THE UNIVERSITY OF MICHIGATN

COLLEGE OF ENGINEERING
Department of Engineering Mechanics

Special Technical Report

AN INVESTIGATION OF INITIAL. YIELDING AND STRAIN HARDENING
IN A CAST ZINC ALLOY

David R: Jenkins

ORA Project 02797

under contract with:
AFERONAUTICAL, SYSTEMS DIVISION
CONTRACT NO. AF 33(616)-6041

WRIGHT=-PATTERSON AIR FORCE BASE
OHIO

administered throughs
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

April 1962



PREFACE

This sﬁudy was undertaken as a part of a broader program which
deals with the effect of state of stress on the failure of metals at
various temperatures under the sponsorship of the United States Air
Force, Contract No. AF 33(616)-6041. The work discussed here deals
specifically with the behavior of a single material in the plastic
range. Fracture is not considered.

The author expresses his thanks to the United States Air Force,
in particular Dr. J. A. Herzog, who made possible the extensive ex-
perimental program. Especial thanks are due to Professor R. M.
Haythornthwaite for his guidance during the research and for his
encouragement to pursue this particular problem. Many persons should
be thanked for their assistance during the experimentsl pheses of the
work but the author wishes to single out Mr. Milo Kaufman, Senior

Laboratory Machinist, for his expert ald when it was most needed.
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ABSTRACT

The twofold obJectives of this research are first to determine
whether initiel ylelding in a meterial which ruptures in a brittle man-
ner can be predicted by a yleld condition which assuﬁes independence of
mean stress and isotropy, and second to determine whether contemporary
theories of strain hardening can be used to predict the effect of plastic
strain on the yield condition for this materiasl. If applicable, these
contemporary theories of strein hardening offer a better deseription of
the behavior of technically significant materials than do theories assum-
ing ideal plasticity and yet are mathematically tractable in the solution
of boundary value prodblems,

A thorough exploration is presented of various theories of initial
yielding and of strain hardening including the isotropic hardening theory
after R. Hill, the kinematic hardening theory of W. Prager, and the piece-
wise linear hardening theory of P. G. Hodge, Jr. The predictions of these
theories are then described as motions of the several yield surfaces in
the octshedral plane of principal stress space. In addition, predictions
are made of yleld surface motions in appropriate subspaces.

The specific material considered in the experimental portion of the
researéh is cast Zamsk-3, a zinc-base material containing about four per-
cent aluminum. Thin tubular specimens of this material were subjected to
various combinations of axial force and torque or axial force and inter-
nal pressure in a combined load testing machine. In this device, the
applied loads can be held in a fixed ratio. Two testing temperatures,

viii



namely 32°F and 78°F, were employed. In all cases the ultimate rupture
is brittle with no evidence of localized plastic deformation.

One set of results concerns the isotropy of the material. For tubes
subjected to axial tension, axial and circumferential plastic strains
were compared. Also the plastic volume change in the internal cavity of
the tube was noted. Both of these types of experiments show that Zamek-3
regsponds to plastic straining as if isotropic.

Initial ylelding at each testing temperature was investigated by
applying various ratios of axial force and torque or axial force and in-
ternal pressure to the tubular specimens. Initial ylelding is defined in
the sense of the "proportional limit" stress. The degree of scatter in
the initial ylelding data obviates the selection of a particular initial
yilelding criterion. However, yileld criteria such as Tresca or maximum
reduced stress fit the date as well as the Mises criterion. Thus these
eriteria are used In the analysis of strain hardening since they give
plastic strain increments which are partially independent of the stress
path. Initial yielding at T78°F appears to be independent of mean stress
but there is some evidence to indicate that there may be an effect of
mean stress at 32°F,

Behavior in the strain hardening range was investigated in a series
of multiple loading path tests. The procedure was to load first along a
glven radial loading path (i.e.,constant stress ratios) to a point well
beyond the initial yleld surface, then to completely unload the specimen

and to reload along a second radial loading path until yielding had

ix



occurred. Here combinations of axial force and internsl pressure were
used so that rotation of the principel axes of stress would not occur.
The results indicate that the kinematic hardening theory in conjunction
with either Tresca or meximum reduced stress yleld criteria glves good
predictions of the state of stress at yielding on second loading. This

appears to be true even for falrly large translations of the yield sur-

face.



CHAPTER I

INTRODUCTTION

The research described in this dissertation has two major objec-
tives:

1. To determine whether a material whose rupture behavior is brit-
tle, i.e., exhibits a relatively small total plastic strain before rup-
ture occurs, would yield initially in accordance with a yield condition
which assumes independence of mean or average normal stress and isot-
ropy of material.

2. To investigate the effect of plastic strain on the yield con-
dition under combined stress and in particular to assess the validity
of contemporary theories of strain-hardening for predicting this strain-
hardening behavior in the material mentioned above. All of the strain
hardening theories that are considered fall within the concept of the
plastic potential.

In large measure, investigations of initial yielding and of strain-
hardening have related to ductile materials (i.e., materials which under-
go a large plastic strain before rupture). Initial yielding for ductile
materials of technical significance has been shown to be insensitive to
mean stress to a good approximation. PFurther if isotropy of the mate-
rial can be established, 1t would be expected that a yield criterion in

terms of the deviatoric stress components, such as the von Mises or the



Tresca, might apply. As will be seen in the literature review of
Chapter V, relatively few investigators have been concerned with the
predictions of recently conceived straln hardening theories even for
ductile materiasls. Thus it appears that the present research might
furnish some unique results.

Rather remarkable success has been atteined in solving boundary
value problems by means of the theory of plasticity in conjunction with
8 rigid-ideally plastic material model. Ideally plastic defines a mode
of behavior in which the yield condition 1s invariasble with increasing
plastic strain. In short, plastic flow initiates and continues at an
unchanging state of stress if that state of stress satisfies the yield
condition. With the exception of mild steel, technically significant
materials do not exhibit this ideally plastic behavior. Thus for most
materials a rigid-strain hafdening model must be assumed so that the
effect of plastic strain on the yield condition can be properly taken
into account. This is of particular importance when multiple loading
paths for a given body or structure are to be investigated. It is not
implied, however, that the yield conditions or stress-strain laws pos-
tulated in the theory of plasticity are intended to describe, in de-
tail, the material behavior. Their purpose is, on the contrary, to
predict correct general trends in the framework of s theory which is
simple enough to be mathematically tractable in the solution of bound-
ary velue problems.

The specific material considered in this research is a cast zinc-



alloy designated Zamak-3. This is primarily a zinc-aluminum alloy which

has the following compositiont

Element Percent of Total
Aluminum 5.99

Iron Trace
Magnesium 0.040

Copper - 0.084

Lead 0.0016

Tin 0.0013
Cadmium 0.001

Zinc Balance

The rupture behavior of this material 1s brittle in the sense already
defined although it does undergo a "ductile to brittle" transition in
that the principal strain at fracture changes from about 0.030 for the
"ductile" state to about 0.004 or less for the "brittle" state. These
variations in behavior can be produced by changing the state of stress
or the temperature. Two testing temperatures, namely 32°F and 78°F,
werg.employed so that the range of states of stress for which brittle
fracture occurred could be varied. However, the ultimate rupture ap-
pears to be transgranular and is not accompanied by localized plastic
deformation processes, such as necking, in the separated region. Such
behavior 1s advantageous in the sense of computing stresses from the
observed loads in the plastic range since gross changes in the geom-
etry of a tubular specimen do not occur. Further details of casting
procedure and material properties are discussed in Chapter II.

The date reported herein were obtained by subjecting tubular
specimens, of the type shown in Figure 1, to various combinations of

axial force and torque or axisl force and internal pressure in a com-
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bined load testing maechine. A complete description of the machine is
presented in Chapter II but it is noted in particular here that the
ratio of axial force to torque or axial force to internal pressure can
be held constant throughout a test run by a unique mechanico-hydraulie
system., Thus for the most part loading paths are what are so-called
radial loading paths.

The thin-walled tubular specimen has been used by many investi-
gators. This sort of test specimen is advantageous since stresses are
statically determinate to a good approximation for axial loading, torque,
and internal pressure. In a material evaluation, it is of course essen-
tial that one be able to determine the state of stress directly from
the applied loads without reference to the material properties.

For reference purposes, a sketch of the cylindrical coordinate
system appropriate to the tubular specimen is presented in Figure 2,

The stresses which are uniform throughout the reduced section, are com-
puted in accordance with the usual assumptions for the membrane stresses
in a thin-walled tube, i.e., plane stress is assumed. For a test in
which axial force and torque are applied, the stresses in the reduced

section of the specimen are

o = P
1 2 2nvrt




Coordinate system and stresses in tube.

Figure 2.



where
r = mean radius of the reduced section
t = wall thickness
P = axlal force along z-axis
T = torque about z-axis.

Alternatively for a test combining axial force and internal pressure,

the stresses are

=F jidat
G.}—i'rrrt N at

-
T = E{_—

Or = Trp=Toy = Try =0
where p = internal pressure. When internal pressure is present,
Op = 1/8 0g at the inner surface of the tube. This suggests that
stress combinations where o, is much less than og be avoided since the
membrane assumption of o, = O relative to the other stresses would not
be acceptable in that case. Consequently the smallest ratio used was
Oz = 1/2 0g Which occurs for internal pressure without axial force.

In combined axial force and torque, o, is a principal stress since
Trg = Tpp = 0 and the principal directions lying in the 6-z plane de-
pend on the ratio of o, to Toz The combined load testing machine
should hold this ratio fixed in a given test and the principal direc-
tions of stress would then remain fixed relative to an element of the

material.

For combined axial force and internal pressure, the stresses Oy



og, and o, are the principel stresses for all combinations of these

loads since Tre = Tog = Trz = 0 in all of them.



CHAPTER II

EXPERIMENTAL APPARATUS AND TECHNIQUE

This chapter contains a discussion of the specimen material, the
loading apparatus and the strain measuring technique which were em-
ployed. It will be useful to discuss some of these items before the
more theoretical aspects of the research are considered. Thus those
aspects of experimental procedure which can logically be separated

from the data analysis are presented here.

MATERIAL

A1l of the tubular speclmens used in this research were machined
from solid cylinders, about l-l/8-inch in diameter, of cast Zamak-3
zinc alloy. The solid cylinders were cast in two equal batches, total-
ing 154 altogether. The casting procedure was to heat the melt of com-
mercially available Zamsk-3 pigs to 1100°F in an induction furnace and
10 pour in graphite split-molds. Molds were machined from solid blocks
of graphite and were sufficient in number that five cylinders could be
cast in each pour. No effort was made to preheat the molds. A rela-
tively large proportion of sound castings was obtained and those cast-
ings containing blow-holes were rejected by visual inspection either
before or during machining.

The microstructure of this material appears to be stable since no

changes in a small sample from a cast cylinder have been observed in
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the period since July, 1960. A photomicrograph of an area of & cast

cylinder in the region of a specimen cross-section is shown in Figure

3.

COMBINED LOAD TESTING MACHINE

This aspparatus was developed as a part of the research program at
The University of Michigan under the sponsorship of the United States
Air Force of which this dissertation is also a part. The author does
not take credit for developing the testing machine.

Figure 4 shows the main features of this unique machine which is
essentially a "loading" device rather than a "straining" device, i.e.,
loads are achieved by hydraulic rather than mechanical means. Axial
forces are obtalned on a specimen inserted in the grips by introducing
a controlled pressure to the tension-compression cylinder. The load
in the cylinder is transmitted along the vertical center shaft through
the thrust bearing to the specimen. The thrust bearing is actually a
set of roller thrust bearings which prevent transmission of torsionsal
loads to the tension-compression cylinder above. Torque is applied to
the vertical center shaft and in turn the specimen by introducing a
controlled pressure to the torsion cylinder. The force in the cylinder
is transmitted through a cable to a wheel fastened to the central shaft,
thus producing a torque. This torque is a true couple since a cable
also runs from the opposite side of the central wheel to the "floating"
frame. Both cables are attached to the "floating" frame, one through

the torsion eylinder and the other directly, so that the resultant
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250X

Figure 3. Photomicrograph of Zamsk-3.
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lateral force on the central shaft is zero., External lateral reactions
on the "floating" frame are carried by the structural frame of the ma-
chine. The specimen grips are designed so as to allow a path for hy-
draulic fluid which furnishes the Iinternal pressure to reach the speci-
men. Tensions or compressions up to 10,000 pounds, torques as high as
5,000 inch-pounds, and internal pressures as high as 4,000 psi are pos-
sible.

