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CHAPTER I 

INTRODUCTION 

The Vertebrate Retina  

An ancient proverb states that the eyes are a window to the soul. A more modern 

application of this statement is that the retina is a window to the brain. As a 

readily accessible part of the central nervous system, the retina is an ideal model 

tissue to study neural development and function. Any perturbations to its 

architecture are readily apparent and relatively easily interpreted. In addition, 

both the development and structure of the vertebrate retina is highly conserved 

across species. The vertebrate retina is a light sensing nervous tissue, which 

lines the back of the eye and is responsible for processing visual input and 

sending it to the brain via the optic nerve. The retina is a highly ordered and 

evolutionarily conserved laminar structure composed of six neuronal cell types 

and one glial cell type (Fig.1). It is divided into three major layers; ganglion cells 

and displaced amacrine cells comprise the ganglion cell layer, the amacrine and 

horizontal cells are located in the inner nuclear layer, and cone and rod 

photoreceptors reside in the outer nuclear layer. Only one glial cell type spans 

the retina and is named the Müller glia. Light is detected by the photoreceptors 

and is transduced as electrical impulses through interneurons to the ganglion 

cells. The signal is then sent through the optic nerve to the visual cortex of the 

brain where it is processed and interpreted as visual perception.



 

 2 

Vertebrate Retina Development 

Development of the eye and retina is also highly conserved among vertebrates. 

Cells of the optic primordia differentiate into the optic stalk, neural retina, the 

retinal pigment epithelium, the iris epithelium, and the ciliary epithelium. In turn, 

the optic primordium sends signals to the surface ectoderm and instructs parts of 

the ectoderm to differentiate into the cornea and lens. The remaining structures 

such as the choroid, sclera, and extra ocular muscles are derived from a 

combination of neural crest and head mesoderm (reviewed in Chow and Lang, 

2001). 

The retina develops from multipotent progenitor cells in the optic vesicle 

that express a combination of eye-field transcription factors, such as Rx, Pax6, 

Six3 and Chx10 (vsx2 in goldfish and zebrafish) (Macdonald et al., 1995; Rojaz-

Munoz et al., 2005; Loosli et al., 1998; Loosli et al., 1999; Loosli et al., 2003; 

Nornes et al., 1998; Seo et al., 1998; Wargelius et al., 2003; Chuang et al., 1999; 

Chuang and Raymond, 2001; Chuang and Raymond 2002; Zuber et al., 2003). 

These multipotent progenitors undergo multiple divisions and generate all the 

neurons and glia in the retina (Holt et al., 1988; Wetts and Frazer, 1988; Wetts et 

al., 1989; Fekete et al., 1994). The retinal cells develop in a specific order which 

is largely conserved across species. In the mammalian and avian retina, neurons 

and glia differentiate sequentially in overlapping gradients (Cepko, 1996; Adler, 

2000; Livesey and Cepko, 2001). The early stage of retinogenesis produces 

ganglion cells, cone photoreceptors, and horizontal cells, whereas amacrine, rod 

photoreceptors, bipolar cells, and Müller glia are produced during the late stage 
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of retinogenesis. Whilst the basic differentiation process is conserved in the 

teleost retina, the retinal neurons are formed in three waves of differentiation 

beginning with the ganglion cells, interneurons, and photoreceptors and Müller 

glia differentiating last (Hu and Easter, 1999; Easter, 2000; Li et al., 2000; Easter 

and Malicki, 2002). It is still unclear whether this developmental order is due to 

intrinsic or extrinsic factors. Intrinsic factors in retinal progenitors may change 

over time restricting their competence to generate particular cell types. 

Alternatively, extrinsic factors from the environment may restrict progenitor cells 

to specific fates. Currently, a model is emerging which incorporates both intrinsic 

and extrinsic factors in retinogenesis (Reh and Kljavin, 1989; Reh and Cagan, 

1994; Rappaport and Dorsky, 1998; Livesey and Cepko, 2001; Moore et al., 

2002; James et al., 2003; James et al., 2004; Van Raay and Vetter, 2004; Amato 

et al., 2004 a,b; Bernardos et al., 2005; Cayouette et al., 2006; Locker et al., 

2006). 

Development of the Zebrafish Retina 

The zebrafish retina develops in three distinct stages. The first stage is 

characterized by the specification of the eye fields and early eye morphogenesis. 

The neural epithelium, which will become the retina, is specified by the 

expression of transcription factors, including zic1, Six3a, Pax6, and rx1-3 

(Macdonald et al., 1995; Rojaz-Munoz et al., 2005; Loosli et al., 1998; Loosli et 

al., 1999; Loosli et al., 2003; Nornes et al., 1998; Seo et al., 1998; Wargelius et 

al., 2003; Chuang et al., 1999; Chuang and Raymond, 2001; Chuang and 

Raymond 2002). This early eye field forms at the end of gastrulation, and by 12 
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hours post fertilization (hpf) it is split into two optic primordia by Nodal and 

Hedgehog signals secreted from the ventral midline (Masai et al., 2000; 

Stenkamp et al., 2002; Stenkamp and Frey, 2003; Stadler et al., 2004). Precursor 

cells of the ventral diencephalon displace the optic primordia, which extend 

laterally toward the ectoderm, and by 13hpf, the posterior parts of the optic 

primordia separate from the neural keel. The optic cup is formed by 24hpf as the 

primordia invaginate and the anterior portion of the neural keel rotates ventrally 

(Schmitt and Dowling, 1994; Schmitt and Dowling, 1999; Li et al., 2000; reviewed 

by Hitchcock and Raymond, 2004). As the zebrafish brain rotates more ventrally, 

the eye rotates concomitantly, and the choroid fissure, originally in the posterior-

ventral corner and now located at the ventral optic cup, demarcates the nasal 

and temporal regions (Schmitt and Dowling, 1994; Li et al., 2000; Hitchcock and 

Raymond, 2004). 

The second stage of retinal development includes cellular differentiation 

and the formation of retinal laminae. Cellular differentiation begins in a region 

adjacent to the optic stalk and spreads as a circumferential wave across the 

retina from ventronasal to dorsal to ventrotemporal. Ventronasal retina is the 

location of a small patch of retina that in teleosts differentiates precociously 

(Kljavin, 1987; Schmitt and Dowling, 1994; Burrill and Easter, 1995; Raymond et 

al., 1995; Schmitt and Dowling, 1999; Hu and Easter, 1999). Ganglion cells are 

the first cells to differentiate, and the ganglion cell layer forms between 28hpf and 

38hpf (Burrill and Easter, 1995; Hu and Easter, 1999). Cells in the inner nuclear 

layer differentiate between 38hpf and 48hpf. By 48hpf, all the retinal laminae can 
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be distinguished, although lamination in the dorsal-most retina is markedly less 

advanced and is not complete until ~76hpf (Schmitt and Dowling, 1999; Li et al., 

2000). Cells in the outer nuclear layer are the last to differentiate, between 48hpf 

and 96hpf, but do so without the neurogenic wave characteristic of the two inner 

layers (Hu and Easter, 1999; Li et al., 2000). Cone photoreceptors differentiate 

first and in order of their spectral type, beginning with red/green cones, UV, and 

blue cones (Raymond and Barthel, 2004). Excluding the ventral patch (Kljavin, 

1987; Easter and Malicki, 2002; also see above), rod photoreceptors are the last 

cell type to differentiate. The genesis and differentiation of retinal cells in distinct 

layers over time is controlled by several mechanisms that establish the timing of 

withdrawal from the cell cycle, cell polarity, migration, adhesion, and cell fate 

(Malicki and Driever, 1999; Link et al., 2000; Neumann and Nuesslein-Volhard, 

2000; Pujic and Malicki, 2001; Stadler et al., 2004; Shkumatava et al., 2004; 

Shkumatava et al., 2005; Jensen and Westerfield, 2004; Kay et al., 2005; Gross 

et al., 2005; Omori and Malicki, 2006; Baye and Link, 2007a,b).  

The third stage begins once the initial cellular differentiation and 

lamination is complete. The retina then grows throughout the life of the animal 

through a combination of retinal stretch and persistent neurogenesis. The 

persistent neurogenesis is a feature the retina of the zebrafish shares with 

amphibians, birds, and other fish species (see next section).  

