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CHAPTER I

Introduction

This dissertation essentially discusses two different problems. The first concerns

an investigation of the use of pseudo observations in a multi-state event history

model. In recent years, pseudo observations have been applied in different contexts

as in Andersen et al. (2003), Andersen et al. (2004) and Klein and Andersen (2005)

among several others. The second concerns the development and implementation of

a CUmulative SUM (CUSUM) procedure in the context of monitoring outcomes of

multi-center projects. The CUSUM procedure, introduced in Page (1954) and later

discussed by Van Dobben de Bruyn (1968) and many others, has been used as a

graphical sequential inspection scheme since the past several decades.

1.1 Multi-state models

A multi-state model can be described as one in which individuals can occupy

any one of several states at an instant in time and can move between states as

time progresses. It is common to describe the distribution of the times of transition

from one state to another using a Cox proportional hazards model (Cox (1972)).

Under a proportional hazards model, it is possible to write down an expression for

the probability of a transition. Typically, this probability will depend on covariate

values. It is important to be able to describe this relation through a simple and easily

1
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interpretable model and a logistic regression model seems reasonable. In order to

estimate the parameters of this model and obtain confidence intervals, Andersen et al.

(2003) proposed using pseudo observations as the response in a binomial GLM. In

this context, one can also construct confidence intervals using the bootstrap. Chapter

II considers an illness-death model without recovery and discusses estimation of the

probability of a transition from a healthy state to a diseased one under independent

right-censoring. As in Andersen et al. (2003), a logistic model for this probability is

considered and certain issues related to the implementation and performance of the

pseudo observation approach are discussed and compared to bootstrap techniques.

It becomes apparent through simulations and through theory from a simple example,

that pseudo observations do not give correct answers when censoring is covariate-

dependent.

1.2 CUSUM tests

CUSUM tests were originally developed as an extension of control chart techniques

to monitor the quality of manufactured products. As the name suggests, they are

based on cumulative sums of deviations from a fixed target and have proved to be

generally sharper than control charts or Shewhart tests (Shewhart (1931)). As an

illustration, let a process under inspection produce observations x1, x2, x3, . . . in that

order and let X be a target value associated with this process. The process is said to

be in control if the mean of the {xi} stays close to this target value and potentially

out of control if a systematic bias from the target is accumulated over time. Such

a monitoring strategy is similar to a statistical test of hypothesis and therefore the

idea of a sequential probability ratio test or SPRT was introduced in Wald (1947).

Usually, the null hypothesis H0 is that the process is in control with the alternative
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H1 being that it is biased away from the target. Then one can compute, at each stage

of sampling, the ratio R of the likelihoods of obtaining the observed values under

H1 and H0, respectively. If this ratio R is large, then H0 is rejected; if it is small,

then H0 is accepted; and if it takes any intermediate value, the decision is delayed

until further observations produce a higher or lower R. The difference between a

CUSUM test and the SPRT is that the CUSUM test does not terminate when the

H0 is accepted, but rather restarts and continues until it leads to a rejection of H0.

The CUSUM test is then said to have signaled and the number of observations taken

to achieve this is termed the Average Run Length or ARL. A CUSUM test may

thus be seen as a sequence of SPRTs leading to rejection of H0. Observe that the

SPRT will always end by accepting or rejecting H0, so it may be useful to design a

CUSUM test in terms of achieving a particular ARL rather than probabilities of false

positives or false negatives. Typically, it is desirable that the CUSUM should have a

very large ARL when H0 is true and a short ARL when H1 is true. For the examples

considered in this dissertation, only CUSUM tests having a one-sided alternative are

of interest and accordingly a one-sided CUSUM (see Page (1954)) is developed and

implemented.

1.3 Monitoring outcomes of multi-center studies

In multi-center projects involving an intervention, it is important to be able to

monitor and provide outcome information in a timely manner to participating insti-

tutions or facilities. Such a monitoring activity can be useful in providing warning

signals to the institutions and also in coordination of the project. Standard statis-

tical techniques like risk-adjusted mortality and multivariate modeling can be used

to identify performance changes at a national level but may be insensitive to smaller
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persistent changes at the facility level. In the context of health-care applications, a

one-sided risk-adjusted CUSUM has been discussed as a quality improvement scheme

in Woodall et al. (2006) and particularly in the case of organ transplantation, by Ax-

elrod et al. (2006), Poloniecki et al. (1998) and Steiner et al. (2001) among several

others. In Axelrod et al. (2006) and Steiner et al. (2001), a risk-adjusted CUSUM

based on a logistic model has been implemented in discrete time. The CUSUM needs

to be adjusted for individual risk factors to account for institutional differences as

can arise simply due to differences in the mix of patients. The implementation of

such a procedure is at the institution of interest with the null hypothesis being that

the rate of transplant failures at this institution is the same as that at the national

or population level. It may be considered a cause for an alarm if there is evidence

that the failure rate at this institution is higher than that at the national level,

so the alternative is usually one-sided. In this dissertation, we develop and imple-

ment a risk-adjusted CUSUM using the Cox model (Cox (1972)) and based on an

SPRT in continuous time. We also obtain approximate theoretical expressions for

the ARL under certain assumptions, evaluate the performance through simulations

and illustrate the procedure on a real data example. Both the simulations and the

data example show that updating the CUSUM in continuous time leads to shorter

detection times than the discrete versions.

It is helpful to keep in mind that one of the major objectives for implementing

a CUSUM charting scheme is quality improvement. So a signal from the CUSUM

should not be interpreted as a clinically important decline or improvement in clinical

quality. Rather, the signal suggests that closer examination by the quality improve-

ment team may be required. Mathematically, the CUSUM can be presented as a

test of hypothesis problem, however, there is an important philosophical distinction
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from the usual accept or reject outcome of a hypothesis test.

Chapter III develops and implements a one-sided CUSUM in continuous time

and obtains approximate theoretical results on the ARL under the assumption that

transplants occur according to a homogeneous Poisson process. The procedure is also

demonstrated via a simulation study as well as on kidney transplant data from the

Scientific Registry of Transplant Recipients (SRTR). In Chapter III, it is assumed

that the report of an outcome is immediate. However, that is rarely the case in

actual practice. Chapter IV proposes a CUSUM procedure when there is a random

delay or lag involved between the time the outcome occurred and its reporting. In

particular, we consider the case when the delays and the failure times are jointly

independent conditional on the transplant times. The proposal is evaluated through

simulation studies. The dissertation concludes with a short summary and discussion

of future directions in Chapter V.



CHAPTER II

Pseudo obervations in multi-state models

2.1 Introduction

Multi-state models have long been used for modeling event history data and are

discussed in various texts in the area including Andersen et al. (1993), Kalbfleisch

and Prentice (2002) and Therneau and Grambsch (2000). It is traditional to specify

multi-state models in terms of the transition intensity rates. Since the state occu-

pancy probabilities are complicated functions of the transition intensities, even simple

relationships between the covariates and transition intensities will generally result in

complicated relationships between the covariates and state occupancy probabilities.

In an attempt to address this issue, direct modeling of the state occupancy proba-

bilities using General Linear Model methods has been suggested in Andersen et al.

(2003). More specifically, the authors propose direct modeling of the dependence of

the covariate effects on the state occupancy probabilities. To analyze this model,

the authors devise a computationally simple approach utilizing pseudo observations

generated from the Aalen-Johansen estimator (see, Aalen and Johansen (1978)).

Details of the proposal are as follows. If θ̂ is an unbiased estimator of θ, based

on n observations, then the pseudo observations, as defined in Efron and Tibshirani

6
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(1993), are,

θ̂i = nθ̂ − (n− 1)θ̂(−i), i = 1, 2, . . . , n(2.1)

where θ̂(−i) is the value of θ̂ computed from all but the i-th observation. In Andersen

et al. (2003), θ̂i is expressed in terms of the covariates Zi as,

g(θ̂i) = β′Zi(2.2)

where β is a vector of fixed unknown parameters and g is a known link function. The

model is fitted using GEE techniques (Liang and Zeger (1986)). For the problem

considered here, θ is an occupancy probability of interest and θ̂ is the Aalen-Johansen

estimator of θ.

This article compares the above approach to a bootstrap technique in which per-

centile methods are used to obtain confidence intervals for the regression parameters

in (2.2). The example we consider is a progressive illness-death model with indepen-

dent right censoring. Also, a theoretical analysis of the effect of covariate-dependent

censoring on estimates based on pseudo observations is presented in the context of

a simple survival model with right censoring. Section 2.2 discusses the notation,

assumptions, estimation procedures and the implementation of the bootstrap. Sec-

tion 2.3 discusses a simulation of the illness-death model without recovery. Section

2.4 presents a data example from the SRTR to illustrate the approaches discussed in

this article. Section 2.5 discusses a survival model with point censoring and a binary

covariate and presents theoretical results for parameter estimates from the GLM

based on pseudo observations. The article concludes with a discussion in Section

2.6.
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2.2 A proposed GLM and its estimation

In this section, we introduce a multi-state model and describe an approximate

GLM for a transition or occupancy probability, as suggested in Andersen et al.

(2003), and discuss strategies for point and interval estimation of the parameters.

2.2.1 An approximate GLM

Let {X(t); t ≥ 0} denote the process for an individual where X(t) takes values on

a finite state space S = {0, 1, 2, . . . ,m}. The transition probabilities are

Phj(s, t) = Pr(X(t) = j | X(s) = h,Fs−)

for time points s < t and states h, j ∈ S. Here, Fs− = {X(t); 0 ≤ u < s}. We

assume that the process is Markov so that conditioning on the whole history Fs−

gives no extra information beyond X(s). For all h 6= j, h, j ∈ S, the instantaneous

transition intensities λhj(t) are,

λhj(t) = lim
u→0+

Phj(t, t+ u)

u
.

We suppose that the process begins in state 1 and consider the occupancy probabil-

ities for state h given by,

P1h(t) = Pr(X(t) = h).(2.3)

To incorporate covariates into a multi-state model it is most natural to model the

transition intensities, often as a Cox model (Cox (1972)), where

λhj(t;Z) = λ0hj(t) exp(γ ′hjZ)(2.4)

Though generally quite flexible and simple to interpret in terms of the transition

intensities, (2.4) generally leads to a complicated description of the dependence of
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the occupancy probability on Z. In an attempt to address this problem, Andersen

et al. (2003) considered an approximate model of the form

logit{P1h(tl;Z)} = αl + β′Z, l = 1, 2, . . . , k.(2.5)

where {t1, t2, . . . , tk} are pre-determined time points and P1h(tl;Z) = Pr(X(t) =

h|Z).

In Andersen et al. (2003), it is noted that the model (2.5) would not hold exactly.

Thus the authors suggest using a best fitting model of the form (2.5), though it is

not explicitly described how that is to be done. Evidently, however, the idea, is to

seek best values of {α1, α2, . . . , αk,β} in the model (2.5) in order to be as close as

possible to the underlying true model. Least squares would offer one approach; in

this case the parameters are chosen to minimize

EZ

[∑
l

{logit(P1h(tl;Z))− αl − β′Z}2

]
.

If Z is a Bernoulli variate with P (Z = 1) = π, this yields,

βbest =
1

k

k∑
l=1

logit{P1h(tl;Z = 1)} − 1

k

k∑
l=1

logit{P1h(tl;Z = 0)}(2.6)

αbestl = πlogit{P1h(tl;Z = 1)}+ (1− π)logit{P1h(tl;Z = 0)} − πβbest(2.7)

Further, if k = 1, there is an exact relation for the occupancy probability. Specifically,

logit{P1h(t1;Z)} = αbest1 + βbestZ, Z = 0, 1(2.8)

Note that this is just a special case of (2.5), so βbest and αbest1 in this case are obtained

by substituting k = 1 in (2.6) and (2.7), respectively. More generally, with k > 1

and/or non-binary Z, (2.6) and (2.7) offer only an approximate solution. This exact

solution when k = 1 is useful in comparing the various approaches, since all proposed

models are then correct and so on the same footing.
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2.2.2 Estimation

In order to estimate the model parameters {αbest1 , αbest2 , . . . , αbestk , βbest} as in (2.6)

and (2.7), we need estimates for the probabilities P1h(t;Z). For simplicity and clair-

ity, we restrict attention to binary Z = 0, 1 for k > 1 and k = 1. We now examine

each of the three approaches to estimation in the following three subsections.

Pseudo observations

For given t, we estimate θ = P1h(t) = E[P1h(t;Z)] nonparametrically with the

Aalen-Johansen estimator θ̂ based on the data on all n sampled individuals. We then

omit the i-th individual to compute θ̂(−i) for i = 1, 2, . . . , n. The pseudo observation

θ̂i as defined in (2.1) is viewed as an approximate observation on P1h(t;Zi). Note

that we do not use any covariate information for forming the pseudo observations.

An immediate difficulty is that the pseudo observation need not lie in [0, 1]. One

approach is to set negative pseudo observations to 0 and those larger than 1 to 1.

These truncated pseudo observations are then used as the response in a binomial

GLM with a logit link to obtain estimates for βbest in (2.6). Note that for k > 1

in (2.5), θ is the vector of k occupancy probabilities and so we have a k-vector of

pseudo observations for each individual. Although we used an independence struc-

ture for the working covariance matrix in the GEE, other structures may also be

used (Klein and Andersen (2005)). Following Andersen et al. (2003), confidence in-

tervals are formed using the assumed asymptotic normality of β̂ with standard errors

obtained from the sandwich formula.

An alternative to truncation is to solve the logistic regression equations (Andersen
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and Klein (2007), Klein and Andersen (2005)),

n∑
i=1

(θ̂ij − pij)pij(1− pij) = 0, j = 1, 2, . . . , k(2.9)

n∑
i=1

Zi

k∑
j=1

(θ̂ij − pij)pij(1− pij) = 0(2.10)

where logit(pij) = αbestj + βbestZi. For k = 1, it is immediate that,

β̂best = logit

(∑
i θ̂iZi∑
i Zi

)
− logit

(∑
i θ̂i(1− Zi)∑
i(1− Zi)

)
(2.11)

Standard errors are again computed using the sandwich estimator. In this, we ignore

the fact that the pseudo observations are estimates of probabilities and so arguably

should lie in [0, 1]; the approximate linearization giving rise to the pseudo observa-

tions suggests that this may be the more appropriate approach.

In the case of a general Markov process discussed earlier, the Aalen-Johansen (AJ)

estimate for the transition probability matrix P(s, t) can be written as,

P̂(s, t) =
∏

i:s≤Ti≤t

(I + dÂ(Ti))

where {s ≤ Ti ≤ t} are the transition times (between any two states) that are

observed to lie between s and t. The matrix Â(t) = (Âhj(t)) is,

Âhj(t) =

∫ t

0

I(Yh(u) > 0)
dNhj(u)

Yh(u)
.

Here, Nhj(t) counts the number of observed direct transitions from state h to j in

[0, t], and has intensity process λhj(t)Yh(t), where Yh(t) is the number of individuals

observed to be in state h just prior to time t. Thus, the computation of the AJ

estimator involves a finite number of matrix multiplications.

A nonparametric estimator

As a second estimator, we consider the AJ estimator stratified on the levels of

Z. Obviously, this approach is applicable only with discrete covariates taking on
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relatively few distinct values. This method is used here mainly as a nonparametric

yardstick and is not proposed as a possible alternative. The estimates of αbestj and

βbest are obtained by solving the equations (2.9) and (2.10) with θ̂ij replaced with

the corresponding AJ estimates.

An estimator based on the Cox model

Under the assumption (2.4) for the transition intensity functions, estimation of

γhj can be based on the partial likelihood and Λ0hj(t) can be estimated with the

Nelson-Aalen estimator; (see, for example, Kalbfleisch and Prentice (2002), Andersen

et al. (1993)). As demonstrated for a simple example in the next section, these

estimates can be substituted into an integral representation of P1h(tj;Zi) to obtain an

estimate. More generally, an estimate of P1h(s, t;Z) is available through substitution

of estimated quantities into its product integral representation. Finally, estimates of

αbestj and βbest are obtained by substituting Cox model estimates of P1h(tj;Zi) for θ̂ij

in (2.9) and (2.10).