The supply pressure to the hydraulic cylinders and for internal
pressure in the specimen is controlled by specially designed valves.
The controlled pressure from these valves is proportionsl to the force
acting on the top of a shaft penetrating the top of the valve body.

The load proportioning system, shown in Figure 5, consists of a
system of levers which apply forces to the shafts on the various con-
trol valves. A single force at the end of lever A actuates the entire
system and this force is obtained by filling a tank with water at a de-
sired rate., By moving lever C relative to lever B, various ratios of
axial forece to torsion or of axial force to internal pressure can be oOb-
tained.

Two entirely separate hydraullc systems are provided, as shown in
Figure 6. The low-pressure system operates at about 1,000 psi and actu-
ates the tension-compression eylinder and the torsion cylinder. The
high-pressure system can reach pressures of 5,000 psi and supplies the

pressure in the internal cavity of the specimen.
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LOAD MEASUREMENT

Axial force and torque were measured by means of a strain-gage dy-
namometer, specially designed for this apparatus. In essence it 1s a
tubular member with flanged ends. Two Wheatstone bridge arrangements
of four electrical resistance strain-gages each are affixed to the tube.
The torque measuring bridge consists of two elements at 45° to the tube
axis and two elements at 135° to the tube axis while the axial load
measuring bridge consists of two axial elements and two circumferential
elements. These elements are introduced into the bridge hook-up so as
to provide temperature compensation and to avoid interaction between
axial loading and torque measurement and vice versa. The outputs of
the strain-gage bridges can be read on a strain indicator or can be re-
corded. In addition to the dynamometer Jjust described, & standard
Baldwin SR-U4 Load Cell, Type U-1, of 5,000 pounds capacity was used
axial force measurement in many of the tests in combined tension and in-
ternal pressure.

Internal pressure in the specimen was read on a 5,000 psi, Bourdon
tube type test gage manufactured by United States Gage Company. This
gage has a 16-inch dial with 10 psi divisions and a tolerance of % 5

percent of the current reading.

STRAIN~MEASUREMENT
Measurements of strain on the test specimen were made by means of
Tatnall C15-141-B, foil-type strain gages which were attached to the

specimen with Eastman 910 cement. This combination of gage and cement
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was selected since it permits measurement of strains as large as 0.0k.
Thus for specimens made of Zamak-3, strains could be measured through-
out the entire plastic range; in most tests the strains at the instant
of fracture were observed. Temperature compensation was provided by
similar strain gages attached to a plece of Zamek-3 placed adjacent to
the specimen.

Strains from the test specimen, and in many cases the output from
one of the dynamometer bridges were recorded on a Heiland Model T712-B
recording oscillograph equipped with Heiland No. 40-1000 galvanometers
and a Heiland Model 119B-1 bridge balance unit. This combination pro-
vided adequate sensitivity for determining the measurable quantities

during the tests.

TEMPERATURE CONTROL

This research program involved tests at both T8°F and 32°F. The
higher temperature is essentially the room temperature of the laboratory
and measured specimen temperatures were within + 3°F of this value.
Tests at 32°F were made by immersing the specimen and grips in a tank
or jacket containing an ice-water bath. By this technique uniform speci-
men temperstures could be maintained for fairly long periods of time
(1-2 hours) and the conditions could be reproduced from test to test

without difficulty.



CHAPTER III

THEORETICAL PREDICTIONS OF STRAIN-HARDENING
BEHAVIOR IN THE OCTAHEDRAL PLANE
In this chapter, the implications of three contemporary theoriles
of strain-hardening and appropriate collateral work are reviewed. These
theories are then used to predict the motlon of the yield surface in
principal stress space as strain-hardening occurs. To aid in the ex-
perimental evaluation to follow some consideretion is given to develop-

ment of a plausible type of anisotropy and its expected effects.

THE MATERIAL MODEL AND THE OCTAHEDRAL PLANE

For a rigid-strain hardening mesteriasl, no strain (i.e. no plastic
strain) occurs for states of stress which do not satisfy the initial
yield condition or which lie inside the initial yield surface. If a
stress path reaches the initial yleld surface but then moves tangen-
tially to the surface, the yield surface does not move or in other words
strain-hardening does not occur and the msterial remains rigid. How-
ever when a stress state point reaches the initial yield surface and
the ensuing stress increment tends to cross the yileld surface, the yleld
surface moves in some prescribed manner corresponding to strain hardening
and (plastic) strains are produced as long as the state point remains in
contact with the yleld surface. Now 1f the stress 1is removed and another

stress path is considered, strain hardening or motion of the yield sur-

18
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face and further (plastic) strain will occur only when this new stress
path tends to cross the previous finael position of the yleld surface.
Assuming that the material to be considered is isotropic initially,
the reference directions may be chosen at random and the principsl di-
rections of the stress tensor may be chosen for convenience. Thus yield
conditions may be stated in terms of the principal stresses and the
yleld surface presented in a principal stress space in a perfectly gen-
eral manner. In addition, assume that ylelding is independent of mean

stress or the hydrostatic component of the state of stress defined by

_m*q-a'l'q-s
3

S

(3.1)

where 0;, 02, and og are the principal stresses. The result of the
latter assumption is that the yield surface in principal stress space
is a cylinder with generators parallel to the octahedral (o = 02 = o3)
axis. The latter assumption follows from the observation that a hydro-
static state of stress, in which all principal stresses are equal, does
not produce yielding.

In view of these two assumptions, a typical octahedral plane, for

which

T + Ty + U3 = Comfant (3.2)

and the normsl 1is in the direction of the octahedral axis, would inter-
sect the yleld surface at right angles. Each intersection of octahe-

dral plane and yleld surface would be identical so any octahedral plane
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may be used. Presentation of results on an octahedral plane, then, is
not only a convenience but also a means of confirming or denying that

yield is independent of mean stress.

INITIAL YIELDING

The general characteristics of an initial yleld condition will now
be considered.

Since ylelding has been assumed independent of mean stress, it fol-
lows that the yield condition can be expressed as & function of the in-

variants of the stress deviator tensor or

F(Jz,:f;)"‘ ‘Ql (3.3)

where
--'- 800 S.-
T = 2 T Y

- A ., <, s
J3=3 3¢ Sir Sul
S¢= O - 353 T.

The general character of a yield condition, entirely apart from
the preceding assumptions, can be derived the "fundamental postulate"
for a stable plastic material enunciated by Druc:ker.l’2 From this
postulate one deduces that the yield surface must be convex. For con-
vex yield surfaces it can be shown that the plastic strain increment

vector must be normal to the yield surface at the state point or

oF

_ (3.4)
T

c/é',_‘j = A
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vhere dey 4 is the plastic strain increment and F(cij) is the yield
function. Equation (3.4) is, of course, the well-known flow rule which
was postulated earlier by von Mises3 without proof.

The flow rule will give the result that
dE, +dE, +d€y = O (3.5)

for any yield condition which is independent of mean stress. Since the
strain increment is normal to the yield surface it would be expected to
lie in an octahedral plane.

In accord with the observed behavior of most wrought metals, it is
assumed that the yleld stresses in simple tension and simple compression
are the same or that the yield process is sensitive to the magnitude of
the stress and not its sign.

Initial yield criteria which are consistent with the preceding re-
strictions_will now be enumerated. These are shown plotted in the octa-
hedral plane in Figure 7. The von Misesh criterion for initial yielding,

in terms of the principal stresses, is
rA (A
(T-T) + (T -T)* + (T -T) =2T* (3.6)

where o, is the initial yield stress in simple tension. In essence this
condition states that Jo = ka. It plots as a circle of radius‘J§73 95
in the octahedral plane.

A criterion based on a limiting value of the maximum shearing stress

was first proposed by Tresca5 and in terms of the principal stress is
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MAXIMUM REDUCED
STRESS

1

Figure 7. Various initial yield criteria in the octahedral plane.



23

Max {[T-Gl,103-T1,15-Tt =0, .7)

The hexagon ABCDEFA corresponds to the Tresca criterion.

Recently, Haythornthwaite6 has proposed a maximum "reduced" stress
ceriterion primarily for use as a bounding yleld criterion when rela-
tively few data on yielding are available. However, this feature will
prove useful later. In terms of the principal stresses, the criterion

is stated
- _ 2
Max { 19-01,1%-T1, (G-71 §= % q, (5.8)

where o is defined by Equation (3.Y). This criterion states that yield-
ing occurs when the absolute value of the largest principal stress devi-
ator reaches a limiting value. It 1s represented by the external hexa-
gon GHIJKLG.

The choice of pure tension as a point of agreement between the var-
ious theories was arbitrary. By so doing however, the bounding proper-
ties of the Tresca criterion and the maximum reduced stress criterion
are shown. If only tensile yield data were available the criteria
would have to coincide at the points shown and Tresca would represent
the minimum curve through the points while the maximum reduced stress

would represent the maximum curve through the points.

ISOTROPIC HARDENING

Following a discussion by Hill,7 the isotropic hardening theory
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assumes that the yield surface, say in principal stress space, merely
enlarges as the plastic straln increases. The enlargement occurs in
such & manner that the yield surface, which was initially symmetric
with respect to the origin, remains symmetric., It follows from this
description that 1sotropic hardening theory would predict no Bauschinger
effect. The final position of the yield surface after hardening is
assumed to depend only on the final state of plastic strain and not on
the path.

For this theory, then, the initial yield surface might be expressed

in a 9-space of the components of the stress tensor as

F(oy)= R* (3.9)

and subsequent yield surfaces after hardening has occurred as

FT)= ¢*2 R, (3.10)

To obtaln a stress increment-strain increment relationship, note

that when the stress state point moves on the yield surface,

E
dgdK = © = ~§?6£‘ [7025 o (3.11)
j

For & strain-hardening material, the plastia strain would be zero for

such a "neutral" change in stress suggesting for dF > 0 the form

47/5¢_J = Gij clF (3.12)

Gij is a tensor having the same basic properties that deij has. Now by

use of the flow rule (%.4), and Equations (3.11) and (3.12) we obtain
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_ ., OF OF
A&; = QR O Oy

ATy (3.13)
where Q is a scalar function which may depend on the stress, the strain,
and their histories. Druckex-2 demonstrates from stability in the small
that Q 18 not & function of daij.

Interpreting the preceding geometrically, Equation (3.11) gives a
quantity proportional to the magnitude of motion of the yield surface
for given stress increment dcij' By Equation (3.12) this motion of the
yield surface proceeds in the direction of the plastic strain increment
vector or in the direction of the outward normal to the yield surface
at the current stress state point. To predict the motion of the yield
surface during strain hardening one need know only the stress increment
and the direction of the normal. The stress increment, in terms of the
principal stresses, has the components dog,, dop, and dos which represent
the incremental changes as the stress state point proceeds beyond the
initial yield surface.

To obtain the values of the components of the plastic strain in-
crement, flow laws are needed which can be found by the use of Equation
(3.13) and the various yield criteria.

For the Mises criterion, Equation (3.6) the following flow laws
are obtained:

cﬁ/éf,==<:? [EZ(CLU]'(Ti‘47511[;163‘73'Gl'&TS)CiGT *'Q-Clﬂﬂ.'qi‘-VS)CiVi
+2(29-T,-T,) d¢3]
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d€, = QLT -0 -G ) [2 (29,-T- )T, +2(2G,-0-G)4
+220-T-0a)dsy]  (3.14)

cléy= Q[2(aTy-T, -T2 (2T, 0,-T3) g, + 3(2T; -7, -G)AT,
+2(30-0-G)clny]

The second bracketed term in each equation relates to the motion of the
yleld surface (a radial expansion) during the incremental stress changes
doy, dos, and doz. It 1s apparent that computation of plastic strain
increments from Equation (3.14) might be somewhat inconvenient. For
this reason, yleld criteria having plane sides, such as Trescea and
maximum reduced stress, may be found more tractable.

Consider the flow laws for the Tresca criterion, Equation (3.7).
For a stress state point which contacts and remains in contact with side

AB, for example, see Figure T, the flow laws are

d&, < Q (dO‘,-d‘Tg)
~déy= Q@ (dv,-dmn) (3.15)
| aé =0

since on that side F = 0, - 03 = 045. Thus 1t can be seen that the
strain increments would be given by Equation (3.15) as long as the stress
point remained in contact with side AB. The values are independent of
an exact stress path but with the latter restriction. According to the
isotropic hardening theory, side AB moves in the direction of the out-

ward normal a distance proportional to dF = do; - dosz and the other
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sides will move the same distance along their outward normals.
Considering now the maximum reduced stress criterion, Equation

(3.8), the flow laws for a stress state point on side LG are

.
at, = @ (3) (adv,- 47, -dvy)
qE,= C?(-—é)(.zdo'.~dq-dv_s,) (3.16)
d&=Q (-4)(ad0, -dv, -dg) .

