  Again, this is enough to result 

in size-dependent separation.  A longer strand of DNA will have a more difficult and 

time-consuming process of rearranging its form by reptation.  As with the Ogston model, 
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longer strands of DNA will therefore take more time to translate the length of the 

capillary. 

 

 

1.1.2 Dilute Solution 

Recent work has found that size-dependent separation in capillary electrophoresis is not 

wholly dependent on the presence of a gel or a dense cross-linked network.
[6,7,8]

  

Solutions of un-cross-linked polymers over a wide range of concentrations have been 

found to have potential to separate DNA molecules.
[1]

  It has been shown that good 

separations are possible in un-cross-linked polymer solutions in dilute solutions near or at 

least an order of magnitude below the minimum entanglement concentration.
[9,10]

  New 

attention has therefore concentrated on applications of electrophoresis that replace the 

traditional gel media with a dilute neutral polymer solution.
[11]

  Hyrdoxyethyl cellulose 

(HEC) has been used as the obstacle in dilute solution.  It works well because it is 

inflexible and therefore highly extended in solution.  Size-dependent separation is still 

observed even though the process no longer involves entanglement with an extended 

matrix, but instead that of a DNA strand encountering sequentially a series of isolated 

polymer molecules. 

 

There are a number of considerable advantages to performing capillary electrophoresis in 

dilute solution rather than in a dense gel network.  Gels are unfavorable because their 

short capillary lifetimes, loss of reproducibility over time, and difficulty of introducing 

the matrix into the capillary tube.  Dilute polymer solutions are more versatile and easier 
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to use.
[2]

  The same level of separation requires more time in a gel because the DNA must 

move through the solution.  For any given tube length and field strength, separations have 

been found to be five to ten times faster in dilute polymer solutions than is possible in 

conventional entangled polymer network solutions.
[12]

  The dilute approach is also easier 

to consider from the viewpoint of computer simulations.  Modeling the behavior of a 

small number of neutral polymer stands is far less expensive than building an entire 

network of polymers.  The computationally intensive calculations are those surrounding 

the moments of interaction between the charged DNA and the neutral polymer.  The 

percentage of time occupied by these interactions in the dilute situation is significantly 

lower in dilute solutions than in the dense situation.  The advantage gained is that more 

time is spent performing relatively faster calculations. 

 

The discovery that dilute systems of polymers can be used for capillary electrophoresis 

allows for a more complete capitalization on the speed and efficiency of the capillary 

geometry.  The molecular dynamics explaining the interactions between charged DNA 

and neutral polymers, and how they may be different from those in the gel media, are not 

fully understood.  Comprehending this mechanism is important for developing 

procedures to optimize the effectiveness of electrophoresis.  Some groups believe that the 

mechanism is virtually identical to that in traditional slab gel electrophoresis
[6]

, while 

others ascribe separation to the attraction and interaction of DNA with the cellulose 

strand in the buffer.
[8]

  Beebe-Poli
[13]

 performed capillary electrophoresis in un-cross-

linked HEC by separating different lengths of polystyrene.  They concluded after analysis 

of their data that neither Ogston sieving nor reptation were adequate mechanisms to 



   

   6 

model their results.  Viovy
[14]

 and Duke
[15]

 argue that separations are permissible in dilute 

solutions because the individual polymer strands act as the obstacles through which the 

DNA must travel.  Barron
[1]

 proposes that individual DNA chains become entangled with 

the discrete polymer molecules and they pull them along through the solution.  Separation 

is achieved because the likelihood of entanglement between DNA and polymer increases 

with the size of the DNA chain.  Hubert
[16]

 also believes in a mechanism in which the 

host polymer is dragged forward a distance by the translating polyelectrolyte. 

 

 

1.1.3 Mechanism 

The DNA strand, the probe, migrates through the capillary tube as a random coil under 

the influence of the electric field.  In the absence of any interaction with the neutral 

obstacle polymer, the host, it will continue onward in the free-draining limit.  When the 

probe contacts a host polymer it may either form an entanglement or glance off to a side.  

The forming of an entanglement requires the probe to change its shape and it is these 

shape-changing encounters which are essential to size dependent separation.  Simple 

transient entanglements between DNA and HEC molecules without changing the DNA 

shape and breaking its spherical symmetry are not effective in introducing size 

dependence of electrophoretic mobility.
[10,11]

  When a shape-changing event occurs, the 

probe leaves its coiled conformation to instead take on a pulley-like form with two arms, 

not necessarily of equal length, one on either side of the host polymer.  Thus, the probe 

forms a U-shape about the host.  Both of the arms are still being stretched in the forward 

direction by the electric field, but one arm, most likely the longer arm, is able to pull the 
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shorter arm to its side.  The smaller arm then migrates against the electric field and 

around the point of intersection to the side of the bigger arm.  After both arms are free 

from the entanglement, the DNA probe then returns to its random coiled shape and 

moves again unimpeded under the influence of the field.   

 

The probe is still advancing through the capillary, though at a much slower rate, during 

the duration of this entanglement period.  The additional frictional drag is a direct result 

of the probe pulling the neutral polymer along and it is responsible for this decrease in 

mobility.  It is possible that multiple entanglements will be occurring at the same time.  

This process of coiling – entangling – coiling repeats itself as the probe migrates through 

the capillary tube. A larger probe strand has a higher probability of encountering a host 

polymer and having an entanglement.  In addition, a larger probe will take longer to 

release itself from the entanglement; the amount of time spent with the reduced velocity 

is therefore higher for longer DNA molecules.  The mobility of the DNA is certainly a 

function of its molecular weight and this allows for size-dependent separation. 

 

Barron
[1]

 presents the following argument for understanding the process of entanglements 

in dilute polymer systems.  Consider a freely orienting polymer with 

! 

N  subunits.  The 

diffusion coefficient 

! 

D is the ratio of 

! 

k
B
T  to some molecular friction factor.  Allow 

! 

f
0
 to 

represent the amount of force needed to pull one subunit though the capillary with a unit 

velocity.  This 

! 

f
0
 is a force divided by a unit velocity – it carries the same units as a drag 

coefficient (mass per time).  The total drag coefficient for the polymer with 

! 

N  subunits is 

then 

! 

Nf
0
.  In this case the diffusion with no entanglements is 
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! 

D =
kBT

Nf
0

         (1.1) 

 

If the probe polymer were entangled with a host polymer, a force greater than 

! 

Nf
0
 would 

be required to maintain the particular velocity.  As the electric field remains constant, the 

force on the probe polymer is unchanged.  The effect of this entanglement is that the 

probe polymer cannot maintain the particular velocity.  It is slowed down by the 

entanglement.  Notice that the increase in force required is related to 

! 

N .  The longer 

polymer will have more entanglement points and it will advance more slowly through the 

solution. 

 

 

1.2 PREVIOUS WORK  

1.2.1 Experimentation 

Barron
[1]

 first determined the entanglement threshold for different molecular weight 

fractions of HEC.  She defined 

! 

"
*  as the concentration at which polymer chains begin to 

overlap and interaction first appears.  In a plot of the specific velocity (!sp) of the solution 

versus the polymer concentration 

! 

"( ) the concentration where the slope significantly 

changes is 

! 

"
* , the concentration at network formation.  Other work went on to show 

explicitly that size dependent-separation is achieved using HEC as the sieving medium at 

concentrations well below the threshold limit.   
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Both solutions are successful is separating the DNA fragments according to molecular 

weight.  This shows that a definite mesh-like sieve is not a required component for 

capillary electrophoresis of DNA.  Barron
[1]

 also found that a low concentration of high 

MW HEC polymers worked better for separation of long DNA fragments than a high 

concentration of low MW HEC polymers.  If the HEC molecules are too small, during 

their interactions with the probe they are unable to form the long lasting firm 

entanglements that significantly hinder the probe motion.  

 

One method to gain a quantitative measure of the dynamics of the probe-host interactions 

is to treat the DNA coil as an ellipsoid and monitor the changes in the three principle 

radii 

! 

Rx, Ry, Rz( ).  

! 

R
x
 is the radius in the flow direction.  A second technique is to 

evaluate the velocity of the center-of-mass of the probe 

! 

v
cm( ) .  When the probe is 

involved in an entanglement the usual random coil shape is replaced by the U-shape 

conformation.  The value of 

! 

R
x
 is significantly larger in this formation than in the 

transient flow because the two extended arms are contributing to the radius.  

! 

v
cm

 is 

constant for a probe advancing without entanglement.  It is considerably slowed during a 

period of interaction by the increase in hydrodynamic resistance from the host polymer.  

Both 

! 

v
cm

 and 

! 

R
x
 return to their previous static values following an entanglement event. 

 

 

1.2.2 MD and BD Simulations 

Computer simulations offer an excellent opportunity to study the dynamics of 

entanglements of polymers in dilute solutions.  The model system can be designed to 



   

   10 

include a probe DNA chain and a number of host polymer chains.  Recall that some of 

the advantages of the dilute solution included avoiding simulation of the entire gel 

network and a lesser amount of time spent doing intensive interaction calculations.  

Various simulation ideals are available including molecular dynamics (MD) and 

Brownian dynamics (BD). 

 

In an MD simulation
[17,18,19,20]

 Newton’s equations for motion are solved directly for each 

monomer for each small step forward in time.  To maintain conservation of energy and 

momentum it is necessary to simulate the entire space.  There must be an available 

exchange with the surroundings.  The solvent surrounding the polymer must therefore be 

included in the simulation, and it must be allowed to interact.  Typically, twenty times as 

many solvent molecules are needed per monomer in the chain.
[18]

  The explicit motion of 

the solvent is not relevant to the interaction dynamics, and the inclusion of these 

calculations in the algorithm makes it so inefficient that MD is rarely used for chains of 

substantial length.  

 

The solvent is replaced by a continuum in a BD simulation.  Each monomer, or each bead 

consisting of multiple monomers, feels a random force at each time step that simulates 

the effects of collisions with solvent molecules.  This Brownian force is defined to have 

an ensemble average of zero and should have no overall effect on the motion of the 

polymer chain.  This tenet of BD gives it a considerable advantage over MD in that only 

the motion of the monomer pieces needs to be calculated at each time step. 
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It is assumed that the polymer strand can be simplified into a chain consisting of beads 

connected by sticks.  The beads represent points along the chain where the polymer feels 

the force from its environment that causes it to translate or change orientation.  All the 

force is concentrated on these beads, and the connecting sticks do nothing more than hold 

the beads together.  The sticks are free to rotate about the beads to which they are 

connected and this permits the chain to sample various conformations. 

 

The next level of simplification of the BD method deals with the coarse-graining 

procedure.  The simulation needs to be accurate only to the length and time scales 

consistent with the physics of the problem to be solved.  One extreme is the pearl 

necklace approach where each individual monomer is represented by a bead.  A polymer 

of 100000 monomers would consist of 100000 beads.  The length of the connecting sticks 

is such that the product of the length of the stick and the number of sticks equals the fully 

stretched length of the polymer.  This scaling requires the use of many beads and 

relatively short sticks.  This is too simplistic a process to portray detailed chemical 

structure, but it does do well to mimic some primary characteristics of the chain. 

 

For problems with a larger length scale it is common to use fewer beads and longer sticks 

to model the same length polymer chain.  If the motion of distinct monomers is not 

required then a number of monomers can be grouped together into one bead.  The 

distance between each bead (the length of the stick) is fixed at one Kuhn step.  The Kuhn 

step is a characteristic length specific to the polymer chain.  The length of the Kuhn step 

will set the number of monomers that can be grouped in each bead.  The distance 
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between each bead can be greater than that used in the pearl necklace method.  This is the 

bead-rod approach to BD.  During the simulation is it important to ensure that the length 

of each rod remains the same.  This scaling requires fewer beads than the pearl necklace 

method. 

 

The highest level of simplification again decreases the number of beads and increases the 

length of the connections.  In this case each bead may represent 10000 monomers, and 

the rod connecting each bead would then need to be 10000 times as long as in the pearl 

necklace.  This rod must now be given an increased degree of flexibility to continue to 

accurately model the polymer.  The rod is replaced by a spring that is allowed to shrink 

and extend at each time step.  Each spring has a maximum extended length, defined such 

that the fully stretched length of the polymer is still unchanged, and it is an important part 

of the simulation to ensure that no spring is ever over-extended.  The advantage of the 

bead-spring BD simulation is that it can model a long polymer chain with the fewest 

number of monitored points. 

 

A key assumption in BD is that intermolecular forces between macromolecules are 

neglected.  There is no bead-to-bead potential and the beads do not sense their nearness to 

one another during the simulation.  The springs only exist to connect the beads; they do 

not exist in the sense of occupying any space and so they are “phantom springs”; any two 

springs may pass through one another.  Each move forward in time is uncorrelated with 

the previous move.  There is no information from timestep t that is used to determine the 

direction or speed of move t + "t. 
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At each timestep there are three forces acting on each bead.  The Brownian force 

represents the effects of the solvent molecules.  The drag force relates the velocity of the 

beads to the velocity of the solvent 

 

! 

Fdrag = " V # ˙ r ( )         (1.2) 

 

where 

! 

"  is the drag coefficient, 

! 

V  is the velocity of the solvent at the bead location, and 

! 

˙ r  is the velocity of the bead 

! 

dr dt( ) .  The drag coefficient is determined based on 

diffusivity measurements and polymer theory, and it is a function of the length of the 

molecule, the viscosity of the solvent, and the number of model beads used.
[22]

  The 

spring force is a function of the extension of the spring and is used to maintain that no 

spring is ever over-extended.  The location of the bead after a timestep is directly of 

function of the combination of these forces. 

 

BD assumes that no acceleration occurs during the small increment of the timestep.  The 

inertia is negligible because the mass of any individual bead is near zero.  A second 

assumption is that over the timestep the forces acting on any bead remain constant.  It is 

then simple to rearrange the force balance to get an equation relating the velocity of the 

bead to the Brownian and constraint forces. 

 

! 

F = ma" = 0          (1.3) 

 

! 

Fdrag + Fspring + FBrown = 0       (1.4) 
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! 

dr

dt
= V +

Fspring + FBrown[ ]
"

       (1.5) 

 

Given a velocity field and a timestep, this process can be solved using first order Euler 

integration to determine the new position of each bead following each move. 

 

 

1.2.3 Previous Simulation Work 

Some simulation work has previously been done investigating the dynamics of a polymer 

strand encountering an obstacle.  Sevick and Williams modeled a polyelectrolyte 

collision with a post in a microlithographic array.
[7]

  Nixon and Slater used BD to 

simulate two-dimensional DNA electrophoretic collisions with a single non-moving 

obstacle.
[4]

  Starkweather et al have used Monte Carlo simulations to study single chain 

entanglement in dilute solution capillary electrophoresis.
[3]

  These works are the 

beginning of understanding the mechanism of interaction. 

 

Sevick and Willams
[7]

 believed that the separation achieved from driving a charged 

polymer through a dilute polymer solution might also be accomplished by replacing the 

solution with a random array of posts.  They used lithographically etched arrays of silicon 

as the electrophoretic medium.  The polyelectrolyte assumed the form of having two arms 

of the chain extended along either side when it contacted a post, as was predicted by 

Barron.
[1]

  It is significant to note that if the radius of gyration of the polymer in the flow 
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direction is larger than the spacing between posts in this grid array arrangement then 

simultaneous interactions with multiple posts is possible.   

 

A two-dimensional BD algorithm was used to simulate an electrophoretic collision 

between a bead-spring polyelectrolyte and a stationary circular obstacle.  A soft-core 

repulsive potential was introduced between the beads and the obstacle.  Nixon and 

Slater
[4]

 began their simulation with the DNA molecule confined to a narrow channel and 

flowing toward the obstacle.  The molecule obeys the traditional dynamics of a free-

draining coil in the absence of any collisions.  It is not possible for the DNA to avoid the 

post by passing above or below it because this is a two dimensional simulation.  The 

radius of the obstacle was chosen such that 

! 

R
obs

= L 2  (with 

! 

L  as the spring length).  This 

ensured that, even if the spring was fully stretched, the DNA could not pass through the 

post without the bead-post repulsive force taking effect.  This simulation was designed to 

guarantee a collision for each trial.  