2.2.3 Confidence intervals using the bootstrap

To obtain confidence intervals for the AJ and Cox model approaches we use a boot-

strap approach and obtain β̂best∗ for each resampled data set. Resampling introduces

ties in the data, even if none are present initially, and we used Efron’s approxima-

tion (Efron (1977)). The lower and upper limits for an approximate 100(1 − γ)%

confidence interval are obtained as the γ/2 and (1− γ/2) quantiles of the bootstrap

distribution of the estimate of βbest.

2.3 Simulation study

In this section, we evaluate the three methods described above in a simple multi-

state model with independent right censoring.
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Figure 2.1: An illness-death model without recovery.

2.3.1 An illness-death model

We consider the progressive illness-death model with 3 states as illustrated in

Figure 2.1. For the simulations, we used a binary covariate (Z = 0, 1) and constant

baseline intensities for each of the transitions as indicated in the figure. We consid-

ered estimation of the probability that an individual who is disease-free at time zero

is alive and in the diseased state at time t. This is,

P12(t;Z) =

∫ t

0

P11(0, u−;Z)λ12(u;Z)P22(u+, t;Z)du

where,

P11(0, t;Z) = exp

{
−
∫ t

0

(λ12(u;Z) + λ13(u;Z))du

}
, t > 0 and

P22(s, t;Z) = exp

{
−
∫ t

s

λ23(u;Z)du

}
, s < t.

Under assumptions of constant baseline intensities, we find,

P12(t;Z) =
λ12e

γ12Z exp
{
−λ23e

γ23Zt
}

λ12eγ12Z + λ13eγ13Z − λ23eγ23Z
× [1−

exp
{
−(λ12e

γ12Z + λ13e
γ13Z − λ23e

γ23Z)t
}]
,
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which is a complicated expression even for this simple model. It is therefore not an

easy task in general to describe the nature of the dependence of P12(t;Z) on Z in a

simple manner.

To illustrate the methods described in Section 2.2, we carried out a simulation

study with constant baseline censoring rates that were allowed to depend on Z as

well as the state currently occupied. Thus, λjCe
γjCZ denotes the hazard rate of

censoring for an individual in state j, j = 1, 2. The overall proportion of censoring

was controlled by fixing the unconditional probability of being censored at a desired

fraction α.

The parameter values for the simulation were chosen as, π = 0.5, λ12 = 1, λ13 =

0.5, λ23 = 2 and γ12 = γ13 = γ23 = log 2. For censoring, we considered (γ1C , γ2C) =

(0, 0) or (γ1C , γ2C) = (log 5, log 2). We considered the cases λ1C = λ2C = λ and

λ1C = λ, with λ2C = 0.5. The first setting is similar to a controlled trial where

drop-out rates are regulated and the second is similar to an observational study

where healthy individuals are more likely to drop out (censored) than are sick in-

dividuals. In each setting, the value of λ was chosen to ensure a given fraction

α (= 0.0, 0.25, 0.50 and 0.75) of overall censoring.

Figure 2.2 displays the true model probability P12(t;Z) for Z = 0 and 1. It is

evident from the graph that the curves vary considerably with time and are far from

parallel and so βbest from model (2.5) is measuring only an average effect over time.

Table 2.1 shows the probability estimates under a certain simulation setting using

the Aalen-Johansen (AJ) and Cox methods. Both the procedures appear to be quite

accurate. The estimates in Table 2.1 are based on 1000 Monte Carlo replications.

We report on the estimation of regression parameters for the cases k > 1 and

k = 1. In the first (CASE I), we chose k = 4 and time points {0.10, 0.15, 0.20, 0.25};
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Figure 2.2: True probabilities P12(t;Z) from the illness-death model for Z = 0 and Z = 1.

Table 2.1: True and estimated probabilities with α = 0.5, n = 300, λ1C = λ2C , γ1C = γ2C = 0.
True probability AJ estimator Cox estimator

Time P12(t; Z = 0) P̂AJ
12 (t; Z = 0) P̂Cox

12 (t; Z = 0)

0.1 0.084 0.083 0.082
0.2 0.141 0.140 0.140
0.3 0.178 0.176 0.175
0.4 0.199 0.197 0.196
0.5 0.209 0.208 0.206
0.6 0.211 0.208 0.207
0.7 0.207 0.206 0.204
0.8 0.199 0.197 0.197
0.9 0.188 0.185 0.190
1.0 0.176 0.177 0.190
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Table 2.2: Estimates of βbest, coverage probabilities (CP) of nominal 95% interval and average in-
terval length (AIL) for the illness-death model when n = 300 under CASE I (k = 4). The
true βbest is 0.454.

No censoring
AJ Cox PO-Tr PO

β̂ 0.451 0.449 0.437 0.440
CP 94.2 94.0 94.4 94.3
AIL 1.065 0.650 0.969 0.970

λ1C = λ2C = λ

γ1C = γ2C = 0 γ1C = log 5, γ2C = log 2
α AJ Cox PO-Tr PO AJ Cox PO-Tr PO

β̂ 0.442 0.445 0.435 0.442 0.462 0.459 0.444 0.458
0.25 CP 94.5 95.0 94.8 94.8 93.6 94.9 95.0 95.0

AIL 1.094 0.711 1.005 1.005 1.108 0.751 1.025 1.026

β̂ 0.449 0.455 0.431 0.446 0.446 0.452 0.469 0.529
0.5 CP 93.8 94.3 94.3 94.6 94.6 93.8 95.4 94.6

AIL 1.162 0.824 1.074 1.069 1.197 0.920 1.133 1.138

β̂ 0.453 0.449 0.442 0.469 0.454 0.454 0.437 0.770
0.75 CP 94.6 94.6 94.4 95.0 93.2 94.2 97.8 97.6

AIL 1.377 1.097 1.313 1.282 1.522 1.299 1.426 1.589

λ1C = λ, λ2C = 0.5

γ1C = γ2C = 0 γ1C = log 5, γ2C = log 2
α AJ C PO-Tr PO AJ C PO-Tr PO

β̂ 0.457 0.453 0.429 0.436 0.450 0.452 0.433 0.444
0.25 CP 93.6 95.4 96.1 96.0 95.3 95.1 94.7 94.8

AIL 1.095 0.708 1.000 1.000 1.092 0.717 1.006 1.007

β̂ 0.464 0.464 0.423 0.442 0.451 0.452 0.452 0.519
0.5 CP 94.4 94.3 94.8 95.0 94.7 95.3 95.5 95.2

AIL 1.179 0.866 1.098 1.090 1.202 0.933 1.136 1.141

β̂ 0.453 0.455 0.435 0.463 0.423 0.427 0.374 0.922
0.75 CP 94.3 94.8 95.6 96.2 93.2 93.8 96.7 97.2

AIL 1.508 1.281 1.444 1.391 1.732 1.463 1.540 1.995

over this region the curves are almost parallel (see Figure 2.2). In the second (CASE

II), we took k = 1 with t1 = 0.4; for this case, the model for the occupancy probability

holds exactly.

Simulations were conducted using B = 2000 bootstrap samples and a sample of

size n = 300. Point estimates of βbest were obtained based on the three methods

of Section 2.2.2. Confidence intervals for the AJ and the Cox estimators were ob-

tained from the bootstrap, whereas the sandwich estimator was used for the pseudo

observation approach. The procedure is heavily computational.
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Table 2.2 displays simulation results for CASE I with k = 4 time points for which

βbest = 0.454. The table displays the estimate of βbest, followed by the estimated

coverage probability and the estimated average length of the interval with α denoting

the fraction of censoring. In the tables, PO-Tr represents the pseudo observation

approach with truncation whereas PO represents the same without truncation as

discussed in Section 2.2.2, and AJ and Cox denote the methods based on Aalen-

Johansen estimators and the Cox model, respectively.

For the case of no censoring (α = 0), all four methods have good coverage prop-

erties although the PO estimators show some small bias as well as larger intervals.

The PO method without truncation encounters difficulty with high (75%) censoring,

where for around 3% of the time, the estimating equations (2.9) and (2.10) in Section

2.2.2 admit no solution in the parameter space. This fraction goes up with smaller

sample sizes (about 12% for n = 100) or with higher censoring. This problem be-

comes more serious in the tail region (t > 0.5) owing to the censoring. To get around

this, we left such samples out of the calculation and also considered CASE I (k = 4)

with early time points for which the untruncated PO method rarely fails, at least for

the lower censoring rates. When the censoring is allowed to depend on Z, the PO

methods show substantial bias and break down rather quickly. The approach based

on the Cox model does not suffer this problem and works well in all cases considered.

Finally, Table 2.3 displays simulation results for CASE II (k = 1) with t1 = 0.4.

As noted earlier, this model is consistent with both the Cox model and the logistic

model for P12(t;Z), thereby providing a common footing for comparison. The value

of βbest is about -0.002 reflecting the fact that t1 = 0.4 is very close to the crossing

point of the probability curves in Figure 2.2. Although the coverage probabilities for
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Table 2.3: Estimates of βbest, coverage probabilities (CP) of nominal 95% interval and average in-
terval length (AIL) for the illness-death model when n = 300 under CASE II (k = 1).
The true βbest is -0.002.

No censoring
AJ Cox PO-Tr PO

β̂ 0.005 -0.001 0.005 0.012
CP 94.4 95.5 91.4 95.1
AIL 1.123 0.716 0.756 1.015

λ1C = λ2C = λ

γ1C = γ2C = 0 γ1C = log 5, γ2C = log 2
α AJ Cox PO-Tr PO AJ Cox PO-Tr PO

β̂ -0.001 -0.011 0.138 -0.002 0.012 0.002 -0.202 0.042
0.25 CP 95.3 95.0 90.6 95.0 94.5 94.7 86.9 96.8

AIL 1.273 0.797 0.748 1.153 1.329 0.833 0.696 1.138

β̂ -0.141 0.007 -0.210 -0.018 0.017 0.004 -0.189 0.052
0.5 CP 96.0 94.9 80.9 95.4 91.9 95.6 82.9 97.7

AIL 1.454 0.952 0.756 1.449 1.849 1.050 0.650 1.378

β̂ -0.014 0.028 -0.341 -0.051 0.036 -0.007 -0.241 -0.006
0.75 CP 94.4 92.2 68.4 98.3 93.6 93.8 67.5 99.4

AIL 2.743 1.381 0.860 13.610 2.782 1.575 0.592 2.049

λ1C = λ, λ2C = 0.5

γ1C = γ2C = 0 γ1C = log 5, γ2C = log 2
α AJ Cox PO-Tr PO AJ Cox PO-Tr PO

β̂ -0.011 -0.004 0.190 0.001 -0.009 -0.006 -0.174 0.076
0.25 CP 92.0 95.3 85.3 95.5 95.6 94.9 83.1 95.7

AIL 1.281 0.794 0.752 1.145 1.360 0.814 0.712 1.136

β̂ -0.139 0.003 -0.209 0.025 -0.145 -0.012 -0.194 0.065
0.5 CP 93.0 96.2 79.1 95.9 92.2 95.3 74.9 97.3

AIL 1.373 0.974 0.692 1.445 1.601 1.054 0.656 1.380

β̂ -0.260 0.017 -0.225 0.015 -0.208 -0.039 -0.252 -0.126
0.75 CP 92.1 94.7 71.1 97.7 93.1 94.8 68.2 99.1

AIL 2.177 1.444 0.644 2.669 2.227 1.642 0.576 2.108
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all the methods are reasonable, the Cox method yields the shortest intervals. Again,

the PO methods break down as the degree of censoring increases, and they exhibit

bias when the censoring is allowed to depend on Z. In all the scenarios, the PO

method without truncation outperforms the method with truncation incorporated.

For CASE II, it is interesting to look at the efficiency of the PO estimator relative to

the Cox estimators by considering the ratio of average interval widths. From Table

2.3 we see that this ranges from 65% to 78%. Also, it may be useful to consider a

robust measure of interval width like the median to discount extreme values (as in

the case λ1C = λ2C = λ, γ1C = γ2C = 0.0, α = 0.75).

Theoretical results behind the numbers in Tables 2.2 and 2.3 are limited. Our

primary objective was to investigate how the pattern of censoring may affect the

performance of the PO method. We do however, pursue some theoretical insights

into the PO method for a simple example in Section 2.5.

2.4 An illustration

In the recent past, a discussion group was formed to assess the use of pseudo

observations for estimating mean residual life of subjects in the Scientific Registry

of Transplant Recipients (SRTR) and this article is driven by certain issues raised

in the group. In relation to this, we consider an illustration of the above estimation

methods on data from the SRTR. Our data include information on 8798 individuals

who had been waitlisted for a kidney transplant in the year 1987. The data include

the date the individual was waitlisted, the date of transplant (if transplant received),

the date of removal from the waitlist (either due to transplant, death or other causes)

and the date of death if the individual had died. We chose January 1st 1989 as the

time to end of follow-up and so all events occurring after this date were considered
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censored. Individuals removed from the waitlist for reasons other than transplant

were also considered censored on the waitlist. Of the 8798 individuals waitlisted,

3872 received a kidney transplant, 543 died on the waitlist. Of the 3872 individuals

who received a transplant, 252 individuals died. For each individual, age at listing

was noted among various other measurements.

The progressive illness-death model (Section 2.3) was employed, with being on

the waitlist corresponding to state 1, transplanted and alive corresponding to state

2 and state 3 corresponding to death. The probability of interest is the probability

of being transplanted and alive at any time. We carried out the analysis using age

as the covariate. Age was coded as binary, with 0 indicating younger than 18 years

and 1 indicating at least 18 years. We fitted the GLM (2.5) with k > 1 and k = 1 to

the data. For fitting the Cox model the following forms were assumed for the three

transition intensities.

λ12(t;Z) = λ012(t) exp{γ12Z}

λ13(t;Z) = λ013(t) exp{γ13Z}

λ23(t;Z) = λ023(t) exp{γ23Z}

Table 2.4: Table showing parameter estimates and confidence intervals with age category as the
covariate.

k = 15 k = 1
AJ Cox PO AJ Cox PO

β̂best -0.35 -0.29 -0.31 -0.29 -0.28 -0.22
CI (-0.52, -0.14) (-0.45, -0.12) (-0.49, -0.12) (-0.49, -0.06) (-0.45, -0.12) (-0.43, -0.01)

Time was measured in years and we fit model (2.5) using k = 15 points as {i/10 :

i = 1, 2, . . . , 15} and k = 1 with t1 = 0.8. Table 2.4 shows the point and interval

estimates for βbest from the three methods AJ, Cox and PO using age category as
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the covariate. The Cox model yields the shortest intervals, particularly for k = 1,

when all three methods are comparable. Also, for k = 1, the point estimates look

similar with the PO estimator in slight disagreement. For k = 15, the AJ and PO

estimators are close.

The analysis shows that the probability of getting a transplant and remaining alive

increases with time on the waitlist. Figure 2.3 shows probability estimates from the

AJ and the Cox approaches. The estimated curves demonstrate that younger indi-

viduals are more likely to get transplanted than adult individuals. The estimates

from the AJ and Cox methods are close for Z = 1 (Age ≥ 18) and in slight disagree-

ment for Z = 0 (Age < 18). It is useful to remember here that the risk-adjustment

may not be adequate and that this discussion is merely for illustration.
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Figure 2.3: Nonparametric (AJ) and Cox estimate of the probability of being transplanted and
alive, by age group.
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2.5 A simple and instructive example

It is useful to investigate the performance of the PO method when the level of

censoring is covariate-dependent. It is difficult, however, to establish general results.

In this section, we consider a simple survival model with independent right censoring

and a binary covariate as before. We derive expressions for the pseudo observations,

obtain an exact expression for the parameter estimates in (2.11) and show that these

estimates can be inconsistent depending on the pattern of censoring.

Let {(Xi,∆i, Zi)}ni=1 be the observed data with Xi = min(Ti, Ci) and ∆i = I(Ti ≤

Ci) with Ti and Ci being the failure and censoring times, respectively. Assume that

the censoring times Ci are such that P (Ci = C) = 1 for every i, where C ≥ 0 is a

known constant.

Now let Zi be binary with P (Zi = 1) = π. Let nj be the number of individuals

with Zi = j, j = 0, 1. Assume also, that a fraction αj of individuals are randomly

chosen for censoring in group Zi = j. We consider a single time point t1 (k = 1)

such that t1 > C.