As with the Tresca criterion, the plastic strain increments are par-
tially independent of the stress path. Motion of the side LG during
hardening would be along the outward normal in an amount proportional
to (2do; - dos - dos) and by the isotropic hardening hypothesis the
other sides move along their outward normals like amounts.,

Figure 8 presents geometrically a typical prediction of isotropic
hardening theory for the stress path Ol. The solid clrcle and hexagons
represent the final positions of the various yield surfaces or loading
surfaces presuming loading is stopped at point 1. Relating this to the
tube test, if oz is treated as oy and o; = 0y and o2 = og, then the
path Ol could be produced by a combination of axial tensile force and

internal pressure.

KINEMATIC HARDENING

The kinematic theory of hardening, originally proposed by Prager8
and discussed extensively by Shield and Ziegler9 states that, in a 9-

space, the initial yield surface

F(Ty)= R (3.9)
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becomes after plastic flow

F (T¢; — o) = RE (3.17)

The flow rule (3.4) is assumed to apply and the yield surface is
assumed to translate without changing the form of F(oij). The tensor
aij represents the rigid body translation of the yleld surface which
occurs in the direction of deij (i.e., the outward drawn normal to the

yield surface). Thus

dXg = cdg; . (3.18)

This strain hardening theory gives predictions of material behavior
which include the Bauschinger effect.

Using the condition that the state point remains on the translat-
ing yield surface, one is led to the requirement that

OF _

- . (3.19)
302')- o

(do.;,,) "C/Olc',‘)

Another way of stating the foregoing requirement is that daij is equal
to the projection of dciJ on the normsl to the yleld surface at the
initial stress state point. Combining Equation (3.19) with the flow
rule, Equation (3.l4), and with the condition expressed by Equation (3.18)

gives

(3.20)

This equation, like Equation (3.13) in isotropic hardening, indicates
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that plastic strain inecrements and stress increments are linearly re-
lated.

Since Q&J is not necessarily an isotropic tensor (i.e., components
invariant with rotation), it i1s possible that an initially isotropic
material may become anisotropic with strain hardening in view of Equa-
tion (3.17). However, as suggested by Shield and Ziegler let us re-
strict the loading so that the principal axes of the stress tensor are
fixed in an element of the material during plastlic straining. These
principal axes cen then be treated as the reference axes. For an
initially isotropic material, Equation (3.9) holds and 034 = 0. The

flow rule then gives the information that

dE; =0 (#]) (3.21)

Since the principal axes of the stress tensor and plastic strailn incre-
ment tensors coincide. Equation (3.21) would not be correct if the
reference axes were not the principal axes of stress during the initial

strain increment. From Equation (3.18) it follows that
A = 0 (C#)) (3.22)

under these conditions and principal axes of stress remain principal
axes during hardening.

It has already been noted that the principal axes of stress in the
tubular specimen are fixed in an element of the material for all com-

binations of axial force and internal pressure. When axial force is
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combined with torque, the principal axes of stress are also fixed as
long as the control system maintains a constant ratio of axial forece
to torque.

For convenience, let us restate the kinematic hardening theory in

terms of the principal stresses as follows:
(97,7, T3) = R? (3.23)
before hardening becomes
F(Q'.-QEHU'L~C.€,,’O"5-CES)= R? (3.24)

after hardening. The quantities ce€;, cep, and cez represent the trans-
lation of the yield surface as a rigid body in principal stress space,
the translation occurring in the direction of the outward normal to the
yield surface at the stress state point.

As would be expected from the observed similerity between Equa-
tions (3.13) and (3.20), the flow laws for kinematic hardening are
quite similar to those for isotropie hardening. For the von Mises
criterion of ylelding we obtain

dg,: & .3-415., [2(20:-0,- )[2(aTi-0,-T3) AT, .
+2QT-0,-0)dT, +2(203-0,-0)dgg) |
des and dez have similar form, the only differences arising in the first
bracketed term. Comparing this result with Equations (3.14) for iso-

tropic hardening, it is apparent that the flow laws for the two theories
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differ in the nature of the initial constants and are identical in
other respects. This renders it unnecessary to state again all of the
flow laws as done in Equation (3.14) for isotropic hardening. It
should be noted, however, that the components cde;, cdez, and cdes of
rigid body motion of the yleld surface also represent the motion of
the center of the circle which represents the von Mises criterion in
the octahedral plane,

Figure 9 shows the motions of various yleld surfaces as predicted
by kinematic hardening theory for the stress path 0l. The dashed circle
represents the initial position of the Mises circle and the solid circle
represents the Mises condition after hardening as caused by stress-path
0l. Vector 03 represents the total amount of this motion, daij’ which

in view of Equation (3.18) and (3.20) has in general the components

l AF OF
d‘xu = éf é_.F 90{-) 30;151021 . (3.26)
P ITin

If one wishes to obtain the total distance the yield surface moves

rather than the components, consider the problem in the vector sense in
principal stress space. d“ij is then a vector and its magnitude in the
direction normal to the yleld surface is obtained by performing the dot

product between d“ij and a unit vector in the direction of the normal,

i.e., a "unitized" gradient vector O 1 . With this in mind
do i3 oF . oF
one obtains for the distance moved aﬁmn aomn
l oF

‘C;:;i; 2 (?215 OF )%g .E;Qil Ci(ﬁiz (3.27)
DTy Hapn
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o3(0,)

Figure 9. Kinematic hardening for stress path Ol.
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Thus for the von Mises criterion the distance 03 in the octahedral

plane is given by

57—— |
.2
+(20y -0-0)dR]

for the motion beyond the initial yleld surface. The preceding analysis
for the von Mises yleld criterion is valid only for incremental motions
of the yileld surface or for incremental changes in the state of stress
beyond the initial yleld surface.

Now consider the situation where the Tresca yleld criterion applies
and the stress state point remains on side AB, see Figure 9. The flow

laws or stress-strain laws from Equations (3.7) and (3.20) are

d€, = %4 (dv, -av)
—dgy: £ 4 (A7, - AT) (3.29)
A€, =0

since on side AB, F(o ) = 01 - 0g =0

i)
ponents of motion of the yileld surface would be cde; and -cdez. The

o° During hardening the com-

total distance moved, from Equation (3.27) would be L (doy - doa) and
in Figure 9 this would be the length of the vector CQ? The solid hexa-
gon A'B'C'D'E'F'A' in Figure 9 represents the final position of the

Tresca yleld surface for a stress path Ol. When oz = 0,, 01 = 05, and

02 = Og, the stress path Ol would result from a combination of axial

tensile force and internal pressure.
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For yield surfaces like the Tresca or the maximum reduced stress,
the corners formed by intersection of plane sides give rise to sin-
gularities which require special treatment. Should the stress state
point enter a corner, such as corner A for Tresca, the yield surface
will move in the direction of the stress increment vector. This re-

guires that
AT = doy; = ¢ dE; (3.30)

if the state point remains in a corner. To determine whether a state
point remains in a corner, the possible directions of the strain in-
crement vector in view of Equation (3.30) must be considered. KoiterlO
has shown that at a singular point in the yield surface, the strain in-
crement vector must lle between the outward normals to the bounding
sldes., Thus for a state point at a corner, the state point remains in
the corner if doij lies between the outward normals to the bounding
sides. Otherwise the yleld surface moves as if the state point were
on a side.

Consider now the case when the maximum reduced stress criterion

applies and the side LG is contacted by the stress state point. From

Equations (3.8) and (3.20) the following flow laws are obtained:

1]

¢, = L (4)(aan,- av; -dm)
ae, -CL (—?’;)(:Ldv*,-do‘,,-dog) (3.31)
déy= L (-4)(ads ~do,-dg) .
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Note that on side IG, F(oij) = 2/30, - 1/302 - 1/303 = 2/30,. The vec-
tor 6& in Figure 9 represents the motion of the maximum reduced stress
yield surface to the final position G'H'I'J'K'L'G' for the stress path
0l. Components of this motion are given by cde,, cdes, and cdes from

Equation (3.31). By Equation (3.27) the length of O4 or the magnitude

of the motion of the yield surface is found to be

0“7:-\,].(: (2dv, -dc, -dT) . (3.32)
The comments relative to motion of the yileld surface for a stress state
point in a corner presented in the preceding discussion for the Tresca
yield criterion also apply in this case.
The forms for the various criteria of yielding after kinematic
strain hardening has occurred are as follows:
Mises
2 2 Z 2
[(T3-03) ~ C(€,~ €3)] +[(@-T)- €(€,- &) + (G- -¢ (£,-€))] = 2T,
Tresca
Max { [(T-T)-¢ (66| ) [(@-T3)- L& -6, [(G-G)-cle-€,0} = To
Maximum Reduced Stress (3.33)

- 2
Max{1-T-c§l, [0-T-c§l, [63-0-c 1} = § o,

PIECEWISE LINEAR HARDENING
. . 11,12
A third strain hardening theory has been developed by Hodge
and the name used here is that selected by Hodge. Hodge's work is based

solely on the Tresca yleld criterion and takes advantage of the limited

stress path independence of such a criterion. It will be obvious as the
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theory is developed that the maximum reduced stress criterion could
serve equally well as the basls for development of a parallel theory.

The general concept of plecewise linear hardening differs from the
isotropic or kinematic hardening theories in that relative motions be-
tween the sides of the yield surface during plastic straining are per-
mitted. As noted, the yield surface moves as a rigid body in kinematic
hardening and merely enlarges symmetrically for isotropic hardening.

Sanders15 suggested earlier the idea of using a yileld surface
having a finite number of plane sides as a tractable means of deseribing
strain hardening. Sanders discusses in particular, the case of a finite
number of plane yield or loading surfaces which act independently. A
plane loading surface is postulated to move only when "pushed" by the
stress increment vector. The sketch of Figure 10 shows this behavior
applied to the Tresca criterion in the octahedral plane for a typical
stress path. When the state point reaches P, yielding (or plastic
straining) begins and the surface AB is activated and moves in the
direction of its normal. All other sides remain stationary. If load-
ing continues, eventually point P' is reached and surface AF is also
activated. Now the state point lies in a corner and the type and degree
of hardening depends on the direction of the ensulng stress increment.
If dcij lies between the normals to AF and AB, "total loading" occurs
and the stress increment moves both AB and AF. Sanders did not fully
develop these ideas however.

In Hodge's theory, rotation of sides of the yield surface, for-
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Figure 10. Sanders' hardening for a Tresca yleld surface.
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mation of sides, or disappearance of sides is not permitted. In short,
the sides may move independently but the individual motions are each
pure translastions.

As with kinemstic hardening, principal axes of stress and strain
must coincide initially and remain fixed in an element of the material
throughout the plastic straining process.

Using a somewhat different technique from that of Hodge, the theory
is developed by establishing flow laws for each side of the yield sur-
face. This is done first for a stress state point in contact with a
selected side and then for a stress state point in a corner of the yield
surface. Again refer to Figure 7, noting that only the Tresca criterion
of yielding is being considered.

Suppose first that the stress state point remains on side AF where
F =0, - 02 = 05. Equation (3.20) is valid in this development so that

the flow laws for AF are

d =L L (da;-dr)
-dE, = -L - £ (da; - AT) (3.34)

dés'—'—

As for the Tresca criterion in kinematic hardening the total movement

of side AF along its outward normal is = (doy - doz) by Equation (3.27).

«/_2

For convenience the motion of side AF can be stated in terms of de, as

follows:

Kdé,:-‘é (AT, -dT,) (3.35)
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where K ='Jéc. Now consider the motions of the other sides while the
stress state point remains on AF., Side AB may move a distance pro-
portional to the motion of AF so that 1ts movement along its normal is

given by
|
oc-KdE,-r_:— (do; - A7) (3.36)

where O is the constent of proportionality. The side EF by symmetry
would move & distance equal to that of AB along its own normal so that

for EF

X KAE = -'r;__(dq;-dvz). (3.37)

Side BC may also move independently but still an amount proportional to

that of AF resulting in

BKAE = & (dT,-AT3) (5.38)

where B is a second constant of proportionality. Side DE moves a like

amount to BC so -that for DE

BKdE = & (dT -dT,) . (3.39)

Finally side CD may be independent of the others but have a motion pro-

portional to that of AF so its motion is

¥ Kde, = ;‘-—2__ (da,-dT) (3.40)

where y 1s still another constant of preportionality. To prevent dis-

11
appearance of sides, Hodge shows that
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~2@$-—Yso<~(3<~ | € 2x (3.41)

The preceding development will coincide with the predictions of kine-
matic hardening theory if & = 1/2, B = -1/2, and ¥ = -1 and will coin-
cide with the isotropic theory if * =B =9y = 1.