 

Figure 1.1 clearly illustrates six instances during one particular trial.  The DNA molecule 

begins upstream of the post, (a).  It has no knowledge of the obstacle and it travels 

forward in a random coil conformation.  When a collision occurs, (b), the DNA is unable 

to pass by the post if it remains in its coiled orientation.  The electric field continues to 

drive the DNA forward.  This driving force is strong enough to compel the polymer to 

change its form and adapt the U-shape structure with two arms, (c, d), one reaching out 

on either side of the post.  The longer arm continues to grow at the expense of the shorter 
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arm, and eventually the entire polymer collects on one side, (e), and passes the obstacle.  

Downstream of the post, (f), the DNA begins to return to its random coil configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.1  Simulation snapshots of the collision between a charged bead-

spring polymer and a circular obstacle.  This figure is from [4]. 
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The ensemble-averaged position of the center of mass, 

! 

y t( ) , advances down the length 

of the column with time.  (Nixon and Slater define the 

! 

y-direction to be parallel to the 

tube axis.)  Figure 1.2 indicates that, both before and after the collision, 

! 

y t( )  moves 

with a constant velocity.  This velocity is significantly retarded during an interaction 

because the molecule must take time to undergo the shape-changing conformation.  The 

average time delay due to entanglement was ~3.4 time units.  They also present the 

changes in the two mean square end-to-end distances.  Figure 1.3 shows a small increase 

in 

! 

R
x
 and a much larger increase in 

! 

Ry .  The DNA experiences three stages during the 

collision.  The first stage is a “stacking” stage
[4]

 where the polymer contacts the post and 

spreads out in the column – this is responsible for the change in 

! 

R
x
.  It then stretches out 

the two arms – the significant change in 

! 

Ry  – in the flow direction, and then finally 

returns to its coiled form.  The cyclic process of coiled-stretched-coiled is not periodic.  

Notice that even after the probe is free from its entanglement 

! 

t " 25( )  the displacement in 

! 

Ry  has not returned to its pre-interaction value.  There is a duration following release 

during which the probe remains distorted from its random coil form. 

 

Two factors are important for the success of a dilute polymer solution in capillary 

electrophoresis.  It is necessary to maximize the molecular-size-dependent retardation 

due to the sieving process of collisions between the migrating molecules and the 

separation matrix.  In addition, it is imperative to minimize the dispersion of molecules 

due to these collisions.
[4]

  Nixon and Slater conclude that single entanglements between 

DNA molecules and dilute polymers would be insufficient for successful electrophoresis.  

They believe the escape process from the collision is not detailed enough for efficient  
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FIGURE 1.2  The mean position of the center of mass along the tube axis vs. 

time for a population of 867 molecules.  This figure is from [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.3  Mean squared end-to-end distance vs. time.  The y-direction is 

parallel to the tube axis.  This figure is from [4]. 
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separation and that the large range of escape times leads to increased molecular diffusion.  

They argue that multiple collisions are necessary, and therefore the use of a dense gel 

media in the capillary is required. 

 

The work of Starkweather
[3]

 et al uses a Monte Carlo simulation procedure on a pearl 

necklace representation of the polymer chain.  Each bead in the chain is given a hard 

sphere potential and a radius 

! 

"  large enough to prevent bond crossings. 

 

 

! 

V (r) =
0 if r >"

# if r $"

% 
& 
' 

       (1.6) 

 

The obstacle is also represented by a pearl necklace chain with the hard sphere potential 

(different from the 2D post used by Nixon
[4]

).  This simulation is performed in three 

dimensions so it allows for the possibility that the probe may pass by the host without 

interaction.   

 

The host chain is first equilibrated and then its orientation and location are frozen for the 

remainder of the simulation.  The probe chain is also equilibrated and then it is placed a 

fixed distance upstream of the host.  The probe, driven by the electric field, migrates 

away from its original position and may interact with the host.  An entanglement is 

signified if the probe strongly deforms in the field direction.  The probe may miss the 

host entirely, it may contact it but glance off to one side, or it may become fully 

entangled.  The first case shows no time delay, the second may slow the probe but 

without significant conformation change, and the third results in both a large time delay 
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and orientation alteration.  It is this third engagement that is most important to size 

dependent separation.  Figure 1.4 demonstrates the motion of the probe during a fully 

developed entanglement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.4  This shows the typical time evolution of conformation for a probe 

chain in the strong entanglement case.  Notice the two arms.  This figure is from [3].   

 

Starkweather
[3]

 compares the center-of-mass movements of a simulation featuring a high 

level entanglement against a simulation that avoided entanglement.  They shows that, 

similar to what Nixon
[4]

 found in the 2D case, during interaction the otherwise constant 

advancement of the polymer is strongly retarded from its free-draining motion.  They find 
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that the slope of the non-interacting polymer is comparable to that of the interacting 

polymer following its entanglement. 

 

Starkweather concludes “the interaction of a mobile polyelectrolyte chain and a single 

neutral host can endow the polyelectrolyte with a strongly molecular-weight-dependent 

mobility, even in the absence of host mobility.”
[3]

  This is exactly opposite to the belief 

presented by Nixon and Slater.
[4]

  The mechanism explaining entanglement dynamics 

between probe and host continues to be unclear, and the use of dilute polymer solutions 

in capillary electrophoresis remains a field to be explored. 
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CHAPTER 2 

USING SPRING REPULSIONS TO MODEL  

ENTANGLEMENT INTERACTIONS IN BROWNIAN  

DYNAMICS SIMULATIONS OF BEAD-SPRING CHAINS 

 

 

We develop a bead-spring Brownian dynamics model for simulating the topological 

interactions between polymers and thin obstacles, and apply this method to 

electrophoretically translating DNA strands interacting with an immovable post.  The use 

of a bead-spring method allows for the simulation of entanglement interactions of 

polymer chains too long to be simulated using bead-rod or pearl necklace models.  Using 

stiff “FENE-Fraenkel” springs, we are able to model short chains as well.  Our new 

method determines the shortest distance between a spring and the post, calculates a 

repulsive force inversely related to this distance using an exponential potential, and 

corrects for the rare situation when a spring passes beyond the post despite the repulsive 

interaction.  As an example problem we consider single-chain collisions with a single 

post in weak electric fields.  We explore a wide range of chain lengths (25 Kuhn steps – 

1515 Kuhn steps) and we find that the average delay produced by the collision is a 

function of both the chain length and the Peclet number.  Chains of all lengths reach the 

same upper limit at high Peclet number but they follow separate curves with similar 

slopes at lower Peclet number.  Our results are consistent with published results for a 25 
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Kuhn-step chain at Peclet number 

! 

Pe =1.0.  Our new method is a general one that allows 

us to compute the effects of entanglements in systems with rare entanglements and long 

chains that cannot be simulated by other more microscopic methods. 

 

 

2.1 INTRODUCTION 

There are a number of problems in polymer physics where rare entanglements dominate, 

and these problems cannot be addressed by traditional methods such as “tube models” 

and fine-grained simulations that assume entanglements are dense or chains are short.  

Problems in which rare entanglements are important include the dynamics and rheology 

of semi-dilute solutions of long polymers and electrophoresis of DNA in dilute polymer 

solutions through arrays of posts.  While we focus here on the latter problem, the 

methods we develop could be applied to other situations dominated by rare 

entanglements. 

 

Size-dependent separation of DNA polymer strands has useful applications in medical 

diagnostics, drug development, forensics, and gene therapy
[1]

.  A common process to 

separate DNA strands uses capillary electrophoresis through a solution of neutral 

obstacles.  The neutral objects could be other polymer molecules either in a cross-linked 

gel or in solution
[2]

, or micro-fabricated thin posts in a microchannel
[3,4,5]

.  When a DNA 

strand is blocked by a post or gel filament, the DNA leaves its coiled conformation to 

take on a pulley-like form with two arms, not necessarily of equal length, one on either 

side of the obstacle, forming a U-shape or J-shape about the post.  Both of the arms are 
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stretched in the forward direction by the electric field, but one arm, most likely the longer 

arm, is able to pull the shorter arm against the electric field and around the post to the 

side where the bigger arm resides.  After both arms are free from the entanglement with 

the post, the DNA returns to its randomly coiled shape and moves again unimpeded 

under the influence of the field.  There is a time penalty associated with these interactions 

– a long polymer takes more time to maneuver around the post than does a short polymer.  

It is interactions of this type that lead to the size-dependant separation of DNA polymer 

strands. 

 

A number of simulation methods are available to model this situation.  Starkweather
[6]

 et 

al. studied single chain entanglements in dilute solution capillary electrophoresis.  Their 

Monte Carlo simulation procedure uses a pearl necklace representation of the polymer 

chain and each bead in the chain is given a hard sphere potential and radius large enough 

to prevent crossings.  Saville and Sevick
[17]

 study a field-driven polymer chain colliding 

with a finite-sized obstacle.  They discuss the “unhooking” and “rolling off” mechanisms 

for chain release.  Nixon and Slater
[7]

 use bead-rod Brownian dynamics (BD) to simulate 

two-dimensional DNA electrophoretic collisions with a single non-moving obstacle.  

Their simulation begins with the molecule confined to a narrow channel and flowing 

toward the obstacle.  The radius of the obstacle is chosen such that 

! 

R
obs

= L 2  (where 

! 

L  

is the length of one rod).  This ensures that the DNA cannot pass through the post without 

the bead-post repulsive force taking effect.  Patel and Shaqfeh
[8]

 also use a similar bead-

rod Brownian dynamics method to model the electrophoresis of DNA through dilute post 

arrays.  They simulate chains of 25 and 150 Kuhn steps.  The work of Randall and 
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Doyle
[18]

 shows experimentally the interactions of polymer chains with a stationary 

obstacle. 

 

One limitation of such bead-rod or pearl necklace simulations is in the length of chain 

that can be modeled.  The required number of beads must equal the number of Kuhn 

steps because the length of each rod is fixed at one Kuhn step.  Bead-spring BD 

simulations are more coarse-grained and allow for the simulation of much longer chains 

since each spring can represent many Kuhn steps.  The use of bead-spring BD to solve 

the polymer/post interaction or other entanglement interactions represents a new 

approach to such problems.  Previous work has generally not considered simulations of 

bead-spring chains because they do not readily enforce the topological interactions 

between the polymer and the post.  When there is more than one Kuhn step between each 

bead, bead-post repulsion (used by Nixon & Slater and Patel & Shaqfeh) does not prevent 

the chain from passing through the post.  We here develop a method to apply a repulsive 

force between each spring and the post.  Kumar and Larson
[9]

 proposed such an approach 

earlier but their algorithm was not able to ensure that the spring did not violate the 

topological restrictions without reducing the time step size to an unacceptably small 

value.  Here we improve on the method of Kumar and Larson by developing a procedure 

to determine if any spring has passed through the post and correct those springs as 

necessary.  We are also able to implement in our method the fast predictor-corrector 

time-stepping method of Somasi et al
[13]

.  We are thereby able to model chains much 

longer than those in the current literature. 
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We note here that, for a coarse-grained simulation of polymer melts, Padding and Briels 

have proposed a related method for imposing entanglement constraints, in which a spring 

is allowed to “bend” around an entanglement point and the resulting increased spring 

length generates the forces needed to preserve the entanglement interaction
[15]

.  At this 

point it is not clear whether or not this method can be adapted to the case of rare 

entanglement that we are addressing here. 

 

 

2.2 METHODS 

2.2.1 Brownian Dynamics 

The simplest bead-spring Brownian dynamics simulations use three forces to move the 

beads during each time step.  The Brownian force represents the random effects of the 

solvent molecules.  This force is given by
[10,11]

 

 

 

! 

F
Brownian

=
6 k

B
T "

#t

$ 

% 
& 

' 

( 
) 

1 2

        (2.1) 

 

The drag force relates the velocity of the beads to the velocity of the solvent where 

! 

" = "
tot

N , and 

! 

"
tot

 is the drag coefficient for the entire chain, 

! 

N  is the number of beads 

in the chain, 

! 

V is the velocity of the solvent at the bead location, and 

! 

˙ r  is the velocity of 

the bead 

! 

dr dt( ) . 

 

! 

Fdrag = " V # ˙ r ( )         (2.2) 
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The drag coefficient can be determined using diffusivity measurements and polymer 

theory, and it is a function of the length of the molecule, the viscosity of the solvent, and 

the number of model beads used
[10]

.  Hydrodynamic interactions between beads are 

neglected here. 

 

The spring force is a function of the extension of the spring and is used to guarantee that 

no spring is ever over-extended.  We use the worm-like chain version
[10,12]

 of the spring 

force in our simulation when we model chains long enough that the number of Kuhn 

steps per spring is greater than 15. 
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! 

k
B
T  is the Boltzman thermal energy factor, 

! 

"p  is the persistence length (equal to one half 

of the Kuhn step length 

! 

b
K

), 

! 

R is the end-to-end vector of a spring, and 

! 

R
0
 is the 

maximum extended length for any spring.    

 

We use the FENE-Fraenkel spring law
[16]

 to model short chains in which each Kuhn step 

length is represented by a single stiff spring with non-zero minimum length that behaves 

in a rod-like manner. 
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! 

H  is the spring constant and 

! 

s is the extensibility parameter that defines the maximum 

possible deviation between the actual spring length and the natural spring length (i.e., the 

length at which the force is zero). 

 

The location of the bead after each time step is controlled by a combination of these 

forces. 

 

The calculation of the spring force is one opportunity for Brownian dynamics to 

capitalize on the development of fast semi-implicit algorithms.  The distance between 

two consecutive beads can never be greater than the fully extended length of the spring 

that connects them. A predictor-corrector integration scheme such as that of Somasi
[13]

 et 

al. can be used to avoid this situation.  They observe that “the premise of the method lies 

in the fact that the spring force law for any spring in the chain is either written explicitly 

(from the previous time step, or from a previous step in the current time step, where the 

length of the connector is guaranteed to be within the bounds) or solved implicitly 

through the cubic equation.”  Two advantages of this scheme are that no Brownian move 

ever needs to be rejected and that larger time steps can be used with confidence.  We use 

this method in our model for both of the spring force options. 
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Brownian dynamics methods take advantage of the fact that inertial forces on the 

polymers are small and therefore the sum of the above forces can be set to zero.  A 

second approximation is that over the time step the forces acting on any bead, except for 

the spring force, remain constant.  It is then simple to rearrange the force balance to get 

an equation relating the velocity of the bead to the Brownian and constraint forces. 

 

! 

F = ma" = 0          (2.4) 

 

! 

Fdrag + Fspring + FBrown = 0       (2.5) 

 

! 

dr

dt
= V +

Fspring + FBrown

"
       (2.6) 

 

Given a velocity field and a time step, this process can be solved using first order Euler 

integration to determine the new position of each bead following each move.  The 

method of Somasi et al. corrects this approach by evaluating the spring force at the end of 

the time step and this prevents over-extending the spring
[13]

. 

 

Bead-spring Brownian dynamics simulations are typically designed using phantom 

springs – connections between beads that have no properties other than holding the beads 

together.  The beads may move in such a way during simulation that these springs can 

cross and pass through one another or through other objects in the fluid.  It is necessary to 

correct this flaw if BD simulations are to be used to model polymers undergoing 
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entanglements with each other or with obstacles such as posts.  We choose therefore to 

include a repulsive force acting on the spring that is combined with the other three 

traditional forces in BD to better simulate the polymer motion: 

 

! 

Fdrag + Fspring + FBrown + Frep = 0       (2.7) 

 

The challenge lies in choosing the form of this repulsive potential, incorporating it into 

the BD simulation, and monitoring its success.    

 

 

2.2.2 Repulsive Force 

We must choose a form of the repulsive force that increases in magnitude as the 

separation distance decreases toward zero and is small (relative to the other three forces) 

when the separation distance is large.  Kumar and Larson
[9]

 considered two choices, 

namely an exponential form 

 

 

! 

Urep = Ae
"D #( )

         (2.8) 

 

and a power-law form drawn from the repulsive part of the Leonard-Jones potential: 

 

 

! 

Urep = 4"
#

D

$ 

% 
& 

' 

( 
) 

12

        (2.9) 
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A and ! are the strengths and " and # are the ranges (respectively) for these potentials.  

The repulsive force is given by 

 

 

! 