For j = 0, 1, let u1j be the number observed to fail before C, Rj be the number

censored at C and u2j be the number of observed failures between C and t1. Also,

let n = n0 + n1, u1 = u10 + u11, R = R0 + R1 and u2 = u20 + u21 reflect the

overall numbers. The pseudo observations θ̂i, based on the Kaplan-Meier estimator

of θ = S(t1) = P (Ti > t1), are

θ̂i =



0 i ≤ u1,

1− u2

n−R u1 < i ≤ u1 +R,

− R(n−R−u2)
(n−R)(n−R−1)

R < i ≤ R + u2,

n(n−R−u2)
n−R − (n−1)(n−R−u2−1)

n−R−1
R + u2 < i ≤ n

where we have, without loss of generality, assumed that the observations are
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in ascending order of Xi. On solving the estimating equations (2.9) and (2.10)

in Section 2.2.2, the point estimator of p0 = P (Ti > t1|Zi = 0) based on θ̂i is

[
∑n

i=1 θ̂i(1− Zi)]/[
∑n

i=1(1− Zi)]. After some simplification, we obtain,

n0p̂0 = R0(1−
u2

n− u1 −R
)− u20

n− u1 − 1

n− u1 −R− 1

+(n0 −R0 − u10)

[
1 +

u2R

(n− u1 −R)(n− u1 −R− 1)

]
It is interesting to investigate the probability limit of p̂0 as n→∞. We know that

Rj ∼ Bin(kj, λj), where λj = Sj(C) = P (T > C|Z = j) and kj = αjnj. Also, n1 ∼

Bin (n, π). Furthermore, u1j ∼ Bin(nj, 1−λj) and u2j ∼ Bin(nj, (1−αj)(λj−pj)),

where pj = Pr(T > t1|Z = j). Under the above distributional assumptions, we

obtain, after some simplification,

p̂0
p→ λ0 −

(1− α0)(λ0 − p0) [(1− π)λ0 + πλ1]

(1− π)λ0(1− α0) + πλ1(1− α1)

+πλ0λ1(α1 − α0)
[(1− π)(1− α0)(λ0 − p0) + π(1− α1)(λ1 − p1)]

[(1− π)λ0(1− α0) + πλ1(1− α1)]
2

From the above expression, it is easy to see that when α0 = α1, then the limit

is p0. Other than this case, the limit is typically different from p0 and therefore

p̂0 is inconsistent. The calculations and results for p1 = P (Ti > t1|Zi = 1) are

similar. In order to see this in practice, we conducted a simulation study with

n = 5000, t1 = 0.5, C = 0.3 and 10,000 replications. The failure time distribution

was taken as exponential with rate 2j, j = 0, 1. We also chose π = P (Z = 1) =

1− P (Z = 0) = 0.5.

Table 2.5 shows coverage probabilities for confidence intervals based on pseudo

observations under different choices of α0 and α1. The objective is estimation of

β = logit p1 − logit p0. Observe that when α0 is large and α1 is small, there is more

bias in p̂0 than p̂1 and so this effect is carried over to β̂. The effect is opposite when α0
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Table 2.5: Parameter estimates, average interval lengths and coverage probability (CP) for the sim-
ple model considered at t1 = 0.5 when n = 5000 and C = 0.3. Target coverage is 95%.

Pseudo observations Kaplan-Meier Efficiency

α0 α1 α p̂0 p̂1 β̂ CP p̂KM
0 p̂KM

1 β̂KM CPKM MSEKM

MSEP O

0.10 0.60 0.20 0.615 0.393 -0.902 81 0.606 0.368 -0.975 95 0.55
0.10 0.70 0.23 0.615 0.403 -0.862 60 0.606 0.368 -0.972 95 0.35
0.10 0.80 0.26 0.614 0.415 -0.811 27 0.607 0.367 -0.978 95 0.24

0.00 0.00 0.00 0.607 0.368 -0.975 96 0.607 0.368 -0.975 96 1.00
0.40 0.40 0.26 0.607 0.368 -0.975 95 0.607 0.368 -0.975 95 1.00
0.60 0.60 0.39 0.606 0.368 -0.976 95 0.606 0.368 -0.976 95 1.00
0.80 0.80 0.52 0.607 0.368 -0.974 95 0.607 0.368 -0.974 95 1.00

0.60 0.10 0.25 0.582 0.353 -0.937 93 0.607 0.368 -0.975 95 0.83
0.70 0.10 0.29 0.572 0.352 -0.898 83 0.606 0.368 -0.975 95 0.53
0.80 0.10 0.32 0.556 0.353 -0.831 52 0.606 0.368 -0.974 95 0.27

True values p0 = 0.606, p1 = 0.368, βbest = −0.974.

and α1 are switched. When α0 and α1 are close (α0 ≈ α1), then the bias is small (from

the limit above) in both directions and so the effects get somewhat compensated in β̂.

Also figuring in the same table are estimates and confidence intervals based on the

usual Kaplan-Meier estimator. Estimates for p0, p1 are obtained after stratifying

for Z = 0, 1 and confidence intervals are based on standard errors obtained from

Greenwood’s formula. This procedure performs quite well, for any censoring plan,

as expected. Table 2.5 also shows the actual fraction censored overall which is α =

(1 − π)α0e
−C + πα1e

−2C , from where it is seen that the distribution of censoring

across the covariate groups is more crucial than the overall percentage of censoring.

2.6 Discussion

The results from the simulation studies demonstrate that bootstrap methods do

quite well, in terms of coverage probabilities, for estimating βbest in the examples

considered. Particularly when applied to the Cox model estimates, both the coverage

probabilities and the average interval lengths seem to be very satisfactory. The

estimation procedure based on pseudo observations, however, presents difficulty in

implementation and yields wider intervals. In the first comparison with multiple time
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points (k > 1), there is perhaps an advantage to the Cox model based procedures

which are being applied to a correct model. But essentially the same results are seen

in the much simpler comparison with k = 1 where both the Cox model and the logistic

model for P12(t;Z) are true. The results in Section 2.5 show that estimates from the

PO method may not be consistent when censoring depends on the covariate. At first

acquaintance, the PO method as proposed by Andersen et al. (2003) is attractive

for its simplicity in implementation. However, the method should be used with great

caution and particularly with censored data where modification is required if it is to

give satisfactory results.

In the following, we discuss certain issues that naturally arise in the use of pseudo

observations.

2.6.1 Range of the pseudo observations

It is often of interest, to study parameters that are subject to a range restriction.

For example, if the parameter of interest is a probability, the parameter space is

a subset of [0, 1]. However, the pseudo observations, as defined in (2.1), need not

lie in this set. This phenomenon often occurs with censored data, but it can also

occur with uncensored data at least in the case of the multi-state model considered

here. This would not happen if θ̂ and θ̂(−i) were simple averages but the Aalen-

Johansen estimator is not a simple average even in the uncensored case. See, for

example, Aalen and Johansen (1978) and discussions on embeddability in Kalbfleisch

and Lawless (1985).

The fact that the nonparametric estimators are not generally simple averages is

a recurring problem in the implementation of the PO method as is discussed further

below. It is seen from simulation studies that truncation of the pseudo observations

introduces a bias and is not the right thing to do. However, a modification using
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estimating equations also encounters difficulty with high censoring where for some

samples, the ratios in (2.11) may be negative, so β̂ cannot be computed. One pos-

sible remedy might be reparametrization where one considers pseudo observations

corresponding to logit{P1h(t)}, or any other suitable transformation that eliminates

a range restriction. We have begun to look at this alternative.

2.6.2 Issues with censored data

In the context of failure models, it is natural to investigate the performance of

pseudo observations for censored data and it is clear from Tables 2.2 and 2.3 and

Section 2.5 that pseudo observations do not give correct answers when covariate-

dependent censoring is introduced. The PO method treats the pseudo observations,

whether corresponding to a censored or uncensored event, the same. In Section 2.5,

an exact computation shows that the PO method is inconsistent when the censoring

is not balanced in the covariate groups.

2.6.3 Modeling issues

It may not be feasible or realistic to formulate meaningful simple models for the

occupancy probabilities of a multi-state model in terms of the covariates. In most

models hitherto considered, these probabilities are complicated nonlinear functions

of the covariates and attempts to construct a linear relationship could lead to very

crude approximations. One could formulate an inverse problem of generating the

data subject to the model being true (see Andrei and Murray (2007)) but this will

be impossible to do for a multi-state model. This nonlinearity may partially explain

why the PO method is not giving very satisfactory results, even in the complete data

case. Methods using pseudo observations would work best on problems involving

exact or nearly linear relationships.
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An application of pseudo observations for modeling restricted mean lifetimes is

suggested in Andersen et al. (2004), where a GLM is specified for the area under the

survival curve, using a log link, over a specified interval, [0, τ ], say. In this article,

the expression for βbest in (2.6) is approximately proportional to the difference in the

areas under the curves P12(t;Z = 1) and P12(t;Z = 0) on the logit scale, computed

using equi-spaced knots. This is similar to analyzing mean lifetimes. Simulation

results in Andersen et al. (2004) are limited with regard to censoring, and one

should expect to see similar results with heavy or covariate-dependent censoring as

in the cases considered here.

The case k > 1 in (2.5), even with binary Z, is only approximate and the accuracy

of the approximation would depend on the choice of the time points and the shape

of the probability curves (see, for example, Figure 2.2). Klein and Andersen (2005)

have suggested (2.5) with k > 1 and different link functions but simulation studies

show bias in estimates and larger mean-squared-error. Our simulation and theoretical

study based on (2.8) is similar to a hypothesis testing problem for comparing two

survival curves at a fixed point in time as discussed in Klein et al. (2007). Simulation

results in that article show some improvement in coverage probabilities with the PO

method but, even in this case, results are not satisfactory, particularly with censoring.

Finally, note that pseudo observations arise from the jackknife. Previous work

in this area (see Hinkley (1977), Simonoff and Tsai (1986), Wu (1986) among many

others) discusses applications where the pseudo observations are generated from the

model whose parameters are to be estimated. Put simply, if estimation of a regres-

sion parameter is of interest, the regression model is re-fit each time an observation

is left out and pseudo observations are defined based on this estimated regression

parameter. In the applications discussed in this article, however, the pseudo obser-
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vations are defined prior to fitting the regression model, substituted as the response

in the regression and the regression parameter estimated. So it is not clear how one

may appeal to results on the jackknife based on earlier work and more research is

required in this area.
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CHAPTER III

A CUSUM to monitor outcomes of multi-center studies

3.1 Introduction

In multi-center projects involving medical interventions, it is important to moni-

tor and provide timely outcome information to participating institutions or facilities.

Such a monitoring activity can be useful in providing warning signals to the insti-

tutions and also in coordination of the project. Standard statistical techniques like

average mortality, risk-adjusted mortality and multivariate modeling can be used to

identify performance changes at a national level, but may be insensitive to smaller

persistent changes at the facility level. The CUmulative SUM (CUSUM) procedure,

introduced in Page (1954) and later discussed by Van Dobben de Bruyn (1968) and

many others, is a graphical procedure for continuous sequential monitoring. It was

first proposed as a technique for industrial statistical process control and its use in

the context of health-care monitoring has been proposed by Novick et al. (2001),

Poloniecki et al. (1998) and Woodall et al. (2006) among several others. The op-

timality of the CUSUM procedure in minimizing the worst possible detection delay

has been discussed by Lorden (1971) and Moustakides (2004) among several others.

In the implementation of a CUSUM or other monitoring procedures, it is impor-

tant to use risk-adjusted methods that can help account for institutional differences

29
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as can arise simply due to differences in the mix of patients. Recently, Axelrod et al.

(2006) and Steiner et al. (2001) have suggested the use of risk-adjusted CUSUM

charts to monitor facility performance with regard to surgical interventions. In this

chapter and in Axelrod et al. (2006), the methods are proposed in the context of

assessing transplantation outcomes at the facility level. Although the methods apply

in other contexts, we will use the transplant example in what follows.

In the above cited health-care applications of the CUSUM, the unit of analysis is

a success or failure outcome associated with the transplant. Thus, each transplant

is followed for a pre-specified period of time to determine whether or not a Bernoulli

outcome occurs. In Axelrod et al. (2006), for example, one-year post-transplant

survival status was the outcome utilized. A scoring approach based on the likelihood

ratio is then used to accumulate these outcomes in a CUSUM that can be monitored

for each institution. One consequence of this approach is that a death (or survival)

affects the CUSUM only one year after the occurrence of the transplant. Thus,

although these approaches perform well, this built-in one year lag in assessment is

undesirable; a substantially more efficient CUSUM could potentially be obtained by

updating the event status continuously in time. It is worth mentioning here that if

the data are reported at a constant lag of one year, then the discrete time approach

in Axelrod et al. (2006) may be more appropriate.

In this chapter, we present a risk-adjusted CUSUM procedure that is based on the

Cox model and defined in continuous time. We shall assume, however, that reports

are immediate and there is no delay involved between the occurrence of the outcome

and its reporting. Simulations demonstrate that this approach tends to provide a

much earlier detection of a deteriorating situation than the discrete time methods

described above.
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The chapter is organized as follows. Section 3.2 lays out the assumptions and

framework for defining the CUSUM. Sections 3.3 and 3.4 discuss the proposed con-

tinuous CUSUM and the discrete CUSUM in Axelrod et al. (2006), respectively.

Section 3.5 and 3.6 discuss several simulation studies. Section 3.7 demonstrates

the CUSUM procedures on kidney transplant data from the Scientific Registry of

Transplant Recipients (SRTR). The chapter concludes with a short discussion in

Section 3.8.

3.2 Notation and assumptions

Consider a specific institution or facility and suppose that transplants occur over

time beginning at some time origin denoted by t = 0. Let the successive times of

transplant be S1, S2, . . . , for patients numbered 1, 2, . . . , and let NA(t) denote the

number of transplants in (0, t]. We will later model {NA(t), t ≥ 0} as a Poisson

process, but for the moment we work conditionally on the times. In what follows,

we measure time in years.

Let Xi denote the time from transplant to graft failure or death, and assume

that Xi and Si are independent given covariates Zi that are measured at the time

of transplant. The chronological time of failure is Ti = Si + Xi. We suppose that,

conditional on the covariates Zi, there is a known null distribution of interest for

Xi which is defined by the hazard function αi(x). In the applications we consider,

this distribution is estimated from the experience of all transplant centers combined.

We have used a Cox regression model based on the measured covariates Zi, which

means αi(x) = λ0(x)e
ZT

i β for x > 0. Thus, αi(x) represents a national average failure

rate for an individual with covariate Zi. Other regression models could, of course,

be used. In what follows, we assume that the estimates obtained for αi are without
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error; in fact, the estimation errors will be very small when the estimates arise from

the very large data set of all transplant recipients nationwide. In other applications,

one may want to take account of the uncertainty in the estimation of αi.

Let ÑD
i (t) = I(Ti ≤ t) be the failure time counting process for the i-th trans-

plant where t is chronological time. We also let Yi(t) be an at-risk indicator,

which determines whether or not the i-th transplant could give rise to a qualify-

ing event. By a qualifying event, we shall mean a transplant failure that occurs

within one year from the date of transplant. Since time is in years, this means,

Yi(t) = I(Si < t ≤ (Si + 1) ∧ Ti). We also define ND
i (t) =

∫ t
0
Yi(u)dÑ

D
i (u) for

t > 0. Note that ND
i (t) is 0 for all t unless a transplant failure occurs within

one year of the transplant date, in which case it jumps to 1 at the (chronolog-

ical) time of failure. We define the history (or filtration) for ND
i (t) as Ft− =

σ{NA(u), ND
i (u), Yi(u), Zi, N

A(t), i = 1, 2, . . . , nt = NA(t) : 0 ≤ u < t}. If the

hypothesized null rate holds,

E(dND
i (t)|Ft−) = dΛi(t)

= Yi(t)αi(t− Si)dt(3.1)

Clearly Ft− specifies Si for all i ≤ nt.

For the institution under study, let ND(t) =
∑

i≥1N
D
i (t) be the observed number

of qualifying transplant failures that have occurred up to time t.