Persistent Neurogenesis in the Retinas of Amphibians, Birds, and Fish 

In amphibians, birds, and fish, after the initial process of retinogenesis is 

complete, a remnant of retinal stem cells persists at the retinal margin in a region 
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called the ciliary marginal zone (CMZ). New neurons and glia are added to the 

periphery throughout the lifetime of these animals (Fig.2; Hitchcock et al., 1996; 

Belecky-Adams et al., 1997; Levine et al., 1997; Passini et al., 1997; Sullivan et 

al., 1997; Huang and Sato, 1998; Perron et al., 1998; Ohnuma et al., 2002; 

Wargelius et al., 2003; Harris and Perron, 1998; Perron and Harris, 2000; Kubota 

et al., 2002; Amato et al., 2004a; Wehman et al., 2005; Raymond et al., 2006). 

The first evidence of persistent neurogenesis from the ciliary margin of the 

vertebrate retina was demonstrated in post-embryonic amphibians (Hollyfield, 

1968; Straznicky and Gaze, 1971). H3-thymidine was used to mark mitotically 

active cells, and this revealed labeled cells at the retinal margin, which were 

incorporated into more central retina over time, suggesting that newly generated 

retinal cells originate from the retinal margin.  

Only recently was it demonstrated that post-hatch birds have a ciliary 

marginal zone in some ways similar to that of amphibians and fish. The first 

evidence, though not generally accepted, of a proliferative zone at the retinal 

margin of the post-hatch chick retina came from a study using H3-thymidine to 

label mitotically-active cells in the post-hatch bird retina (Morris et al., 1976). 

Subsequent studies using BrdU to label mitotically active cells in the retina of 

hatched chicks and adult birds confirmed and extended this original observation 

(Fischer and Reh, 2000; Kubota et al., 2002). The BrdU-positive cells, however, 

were found mostly in the inner nuclear layer, the location of amacrine, bipolar, 

and glial cells, suggesting that the progenitor cells in the avian CMZ are more 
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restricted in their lineage and do not have the full multipotential characteristics of 

the cells in the amphibian CMZ. 

As in amphibians and birds, a similar germinal zone has been identified in 

the fish retina (Fig.3). The first demonstration of persistent neurogenesis in the 

fish retina came from cell counts, comparing the retinas of young and old fish. 

The greater number of retinal cells in old fish was attributed to the addition of 

cells from the ciliary marginal zone, which contained numerous mitotic figures 

and cells with a neuroepithelial morphology (Müller, 1952; Lyall, 1957a, b). Direct 

evidence of a proliferating marginal zone came from H3-thymidine and BrdU 

labeling experiments (Johns, 1977; Meyer, 1978; Hagedorn and Fernald, 1992; 

Julian et al., 1998; Marcus et al., 1999; Olson et al., 1999). The CMZ in the fish 

retina generates all cell types except for rod photoreceptors, which are produced 

from another source of stem cells in the central retina (see next section). 

The CMZ is equivalent to the early retinal neuroepithelium, and this is 

revealed by the evolutionary conservation of developmental genes expressed in 

the retinal progenitors in the CMZ (Hitchcock et al., 1996; Belecky-Adams et al., 

1997; Levine et al., 1997; Passini et al., 1997; Sullivan et al., 1997; Huang and 

Sato, 1998; Perron et al., 1998; Ohnuma et al., 2002; Wargelius et al., 2003; 

Raymond et al., 2006). The CMZ is composed of distinct progenitor populations, 

and based on patterns of gene expression the CMZ can be subdivided into at 

least four zones, with the most peripheral CMZ cells expressing genes found 

earliest in retinal development and cells located more centrally expressing genes 

found in later stages of development (Perron et al., 1998; Casarosa et al., 2005; 
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Raymond et al., 2006). The first zone includes the least determined, putative 

stem cells, which are located closest to the iris and express several stem cell 

markers, including Six3, Pax6, and rx1. These stem cells give rise to the second 

zone of pluripotent retinoblasts, which continue to express the early genes and 

begin to express markers of later stage progenitors, including Notch, Delta, Ash1, 

and Ash3. The pluripotent retinoblasts in turn produce more restricted 

retinoblasts located in the third zone that express all the previous genes and 

begin to express Ath3, Ath5, Otx2, and NeuroD. These retinoblasts generate 

daughter cells in the fourth zone that express all of the previous genes, with the 

exception of Ash3, but these cells are no longer dividing and begin to 

differentiate as they are incorporated into the central retina. The gene expression 

pattern of the progenitor populations in the CMZ suggests that retinal stem cells 

and their progeny continuously recapitulate in space the embryonic generation of 

the retina over developmental time. 

Several soluble growth factors have been identified that effect the 

proliferation of the postnatal retinal progenitor cells in the CMZ. In the post-hatch 

bird, insulin, insulin-like growth factor-I, and epidermal growth factor enhance 

proliferation in the CMZ (Reh and Levine, 1998; Fischer and Reh, 2000). Wnt 

signaling also plays a role in regulating the proliferation of progenitor cells in the 

CMZ of the chick (Kubo et al., 2003, Kubo et al., 2005; Cho and Cepko, 2006). 

Furthermore, administering exogenous growth factors extends the neurogenic 

potential of the CMZ in the bird, suggesting that the limited potential of these 

cells (see above) is due to extrinsic factors and not the intrinsic qualities of the 
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stem cells or their progeny (Fischer et al., 2002). In fish, retinal growth is 

regulated by the growth hormone - insulin-like growth factor-1 axis (GH/IGF-I 

axis; Hitchcock et al., 2001; Otteson et al., 2002). Changes in growth hormone 

levels have significant effect on body size, including the eye (Duan, 1998), and 

components of the GH/IGF-I axis have been identified in the retina (Otteson et 

al., 2002). Exogenous IGF-I promotes the proliferation of cells in the CMZ and 

rod precursors (Mack and Fernald, 1993; Boucher and Hitchcock, 1998). Similar 

results were observed following intraperitoneal injection of recombinant GH 

(Otteson et al., 2002).  

Persistent Neurogenesis in Central Retina: The Rod Photoreceptor Lineage 

In addition to the CMZ, a component of retinal growth in fish is retinal stretch 

(Lyall, 1957a, b; Johns, 1977; Johns and Easter, 1977; Johns, 1982; Powers et 

al., 1988), which results in a decrease in the density of most retinal cells, except 

for rod photoreceptors whose density increases slightly with the expanding retina 

(Powers et al., 1988). To compensate for the decrease in density and to maintain 

visual sensitivity, rod photoreceptors are insinuated into the existing central retina 

from a second population of stem cells residing in the inner nuclear layer of the 

differentiated retina (Meyer, 1978; Johns and Fernald, 1981; Johns, 1982; 

Hagedorn and Fernald, 1992).  

The continual addition of rods as the retina expands was inferred from 

earlier studies where an increase in rod photoreceptors was observed (Lyall et 

al., 1957b). The origin of these rod photoreceptors was determined in 

subsequent studies that identified a second population of dividing cells in the 
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outer nuclear layer, which specifically generate rod photoreceptors (Johns and 

Fernald, 1981; Johns, 1982; Hagedorn and Fernald, 1992). The mitotically active 

cells in the outer nuclear layer were termed rod precursors, and rod progenitors 

were subsequently identified in the inner nuclear layer of the differentiated retina 

to give rise to these rod precursors in the outer nuclear layer (Raymond and 

Rivlin, 1987). Thus, mitotically active cells in the inner nuclear layer, rod 

progenitors, migrate in radial columns along Müller glia processes from the inner 

nuclear layer to the outer nuclear layer, where they are called rod precursors and 

give rise to rod photoreceptors (Raymond and Rivlin, 1987; Mack and Fernald, 

1997; Hoke and Fernald, 1997). This process of rod genesis occurs throughout 

the retina in juvenile and adult fish (Julian et al., 1998; Otteson et al., 2001)  

Collectively, studies have led to a consensus model of rod photoreceptor 

genesis and identification of a rod photoreceptor lineage (Fig.3). Stationary stem 

cells in the inner nuclear layer, which express the early developmental gene 

Pax6 (Otteson et al., 2001), give rise to migrating rod progenitors. These rod 

progenitors and rod precursors do not express Pax6, but instead express the 

basic helix-loop-helix (bHLH) transcription factor NeuroD (Hitchcock and Kakuk-

Atkins, 2004; Hitchcock et al., 2004), which is expressed downstream of Pax6 

during retinal development (Perron et al., 1998) and implicated in rod 

photoreceptor genesis in the retina (Morrow et al., 1999). Rod progenitors 

migrate from the inner nuclear layer to the outer nuclear layer where they divide 

and differentiate into rod photoreceptors (Johns and Fernald, 1981; Raymond 

and Rivlin, 1987; Hoke and Fernald, 1997; Julian et al., 1998; Otteson et al., 
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2001; Otteson and Hitchcock, 2003; Hitchcock and Kakuk-Atkins, 2004; 

Ochocinska and Hitchcock, 2007). Recent evidence suggests that, in contrast to 

the earlier lineage model (Otteson et al., 2001), Müller glia are the stem cells of 

the rod lineage (Raymond et al., 2006; Bernardos et al., 2007; see also Vihtelic 

and Hyde, 2000; Wu et al., 2001; Yurco and Cameron, 2005; Fausett et al., 

2006). 