Frep = "
#Urep

#r
         (2.10) 

 

One advantage of the power-law form is that the repulsive force is infinitely large at a 

separation distance of zero.  This guarantees that if the equations are solved accurately 

the spring will be unable to pass through the post.  The disadvantage is that a very large 

repulsive force (which occurs when the spring is very close to the post) will push two 

beads quite far away from the remainder of the chain, seriously stretching the spring, and 

making convergence in that time step difficult to achieve.  The simulation will thus often 

require much smaller time steps whenever a spring is close to the post, which is 

computationally inefficient. 

  

The exponential form of the repulsive force does not have the same problem since it is 

finite at a separation distance of zero, but this form permits the spring to pass through the 

post during a time step.  We choose to use the exponential form because it allows for 

large time steps, but we develop a method to determine if and when a spring is broken 

and to correct for this, so that topological constraints are still maintained. 

 

Kumar and Larson
[9]

 developed the following procedure to compute the distance of 

closest approach 

! 

D between each spring and the post.  Let 

! 

P
1
 be a vector giving the 

length and direction from some defined origin to the midpoint of any spring.  

! 

R
1
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describes the spring length and orientation.  Let 

! 

t
1
 be a scalar that represents a location 

along the spring with 

! 

t
1

= 0 at the midpoint of the spring and 

! 

t
1

= ± 0.5  at either end of 

the spring.  We define any point along a spring or post as 

! 

P
1

+ t
1
R
1
.  The vector of 

separation between any point on the spring (indicated by 1) and any point on the post 

(indicated by 2) is 

 

! 

D = P
1

+ t
1
R
1
" P

2
+ t

2
R
2( )        (2.11) 

 

The distance of closest approach is found by minimizing the magnitude of 

! 

D with respect 

to 

! 

t
1
 and 

! 

t
2
.  This requires that 

 

 

! 

"D2

"t
1

=
"D2

"t
2

= 0        (2.12) 

 

where 

! 

D
2

=D•D.  The solution of equation 2.12 gives the following expressions for 

! 

t
1
 

and 

! 

t
2
. 

 

 

! 

t
1

=
P
1
"P

2( ) • R
2

2
R
1
" R

21
R
2( )

R
21

2
" R

1

2
R
2

2
      (2.13a) 

 

 

! 

t
2

=
P
2
"P

1( ) • R
1

2
R
2
" R

21
R
1( )

R
21

2
" R

1

2
R
2

2
      (2.13b) 

 

where 

! 

R
1

2
=R

1
•R

1
, 

! 

R
2

2
=R

2
•R

2
, and 

! 

R
21

2
=R

1
•R

2
. 
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When 

! 

"0.5 # t
i
# 0.5 the distance of closest approach lies along the length of the spring 

or post.  When 

! 

t
i
> 0.5 or 

! 

t
i
< "0.5  the distance of closest approach should be measured 

from the end of the spring or post (by setting 

! 

t
i
= 0.5 or 

! 

t
i
= "0.5  as needed).  With the 

correct values for 

! 

t
1
 and 

! 

t
2
 we calculate 

! 

D from equation 2.11. 

 

We calculate a repulsive force from the exponential form and the magnitude of the 

separation distance vector.  This force is applied to the spring, or more precisely, it is 

applied to the two beads at the ends of the spring.  The distribution of the force is 

determined by the 

! 

t
1
 value for the spring.  All of the force is given to beadi when 

! 

t
1

= 0.5 

and all of the force is given to beadi+1 when 

! 

t
1

= " 0.5 .  The force is divided 

proportionally using the lever rule when 

! 

"0.5 # t
1
# 0.5.  The fraction of the force applied 

to beadi is 

! 

t
1
+ 0.5  (the remaining fraction applied to beadi+1) with the force being 

directed along the vector 

! 

D for both beads.  This uneven force distribution (it is rare that 

! 

t
1

= 0) causes the spring to rotate because one bead is pushed more aggressively away 

from the post than the other.  This spring rotation is essential for the change of orientation 

necessary for the polymer to maneuver around the obstacle. 

 

 

2.2.3 Broken Springs 

We admitted previously that the exponential form cannot guarantee that the springs will 

not pass though the post.  Therefore we develop a series of checks to determine when a 
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spring has made an “illegal” move – i.e., a move that violates the post – and implement 

an algorithm to correct for these situations in subsequent time steps. 

 

The cross product rule is our initial method of checking for broken springs.  We apply 

this rule to every spring following each time step.  Consider two vectors at time i – 

! 

R
i
 

and 

! 

D
i
 (the vector along the length of the spring and the separation distance vector) and 

two vectors at time i+1 – 

! 

R
i+1

 and 

! 

D
i+1

.  We determine the two cross product vectors 

! 

C
i
=R

i
"D

i
 and 

! 

C
i+1 =R

i+1 "Di+1
.  These represent the cross product before the spring 

moves and the cross product after the spring moves.  We calculate the dot product 

between these two cross products 

! 

C
i
•C

i+1 = C
i
C

i+1 cos" .  The move does not break a 

spring if the sign of cos$ is positive.  The move does break a spring if the sign of cos$ is 

negative.  We address any broken springs in the next time step.  Figure 2.1 shows an 

example of a broken spring.  We do not concern ourselves with the result of the cross 

product rule for springs that have 

! 

t
1

= ± 0.5 at the end of a time step – these springs have 

a shortest distance vector to the post that exceeds the distance to one of their ends and can 

pass by the post (beside, above, or below) without passing through it (even though the 

cross product rule may return a negative cos$). 

 

We find there are some instances when the cross product rule gives a false positive – it 

declares a spring as broken when, in fact, the spring did not pass through the post.  The 

most common example of this is when a spring is far from the post where usually the 

shortest distance vector is to one of the ends of the spring and the result of the cross 

product rule is disregarded.  However, there are rare occurrences (see figure 2.2) when 
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the spring has an orientation in both time steps for which the shortest distance vector is to 

the interior of the spring.  It is possible that during this time step the spring orientation 

may adjust in such a way as to result in a negative cos$ in the cross product rule but 

without the spring passing through the post (see figure 2.2).  We therefore use a second, 

more rigorous, method to test springs that fail the cross product rule.  This second method 

confirms or denies the break determined by the cross product rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.1  The cross product rule for detection of a break.  The sign of 

! 

R
1
(t + dt) "D(t + dt)  is opposite that of 

! 

R
1
(t) "D(t)  showing that the movement of the 

spring from time 

! 

t  to 

! 

t + dt  has broken the post, which is perpendicular to the plane of the 

page in this example. 
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FIGURE 2.2  The cross product rule can give a false positive.  This is a case 

where the spring does not cross the post between time step 

! 

t  and time step 

! 

t + dt . 

 

 

The second method is the triangle check first discussed by Kumar and Larson
[9]

.  We use 

the bead locations at two successive time steps to perform the triangle check on a spring 

that we suspect has broken.  We use the positions of beadi and beadi+1 each at times 

! 

t  and 

! 

t + dt  (four pieces of information).  We first consider a triangle with corners at 

! 

B
i
t( ) , 

! 

B
i+1 t( ), and 

! 

B
i
t + dt( ) (see figure 2.3) to illustrate the case when beadi moves during the 

time step.  If the post is inside this triangle then a crossing occurs.  Recall that we 

describe the line defining the post as 

! 

P
2

+ t
2
R
2
.  The plane that contains the triangle is 

given by all values of 

! 

x  satisfying the equation 

! 

x " B
i
t( )( ) •n = 0  where 

! 

n is the normal 

vector to the triangle.  If we set 

! 

x = P
2

+ t
2
R
2
 then the value of t2 gives the intersection 
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point of the line containing the post with the plane containing the triangle
[9]

.  The post 

does not reach the plane if either 

! 

t
2

> 0.5  or 

! 

t
2

< " 0.5.  There is no break in this case.  If 

! 

"0.5 # t
2
# 0.5  then the post does reach the plane and the post may intersect the triangle 

region but it also might intersect the plane outside of the triangle region. 

 

To determine whether or not the intersection point lies within the triangle we first define 

three vectors each originating from 

! 

B
i
t( ) .  The first vector 

! 

A  is from 

! 

B
i
t( )  to the point 

where the plane intersects the post.  The second vector is 

! 

B = B
i
t( ) " Bi t + dt( )  (one side 

of the triangle).  The third vector is 

! 

C = B
i
t( ) "Bi+1 t( )  (the other side of the triangle).  

We determine two angles.  The first angle, 

! 

"BC , is between 

! 

B and 

! 

C – this is one of the 

angles of the triangle.  The second angle, 

! 

"BA , is between 

! 

B and 

! 

A  – this is the angle 

between one side of the triangle and the vector to the post.  If 

! 

"BC >"BA  we initially 

mark this spring as broken.  If 

! 

"BC <"BA  we initially mark this spring as not broken.  

This is vector set (a) in figure 2.3. 

 

For vector set (b) we repeat this analysis on the same triangle region but we use 

! 

B
i
t + dt( ) as the originating point for all three vectors.  We again determine two angles 

and decide between broken and not broken.  We declare the first triangle is broken 

ONLY when we decide on broken for both sets of vectors (a) and (b).  Figure 2.3 shows 

the angles drawn originating from 

! 

B
i
t( )  and 

! 

B
i
t + dt( ) – notice that case (b) is necessary 

to truly declare this example as not broken. 
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FIGURE 2.3  The triangle rule must originate vectors from two locations – (a) 

! 

B
i
(t)  and (b) 

! 

B
i
(t + dt).  

! 

"BC >"BA  in (a) – this may be a break.  

! 

"BC <"BA  in (b) – 

confirmation that this is not a break. 

 

 

We perform the same method, with cases (a) and (b) again, a second time for a triangle 

defined by 

! 

B
i
t + dt( ), 

! 

B
i+1 t( ), and 

! 

B
i+1 t + dt( ) .  This triangle allows us to search for 

breaks that occur when beadi+1 moves after beadi has already moved.  We again define a 

plane by the triangle region and we find the value of t2 at which this plane intersects the 

post.  We again evaluate two sets of vectors – one set beginning at 

! 

B
i+1 t( ) and the other 

set beginning at 

! 

B
i+1 t + dt( ) . 
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The total move is a break ONLY when one triangle region results in broken and the other 

results in not broken.  If both triangle regions result in broken the net effect is NOT a 

break.  In this case the move of the second bead corrects the break from the move of the 

first bead. 

 

This triangle method is rigorous, and it provides a thorough check of the spring-post 

interaction.  It is easy to see how the cross product rule is a less computationally 

expensive method.  This is why we use the triangle check only in cases when the cross 

product rule declares a spring as broken. 

 

We accept a move that breaks a spring but we note which (if any) springs are broken 

during time step 

! 

t  and we attempt to correct those springs during subsequent time steps.  

We permit breaks to occur temporarily on the grounds that the spring is a coarse-grained 

object and there is no need rigorously to prevent it from drifting slightly past an 

entanglement point.  The polymer that the spring represents can, in fact, bend somewhat 

around this point.  There are two adjustments we apply to a broken spring to ensure that 

this break is not “forgotten” by the simulation but that it is eventually repaired.  First, we 

change the sign in the exponent of the repulsive potential from negative to positive.  This 

results in a greater magnitude of the repulsive force for a given separation distance and 

produces a force that becomes exponentially greater as the separation between the post 

and the spring increases.  Hence, the break generates an even greater restoring force if the 

broken spring tries to drift away from the post.  Second, we change the sign of the 
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components in the separation distance vector when we use them to determine the 

direction of the repulsive force.  The total effect of these two adjustments is to force a 

broken spring back past the post with more force than it had in the previous time step.  

We use the cross product rule and the triangle check at the end of this time step and we 

usually find that the spring is declared as broken again.  When a spring is broken in one 

time step but broken again in the following time step the net result is that the spring is 

back in a valid location.  This is the goal of our method – we allow the break in the first 

place and then correct it in the next move, or, if necessary, in later moves.  In all events 

the break is remembered and the spring is not allowed to simply drift away from the post 

until the break is corrected. 

 

One special exception occurs when we pass a break from one spring to the next.  A spring 

may break during time step t.  The separation distance vector drawn to the spring during 

time step 

! 

t + dt  may go to one of the two ends of the spring (if 

! 

t
1

= ± 0.5).  In this 

situation we move the break to an adjacent spring before we apply the two changes 

discussed earlier.  We pass the break to spring N+1 when 

! 

t
1

= 0.5 (up) and we pass the 

break to spring N-1 when 

! 

t
1

= " 0.5  (down).  If the originally broken spring (at time step 

t) is either the first or last spring in the chain we may pass the break off the end of the 

chain entirely.  An end spring that has a separation distance vector to its open end is able 

to pass by (or above or below) the post without a true break. 

 

This procedure models in a coarse-grained manner the physics of the chain-post 

interaction.  A spring (or springs in the case when there is a passing) oscillates mildly on 
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either side of the post as it alternates between broken and not broken while the other 

forces continue to change the position and orientation of the spring.  This eventually 

allows the spring to pass the post without a break.  

 

Since our method does not perfectly localize the entanglement interaction, but allows 

some “slop” in its position that depends on the strength and range of the potential and the 

number of beads, we need to check that the model can be made insensitive to these non-

physical variables.  Strength – 

! 

A  in equation (2.8) – relates to the value of the repulsive 

force when the separation distance is zero.  A higher strength produces a greater 

repulsion between the spring and the post.  Range – 

! 

"  in equation (2.8) – relates to the 

effective thickness of the post.  A small range allows the coil to get closer to the post 

before it begins to feel the repulsion.  

 

 

2.2.4 Simulation Set-Up and Testing 

We first use a polymer with length 100µm for our test simulations.  We set the 

persistence length (

! 

"p ) at 0.066 µm (this gives 379 Kuhn steps of length of 0.132 µm) 

and we employ a total drag coefficient for the polymer (

! 

"
tot

) of 10.0 s/µm
2
 that is 

normalized over one unit of Boltzman energy (

! 

k
B
T ).  We choose the initial polymer 

orientation to be a stretched (39% extension of the full length) nearly vertical line and we 

place the center of this chain a small distance (about one-third of a Kuhn step) upstream 

of the post.  Figure 2.4 shows a picture of this setup.  The purpose of this non-random 

initial polymer configuration is to maximize the probability and duration of the chain-
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post interaction to test and optimize our method of handling coarse-grained spring-post 

interactions.  We employ a coiled start-up condition for other simulations described later.  

We plot our results for this section as the x-component of the position of the center-of-

mass – 

! 

r
c

x  – against time.  Each of the four curves (one for each of four strengths) is an 

average over 100 trials.  We generally see three phases in these plots.  We see an increase 

in 

! 

r
c

x  early as the two ends of the chain extend downstream on either side of the post 

forming a hairpin around the post.  Then we see a period of stagnant 

! 

r
c

x  as the chain frees 

itself from the interaction.  Finally we see a constant increase in 

! 

r
c

x  as the chain advances 

again after it has maneuvered around the post. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.4  The initial configuration for the tests of convergence is designed to 

maximize the probability and duration of entanglements.  The post (black diamond) is 

located at (5,5). 
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We test 10-bead and 20-bead simulations (both still for the 100 µm long chain) at four 

different fluid velocities and four choices of strength.  The “fluid velocity” here is 

equivalent to a choice of field strength that would produce that velocity in the absence of 

the post.  Figures 2.5 and 2.6 show results for the 10-bead and 20-bead cases.  The fluid 

velocity is made non-dimensional by the ratio of radius of gyration to relaxation time.  

Strength (with units of force) is made non-dimensional with 

! 

kBT "p .  Range (with units 

of length) is made non-dimensional by the radius of gyration (

! 

Rg ) of the polymer coil.  

The choices of non-dimensional strength vary by a factor of eight (50, 100, 200, and 

400).  We determine the velocity at which we are no longer able to achieve convergence 

among the strengths.  This is significant because strength is an arbitrary parameter 

introduced into our simulations by way of our choice of modeling the repulsion between 

the polymer and the post.  We are confident in our simulations only in the regimes where 

our results are insensitive to value of this parameter.  We learn that more beads are 

necessary to reach convergence at higher fluid velocities. 

 

 Non-dimensional fluid velocity, 

! 

V =
V

Rg "( )
     (2.14) 

 

 Non-dimensional strength, 

! 

A =
A

kBT "p( )
     (2.15) 

 

 Non-dimensional range, 

! 