The behavior of the yleld surface for a stress state point enter-
ing a corner is exposed by considering the state point to be in contact
with two sides simultaneously. This however, requires consideration of
the motions for the state point on another side, say AB. Then with the
motion of the yield surface known for state points in contact with two
adjacent sides, the behavior for a state point in corner A can be
treated.

On side AB, 03 - 03 = 0y, and when the state point contacts this
side we have Equation (3.29) for the flow laws. The side AB moves a

distance given by
|
Kde = 5 (de,-dvy) (3.42)

where K ='Jéc as before. In this case adjacent side AF moves slong its

outward normal the distance

“deﬁ‘flf(dﬂ‘dqz)- (5.43)

Now let the stress state point enter corner A as shown in Pigure
11. 1In this instance, sides AB and AF are both moved directly by the

state point. Note that for a state point on AF that de; = -des while
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Figure 11. Piecewise linear hardening for a stress state
point in a corner.
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for a state point on AB that de; = -des. Then superpose the two simul-

taneous motions and obtain the flow law for AB

}
—‘;-i(d¢3—dv',)= Kdey + oK cé, (3.44)
and for AF
L (d -dT) =k d€+ x k dg,. (5.45)

The boundary line between side AF and corner A is defined by consider-
ing the flow laws when a state point is on the boundary. In this sit-
uation, des = O since conditions on side AF must be satisfied. Using
this information in Equations (3.44) and (3.45), since the state point

is also in the corner, we obtain,

é (AT ~de,) = < KdE, = “Jﬁ' (d7, - dT,)

dq,-dy = x (d7,- dx), (3.46)

Thus o is the ratio of adjacent side motions when the stress state point
is on the boundary. When & is known, a stress state point can be estab-
lished as being on side AF if do; - dog < @ (do; - dos) and as being in
corner A if do; - dog > Q (do; - dos).

Figure 12 presents the motions of the sides of the yield surface
for a stress state point which remains on side AF and for a = 0.6,

B =0, and ¥y = -0.3. The indicated stress path Ol is a radial one
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Figure 12. Piecewise linear hardening for a stress state
point on AF,
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although it is not necessary to these motions of the yield surface

that it be radial as long as the state point remains on AF.

ANTSOTROPY

Since one of the functions of the experimental program 1s to es-
tablish the isotropy or lack of it of the Zamsk-3 tubes, the nature of
the anisotropy that might be present will-be considered.

Hilllu has suggested an analysis for a particularly simple type
of anisotropy and the following is adapted from 1t.

First assume that the principal axes of anisotrcpy in cast Zamak-3
tubes are the radial, circumferential, and axial directions. Further
assume that yielding in the material remains insensitive to mean stress
and that the general form of the von Mises yield criterion is appli-

cable., A yield function in accord with these assumptions is

‘1Mz
3 (@

v_§+:u\)'zr,; =1, (3.47)

F -3 +6 (9= T 4 H 4 2L

The constants F, G, and H are related to the yield stresses 0§, cg, and

c§ in the r-, 6-, and z-directions as follows:

(__l""z: F+aG . (3.48)

1)

Similarly the yleld stresses in shear relative to the principal axes are

! |
— = GtH | ——,= HtF
(%) (95

[P

related to the constant L, M, and N by

\ L |
S22k T AM  — T 2N, (3.49)
(%) () g3
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It would appear that a particular type of anisotropy which might
occur in a cast cylindrical bar would be characterized by rotational
symmetry of anisotropy about the r-axes. This means that the yield
stresses in the 6- and z-directions would be equal. Since the Zamak-3%
specimens were cast as solid cylindrical bars, it is possible that
slight radial variations in grain structure might occur as a result of
a varying rate of cooling in the radial direction. Such a situation
could lead to the type of anisotropy described.

Now if one restricts the values of the constants in Equation (3.47)
so that isotropy is present for a rotation of the coordinate system

about the r-axis, the following relationships result:

H= &

~H=L
2F+ (3.50)

M=N.

The yield function, Equation (3.47) then becomes
— z T 2 z ., 2 1
F (T, - }) +H (v?f T.) HH(T- ) + 'J.(zr:«m)Zg,3 +aM ¢§+ IMTG =1 (5.51)

Applying the flow rule, the following plastic strain increments are ob-

talned:
de% = M2F (T-Tp)+2H (- T)

AdEg=A[2F(Tg -T)+aH (Tp-Tp)
d € = N2H (Te-T) + 2H (T~ Tp))

- Af - (W
d%- A “/(JF?‘H)Z*Q% (5.52)
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drr}:: )"“‘Mz}'y

dYpg= N 4M g
As would be expected, it follows from the above that de, + dee + dez = 0.
For a pure tension test where o, is the only non-zero stress, the ratio

of the circumferentisl plastic strain increment to axlal plastic strain

increment is

d e _ ~

- - _ (3.53)
dE} FtH

In totally isotropic material, tho von Mises criterion is given
by Equation (3.6) and, if we let 01 = 0,, 02 = 0g> @nd 03 = 0, the

flow rule gives

dE&s

- A
-

é : (3.5%)
¥

It can be shown that Equation (3.54) is true for any yield criterion

which is independent of the mean stress when g, is the only non-zero

Z
stress. Thus a comparison of axial and circumferentiasl plastic strain
increments might detect the presence of a radially symmetric anisotropy.

The comparison of strain increments suggested above is equivalent
to the measurement of internal volume change performed by Taylor and

15

Quinney. This plastic change in the volume of the internal cavity of

a tube is given by

AV =mrrif (d£}+2d€9) (3.55)
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where r is the tube radius and £ the length. Equation (3.55) is ob-

tained from

2 2
AV = Veinel ~ Voriginal t(r +u)” (L +w) -
where
u = radisl displacement = rdee
w = axial displacement = [lde,.

It must also be considered that products of straln increments are small
and can be disregarded. Obviously Equation (3.54) must hold if the
volume of the internal cavity is to remain unchanged. It follows that
the type of anisotropy described in this section would cause a plastic
or permanent change in volume of the internal cavity.

Pugh16 notes that measurement of internal volume change cannot de-
tect the presence of another type of anisotropy which is rotationally
symmetric about the z-axes. While such anisotropy could be present in,
say, cold-drawn tubes, it is not considered to be a likely occurrence

in cast bars.



CHAPTER IV

PREDICTION OF THE KINEMATIC THEORY OF STRAIN
HARDENING IN SUBSPACES
As a convenience in analysis or for interpreting test data, it may
be useful to work in a space composed of the non-zero components of the

state of stress. In short the yield function
/ ” 2
F'(.q'q y I3 Y=k (4.1)

where “ij are the non-zero stress components and GEJ are the vanish-

ing components is reduced in a subspace to
/ 2
9(7;' )= R*, (4.2)

The flow rule, Equation (3.4) remains valid in a subspace although in
general the engineering components of strain rather than the tensor com-
ponents of strain must be used. However, in the subspace where Equation
(4.2) applies, no information would be obtained regarding the plastic
strain increments which correspond to the zero components of stress.
Further Shield and Ziegler9 show that the kinematic hardening theory
of Prager may not hold in a subspace except under special circumstances.
To use the kinemstic hardening theory in a subspace it must be possible
to eliminate the aij corresponding to the zero components of stress or
else the yield surface would move out of the subspace., 1In addition the
remaining aij must be adjusted so that the yield surface moves in the

49
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direction of the normal to the yield surface at the current stress state
point. To some extent success in solving these problems depends on the

yield condition chosen.

SUBSPACES FOR AXIAT TENSION—TORSION

As discussed in the Introduction, the non-zero stresses in the
tubular specimen for this load combination are g, and Tg,. Thus the
initial yield condition, following Equation (4.2), would be stated in

general as
4 (<. ,'Z*‘,})= RZ. (4.3)

As discussed in Chapter III, the yield condition for an isotropic

material whose yield process is independent of mean stress is

?(Jz,ja): R (1.4)

where Jo is the second invariant and Jz is the third invariant of the
stress deviator tensor [see Equation (3.3)]. Consequently the flow

rule might become

e = 9—%5—-—‘ + % %——3? (5.5)

For the case at hand, it is shown by Shield and Ziegler that

Ao d = (4.6)

3 °

as long as T.g = T, = O by Equation (4.5) regardless of the yield con-

dition. It follows by Equation (3.18) that On.g = a., = 0.



51

Before proceeding further with the straln hardening analysis for
the axial force-torque load combination acting on the tube, it must be
recalled that kinematice theory predicts the development of anisotropy
unless the principal axes of stress are fixed in an element of the ma-
terial. There is the requirement then that the ratio of oz to T4, re-
main constant.

First consider that the von Mises criterion of ylelding applies,
i.e.,, the yield function depends on Jo only. It follows, in this case

that

df,. = df& ) (4.7)
since by Equation (4.5)

dE, = 23%: (—%)cr} + a@%; [(-é)v{_ % (T%‘?} ?d)\

2
and (4.8)

d&p= { ?’% (-3)9; + %;; [(—g,‘-)v}" + {,)(?;,3)‘]} A

and the Mises yield criterion does not involve Ja.
After plastic straining or strain hardening occurs, Equation (4.3),

noting Equation (3.18) for da,

157 becomes

?(G}I‘CES)'Csr)"cfo."%s'%ﬂ\’a})=”?z (4.9)

where 762 = 2€ez (7ez is the engineering shearing strain). Since yield-
ing is independent of mean stress, a hydrostatic component can be added

to each of the normal stresses without effect. Thus add cen to each
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stress. However we know that Equation (4.7) is valid and that the

volume remains constant or
Use of these converts Equation (4.9) to

j,(cr -2¢ e% )2-0;— e X93)= R* (4.11)

which lies in the same subspace as Equation (4.3) but normality of motion
of the yleld surface is not maintained. However, using the transfor-

mation

l
fe;"ﬁ ?ov) ) jex’ Q3 Yo} (k.22)
Equations (4.3) and (4.11) become
g (Q‘? ) ‘LLO})‘-' kR* (4.13)
and
h(c",bs%ce%, 'tgéwg_cgas):h’—. (.14)

For the tension-torsion test, the Mises yield condition in the sub-

space defined by Equation (4.12) is initially

U'32+ toa = 02 (4.138)

}

and after plastic flow this becomes

(W}—%c&‘%)z + (fgg ~ -si ¢ 93)2': T, (k.1ka)

as given by Shield and Ziegler. In this subspace the Mises yield con-
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ditlon is represented by a circle of radius o, whose center moves to the

point (% ce,, 2

5 cgez) during hardening.

For the Tresca yield condition, Equation (4.7) is not available to
aid in reducing Equation (4.9) to & form in which the yield surface is
not deformed since the Tresca condition involves Jz as well as Jo. How-
ever, it has already been observed, in the Introduction, that o, is a

prineipal stress because T.g = Trg = 0 for combined tension and torsion.

2
Iet us consider, further, that o, and oo in Figure 7 are the principal
stresses which lie in the 6-z plane of the tube. In this case, state
points will lie on side AF of the Tresca yield surface, and the flow

rule requires that de, = O. The volume constancy condition, Equation

(4.10) then gives the information that

g€, = -dég . (4.15)

}

The preceding permits of reduction of Equation (4.9) to
7,(v*3~2cs ;ces- 1 C¥o3)? K2 (4.16)

after CE, 1s subtracted from all of the normal stress terms. As noted

the latter 1s valid since the yield condition is independent of the mean

stress.

Considering Equation (4.3) and (4.16) it is apparent that we have
the same subspace both before and after strain hardening. However,
normality of motion is not maintained.

Use here of the transformation

. < d | (k.17)
S -.-.Q‘z'a ) 603" QYO%

°3 §
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converts Equation (4.3) and (4.16) to

h (o ,303\= R* (4.18)
and

h(Ty-2e €4 593-2c693)= k* (4.19)
respectively. The form h = k2 for the Tresca yileld condition is
v,;+ 3&5" = Tt (4.18a)
initially, and after strain hardening is

(v‘,x-ac%)z +( Sp3- cha})" = 7,2 (4.198)

The Tresca yield surface is a circle in the subspace defined by Equa-
tion (4.17).