Basic Helix-Loop-Helix Transcription Factors 

Cell fate determination and differentiation are dictated by cascades of basic helix-

loop-helix (bHLH) genes (Gowan et al., 2001; Vetter and Brown, 2001; 

Hatakeyama et al., 2001; Akagi et al., 2004; Van Raay and Vetter, 2004; Yan et 

al., 2005; Wang and Harris, 2005; Hevner et al., 2006; Sugimori et al., 2007). 

bHLH transcription factors belong to a class of proneural regulatory proteins that 

act as a molecular link connecting withdrawal from the cell cycle, cell fate 

determination, and differentiation (Bertrand et al., 2002; Chae et al., 2004; Yan et 

al., 2005; Sugimori et al., 2007). Studies in invertebrate and vertebrate models 

have shown that a relatively small number of proneural genes encode the bHLH 

class of transcription factors (Fig.4). The structural similarity of bHLH proneural 

genes suggests that they may have conserved function and biochemical 

properties. Determining the mechanisms by which these proneural regulators 

function is important to understanding the process of neurogenesis.  

bHLH transcription factors possess several common properties: First, 

each bHLH factor shares a common structural motif composed of a basic region 

and two alpha helices separated by a loop (Bertrand et al., 2000). The basic 
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domain functions in DNA-binding, whereas the two alpha helices mediate 

dimerization (Fig.5). bHLH genes can be grouped into distinct families based on 

family-specific residues in the bHLH domain (Fig.6). Second, all known bHLH 

genes bind to an E-box element of their target gene consisting of the common 

hexamer CANNTG. Third, some bHLH transcription factors function as 

transcriptional activators, with the exception of Olig2 (Novitch et al., 2001), and 

heterodimerize with E proteins, E12 and E47. To activate transcription bHLH 

proteins interact with coactivators, CREB-binding protein (CBP) and p300, which 

facilitate gene transcription by serving as mediators between the DNA-binding 

site of bHLH transcription factors and the RNA polymerase II transcriptional 

machinery (Massari and Murre, 2000). Fourth, all bHLH transcription factors are 

inhibited by common repressor genes. Since the process of dimerization is 

required for DNA binding, factors which inhibit this dimerization process act as 

repressors of proneural genes. HLH proteins which lack the basic DNA binding 

domain, such as the Id protein family, act as inhibitors of differentiation by 

competing with bHLH proneural proteins for E protein binding (Massari and 

Murre, 2000; Yokota, 2001). The Hes family is another group of proneural gene 

inhibitors (Van Doren et al., 1994; Fisher and Caudy, 1998; Davis and Turner, 

2001, Kageyama et al., 2005), which repress transcription by recruiting the 

Groucho/TLE/Grg corepressor to the bHLH promoter. In addition, Hes proteins 

sequester E proteins and prevent the heterodimerization step of bHLH proteins 

(Davis and Turner, 2001). 
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The proneural function of bHLH transcription factors involves several 

mechanisms. First, bHLH proteins use the Notch signaling pathway to restrict 

proneural activity to single progenitor cells. Notch is not activated in a 

differentiating neuron and RBP-J represses Hes1 and Hes5 expression 

(Kageyama et al., 2005): In the absence of inhibitors, neurogenic bHLH 

activators induce the expression of Hes6 and inhibit Hes1 function thereby 

reinforcing the neurogenic process through a positive feedback loop. 

Second, bHLH proneural genes may directly regulate the cell cycle. 

Neuronal differentiation of bHLH transfected cells is preceded by elevated 

expression of the cyclin-dependent kinase inhibitor p27Kip1 and cell cycle 

withdrawal (Farah et al., 2000). Misexpression of Ngn2 in the neural tube leads 

to premature cell cycle exit and neuronal differentiation in neuroepithelial cells 

(Novitch et al., 2001). The bHLH proteins can therefore link neuronal 

differentiation to withdrawal from the cell cycle, possibly by activating the 

expression of cyclin-dependent kinase inhibitors, such as p27Kip1 (Farah et al., 

2000). 

Third, gain and loss-of-function studies have shown that bHLH proteins 

are involved in the development of specific neuronal lineages and inhibition of 

gliogenesis in the CNS. Several proneural genes have been implicated in 

commitment of multipotent progenitors to a neuronal lineage and inhibition of glial 

cell fate. bHLH transcription factors from both the Achaete-Scute family and the 

Neurogenin family promote the neuronal versus glial cell fate decision in the CNS 

(Sun et al., 2001; Morrow et al., 1999; Tomita et al., 2000).  



 

 14 

In the developing retina, proneural bHLH genes have distinct expression 

patterns and serve as important regulators of retinal neurogenesis. bHLH 

transcription factors play an important role in the generation of all cell types in the 

retina. A bHLH transcription factor cascade is involved in regulating retinal cell 

differentiation and the function of these transcription factors appears to be 

conserved in all vertebrates. Retinal ganglion cells are specified by the bHLH 

factor Ath5, the vertebrate orthologue of the Drosophila atonal gene. Specifically, 

Ath5 is required for generating ganglion cells from multipotent progenitors, cell 

cycle progression, and ganglion cell differentiation (Kanekar et al., 1997, Brown 

et al., 2001; Kay et al., 2001; Wang et al., 2001; Le et al., 2006). In the inner 

nuclear layer, horizontal and amacrine cell fates are determined by the bHLH 

factor Ptf1a (Fujitani et al., 2006; Nakhai et al., 2007). Amacrine and cone bipolar 

subtypes are specified by the bHLH factor Bhlhb5 in mouse retina (Bramblett et 

al., 2004; Feng et al., 2006). In addition to its function downstream of retinogenic 

factors to specify bipolar and amacrine subtypes, Bhlhb5 is also required for rod 

bipolar cell maturation (Bramblett et al., 2004). The bHLH genes Mash1 and 

Math3 and the homeobox gene Chx10 are also essential for generation of bipolar 

cells (Hatakeyama, 2001). 

In addition to neurons, the retina also contains one glial cell type, which is 

also regulated by bHLH transcription factors. The bHLH factor cNSCL2 has been 

shown to regulate Müller glia and misexpression of cNSCL2 results in atrophy of 

Müller glia and death of photoreceptor cells in chick retina (Li et al., 2001). In 

addition, Hes5 is specifically expressed by differentiating Müller glial cells and 
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misexpression of Hes5 with recombinant retrovirus significantly increases the 

population of glial cells at the expense of neurons. Hes5-deficient retina show a 

significant decrease of Müller glial cell number without affecting cell survival. 

These results indicate that Hes5 modulates glial cell fate specification in the 

retina consistent with the role of Hes genes in inhibiting proneural genes (Hojo et 

al., 2000). 

NeuroD 

NeuroD is a relative of the Drosophila atonal gene and a member of the family of 

basic helix-loop-helix transcription factors. The properties of NeuroD were first 

demonstrated in Xenopus embryos, where ectopic expression converts epithelial 

cells into neurons (Lee et al., 1995), and, in vitro, where transfection of P19 cells 

induces cell cycle withdrawal and the expression of neuronal proteins (Farah et 

al., 2000; see also Cho et al., 2001). In the brain and non-nervous tissues, 

NeuroD has specific functions based on the mitotic state of the cell. In mitotically 

active cells, NeuroD regulates proliferation (Miyata et al., 1999; Nibu et al., 2001; 

Manglapus et al., 2004; Schonhoff et al., 2004; Lawoko-Kerali et al., 2004) and 

exit from the cell cycle (Mutoh et al., 1998), and its absence results in 

proliferation defects. In postmitotic cells, NeuroD is required for survival and its 

absence results in cell death during differentiation (Miyata et al., 1999; Schwab et 

al., 2000; Lee et al., 2000; Cai et al., 2000; Liu et al., 2000a,b; Kim et al., 2001; 

Nibu et al., 2001). NeuroD retains these functions in persistently mitotic tissues in 

adult animals (Schonhoff et al., 2004; Naya et al., 1997; Mutoh et al., 1998; Kim 

et al., 2001; Bedard and Parent, 2004). It appears that NeuroD function can be 
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divided into common categories that involve cell cycle regulation, cell fate 

specification, and cell survival. More importantly, NeuroD may serve as the 

common link that connects all these processes. 