" =
"

Rg

      (2.16) 
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FIGURE 2.5  Center of mass versus time for an initially straight 100 µm chain 

placed a distance 0.05 µm upstream from the post.  This uses 10 beads and non-

dimensional strengths of 50 / 100 / 200 / 400 with four non-dimensional fluid velocities 

(

! 

V ) with 

! 

" = 0.0540  and time step !t = 0.0020.  Notice that the convergence fails at 

! 

V " 3.0 . 
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FIGURE 2.6  The same as figure 2.5 but with 20 beads.  Notice that convergence 

is achieved at 

! 

V = 3.0  but is not achieved at 

! 

V = 4.0 . 
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The choice of range must lie between two extremes.  A range that is too large results in 

an effectively “fat” post – the chain is unable to get close enough to form the hairpin 

orientation; instead the entire coil is bounced off to one side.  There is minimal separation 

effect without the hairpin formation.  A range that is too small can also result in a “fat” 

post since the chain can greatly overshoot the post, breaking the spring, before the 

repulsive force begins to take effect.  There are thus too many spring-post violations 

when we use too small of a range.  We find through our simulations that a non-

dimensional range of 0.0540 gives the best results.  This is where we see physically 

meaningful data that has no dependence on the choice of 

! 

A .  In real dimensions, for the 

100µm chain, this range is equal to 0.08008 µm, which is a bit more than one-half of a 

Kuhn step.  This produces a sufficient degree of localization for our coarse-grained 

model. 

 

We also perform tests with the 100µm chain using a random coil as the initial 

configuration, where the random coils are obtained by relaxing the chains for several 

relaxation times in the absence of the post.   This is the starting orientation used by Patel 

and Shaqfeh
[8]

.  We see fewer hairpin collisions than with the straight chain because the 

polymer can more easily pass the post without leaving its coil formation.  We again see 

the relationship between fluid velocity and required number of beads.  However, with this 

random initial configuration, figure 2.7 shows that we are able to reach higher 

! 

V = 4.0  

using 20 beads – only at 

! 

V = 6.0 do we fail to reach convergence among the choices of 

strength.  Figure 2.8 shows convergence with the number of beads (10, 20, and 40) at 

! 

V = 3.0 .  Finally, we also varied the time step and reached convergence for both 10-bead 
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(

! 

"t = 0.0020 and 

! 

"t = 0.0040) and 20-bead (

! 

"t = 0.0005 and 

! 

"t = 0.0010) simulations.  

These non-dimensional time steps (made so using the relaxation time) are typical for 

Brownian dynamics simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.7  The same as figure 2.6 except the initial chain configuration is a 

random coil.    Convergence is now obtained at 

! 

V = 4.0  and 20 beads. 
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FIGURE 2.8  The same as figure 2.7 except this uses various numbers of beads. 

 

 

It is important to note that we reach an upper limit in the achievable dimensionless 

velocity.  We find that when we increase the non-dimensional fluid velocity we must also 

make a corresponding increase in the refinement to retain convergence with varying 

values of 

! 

A .  We see that more beads are required for the same length chain, i.e. the 

length of each spring is shortened.  The limit of more beads and shorter chains brings this 

analysis back into the (already explored) bead-rod region.  
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2.3 RESULTS 

2.3.1 Definitions 

We use our bead-spring simulations to model polymer chains of four different lengths.  

Three of these lengths are long enough that the number of Kuhn steps per spring is 

greater than 15 and therefore we use the WLC spring law for these long chains.  These 

chains are 200µm (1515 Kuhn steps), 100µm (757 Kuhn steps), and 50µm (379 Kuhn 

steps) and they are all 20-bead simulations.  We also consider two short chains – short 

enough that each spring is of length one Kuhn step.  We use the FF spring law here 

because it gives a stiff rod-like spring.  The short chains are 3.3µm (25 Kuhn steps) and 

6.6 µm (50 Kuhn steps) and are 26-bead and 51-bead simulations.  We first concentrate 

on the 100µm chain but we later expand our analysis to include the other lengths. 

 

We evaluate our results using the steady state (or long time) ensemble-averaged collision 

distance (

! 

" x ) – this is the separation between where 

! 

r
c

x  would be if there were no 

obstacle (this is easily determined from the uniform velocity and time) and where 

! 

r
c

x  

actually is after any entanglement interactions.  Figure 2.9 is a graphical picture of how 

we determine 

! 

" x  in terms of length.  This collision distance is made non-dimensional 

using the Kuhn step length.  We also normalize this result using the number of Kuhn 

steps – this allows us to compare chains of different lengths.  A large collision distance 

implies that the chain spent a large time interacting with the post.  We choose this metric 

because it allows us easily to compare our results with the earlier of from Patel and 

Shaqfeh.
[8]
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FIGURE 2.9  The collision distance (

! 

"x ) is the difference between where the 

polymer would be if there was no post and where the polymer actually is after any 

entanglement interactions. 

 

 

The Peclet number represents the ratio of convective transport to diffusive transport.  

Patel and Shaqfeh
[8]

 define 

! 

Pe  in with 

! 

E  as the electric field strength, 

! 

"  as the charge 

per bead, and 

! 

a  as the Kuhn step length; 

 

 

! 

Pe =
E" a

k
B
T

         (2.17) 
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The mean bead velocity is related to the electric field by 

! 

V = E" #
Kuhn

 where in the bead-

rod model 

! 

"
Kuhn

 is the bead drag coefficient.  Substituting for 

! 

E"  in equation 2.17 gives  

 

 

! 

Pe
Kuhn

= Pe =
V "

Kuhn
a

k
B
T

       (2.18) 

 

For our bead-spring model, we interpret 

! 

"
Kuhn

 in equation 2.18 as the drag per Kuhn step 

which we obtain by dividing the total drag coefficient, 

! 

"
tot

, by the number of Kuhn steps, 

! 

N
K

, in the entire chain.  The number of Kuhn steps in the entire chain is given by the 

ratio of the extended chain length to the Kuhn step length.  This ensures that our value of 

! 

Pe
Kuhn

 is physically equivalent to that of Patel and Shaqfeh and the results of our bead-

spring simulations can be compared directly to the results of the bead-rod simulations of 

Patel and Shaqfeh.  We call this 

! 

Pe
Kuhn

 because it is based on the drag per Kuhn step.  

The drag per Kuhn step is the same for chains of different length.  We also develop a 

second definition for the Peclet number.  

 

 

! 

Pechain =
V " tot Rg

kBT
= PeKuhn

" tot Rg

"Kuhn a

# 

$ 
% 

& 

' 
(       (2.19) 

 

! 

Pe
chain

 is based on the total drag per chain and the radius of gyration.  Longer chains 

experience greater drag, and this second definition allows us to more easily compare 

chains of different lengths. 
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2.3.2 X-offset and Y-offset 

All of our simulation runs begin in the following manner.  The polymer chain begins in a 

random coil orientation and it is set a small distance ahead of the obstacle.  The right-

most bead (the bead with the largest x-component) is placed at a distance 1/10 of 

! 

Rg  

upstream of the post.  For the 100µm chain one-tenth of 

! 

Rg  is equal to 1.12 Kuhn steps. 

Each trial uses a different initial configuration but the same upstream distance.  One 

effect of the random coil configuration (rather than the ‘extended line’ that we used for 

the original convergence tests) is that the chain is now more likely to pass the post 

without any lasting interaction – it is possible for the chain to drift above or below the 

post without forming the interesting pulley effect.  We see a decrease in average 

interaction time due to the fact that a percentage of the trials do not fully interact with the 

post.   

 

We also vary the initial y-offset in some simulations using the 100µm chain.  The y-

offset (

! 

") is the distance (made non-dimensional by the Kuhn step) in the y-direction 

between the coil center-of-mass and the post.  The coil is directly aligned with the post 

when the y-offset is equal to zero.  We perform simulations (for the 100µm chain) over a 

wide range of 

! 

Pe
Kuhn

 (

! 

0.0001" Pe
Kuhn

" 0.0040) with the same collection of initial y-

offsets for each.  Figure 2.10 shows the effect of increasing y-offset from zero to six.  

Each point on each curve is an average over 200 trials at that condition.  Note that the 

collision distance is greatest at a y-offset of zero and that 

! 

" x  decreases as the y-offset 

is increased.  The probability of forming a long-lasting pulley interaction is higher when 

the chain is directly aligned with the post – a y-offset of zero results in the highest 
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number of these interactions.  Figure 2.10 shows the effect of increasing 

! 

Pe
Kuhn

 for a 

number of initial y-offsets.  We note that 

! 

" x  is greatest at the highest 

! 

Pe
Kuhn

.  The 

polymer escapes the post interaction when one arm translates back against the flow and 

passes the post on the other side.  It is more difficult for this to happen when the fluid 

velocity is high.  We find that the collision distance is largest at highest 

! 

Pe
Kuhn

 for any 

choice of y-offset. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.10  Ensemble-averaged collision distance (

! 

" x N
K

) versus the Peclet 

number (

! 

Pe
Kuhn

) for various values of y-offset. 

 

 

We test the dependence on the initial starting position in the x-direction using the 100µm 

chain.  This is the x-offset and it is made non-dimensional by the Kuhn step.  This is a 
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measure of how far upstream the right-most bead is (how close is the coil to the post 

when the simulation begins).  We selected four choices of x-offset all within about one 

Kuhn step of the post to see if the results are insensitive to the exact position of the coil 

upstream of the post, assuming “close” initial proximity (1.12 Kuhn steps is 1/10 of the 

radius of gyration).  The x-offset was varied by more than 100-fold within this range and 

the result in x-displacement was the same within 10%.  Thus we find that varying x-offset 

within this range has a negligible effect on our results, not only for zero y-offset but for 

non-zero y-offsets as well, and we maintain an x-offset of 1/10 

! 

Rg  for all our simulations. 

 

 

2.3.3 Collision Distance 

We expand our analysis to include two additional chains of “long” length – 50µm (379 

Kuhn steps) and 200µm (1515 Kuhn steps).  We explore a wider range of 

! 

Pe
Kuhn

 - 

varying from 0.0001 to 0.01 for these long chain simulations.  We still have the limit that 

! 

Pe
Kuhn

 cannot exceed 0.01 due to the demand for finer scale coarse graining but we are 

able to push well into the region of low 

! 

Pe
Kuhn

.  We find in figure 2.11 that all three 

chains show a gentle increasing slope at relatively low 

! 

Pe
Kuhn

 and switch to a more 

aggressively increasing slope at relatively high 

! 

Pe
Kuhn

.  All three lengths nearly overlap 

in their gentle sloping portions.  They switch to their steeply sloping portions as 

! 

Pe
Kuhn

 is 

increased with the longest chain (1515 Kuhn steps) switching at the lowest 

! 

Pe
Kuhn

 and the 

shortest chain (379 Kuhn steps) switching at the highest 

! 

Pe
Kuhn

.  Each of the three lengths 

has a distinct aggressively sloping portion, but each of these three portions has a similar 



  

   56 

slope.  And these slopes are evenly spaced apart.  Recall from earlier that we are limited 

to low 

! 

Pe
Kuhn

 due to coarse graining concerns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.11  Ensemble-averaged collision distance (

! 

" x N
K

) versus the Peclet 

number (

! 

Pe
Kuhn

) for chains of various lengths.  Also included is a power law curve fit and 

previous published results from Patel and Shaqfeh. 

 

 

We are able to reach high values of 

! 

Pe
Kuhn

 when we simulate much shorter chains.  We 

model a short chain of 3.3µm (25 Kuhn steps) in a range of 

! 

0.01" Pe
Kuhn

"1.0 using the 

FENE-Fraenkel spring law to model each Kuhn step as a single stiff spring.  This short 

chain shows a behavior very similar to that of the longer chains – it has a gentle sloping 

portion at relatively low 

! 

Pe
Kuhn

 and a more aggressively increasing slope at relatively 
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high 

! 

Pe
Kuhn

.  The short chain also shows a third region – there is the beginning of a 

leveling off at the highest 

! 

Pe
Kuhn

 to a constant value of 

! 

" x N
K

.  The slope of the 

gentle section is roughly parallel to the slope of the gentle section from the long chain 

simulations.  A curve fit of the points in the gentle sloping region yields the following 

relationship. 

 

 

! 

" x N
K

= 0.182 Pe
Kuhn

0.27 ± 0.02
      (2.20) 

 

We include on figure 2.11 some results achieved earlier by Patel and Shaqfeh
[8]

 using 

short bead-rod chains at high 

! 

Pe
Kuhn

.  We note that our result for a 25-Kuhn-step chain at 

! 

Pe
Kuhn

=1.0  agrees very well with their previously published findings.  Notice that the 

25-Kuhn-step data shows that 

! 

" x N
K

 for this chain approaches a constant upper limit 

at 

! 

Pe
Kuhn

"10.0.  Notice also that the 150-Kuhn-step data reach a similar upper limit at a 

lower 

! 

Pe
Kuhn

, around 

! 

Pe
Kuhn

=1.0  or less.  We believe that chains of all lengths will reach 

this constant value and that the 

! 

Pe
Kuhn

 at which they reach it is a function of chain length.  

Notice that the data for the long chains (379 – 1515 Kuhn-steps) can be projected to reach 

this upper limit at 

! 

0.01" Pe
Kuhn

" 0.1 (but we are unable to simulate the long chains in 

this region). 

 

Figure 2.12 plots the same data against 

! 

Pe
chain

 rather than 

! 

Pe
Kuhn

.  Again we see that all 

lengths yield similarly shaped curves.  They all have a similar transition from a shallow 

to a steep slope, and the slopes are similar for all lengths.  For all chains, the change in 

slope occurs at the same value of 

! 

Pe
chain

= 8.0.  The first three plots of Figure 2.13 were 
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generated by plotting the value of 

! 

Pe
chain

 at which 

! 

" x N
K

 reaches a specified value, 

namely 

! 

" x N
K

= 0.06, 

! 

" x N
K

= 0.10, or 

! 

" x N
K

= 0.14 , against chain length.  We 

also find that the exponent for a power-law fit to these plots seems to be level off to a 

constant value around 0.50 as 

! 

" x N
K

 is increased. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.12  Ensemble-averaged collision distance (

! 

" x N
K

) versus the re-

scaled Peclet number (

! 

Pe
chain

) for chains of various lengths.  Notice the similar shaped 

curves. 
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FIGURE 2.13  Power law curve fits for values of 

! 

Pe
chain

 as a function of chain 

length for select choices of 

! 

" x N
K

.  The exponent of the power law approaches 0.5 as 

! 

" x N
K

 increases. 

 

 

 

2.4 FUTURE DIRECTIONS 

The method described here for preventing springs from passing through obstacles can be 

used to solve problems that involve long polymers with dilute entanglements.  To apply 

our method more generally, it will be important to develop an efficient method for 
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selecting the values of the strength and range parameters of the spring repulsion potential 

that produces results insensitive to their precise values.  Here we found that a good choice 

of the range is a distance somewhat smaller than a Kuhn step and the optimal strength is 

probably related to the velocity of the fluid flow.  The simulation requires finer coarse 

graining (the use of more beads) to achieve better resolution at higher velocities.  At high 

velocities, one must represent each Kuhn step by a rod or stiff FENE-Fraenkel spring, 

and in this limit the greater efficiency of our method of imposing entanglement 

constraints relative to methods that impose excluded volume forces on the beads 

diminishes considerably. 

 

 

2.5 SUMMARY 

We have developed a bead-spring BD simulation that introduces a repulsive force 

between each spring and a topological obstacle where the repulsion decreases 

exponentially with separation distance.  We have applied this to a long DNA polymer 

driven electrophoretically around an impenetrable post.  This new method extends that of 

Kumar and Larson by allowing springs temporarily to pass through the post.  Such 

“breaks” are kept track of and “repaired” in subsequent time steps through a potential that 

exponentially increases as the penetration of the “broken” spring beyond the post 

increases.  Allowing these temporary “breaks” permits much larger time steps to be taken 

than can be allowed if the topological interactions were to be held inviolate through use 

of a very steep potential.  The new method still satisfies the topological restrictions in a 

coarse-grained sense consistent with the coarse-graining already present in a bead-spring 
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model.  To implement the method we determine the shortest distance of separation 

between each of the springs and the obstacle and distribute a repulsive force to each of 

the two beads at either end of the spring using the lever rule.  We then check the spring 

for any crossings through the pole using a fast cross product method that misses no real 

breaks but reports some spurious breaks that are not real.  We reject these few spurious 

breaks using a slow but rigorous “triangle method” developed by Kumar and Larson for 

definitely identifying breaks.  The potential is then used to correct any broken springs in 

subsequent time steps.  We test for convergence and robustness of our method to 

variations in the strength of the repulsive force, the range over which the repulsive force 

acts, the time step, and the number of beads used to model a 100 µm DNA polymer. 