The preceding analysis for the Tresca yield criterion in terms of
o, and Tg, is not presented by Shield and Ziegler and is believed by
the author to be original.

Results of the analyses for the Mises and Tresca yield conditions
are depicted graphically in Figures 13 and 14. These kinematic models,
as suggested by Prager,8 represent the yield surface as a rigid ring
which moves when a pin (i.e., the stress state point) contacts it.
Note that in both figures, PP' represents the stress increment dcij
while OP' represents the total stress at the final state. The corres-
ponding plastic strain increments are shown as well as the translation

of the origin 00'. Obviously the figures are geometrically similar but
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Figure 13. Kinematic hardening for the von Mises yleld condition.
Combined tension-torsion loading.
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Figure 1k. Kinematic hardening for the Tresca yield condition.
Combined tension-torsion loading.
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only because the vertical coordinate is sultably defined.

A suitable subspace of the non-zero stresses for the maximum re-
duced stress yleld criterion will now be considered. 1In line with the
discussion for Tresca, 1f o; and oo are the princlpal stresses which
lie in the 6-z plane of the tube, then the tension-torsion stress state
points will lie on side GL. See Figure 7.

If attention is confined to a o, - Tgg» OF equivalent, subspace,
the author's analysis indicates that hardening always causes motion out
of the subspace. In short, it has not been possible to eliminate both
ce, and cey in Equation (4.9) for this case.

However a three dimensional subspace composed of g,, Og» and Tq,

(plane stress) does lead to useful results. The inclusion of o in

e)
essence, expands the analysis to include stress combinations obtained
from both combined axial tension-torsion and combined axial tension-
internal pressure. The results for axial tension-torsion, where og = O,

will be on a specific plane in the larger subspace.

Now on side GL of the maximum reduced stress criterion,
2-0""' q.l- 0-3': O. (LF.QO)

However these principal stresses are
T - Up\2
0-' - t q-e +1L—%——¢8) + 'Z.s z
2 2 3
T+ Up v - To\* ;
Ty= A —K—%z— )+ 03 (4.21)

q.'s: V\f = O
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so that Equation (4.20) becomes

i e CURCRREL NS

Before strain hardening occurs, the yleld condition is, in general,
= R* 7
7(0. )WB;Toz) R (4.23)
which, after strain hardening becomes

7(03%&’ , Tp-CEp,~CE, "Q,S-Jicras)ﬂzz (4.204)

according to the kinematic theory. The yield is independent of mean
stress so that ce, may be added to each of the normal stresses. Further

€, = ~(eg + €,) by Equation (4.10) and Equation (4.24) reduces to

7 i LW%- CC253+ 29)] ) [U'g- 0(259*53)]"&&3—1[1“ ‘;5;)}\\%{25)

Apparently Equations (4.23) and (4.25) represent the same subspace but
normality of motion of the yield surface is not maintained. However, if

one makes use of the following transformation

SE= *‘1(0‘9*3'}') S,,:% (Ubv(fa) {g;"ﬁ Z‘e}

- -_-.L e ‘ 4 (4.26)

this objection is removed. This transformation also has been suggested
by Shield and Ziegler.9 Applying the transformation, Equations (4.26)

to Equations (4.23) and (4.25) gives

h (SS )Svl ) t@}) = Rz (4.27)



59

and

2 -2 _3 - pt
h(Sg-3¢¢, Sq= 36 ,66,5 lc??))_n (+.28)

respectively.
The side GL of the maximum reduced stress criterion in this sub-

space 1s explicitly
3‘3,{" + 3’('932— (35-20‘0)2'-: o (4.27a)
initially, and after strain hardening is
3(5,,‘-% &)+ 3(1‘93—- §c703)z- (5§";3ice§ -2G) =0, (h.28a)

Equation (4.27a) represents a cone of revolution with its axes on the

Sg—axis and its vertex at S, = 20_.. A sketch of the surface is pre-

£ o

sented in Figure 15. From Equation (4.26) one observes that, when
=0 h S, = L d = JB i iti i

og = 0, we have 5, = 5 o, an Sn = -7 0,. This condition defines a

plane in the subspace of Figure 15 and the trace of the intersection
of this plane and the cone is shown in the sketch. It is apparent that
the noted intersection does not form another subspace since normality
of motion would not be maintained. This treatment of the maximum re-

duced stress criterion in the Sg, Sﬂ’ Tgg Subspace 1s unique.

SUBSPACES FOR AXTAL TENSION~—INTERNAI, PRESSURE
Again recalling the discussion in the Introduction, the non-zero
stresses in the tube under this combination of loads are a, and Og- In

8 subspace of the non-zero stresses, the initial yield function is



60

(20’0, 0,0)

S¢

Figure 15. Kinemstic hardening for plane stress, maximum reduced
stress yleld condition.



7 (0'9,9'3) = 2, (4.29)

After plastic strain has occurred, the yleld function becomes

- =h? k.30
7(v'9-c5,’v-3-c5}, CE.)= kY, (4.30)

Equation (%.30) applies to an initially isotropic material in which the
principal axes do not rotate in an element of the material. For this
load combination,the shearing stresses T = Toz = Trz = 0 so that the
axial, radial, and circumferential directions are principal directions
regardless of the ratio of o, to og. The general form of the yleld

function, Equation (4.4), is applicable. It is then easy to show that

ay, :c/);.,=d0;}=o (4.31)

}

by the flow rule, Equation (4.5), when the shearing stresses are all
1dentically zero. In view of Equation (4.31) and of Equation (3.18)

vhich defines the incremental translation of the yield surface, we have
ddazz dqro - Clxr}‘ ()

and since the principal axes are fixed
o<9%=o<,.9=°<r} =0. (4.32)

Eugation (L4.32) establishes the validity of Equation (4.30) but the
latter indicates that the yield surface, Equetion (4.29), moves out of

the subspace.
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Now, using the incompressibility condition and adding ce, to each
of the normal stress terms (the yield condition is independent of the

mean normel stress), Equation (4.30) becomes

7 [ T6- ¢ (25 F&3)) Uy- c{a'-‘%ﬁe)] = R?, (4.33)

This lies in the same subspace as that of Equation (4.29) but normality
of motion is not maintained. The following transformation, suggested

by Shield and Ziegler,9 namely

Sg =3 (TerTy) >n* (‘(% %) (4.34)
ffg = éi,+-€3’ <:q“fL (&~ 3)

will be found useful at this point. Equations (4.34) convert Equations

(4.29 and (4.33) to
h( 5,5, )= R* (.35)
for initial yielding and to
h(‘ig-%c% ) 5‘7'%0@7)2 R? (4.36)

after yielding. Note that Equations (4.35) and (4.36) are valid for any
yileld criterion assuming initial isotropy and independence of mean stress.
Now consider specifically the von Mises criterion of yielding, which

is given in terms of the non-zero stresses as

qél- T T +U,0 = T2 (4.37)
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However, using the transformation, Equation (4.34) we obtain

2z
S S, t=T?
g ton =% (4.38)
for the initial yield surface and
2z z
(Sg-%lceg) + (S,)—g_ceq) = G2 (4.39)

for the yield surface after strain-hardening. In this subspace, the
Mises condition is represented by a cirecle whose center undergoes a
translation during hardening. This colncides with Shield and Ziegler's
result.

For the Tresca criterion of yielding in terms of Og and o, we have,

in the case of axial tension with internal pressure

0.33 G-D wher\ ¢3>V’

and (%.%0a)

Us = U, when 0'97'“'3 .
If we have a combination of axial compression and internal pressure, then

initial yielding by Tresca is
Q‘@—U‘} = qo . (LL.LLOb)

The transformation, Equation (4.34), when applied to Equation (4.40a)

for the case of axial tension combined with internal pressure gives

S L Sp = U when (3 >0,
and B L 3 (4, 41a)

53 + %—i Sn =bo w hen ¢9>Wx
for initial yielding and gives
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. 3
Cs -'%_Ce )-—"'L_(S ~5ceq)=g~° when 0357
and § g 3 1 ¥ (4.42a)
_é J~ -3 -
(sS aceg)+ﬁ(5,) 2¢8§)* T when \T9>0'3
for yielding after strain hardening. Simllarly, for the combination of

axial compression and internal pressure, Equation (4.40b), we have now

% 5") : T, (4.41p)

for initial yielding and

% (5y- %ce,,‘)= T, (k. 42p)

for yielding after strain hardening. The above analysis for the Tresca

yleld criterion is suggested but not fully developed by Shield and Ziegler.
Figures 16 and 17 are plots of the Mises and Tresca yield surfaces

in the Sg - STl subspace, As before, these may be regarded as kinematic

models, after Prager,8 in which the yield curve is considered to be a

rigid ring. In this subspace, the vector de; has only the components

J
deg and den.
Now let us turn our attention to the maximum reduced stress cri-

terion of yielding and its appearance in the Sn - 5, subspace. For com-

3
binations of axial force and internal pressure, state points lie on sides

GL, GH, or HI of this yield surface as seen in Figure 7. These three

possibilities are stated in terms of Og and o, as
ZU'%-U'G=3VO w hen U‘}>2%

T34 T = 2T When 20> >q§ (4.45)

$
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2 2 2
(85-3/2 cee) +(S-,,-3/2ce,') =0q

s€2+s,“;=o.oz -\

Figure 16. Kinematic hardening for the von Mises yield condition.
Tension-internal pressure loading.
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Sp»
i 2/4/3(Sq-3/2 ceq)= 0
2//3 8q= 0'0 P'
/ AN
o‘..
y 0 \/ »~
! d‘u
daa;;
°€
(Sg - 3/2ce)-1/1/3(Sq-3/2¢ceq)= 0y

S¢ - 1//3 Sy =0y

Figure 17. Kinematic hardening for the Tresca yield condition.
Tension-internal pressure loading.
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- Ug
and l¢9~ 0-3 = 90_0 winen 2 >v§ .

Note, that the last case includes axial compression and internal pres-
sure. The transformation, Equation (4.34), when substituted into Equa-
tion (4.43), gives the maximum reduced stress criterion in the Sg - Sn

subspace as

S¢S, =26 w hen % >a0
S¢ = T when 2T, >vr3 %@ (k. b4)

and Sg +03 Sy = 2T, when ?5 ><r}

for initial yielding. In view of Equation (4.36), after strain harden-

ing has occurred, these become

(Sg-gceg)-ﬁ(sq-%ceq) =T, when 3>37
(% - gces) =T, when 20>, > ‘%' (4.45)

and (Sé-%e_ee)-}ﬁ(sr’—%cq’):ﬂﬂ“o w hen %2»?'8

This analysis for the maximum reduced stress yield criterion is be-
lieved to be original. Figure 18 depicts the form of the criterion in
the SE - Sﬂ subspace and shows the motion of the surface in the sub-
space for a typical ddij'

One general comment on the extent of motion of the yield surface
in any of these subspaces may be in order. For those cases for which
the yield surface appears as & circle in the particular subspace, only

incremental motions or rather incremental stress changes can be accom-
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Figure 18. Kinematic hardening for the maximum reduced stress
yield condition. Tension-internal pressure loading.
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modated. This is true because the incremental stress-strain relation-
ships, which have in general the form given in Equation (3.13) or Equa-
tion (3.20), can be integrated to obtain finite strains only under certain

conditions. Handleman and Warn.er17 show that integration is possible if

Qaaé-:; < b, (F) (4.16)

using the form of Equation (3.13). 1In Equation (4.46) the hy y must be
differentiable functions of the yield function F(Uij)' If Equation

(4.46) holds,
OF
de.. = h(F) %= da; (4 .47)
¢ t) 3% R2

is integrable. However, the hij(F)’ which depend on the direction of the
normal, must not change along the stress path. Another way to state this
is that deij must have a constant direction, as also noted by Hodge.12

The latter is realized for radial loading or for a general loading if the

stress state point remains on a plane side of the yield surface.



CHAPTER V
REVIEW OF PREVIOUS EXPERIMENTAL INVESTIGATIONS

In recent years, a large literature has accumulated which concerns
experimental evaluation of the plastic response of materials. The author
does not wish to imply that what follows is a comprehensive review of
this literature. On the contrary, & selection has been made so that the
papers discussed are germane to the subject of this dissertation. In-
vestigations of straln-hardening and plastic stress-strain relstions are

emphasized. Initial yielding will be discussed briefly.