The goal of my thesis research is to characterize the expression and 

function of NeuroD in the photoreceptor lineages of the developing zebrafish 

retina and to utilize genetic strategies to test the hypothesis that NeuroD plays a 

fundamental role in photoreceptor genesis. Chapter 2 describes the temporal and 

spatial pattern of neuroD expression during development of the retina. Chapter 3 

characterizes the function of NeuroD in the retina in vivo using a gain-of-function 

approach. Chapter 4 investigates in vivo effects of the loss of NeuroD function. 

Together, these studies show the dynamic expression of neuroD in rod and cone 

photoreceptor lineages, and suggest its fundamental role in photoreceptor 

genesis and cone maturation. Conditional gain- and loss-of function experiments 

reveal that NeuroD functions as a regulator of mitotic activity and promotes cell 

cycle exit and photoreceptor differentiation. 
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Fig. I-1: The vertebrate retina. 
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Fig. I-2: Diagram of the circumferential germinal zone in the retina of 
amphibians, birds, and teleosts.  
 
Amphibian, teleost, and bird eyes continue to grow throughout life and new 
neurons are generated in concentric rings at the retinal margin to compensate for 
the expanding eye. This growth is coordinated with the continuous addition of 
new neurons at the retinal margin in a region called the ciliary marginal zone 
(CMZ). This is the location of stem cells which generate new annuli of neurons 
throughout the lifespan of the animal. GCL–ganglion cell layer, INL-inner nuclear 
layer, ONL-outer nuclear layer, RPE-retinal pigmented epithelium. 
 



 

 19 

 
 
Fig. I-3: Persistent neurogenesis in the teleost retina. 
 
A: The retinal margin in a juvenile goldfish. Note the columnar epithelial cells that 
form the CGZ. The white lines bracket the CLZ, which lacks rod photoreceptors 
in the ONL Central to this is the mature retina, which contains both cones and 
rods (arrows) in the ONL. B: The retinal margin from a fish exposed to BrdU and 
allowed to survive for 30 days. The white bracket marks BrdU-labeled neurons 
that were labeled with BrdU and born during the survival time. The arrow in the 
ONL identifies rod photoreceptors that were also generated during this time. C: A 
schematic of a model of the rod-photoreceptor lineage in the fish retina, GCL-
ganglion cell layer, INL-inner nuclear layer, ONL-outer nuclear layer, CGZ-
circumferential germinal zone, CLZ-circumferential larval zone. 
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Fig. I-4: The basic helix-loop-helix family. 
 
A dendrogram of basic helix-loop-helix (bHLH) sequences from invertebrates 
(blue) and vertebrates (red). The bHLH domain sequences have been grouped 
based on sequence homology. 
  
Reproduced from Bertrand et al., 2002. 
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Fig. I-5: Structure of the basic helix-loop-helix proteins. 
 
All bHLH factors share a common structural motif composed of a basic region 
and two alpha helices separated by a loop. The basic domain functions in DNA-
binding while the two alpha helices mediate dimerization. Reproduced from 
Bertrand et al., 2002. 
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Fig.I-6: Sequence conservation of basic helix-loop-helix proteins. 
 
bHLH genes can be grouped into distinct families based on family-specific 
residues in the bHLH domain. Reproduced from Bertrand et al., 2002. 
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CHAPTER II 

NEUROD EXPRESSION PATTERN 

This chapter describes the cellular pattern of neuroD expression during 

embryonic and larval retinal development of the zebrafish.  

Introduction 

Several studies have shown NeuroD to be instrumental in neuronal 

development and cell cycle regulation (Lee et al., 1995; Farah et al., 2000; Cho 

et al., 2001; Chae et al., 2004). NeuroD may play similar, conserved roles in the 

developing retina, but the cellular details appear to be species-specific. In the 

mouse retina, neuroD is expressed in multipotent retinal progenitors, regulates 

neuronal versus glial cell fate and is determinative for amacrine cells (Morrow et 

al., 1999; Ahmad et al., 1998; Acharya et al., 1997; Moore et al., 2002; Inoue et 

al., 2002; Pennesi et al., 2003). Further, neuroD-null mice show age-related 

degeneration of rod photoreceptors (Pennesi et al., 2003), indicating that, in 

mammals, NeuroD regulates the survival of a subset of postmitotic retinal cells. 

In the chick, neuroD is also expressed in multipotent progenitors, but is 

determinative for cone and rod photoreceptors only (Yan and Wang, 1998; Yan 

and Wang, 2000; Yan and Wang, 2004; see also Fischer et al., 2004). In adult 

goldfish neuroD is not expressed in multipotent progenitors, but is expressed in 

mitotic cells that give rise exclusively to rod photoreceptors. In addition, neuroD
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is transiently expressed in newly postmitotic cone photoreceptors (Hitchcock and 

Kakuk-Atkins, 2004). Rod photoreceptor genesis has been previously 

characterized and a consensus model of the rod photoreceptor lineage has been 

described (Raymond and Rivlin, 1987; Mack and Fernald, 1997; Julian et al., 

1998; Otteson et al., 2001). In the central retina, stem cells in the inner nuclear 

layer give rise to rod progenitor cells which move from the inner nuclear layer to 

the outer nuclear where they are called rod precursor cells. These cells divide a 

few times and give rise to rod photoreceptors. Recent findings revealed that both 

rod progenitors and rod precursors express neuroD, which suggests that in 

teleosts NeuroD might play a specific role in generating this one cell type 

(Hitchcock and Kakuk-Atkins, 2004). Thus, in homeothermic vertebrates, such as 

the mouse and chick, NeuroD appears to play a role in cell fate determination, 

whereas in the adult teleost retina it may play a more restricted role in generating 

rod photoreceptors. Whether early photoreceptor genesis in teleosts fits the 

avian and mammalian models remains to be determined. 

The zebrafish has recently become a prominent system in developmental 

biology, amenable to approaches that investigate gene regulation and function. 

Furthermore, zebrafish retinal development has been extensively studied, and 

neuroD is expressed in the retina (Korzh et al., 1998; Masai et al., 2000; Mueller 

and Wullimann, 2002). The function of NeuroD in the teleost retina has not yet 

been experimentally investigated, and the spatial and temporal expression 

pattern of this gene during embryonic and larval development of the retina is not 

yet known. 
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Materials and Methods 

Wild-type zebrafish were used to generate embryos. Breeders were maintained 

on a 14-h light/10h-dark daily cycle, and embryos were collected following light 

onset. Embryos were maintained in embryo rearing solution (ERS; Westerfield, 

2000) for the first 12 hours and then placed into ERS containing 0.2 mM 1-

phenyl-2-thiourea (PTU; Sigma, St. Louis, MO) to prevent melanin pigmentation. 

Embryos were raised at 28.5°C, staged in hours post fertilization (hpf) according 

to Westerfield (2000), and analyzed between 25hpf and 96hpf. Protocols for 

animal husbandry and sacrifice were approved by the University Committee for 

Use and Care of Animals (UCUCA) at the University of Michigan and conform to 

NIH guidelines.  

Histology 

Embryos were dechorionated with watchmakers’ forceps, if necessary, and fixed 

in 4% (w/v) paraformaldehyde for 1 hour at room temperature. Different protocols 

were followed, for specimens processed as whole-mounts or histological 

sections. For whole-mount in situ hybridization, fixation was followed by two 5-

minute washes in 0.1M phosphate buffered saline (PBS; pH 7.2) and two 5-

minute washes in 100% methanol. The embryos were then placed in a 100% 

methanol solution and stored at -20ºC for at least 30-min before proceeding with 

the in situ hybridization protocol. For sectioned animals, fixation was followed by 

infiltration in 20% sucrose in PBS overnight. The next day, animals were washed 

in 2:1 (20% sucrose: OCT medium) for 30 minutes and frozen in Tissue-Tek® 
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Optimal Cutting Temperature (O.C.T.) medium (Sakura Finetek U.S.A., Inc., 

Torrance, CA). Sections were cut in the frontal plane on a cryostat at 5µm. 