3.3 A CUSUM in continuous time

As is usual, the CUSUM we define is based on the Sequential Probability Ratio

Test (SPRT) introduced by Wald (1947). We consider the process ND(t), t > 0 as

the response so that the likelihood contribution in any small interval (t, t+ dt] takes
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into account the information about all transplants at risk of a qualifying failure at

time t.

3.3.1 Definition

As above, suppose we have risk-adjusted population values for the hazard αi(t)

for each transplant i at risk of a qualifying failure at chronological time t > 0. For

a selected constant θ > 0, we consider a likelihood ratio statistic corresponding to

a test of θ = 0 versus θ > 0. Thus the null intensity function for the ith subject is

E[dND
i (t)|Ft−] = dΛi(t) as in (3.1). The likelihood ratio, based on data dND

i (t)|Ft−,

with intensity eθdΛi(t) versus dΛi(t) is∏
i≥1

[
eθdN

D
i (t)[1− eθdΛi(t)]

1−dND
i (t)

[1− dΛi(t)]1−dN
D
i (t)

]
where we have used (3.1) and a binomial likelihood for the differential increment

dND
i (t). By a repeated conditioning argument, the full likelihood upto time t is a

limit, in the product integral sense, of the likelihoods in (t, t + dt]. We therefore

obtain, after taking the logarithm, an expression for the CUSUM increment at time

t as,

dUt = θdND(t)− (eθ − 1)dA(t)(3.2)

where we define dA(t) =
∑

i≥1 dΛi(t). If a two-sided alternative was of interest,

we would compute the CUSUM as Ut =
∫ t

0
dUs and strong trends, either up or

down, would provide a signal. In the applications of interest here, however, only

the one-sided alternative in which the CUSUM trends upward is of concern. This is

a continuous time extension of the usual discrete time CUSUM introduced in Page

(1954) and utilized in Axelrod et al. (2006) and Steiner et al. (2001), for example.

The CUSUM suitable for the one-sided alternative is {Gt} where G0 = 0 and

Gt+dt = max(0, Gt + dUt), for t > 0.
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It can be seen that this is equivalent to

Gt = Ut − min
0≤s≤t

Us, t > 0

where Ut is

Ut = θND(t)− (eθ − 1)

∫ t

0

dA(u), t > 0(3.3)

It is easy to see that Ut has positive jumps only when there is a qualifying failure,

otherwise it trends downwards. Note also that min0≤s≤t Us is non-increasing and

changes in value only when Gt = 0. It is of some interest to note that (3.2) is exactly

equal to the log-likelihood ratio increment for a testing problem in which ND(t) is a

Poisson process with mean function A(t) =
∫ t

0
dA(u).

To implement the CUSUM procedure, we monitor Gt in continuous time until it

crosses a fixed upper barrier at h > 0, at which time a signal is given. The value h

is chosen so as to give some suitable properties to the monitoring scheme. Let the

time until the barrier at h is reached be

τh = inf{t > 0 : Gt ≥ h}.

In the CUSUM literature, E(τh) is referred to as the Average Run Length (ARL)

and plays an important role in designing parameter values for the CUSUM. In the

next section, we shall discuss a theoretical approximation to E(τh) under certain

assumptions about the arrival process NA(t).

The above CUSUM has been obtained by considering a sequential probability

ratio test that the intensity for dND
i (t), conditional on past history, is eθdΛi(t) versus

dΛi(t). In the next subsection, we consider the properties of this CUSUM under the

assumption that the true rate for the facility under study is

E(dND
i (t)|Ft−) = eµdΛi(t),(3.4)
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which means that the facility of interest has a rate of failure that is eµ times the

national or population mean rate.

3.3.2 An approximation for Ut

For the purpose of developing an approximation, we start with (3.3). It is natural

to assume that new transplants occur according to a homogeneous Poisson process

with rate ψ say, and in order to study the process in equilibrium, we suppose that

the arrivals begin at time t = −1. This is sufficient for equilibrium since only failures

within one year of transplant are viewed as qualifying events. Again we denote the

transplant times as S1, S2, . . . , but since we begin at time t = −1, Si+1 has a Gamma

distribution with scale ψ and shape i. We assume that the sequence of covariates,

Z1, Z2, . . . , are independent and identically distributed (iid) and that the hazard for

Xi conditional on Zi is eµαi(x) for x > 0 which leads to (3.4). We find that

E[dA(u)] = E

[∑
i≥1

Yi(u)αi(u− Si)du

]
= e−µ

∑
i≥1

E [I(u ≤ Si + 1 < u+ 1, Xi ≥ u+ 1− (Si + 1))

×eµαi(u+ 1− (Si + 1))] du

= e−µ
∑
i≥1

∫ u+1

u

E{fµ(u+ 1− x|Zi)}ψ
e−ψx[ψx]i−1

(i− 1)!
dx du

= e−µ
∫ u+1

u

E{fµ(u+ 1− x|Zi)}ψ
∑
i≥1

e−ψx[ψx]i−1

(i− 1)!
dx du

= e−µψE[Fµ(1|Zi)] du(3.5)

Here fµ(·|Zi), Fµ(·|Zi) are the pdf and cdf of Xi|Zi, respectively, and the final expec-

tation is with respect to the marginal distribution of Zi at the facility under study.

Thus E[dA(u)] = γ du, where γ = e−µψE[Fµ(1|Zi)] > 0 is a constant.

On the other hand, it is easily seen that ND(t) is a homogeneous Poisson process
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with mean ψE[Fµ(1|Zi)]. In summary, we have the following result,

Ut = θND(t)− (eθ − 1)γt+ Et

where ND(t), t > 0 is a homogeneous Poisson process with rate eµγ = ψE[Fµ(1|Zi)]

and Et = (eθ − 1)[γt − A(t)] is a zero-mean process. In order to get a theoretical

approximation to E(τh) in the next section, we make the approximation Et = 0

to obtain theoretical average run lengths and later assess these approximations in

simulations.

3.3.3 An approximation to the average run length

The CUSUM process Gt may be thought of as the process Ut with barriers at 0

and h > 0. The barrier at h is absorbing, but the barrier at 0 needs special attention

since we do not terminate the CUSUM when it reaches 0. When Gt becomes 0 it

stays at 0 until Ut registers a jump of size θ, at which time Gt jumps up by θ as well.

Since Ut has stationary increments, the process Gt can be thought of as undergoing

a renewal, each time this jump from 0 to θ occurs.

Suppose that U0 = G0 = 0, and let

F0 = inf{t > 0 : Gt = θ}.(3.6)

F0 is the time of the first event in the Poisson process ND(t) and so has an Ex-

ponential distribution with rate eµγ. Thus, we can think of the sequence of events

[Gt = θ,Gt− = 0] as constituting a renewal process delayed by F0. Following each

renewal there are two possibilities: either there is another return to zero (and a

subsequent renewal) or the process terminates by crossing the barrier h > 0.

First, consider the process Ut with initial value U0 = θ and with absorbing barriers

at 0 and h. Let pR and (1 − pR) be the respective probabilities of absorption at h
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and 0. Further, let

T (θ) = inf{t > 0 : Ut /∈ (0, h), U0 = θ}(3.7)

be the time to absorption.

In the process Gt, let J represent the number of renewals (i.e., occurrences of

[Gt = θ,Gt− = 0]) including the first so that J ≥ 1 and note that J is a stopping

time. It is easy to see that

P (J = j) = (1− pR)j−1pR, j ≥ 1.

Following the i-th renewal, the waiting time τh for absorption at h is increased by

Wi = T
(θ)
i + (1 − ∆i)Ri where ∆i is a binary indicator of absorption at h versus a

return to 0, Ri represents the time from recurrence of Gt = 0 to the next jump to

level θ, and T
(θ)
i is the time until the process exceeds h or returns to 0, whichever

occurs first. It is now easy to see that E(Wi) = E(T (θ)) + (1 − pR)E(F0) since

E(Ri) = E(F0). Thus, τh = F0 +
∑J

i=1Wi and, since J is a stopping time, an

application of Wald’s identity gives

E(τh) = E(F0) + E(J)[E(T (θ)) + (1− pR)E(F0)]

= E(F0) +
E(T (θ)) + (1− pR)E(F0)

pR

=
E(T (θ)) + E(F0)

pR
(3.8)

Since E(F0) = e−µ/γ, it only remains to find pR and E(T (θ)).

Consider again the process {Ut} with U0 = 0 and with absorbing barriers at −θ

and h − θ. Let f ∗(ω) = E(e−ωUt) be the moment-generating function of Ut in the

unrestricted process, so that

f ∗(ω) = exp{γt[ω(eθ − 1) + eµ(e−ωθ − 1)]}.
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Let ω0 6= 0 satisfy f ∗(ω0) = 1 which, it should be noted, does not depend on t. From

Wald’s identity for restricted random walks in continuous time (see, for example,

Cox and Miller (1965)), we have, for any ω,

E exp{−ωUT (θ) − T (θ) log f ∗(ω)} = 1

and ignoring overshoot across the boundaries, this gives

e−ω0(h−θ)pR + (1− pR)eω0θ ≈ 1

so that

pR ≈
1− e−ω0θ

1− e−ω0h

Let η dt = E(dUt), which may be interpreted as the drift parameter for this walk. It

is easy to see that

η = (θeµ − eθ + 1)γ.(3.9)

If η 6= 0, then Wald’s identity gives, η E(T (θ)) = E(UT (θ)) where, again ignoring

overshoot,

E(UT (θ)) ≈ (h− θ)pR + (−θ)(1− pR) = hpR − θ, η 6= 0.

When |η| → 0, then |ω0| → 0 and pR → θ/h. If σ2dt = Var(dUt), then (with η = 0)

Wald’s identity gives

E(U2
T (θ)) = σ2E(T (θ))

and we have E(U2
T (θ)) ≈ (h− θ)2pR + θ2(1− pR). Noting that σ2 = θ2γeµ and after

some simplification, we obtain the approximations

E(τh) ≈


h
η
− e−µ(eθ−1)

η

(
1−e−ω0h

1−e−ω0θ

)
, η 6= 0

h2e−µ

θ2γ
, η = 0.

(3.10)
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It can be shown that the limit of E(τh)|η 6=0 as η → 0 is E(τh)|η=0 so that E(τh) is

continuous in η. The arguments are summarized in Appendix B.

3.4 A CUSUM in discrete time

In this section, we consider CUSUM procedures in discrete time that include those

discussed in Axelrod et al. (2006) and Steiner et al. (2001). These CUSUMs are

also based on the SPRT, but are defined with reference to the transplant or arrival

times S = {0 = S0, S1, S2, . . . , } of the process NA(t). Each transplant gives rise

to a binary experiment resulting in a success or a failure depending on whether or

not the transplant survives for a period of one year. We define the process on the

integers where i corresponds to the i-th transplant, i = 1, 2, . . .. In defining the

continuous time CUSUM in Section 3.3, we considered a likelihood ratio statistic

based on a hypothesized relative risk or hazard ratio, that related the failure rates of

the institution of interest to those of the population as a whole. A similar approach

can be used in discrete time where we consider a formulation using an odds ratios

as discussed in Axelrod et al. (2006) and Steiner et al. (2001) or a discrete relative

risk.

We use a notation similar to that in Section 3.2 and define

ξi = I(Xi ≤ 1), i = 1, 2, . . .

Let πi0 = E(ξi = 1|Zi) be the population probability of failure in one year at the

given covariate Zi, and suppose that these are known or accurately estimated from a

large sample. As before, we assume that the covariates Z1, Z2, . . . in the institution

of interest are iid.
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3.4.1 Testing the odds ratio

First, we consider an odds ratio model

logit πi1 = logit πi0 + logOR(3.11)

in which the odds ratio OR measures the difference between the institution of interest

and the overall national rates. Consider a likelihood ratio test of H0 : OR = 1 versus

H1 : OR = ORA > 1. The contribution to the log-likelihood ratio from ξi is,

gi = log

[(
πi1
πi0

)ξi (1− πi1
1− πi0

)1−ξi
]

= ξi(ai + bi)− bi

where ai = log(ORA)− log(1− πi0 + πi0ORA) and bi = log(1− πi0 + πi0ORA). The

corresponding CUSUM is defined by G0 = 0 and Gi+1 = max(0, Gi+gi), i = 1, 2, . . ..

For h chosen to obtain desirable properties, the procedure generates a signal at ’time’

κh where

κh = min{k ≥ 1 : Gk ≥ h}.

Here, the ARL is defined as E(κh) which is the average number of transplants carried

out and assessed before a signal is obtained.

We examine properties of the CUSUM for the facility of interest under the as-

sumption that the true odds ratio is OR = eµ. For this case, we have independent

realizations of {ξi}i≥1 with mean pµ = E(ξi|OR = eµ).

Since ai + bi = log(ORA), gi has the same structure as the differential increment

dUt in (3.2) for the continuous time CUSUM. The Bernoulli variable ξi is the discrete

analog of dND(t) and log(ORA) plays the same role as the log relative risk θ in (3.2).

We find that ζ = E(gi) = E[ξi log(ORA) − bi] = pµ log(ORA) − E(bi). For deriving

a theoretical approximation, we will work with g̃i = ξi log(ORA) − E(bi), arguing

exactly as for the continuous case.
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3.4.2 Testing the relative risk

Consider now, the alternative discrete relative risk (RR) model

log πi1 = logRR + log πi0(3.12)

and a test of the hypothesis H0 : RR = 1 versus H1 : RR = RRA > 1. The

contribution from ξi to the log-likelihood ratio statistic is,

gi = log

[(
πi1
πi0

)ξi (1− πi1
1− πi0

)1−ξi
]

= ξi(ai + bi)− bi

where ai = a = log(RRA) and bi = log(1 − πi0) − log(1 − RRAπi0). Here again,

we consider independent realizations of {ξi}i≥1 under the assumption that the true

relative risk for the institution of interest is RR = eµ. We find that ζ = E(gi) =

E[(ai+bi)Fµ(1|Zi)−bi] with the expectation being taken with respect to the common

distribution of the Zi. Theoretical approximations are based on step sizes g̃i =

aξi + [1− ξi]E(bi).

3.4.3 Approximating the average run length

The process {Vk =
∑k

i=1 gi}k≥1 is a random walk and we impose barriers at 0 and

h > 0. At the i-th step, the walk makes a jump of gi = ξi(ai+bi)−bi = ξi(a+b)−b+ei.

Here a = E(ai), b = E(bi) are constants. For the purpose of deriving a theoretical

approximation to E(κh), we shall assume ei = 0 and compare this approximation in

simulations. For the CUSUM based on (3.11), ei = b− bi and has mean zero. Also,

h is an absorbing barrier and when Vk reaches 0, it stays at 0 for some time until a

qualifying failure is observed. We give an approximation to E(κh) by applying the

same technique as in Section 3.3.3.
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The moment-generating function of the step size gi is,

f ∗(ω) = pµe
−ωa + (1− pµ)e

ωb

where the right-hand side is obtained after taking an expectation with respect to Zi

and hence is free of i. We let ω0 6= 0 be such that f ∗(ω0) = 1. The mean step size is

ζ = E(gi) and we also let σ2
d = Var(gi). It is easy to see that ζ = pµ(a+ b)− b, and

σ2
d = (a+ b)2pµ(1− pµ). We define F d

0 as,

F d
0 = min{k ≥ 0 : ξk+1 = 1}

which is the waiting time to the first occurrence of ξi = 1 and therefore has a

Geometric distribution with success probability pµ. We define T (a) as,

T (a) = min{k ≥ 1 : Vk /∈ (0, h), V1 = a}

which is the time to absorption at either 0 or h, starting at a. Note that F d
0 , T

(a)

are the discrete analogs of (3.6) and (3.7) and a relationship similar to (3.8) holds

for E(κh), E(F d
0 ) and E(T (a)). This yields the following approximation,

E(κh) ≈


h
ζ
− b(1−pµ)

ζpµ

(
1−e−ω0h

1−e−ω0a

)
, ζ 6= 0

h2

ab
+ h

a
, ζ = 0

(3.13)

where, we have used pµ = b/(a+ b) and σ2
d = ab for ζ = 0. We define

τ dh = 1 +

κh∑
i=1

(Si − Si−1)

as the chronological time at which the discrete time CUSUM signals. Observe that

we add 1 to the expression to account for the inherent 1 year lag in the discrete

approach. This helps to compare the discrete and continuous time CUSUMs. Under
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the Poisson model, {Si − Si−1}i≥1 are iid Exponential random variables with mean

1/ψ and so,

E(τ dh) = 1 +
E(κh)

ψ

3.5 Simulation study

In the simulations, we considered a facility where transplants occurred according

to a homogeneous Poisson process at a rate of ψ = 100 transplants per year. We

supposed that the the post-transplant failure time distribution at the nationwide or

population level was Exponential with rate λ0 and chose a one-year failure probability

of

1− e−λ0 = 10%,(3.14)

in approximate agreement with the national data as summarized in the next section.