 

We measure the ensemble-averaged collision delay distance (

! 

" x ) to quantify the 

results of our tests.  Our data are consistent with, and extend, previously published results 

found using bead-rod simulation of shorter polymer chains at higher effective fields.  We 

include our results (1515, 757, 379, and 25 Kuhn-steps) with those from short bead-rod 

chains (25 and 150 Kuhn-steps) studied by Patel and Shaqfeh on a rescaled plot.  Our 

method is able to simulate arbitrarily long chains at low electrophoretic velocities.  This 

complements the bead-rod method that cannot access low velocities for very long chains 

because of the small time step intrinsic to bead-rod methods.  A plot of 

! 

" x N
K

 vs. 

! 

Pe
Kuhn

 shows three regimes: a high fluid velocity regime – 

! 

Pe
Kuhn

"1.0  (which is 

captured by using bead-rod or bead-FF spring simulations of short chains) – in which 

! 

" x N
K

 is independent of 

! 

Pe
Kuhn

, an intermediate regime in which 
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! 

" x N
K

1
2 #Pe

chain
, and a low fluid velocity regime – 

! 

Pe
chain

" 8.0 – in which 

! 

" x N
K
#Pe

Kuhn

0.27±0.02
. 
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CHAPTER 3 

MULTIPLE REGIMES OF COLLISION OF AN  

ELECTROPHORETICALLY TRANSLATING  

POLYMER CHAIN AGAINST A THIN POST 

 

 

We use a previously developed bead-spring Brownian dynamics model for simulating the 

topological interactions between polymers and thin obstacles to study electrophoretically 

translating DNA strands interacting with an immovable post over a wide range of chain 

lengths (

! 

25 " N
K
"1500) and field strengths or velocities (

! 

10
"4
# Pe

Kuhn
#10

0).  Here 

! 

N
K

 

is the number of Kuhn steps in the chain and 

! 

Pe
Kuhn

 is the Peclet number based on the 

Kuhn length.  This Peclet number is the ratio of the field-induced polymer motion to the 

Brownian motion.  We find that the mean distance 

! 

" x  that the chain migration is held 

up by the entanglement interaction increases with higher fields, encompassing four 

distinct regimes.  The two fastest regimes exhibit the classic rope-and-pulley dynamics, 

in which the chain is draped around the entanglement and the longer of the two dangling 

ends pulls the shorter end around the obstacle.  In one of these regimes, occurring at the 

highest field strength, the dimensionless delay distance reaches its theoretical upper limit 

at 

! 

" x N
K

= 0.5 and in the other, at moderately high field strength, the ends of the chain 

remain balled up while the central portion is extended, creating a “ball and chain” 

configuration.  In the two slower regimes, the polymer retains a coil-like shape as it
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diffuses laterally and eventually clears the post without deforming.  We develop models 

that describe both the average delay and the distribution of delays for all regimes, except 

the slowest one, which is distinguished by a peculiar fractional power law relationship 

! 

" x N
K
#Pe

Kuhn

0.27

.  

 

 

3.1 INTRODUCTION  

Long polymer chains, such as DNA, can be separated by length by driving them 

electrophoretically through a mesh of obstacles, such as a polymer gel matrix, or a 

microfabricated array of posts
[1,2,3,4]

.  In all such processes, the basic interaction that leads 

to a polymer-length-dependent delay is an entanglement of the polymer with the post.  

Hence there is considerable interest in understanding how this delay is produced and in 

modeling its dependence on chain length and field strength.  The simplest model that 

allows the basic entanglement interaction to be studied with the fewest distracting 

complications is that of a single long polymer molecule encountering a single thin post.  

This case has been studied, experimentally
[5,6]

, computationally
[7,8,9,10,11]

, and 

theoretically
[12]

, but almost all studies have focused on the “high field” regime in which 

the polymer, when encountering the post, forms a “rope-and-pulley” structure with two 

extended arms, one on either side of the obstacle, and the interaction is governed by the 

rate in which the shorter of the two arms is pulled back and around the post by the force 

exerted on the longer arm.  Cases of lower field strength have not been much studied. 
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Simulations reported in the literature use models such as the pearl necklace and the bead-

rod models, which are simulated with Brownian dynamics or Monte Carlo simulations.  

These models are limited to rather short chain lengths and fast electrophoretic velocities 

because they are coarse-grained at the level of a Kuhn step length (which is the length of 

a rod in a bead-rod simulation and can be thought of as the effective random-walk step 

size of the polymer chain).  Many 100’s or 1000’s of rods would therefore be required to 

simulate a long polymer using a bead-rod simulation, which is computationally 

overwhelming.  To overcome this, we have developed a bead-spring model in which each 

spring can represent many Kuhn steps and yet preserve topological “non-crossability” 

constraints and so we are able to evaluate longer chains in slower fields than has been 

previously possible.  In work reported elsewhere
[13]

 we showed that, with our new 

Brownian dynamic method with spring non-crossability, we could span an unlimited 

range of chain lengths, exemplified by simulating chains with lengths in the range 

! 

25 " N
K
"1500 (

! 

N
K

 is the number of Kuhn steps in the chain), and a wide range of field 

strengths,  covering the range 

! 

10
"4
# Pe

Kuhn
#10

0 in example simulations (

! 

Pe
Kuhn

 is the 

Peclet number based on the Kuhn step length which we will define more precisely 

shortly). 

  

Figure 3.1 shows our previous findings, as well as two data points from a previously 

published bead-rod simulation from another group
[10]

.  Here we propose that the 

interactions between the chain and the thin post can be grouped into four distinct regions 

(see figure 3.1), distinguished by the field strength and chain length, and we develop 

predictive models for the physics of all of the regions, except the slowest region – Region 
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1 – which we explain only qualitatively.  We have explicit simulation data in the two 

regions of lowest field strength (R1 and R2); we borrow from the literature to describe 

the region in the highest field strength (R4); and we will develop an approximation to 

predict the data in the transition region (R3) between R2 and R4. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.1    Master plot of normalized delay distances 

! 

" x N
K

 as functions of 

! 

Pe
Kuhn

 for chains of four different lengths.  The results for the three longest length chains 

(NK = 379, 757, and 1515) were obtained using coarse-grained bead-spring simulations in 

which each spring represents many Kuhn steps, while for the shortest chain (NK = 25), 25 

stiff Fraenkel springs were used, which resembled rods.  The dashed lines represent the 

theoretical predictions for Region 3 for each of the four chain lengths.  The Patel and 

Shaqfeh data are for bead-rod simulations at high 

! 

Pe
Kuhn

.  The large asterisks show the 

values of 

! 

Pe
Kuhn

 where 

! 

" 2 µ2  transitions from Region 2 into Region 3, as shown in 

figure 3.10.  
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We measure the effect of the interaction between the chain and the post using the steady 

state ensemble-averaged collision delay distance (

! 

" x ).  This measure has been made 

non-dimensional by division by the Kuhn step length (

! 

b
K

).  

! 

" x  is the dimensionless 

difference between the x-location (where x is the field direction) of the center of mass of 

a chain in a simulation containing the obstacle and one translating at the average speed 

the chain would move without the obstacle.  The location of the center of mass of a chain 

without the obstacle is easily calculated from the known uniform velocity and the elapsed 

time.  A positive 

! 

" x  represents a distance penalty that the chain suffers as a result of its 

entanglement interaction.  A large collision distance implies that the chain is greatly 

delayed by the post.  We normalize this measure by 

! 

N
K

, the number of Kuhn steps in the 

chain.  (We note that to relate our results to those of fine-scale bead-rod models, we use 

! 

N
K

to characterize chain length even though our simulations are carried out with a coarse-

grained bead-spring model in which each spring represents 

! 

N
K ,s

= N
K
N

S
 Kuhn steps, 

where 

! 

N
S
 is the number of springs used to represent the entire molecule.) 

 

Randall and Doyle
[6]

 have determined experimentally and theoretically  the value of 0.5 

for the upper limit of 

! 

" x N
K

 in R4.  We will explain our approximation method for R3 

in the discussion section of this work.  We will also describe the physics that govern the 

dynamics in R2 and R3.  We suggest a possible mechanism dominating R1 but without 

making quantitative predictions for this regime. 
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3.2 METHODS 

We detailed in a previous chapter a method that allows us to impart spring-post 

repulsions into Brownian dynamics bead-spring simulations of arbitrarily long chains.  

This method reaches convergence with respect to changes in the time step 

! 

" t( ) , the 

number of springs 

! 

N
S( ) , and the parameters used in the repulsive spring potential 

(namely the range and strength of the potential
[13]

), so that the predictions are free of 

dependence on these non-physical simulation parameters, and should be virtually 

identical to those that would be obtained from a fine-grained bead-rod model. 

 

Our method is restricted in that the minimum number of springs necessary to achieve 

convergence is a function of the field strength 

! 

Pe
Kuhn( ) because the configurations 

become more distorted at higher fields and they require more and shorter springs to 

resolve the tight bends produced in the chain at high fields.  There is thus a limit to how 

large a field strength we can simulate for each chain length, a limit that is set by the 

computational resources available.  Moreover, our method provides no advantage over 

simpler bead-rod simulations if the number of springs we require to achieve convergence 

approaches the number of Kuhn steps in the chain.  This limit is approached at high 

fields.  Hence, we are able to simulate long chains at low 

! 

Pe
Kuhn

 using the coarse-grained 

bead-spring model and short chains at high 

! 

Pe
Kuhn

 using a fine-grained bead-Fraenkel-

spring model in which each spring is effectively a rod, but not long chains at high 

! 

Pe
Kuhn

. 

This is why some parts of figure 3.1 are missing and will be filled in with predictions that 

we will describe below. 
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Note that the Peclet number is a ratio between the rates of electrophoretic transport and 

diffusive transport.  A high Peclet number implies that the drag dominates while a low 

Peclet number implies that the Brownian motion is dominant.  We define a microscopic 

Peclet number that balances convection and diffusion at the level of a Kuhn step length 

as: 

 

 

! 

Pe
Kuhn

=
V "

Kuhn
b
K

k
B
T

        (3.1) 

 

where V is the velocity of the coil in the absence of the post and is directly proportional 

to the field strength.  For our bead-spring model, we interpret 

! 

"
Kuhn

 in equation 3.1 as the 

drag per Kuhn step, 

! 

"
Kuhn

# "
tot
/N

K
, which we obtain from the total drag coefficient 

summed over all beads, 

! 

"
tot
# "

b
(N

s
+1) , where 

! 

"
b
 is the bead drag coefficient divided by 

the number of Kuhn steps, 

! 

N
K

, in the entire chain.  The number of Kuhn steps in the 

entire chain is given by the ratio of the extended chain length to the Kuhn step length.  

We take 

! 

"
Kuhn

 to be the same for chains of all lengths.  Longer chains therefore have a 

higher total drag and also have correspondingly more Kuhn steps.   

 

We model polymer chains of four different lengths: 1515 Kuhn steps (200 µm), 757 

Kuhn steps (100 µm), 379 Kuhn steps (50 µm), and 25 Kuhn steps (3.3 µm).  The lengths 

in the parentheses are the approximate lengths of double-stranded DNA molecules having 

the corresponding numbers of Kuhn steps. We take the Kuhn step length to be 

! 

b
K

= 0.132 µm , corresponding to that for optically stained double-stranded DNA 



   

  70 

molecules
[14]

.  The three longer chains are modeled with 20-bead simulations and we use 

the worm-like chain spring law because the number of Kuhn steps per spring is greater 

than 15.  The shorter chain is modeled with a 26-bead simulation and for it we use the 

“FENE-Fraenkel” spring law because it results in a stiff rod-like spring, and thus these 

chains mimic bead-rod chains, which are appropriate, and are computationally tractable, 

for shorter chains
[13,15]

. 

 

Each simulation begins with a random coil (each run has an independent random coil 

configuration) that is initially placed a small distance upstream (to the left) of the post 

(with the downstream-most bead of the coil a distance of 

! 

0.1Rg  away from the post and 

the results are insensitive to exactly how close this is).  The coil is also placed such that 

its center of mass is in line with the center of the post.  A drag force equal to 

! 

"
b
V  is 

imposed on each bead of the chain to drive it downfield.  The simulation continues until 

the last bead to pass the post (the leftmost bead) reaches a distance of more than seven-

and-a-half Kuhn lengths downstream of the post, which is far enough to be sure that it is 

no longer entangled with the post.  The time t required to reach this position is then 

converted into a delay distance !x by subtracting the distance traveled (the difference 

between the original location of the center of mass and the location of the center of mass 

at the end of the run), from the distance Vt a chain would have traveled in the same time t 

in the absence of the post and without diffusion. The value !x is made dimensionless, 

! 

" x # "x /b
K

, as described above.  Each data point in figure 3.1, representing a single 

chain length and value of 

! 

Pe
Kuhn

, is the mean normalized delay distance 

! 

" x /N
K

 

averaged over 800 trials (although some data points are averaged over 3200 trials – this is 
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discussed later).  Further details of the simulation can be found in Holleran and 

Larson
[13]

. 

 

The measure of the strength of interaction between the chain and the post is 

! 

" x  – the 

distance penalty associated with the entanglement.  There is a higher penalty at higher 

“flow rates” because the chain would have moved farther downstream in a given period 

of time if there had been no post. 

 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Region 4 (R4) 

Convective transport is the dominant driving force in Region 4 (R4).  It is in this region 

where the rope-and-pulley formation is most prevalent.  This has been discussed 

elsewhere by Randall and Doyle
[6]

 and Patel and Shaqfeh
[10]

.  Randall and Doyle state 

that at high enough 

! 

Pe
Kuhn

 chains of all lengths will reach an asymptotic delay 

! 

" x N
K

= 0.5 and this result will be independent of 

! 

Pe
Kuhn

 above a critical value of 

! 

Pe
Kuhn

.  Our results indicate that longer chains enter R4 at lower values of 

! 

Pe
Kuhn

 (see 

figure 3.1). 

 

All chains in R4 form the rope-and-pulley interaction because the convective force is too 

great to allow diffusion to help move the chain around the post.  The random Brownian 

motions have a negligible effect at this 

! 

Pe
Kuhn

.  The coil usually forms two extended arms 

(one on either side of the post) and escape is controlled by how long it takes for the 
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shorter arm to be pulled back (by the spring force) around the post.  One key variable is 

the location along the length of the chain where the intersection with the post will occur 

(the location of the pulley).  For a collection of truly random collisions the length of the 

shorter arm is evenly distributed between zero and one-half of the total length of the 

chain.  The longest entanglement interaction thus occurs when the polymer intersects the 

post at a location near the midpoint of the chain. 

 

We attempted to reach R4 with our simulations, but we run up against the limitation that 

an increase in 

! 

Pe
Kuhn

 requires an increase in the number of springs needed to obtain 

converged results that are insensitive to the number of springs used.  We came closest to 

reaching R4 for our work with the shortest chain at high field strengths.  Recall that the 

each data point on figure 3.1 is an average over 800 trials.  Even though we do not reach 

a high enough 

! 

Pe
Kuhn

 to find a regime where 

! 

" x  is independent of 

! 

Pe
Kuhn

, we are able 

to see some individual trials that clearly show the rope-and-pulley dynamics.  Figure 3.2 

contains frames from a movie of the 25 Kuhn step chain at 

! 

Pe
Kuhn

=1.  It is clear in this 

series of images that the chain has formed two separate and distinct arms. 

 

We must note that we actually find a case where 

! 

" x > 0.5 – this appears to contradict 

the theory of Randall and Doyle
[6]

.  We can explain this by noting that there is a bias in 

our set-up – we are unfairly favoring longer lasting interactions at high 

! 

Pe
Kuhn

 because 

we begin with the chain lined up with the post and therefore with a somewhat greater 

likelihood of forming the collision near the center of the chain than near the ends.  This is 

a negligible effect at low 

! 