In Situ Hybridization  

In situ hybridization on whole embryos was performed according to Westerfield 

(2000) in 1.5ml eppendorf tubes. Embryos stored in 100% methanol at –20˚C 

were returned to room temperature, rehydrated, fixed in 4% paraformaldehyde, 

permeabilized with 0.1 M proteinase K, fixed a second time in 4% 

paraformaldehyde, treated with acetic anhydride, washed in PBS with 1% 

Tween, and pre-hybridized in hybridization buffer for 1-2 hours. The pre-

hybridization solution was removed and 200ng of probe in 80µl of hybridization 

solution was pipetted onto embryos and hybridized overnight at 55°C. The next 

day, the embryos were washed and probes were detected using alkaline-

phosphatase-conjugated antibody against digoxygenin and the subsequent 

colorimetric reaction with 4-nitroblue-tetrazolium/5-bromo-4-chloro-3-indolyl 

phosphate (NBT/BCIP; Roche Molecular Biochemicals, Indianapolis, IN). The 

color reaction was allowed to proceed for approximately 60 minutes and stopped 

with PBS. The embryos were then transferred to single concavity slides (Tri-Ess 

Sciences, Inc., Burbank, CA) and coverslipped for inspection and photography. 

Animals were sacrificed at 25, 31, 38, and 48hpf. Ten animals were processed 

per time point. 

In situ hybridization with single probes on sections was performed as 

previously described (Hitchcock et al., 2001). Briefly, full-length neuroD cDNA 

(Korzh et al., 1998) was linearized and DIG-labeled riboprobes were synthesized 
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with an RNA labeling kit (Roche Diagnostic Corp., Indianapolis, IN). Following 

prehybridization two hundred nanograms of probe in 80µl of hybridization 

solution was pipetted onto each slide, coverslipped, and hybridized overnight at 

55°C. The next day, the sections were washed and digoxygenin was 

immunolabeled using an alkaline-phosphatase-conjugated antibody and 

visualized with NBT/BCIP. The slides were then coverslipped for microscopy or 

combined with several immunocytochemistry protocols described below. Animals 

were sacrificed at 25, 31, 38, 48, 60, 76, and 96hpf, as well as at 3 months. Ten 

animals were analyzed per time point. NeuroD sense probes served as negative 

controls for all in situ hybridization protocols. Following hybridization with neuroD 

sense probes, no staining was observed (data not shown). 

Double in situ hybridization on sections was performed with probes for 

neuroD and red opsin, or Crx. The protocol was modified from the one described 

above (see also Hitchcock and Kakuk-Atkins, 2004). Fluorescein-labeled 

riboprobes for red opsin and Crx were synthesized and two hundred nanograms 

of probe in 80µl of hybridization solution was pipetted onto each slide. 

Combinations of probes for neuroD and red opsin, or neuroD and Crx were 

diluted in buffer and hybridized simultaneously on the sections. After post-

hybridization washes, sections were immunostained with antibodies against 

digoxygenin conjugated to alkaline phosphatase and antibodies against 

fluorescein conjugated to peroxidase. The sections were rinsed and neuroD 

probes were visualized with fast red (Roche Diagnostic Corp., Indianapolis, IN) 

as the substrate. After further rinses, red opsin, or Crx probes were visualized by 
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using the Tyramide Signal Amplification Kit (Perkin Elmer, Norwalk, CT) with 

streptavidin-Alexafluor 488 (Molecular Probes, Eugene, OR). 

BrdU labeling 

Bromodeoxyuridine (BrdU; Sigma, St. Louis, MO) was used to label mitotically 

active cells. Embryos were exposed to BrdU for 15 minutes by soaking in 5mM 

BrdU and 15% DMSO in embryo rearing solution (protocol adapted from Steve 

Devoto, University of Oregon; http://zebra.biol.sc.edu/methods/brdu.html) and 

sacrificed immediately following BrdU exposure. Ten animals were analyzed per 

time point. Additional animals were exposed to BrdU for 15 minutes at 56hpf and 

sacrificed 8 hours or 40 hours later. After BrdU exposure, these animals were 

housed in 10mM thymidine in embryo rearing solution to prevent continuous 

labeling of cells with accumulated systemic BrdU. Ten animals were analyzed. 

Immunocytochemistry 

All immunocytochemistry protocols were performed as previously described 

(Hitchcock et al., 1996). Omitting primary antibodies served as negative controls. 

In the absence of primary antibodies, no staining was observed (data not shown). 

Amacrine cells were labeled using the cell type-specific monoclonal antibody 

against rat syntaxin (Monoclonal Anti-Syntaxin Clone HPC-1; Sigma; catalog 

#S0664) and a monoclonal antibody against the human neuronal protein HuC/D 

(Formerly 16A11; Molecular Probes, Eugene, OR; catalog # A21271; Kay et al., 

2001), diluted 1:200, and a rabbit polyclonal antibody against mouse Pax6, 

diluted 1:1000 (COVANCE®, Berkeley, CA; lot #14811801; Hitchcock et al., 

1996). The syntaxin antibody was raised in mouse against a synaptosomal 
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plasma membrane fraction from adult rat hippocampus and on western blot binds 

a 35kD protein. The Hu antibody was raised in mouse against the synthetic 

peptide QAQRFRLDNLLN, corresponding to amino acids 240-251 of human HuD 

peptide, and on western blot binds 36kD, 40kD, and 42kD proteins 

corresponding to ELAVL2, ELAVL3, and ELAVL4. The pax6 antibody was raised 

in rabbit against the synthetic peptide REEKLRNQRRQASNTPSHI, 

corresponding to amino acids 281-299 of mouse Pax6, and on western blot binds 

a 47kD protein and can be blocked with Pax6 peptide.  Cone photoreceptors 

were labeled using the mouse monoclonal antibody zpr-1 (The Zebrafish 

International Resource Center, Eugene, OR; catalog #092502), and diluted 

1:200. The zpr-1 (formerly Fret43; Larison and Bremiller, 1990), and zpr-3 (see 

below), antibody was raised in mouse against a mix of antigens from 2-day-old 

whole zebrafish embryos followed by selection for tissue/cell specific binding of 

antibodies. The zpr1 antibody labels an unidentified epitope on red/green cones.  

Rod photoreceptors were labeled using the mouse monoclonal antibody zpr-3 

(The Zebrafish International Resource Center, Eugene, OR; catalog #011604), 

and diluted 1:200. The zpr-3 (formerly Fret11; Schmitt and Dowling, 1996) 

antibody labels an unidentified epitope on rod photoreceptors. On Western blots, 

Fret 11 binds a 38-kD protein and displays a banding pattern typical of antibodies 

possessing specificity for opsin proteins, including rhodopsin. BrdU was detected 

using a monoclonal antibody against BrdU (Becton Dickinson 

Immunocytochemistry Systems, San Jose, CA; catalog #347580) diluted 1:200. 

For double immunocytochemistry experiments combining zpr-1 or zpr-3 and 
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BrdU, the tissue was processed for zpr-1 or zpr-3 antibody staining first, fixed a 

second time in 4% paraformaldehyde in phosphate buffer, and then processed 

for BrdU immunocytochemistry using a rat monoclonal antibody (abcam®, 

Cambridge, MA) diluted 1:200. All secondary antibodies conjugated to 

fluorescent labels were diluted 1:200.  

Photography 

Histological sections and whole-mounts were photographed with a Nikon DMX 

1200 digital camera. Digital overlays and figures were assembled in Adobe 

Photoshop 7.0. 
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Results 

Expression pattern of neuroD in embryonic and larval retinas 

NeuroD is first expressed at 31 hpf in a small cluster of cells in the ventronasal 

retina (Fig.1 A, B). This location corresponds to a small patch of retina that in 

teleosts differentiates precociously (Schmitt and Dowling, 1999; Hu and Easter, 

1999). At this stage, however, both the ventral patch and the remainder of the 

retina are an undifferentiated neuroepithelium, consisting largely of mitotically 

active cells. The neuroD-expressing cells in the precocious ventral patch are 

proliferative and are labeled with BrdU following a brief exposure (data not 

shown).  

Between 31hpf and 48hpf, neuroD expression expands from the 

ventronasal patch throughout the retinal neuroepithelium, which in a frontal plane 

appears to spread from ventral to dorsal (Fig.1 C). At this stage, all the neuroD-

expressing cells are mitotically active (data not shown). By 48hpf, retinal laminae 

can be distinguished, and at this time neuroD expression segregates into the 

nascent inner and outer nuclear layers (Fig.1 D; see also Mueller and Wullimann, 

2002), although the lamination in the dorsal-most retina is markedly less 

advanced, and neuroD expression there is reminiscent of that seen at earlier 

stages. The circumferential germinal zone at the retinal margin is first 

recognizable at 48hpf, and it is noteworthy that at no time is neuroD expressed in 

these cells (Fig.1, D-G). 