INITIAL YIELDING

Both the Tresca yield condition, Equation (3.7), and the von Mises
yield condition, Equation (3.6), have been known for a long period of
time. Both theories have the simplicity which is desirable from the
theoretical vliewpoint but they are, in essence, continuum mechanics
theories and require verification for real materisls. As early as 1900,
Guestl8 performed combined tension-torsion tests on mild steel tubes and
his results supported the Tresca or meximum shearing stress criterion.
A somewhat more well known piece of research was conducted by W. Lode19
in 1926. Lode's experiments involved thin tubes of steel, copper, and
nickel subjected to combined axial tension and internal pressure. Appar-
ently Lode felt that, in view of the von Mises criterion of yielding, the
intermediate principal stress should have an influence on yielding and

his experiments showed that this was true. Thus Lode confirmed the von

70
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0 conducted tests similar to Lodes

Mises criterion. Ros and Eichinger2
on steel tubes under axial load and internal pressure. Their results,
too, were similar to those of lLode, confirming the von Mises criterion.

Shortly thereafter, Taylor and Qqunney‘15 published the results of
a comprehensive series of carefully concelved experiments that supported
the von Mises criterion of yielding. They tested 1sotropic tubes of
copper, mild steel, and aluminum under combined tension and torsion.

Still further confirmstion of the von Mises criterion came with the
work of lessels and MacGregor.21 Thelr results were obtalned on medium
alloy steel (approximately SAE 4340) thin-walled tubes subjected to axial
force and internasl pressure. Radlal loading was used.

There follow a group of papers which deal with initial ylelding and
with various espects of plastic stress-strain relationships and will thus
be considered again later. Marin and Hu22 in 1952 published the results
of tests on 14S-Th aluminum alloy tubes under axial force and internal
pressure. Data from constant stress ratio tests were in good agreement
with the von Mises criterion. However, in another series, the authors
used a loading progrsm that in one case followed the von Mises yield sur-
face and in another case followed the Tresca yield surface. Appreciable
plastic strain was observed in both cases and the authors conclude that,
for varisble stress ratios, neither criterion is rigorously correct,
since the plastic strain should be zero for a "meutral" loading. This
kind of test may not be conclusive, however, since it is very difficult

to "follow" the yield surface without producing some plastic strain.
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Marin and Hue? performed similar tests on 14S-T6 aluminum alloy tubes.
Agein a loading path which followed the von Mises yleld surface did not

2k

result in zero plastic strain. Hu and Marin“" extended their experiments
on tubes under axial tension end internal pressure later to 24S-T alumi-
num alloy. As observed previously, a loading path which followed the
Mises yleld criterion gave measurable plastic strain. In the last set

of experiments, a loading path which followed a criterion proposed by
Prager25 was also tried. (For plane principal stresses the Prager cri-
terion glves a yleld surface that looks like the Trescea criterion but
with rounded corners.) The circuit of the Prager yield surface gave a
very small final plastic strain. Extending their work still further,
Marin and Hu,26 in 1956, reported tests on SAE 1020 steel tubes under
the same loading combination. In this case, constant stress ratio tests
confirmed the von Mises criterion. However, when the load path followed
the von Mises yleld surface, large plastic strains were observed.

In order to determine whether the initlial yield function depends
only on the components of principal stress, Phillips and Kza.echelez7
performed a "rotation" test. Here thin-tubes of 25-0 aluminum were
loaded in tension up to the initial yield surface. Then the principal
stress magnitudes were kept constant while the directions were changed
by suitably combining aexial tension, torsion, and internal pressure.
Very small plastic strains were observed indicating that the yield cri-

terion is a function of the principal stress magnitudes. In other words,

the material is isotropic.
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The question of the dependence of the ylelding process on the mean
stress or hydrostatic component of stress has been investigated in par-

ticular by Bridgeman.28’29

In the first reference, tests of solid cylin-
drical specimens under axial tension and externsl pressure are reported.
For a range of mean stress from zero up to a value equal to the applied
tensile stress, it was found that the flow stress for beginning of yield-
ing and for small plastic strains was independent of mean stress in sev-
eral steels. The second reference presents data from tests in simple
compression in which the plastic volume change was measured. As has been
demonstrated in Chapter III, the plastic volume change should be zero in
a stable plastic material for which the yield is independent of mean
stress. Tests results showed small plastic changes in volume for several
plain-carbon steels, copper, brass, and duralumin. Ros and Eichingerzo
also showed that the yield strength of an annealed cast steel is inde-
pendent of the mean stress for tests performed under axial compression
and external pressure. Based on these results the assumption of inde-

pendence of mean stress of the yield process appears to be justified at

least as a first spproximstion.

STRAIN-HARDENING BY THE ISOIROPIC THEORY

A form of the isotropic theory of strain hardening which employs
effective stress-effective-strain curves has been used by many investi-
gators and, in fact, until about 1950 was the only theory available.

Since this particular concept was widely used, it will be discussed
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briefly before considering the experimental investigations. The dis-
cussion will follow that presented by Hill.7
Use of effective stress-effective strain plots is based on an iso-

tropic strain-hardening hypothesis that

5=H(Sﬂ€) (5.1)

where o is an effective stress and de is an effective plastic strain in-
crement. Now if one assumes that the von Mises criterion of yielding is

valid throughout strain-hardening, the effective stress may be defined as

!

— 3 2

cr:(-z' SGSG (5.2)
where the 513 are the components of the stress deviator tensor. For ex-

ample, in a tube subjected to tension and torsion, Equation (5.2) becomes
N (U'{“' 32’93 )'/2.' (5.3)
The corresponding effective plastic straln increment is
Te = (5 4, C/fc-;)h. (5.4)

These increments can be integrated if the principal axes of strain do not
rotate with respect to an element of the material. For this to be true
the principal axes of stress must remain fixed in an element of an ini-
tially isotropic material. In this event, the principal axes of stress
and strain are initially coincident and remain coincident. However, this

condition requires proportional or radial loading in the case of combined
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axial force and torsicn of a tube. When integration 1s possible the

effective total strain is
T = - 2z l/l
€ = € =(3&;¢&; (5.5)
where €34 are the components of the plastic strain tensor. For the tube

under tension and torsion, Equation (5.5) becomes

1
E=[—§(fa"+£,é}+£{)+—'3- Ysg]/z ) (5.6)
Note that Yoz is the engineering shearing strain. The numerical factors
are introduced so that the function H(€) of Equation (5.1), with Equation
(5.5), is the relation between stress and strain in the simple tension
test. REquation (5.1) relates to plastic strains, strictly speaking. How-
ever, it may be applied to total strains if the elastlc portion of the
strain is negligible. An idea somewhat similar to the preceding would be
to relate the maximum shesring stress and maximum shearing strain under
the assumption that the Tresca criterion of yielding was valid.

Davisjo’31

has used these ideas to interpret the results from axial
tension-internal pressure tests on tubes of annealed copper and of a
medium carbon steel. In both cases he plots his results as octahedrsl
shearing stress vs. octahedral shearing strain which are proporticnal to
o and € respectively. Fairly good correlation (points lying on a single
curve) of the data points was observed. Correlation was not as good in
plots of meximum shearing stress vs. maximum shearing strain. In later

2
tests3 on mild -steel tubes under tension and torsion, Davis found ex-

cellent correlation of data on a plot of octahedral shearing stress vs.
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octahedral shearing strain. The directions of principal strain were
held constant in the latter experiments.

Cunningham, Thomsen, and Dorn53 conducted tests on AZ61l magnesium
alloy tubes under a combination of axlal force and internal pressure and
employed plots of o vs. € to examine their data. A fairly good correla-
tion of the points to a single curve was obtained for constant stress
ratio tests. Variable strese ratio tests were also performed. The plas-
tic strains observed in the tests were compared with strains predicted
from

6722' = ézgz S (5.7)
g
where d€ and o were obtalned from an experimentally determined o vs. €
curve. Remarkably good agreement was obtained. Equation (5.7) is, ex-
cept for a constant, the stress-strain relationship given by Hill for
isotropic hardening [see Equation (30) on page 39 of Reference 7].

Osgood's5h

experiments on tubes of 24S-T aluminum alloy subjected
to axial load and internal pressure resulted in reasonably good correla-
tion of data points when plotted as octahedral shearing stress vs. octa-
hedral shearing strain or as maximum shearing stress vs. maximum shearing
strain. Stresses were maintained in constant ratio during loading.

Tension-torsion tests on thin tubes under variable stress ratios

35 .

were conducted by Morrison and Shepherd. The materials involved were

a nickel-steel and a silicon-aluminum alloy. Typical loading programs

involved the application of tension up to a selected polint followed by
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loading in torsion with tension held constant. Torsion followed by ten-
slon was also used. Plastic strains were computed from an equation sim-
ilar to (5.7), i.e., by assuming isotropic hardening. Good agreement of
observed strains and computed strains was found in many cases.

Marin, Ulrich, and Hughes56

developed & variant of the isotropic
strain hardening hypothesis in which the stress-strain relationship be-

comes

dé; = dB (33) (5.8)

where 46 =k (F) - dF .

By a rather complex procedure dB is determined from experimental tensile
stress-strailn curves. This technique was then used to predict strains

for tension-internal pressure tests on 75S-T6 aluminum alloy tubes, in
which variable stress ratios were used. Measured gtralns agreed well

with predicted strains. In addition strains predicted by a deformation
theory of plasticlty were also in agreement with the measured values. In
a subsequent paper, Hu and Marino [ propose the use of Equation (5.7), after

Hill, but with the assumption of

g=kRa" (5.9)

for the effective stress-strain curve. As noted by Hu and Marin, the
latter assumption is valid only for large strains.

Marin and Hu®? used these theories to predict plastic strains in
tests on 14S-Th aluminum alloy tubes under tension and internal pressure.

Varisble stress ratios were used in one portion of the experimental work.



78

In one case, the internsl pressure was applied first and then held con-
stant while tension was aspplied and vice versa. Multiple loading paths
involved an initial loading in tension, unloasding, and then application
of internal pressure. This procedure was also reversed. In all cases,
predicted plastic strains were in good agreement with measured plastic
strains. 1In another portion of the experimental work, stress ratios were
held constant and the data polnts correlated falrly well when plotted as
effective stress vs. effective strain.

An investigation of 25-0 aluminum tubes subjected to tension and
torsion by Phillips and Kaechele27 gave results that correlated poorly
on a plot of octahedral shearing stress vs. octahedral shearing strain.
However, stress ratios were not held constant.

Gill and Parker38

employed another combination of loads that has
some advantages experimentally. They loaded tubes of alpha brass in com-
bined internsl pressure and torsion, thus avoiding the alignment prob-
lems attendant to axial loading. Effective stress-strain plots were used
to compare the results but rather poor correlation for various stress
paths was obtained. Gill and Parker attribute this to anisotropy and
better correlation of results is found when an anisotropy which is rota-
tionally symmetric about the tube axes is postulated.

It appears that isotropic hardening gives useful predictions of be-
havior in those investigations for which the assumptions of the theory
are satisfied. In nearly all cases, the stress path is one which con-

tinually moves the yield surface outward. For such a stress path, it

may be difficult to distinguish between strain-hardening theories and
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thus the correctness of isotropic theory predictions is not surprising.

STRAIN-HARDENING BY THE SLIP THEORY

Probably the first break from the concept of isotropic strain hard-
ening was the slip theory proposed by Batdorf and Budiansky.59 This
theory is based on the ideas of slip in crystals and while somewhat dif-
ficult to apply does provide the useful prediction that corners form in
a smooth yield surface when it is pilerced by a stress state point.

Budiansky, Dow, Peters, and ShepherduO performed experiments on thin
tubes of 14S-Th eluminum alloy stressed in axlal compression and torsion
to check for the development of corners. In their tests, the specimen
was loaded initially in compression to a point beyond the yield surface.
Then compression and torsion were applied in various ratios so that various
stress paths were followed from this point. In accordance with incremental
theories of plasticity, the initial shear modulus for the combined loading
is elastic. For stress paths in which dng/ch is negative, yielding
occurred at a smaller stress than would be predicted by isotropic hardening
but at the approximate stress predicted by the slip theory. Note that the
prediction of the slip theory for the strain-hardened yield surface is ob-
tained by drawing a pair of lines through the compression loading point
and tangent to the initisl yield surface.