Pe
Kuhn

 because there is ample opportunity for the diffusion to 
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eliminate the bias, but at high 

! 

Pe
Kuhn

, where convection dominates diffusion, this effect 

can produce an increase in long-lasting interactions.  

 

 

     

 

FIGURE 3.2    Images from simulations of polymers escaping from entanglements with 

a post, where the post is shown by a dot.  This shows a 25-Kuhn-step chain under strong 

flow (

! 

Pe
Kuhn

=1).  The rope-and-pulley formation (common for Region 3 and Region 4) is 

evident.  The “camera” (or view) is in close in because this is a short chain.  

 

 

We evaluated the effect of the bias that led to too many long-time interactions and 

resulted in 

! 

" x > 0.5, by re-running the simulations for the two highest 

! 

Pe
Kuhn

 with the 

initial location of the center of the coil varying laterally uniformly over the range 

! 

± Rg  

away from a head-on impact with the post.  This allowed some chains that were not lined 

up with the post to simply brush past the post without having a rope-and-pulley 

interaction.  With this distribution of initial positions, we found that 

! 

" x dropped by a 

factor of two for both 

! 

Pe
Kuhn

= 0.60  and 

! 

Pe
Kuhn

=1.00  and fell well below the 

! 

" x = 0.5 

limit from Randall and Doyle.  We note that the points from Shaqfeh and Patel (on figure 

3.1) are also above the 

! 

" x = 0.5 limit by roughly a factor of two, presumably because 

their chains were also lined up exactly with the post, with no offset, as ours were.  We 
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believe that if Shaqfeh and Patel had removed their bias in the location of chain-post, 

their results would also have been beneath the limit. 

 

Randall and Doyle relate the time required for the chain to unhook from the post to the 

location along the chain where the interaction begins.  Thus, in R4, they showed that
[6]

 

 

 

! 

t
unhook

= "
L

2µE
ln 1"

2x
1

L

# 

$ 
% 

& 

' 
(        (3.2) 

 

Where 

! 

L  is the length of the chain, 

! 

x
1
 is the length of the shorter arm, and 

! 

µE  (the 

product of mobility and field strength) is the polymer velocity V created by the electric 

field.  We can recast this equation to measure dimensionless delay distance so that it 

corresponds with our method of analysis.  We first define 

 

 

! 

y "
x
1

L
          (3.3) 

 

And we note that 

 

 

! 

" x 

N
K

=
t

unhook

L µE( )
         (3.4) 

 

And then we rewrite equation 3.2 for R4 
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! 

" x 

NK

= #
1

2
ln 1# 2y( )         (3.5) 

 

This has the appropriate behavior.  The distance penalty is zero when y = 0 – this is the 

case when the interaction occurs at the endpoint of the chain.  The distance penalty is 

infinitely large when y = 0.50 – this is the case when the interaction occurs at the exact 

center of the chain.  

 

 

3.3.2 Region 3 (R3) 

Region 3 (R3) is similar to R4 in that the chain still forms the classic rope-and-pulley 

configuration.  However, in this region, the convective force is not strong enough to fully 

uncoil the ends of the two arms.  The chain is mostly fully stretched expect at the ends of 

the arms where some of the monomers exist in the form of a coil or clump.  The size of 

the clump (i.e. the number of monomers in the clump) is a function of 

! 

Pe
Kuhn

 – as the 

field strength is lowered more monomers, and a greater fraction of the chain length, 

(more of the chain length) are found in the end coils.  There is still sufficient force for 

part of the chain to be fully extended but not enough for the ends, which have the least 

tension, to be fully extended.  The fraction of chain in the coils (material which is not 

contributing significantly to the length of the arms) is inversely related to the field 

strength.  We use a simplified idea to model this.  We imagine the central part of the 

chain to be fully extended with a ball of monomers at each end, where the size of the ball 

depends on the Peclet number.   
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This “ball and chain” concept will reduce the 

! 

" x  values in this region for two reasons.    

First, there is a shorter length of chain that needs to be pulled back around the pulley.  

Imagine a scenario in which the chain intersects the post in such a way that 35% of the 

chain is in the shorter arm (y = 0.35).  In R4 the length of chain that must be pulled back 

is equal to 35% of a fully extended chain.  In R3 the length of chain that must be pulled 

back is less because some of the length is in the ball and not fully extended – this will 

result in a quicker escape.  In addition, in R3, there are some cases when the interaction 

will have a zero delay because the intersection point is inside of the ball – this chain will 

get past the post without any delay. 

 

We define b as the fraction of the chain in each ball.  The dimensionless length of the 

short arm (y) can vary between zero and one-half (as was discussed in R4); thus b is also 

allowed to vary between zero and one-half.  We have b = 0 when the short arm is fully 

extended (case R4) and b = y when the entire amount of the shorter arm is in the end coil 

(and this case will result in a zero time interaction). 

 

Now consider our data for the 25 Kuhn step chain – this is the only length chain that we 

were able to simulate at a high enough 

! 

Pe
Kuhn

 to obtain data in the R3 range.  For a chain 

with only 25 Kuhn steps there are rather few monomers available to distribute between 

the extended and coiled portions of the chain.  The ball and chain idea should work much 

better for the longer chains because for them it is easier to have a sizable number of 

monomers in both the ball and chain portions.  However, we have no simulation data in 
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R3 for long chains and we must content ourselves with testing the ball and chain model 

using the results for the 25 Kuhn step chain. 

 

We show in figure 3.3 histograms for all of the 

! 

" x N
K

 values for the 25 Kuhn step 

chain.  There are six curves here – one for each of the six 

! 

Pe
Kuhn

.  The peak of each curve 

shows the most common value for 

! 

" x N
K

 at that 

! 

Pe
Kuhn

.  Notice that, starting from the 

lowest value of 

! 

Pe
Kuhn

, the peak initially moves to the right as 

! 

Pe
Kuhn

 is increased.  

However, for 

! 

Pe
Kuhn

" 0.10 , the peak remains at the same 

! 

" x N
K

 but begins to decrease 

in height.  The contribution of the right-side tail becomes more significant at high 

! 

Pe
Kuhn

.  

The peak location remains at 

! 

" x N
K

= 0.2 for 

! 

Pe
Kuhn

" 0.10 , but, with increasing 

! 

Pe
Kuhn

, 

there are more long-lasting interactions.  These long-lasting interactions lead to an 

increasing 

! 

" x N
K

 with increasing 

! 

Pe
Kuhn

 up until a saturation point, which is expected 

when 

! 

Pe
Kuhn

 reaches unity and R4 is entered.  We note here that the curves for the three 

highest 

! 

Pe
Kuhn

 are based on 3200 trials (while the curves for the three lowest 

! 

Pe
Kuhn

 are 

based on 800 trials) – this was done to improve the statistics for our future analysis of the 

high 

! 

Pe
Kuhn

 results. 

 

We now return to the analytical result from Randall and Doyle that relates the delay 

distance to the location of the chain-post interaction.  We can make an adjustment to this 

analysis to introduce our idea of the ball-and-chain effect in R3.  We add a term to 

equation 3.5 to account for the fact that only the portion (y – b) of the short arm needs to 

be pulled over the pulley before the chain is released.  For the purpose of this simplified 

analysis, the ball is assumed to be of essentially zero size and to roll instantaneously over 
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the pulley.  However, we still assume that the ball exerts the same drag as it would if it 

were fully extended.  Thus, we are here neglecting conformation-dependent 

hydrodynamic interactions and essentially assuming a free-draining chain, as is also 

assumed in our simulations.  The delay induced by the last fraction b of the chain must 

therefore be subtracted from equation 3.5.  This delay is 

! 

"1 2 ln 1" 2b( ) , which when 

subtracted from the right side of equation 3.5 gives 

 

 

! 

" x 

NK

= #
1

2
ln 1# 2y( ) +

1

2
ln 1# 2b( )      (3.6) 

 

This extra term allows us to adjust 

! 

" x N
K

 for various ball sizes.  When b = 0, equation 

3.6 reduces to equation 3.5 which is valid in R4. 

 

 

 

 

 

 

 

 

 

FIGURE 3.3    Probability distribution of 

! 

" x N
K

 for various values of 

! 

Pe
Kuhn

 for 

simulations of 25-Kuhn-step chains.  Notice that at 

! 

Pe
Kuhn

= 0.10  there is a significant 

change in the shape of the curves.  Typical error bars are shown for the highest and 

lowest field strengths. 
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We use this expression for the distribution of delay distances to find the probability 

distribution for 

! 

" x N
K

 assuming that y is evenly distributed between zero and one-half.  

A delta function at zero is introduced to represent the cases in which there is a zero-delay 

interaction because the intersection point is located within the ball.  The factor of two in 

the second term below is required so that the integral of the probability will sum to unity 

even in the case when b = 0: 

 

 

! 

P
" x 

N
K

# 

$ 
% 

& 

' 
( = 2b) 0( ) + 2 1* 2b( )exp *2

" x 

N
K

# 

$ 
% 

& 

' 
(      (3.7) 

 

We note that when 

! 

Pe
Kuhn

=1 the ball should be fully unraveled because the drag induced 

by the field matches the Brownian force on a single Kuhn step.  The end monomers begin 

to ball up for smaller 

! 

Pe
Kuhn

 because there is then not enough drag force on the end Kuhn 

segment to overwhelm the Brownian force.  However, for 

! 

Pe
Kuhn

 slightly below unity, the 

drag force on the final few Kuhn segments will accumulate, producing enough tension to 

fully extend all but the last few Kuhn steps which form the “ball” at the end of the chain.  

Since, in the free-draining limit, the drag on the “ball” is proportional to the number of 

Kuhn segments in the ball, the number of Kuhn steps in the ball should be inversely 

proportional to 

! 

Pe
Kuhn

.  Since b is the fraction of the Kuhn steps in the ball, we must have 

 

 

! 

b "
1

Pe
Kuhn

N
K( )

        (3.8) 
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We are now able to use equations 3.7 and 3.8 to predict the probability distribution of 

! 

" x N
K

 as a function of 

! 

Pe
Kuhn

 in R3.  Figures 3.4a, 3.4b, and 3.4c show our predictions 

and our simulation data for the three values of 

! 

Pe
Kuhn

 that are in R3 for the 25 Kuhn-step 

chain.  We evidently do a good job of predicting the tail portion of the distribution.  

There is some discrepancy at small 

! 

" x N
K

 where our simple ball-and-chain model 

assumes that there is a delta function at 

! 

" x N
K

= 0 corresponding to cases where the 

“ball” makes contact with the post and immediately escapes with zero delay.  Obviously, 

in the simulations, these cases require a small but finite delay, and thus produce a peak at 

small 

! 

" x N
K

 that is not captured in our over-simplified model. 

 

We have no Region 3 data from the three longer chains to compare with theory.  

However, we can predict how these chains would behave in R3 by averaging over the 

probability distribution in equation 3.7: 

 

 

! 

" x 

N
K

= P
" x 

N
K

# 

$ 
% 

& 

' 
( 

0

)

*
" x 

N
K

# 

$ 
% 

& 

' 
( d

" x 

N
K

# 

$ 
% 

& 

' 
(       (3.9) 

 

which, after a little mathematics, yields 

  

 

! 

" x 

N
K

=
1

2
1# 2b( ) =

1

2
1#

2

Pe
Kuhn

N
K

$ 

% 
& 

' 

( 
)      (3.10) 
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FIGURE 3.4    The solid line shows the probability distribution for the 25-Kuhn-step 

chain obtained from the simulation.  The dashed line shows the prediction of the 

probability distribution with b given by equation 3.7, 

! 

b =1 Pe
Kuhn

N
K( ) .  (a) 

! 

Pe
Kuhn

= 0.30  and b = 0.133.  (b) 

! 

Pe
Kuhn

= 0.60  and b = 0.067.  (c) 

! 

Pe
Kuhn

=1 and b = 0.04.  
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Since figures 3.4a, 3.4b, and 3.4c show that our probability prediction is in good 

agreement with the limited delay distribution data we were able to acquire for R3 for the 

shortest chain, we feel confident in using this probability distribution to predict the curves 

of 

! 

" x N
K

 vs. 

! 

Pe
Kuhn

 in R3 for chains of any length.  Such predictions for chains of 

length 1515, 757, and 379 Kuhn steps are shown as dashed lines in figure 3.1.  We 

calculate the curves down to the regions where they come into near overlap with the 

corresponding data that we have for these long chains.  The reasonable match up of the 

curves predicted for R3 with the high 

! 

Pe
Kuhn

 end of the R2 data for the long chains 

indicates that our theory for R3 is at least consistent with R2 simulation data.  Note also 

that the predicted result in R3 for the shortest chain (25 Kuhn steps) is in reasonable 

agreement with data for this chain length, especially considering that the “ball-and-chain” 

model is not expected to work very well when the ball and the chain each contain only a 

few Kuhn segments, and so there is really no sharp distinction between the “ball” and the 

“chain”.  We also notice that equation 3.10 reaches Doyle-Randall limit of 

! 

" x N
K

= 0.5 as the field strength is increased (in the limit of high 

! 

Pe
Kuhn

).   

 

 

3.3.3 Region 2 (R2) 

In Region 2 (R2) the convective force is no longer strong enough to extend the arms of 

the chain.  There are no more rope-and-pulley formations.  There is no “chain” at all over 

any part of the polymer, but only a single coil attempting to move beyond the post.  We 

see in figure 3.5 images of a 757 Kuhn step chain at 

! 

Pe
Kuhn

= 0.001.  The strand never 

forms a rope-and-pulley.  Instead it eventually translates below the post as a coil. 
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FIGURE 3.5    Images from simulations of polymers escaping from entanglements with 

a post, where the post is shown by a dot.  This shows a 757-Kuhn-step chain under low 

flow (

! 

Pe
Kuhn

= 0.001).  The chain remains in its coiled conformation (common for Region 

1 and Region 2).  The “camera” is farther back because this is a long chain. 

 

 

We believe that in R2 when the polymer coil collides with the post it can no longer 

deform and be dragged around the post.  Instead, the collision will merely block the 

motion of the coil.  The chain can move past the post only if it first diffuses a distance on 

the order of the radius of gyration away from the plane that passes through the post and is 

parallel to the flow so that the chain can clear the post without a significant collision with 

it.  Patel and Shaqfeh
[10]

 studied the relationship between the offset from this plane 

passing through the post (the so-called “y offset”) and the resulting delay.  Their 

simulation data show a gradual decrease in delay with increasing offset, but also show 

that the delay penalty is reduced by a factor of two or so when the offset is only about 

half the radius of gyration. This large drop in delay for an offset of only 

! 

Rg 2  is 

reasonable, since any offset greater than 

! 

Rg 2  will often result in weak interactions with 

the post and many “grazing incidences” that do not significantly slow down the coil. 

Also, the coil may deform somewhat in Region 2 (although not enough to form a “rope 
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and pulley”), and this will enable it to squeeze past the post even if it has not diffused a 

full radius of gyration out of the (y = 0) plane of incidence with the post.  Finally, when 

there is an offset, in the time it takes for the coil to translate to a position that it forms a 

distinct entanglement contact with the post, it may diffuse farther away and completely 

clear the post with no delay.   Hence, for simplicity, we will here approximate the results 

of Patel and Shaqfeh by a sharp cut-off at ! Rg and assume that the chain cannot pass by 

the post until it diffuses laterally a distance ! Rg, and when it has done so, it is free to 

translate beyond the post without further delay.  

 

We use this simple picture to develop the following scaling argument and plot our data 

on a universal curve to show evidence of the correctness of this picture.  We make two 

changes in the scaling of the axis from our original figure 3.1 to introduce the diffusion 

idea.  The first change takes account of the assumption that it is the diffusion of the chain 

as a whole that controls the delay.  We therefore use a Peclet number based on the 

diffusivity of the whole chain, which is given by 

! 

D = k
B
T "

total
, and change the x-axis of 

figure 3.1 from 

! 

Pe
Kuhn

 to 

! 

Pe
chain

 where 

 

 

! 

Pechain =
V " tot Rg

kBT
= PeKuhn

" tot Rg

"Kuhn bK

# 

$ 
% 

& 

' 
( = PeKuhn

NK

3
2

6

# 

$ 

% 
% 

& 

' 

( 
( 
    (3.11) 

 

This changes the characteristic length used in the definition of the Peclet number from the 

Kuhn step to the radius of gyration and the drag coefficient from that for a single Kuhn 

step to one for the entire chain (

! 