Between 48hpf and 76hpf, neuroD continues to be expressed in both the 

inner and outer nuclear layers. By 60hpf, neuroD-expressing cells appear as 
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clusters in the inner nuclear layer and as a relatively thick row of cells in the outer 

nuclear layer (Fig.1 E). This is also the stage when a population of large, 

presumptive amacrine cells that express neuroD first appears in the inner nuclear 

layer (Fig.1 E and F, see also Fig.3). By 76hpf lamination is complete (Schmitt 

and Dowling, 1999; Li et al., 2000). At this stage, neuroD expressing-cells 

continue to be present in both the inner and outer nuclear layers, although the 

neuroD-expressing cells in the inner nuclear layer are less dense than at 60hpf 

(compare Fig.1 E and F).  

Between 76hpf and 96hpf the vast majority of cells within the outer nuclear 

layer cease expressing neuroD, and outer nuclear layer expression becomes 

restricted to the annulus of immature retina adjacent to the circumferential 

germinal zone (Fig.1 G, H). A few mitotically-active, neuroD-expressing cells are 

still present within the outer nuclear layer. Within the inner nuclear layer two 

populations of neuroD-expressing cells persist, presumptive neurons and rare, 

mitotic cells. At 96hpf (Fig.1 G) the cellular pattern of neuroD expression 

achieves an adult-like pattern and remains unchanged from this stage forward 

(Fig.2; see also Hitchcock and Kakuk-Atkins, 2004). 

NeuroD is expressed in both post-mitotic and mitotic cell populations 

Amacrine cells 

Three amacrine cell markers were used to establish the identity of the post-

mitotic cell types that express neuroD. Beginning at 76hpf neuroD is expressed 

in a subset of cells in the inner nuclear layer that, by virtue of their morphology 

and location, are identified as presumptive amacrine cells (Fig.1 F, arrow heads; 
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see also insets in Fig.3 A and C). These cells have large somata, reside in the 

inner half of the inner nuclear layer and are uniformly spaced across the retinal 

section. To confirm the identity of these cells, in situ hybridization for neuroD 

expression was combined with immunocytochemistry using antibodies against 

markers of amacrine cells, syntaxin, pax6, and HuC/D. Antibodies against 

syntaxin label the cytoplasm of amacrine cells, whereas antibodies against the 

transcription factor pax6 label nuclei (Fig.3; see also Hitchcock et al., 1996). The 

antibody against HuC/D labels the cytoplasm of a subset of amacrine in the 

retina (see also Kay et al., 2001). All three markers, when combined with in situ 

hybridization using probes for neuroD, show that the large, neuroD-expressing 

cells in the inner nuclear layer are amacrine cells (Fig.3).  The majority of the 

neuroD-expressing cells, with the morphology described above, co-label with 

syntaxin, pax6, or HuC/D.  

Nascent cone photoreceptors 

Except for the ventronasal patch (Kljavin, 1987; also see above), cone 

photoreceptors are the first cell type to differentiate as neurogenesis progresses 

within the outer nuclear layer (Branchek and Bremiller, 1984; Raymond and 

Barthel, 2004), and in the adult retina neuroD is not expressed by rods (Fig.2; 

Hitchcock and Kakuk-Atkins, 2004). This suggests that between 48hpf and 96hpf 

neuroD expression within the outer nuclear layer is restricted to differentiating 

cone photoreceptors and mitotically-active photoreceptor progenitors. To confirm 

that neuroD is expressed by nascent cone photoreceptors, sections from retinas 

at 76hpf were processed for double in situ hybridization for neuroD and red 
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opsin, a marker for one of the first cone types to differentiate (Branchek and 

Bremiller, 1984; Larison and Bremiller, 1990). This revealed that the vast majority 

of neuroD-expressing cells in the outer nuclear layer are cones (Fig.4; arrow in 

Fig.4 A, B, and C). Further, there appears to be a discrete boundary between 

cells in the outer nuclear layer which express neuroD only and those that express 

both neuroD and red opsin (arrowhead in Fig.4 A, B, and C). This double labeling 

approach clearly demarcates the region of cone genesis and maturation, which 

lies between the circumferential germinal zone and the first neuroD/red opsin-

expressing cones (Fig.4 C). 

Cells of the rod lineage 

We used BrdU combined with double-labeling methods to determine the identity 

of the mitotic cells that express neuroD. Following the initial waves of 

neurogenesis and lamination, mitotically active cells remain within both the inner 

and outer nuclear layers. Based on data from studies of retinas from adult 

teleosts, it is inferred that in the larval retina these dividing cells are members of 

the rod lineage. Rod genesis in adult teleosts has been extensively described 

(see review by Hitchcock and Raymond, 2004), and the rod lineage consists of 

dividing cells in both the inner and outer nuclear layers. NeuroD is expressed by 

a population of cells in the inner nuclear layer not labeled with amacrine cell 

markers. These cells are characterized by a neuroepithelial morphology (Fig.5; 

arrow in c1), resembling the morphology of the neuroD-expressing cells found in 

the 38hpf embryonic retina (compare arrowhead in Fig.1 C and arrow in Fig.5 

c1), and they are proliferative as evidenced by their labeling with BrdU (Fig.5 C; 
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arrow in c1 and c2). Between 48hpf and 76hpf, neuroD is also expressed in 

proliferating cells in the outer nuclear layer. These cells can be labeled with 

BrdU, and are interspersed among the orderly arrangement of cone nuclei (Fig.5 

C; arrow in c3-c4).  

To confirm the identity of these mitotically-active cells retinas were 

exposed to BrdU at 56hpf, sacrificed at 96hpf, and double labeled with antibodies 

to BrdU and zpr-3, a marker of rod photoreceptors. This revealed that at 56hpf 

mitotically active cells in the laminated retina give rise to rod photoreceptors 

(Fig.6). It should be noted, however, that only a minority of cells labeled with 

BrdU at 56hpf express zpr-3 at 96hpf. We interpret this to show that not all cells 

of the rod lineage become fully differentiated during the interval we examined 

and therefore remain labeled with BrdU but do not yet express zpr-3. These 

observations suggest that, as in the adult teleost retina, neuroD is expressed in 

the rod photoreceptor lineage in the developing teleost retina. 

Cone progenitors 

We also evaluated neuroD expression among cells that give rise to cone 

photoreceptors. Although visual inspection of the outer nuclear layer, based on 

morphology and markers of differentiated cells, suggests that cone genesis in the 

central retina ceases by 76hpf (see Fig.1 F and Fig.4), we cannot exclude the 

possibility that the outer nuclear layer contains mitotically active cells which 

express neuroD and give rise to cones. To determine whether or not cones are 

generated in central retina during this time, animals were exposed to BrdU at 

56hpf and sacrificed at 64hpf. The retinas were then double-labeled with 
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antibodies against BrdU and zpr-1, a marker of cone photoreceptors. These 

experiments showed that cones are still being generated in central retina at this 

time (Fig.7), which raises the possibility that some BrdU-positive, neuroD-

expressing cells may give rise to cones.  

To determine more directly whether or not neuroD-expressing cells 

generate cones, we examined the junction between the circumferential germinal 

zone and the nascent outer nuclear layer, a site where dividing cells merge with 

the all-cone outer nuclear layer. We surmise that by virtue of their position, the 

dividing cells here serve as cone progenitors (arrow in Fig.8 A, B; see also 

Stenkamp et al., 1997). To determine whether or not these cone progenitors 

express neuroD, animals were exposed to BrdU at 96hpf and processed for in 

situ hybridization using neuroD probes and BrdU immunohistochemistry. This 

revealed that cells, which express neuroD and are contiguous with the all-cone 

outer nuclear layer, are mitotically active (Fig.8 C, D). In addition to relying on 

position to identify cone progenitors, we performed double in situ hybridization 

using neuroD and red opsin probes combined with BrdU immunohistochemistry 

to identify stages of cone differentiation and neuroD expression (Fig.8 E-H). 

Mitotically active cells at the periphery begin expressing neuroD and this 

expression is maintained in immature cones. As the cones mature and begin 

expressing red opsin, there is a small region of overlap of neuroD and red opsin 

expression. However, left of this transition point neuroD expression is 

downregulated in the more mature red opsin expressing cells. Our observations 

suggest that neuroD is expressed in a small subset of cells within the 
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circumferential germinal zone, perhaps during their ultimate or penultimate 

mitosis, which serve exclusively as cone progenitors. By extension, because the 

retina periphery recapitulates development, we infer that in the developing 

central retina some dividing cells that express neuroD there also give rise to 

cones. This analysis revealed that neuroD expression marks stages of cone 

development. 