In assessing the procedures, we supposed that the post-transplant failure time Xi at

the specific facility under review had a hazard of eµλ0. We compared the performance

of the CUSUM procedures discussed above in terms of average run length (ARL),

and also assessed the accuracy of the approximations obtained.

In the continuous CUSUM of Section 3.3, we chose θ = log 2.0. Similarly, in

the discrete time CUSUMs defined in (3.11) and (3.12), we chose ORA = 2.0 and

RRA = 2.0, respectively, thereby ensuring that all the three CUSUM procedures are

testing similar hypotheses. By the design of the discrete time CUSUM, the outcome

(failure or success) of a transplant is not counted until a year is past from the time

of transplant. In reality, therefore, the CUSUM is evaluated and capable of sending

a signal at times {S1 + 1, S2 + 1, . . .}. To reflect this, 1 year was added to the

average run lengths based on the times {S1, S2, . . .}. Accordingly, the theoretical
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Figure 3.1: Realizations of the continuous CUSUM under intensities αi(·) and eθαi(·).

approximations in (3.13) were also increased by one.

Sample realizations of the continuous time CUSUM with µ = 0 and µ = θ in (3.4)

are shown in Figure 3.1.

In the simulations, all the CUSUMs were followed until a signal (i.e., a crossing

of the control limit, h > 0) was reached. The choice of the control limit for each

of the three CUSUMs was done in a way so as to ensure that all of them have

approximately the same ARL when µ = 0. While one may also use other criteria to

choose control limits for CUSUM charts, this particular criterion is essential in order

to make a meaningful comparison of the ARL across the different CUSUM charts.
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Table 3.1: ARLs for the three CUSUM procedures for different choices of facility relative risk eµ.
eµ η Average τh Median τh E(τh) ŜD(τh)

Continuous-time CUSUM (h = 4.35, eθ = 2.0)

0.69 -4.40 518.51 428.52 410.32 394.26
0.82 -3.36 142.00 91.62 105.12 143.94
1.00 -1.89 29.92 20.92 23.62 29.13
1.22 -0.09 8.07 5.76 6.59 7.66
1.50 2.16 2.72 2.08 2.43 2.34
1.73 4.05 1.50 1.22 1.45 1.09
2.00 6.21 0.98 0.83 0.97 0.62

Discrete-time CUSUM, OR (h = 4.19, ORA = 2.0)

0.69 -4.40 469.09 347.08 499.45 383.53
0.82 -3.36 146.76 102.00 119.40 142.70
1.00 -1.89 29.75 21.38 26.24 27.79
1.22 -0.09 8.63 6.20 7.62 7.23
1.50 2.16 3.75 3.15 3.43 2.19
1.73 4.05 2.48 2.19 2.46 1.06
2.00 6.21 1.97 1.86 1.98 0.58

Discrete-time CUSUM, RR (h = 4.47, RRA = 2.0)

0.69 -4.40 466.53 317.22 372.19 469.81
0.82 -3.36 119.19 85.24 107.66 114.64
1.00 -1.89 29.64 22.18 24.83 27.44
1.22 -0.09 8.86 6.71 7.83 7.41
1.50 2.16 3.85 3.06 3.51 2.49
1.73 4.05 2.52 2.19 2.47 1.17
2.00 6.21 2.02 1.84 1.97 0.70

Thus, when a facility is performing at the national average we chose h to achieve an

ARL of around 30 years, which corresponded to h = 4.35, h = 4.19, and h = 4.47 for

the continuous, discrete logistic and discrete relative risk CUSUMs, respectively. We

shall see later that this choice for the ARL also results in some interesting properties

for the continuous CUSUM.

Table 3.1 shows the results from 1000 repetitions at various values of µ and for

each of the three CUSUMs. The third, fourth and sixth columns give the sample

average, median and standard deviation based on the 1000 replications. The fifth

column gives the approximation to the ARL based on the appropriate formulas in
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(3.10) and (3.13). Generally speaking, the theoretical approximation seems to work

well when the random walk process Ut has a positive drift (η > 0).

In comparison to the discrete time CUSUMs, the continuous time CUSUM gives

shorter run lengths or signal times when eµ > 1 (facility is doing worse than the

national rate) and longer run lengths when eµ < 1. The two discrete time CUSUMs

perform similarly for higher values of the relative risk or odds ratio. The unit of

time in all these simulations is years, so an average run length of 30 years means

that one would expect to wait 30 years on average to get a signal. Since we are using

an average rate of 100 transplants per year, this corresponds to an average of about

3000 transplants to the first signal under the null rate of µ = 0. It may be noted here

that the number of transplants until signal possesses an invariance property, which

simply means that if the rate of transplants ψ is halved to 50 per year, then the

ARL, as obtained from simulations and (3.10), would get doubled thereby keeping

the number of transplants until signal as constant. Thus, for purposes of selecting

h, the number of transplants until signal may be a better measure.

Since we start monitoring all the CUSUMs at the same time and, for the discrete

CUSUMs, follow the transplants a year into the future, the comparison between

the continuous and discrete methodologies seems fair in the sense that all of them

use the same amount of data. Both the continuous and discrete CUSUMs account

for failures within the first year of observation; the gain arises, however, since the

continuous CUSUM counts the failure at the time it occurs whereas the discrete

CUSUM responds to the failure only a year after the transplant date.

A study of how empirical ARLs compare with theoretical approximations in (3.10)

and (3.13) across different choices of the control limit h and the parameter µ was also

done. We report the results for the continuous time CUSUM and the discrete (OR)
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Table 3.2: Empirical and theoretical ARLs for discrete (OR) and continuous CUSUMs for different
choices of control limit h and facility relative risk eµ.

eµ h = 3.0 h = 4.0 h = 5.0 h = 6.0
ARL E(τh) ARL E(τh) ARL E(τh) ARL E(τh)

Continuous time CUSUM

1.00 19.07 17.16 59.21 52.69 161.60 151.12 407.81 420.48
1.22 5.21 4.81 9.08 8.63 13.93 13.65 20.63 19.93
1.50 2.11 2.02 3.03 2.94 4.04 3.88 4.79 4.82
1.73 1.31 1.31 1.81 1.82 2.33 2.34 2.93 2.85
2.00 0.93 0.94 1.25 1.28 1.61 1.62 1.97 1.96

Discrete time CUSUM, OR

1.00 24.74 21.18 67.40 62.86 174.36 178.25 477.63 493.99
1.22 6.81 6.23 10.74 10.14 16.04 15.11 21.91 21.12
1.50 3.15 3.15 4.08 4.23 4.93 5.03 6.00 5.99
1.73 2.41 2.39 2.91 2.92 3.50 3.45 3.96 3.98
2.00 1.98 2.00 2.34 2.35 2.68 2.71 3.12 3.06

CUSUM of (3.11) in Table 3.2. From this, one can see that the accuracy of the theo-

retical approximations increase with µ and h. In the case of the continuous CUSUM,

the percentage of discrepancy between the empirical and theoretical estimates ranges

from around 11% for h = 3.0 to about 3% for h = 6.0 (for µ = 0.0). This may be

attributed to the fact that the error incurred in ignoring the overshoot across the

boundaries for Wald’s approximations decreases with increasing h. Therefore, it may

be noted that if one wished to design the CUSUMs to achieve certain ARLs for values

of eµ > 1, the formulas in (3.10) and (3.13) are accurate and could be used directly

to obtain a suitable h. The values of the ARL reported so far also depend crucially

on λ0 which is chosen in (3.14) in accordance with an overall national failure rate of

10%.

So far, for the simulation study, we have assumed β = 0 and also that the covariate

distribution at the facility is the same as in the population. We implemented a

simulation study assuming β = 0.2 and Zi
iid∼ N(0, 1) in the population. λ0 was
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Table 3.3: Table showing variation in ARLs for the continuous CUSUM across facility covariate
distribution parameters at h = 2.30.

eµ

(ν, ρ2) Eν,ρ[Fµ=0(1|Zi)] Fν,ρ × 0.10 1.00 1.22 1.50 1.73 2.00
(0, 1) 0.100 0.100 8.21 3.04 1.44 0.98 0.69

(0.5, 1) 0.110 0.110 7.80 2.73 1.27 0.90 0.65
(1, 1) 0.120 0.122 7.22 2.50 1.22 0.80 0.58

(0, 0.25) 0.098 0.098 8.53 3.01 1.47 0.96 0.72
(0.5, 0.25) 0.108 0.109 7.58 2.81 1.35 0.89 0.64
(1, 0.25) 0.119 0.120 7.15 2.71 1.21 0.78 0.59

chosen to satisfy

E[1− e−λ0eβZi ] = 10%,(3.15)

a condition similar to (3.14). At the facility of interest, we assumed Zi
iid∼ N(ν, ρ2)

and computed empirical ARLs for various µ with the continuous CUSUM at h = 2.30.

Table 3.3 shows the results. The second column shows Eν,ρ[Fµ(1|Zi)], computed with

respect to the facility covariate distribution. It can be shown that Eν,ρ[Fµ(1|Zi)] ≈

Fν,ρ × E0,1[Fµ(1|Zi)], with Fν,ρ = exp{βν + 1
2
β2(ρ2 − 1)}. Using (3.15) we get, for

µ = 0, Eν,ρ[Fµ(1|Zi)] ≈ Fν,ρ× 0.10. The third column shows this approximation, for

µ = 0, and it seems to be working well. The first row in Table 3.3 represents the

case when the covariates at the facility have the same distribution as the population.

The next few rows show alterations to the empirical ARLs as the location and scale

parameters change for the facility covariate distribution. It is evident that the effect

of location ν may be substantial compared to the scale ρ in terms of modifying the

ARLs. It is also worth noting here that Fµ(1|Zi) is the one-year failure probability,

so shifts in the covariate distribution are to be assessed only up to a shift in this

1 year failure probability. The constant Fν,ρ may be seen as a quick estimate for

Eν,ρ[Fµ(1|Zi)] which is to be used in (3.5) and henceforth in the formulas (3.10).

Also, 1/Fν,ρ may be interpreted as the approximate factor by which the theoretical
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ARLs (3.10) at the facility would shrink or dilate compared to the population with

the bonus being that this factor is free of µ, the facility outcome effect.

3.6 Controlling the rate of false alarms

Until now, we have discussed the ARL only as a performance measure and using

the in-control or null ARL to set a control limit. In this section we shall discuss false

alarm rates for CUSUM procedures and assess the performance of the aforementioned

CUSUM charts.

In- and out-of-control states may be quantified as the mean of the observations

or more specifically as the number of standard deviations from a fixed mean. For

our present problem, we consider µ = 0 as corresponding to an in-control state and

µ = θ to an out-of-control state. Similarly, for the discrete CUSUMs, OR[RR] = 1

and OR[RR] = ORA[RRA] correspond to in- and out-of-control states, respectively.

In designing a CUSUM chart for a particular application, a crucial parameter to

be chosen is the control limit h for the chart. Choosing a limit very low would

lead the CUSUM to signal more often, thus increasing the chance of raising false

alarms. Setting it too high would lead to very long waiting times for a signal, thereby

increasing the chances of late detection of an out-of-control state. Therefore, the

choice of a control limit should be motivated by a tradeoff between the percentage

of false positives and that of true positives. It is important that the rate of false

positives be kept low and that of true detection kept high, bearing in mind the

objective of quality improvement.

The concepts are similar to the notion of Type-I error and power in traditional

hypothesis testing for fixed sample sizes. However, for statistical process control

techniques like the CUSUM, the Type-I error is a function of time (or equivalently,
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sample size) in that it measures the chance of obtaining a signal by a fixed time.

As time increases, this will approach 1 as the CUSUM chart will eventually cross

any fixed boundary. For this reason, it is useful to consider instead, quantities like

the in-control ARL and the out-of-control ARL. When the process is in control,

the CUSUM should be designed to have a long ARL or in-control ARL and when

out-of-control, a short ARL or out-of-control ARL.

In the following, we shall consider a single CUSUM chart, and discuss simulation

results showing the variation of in- and out-of-control ARLs with the control limit

as well as estimates of the false alarm rate. As the discrete (RR) CUSUM is almost

similar in performance to the discrete (OR) CUSUM, we shall study the continuous

and the discrete (OR) CUSUM charts only.

Recall that the underlying test of hypothesis is that of H0 : µ = 0 vs. H1 : µ = θ >

0. Denote the control limit by h and define ARLh0 as the in-control ARL (under H0)

and ARLh1 as the out-of-control ARL (under H1). The following discussion pertains

to a method adopted in Marshall et al. (2004). Consider a fixed decision time interval

[0, T ] and define the Type-I error by time T as the proportion of false alarms under

H0 by time T . This translates to the proportion of times that ARLh0 < T . Define

also, the power by time T , as the proportion of successful alarms/detections under

H1 by time T which would be the proportion of times that ARLh1 < T . Clearly, if

we want to set a control limit h based on restricting the Type-I error to be no more

than α, where 0 < α < 1 is fixed, then we need to compute the distribution of ARLh0 .

One way to do this is to choose h such that the lower α percentile of the distribution

of ARLh0 is at most T .

In Table 3.4 we present results from a simulation study that sets control limits

for the two CUSUMs using the above procedure with T = 5 years and allowing a
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Type-I error of around α = 15%. The choice of α = 15% arises from consideration

of procedures currently used by SRTR for signaling centers (see Dickinson et al.

(2006)) where essentially a significance test at level 5% is conducted every 6 months

for moving cohorts of size 2.5 years. Therefore, for T = 5, the chance of getting a

signal under the null could be around 10-15%. Clearly, the results would depend on

the number of transplants that have occurred by this time, or equivalently the rate of

transplants ψ per year. We therefore considered ψ = 10, 25, 40, 60, 80 and 100, and

identical assumptions on the transplants and failure time distribution as in Section

3.5. We considered the alternative again as eθ = 2.0, in keeping with the objectives

of the data analysis in the next section.

Table 3.4: Table showing variation in h, Type-I error and power across facility size for the contin-
uous and the discrete (OR) CUSUM.

Facility size Continuous CUSUM Discrete (OR) CUSUM
(in transplants/yr) h Type-I error Power h Type-I error Power

10 2.25 0.153 0.761 1.80 0.151 0.664
25 3.00 0.155 0.922 2.50 0.148 0.898
40 3.45 0.151 0.963 2.96 0.151 0.954
60 3.81 0.149 0.990 3.36 0.153 0.984
80 4.20 0.154 0.998 3.65 0.152 0.997
100 4.35 0.154 1.000 3.87 0.155 0.998

From Table 3.4, we see that control limits are a bit higher for the continuous

CUSUM and that it yields better power for a similar Type-I error than the discrete

(OR) CUSUM. The control limits increase with facility size. This is intuitive to

expect as more transplants in 5 years would mean higher arrival rates on average

(meaning lower ARLs for the same h, see 3.10, 3.13), thus requiring a higher control

limit to achieve similar signal times as smaller facilities. These results are based on

a fixed decision period of T = 5 years. If the decision boundary T is lowered, then

a smaller value of h may suffice and if it is raised, then a larger h may be needed

to achieve similar bounds on the Type-I error. Similarly, if the alternative is shifted
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towards the right, a larger value of h would be required to achieve the same Type-I

error and would also result in higher power.