"
tot

= N
K
"
Kuhn

). 
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The original measure of average delay, 

! 

" x N
K

, is a dimensionless length.  Since in R2 

we believe that the delay is controlled by the time it takes for the whole chain to diffuse 

laterally by ! Rg, we consider two measures of time: 

 

 

! 

time =
" x

V
         (3.12) 

 

 

! 

timediff =

1
2
Rg( )

2

D
=
Rg

2

4D
       (3.13) 

 

Equation 3.12 is the average translation distance penalty divided by the fluid velocity.  

This is a measure of the time spent during the interaction.  Equation 3.13 is a measure of 

the time required to diffuse a distance ! Rg sideways from the post.  A ratio of these two 

times is our dimensionless time. 

 

 

! 

time

timediff

=
" x

V

4D
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" x

V

4 kBT

# tot

6

NK bK

2
=

" x 

NK
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PeKuhn NK

$ 

% 
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' 

( 
) = z  (3.14) 

 

Thus, the original measure of dimensionless distance, 

! 

" x N
K

, can be scaled with the 

inverse of 

! 

Pe
Kuhn

 (a dimensionless velocity) and the ratio 

! 

24 N
K

 to give an appropriate 

measure of dimensionless delay time. 
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We plot in figure 3.6 our results for all chain lengths with this dimensionless time as the 

y-axis.  We see that all of the data in R2 collapse onto the same curve.  We note 

moreover that there is a plateau in the curve when the dimensionless time has a value of 

unity.  The data for the 25 Kuhn chain deviate from the universal behavior at higher 

! 

Pe
chain

 – this is because data for this chain length reach the R3/R4 regions at higher 

! 

Pe
chain

 where the diffusion is no longer the key factor.  We take this universal agreement 

among all chain lengths as strong evidence that our diffusive scaling is correct for R2. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.6    The data from figure 3.1 are plotted with rescaled x- and y-axes.  Note 

that the results for all four lengths fall on a universal curve.  Also note that the Region 2 

plateau occurs at 1.0.  This scaling is based on the diffusion-dominated physics in Region 

1 and Region 2. 
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We further plot in figure 3.7 our delay distribution data from the longer 379 Kuhn step 

chain but using dimensionless time to determine the bins.  We see from figure 3.1 that R2 

for this chain length begins around 

! 

Pe
Kuhn

= 0.001 and we see on figure 3.7 that there is a 

clear distinction in the behavior of the data for 

! 

Pe
Kuhn

 above and below this value of 

0.001.  The R2 results all peak at the same value of the delay time and all reach roughly 

the same peak probability.  The data collapse onto a single curve for data in R2 – data for 

! 

Pe
Kuhn

" 0.003.  An effect exactly like this is also seen for the 757-Kuhn-step and 1515-

Kuhn-step chains (although the critical 

! 

Pe
Kuhn

 varies for different chain lengths). 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.7    Rescaled probability distribution of 

! 

" x 

N
K

# 

$ 
% 

& 

' 
( 

24

Pe
Kuhn

N
K

# 

$ 
% 

& 

' 
(  for various 

! 

Pe
Kuhn

 for the 379-Kuhn-step chain simulations.  Notice that the rescaled curves for 

! 

Pe
Kuhn

> 0.001 are nearly identical. 
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We show in figure 3.8a the results for all three chain lengths and for all 

! 

Pe
Kuhn

 that are in 

R2.  Note again that the x-axis is a measure of the dimensionless time.  There are five 

data sets from R2 for the 379 Kuhn step chain, four data sets from R2 for the 757 Kuhn 

step chain, and three data sets from R2 for the 1515 Kuhn step chain.  We are pleased to 

see that all these results collapse (roughly) into a single curve for all 

! 

Pe
Kuhn

 and 

! 

N
K

 

within R2.  This is additional strong evidence that our diffusion scaling is sound.  The 

individual peaks occur at the same dimensionless time but their magnitude varies 

somewhat, in a manner that does not seem to correlate with either 

! 

Pe
Kuhn

 or 

! 

N
K

. 

 

We note our picture for the dynamics in R2, in which we assume that the delay is entirely 

due to the time required for the coil to diffuse laterally a distance of 

! 

Rg 2 , is equivalent 

to a classical “first-passage-time” problem.  In this problem, one seeks to determine the 

time required for a random diffuser to reach a fixed distance from its starting point.  

There is a distribution of times, and this distribution is a function of the diffusivity of the 

object and the distance it is required to travel.  We actually have a “double-sided first-

passage-time” problem because the coil can pass the post on either side.  Nagar and 

Pradhan present this distribution of double-sided first-passage times for a one 

dimensionally diffusing object
[16]
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FIGURE 3.8    Rescaled probability distribution of 

! 

" x 

N
K

# 

$ 
% 

& 

' 
( 

24

Pe
Kuhn

N
K

# 

$ 
% 

& 

' 
(  restricted to 

! 

Pe
Kuhn

 values in Region 2 for the chains with 379 Kuhn steps, 757 Kuhn steps, and 1515 

Kuhn steps.  These are independent of 

! 

Pe
Kuhn

 or 

! 

N
K

.  In part (a), the solid circles are a 

phenomenological fit to the simulation data based on a modified single-sided first-

passage-time, equation 3.25 (with 

! 

" = 0.02).  In part (b), the open diamonds show the 

prediction based on the double-sided first-passage-time, equation 3.22 (with 

! 

" =1.35). 
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where L is the distance that must be traveled, D is the diffusivity, and t is the required 

time.  We recast equation 3.15 in dimensionless variables to align this formula with our 

nomenclature for R2.  We choose 

! 

L =" Rg 2( )  as the distance the polymer coil must 

travel (based on our previous comment about the results from Patel and Shaqfeh) where 

! is a parameter that will allow us to adjust the distance to best fit our results.  We 

therefore make the following substitutions 

 

 

! 

L ="
1

2
Rg ="

1

2

NK bK
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6
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& 

' 
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1/ 2

       (3.16) 

 

 

! 
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k
B
T

N
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(          (3.17) 

 

 

! 

t =
" x

V
         (3.18) 

 

This transforms equation 3.15 into 
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Using the original definition of 

! 

Pe
Kuhn

 (equation 3.1) and the expression for the 

dimensionless time (equation 3.14), equation 3.19 will simplify to 
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! 
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24
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K
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K
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, 
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0 
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2 d 3 x( )  (3.20) 

 

The final step is to replace the d(!x) with dz (see equation 3.14): 

 

 

! 

d " x( ) = dz
Pe

K
b
K
N

K

2

24

# 

$ 
% 

& 

' 
(        (3.21) 

 

The result is 

 

 

! 

P z( ) dz = "1( )
n+1 2n "1( )#

$ 2
exp "

2n "1( )
2
# 2
z

4$ 2

% 

& 
' 
' 

( 

) 
* 
* n=1

+

, dz     (3.22) 

 

We plot equation 3.22 on figure 3.8b to compare the predictions of this simple double-

sided first-passage-time theory with our simulation results.  This approximation is 

successful in predicting the scaling, but it does a poor job of matching the results.  We 

find 

! 

" =1.35  to give the closest agreement with our data.  This would imply that the 

actual distance the coil must diffuse (on average) out of the plane of the post is 0.675 Rg 

(close to the ! Rg that we had discussed previously).  The idea of a double-sided first-

passage-time is a good match for the physical description but it is a crude approximation 

for the data.  Presumably, because of fluctuations and small deformations, the chain does 

not always require the same offset to squeeze by the post, and even when it has enough 
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clearance to pass the post unobstructed, it may occasionally drift back in front of the post 

before passing it by.  

 

Rather than attempt to develop a better physical model, to summarize our simulation 

results with a simple analytical formula, we seek a better fit for the R2 results by 

resorting to an empirical formula.  We find that the solution to the single-sided first-

passage-time, where the coil must reach a certain distance in, say, the positive direction, 

actually does a good job describing our data (and this does not require the ! parameter to 

scale the length measure).  We admit that this is an empirical method.  The solution to 

this single-sided problem is presented by Mazo
[17]

 

 

 

! 

P(",t)dt =
"

4# Dt 3
exp

$" 2

4Dt

% 

& 
' 

( 

) 
* dt       (3.23) 

 

where " is the measure of distance, D is the diffusivity, and t is the required time.  We 

repeat the scaling procedure described above to recast equation 3.23 as a function of z. 

 

 

! 

P z( ) =
1

4" z3
exp #

1

4z

$ 

% & 
' 

( ) 
       (3.24) 

 

We recognize that equation 3.24, while fitting the distribution of delay times well, has an 

infinite mean.  (The actual mean in the simulations is set by the extreme tail of the 

distribution function and the infinite mean does not prevent the above distribution 

function from providing a good fit to the simulation data over the range of delay times 
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considered.)  The infinite mean will be a problem later as we seek to use this 

approximation to determine the variance.  We therefore need to make one additional 

small correction to equation 3.24 so that it will have a finite mean.  We multiply the 

function by a rapidly decreasing exponential 

! 

exp "# z[ ]( ) .  We also must divide by 

! 

exp " #[ ]( )  to normalize the probability to unity. 

 

 

! 

P * z( ) =
1

4" z3
exp #

1

4z

$ 

% & 
' 

( ) 
exp #* z[ ]

exp # *[ ]
     (3.25) 

 

We plot equation 3.25 on figure 3.8a to compare the predictions of this empirical function 

(based on the single-sided first-passage-time theory) with our simulation results. We find 

! 

" = 0.02 to give the closest agreement with our data.  We note that the mean value of 

equation 3.25 is around 3.5.  We would expect, from figure 3.6, that the mean value of z 

in R2 would be close to unity.  This discrepancy can be attributed to the arbitrary manner 

in which we elected to alter equation 3.24 to result in a finite mean.  A mean of 3.5 is 

much closer to unity than a mean of infinity is.  A more complicated extra term may have 

accomplished both tasks (getting a finite mean and getting a mean of unity).  However, 

we accept equation 3.25 as a sufficient approximation for our later use. 

 

 

3.3.4 Region (R1) 

Region 1 (R1) is where the convective force is very weak compared to the diffusive 

force.  This is the very-slow-flow regime.  Note in figure 3.1 that for all four chain 
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lengths, we have data in this region, and that the data all fall along the same line (this line 

can be fit to a power law that scales as 

! 

Pe
Kuhn

0.27

). 

 

As with R2, the polymer in R1 does not reach the rope-and-pulley formation because 

there is insufficient force to fully extend the chain.  The polymer must translate beyond 

the post by randomly diffusing out of the plane containing the post and the flow direction 

and then be moved downstream of the post by convective motion. 

 

However, in R1, it is possible for a chain to diffuse far enough laterally to be able to clear 

the post but is convected so slowly that it might frequently diffuse back into line with the 

post before clearing it.  It might therefore need to clear the post multiple times before the 

coil is able to move beyond the post.  We note that in figure 3.6 the transition from R2 to 

R1 happens at the same 

! 

Pe
chain

 for all lengths of chain. 

 

Note that some negative times appear for the R1 curves on figure 3.7.  In this very low 

! 

Pe
Kuhn

 regime, where diffusion dominates the motion, it is possible for a coil to have 

moved downstream faster than it would have if it were carried by the flow alone.  To 

explore this, we ran the two sets of simulations, 

! 

N
K

= 379 / 

! 

Pe
Kuhn

= 0.003 (this is in R2) 

and 

! 

N
K

= 379 / 

! 

Pe
Kuhn

= 0.001 (this is in R1), both with and without the post in the field.  

Figure 3.9a shows the comparison in R2.  Note that the run without the post yields a 

distribution of delay distances centered and symmetric about zero, as expected, and the 

average delay time is zero.  The run with the post in R2 has a peak to the positive side of 

zero and has a lengthy tail on the positive side, with relatively few molecules having a 
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negative delay, indicating that while lateral diffusion determines the time required for the 

chain to clear the post (as discussed earlier), longitudinal diffusion (i.e., in the flow 

direction) is less important than convection, in determining the distribution of delay 

distances, especially in the tail region.  We note that the relative importance of 

longitudinal diffusion compared to convection is influenced by the distance (about seven 

Kuhn step lengths) that the chain must travel down field to reach the “finish line” where 

the simulation stops and the time to reach this “finish line” is recorded.  If we had put the 

“finish line” farther down field, there would have been more time for both convection 

and diffusion to operate, but the importance of longitudinal diffusion, relative to 

convection would have been diminished, and the fraction of chains with a negative 

“delay” time would have been smaller.   The average delay time, which is the time to 

reach the “finish line” minus the time required for a chain purely convected in the 

absence of the post, for this run was greater than zero – indicating that the post had an 

influence on the chain.   

 

Figure 3.9b shows the comparison in R1.  Note that in this case there is only a small 

difference between the runs with and without the post.  The average delay time for the run 

without the post is zero while it is slightly greater than zero when the post is present.  In 

R1 the delay time is dominated by longitudinal diffusion and the presence of the post 

merely perturbs that diffusion.   
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FIGURE 3.9    Rescaled probability distribution of 

! 

" x 

N
K

# 

$ 
% 

& 

' 
( 

24

Pe
Kuhn

N
K

# 

$ 
% 

& 

' 
(  with and 

without the post for Regions 1 and 2.  (a) Region 2:  

! 

N
K

= 379 and 

! 

Pe
Kuhn

= 0.003.  (b) 

Region 1: 

! 

N
K

= 379 and 

! 

Pe
Kuhn

= 0.001.   

 

 

The asymmetry of the distribution even without the post is due to the manner in which we 

run the simulations.  All simulations begin with the random coil placed a small distance 

upstream of the post.  This is done such that the most downstream bead of the coil is 
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initially located one-tenth of a radius of gyration upstream of the post.  The average 

location of the center of mass of the coil in this set-up will vary based on chain length – a 

larger chain will have its center begin farther away from the post even though chains of 

all lengths have their most downstream bead in roughly the same place.  The center of 

mass for the 379-Kuhn-step chain begins (on average) 7.5 Kuhn steps upstream of the 

post while the center of mass for the 1515-Kuhn-step chain begins (on average) 16 Kuhn 

steps upstream of the post.  All simulations end when the bead that is closest to the post 

(the leftmost bead in a left to right flow) is located seven-and-a-half Kuhn steps 

downstream beyond the post.  Again, the location of the center of mass of the chain when 

this occurs will vary with the number of Kuhn steps in the chain.  A longer chain will 

have its center of mass farther downstream than a shorter chain, when the simulation 

ends.  The location of the center of mass will also vary as a function of 

! 

Pe
Kuhn

 – chains 

under more aggressive flow conditions will be more stretched in the direction of the flow 

and their center of mass will be farther downstream. 

 

We find that this is a relatively short distance (7.5 Kuhn steps beyond the post) to the 

“finish line.”  We must compare the difference in the starting location of the center of 

mass and the finishing location of the center of mass.  This is the distance that the chain 

has traveled in a finite amount of time.  The time required for a chain to transverse this 

distance minus the time required to transverse the same distance in the absence of 

diffusion has a bound on the negative side.  This leads to a negative bound for z which 

varies as a function of chain length and 

! 

Pe
Kuhn

.  (Recall that z is a function of 

! 

Pe
Kuhn

, 

! 

N
K

, 

and, 

! 

" x ).  For example, z cannot be more negative than -70.4 for 

! 

N
K

= 379 and 
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! 

Pe
Kuhn

= 0.0001, even if the chain were instantaneously to jump from its starting position 

to the finish line.  There is no upper bound on the positive delay time; hence, the 

distribution of delay times is asymmetric about zero, even in the absence of the post.   

 

Since R1 is controlled by the subtle perturbation to the distribution of delay times that the 

post introduces, and the distance to the finish line likely influences significantly the 

behavior in R1, predicting even semi-quantitatively the behavior in this regime would be 

rather difficult.  In addition, since chain motion is so slow, this regime is probably also of 

limited importance to electrophoretic separation.  Hence we content ourselves here with 

the qualitative description of the behavior in R1 that we have just given.    

 

 

3.3.5 Mean And Variance 

We have developed in this work formulas that predict the probability distributions in 

R4/R3 (equation 3.7) and R2 (equation 3.25).  Note that R4 is defined by equation 3.7 

when b = 0.  We now evaluate the mean and variance in each of these regions.  We first 

must re-write equation 3.25 in terms of 

! 