NeuroD and the developmental regulatory gene Crx 

It is interesting to note that along with neuroD, only one other developmental 

regulatory gene, cone-rod homeobox (Crx), has been shown to be expressed 

among photoreceptor progenitors in the zebrafish retina (Shen and Raymond, 

2004). This coincidence of cellular expression suggests that neuroD and Crx may 

interact genetically, which can be tested experimentally. To confirm whether 

neuroD and Crx are expressed in the same cells, sections from retinas at 76hpf 

were processed for double in situ hybridization for neuroD and Crx. This revealed 

that the vast majority of neuroD-expressing cells in the outer nuclear layer also 

express Crx (Fig.9). Further, whereas neuroD and Crx are co-expressed in the 

outer nuclear layer, there is no co-localization of Crx and neuroD expression in 

the inner nuclear layer. Crx expression is restricted to the outer part of the inner 

nuclear layer while neuroD expression is localized to the middle and inner part of 

the inner nuclear layer (Fig.9, E-H).  
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Discussion 

The cellular expression of neuroD in the teleost retina is dynamic and spans 

early neurogenesis, the maturation of cone photoreceptors, and the acquisition of 

the adult pattern, which in zebrafish is present by at least 96hpf. The current 

study further suggests that neuroD is expressed in two separate lineages that 

give rise to rod and cone photoreceptors, respectively, and is transiently 

expressed in differentiated cones, suggesting this gene may play a role in the 

maturation of this cell type. The expression data further indicate that neuroD is 

co-expressed with Crx in cells in the developing photoreceptor layer, raising the 

possibility that, as in mammals (Akagi et al., 2005), these transcriptional 

regulators interact genetically.  

During early retinogenesis (31-48hpf) neuroD is expressed in cells of the 

proliferative neuroepithelium. Although variable in age of onset (see Korzh et al., 

1998; Masai et al., 2000), neuroD expression is first observed in ventronasal 

retina. Numerous studies have shown that in teleosts the ventronasal patch of 

retina develops precociously (Raymond et al., 1995; Schmitt and Dowling, 1999; 

Hu and Easter, 1999), and the localized onset of neuroD expression in this patch 

presages local, precocious differentiation. In the larval and adult retinas, neuroD 

is expressed in cells of the rod lineage (Hitchcock and Kakuk-Atkins, 2004; 

present results), and the expression of neuroD in the ventronasal patch suggests 

that the photoreceptors generated there originate from the same cellular lineage 

that generates rods at later developmental and adult stages (see Discussion in 

Raymond et al., 1995).  
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As retinogenesis progresses, the expression of neuroD expands from the 

precocious patch throughout the remaining retinal neuroepithelium. The 

neuroepithelial cells that express neuroD at this stage may correspond to 

photoreceptor progenitors, which give rise to the cells that establish the future 

outer nuclear layer. Thus, after the differentiation of cells in the ventral patch, 

mitotically active cells that express neuroD may be destined to become either 

cone or rod photoreceptors. The expanding neuroD expression across the 

developing neuroepithelium may also mark the formation of the lineages that give 

rise to rods and cones in central retina.  

As neurogenesis continues and laminae appear (48-96hpf), neuroD-

expression segregates to the inner and outer nuclear layers, marking four 

different cell types, two post-mitotic and two mitotic. The two post-mitotic cell 

types that express neuroD are amacrine cells and nascent cone photoreceptors. 

In the inner nuclear layer, neuroD is expressed in a small subset of postmitotic 

amacrine cells. This was speculated upon previously (Hitchcock and Kakuk-

Atkins, 2004) and confirmed here using a double-labeling approach. However, 

even though all amacrine antibodies used have been well characterized in the 

literature and label subsets of mature amacrine cells, in other neural tissues 

these antibodies label neural progenitors. We cannot exclude the possibility that 

some of the double-labeled cells with amacrine morphology may correspond to 

progenitor cells (see below). In the outer nuclear layer, neuroD is expressed by 

nascent cone photoreceptors. This is demonstrated directly via double in situ 

hybridization at 76hpf, which reveals that most neuroD-expressing cells in the 
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outer nuclear layer at this time are cone photoreceptors. As the retina matures, 

the nascent cones in central retina down regulate neuroD expression, and by 

96hpf neuroD is absent from central cones. Consistent with this temporal pattern, 

from 96hpf onward expression is maintained in each cohort of immature cones at 

the periphery. This indicates that neuroD expression in cones is transient, lasting 

merely hours, and suggests this gene may play a role in regulating an aspect of 

early cone maturation. 

It is well established that in the adult teleosts rod photoreceptors are 

generated by a lineage of proliferative cells that originates in the inner nuclear 

layer (Julian et al., 1998; Otteson et al., 2001), and these cells express neuroD 

(Hitchcock and Kakuk-Atkins, 2004). At 56hpf in the zebrafish, a time when 

neurogenesis is largely complete in the inner retina but photoreceptor genesis is 

still ongoing (Hu and Easter, 1999), the inner nuclear layer of the zebrafish retina 

contains proliferative cells that express neuroD. We infer that these cells are rod 

progenitors, which give rise to the first generation of central rod photoreceptors 

(see also, Raymond and Rivlin, 1987). This was confirmed here by labeling cells 

with BrdU and double immunostaining with antibodies against BrdU and zpr-3 (a 

marker of rod photoreceptors), which demonstrated the presence of BrdU-

labeled rods. 

The double-labeling approach also established that in central retina at 

56hpf cones are also being born. In teleosts, in general, cone genesis precedes 

rod genesis (Johns, 1982), but there is an interval where in central retina of the 

zebrafish these two cell types are generated contemporaneously (Raymond et 
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al., 1995; Schmitt and Dowling, 1999; see also Larison and Bremiller, 1990; 

present results). Our data show that, during this interval, there are numerous 

BrdU-positive cells in the retina that express neuroD. Based on these 

observations, we speculated that some dividing, neuroD-positive cells might also 

give rise to cone photoreceptors. Because at 56hpf one does not know if a 

dividing cell in central retina will give rise to a cone or rod, we examined the 

germinative margin for evidence of dividing cells that both express neuroD and 

occupy a location that indicates they serve as cone progenitors. We found such 

cells in the outer nuclear layer lying at the interface between the circumferential 

germinal zone and newly postmitotic cones. From this evidence we conclude that 

there exists a narrow annulus of proliferative, neuroD-expressing cells at the 

germinative margin that give rise exclusively to cone photoreceptors, and that 

these cells express neuroD at the time of their ultimate or penultimate division. 

Further, and by extension, we conclude that some dividing cells in central retina 

that express neuroD must also give rise to cones, including those cones first 

generated in the ventronasal patch.  

These observations and our inferences from the data suggest one of two 

possibilities. First, in central retina rod and cone lineages emerge separately from 

the neuroepithelium and separately generate the two photoreceptor types, or, 

second, during the interval when both cell types are generated, rods and cones 

share a common lineage or progenitor. The fact that in the teleost retina, from 

early larval development through adulthood, rods and cones are generated from 

spatially separate progenitors argues in favor of the first possibility, that from the 
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outset rods and cones are generated from separate cell lineages. In contrast, 

direct evidence from both birds and mammals suggests that rods and cones can 

share a common progenitor (Yan and Wang, 1998; Yan and Wang 2000; Yan 

and Wang, 2004; Mears et al., 2001). Whether or not early photoreceptor 

genesis in teleosts fits the avian and mammalian model remains to be 

determined.  

It has been suggested that cones and rods are produced simultaneously 

in the ventral patch while the remainder of photoreceptors are formed during the 

final wave of terminal mitoses in the outer nuclear layer (Raymond and Barthel, 

2004). It is interesting to note that another developmental gene Cone-rod 

homeobox (Crx) is also expressed by mitotically active progenitors in the outer 

nuclear layer (Shen and Raymond, 2004). These data suggest that Crx may be 

expressed in late-stage photoreceptor progenitors as they exit the cell cycle. Crx 

regulates differentiation and survival of retinal photoreceptors and may also play 

a role in promoting differentiation of retinal progenitors. Several studies 

demonstrate that bHLH factors function in concert with homeodomain genes 

during the patterning of the retina (Hatakeyama et al., 2001; Akagi et al., 2004). 