Marin and Hu23 have presented data which appear to support the slip
theory. As a part of the work on 14S-T6 aluminum tubes, under tension
and internal pressure, loading was carried beyond the initial yield sur-

face followed by unloading along the subsequent yield surface predicted
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by slip theory. Very small plastic strains were observed. However,

these results could be explained equally well by assuming that the Tresca
condition of initial yielding is valid. Hu and Marin?u also indicated
that results of similar tests on 24S-T eluminum alloy tubes suggested the
formation of a corner on the yleld surface. It might be noted that in

the paper Jjust mentioned, Hu and Marin consider but reject the possibility
thet the yleld surface might move as a unit.

The tests reported by Marin and Hu26 for cold drawn, mild steel tubes
in axiael tension and internal pressure are particularly significant. For
one specimen, stresses were increased (non-radially) to a point beyond the
yleld surface. The specimen was then unloaded in a stepwise fashion so
that the subsequent yield surface was followed. It 1s obvious from exam-
ination of the results that isotropic hardening is not valid. Although
Marin and Hu interpret the result as supporting the slip theory it is
Just as possible to say that the result supports the kinematic theory of
hardening.

Naghdl and Rowleyhl tested tubes of 24S-T4 aluminum alloy in tension-
torsion in a manner like that reported by Budiansky, Dow, Peters, and
Shepherd.ho Initial loading was in tension to a point beyond the initial
yield surface. Combinations of tension and torsion were then applied so
that various stress paths were followed. Only for those cases in which
dTez/dGZ = -2, was elastic behavior observed in the second part of the
test. TFrom this it is assumed that a corner develops or that the slip

theory applies.
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Naghdi, Rowley, and Beadleug extended the work reported above to a
complex loading path in which radial loading proceeds to a point beyond
the initial yield surface. At this point a zig-zag loading path 1s fol-
lowed by alternating the tension and torsion loads. Data from this type
of test seem to show that the directions of the stress increment vector
and the strain increment vector coincide. This would not be expected if
the yield surface is smooth and thus it is concluded that a corner forms
on the yield surface.

The salient point from the work discussed in this section is that
isotropic hardening often gives incorrect predictions. Postulating the
appearance of corners on subsequent yield surfaces is one way to explain

observed phenomena.

THE FORM OF SUBSEQUENT YIELD SURFACES

Experiments in which the forms of one or more subsequent yield sur-
faces are defined provide a more conclusive demonstration of the type of
hardening theory which may be used.

For example, Gill)Jr5 loaded thin tubes of alpha brass in torsion and
internal pressure so that, after an initial torsion loading beyond the
initial yield surface, the loading followed an expanded von Mises or
Tresca yield surface, Isotropic hardening was assumed to apply. Small
plastic strains were observed when following the expanded von Mises yield
surface while larger plastic strains were observed when following the ex-
panded Tresca yield surface. Normality of strain increment vectors was

found. The author concludes that the actual subsequent yield surface
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falls inside the surface followed.in the test. One might suppose that
kinematic hardening would provide such a yileld surface.

Neghdi, Essenburg, and Koff** have published an even more thorough
investigation of subsequent yield surfaces. The results were obtained
from tests 24S-Th aluminum slloy tubes loaded in combined tension and
torsion. Non-radial loading was used. Unstrained specimens are used to
define the initial yield surface. For the first subsequent yield surface,
all specimens were initially stressed in torsion to a point beyond the
initial yield surface, unloaded, and then reloaded along a non-radial
path to yielding. For the second subsequent yield surface, the initial
loading for all specimens is in pure torsion to a point beyond the first
subsequent yield surface. The motion of the yield surface is studied on
a plot of Ty, vs. 0y. It appears that the yield surface of von Mises
deforms slightly during hardening by elongating in the positive Tgg4
direction.

L5

Somewhat similar results were obtained by Hu and Bratt ™ who ran
tension-internal pressure tests on 2S-F aluminum alloy tubes. After an
initial loading in tension to a point beyond the initial yield surface,
the tubes were unloaded. Ioading then proceeded under various combined
loadings up to yielding. Results of the test program give a subsequent
yield surface which is distorted so that it is elongated in the positive
0y direction.

McComb,u6 too, noted an elongation of the yield surface in the di-

rection of plastic straining, MecComb performed tests on 2014-T61 alum-



83

inum alloy tubes in tension-torsion. For all tests, the initial load-
ing was in tension to a point beyond the initial yield surface. The
specimens were then unloaded and reloaded along various paths with the
ratio of tension to torsion held constent. The distortion of the yield
surface is noted when the results are plotted in Tgz~0y, SPace.

An elaborate experimental program conducted by Talypoth demonstrated
that the yield surface is displaced in the direction of preliminary plas-
tic deformation and may be expanded in addition. This conclusion was
based on experiments performed on steel tubes under axial force and in-
ternal pressure. Multiple loading paths were employed.

4

Finally, Ivey 8 has published the results of a series of tests very

L

similar to those of Naghdi, Essenburg, and Koff ~ but for several aluminum
alloys. The initial loading for all specimens was in torsion to a point
beyond the initial or preceding yield surface. Results are presented in
Tgz-0z Space. Ivey shows that the yield surface translates in the direc-
tlon of prestralin and that it also distorts. The distortion in this case
involves a shortening of the minor axis (parallel to ng) of the ellip-
tical yield surface, but not like that observed by Naghdi, et al.
Although distortion of subsequent yield surfaces is reported by sev-
eral investigators, it should be recalled that the analysis presented in
Chapter IV indicates that distortion of the yield surface can be expected
in the Tg,-0, subspace or the og-o, subspace. Although isotropic hard-

ening is not in agreement with experiments, kinematic or piecewise-linear

theories are not eliminated by the investigations just discussed.



CHAPTER VI

COMPARISON OF EXPERIMENTAL RESULTS AND THEORETICAL PREDICTIONS

In this chapter, the body of experimental data obtained on Zamak-3
tubes under the loading conditions described in Chapters I and II is
used to test the theoretical predictions outlined in Chapters III and
IV. It might be well to reiterate that the objectives of the research
concern first the initlial yield behavior of this brittle material and
second, its response in the strain-hardening range of plastic behavior.
The experiments have been planned in such a way that basic assumptions
of the theory can be checked and that predictions of the theory can be

expected to hold.

ISOTROPY

In the last section of Chapter III, it is shown that an isotropic
tube under the action of pure tension along the z-direction should ex-
hibit a ratio of circumferential plastic strain to axial plastic strain
of -0.5. Total plastic strains can be considered rather than plastic
strain increments because the stress path i1s a radial one. The above
retio does not depend on the form of the yleld condition but is predicted
by the flow rule in conjunction with any yield condition which, in addi-
tion to isotropy, assumes the yield of the material is independent of
mean stress. Plastic incompressibility follows from the latter.

Perhaps more important it is shown in Chapter III that a material

having anisotropy which is rotationally symmetric about the r-direction

8l
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would have a ratio of circumferential plastic strain to axial plastic
strain different from -0.5. See Equation (3.53). Anisotropy which is
rotationally symmetric about the z-direction would not be detected by a
measurement of this ratio of strains.

Figure 19 presents a plot of axial nlastic strain, 34

77 against cir-

cumferential plastic strain, -eg, for two tension tests. The test data
marked OP-12 were obtained at T8°F and the test data marked OP-1L were
obtained at 32°F. These strains were measured with foll strain gages
attached with Eastman 910 cement. For OP-12, the ratio of circumferential
plastic strain to axial plastic strain is -0.53 while for OP-14 the ratio
is -0.54, In order to estimate the degree of anisotropy indicated by
these observations, refer again to Chapter III. If Equations (3.48) and

(3.50) are substituted into Equation (3.53) it becomes

P Z
_dé _ _F__ 1L 9:5) (3.5%a)
der = Fem T

Now the ratio 03/0? can be found for known values of the ratio deg/deg.
When deB/aed = -0.54, cg/c;g = 0.959 and when deg/delz’ = -0.53, cg/a; = 0.970.
The above would imply that the yield strength in the circumferential di-
rection, 06, and the yield strength in the radial direction, c?, differ
at most by about L percent. This indicates a very slight, if any, ani-
sotropy of the postulated type.

A measurement of plastic volume change in the internal cavity of the

specimen, somewhat like the experiments of Taylor and Quinney,15 was also

performed st a testing temperaturé of 32°F., TFigure 20 is a sketch of s
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specimen with rubber plugs and plastic tubing in place. The region lying
between the rubber plugs (i.e., in the region of the reduced section of
the specimen) and the tubing was filled with water. Any change in volume
of the internal cavity lying between the rubber plugs would be indicated
by a change in water level in the plastic tubing. During loading of the
specimen in pure tension, the change in water level was measured on a
scale at roughly the same height as the specimen 1tself,

Of course this apparatus measures both elastic and plastic volume
change. To determine the portion of the total change of volume which is
plastic, a plot has been made in Figure 21 of the actual or measured
volume change against a computed elastic volume change. In a tension

test, the elastic volume change in the internal cavity is given by

Av = e/ (J—'-E-_?-T—)) T (6.1)
where
r = O0.34hk-inch
£ = 3.3 inches
v = 0.25
and E = 11.h x 10° psi,

Figure 21 indicates that the measured volume change in the internal cavity
of the tube is almost entirely a result of elastic deformation in the
tube.

At the higher stresses, i.e., the upper part of the graph of Figure

21, the elastic volume change is greater than the observed volume change
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which means that the plastic volume change is negative. This 1s in
accord with the axial and circumferential strain measurements since
Equation (3.55) will yield a negative AV for deg/dez = -0.5% or -0.5k,
Since the results in thils test complement the results of the strain
measurements, further evidence 1s obtained that the Zamak-3 tubes are

isotropie for practical purposes.

MATERTAL RESPONSE TO SIMPLE STATES OF STRESS

Since Zamak-3 zinc-glloy is a material whose mechanical properties
are not widely-known, stress-strain curves in simple axial loading and
simple torsion are presented.

Figure 22 presents results of tensile tests at both T78°F and 32°F.
The deta shown include the entire range of loading up to the point of
fracture, the strains at fracture ranging from about 0.006 to about 0.009.
It is to be noted that the range of elastic behavior (stress proportional
to strain) is limited and ceases at a stress of about 6000 psi. Further,
in the plastic range of behavior, the curves are not coincident. This
latter observation is characteristic of the material itself, rather than
the specimen, since a similar behavior was seen in the results for 1/k-
inch diameter solid cylindrical specimens.

Reducing the testing temperature from T78°F to 32°F seems to have a
relatively small effect on the tenslle stress-strain curve slthough the
data in the plastic range for the higher temperature do lie slightly be-

low the data tsken at 32°F.
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To afford a ccmparison of behavior in simple tension and simple
compression, Figure 23 is included. It is seen that essentially iden-
tical tensile and compressive stress strain curves are obtalned, thus
Justifying this assumption in the theoretical development. The test for
which datae are shown was not carried to fracture.

Stress-strain curves obtained in torsion at both T78°F and 32°F are
shown in Figure 24. Here it is observed again that the response of the
material in torsion 1is spproximately the same at both test temperatures.
In both of these torsion tests, measurements were terminated before rup-

ture occurred.

INITTAL YIELDING UNDER COMPLEX STATES OF STRESS

In the ensulng discussion, the yleld stress 1s defined as the pro-
portional limit stress since, for practical purposes, the proportional
1imit stress and the elastic limit stress coincide. This point was verl-
fied during one test run by a program of loading and unloading, each sub-
sequent loading stopping at a higher stress. The appearance of a plastic
strain at zero stress on unloading showed the previous stress for which
plastic deformation began. In this case the proportional limit stress
appeared to coincide with the elastic limit stress.

For the combined load tests, the yield stress was determined in the
following manner. Measured values of a, and 0 Or o, and Tagy Were plotted
against the largest measured normasl strain. The smallest stress wvalue
was noted at which the plot deviated from linearity, e.g., if the o, plot

deviated first the "proportional limit" value was noted. The other stress
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component that was observed concurrently with the smallest value was also
noted. Thus the pair of stress components representing yielding were in
all cases a palr of values that had been observed at a given time.

The process just outlined may be clarified by referring to Figure
25, a set of stress-strain diagrams for a typical tension-internal pres-
sure test. Considering the plots of o, vs. €, and Og V8. €4, it is ob-
served that the latter deviates from linearity first. The o5 at the
"proportional limit" is 4360 psi. On referring to the recorded data it
1s round that a value of o, of 7400 psi was observed at the same time as
the noted value of 04. This pair of stresses constitutes the yield value.
Incidentally, the data shown in Figure 25 comprise only the initial por-
tion of the test results. As a matter of general interest, the left hand

portion of Figure 25, showing Oy 88 & function of € is included. Al-

e)
though plotted to the left of the origin, the ee's are positive.