Sometimes, CUSUM charts may be used to monitor performances at multiple

centers which involves multiple testing of the same hypothesis. Consider M different

centers and assume that 0 < m0 < M centers are in-control and the restM−m0 = m1

are not. The CUSUM is implemented at each center and it is useful to get an idea

of the overall rate of false alarms in this procedure. This leads on to concepts such

as False Discovery Rates (FDR), an area discussed in the literature by Benjamini

and Hochberg (1995) and Storey (2002) among many others. The FDR is defined as

the proportion of false discoveries or alarms amongst all discoveries or alarms. The

idea of using an FDR approach in the context of multiple CUSUM charts has been

proposed by Aylin et al. (2003), Marshall et al. (2004) and Grigg and Spiegelhalter

(2005) among many others. Following Marshall et al. (2004) and Storey (2002), we

define FDRh
T , the rate of false discovery by the decision boundary T , as,

FDRh
T =

q0[Type-I error]

q0[Type-I error] + (1− q0)[Power]

where q0 = m0/M is the proportion of centers that are in-control. We conducted

simulation studies where we considered M = 100 centers with m0 ∼ Bin(M, p0),

T = 5, different transplant rates ψ = 10, 40, 60 and 100, various choices for p0 as

0.7, 0.8 and 0.9 and computed Monte-Carlo estimates of FDRh
T based on the control

limits selected in Table 3.4. Once again, we looked at the two CUSUM charts of

Sections 3.3 and 3.4.1, respectively. Table 3.5 displays the results, where we see

that the FDR increases with the proportion of in-control centers. For the discrete

(OR) CUSUM, the FDR is relatively stable across facility size as compared to the

continuous CUSUM.

The above approach has the restrictive feature of having to consider a fixed deci-
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sion boundary (see, for example, Woodall et al. (2006)), which in effect is similar to

a fixed sample size problem and so Grigg and Spiegelhalter (2006) have proposed a

different approach for controlling the FDR based on ideas in Benjamini and Hochberg

(1995) and studying the stationary distribution of the in-control CUSUM statistic

by running it without a control limit. Under the assumption of normally distributed

outcomes, the approximate stationary distribution they obtain consists of a mass at

zero and a continuous part for values strictly larger than zero.

Table 3.5: Table showing variation in FDRh
T across h for the continuous and discrete (OR) CUSUM.

Facility size Continuous CUSUM Discrete (OR) CUSUM
(transplants FDRh

T FDRh
T

per year) h p0 = 0.7 p0 = 0.8 p0 = 0.9 h p0 = 0.7 p0 = 0.8 p0 = 0.9
10 2.25 0.05 0.44 0.64 1.80 0.35 0.48 0.67
40 3.45 0.12 0.19 0.33 2.96 0.28 0.40 0.60
60 3.81 0.26 0.38 0.58 3.36 0.27 0.38 0.58
100 4.35 0.25 0.37 0.57 3.87 0.27 0.39 0.59

It is helpful to remember here that Table 3.5 and the simulations therein are only

for descriptive purposes. From the viewpoint of the SRTR, it is more relevant to

control for Type-I error and improve the power of detection (as in Table 3.4) rather

than the false discovery rate. The FDR is geared more towards trying to assess

the accuracy of the procedure once a center is flagged. Therefore, for purposes of

choosing a suitable control limit, we suggest using Table 3.4 as a guideline and Table

3.5 is to be seen merely as a descriptive measure of the procedures discussed.

3.7 Application to kidney transplantation data

The continuous and discrete (OR) CUSUMs were also applied to data from the

Scientific Registry of Transplant Recipients (SRTR). The SRTR is administered by

Arbor Research Collaborative for Health in collaboration with the University of

Michigan. The data includes information on all 59,650 kidney transplants performed
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at 258 transplant centers in the United States from January 1997 to December 2001.

The primary outcome of interest was graft failure, including death with a functioning

graft at 1 year post-transplant. Overall, 5502 (9.22%) transplants failed within 1 year

from transplant. The unadjusted failure rate ranged from 0 to 66.7% across the 258

centers.

3.7.1 Risk-adjustment

For the discrete (OR) CUSUM, a logistic regression model was used, adjusting

for a number of risk factors (see Table 3.6), to arrive at a risk-adjusted predicted

probability of failure πi0, i ≥ 1 at 1 year post-transplant. This was then used to

construct the CUSUM chart for each center separately as indicated in Section 3.4.1

before. We used ORA = 2.0 in order to tune the CUSUM to detect a doubling of

the odds of an outcome.

For the continuous CUSUM, a Cox proportional hazards model was used, adjust-

ing for the same risk factors (see Table 3.7), to arrive at an adjusted hazard rate of

failure at 1 year post-transplant. This was then used to compute αi(x) for i ≥ 1

and incorporated into the CUSUM diagram for each facility as discussed before in

Section 3.3. Here also, we worked with eθ = 2.0 to detect a doubling of the hazard

rate of an outcome.

The CUSUM charts were then graphed against time. Figure 3.2 shows the

CUSUM curve for a particular facility, where we have added 1 to the timescale

to acknowledge the fact that we register the outcome in the CUSUM only after a

year has past from the date of transplant. Similar plots are given in Axelrod et al.

(2006), but they use transplant number on the horizontal axis. We chose the actual

time from transplant as the time scale for comparing with the continuous CUSUM.

Figure 3.3 shows the continuous time CUSUM for the same facility, plotted against
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Table 3.6: Table of risk factors adjusted for in the logistic model.
Risk Factor Odds Ratio P Risk Factor Odds Ratio P
Donor Cause of Death Congenital/familial disorders 1.04 0.767

Anoxia 0.97 0.599 Diabetes 1.11 0.034
Cerebrovascular/Stroke 1.12 0.011 Renovascular diseases 1.12 0.127
Head Trauma 1.00 Ref Neoplasms 1.14 0.633
CNS Tumor 0.63 0.027 Hypertensive nephrosclerosis 1.19 0.001
Other 1.10 0.416 Retransplant/graft failure 1.20 0.027
Missing 0.73 0.028 Glomerular disease 1.00 Ref

Donor Age (years) Other 1.10 0.131
<18 1.08 0.225 Missing 1.17 0.459
18-34 0.89 0.005 Number of B mismatches
35-49 1.00 Ref Zero 1.00 Ref
50-64 1.13 0.012 1 1.30 <0.0001
≥ 65 1.43 <0.0001 2 1.40 <0.0001

Donor Race Number of DR mismatches
White 1.00 Ref Zero 1.00 Ref
African-American 1.20 0.0001 1 1.15 0.001
Asian 0.95 0.631 2 1.25 <0.0001
Other 1.03 0.842 Peak PRA

Donor to Recipient weight ratio 0-9% 1.00 Ref
Q1 (0-0.75) 1.18 0.004 10-79% 1.11 0.007
Q2 (0.75-0.90) 1.20 0.001 >80% 1.34 <0.0001
Q3 (0.90-1.50) 0.99 0.961 PRA Missing 0.93 0.741
Q4 (>1.5) 1.00 Ref Previous Transplant 1.15 0.053
Missing 1.20 0.001 Recipient BMI

Recipient Age (years) <20 1.16 0.035
18-34 1.07 0.144 20-24.9 1.00 Ref
35-49 1.00 Ref 25-29.9 1.06 0.203
50-64 1.38 <0.0001 >30 1.12 0.030
≥ 65 1.43 <0.0001 BMI missing 1.15 0.009

Recipient Ethnicity Symptomatic PVD 1.22 0.009
Hispanic 0.73 <0.0001 Symptomatic PVD missing 0.95 0.483
Non-Hispanic 1.00 Ref Dialysis Status
Missing 1.09 0.446 No dialysis 0.94 0.333

Recipient Race Peritoneal dialysis 1.09 0.043
White 1.00 Ref Hemodialysis 1.00 Ref
African-American 0.96 0.282 Unknown type 0.64 0.001
Asian 0.70 <0.0001 Angina/coronary artery disease 1.10 0.045
Other 0.86 0.178 Any previous transfusions 1.12 0.0008

Deceased Donor hypertension 1.12 0.016 Unknown or missing transfusions 1.05 0.248
Expanded criteria donor 1.19 0.007 No previous transfusions 1.00 Ref
Cause of ESRD Drug treated systemic hypertension 0.90 0.011

Tubular/Interstitial disease 1.18 0.020 Missing 1.01 0.890
Polycystic kidneys 0.80 0.001

chronological time. Figure 3.5 shows a facility where an abrupt change in the failure

rate may have occurred, whereas Figure 3.6 shows one which may be operating at

or under the national average rate.

For both of the above risk-adjusted models, we used data pooled from all facil-

ities to get an idea of the national average failure rate. This is then compared to

each center via a continuous sequential monitoring scheme. Also, in both the risk-

adjustment models, factors like recipient age, donor to recipient weight ratio, donor

age and presence of other diseases, among several other factors, are highly predictive

of transplant failure.
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Figure 3.2: The discrete (OR) CUSUM diagram showing a facility possibly operating at a higher
failure rate than the national average.

Figure 3.3: The continuous CUSUM diagram showing a facility operating at a possibly higher failure
rate than the national average.
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Table 3.7: Table of risk factors adjusted for in the Cox model.
Risk Factor Hazard Ratio P Risk Factor Hazard Ratio P
Donor Cause of Death Congenital/familial disorders 1.17 0.055

Anoxia 1.02 0.560 Diabetes 1.14 <0.0001
Cerebrovascular/Stroke 1.09 0.002 Renovascular diseases 1.14 0.004
Head Trauma 1.00 Ref Neoplasms 1.14 0.434
CNS Tumor 0.88 0.284 Hypertensive nephrosclerosis 1.18 <0.0001
Other 0.94 0.436 Retransplant/graft failure 0.94 0.270
Missing 0.63 <0.0001 Glomerular disease 1.00 Ref

Donor Age (years) Other 1.01 0.889
<18 0.95 0.187 Missing 0.98 0.888
18-34 0.90 <0.0001 Number of B mismatches
35-49 1.00 Ref Zero 1.00 Ref
50-64 1.16 <0.0001 1 1.13 0.001
≥ 65 1.39 <0.0001 2 1.16 <0.0001

Donor Race Number of DR mismatches
White 1.00 Ref Zero 1.00 Ref
African-American 1.15 <0.0001 1 1.13 <0.0001
Asian 0.96 0.516 2 1.18 <0.0001
Other 1.06 0.546 Peak PRA

Donor to Recipient weight ratio 0-9% 1.00 Ref
Q1 (0-0.75) 1.19 <0.0001 10-79% 1.10 <0.0001
Q2 (0.75-0.90) 1.14 0.0004 >80% 1.29 <0.0001
Q3 (0.90-1.50) 1.02 0.497 PRA Missing 1.07 0.554
Q4 (>1.5) 1.00 Ref Previous Transplant 1.33 <0.0001
Missing 1.58 <0.0001 Recipient BMI

Recipient Age (years) <20 1.22 <0.0001
18-34 1.17 <0.0001 20-24.9 1.00 Ref
35-49 1.00 Ref 25-29.9 0.99 0.837
50-64 1.15 <0.0001 >30 1.02 0.650
≥ 65 1.47 <0.0001 BMI missing 1.04 0.247

Recipient Ethnicity Symptomatic PVD 1.23 <0.0001
Hispanic 0.79 <0.0001 Symptomatic PVD missing 0.92 0.106
Non-Hispanic 1.00 Ref Dialysis Status
Missing 1.19 0.010 No dialysis 0.85 0.0001

Recipient Race Peritoneal dialysis 1.02 0.353
White 1.00 Ref Hemodialysis 1.00 Ref
African-American 1.11 <0.0001 Unknown type 0.55 <0.0001
Asian 0.72 <0.0001 Angina/coronary artery disease 1.16 <0.0001
Other 0.81 0.005 Any previous transfusions 1.18 <0.0001

Deceased Donor hypertension 1.08 0.008 Unknown or missing transfusions 1.08 0.002
Expanded criteria donor 1.15 0.0005 No previous transfusions 1.00 Ref
Cause of ESRD Drug treated systemic hypertension 0.97 0.349

Tubular/Interstitial disease 1.09 0.049 Missing 1.08 0.169
Polycystic kidneys 0.77 <0.0001
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3.7.2 Choosing a control limit

In this section, we note some issues in deciding on a control limit for the CUSUM

charts constructed for the above data. Figure 3.4 shows the proportion signaled by

the two CUSUM charts across different choices of control limit. For this figure, a

single control limit has been chosen for all the facilities. We see that the fraction

signaled is similar for both the charts, with the discrete CUSUM signaling slightly

more often than the continuous CUSUM for lower control limits. However, choosing

a single control limit may not be the right thing to do here as can also be seen from

Table 3.4.

Note that, here we can also think about a fixed decision boundary problem as in

Section 3.6, with T = 5. The 258 transplant facilities are of widely different sizes

with number of transplants ranging from 1 to 1533 over the 5 year period. Since the

number of transplants until a signal and the Type-I error depend on the volume of

transplants at a facility, we grouped the 258 facilities into 5 categories based on the

total number of transplants performed in 5 years. There were 50 facilities performing

less than 8 transplants per year on average and 28 facilities performing more than

100 transplants per year on average. For very small facilities, the CUSUMs may not

yield much power, so we left these 50 small facilities out of the analysis. The 28

facilities with more than 100 transplants per year vary widely in terms of number of

transplants per year with the maximum being 306 transplants per year and therefore

were not included in the analysis either. The remaining 180 facilities were divided in

3 categories and different control limits were fixed for each of these categories using

the numbers from Table 3.4.

Table 3.8 shows the control limits for the 3 categories along with the number of

facilities flagged in each category based on the continuous and the discrete (OR)
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Figure 3.4: Fraction of facilities signaled by the two CUSUM charts when a single control limit is
used.

CUSUM. In all, 37 facilities were flagged by the continuous CUSUM and 41 facilities

were flagged by the discrete (OR) CUSUM. For this dissertation, the analysis was

done with facility identity blinded and so we do not identify which facilities are

flagged.

Table 3.8: Table showing number of facilities flagged by the continuous and discrete (OR) CUSUMs.
Continuous CUSUM Discrete (OR) CUSUM

Facility size Total number Control limit Number Control limit Number
(in transplants/yr) of facilities h flagged h flagged

8 - 20 33 2.25 7 1.80 8
20 - 50 89 3.45 16 2.96 19
50 - 100 58 4.20 14 3.65 14

In summary, the choice of a control limit for a certain facility should depend on

the length of follow-up intended for that institution, the average rate of transplants

at that facility and the level of Type-I error to be controlled for. Based on this

information, a control limit may be chosen based on simulating the CUSUM under
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Figure 3.5: The continuous CUSUM diagram showing a sudden possible change in the failure rate.

Figure 3.6: The continuous CUSUM diagram showing a facility operating near the national average
failure rate.



61

the null as in Section 3.6 and using a calibration strategy as in Table 3.4. For small

centers, having less than 8 or 10 transplants per year on average, it is difficult to

choose a control limit that keeps the Type-I error low as well as yield good power

under alternatives not so far away from the null. The analogy with a fixed sample size

test becomes clearer when the follow-up is fixed and it is common knowledge that

one needs higher sample sizes to detect alternatives close to the null with greater

certainty. Therefore, for smaller centers, increasing the follow-up or time window

might be a possible answer.

3.8 Discussion

A continuous time version of the CUSUM is introduced which, compared to earlier

proposals, utilizes information available from the data in a more timely manner. It

is simple to compute and results in substantial savings in the average run lengths

to provide a signal to institutions with higher failure rates. This process has been

compared both analytically and numerically with discrete time analogues.

Theoretical approximations to the mean run length have been derived using

Wald’s identity. While the approximation works well when the drift parameter η > 0,

it does not work so well for η < 0. To assess run lengths for smaller values of η,

simulation is probably the best approach. From a practical point of view, however,

early detection and accuracy is important when η > 0. When η < 0, both the em-

pirical estimate and theoretical approximation of the mean run length are large and

errors in approximations are less important. Adjustments for ignoring the overshoot

in applying Wald’s identity which are discussed in Khan (1978) are complex and

as we see from Table 3.2, the error in approximation diminishes with increasing h.

Exact expressions for the mean run length using the Poisson likelihood ratio incre-
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ment in (3.2) have been derived by Dvoretzky et al. (1953) and Zacks (2004) but

the formulas therein are very involved and computationally intensive.