" x N
K

. 
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Using equation 3.7 and equation 3.26, we find 
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TABLE 3.1 The mean and variance for each of the three highest regions.  This is for a 

single chain interacting with a single post. 

 

 

Recall that 

! 

b = f PeK ,NK( )  and that 

! 

" = 0.02.  We plot in figure 3.10 the dimensionless 

ratio 

! 

" 2 µ2  for chains with various 

! 

Pe
K

 and 

! 

N
K

.  We note that all chains reach the same 

value 

! 

"
2 µ2( ) =1 at high 

! 

Pe
K

 and all chains have the same value 

! 

" 2 µ2( ) = 7.07 at low 

! 

Pe
K

.  It is only in R3 where 

! 

" 2 µ2  depends on 

! 

Pe
K

 for chains of different lengths. 

 

The value of 

! 

Pe
K

 at which the ratio 

! 

" 2 µ2 for Region 2 intersects the value of 

! 

" 2 µ2  = 

7.07 for Region 3 is marked on figure 3.1 with the large asterisk mark.  This depends on 

! 

N
K

.   Note that this mark is a good measure of where the mean reduced delay 

! 

" x N
K

 

for each chain shows a transition between R3 and R2 behavior.  The agreement between 

the crossover as measured by the intersection of the values of 

! 

" 2 µ2 and as measured by 
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the crossover in the value of 

! 

" x N
K

 is better with the three longer chains – but we 

have commented earlier that the R3 approximation is less likely to be successful for 

chains with a small number of Kuhn steps.   

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.10    A plot of 

! 

" 2 µ2  for four different length chains. 

! 

" 2 µ2  = 1 for all 

chains in the high-field regime, R4. 

! 

" 2 µ2  = 7.07 for all chains in the low-field regime, 

R2. 

! 

" 2 µ2  is a function of 

! 

Pe
Kuhn

 and 

! 

N
K

 in the intermediate-field regime R3.  The 

values of 

! 

Pe
Kuhn

 for the transitions between R2 and R3 are shown with large asterisks on 

figure 3.1.  

 

 

Our simulations have dealt only with the interaction of a single chain with a single post.  

However, we can apply our findings qualitatively to the more useful case of a chain 

interacting with a sparse array of posts, by first considering a row of posts arrayed 
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perpendicular to the migration distance (with a spacing which we will discuss 

momentarily) and then considering n columns of these rows of posts in succession, 

allowing the chain to interact successively with one row after the next.  This will be a 

simplified but useful extrapolation from the work presented in this paper to the case of a 

“sparse” array of posts.  This can be combined with some of the work of Dorfman
[12]

 to 

develop a full model for an array of sparse posts. 

 

We have been assuming in each simulation that each chain is aligned with the post.  We 

can imagine a situation where there is a row of posts with a well-defined spacing between 

each post.  A chain may approach this row and, depending on the spacing, either have an 

entanglement interaction with a post or pass through between two posts unaffected.  For 

simplicity, we shall take a “step function” approach to the interactions, and assume that 

the collision is either effectively a “head on” collision of the type we have analyzed here, 

or a “clean miss.”  That is, the off-center collisions are treated as either close enough to 

being head on that they can treated as such, or are lumped into those that experienced a 

“clean miss.”  We will define f to be the probability of an effective head-on collision and 

1-f the probability of an effective clean miss.  From the discussion above, f will be 

approximately given as the ratio between Rg and the distance separating two posts in the 

same row.  The percentage of “clean misses” will affect both "
2
 and µ for the average 

interaction of the chain with the first row.  The “total” mean, incorporating the misses, is 

easily calculated as 

! 

µT = fµ.   
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It is more complicated to determine the average total variance for the interaction with the 

row of posts.  Consider the probability of delay to be a combination of two terms – the 

first term being the probability P that we discussed earlier and the second term being a 

delta function at zero (representing a miss).  The contribution from each term is weighted 

by f. 
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The variance of equation 3.27 
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is found after some mathematics to be  
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= f" 2 + 2µ2
f 1# f( ) #µ2

f 1# f
2( ) + µ2

f
2
1# f( )    (3.29) 

 

"
2
 and µ have already been determined for each region.  Equation 3.29 provides a simple 

expression for the adjusted variance as a function of "
2
, µ, and f for a row of equally 

spaced posts with any post density.  The ratio 

! 

"
T

2

µ
T

2

 is then determined as 
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Note that, for f = 1.0, this returns the original 

! 

" 2 µ2 . 

 

We now consider an array of n columns of these post rows.  Both the variance and the 

mean will scale with n.  If the rows of posts are spaced widely enough apart that a DNA 

molecule can completely relax after any encounter it experiences in the first row of posts 

before it encounters a post in the second array, we can take each encounter to be 

independent of the others.  Then, according to the central limit theory, for large n, a set of 

DNA molecules of given length passing through the array of posts will emerge 

distributed as a Gaussian with mean delay 

! 

nµ
T
 and standard deviation 

! 

n"
T
.  The 

relative width of the peak, which is the ratio of the standard deviation to the mean, scales, 

inversely with the square root of n.  

 

 

! 

relative peakwidth =
1

n

"
T

µ
T

       (3.31) 

 

Since the above formula allows one to determine the bandwidths and resolution of 

different bands of migrating DNA, it could be used to design an array that can 

electrophoretically separate DNA strands by size.  It is important to note that this is for a 

dilute DNA solution in a sparse array of posts.  The posts must be sufficiently sparse that 

the chain is able to re-form the random coils between interactions.  The simulation 

method we have used here could also be used to determine the interactions of a DNA 

molecule with multiple, more densely arrayed, posts, where the interactions of the 

molecule with one post are coupled to the interactions with other posts.  Such coupled 
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interactions could take place either because the spacing in a single row is tight enough for 

the chain to interact simultaneously with more than one post, or because the column 

spacing is small enough that the molecule does not recover completely from one 

interaction before it has another.  One can imagine combining the results of such 

simulations with the formulas we have derived above by using “interaction coefficients” 

to adjust the dilute-post formulas for the effects of more densely arrayed posts, thus 

producing empirically useful formulas for designing such arrays for DNA separations.  

However, such additional work is beyond the scope of this study.  A theory that converts 

single entanglement encounters into expressions predicting separation parameters has 

been put forward by Dorfman, who, however, did not consider the low-field cases (R1 

through R3) that we have explored here.  

 

 

3.4 SUMMARY 

We have used our previously developed bead-spring Brownian dynamics model to 

simulate the interactions between a polymer chain and a thin obstacle.  We studied 

electrophoretically translating DNA strands entangling with an immovable post, sampling 

a wide range of chain lengths (

! 

25 " N
K
"1500) and spanning four orders of magnitude in 

field strength (

! 

10
"4
# Pe

Kuhn
#10

0).  We found that the delay in chain migration distance 

created by the entanglement is greater at higher fields, and that there are four distinct 

regimes that describe these entanglements, two of which (R3 and R4) are dominated by 

convection, and two (R1 and R2) by diffusion.  We discussed the physics that govern the 

four regions and for all but the first region (lowest field strength) we presented analytic 
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approximations for the distribution of delay distances, including the mean and standard 

deviation of the delay. 

 

The high field strength region (R4) is characterized by rope-and-pulley interactions in 

which there is sufficient convective force for the polymer always to reach a fully 

extended configuration.  Previous work
[6]

 has shown that all chains (regardless of length) 

reach a limit of 

! 

" x N
K

= 0.5 in this region.  In a region with a less dominant 

convective force (R3) the chain is not able to fully extend its arms on other side of the 

obstacle.  Hence, the polymer does not form the rope-and-pulley configuration; instead it 

forms more of a chain-and-clump configuration in which the size (the number of 

monomers) of the clump is inversely related to the field strength.  This results in shorter-

lived interactions than were present in R4.  While limitations of computer time prevented 

us from generating simulation data for R3 for the longer chains, we were able to 

developed a model to predict the behavior in R3 including the variation of 

! 

" x N
K

 

with 

! 

N
K

 and 

! 

Pe
Kuhn

, and this model agreed well with the simulation data that we were 

able to obtain. 

 

In the two slower regimes (R2 and R1), the convective force is not able to alter 

significantly the shape of the polymer, and the chain retains a coil-like shape as it diffuses 

laterally and eventually passes the post largely without deforming.  We argue that the 

controlling effect in R2 is the time required for the coil to diffuse a distance ! Rg out of 

the plane of the post.  We rescaled our data based on this argument and found universal 

behavior of all chain lengths in this regime.  We also developed an approximation for this 
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region based on the solution to the first-passage time problem.  While lateral diffusion 

controls the delay distance in Region 2, with negligible effect of longitudinal diffusion, in 

the slowest region (R1), convection is so slow that the distribution of delay times is 

dominated by longitudinal diffusion that is perturbed subtly by interactions with the post.   

Prediction even semi-quantitatively the behavior in this regime would be rather difficult.   

We also note that R1 features a peculiar fractional power law relationship 

! 

" x N
K
#Pe

Kuhn

0.27

. 

 

Our results are unique in addressing a comprehensive range of electrophoretic strengths 

and chain lengths and in providing accurate analytical expressions for the distribution of 

delay distances induced by a single post.  We find the mean and variance of the 

probability distribution for each of the three fastest regimes, and use these along with the 

central limit theorem to generalize our results from a single chain interacting with a 

single post to a dilute solution of chains interacting with a sparse array of posts. Our 

methods can readily be extended to consider the effect of non-sparse arrays, with 

potential applications in the field of size dependant separations. 
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CHAPTER 4 

SUMMARY AND FUTURE WORK 

 

 

4.1 SUMMARY OF RESEARCH 

This purpose of this research was to develop a method to model the interactions between 

an electrophoretically translating polymer chain and a stationary obstacle, and to use that 

method to analyze the types of entanglements that occur at various field strengths.  One 

application of this research is in the area of size-dependant separation of DNA strands. 

 

We began with traditional bead-spring Brownian dynamics simulations and we added a 

repulsive force that can act between two springs or between a spring and an obstacle.  We 

are able to determine the distance separating each spring and the post, and the repulsive 

force is a function inversely related to that distance.  It is an achievement of this work 

that we are able to use bead-spring BD because this allows us to simulate very long DNA 

strands (

! 

N
K

 > 1500) – strands which would be too computationally expensive to be 

modeled with established bead-rod BD.   

 

Our work is unique in that it permits the springs to pass through the post during a time 

step (the spring can be “broken”) but we accordingly correct for this in the subsequent 
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timestep.  This quality allows our method to use a much larger time step (because we are 

not concerned with nearly infinitely high repulsive forces in the region very close to the 

post) and we are able to quickly simulate larger chains. 

 

Our method was tested for robustness and convergence with respect to the strength and 

range of the repulsive force, the choice of time step, and the number of beads used to 

model polymers of a particular length. 

 

We measured an ensemble-averaged delay distance to quantify the effect of the polymer-

post interaction.  This is a measure of distance showing the difference between a chain’s 

location in a simulation containing the obstacle and in a simulation without the obstacle 

for the same field strength.  We are able to replicate, using our bead-spring technique, the 

results of a previously published simulation
[1]

 that had used bead-rod BD as its method. 

 

We have the ability to explore four orders of magnitude in field strength 

(

! 

10
"4
# Pe

Kuhn
#10

0) and this proved very fortunate as we discovered interesting and 

unexpected behavior in the very low field regimes.  We modeled polymers over a wide 

range of lengths (

! 

25" N
K
"1500).  We used two types off spring laws – the worm-like-

chain was used for the longer springs (

! 

N
K

>350) and FENE-Fraenkel
[2]

 was used for the 

25 Kuhn step chain (because it is a better model for short springs). 

 

We found that there are four different types of entanglement events that occur, each 

occurring over a region determined by the ratio of convective force to diffusive force 
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(

! 

Pe
Kuhn

).  We described the mechanisms for the entanglement and escape in each of the 

regions.  “Rope-and-pulley” interactions are common in the two highest field regions.  

There is sufficient convection to extend the arms of the chain (the chain is fully extended 

in the highest region).  Our findings agree with Randall and Doyle
[3]

 in that all chains 

reach an upper limit of 

! 

" x N
K

= 0.5 in the highest field region.  We proposed that the 

chain is unable to become fully extended at lower 

! 

Pe
Kuhn

 and that the result of this is a 

chain-and-clump orientation in which the ends of each arm are a collection of coiled 

monomers.  The size of this clump has an influence on the average time of the interaction 

– more monomers in the clump will reduce the average entanglement time. 

 

The two slower regions are characterized by the chain’s inability to leave its original 

coiled formation.  Diffusion is dominant in this case.  We believe that the polymer can 

get beyond the post by diffusing out of the plane and then being convected downstream.  

We developed a scaling based on this diffusive argument – and we found our results for 

the two slowest regions fall on a universal curve independent of chain length. 

 

We developed analytical expressions to predict 

! 

" x N
K

 as a function of 

! 

Pe
Kuhn

 in each 

of the three highest field regions.  We used our prediction from Region 3 to complete 

some of the missing data from our plot of 

! 

" x N
K

 vs. 

! 

Pe
Kuhn

 and we found that our 

prediction does an excellent job of bridging the gap between Region 2 and Region 4.  We 

used these analytical expressions to calculate the mean and variance in each region in the 

case of a single polymer chain entangled with a single stationary post.  We extrapolated 

our findings to become applicable to line of evenly spaced posts.  We then discussed a 
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manner to convert a line of posts into an array of posts.  This returned our project to its 

original goal of developing a method for size-dependant separation of DNA strands. 

 

 

4.2 POTENTIAL FUTURE WORK 

There are a number of problems that can benefit from the work of this dissertation.  I will 

initially discuss two cases that can be reasonable next steps based on the bead-spring BD 

method that we have developed.   

 

It is possible to consider the self-entanglement of a single polymer chain under various 

flow conditions (particularly under a shearing flow).  Traditional bead-spring BD 

simulations do not enforce repulsions between the springs, and this allows the polymer 

chain to continuously pass through itself as it sample configurations.  Our method can be 

used to apply a repulsive force between springs in the same polymer (rather than between 

each spring and a post).  A test of the success of this idea would be to compare the 

average radius of gyration of a chain simulated using traditional bead-spring BD to that 

of a chain simulated using our new bead-spring BD method.  It would also be valuable to 

compare those results to the radius of gyration found by experimentation. 

 

A second use of our bead-spring BD method could be to study the dynamics of a semi-

dilute solution of polymer chains.  There are two significant adjustments to be made in 

this situation.  The number of repulsive force calculations in each time would be much 

greater because it would be necessary to monitor each spring-spring interaction (both 
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along the same chain and from one chain to another).  A creative algorithm or a clever 

use of the nearest neighbors principle may reduce the intensity of this process.  

Additionally, it is different from the work we have presented here in that the obstacle 

(one of the other polymers in the dilute solution, in this case) will translate in the 

direction of the flow as the entanglement is happening. The two molecules will translate 

together with an effective mass equal their sum, they will move together while 

simultaneously undergoing the “rope-and-pulley” entanglement action.  For some 

applications, filling a channel with a dilute solution of neutral polymers may be more 

advisable than etching a channel with stationary posts, and these simulations will 

describe this situation.  

 

One final avenue for future work is something we discussed at the end of chapter 3.  The 

work we have presented here is focused on a single polymer chain interacting with a 

single stationary obstacle.  We did some theoretical work to predict the effects that an 

array of posts would have on the mean and variance of the ensemble-averaged delay 

distance.  This is applicable in designing a channel of posts suited to separate polymer 

chains of varying lengths.  Dorfman
[4]

 has also previously done some theoretical work in 

this field.  More concrete work can be done in this area using the simulation method that 

we have developed.  The simulation method we have used here could also be used to 

determine the interactions of a DNA molecule with multiple, more densely arrayed posts, 

where the interactions of the molecule with one post are coupled to the interactions with 

other posts.  Such coupled interactions could take place either because the spacing in a 

single row is tight enough for the chain to interact simultaneously with more than one 
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post, or because the column spacing is small enough that the molecule does not recover 

completely from one interaction before it has another.  Our work can be used to study the 

effects of multiple posts – to determine the ideal spacing and post density – and to 

optimize the design of the post array. 
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