Since selection of the point of deviation from linearity in the
stress-strain plot is difficult to do with precision, other definitions
of yielding are sometimes used. The most common of these 1s to define
the point of ylelding by means of an "offset” yleld strength, i.e., to
define yielding as the stress at which a selected plastic strain occurs.
However, for combined stresses, a consistent measure of this sort would
require plotting of an "effective" stress—"effective" strain curve. As
discussed previously, this in effect requires an assumption to be made

for the yleld condition and in the author's opinion has no place in a

program to test yleld conditions.
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Figure 26 is a plot in the octshedral plane of initial yield data
for all tests performed at T78°F. The x-y coordinate system shown can
be used to locate points in the octahedral plane. These x-y coordinates

are related to the principal stresses oy and oz (03 = Op = 0) as follows:

X = %i C—Q}‘ftrz)
(6.2)

Ld :-i%;((f‘-kﬁﬁb)» .

For tests in combined axial force and internal pressure, 01 = 0, and

02 = Og while the definition of 03 and oo for combined axial force and

01’1 :"%Ek:tY(f§}52+'Zbg

The various numbers adjacent to data points identify the specific test

torque tests is

and type of loading. The key to the test designations is given in

Table 1.

TABIE 1

TEST DESIGNATIONS

Symbol Type of Loading
TO Torsion only
TP Axigl force and torsion
OP Axial force only
PP or X Axial force and internal pressure

PO Internal pressure only
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It might be noted that the X designation refers to multiple load path
tests to be described later. The points under this designation in
Figure 26 represent yielding on initial loading.

As discussed in Chapter III, the von Mises criterion of yielding,
Equation (3.6), is represented as a circle in the octahedral plane.
Since there 1s considerable scatter in the data points, yleld surfaces
which pass through the innermost polnts and the outermost points are
drawvn. The circles shown in Figure 26 are such s pair of von Mises
yield surfaces. To afford a measure of scatter and to facilitate com-
parison between conditions, values of 0,, the yield value avpearing
in Equation (3.6), for inner and outer surfaces are listed in Table 2

for the various yield criteria.

TABLE 2

YIELD VALUES AT 78°F

Yield Criterion Oo, Inner Surface 0o, Outer Surface
von Mises 4950 psi 7550 psi
Tresca 5450 psi 8700 psi
Maximum Reduced Stress L4550 psi 6970 psi

The Tresca yield criterion, Equation (3.7), plots as a hexagon in the
octahedral plane and the bounding hexagons for these data are shown in
golid lines. Finally the dashed hexagons correspond to the maximum re-

duced stress criterion of yielding, Equation (3.8), and again bounding

figures are shown.
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The degree of scatter in the data of Figure 26 obviate the selection
of a particular yleld criterion. However, the yield surfaces having
plane sides appear to fit the data as well as the von Mises criterion,
and, consequently, their use appears Justified in the later analyses of
strein hardening. Further, the data points seem to scatter evenly be-
tween the bounding figures. Since the mean stress Increases systemat-
ically from the pure torsion polnts to the points for which g, = o4, it
is suggested that the data support the contention that initial yielding
is independent of mean stress at this temperature.

For a few typical points, the plastic strain inerement vector at
initial yielding is shown. Increments in the octahedral plane are de-

termined from the plastic straln increments as follows:

(6.3)

Q
=
H
|
SYiw
~~
0
B\l
+
o
o
~

When the loading is a combination of axial force and internal pressure,
we gset de; = dez and deps = dee. In general, the strain increment vectors
are normal to the ill-defined yileld surface. Again there is enough
scatter so that no particular yield surace is indicated.

The initial yield data for all tests at 32°F are shown on an octa-
hedral plane plot in Figure 27. All of the test symbols have been de-
fined in Table 1. As before, the circles in Figure 27 represent the
bounding von Mises yield surface, the bounding Tresca yield surfaces are

the solid hexagons, and the maximum reduced stress criterion is rej re-
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sented by the dashed hexagons. Yield values, 0,, are listed in Table 3.

TABLE 3

YIELD VALUES AT 32°F

Yield Criterion Oy, Inner Surface 0o, Outer Surface
von Mises 5030 psi 7060 psi
Trescs, 5230 psi 8050 psi
Maximum Reduced Stress 42380 psi 6920 psi

The 1limiting o, values for a particular yield criterion are nearly the
same for the two testing temperstures.

Bounding yield surfaces in Figure 27 are drawn, however, without con-
gidering polnts PP-11 and PP-12. Both of these points lie outside even
the largest of the Tresca yleld surfaces that bound the other points.

Two plausible explenations of this behavior are offered. First, it could
be interpreted as the appearance of anisotropy but measurements discussed
earlier indicate that the material is isotropie. ©Second, it could rep-
resent an effect of mean stress on the yileld process. To explore this
possibility, Figure 28 has been prepared. In this figure, a represent-
ative stress for each criterion of ylelding is plotted against I, = 034,
the first invariant of the stress tensor. The representative stress in
the upper graph is the yield stress in simple tension corresponding to

the data points of Figure 27 assumning that the von Mises criterion applies.
This stress is, in fact, the o, which would be computed from Equation (3.6)

if the various principal stress combinations at yielding were introduced.
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The middle graph is & similar set of points based on the Tresca criterion,
Equation (3.7) and the lower graph is also similar but is based on the
maximum reduced stress criterion, Equation (3.8). The abscissas, 051

are equal to three times the mean stress. Thus a yleld process which is
independent of mean stress would give points which plot along a hori-
zontal line in Figure 28. This is in general realized for these data
regardless of the yield condition except for two points at the largest
values of g44. These two points are for tests PP-11 and PP-12. Thus

an effect of mean stress on initial yielding 1s suggested by the experi-
mental observations. If, in fact, the effect exists, it must be described
aé an increase of o, with increasing mean stress. Interpreting this
geometrically, the yleld surface in principal stress space is a cone-

like figure which expands in the direction of positive mean stress, a
rather surprising result to say the least.

Figure 27 also shows data for tension tests (OP-3,5,9,1L4) and com-
pression tests (OP-6,7,8). The observations reported for these tests
tend to Justify the assumption that yleld stresses in tension and com-
pression are equal.

As before, the plastic strain increments for some of the yield stress
points are superposed on Figure 27. A rough indication of normality of
the strain increment vectors is given for these data at 32°F. Since the
degree of scatter in both stress points and directions of strain incre-

ment vector is comparable to that in Figure 26, it cannot be said that
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the data support a particular criterion of initial ylelding.

STRAIN HARDENING UNDER COMPLEX STATES OF STRESS

A series of multiple loading path tests were performed to afford a
check of the various strain hardening theories. The general procedure
in these tests was to load first along a given path (radial in all cases)
to a point well beyond the initial yield surface, then to completely un-
load the specimen and to load along a second radial loading path to frac-
ture, All of the data were obtained by using combinations of axial force
and internal pressure so that rotation of the principal axes of stress
would not occur during the loading program.

In the analyses, the Tresca yield criterion and the maximum reduced
stress yleld criterion are used because of their relative simplicity'in
connection with the straln-hardening theories. As has been noted pre-
viously, the plastic strain increment and consequently the motion of the
yield surface is partially independent of the stress path when the yield
surface has plane sides. Tt has also been seen that under these condi-
tions the plastic strain increments are integrable and thus large motions
of the yield surface can be accommodated.

Figure 29 gives the results for test X-1 which was performed at
78°F. Initial loading in this case was internal pressure alone. The
point designated X1-P1 represents initial yielding while X1-PIMAX de-
notes the largest stress combination reached on the first path. Hexagon
ABCDEFA represents the initial Tresca yield surface and hexagon GHIJKIG

represents the initial maximum reduced stress yield surface. These are
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outlined in dashed lines. DNote that X1-PIMAX lies on a subsequent yleld
surface denoted by the solid hexagons A'B'C'D'E'F'A' and G'H'I'J'K'L'G’
if the kinematic hardening hypothesis applies. The appropriate figures
for isotropic hardening are shown by dotted lines.

The second loeding was a combination of tension and internal pres-
sure and point Xl-Pé represents ylelding during second loading. It is
apparent that ylelding on second loading did occur at approximately the
point predicted by the kinematic hardening theory. Isotropic hardening
would predict a combinatlon of stresses at ylelding that 1s much too
large in comparison with the observed yleld data on second loading.

Strain increment vectors shown in Figure 29 appear to be in accord
with the theoretical requirement of normality for a conservative material.

Figures 30 and 31 present other multiple loading path results for
78°F. 1In test X-3, Figure 30, the initial loading was a combination of
tension and internal pressure although as indicated the path is not radial.
Second loading for test X-3 was internal pressure alone. In test X-k,
Figure 31, the loading program is essentially the same as that for test
X-1, Figure 29. The results of Figure 30 appear to agree very well with
the predictions of the theory of kinematic hardening both in regard to
the position of point X3-P2, representing yielding on second loading,
and in regard to directions of the strain increment vectors. In Figure
31, the point X4-P2 for ylelding on second loading indicates that the
translated maximum reduced stress yield surface, G'H'I'J'K'L', predicts

a yleld stress-combination which is much too small. The translated

Tresca yield surface, A'B'C'D'E'F', gives better but imperfect agree-
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Figure 30.

Strain-hardening behavior, test X-3, 78°F.
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Strain-hardening behavior, test X-4, T78°F,
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ment with the observed data. The direction of the plastic strain in-
crement vector at point X4-P2 suggests that the point is in contact with
a slde of orientation K'L'. Thus one might conjecture that the initial
yileld surface is somewhat too small, a possibllity suggested by comparing
Figures 29 and 31, or that the yleld surface expands while translating.
The latter would be in accord with plecewise linear hardening.

Surfaces corresponding to isotropic hardening are not included in
Figures 30 and 31. However, if it is noted that both initial surfaces
must expand symmetrically so that they pass through points X3-PIMAX or
X4-PIMAX for this theory, it is apparent that isotropic hardening would
predict a yield stress-combination whlch was much too large.

Figure %2 contains further date on strain hardening at 78°F. 1In
obtaining the deta shown the initial combination of loads was tension
with small internal pressure while the second loading was in compression.
This loading program permits the probing of opposite sides of the yield
surface during strain hardening. Point X9-P2, which represents the
yield point during second loading, is in good agreement with the point
predicted by kinemstic hardening for this stress path. Obviously iso-
tropic hardening would give a grossly lnasccuraete prediction in this case.

Figures %3, 34, 35, and 56>present the results of multiple load
path tests at 32°F. Again 1t is observed that for various initial loading
paths, the translated yield surfaces which move in accord with kinematic
hardening do predict a polnt of yielding in agreement with experimental

observations. It might be noted that in Figure 3L the point of yielding
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Figure 35.

Strain-hardening behavior, test X-7, 32°F.
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would be predicted equally well by the isotropic strain hardening theory.
In Figure 36, test X8, ylelding immediately on second loading would be
expected if the Tresca yield criterion is considered. Thus the observed
yleld data indlcate that the maximum reduced stress criterion gives more
correct predictions in this particular case. The observed plastic strain
increment vectors appear to be in accord with the requirement of normality.

Obviously the experiments discussed here were not planned to permit
a detalled investigation of the form of the translated yield surface.
However, the test data do indicate that the kinematic hardening theory
in conjunction with either Tresca or maximum reduced stress yileld cri-
terie gives good predictions of the state of stress at ylelding on second
loading. This appears to be true even for fairly large translations of
the yield surface.

No treatment of these experimental data in the subspaces described
in Chapter IV is presented here. The subspaces appropriate for com-
bined axial force and internal pressure are, in fact,identical to the
octehedral plane except perhaps for a constant factor. Combined tension-
torsion loading was not included in the strain-hardening investigation
since it was desired that the principal axes of stress remain fixed in an

element of the material during both initial and second loading.



CHAPTER VII

CONCLUSIONS OF THE RESEARCH

The data and analysis presented in the preceding appear to Jjustify the
following conclusions for a material exhibiting brittle rupture character-
isties:

1. Thin tubes of the material respond to plastic straining as if
isotropic or at most exhibit anisotropy which is rotationally
symmetric about the axis of the tube.

2. Although there is scatter in the test results, it appears that
initial yield criteria which assume isotropy and independence
of mean stress are applicable for 78°F. At 32°F, an effect of
mean stress on yielding may be indicated by data from two tests
conducted at the highest mean stress.

3. Strain hardening behavior can be successfully predicted by a
kinematic hardening theory in conjunction with either the

Tresca or maximum reduced stress yield criterion.
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