Other approaches have also been suggested in the literature for deriving approxi-

mations to the ARL. Methods using integral equations have been discussed in Goel

and Wu (1971). Approximations using Markov chain methods have been discussed

by Brook and Evans (1972) and Steiner et al. (2000). Ewan and Kemp (1960) and

Woodall (1983) discuss an approach using recursive equations and Reynolds (1975)

discusses a Brownian motion approximation. Approximations in the case of Expo-

nentially distributed outcomes are discussed in Gan (1992) and Vardeman and Ray

(1985). Some approximations using Wald’s identity have been discussed in Siegmund

(1985), where a different expression is obtained and the author mentions that they

do not work well. It is of some interest to investigate if improvements on the current

approximations are possible for the case of a negative drift (η < 0) using some of the

above methods. The simulations and the approximations in Sections 3.3.3 and 3.5,

are obtained by starting the CUSUM at a year after t = 0 when the transplant

process NA(t) is in equilibrium. In principle, one can also start the procedure at

t = 0 and empirical evidence shows that the continuous CUSUM is still doing better

than the discrete versions. However, theoretical approximations to the ARL would

be much harder to obtain in that case.

The distribution of the covariates at the facility of interest may alter the ARL

to some extent if the 1 year failure probability at the facility changes substantially

compared to that in the population. However, as Table 3.3 suggests, such alterations

are largely due to location effects in the covariate distribution and one may use the

moment-generating function of the covariate distribution to compute approximate

factors by which the theoretical ARLs will change.
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In practice, the choice of a control limit for a particular facility in multi-center

studies demands further research. For small centers, it is difficult to choose a control

limit that controls the Type-I error as well as yield good power. In this chapter, we

have allowed the Type-I error to be 15% which may not be unreasonable for small

centers, given that it would be less costly to review them compared to bigger centers.

So, depending on the goals of the study, different control limits may be chosen.

In the implementation of CUSUM procedures, it is important to remember that

CUSUM signaling does not necessarily prove a clinically important decline or im-

provement in clinical quality has occurred. Rather, the signal suggests that closer ex-

amination by the quality improvement team may be required. Although the CUSUM

has been set up as a test of hypothesis problem, this is an important philosophical

distinction from the usual accept or reject outcome of a test.

The method of likelihood ratio scoring may be applied to several settings that

involve monitoring outcomes. In this chapter we have used a binary outcome and a

Poisson approximation. However, one can consider different outcomes and a corre-

sponding model to form the likelihood score at each time point and define a CUSUM

process in a similar fashion. Theoretical approximations to the average time to sig-

nal may also be obtained similarly by exploiting the renewal nature of the CUSUM

process and employing Wald’s identity.

The continuous time CUSUM procedure may be used in any situation that requires

constant surveillance and monitoring. It is important to note, however, that the

CUSUM then also needs to incorporate information about outcomes as soon as they

occur. Sometimes, due to organizational or design issues, there can be a reporting

delay between the actual occurrence of the event and the time it gets reported.

The delay may be random or deterministic, depending on the study design. It is
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of considerable interest and importance to incorporate this delay feature into the

CUSUM procedure.
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CHAPTER IV

A CUSUM incorporating reporting delays

4.1 Introduction

In multi-center studies involving an intervention that generates an outcome as

time progresses, it is useful to be able to monitor these outcomes continuously in

real-time and raise an alarm if a significant upward trend is detected in the failure

rate of the intervention. The CUSUM technique, introduced in Page (1954), has

been used as a graphical sequential monitoring scheme for some time now. It has

been used in the context of monitoring organ transplantation outcomes in Axelrod

et al. (2006) and Steiner et al. (2001).

Similar to any real-time monitoring scheme, an effective implementation of the

CUSUM procedure also demands the availability of outcome information on a real-

time basis. Stated simply, outcome information needs to be reported to the CUSUM

as soon as it occurs. In actual practice, however, outcome reporting is seldom in-

stantaneous. In this chapter, we devise a CUSUM procedure when there is a delay

involved in the reporting of outcomes. We assume that the outcome is reported only

after a random delay period has elapsed from the time it occurred.

It is helpful here to consider again the example of kidney transplants. Suppose,

there is a facility or institution that performs organ transplants over time. Some of

65
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these transplants might fail, either due to the death of the patient or due to graft

failure. Over time, this institution will accumulate transplant failures and in the

interest of quality, it is important to raise an alarm if a significant upward trend in

the failure rate is detected. Individual failure times will also be affected by covariate

information and so we need to look at a risk-adjusted procedure. In this chapter,

we shall construct a risk-adjusted CUSUM technique under the assumption that

conditional on the time of transplant, the transplant failure time and the delay time

are jointly independent.

4.2 A CUSUM that incorporates reporting delays

In this section, we shall define a CUSUM procedure in continuous time for a

particular institution that accounts for the reporting delay mechanism. Risk factors

that may affect individual outcomes are also adjusted for.

Assume that we have a very large population arising from the combined data

of many institutions with information on times of transplant, post-transplant failure

times and delays involved in the reporting of the post-transplant failure. As has been

considered in Axelrod et al. (2006) before, we shall assess transplant outcomes based

on a one-year performance. We define a qualifying failure as one where the transplant

fails within a year from the date of transplant with the failure time being measured

from the date of transplant. Let f0(x|Z), x > 0 be the conditional density (defective)

for a qualifying failure time, given a covariate value Z. Note that f0(x|Z) = 0 for

all x > 1 and that F0(1|Z) = F0(∞|Z) < 1 is the probability of a failure in the first

year. Assume that we can estimate f0(x|Z) from a regression model, adjusting for

covariates Z, based on all the data available in this population. Let h0(l), l > 0

be the density for the reporting delay times, measured from the time the transplant



67

fails. Assume that we can also estimate h0(l) from this population via a regression

model. For the present application, we shall ignore the uncertainty in the estimates

f0(x|Z) and h0(l) as seems reasonable since these estimates are based on a large

number of observations from the population.

For a certain institution of interest, assume that S1, S2, . . . represent the times

of transplant, that is, the i-th transplant takes place at time Si. Later on we shall

assume that S1, S2, . . . are the arrivals of a Poisson process, but for the moment we

shall work conditionally on the times.

Let X1, X2, . . . be the qualifying post-transplant failure times with Z1, Z2, . . . be-

ing the corresponding covariate values measured after transplant. It is of primary

interest to ascertain if the probability of a qualifying failure at this particular insti-

tution, conditional on covariate values, is higher or lower than that at the population

discussed before. One simple parametric model that relates the failure experiences

at this institution to that at the population is the proportional density model as,

fµ,i(x|Zi) = eµf0(x|Zi)(4.1)

where, fµ,i(x|Zi), x > 0 is the conditional density (defective) of Xi given Zi. Here,

µ can be any real number depending on whether the institution has a better (µ < 0)

or worse (µ > 0) failure experience than the population. Observe that this model is

similar to a proportional hazards model when the probability of a one-year failure

F0(1|Z) is small.

Let L1, L2, . . . be the delay times with Li being the reporting delay corresponding

to the i-th transplant. We assume that Li is measured from the time (chronological)

of failure, Si + Xi and has density h0(l), l > 0 which is the same as that in the

population. Typically, each institution will have a different rate of reporting but,

for the moment we shall assume that this institution has a similar delay distribution
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as the population. The overall structure of the random variables so defined is that

given S1, S2, . . . , (Xi, Li, Zi), i = 1, 2, . . . are iid and independent of the {Si}.

Let T ∗i = Si + Xi + Li be the chronological time of report and define Ni(t) =

I(T ∗i ≤ t) as the process indicating if the outcome of the i-th transplant has been

reported or not by time t. It is instructive here, to note the geometry (see Figure

4.1) of the region where we observe the data. Having observed the time Si of the i-th

transplant, we receive its report by time t (Ni(t) = 1) if and only if Xi +Li ≤ t−Si.

In other words, Ni(t) = 1 if and only if (Xi, Li) lies in the triangular region in bold

in Figure 4.1.

We construct the likelihood Lt(µ) based on the data available upto time t. We

shall base our likelihood on the counting process Ni(t), i ≥ 1, the reason for which

will become clear presently. We have,

Lt(µ) ∝
∏
i≥1

[eµf0(xi|zi)h0(li)]
Ni(t)[1− eµBi(t)]

1−Ni(t)

where

Bi(t) =

∫ t−Si

0

f0(x|zi)H0(t− Si − x) dx

and we define Bi(t) = 0 if t < Si. Note that, eµBi(t) = E[Ni(t)|Si]. From this,

it can be easily seen that the likelihood ratio comparing two values of µ depends

only on the process Ni(t), i ≥ 1 and not on the observed values of Xi and Li.

This is a feature of the proportional density model (4.1) and is the main motivation

for it. Also, a factorization argument shows that Lt(µ) depends on µ only through

N(t) =
∑

i≥1Ni(t). This may also be interpreted as a sufficiency property of the

process N(t) for µ.

We now construct a CUSUM based on a SPRT, introduced by Wald (1947),

defined at each time point. For this purpose, we select a constant θ > 0 and consider
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a likelihood ratio test of µ = θ versus µ = 0 using the likelihood Lt(µ). The constant

θ is chosen in such a way as to design the CUSUM to detect failure rate changes for

µ in the range [0, θ]. The case µ = 0 represents the population failure rate and it

is of main interest to discover an upward trend in failure rates from the population.

Therefore, the log-likelihood difference at time t is given by,

Ut = logLt(θ)− logLt(0)

=
∑
i≥1

[
θNi(t) + (1−Ni(t)){log(1− eθBi(t))− log(1−Bi(t))}

]
(4.2)

In defining the CUSUM, it is convenient to work with the increments dUt (of Ut) and

we find that,

dUt = dN∗(t)− (eθ − 1)dA(t)(4.3)

where,

dN∗(t) =
∑
i≥1

(
θ − log

1− eθBi(t)

1−Bi(t)

)
dNi(t)

dA(t) =
∑
i≥1

(1−Ni(t))B
′
i(t)

[1− eθBi(t)][1−Bi(t)]
dt

Since we are considering a one-sided alternative and are interested in detecting up-

ward trends only in the CUSUM, we define a one-sided CUSUM {Gt}, with G0 = 0

as,

Gt+dt = max(0, Gt + dUt)

or equivalently as,

Gt = Ut − min
0≤s≤t

Us

In order to implement the CUSUM procedure, we track the process Gt continuously

in time and say that the CUSUM has raised an alarm at time τh, where,

τh = inf{t > 0 : Gt ≥ h},

the first time when Gt crosses a fixed upper barrier h > 0.
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4.3 The case of Poisson arrivals

In this section, we shall investigate theoretical properties of E(τh) under the as-

sumption that the arrivals or transplants at the facility occur in accordance to a

homogeneous Poisson process. For the CUSUM defined in (4.3), the increments are

complex quantities and it is difficult to obtain a theoretical approximation to the

ARL using Wald’s identity applied directly for these increments. Here, we shall ob-

tain a slightly simpler likelihood under the homogeneous Poisson process assumption.

We shall also assume that the covariates at the institution are homogeneous and so

we can work with the marginal distribution of the post-transplant failure times.

Consider first, the case when time is discrete and measured on the integers as

t = 1, 2, . . .. Let Rs ≥ 0 be the number of transplants at a facility at time s. Assume

that Rs is Poisson distributed with mean ψ. Also, as before, we have a qualifying

post-transplant failure time X having a (defective) distribution as,

f(x) = eµf0(x)

for x = 0, 1, . . . , a and zero otherwise. Here, a is a time period for defining a qualifying

failure and usually a = 365. We also have a random delay time L taking values

0, 1, 2, . . . and having a density h0(l), l = 0, 1, 2, . . .. We also define Nsxl as the

number of transplants that have occurred at time s, qualifiably failed at time s+ x

and reported at time s + x + l. Note that we can observe Nsxl by time t only if

x+ l ≤ t− s. Also, let

N t
s =

∑
x+l≤t−s

Nsxl and,

ρts =
∑

x+l≤t−s

ψf0(x)h0(l)

The data available up to time t is {Nsxl : x + l ≤ t − s, t − s ≥ 0} and {Rs − N t
s :
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s + x + l ≤ t

x

s

Si

l

1.0

Figure 4.1: Geometry of the delay problem.

t− s ≥ 0}. The likelihood of µ based on the data available up to time t is,

Lt(µ) ∝
t∏

s=1

[ ∏
x+l≤t−s

[eµf0(x)h0(l)]
Nsxl [1− eµρts]

Rs−Nt
s

]

Observe that this likelihood implicitly conditions on the time of transplant being

equal to s. We can compute the expected Fisher information I(µ) for µ from this

likelihood as,

I(µ) =
t∑

s=1

eµρts
1− eµρts

Observe now that Nsxl may be interpreted as a Poisson process in three dimen-

sions. For every time t, define the set Qt = {(s, x, l) : s+ x+ l ≤ t} and let

Nt =
∑

(s,x,l)∈Qt

Nsxl

Under the assumption that the number of transplants Rs, s ≥ 1 are Poisson dis-

tributed with rate ψ, one can show that Nt is also Poisson distributed with rate eµρt,
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where

ρt =
∑

(s,x,l)∈Qt

ψf0(x)h0(l)

=
t∑

s=1

t−s∑
x=0

t−s−x∑
l=0

ψf0(x)h0(l)

=
t∑

s=1

t−s∑
x=0

ψf0(x)H0(t− s− x)

= ψ
t−1∑
x=0

f0(x)
t−x∑
s=1

H0(t− x− s)

= ψ
t−1∑
x=0

f0(x)
t−1−x∑
l=0

H0(l)(4.4)

Therefore, the likelihood of µ based on Nt is,

L∗t (µ) ∝ [eµρt]
Nte−e

µρt

whereby, the expected Fisher information I∗(µ) for µ is,

I∗(µ) = eµρt

If we can show that I(µ) and I∗(µ) do not differ much, then we can use L∗t (µ) for

constructing a CUSUM which will have a much simpler structure than that based

on Lt(µ) in (4.3). We can then derive a theoretical approximation to the ARL for

this CUSUM and compare this, using simulations, to the actual implementation as
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defined in (4.3). We have,

I(µ) =
t∑

s=1

eµρts
1− eµρts

=
t∑

s=1

(
1

1− eµρts
− 1

)

≈
t∑

s=1

(
1 + eµρts − 1

)
= eµ

t∑
s=1

ρts

= eµψ

t∑
s=1

t−s∑
x=0

f0(x)H0(t− s− x)

= I∗(µ)

Here, we have made the approximation (1 − eµρts)
−1 ≈ 1 + eµρts in view of the fact

that ρts ≤ F0(t− s) ≤ F0(a). The quantity F0(a) refers to the probability of a failure

within a days from transplant in the entire population across all the institutions. In

applications, this is usually quite small, around 10% and so this approximation is a

reasonable one.

Therefore, we can use L∗t (µ) as the likelihood for constructing the CUSUM. As

before, we consider the likelihood ratio of µ = θ versus µ = 0 using L∗t (µ) and obtain,

Vt = θNt − (eθ − 1)ρt

It is helpful to consider increments in the interval (t − 1, t] in the log-likelihood for

defining the CUSUM and we obtain

∆Vt = θ∆Nt − (eθ − 1)∆ρt

as the increment in the log-likelihood at time t. We shall obtain a theoretical ap-

proximation to the ARL of a CUSUM corresponding to the increments at time t

being ∆Vt and compare this approximation to the actual ARL obtained from the
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CUSUM based on (4.3) in simulations. One can easily show (from (4.4)) that if the

delay variable L takes values in a finite range 0, 1, . . . , K, say, then ∆ρt is a constant

for t > K + a and then we may say that the process Nt is in equilibrium. Since

f0(x) = 0 for x > a and H0(l) = 1 for l > K, so for t > K + a, ∆ρt = ψF0(a). Let

γ∗ = ψF0(a). Therefore, for t > K + a, the increments ∆Vt in the CUSUM become

iid and Vt may be treated as a random walk.

We, therefore, consider the CUSUM for t > K + a and work with the definition,

Vt = θNt − (eθ − 1)γ∗t

where Nt is Poisson distributed with mean eµγ∗t.

The above arguments extend directly to the case when time is continuous and is

measured in years. Then Vt = θN(t) − (eθ − 1)γ∗t with N(t) being a homogeneous

Poisson process with rate eµγ∗, where γ∗ = ψF0(1), when we consider monitoring

Vt for t > K + 1. When we consider N(t) in equilibrium, it is possible to obtain

approximate expressions for the ARL using Wald’s identity for the CUSUM based

on Vt. Following identical arguments as in Section 3.3.3, we obtain, therefore,

E(τh) ≈


h
η∗
− e−µ(eθ−1)

η∗

(
1−e−ω0h

1−e−ω0θ

)
, η∗ 6= 0

h2e−µ

θ2γ∗
, η∗ = 0.

(4.5)

In the above formulas, η∗ represents the drift parameter and is easily seen to be,

η∗ = (θeµ − eθ + 1)γ∗.

Also, the quantity ω0 is the non-zero solution to,

exp{γ∗t[ω(eθ − 1) + eµ(e−ωθ − 1)]} = 1.
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Observe that, although the approximations look identical to (3.10), since γ∗ 6= γ

in general, the numbers from the formulas in (4.5) will generally be different from

those based on the formulas in (3.10). The difference arises from the fact that in the

expression for γ obtained in Section 3.3.2, Fµ(1|Zi) is derived based on a proportional

hazards assumption, whereas in the present situation, Fµ(1) = eµF0(1), by (4.1).

However, under equilibrium, the distribution of N(t), and hence that of Vt is free

of the delay distribution. The effect of a delay would be observed only if we start

monitoring from t = 0 and also take into consideration the part where N(t) is not in

equilibrium. Theoretical approximations to the ARL would be harder to obtain in

that case.

4.4 Simulation study

A simulation study was conducted where transplants occur according to a homo-

geneous Poisson process with rate ψ = 100 transplants per year. The failure time

distribution at the population f0(x|Z) was taken as Exponential (defective) as,

f0(x|Z) =

 λ0e
−λ0x, 0 < x < 1

0, x > 1

where λ0 is chosen to satisfy

1− e−λ0 = 10%

The delay distribution was taken as a two point distribution as,

h0(l) = (1− α)I(l = 0) + αI(l = 5)

where 0 ≤ α ≤ 1 is a pre-specified constant controlling the fraction of delayed reports.

The CUSUM Gt was simulated based on the random walk Ut in (4.2) wherein we also
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Table 4.1: Table showing ARLs for the delay CUSUM simulated under equilibrium conditions.
eµ Ave. ARL Med. ARL SD(ARL) E(τh)

α = 0.0

1.00 25.91 17.76 25.65 23.59
1.22 6.82 4.70 6.50 6.53
1.50 2.14 1.62 1.72 2.37
1.73 1.22 0.97 0.88 1.39
2.00 0.83 0.69 0.55 0.92

α = 0.5

1.00 26.08 18.53 26.37 23.59
1.22 6.90 4.92 6.87 6.53
1.50 2.25 1.69 1.88 2.37
1.73 1.36 1.10 1.00 1.39
2.00 0.81 0.70 0.53 0.92

α = 1.0

1.00 24.83 17.13 24.98 23.59
1.22 7.07 5.18 6.58 6.53
1.50 2.31 1.80 1.88 2.37
1.73 1.26 1.01 0.88 1.39
2.00 0.79 0.67 0.48 0.92
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used eθ = 2.0 to detect a shift of 2.0 times the null hazard rate. The control limit

was taken as h = 4.35 as in Table 3.1 in Chapter III. In Table 4.1, we investigate

the cases α = 0, 0.5 and 1. We find that the ARLs are quite similar across the

three cases. This is because we monitored the CUSUM process beyond t = 6 years,

when the process N(t) is in equilibrium and then, the rate of the process N(t) is free

of the delay distribution. The last column of Table 4.1 also shows the theoretical

approximations (4.5) to the ARL and it is clear that they agree quite well with the

simulated numbers across all ranges of eµ. The ARLs for the case of no delay are

a bit shorter than those obtained in Chapter III for the same control limit and this

may be a feature of the proportional density model used here.

Table 4.2: Table showing ARLs for the delay CUSUM simulated from startup (t = 0).
Constant delays Exponential(1) delays

eµ Ave. ARL Med. ARL SD(ARL) Ave. ARL Med. ARL SD(ARL)

α = 0.0

1.00 24.47 18.61 22.21 24.16 18.02 20.91
1.22 7.14 5.27 6.24 6.86 4.98 6.05
1.50 2.70 2.15 1.81 2.69 2.13 1.85
1.73 1.83 1.53 1.00 1.78 1.57 0.93
2.00 1.33 1.22 0.53 1.35 1.26 0.52

α = 0.5

1.00 26.81 20.07 21.33 22.97 16.99 19.67
1.22 9.34 7.77 6.34 7.55 5.76 6.07
1.50 4.44 3.89 2.51 3.33 2.81 2.09
1.73 3.16 2.75 1.61 2.15 1.93 0.97
2.00 2.20 1.92 1.09 1.66 1.52 0.63

α = 1.0

1.00 28.13 21.82 20.28 24.91 18.76 20.72
1.22 12.09 9.88 6.68 8.73 6.81 6.99
1.50 7.74 7.18 1.86 3.70 3.19 2.00
1.73 6.75 6.56 0.84 2.68 2.45 1.09
2.00 6.33 6.22 0.52 2.10 1.99 0.64

We also conducted simulations using the same delay distribution as above but
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monitoring the CUSUM from the startup period of t = 0. While theoretical ap-

proximations are not available for this approach, Table 4.2 nevertheless shows that

considering the process outside equilibrium results in longer ARLs for all the three

cases α = 0, 0.5 and 1. An interesting observation is that the ARLs for the case

α = 1, when there is a constant delay of 5 years for all subjects, are just a trans-

lation by exactly 5 years of the ARLs under α = 0 (with no delay). The fact that

the run length distribution just shifts by a constant is apparent from the fact that

the standard deviations remain the same for α = 0, 1. It is harder to interpret the

numbers for the case α = 0.5 as the delays then are a mixture of 0 and 5 years. Table

4.2 also displays similar statistics for Exponential(1) delay times. Observe that since

Exponential(1) random variables are not finitely supported, the process N(t) is never

in equilibrium in finite time, as can also be seen from (4.4). The ARLs in this case,

however, appear to be much shorter than with constant delays.

4.5 Conclusion

A CUSUM chart incorporating iid delays in continuous time has been proposed

and studied through simulations. A proportional density assumption is used to

describe the relationship between the failure distributions at the population level

and that at the current facility of interest. The fact that the system of homogeneous

Poisson arrivals followed by independent failure times and delays gives rise to a

multivariate Poisson process is a useful connection. It is easy to see that this idea

may be generalized to cases when there is a relay of events following independently

after a stream of homogeneous Poisson arrivals.

In organ transplantation, the reports of failures or alive status usually come in at

periodic intervals scheduled from the date of transplant. So the delay times are not
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iid anymore and they will depend on the failure time as well. This also means that

the delay distribution will differ by institution. It is of interest to develop a CUSUM

that incorporates this kind of a delay mechanism as well.



CHAPTER V

Summary and future directions

In this chapter, we shall summarize the dissertation and note possible directions

for future investigation.

5.1 Pseudo observations

An investigation of the use of pseudo observations for point and interval esti-

mation in a multi-state event history model with censoring has been implemented.

Model assumptions and simulation parameters have been selected along the lines of

Andersen et al. (2003). This is also compared to point estimation based on a Cox

model (Cox (1972)) and interval estimation using the bootstrap and the compari-

son assessed via simulations. Results from simulation studies suggest that bootstrap

methods do quite well in terms of coverage probabilities, for estimating parameters

in the logistic model. Particularly, when applied to the Cox model estimates, both

the coverage probabilities and the average interval widths seem to be very satisfac-

tory. The estimation procedure based on pseudo observations, however, presents

difficulty in implementation and yields wider intervals. Through a single time point

model, it becomes clear that truncation of the pseudo values may lead to heavy bi-

ases. It is also clear, theoretically, from a simple two-sample survival model example,

that estimates based on pseudo observations are inconsistent when the censoring is

80
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covariate-dependent.

It is interesting and useful to be able to address the numerical issues involved

in solving the estimating equation for pseudo observations and develop theoretical

results for the estimates based on pseudo observations for models involving censored

data. In most models considered so far, the occupancy probabilities are complex non-

linear functions of covariates and attempts to construct a linear relationship could

lead to very crude approximations. This error in approximation may partially explain

why the pseudo observations approach is not working very well. In this dissertation,

we have fit a logistic model to the pseudo observations. As noted before, some of

the pseudo observations are outside the range of values permissible under the model

and it is not clear what a reasonable model would be. The fact that the pseudo

observations need not lie in the same range as the original parameter to be esti-

mated complicates the problem. When the censoring is covariate-dependent, pseudo

observations are not able to correctly estimate the model parameters conditional on

the covariate, which is essential in a regression problem.

Finally, note that pseudo observations arise from the jackknife. Previous work

in this area (see Hinkley (1977), Simonoff and Tsai (1986), Wu (1986) among many

others) discuss applications where the pseudo observations are generated from the

model whose parameters are to be estimated. In the applications discussed in this

article, however, the pseudo observations are defined prior to fitting the regression

model, substituted as the response in the regression and the regression parameter

estimated. So it is not clear how one may appeal to results on the jackknife based

on earlier work and more research is required in this area. It is useful to investigate

how these methods perform when pseudo observations are generated from the model

rather than the estimate.
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5.2 CUSUM procedures

A CUSUM procedure has been developed and implemented in continuous time

and simulation studies demonstrate that it leads to quicker detection or signal times

as compared to certain discrete versions commonly used in the health-care area. The

method of likelihood ratio scoring may be applied to several settings that involve

monitoring outcomes. In this dissertation, we have used a binary outcome and a

Poisson approximation. However, other models may also be used to form the likeli-

hood ratio at each time point and then define a CUSUM process in a similar fashion.

Theoretical approximations to the average time to signal may also be obtained simi-

larly by exploiting the renewal nature of the CUSUM process and employing Wald’s

identity.

Several other approaches have also been suggested in the literature (Dvoretzky

et al. (1953), Ewan and Kemp (1960), Woodall (1983), Zacks (2004)) for deriving

approximations to the ARL. Methods using integral equations have been discussed

in Goel and Wu (1971). Approximations using Markov chain methods have been

discussed in Brook and Evans (1972) and Steiner et al. (2000). The theoretical

approximations to the ARL derived here agree with the actual simulated numbers

quite well when the underlying random walk for the CUSUM has a positive drift.

It is of some interest to investigate if improvements on the current approximations

are possible for the case of a negative drift using some of the above methods. The

theoretical approximations to the ARL have been obtained under the assumption

that the random walk process is in equilibrium which constitutes monitoring the

CUSUM only after a certain transient period has elapsed. Simulation studies have

shown that monitoring the CUSUM from startup (t = 0) yields different ARLs and
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it is of some interest to derive approximate theoretical results for the ARL in that

case. It is also of interest to obtain approximations in the case of nonhomogeneous

arrivals.

For building a CUSUM incorporating reporting delays, we have assumed that the

delay times are iid. However, in reality the times of report are often fixed to occur

at anniversaries with respect to the arrival times. It is of interest to build a CUSUM

procedure which adapts closely, to some degree, to this situation.

From simulation studies, it was seen that for small facilities performing less than

10 transplants per year on average, the tradeoff between Type-I error and power

becomes more apparent. If it is not a lengthy and costly process to review a small

facility, then a little higher Type-I error may be tolerated to buy more power which

may be crucial to detect performances consistent with the alternative. Relaxing the

level of Type-I error or increasing the follow-up period may be possible options for

getting more power, but more research is needed here.

In this dissertation, we have simulated the CUSUMs under the assumption that

the performance status of an institution remains the same throughout time (see (3.4),

for example). This approach has the advantage that it becomes easier to define a false

alarm rate based on whether the institution is in-control or out-of-control. In actual

practice, however, the state of a facility may be transitory and the postulation of a

change-point may be more interesting. The CUSUM may be formulated as a change-

point detection problem (see, for example, Lorden (1971), Moustakides (2004)) and

it is interesting to simulate under these conditions. It is, however, not clear how one

may define false alarm or misclassification rates in this scenario.

For the assessment of false alarm rates in Chapter III, one needs to know the

true status of an institution. While it is easy to do this in a simulation setting, it is
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not clear how to do this for real data. It may be useful to design the CUSUM first

on a portion of the data with identifiers for in- and out-of-control status and then

implement it on the rest of the data. Conducting the CUSUM in two phases has also

been suggested in Woodall et al. (2006).

For a CUSUM chart to signal, it should essentially attempt to capture the slope

of the chart and so failures in quick succession are more crucial than the absolute

number of failures. As studied in this dissertation, a CUSUM having fixed boundaries

is bound to signal eventually without regard to this feature occurring or not. It is

interesting to develop signaling rules for the CUSUM based on the V-Mask (Barnard

(1959)) procedure. This is a two-sided procedure involving drawing a cone with

vertex at a fixed horizontal distance to the right from the current CUSUM value

and arms diverging towards the origin. The CUSUM is said to have signaled at the

point where either arm crosses the CUSUM curve and not signaled if the curve is

completely within the cone. This takes into account the increasing variation of the

chart with time and signals when the slope of the chart registers abrupt changes.

In so far, we have discussed the implementation of CUSUM procedures designed

to detect outcomes which are worse than the average. In the interest of quality

improvement, it may be desirable to have a CUSUM for identifying performance

changes leading to better outcomes. It is possible to design a one-sided CUSUM

with an alternative in the other direction and the CUSUM would stay below zero

with downward trends implying worse performance. One can also use two-sided

CUSUM charts as discussed in Page (1954) to detect performance changes in either

direction.

Finally, it is important to remember that CUSUM signaling does not necessar-

ily prove that a clinically important decline or improvement in clinical quality has
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occurred. Rather, the signal suggests that closer examination by the quality im-

provement team may be required. Although the CUSUM has been set up as a test

of hypothesis problem, this is an important philosophical distinction from the usual

accept or reject outcome of a hypothesis test.
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APPENDIX A

Computation for censoring in the illness-death model

The probability that an individual with covariate Z is censored in the illness-death

model is,

P1C(Z) =

∫ ∞

0

∫ ∞

u

P11(0, u− |Z)dΛ12(u)P22(u+, v − |Z)dΛ2C(v) +∫ ∞

0

P11(0, u− |Z)dΛ1C(u)

Under assumptions of time-constant intensities, this simplifies to,

P1C(Z) =
1

λ12eγ12Z + λ13eγ13Z + λ1Ceγ1CZ

[
λ1Ce

γ1CZ +
λ12e

γ12Zλ2Ce
γ2CZ

λ23eγ23Z + λ2Ceγ2CZ

]
The unconditional probability of being censored with Z = 0 or 1 is,

α = πP1C(1) + (1− π)P1C(0)
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APPENDIX B

Deriving the limit of E(τh) as η → 0

We have,

E(τh) =
h

η
− e−µ(eθ − 1)

η

(
1− e−ω0h

1− e−ω0θ

)
We can take the limit of the above expression as η → 0. Consider first, the function

h(ω) = log f ∗(ω). We want to look for a zero of h(ω). We have, ignoring constants,

h(ω) = ω(eθ − 1) + eµ(e−ωθ − 1)

= ω(eθ − 1)− eµ
(
ωθ − ω2θ2

2
+ . . .

)
= −η

γ
ω +

ω2θ2eµ

2
+ . . .

so that an approximate non-trivial zero may be obtained as ω0 = 2η/σ2, by consid-

ering only the first 2 terms and using σ2 = θ2eµγ. This approximation will be good

if we can ignore the higher order terms and that can be done if ω → 0. Observe that,

when η = 0, h(ω) = eµ(ωθ − 1 + e−ωθ) and so ω0θ = 1 − e−ω0θ is an exact relation

for every zero ω0 of h. Also, one can see that ω0 = 0 is the only zero in this case.
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Combining all of these, and noting that θeµ = eθ − 1 when η = 0, we get,

lim
η→0

E(τh) = lim
η→0

[
h

η
− e−µθeµ

η

ω0h− ω2
0h

2/2

ω0θ

]
= lim

η→0

[
h

η
− ω0h− ω2

0h
2/2

ω0η

]
= lim

η→0

ω0h
2

2η

= lim
η→0

2ηh2

2ησ2

=
h2

σ2

which is the formula for E(τh) (before substituting σ2 = θ2eµγ) under η = 0.
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