Our current data reveal that neuroD and Crx are expressed in the same cells in 

the outer nuclear layer. This suggests that in zebrafish neuroD may interact with 

Crx during the genesis of photoreceptors, perhaps as progenitors exit the cell 

cycle, and that a similar genetic signaling cascade is present in both 

homeothermic vertebrates and teleosts.  
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Finally, the data from our study allow us to expand current models of 

photoreceptor genesis in the mature retina of teleost fish (Raymond and Rivlin, 

1987; Otteson et al., 2001; Otteson and Hitchcock, 2003). We show that the rod 

lineage and associated neuroD expression, first described in adult goldfish 

(Hitchcock and Kakuk-Atkins, 2004), is present in the embryonic retina as early 

as 56hpf in zebrafish and perhaps earlier (Fig.10 A). In addition, there is a narrow 

annulus of dividing cells at the germinative margin that express neuroD and 

serve exclusively as cone progenitors (Fig.10 B). We suggest that as these cells 

express neuroD they divide a limited number of times, perhaps only once, and 

then continue to express this gene for the first few hours of maturation. Our 

results also suggest that, by virtue of their spatial separation, in the teleost retina 

one can separately assay the function of neuroD in the lineages of cells that give 

rise to rods (centrally) and cones (at the germinative margin), respectively. 

There is an expanding body of evidence pointing to a common role for 

neuroD in persistently mitotic cellular lineages, linking cell cycle withdrawal with 

terminal differentiation. The existence of a mitotic lineage generating a single cell 

type, such as the rod photoreceptor lineage, is not unique and is present in other 

persistently mitotic regions in the adult central nervous system, including cells in 

the subventricular zone and rostral migratory stream, dentate gyrus, and 

cerebellum (Miyata et al., 1999; Schwab et al., 2000; Pleasure et al., 2000; Lee 

et al., 2000; Liu et al., 2001a; Bedard and Parent, 2004; Manglapus et al., 2004; 

Hevner et al., 2006; see also Naya et al., 1997; Mutoh et al., 1998; Cai et al., 

2000; Nibu et al., 2001; Liu et al., 2001b; Kim et al., 2001; Schonhoff et al., 2004; 
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Lawoko-Kerali et al., 2004). In each of these regions, neuroD is expressed in late 

stage progenitors, perhaps during their ultimate or penultimate mitosis, and 

appears to be essential for terminal differentiation. Current evidence thus 

suggests a common function of NeuroD in cell lineages and determining this 

function in the rod and cone lineages in the zebrafish retina may shed light on the 

overarching role that NeuroD is playing in persistently mitotic tissues of adult 

vertebrates. 
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Fig. II-1: Cellular pattern of neuroD expression in the developing retina of 
the zebrafish. 
 
A: neuroD expression at 31 hours post fertilization (hpf) (arrow). B: Transverse 
section of a 31hpf retina showing cells expressing neuroD (arrow). C: neuroD 
expression at 38hpf spanning the neuroepithelium and persisting in the ventral 
retina (arrow), arrowhead indicates an individual neuroD-expressing cell with 
neuroepithelial morphology. D: neuroD expression at 48hpf. E: neuroD 
expression at 60hpf. F: neuroD expression at 76hpf, arrowheads indicate 
neuroD-expressing amacrine cells G: neuroD expression at 96hpf and in the 
retina margin (see inset H). Note that neuroD is not expressed in the 
circumferential germinal zone (arrows in 1D-1G). Scale bar equals 50µm; O = 
outer nuclear layer; I = inner nuclear layer; G = ganglion cell layer; L = lens; CGZ 
= circumferential germinal zone; NE = neuroepithelium. 
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Fig. II-2: Cellular pattern of neuroD expression in the adult zebrafish. 
 
A: neuroD expression in central retina showing a labeled amacrine cell (arrow), 
and presumptive cells of the rod lineage (arrow heads). B: neuroD expression at 
the retinal margin showing labeled nascent cone photoreceptors (arrow). Scale 
bar equals 50µm; ONL = outer nuclear layer; INL = inner nuclear layer; * = 
circumferential germinal zone. 
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Fig. II-3: neuroD is expressed in a subset of amacrine cells in the inner 
nuclear layer. 
 
A1 and A2: At 76 hours post fertilization (hpf) neuroD-expressing cells in the 
inner nuclear layer (INL) co-label with antibodies against syntaxin (Panels A). A3: 
The arrow depicts an individual neuroD-expressing cell in the INL. A4: The arrow 
depicts the same cell as in A3, labeled with syntaxin. A5: Overlay of neuroD and 
syntaxin shown in A3 and A4. The arrow depicts the same cell shown in A3 and 
A4, which expresses both neuroD and is labeled with syntaxin. B1 and B2: 
neuroD-expressing cells in the INL co-label with antibodies against pax6 (Panels 
B). B3: The arrow depicts an individual neuroD-expressing cell in the INL. B4: 
The arrow depicts the same cell as in B3, labeled with pax6. B5: Overlay of 
neuroD and pax6 shown in B3 and B4. The arrow depicts the same cell shown in 
B3 and B4, which expresses both neuroD and is labeled with pax6. C1 and C2: 
neuroD-expressing cells in the INL co-label with antibodies against HuC/D 
(Panels C). C3: The arrow depicts an individual neuroD-expressing cell in the 
INL. C4: The arrow depicts the same cell as in C3, labeled with HuC/D. C5: 
Overlay of neuroD and HuC/D shown in C3 and C4. The arrow depicts the same 
cell shown in C3 and C4, which expresses both neuroD and is labeled with 
HuC/D. Scale bar equals 50µm; O = outer nuclear layer; I = inner nuclear layer; 
G = ganglion cell layer; L = lens; CGZ = circumferential germinal zone.  
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Fig. II-4: neuroD is expressed in nascent cone photoreceptors. 
 
A: Retina at 76 hours post fertilization (hpf) labeled with a neuroD probe. Cells 
throughout the outer nuclear layer (ONL) express neuroD and the arrow depicts 
an individual neuroD-expressing cell (see inset in C). B: Cells in the ONL labeled 
with a probe for red opsin. The arrow depicts an individual red opsin-expressing 
cell (see inset in B). C: Overlay of neuroD and red opsin in situ shown in A and B. 
Cells in the ONL co-express neuroD and red opsin. The arrow depicts the same 
cell shown in A and B which expresses both neuroD and red-opsin (see inset in 
C). The arrowhead in all figures depicts the transition between cones in the ONL 
expressing neuroD only and those that express both neuroD and red opsin. The 
asterix indicates the CGZ. Scale bar equals 50µm; ONL = outer nuclear layer; 
INL = inner nuclear layer; CGZ = circumferential germinal zone. 
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Fig. II-5: neuroD is expressed in cells of the rod photoreceptor lineage. 
 
A and B: 76 hours post fertilization (hpf) retina showing neuroD in situ (A) and 
BrdU immunohistochemistry  (ICC) (B), respectively. C: Overlay of neuroD in situ 
and BrdU ICC. c1 and c2: Rod progenitors in the inner nuclear layer (INL) are 
characterized by neuroepithelial morphology and BrdU incorporation (see arrow 
in c2). c3 and c4: Rod precursors in the outer nuclear layer (ONL) are 
characterized by BrdU incorporation and morphology (see arrow in c4). Note the 
absence of neuroD expression in the mitotically active multipotent progenitors in 
the circumferential germinal zone (CGZ) (arrows in C). Scale bar equals 50µm; 
hpf = hours post fertilization; O = outer nuclear layer; I = inner nuclear layer; G = 
ganglion cell layer; L = lens; CGZ = circumferential germinal zone. 
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Fig. II-6: BrdU-labeled cells in the outer nuclear layer give rise to rod 
photoreceptors. 
A and B: 96 hours post fertilization (hpf) retina exposed to BrdU at 55hpf and 
sacrificed at 96hpf showing BrdU labeling (A) and zpr-3 staining (B), respectively. 
Inset in both A and B depicts an individual cell in the outer nuclear layer (ONL) 
labeled with BrdU and zpr-3, respectively. C: Overlay of BrdU and zpr-3 
immunohistochemistry shown in A and B. Inset in C shows one BrdU positive 
cells in the ONL co-labeled with BrdU and zpr-3 (arrow).  Note that the majority of 
the cells in the ONL are not co-labeled with BrdU and zpr-3. Scale bar equals 
50µm; hpf = hours post fertilization; O = outer nuclear layer; I= inner nuclear 
layer; G = ganglion cell layer; L = lens; CGZ = circumferential germinal zone. 
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Fig. II-7: BrdU labels cone progenitors in the outer nuclear layer. 
 
A and B: 64 hours post fertilization (hpf) retina exposed to BrdU at 56hpf and 
sacrificed at 64hpf showing BrdU labeling (A) and zpr-1 staining (B), respectively. 
Inset in both A and B depicts an individual cell in the outer nuclear layer (ONL) 
labeled with BrdU and zpr-1, respectively. C: Overlay of BrdU and zpr-1 
immunohistochemistry shown in A and B. Inset in C shows one BrdU positive 
cells in the ONL co-labeled with BrdU and zpr-1 (arrow). Scale bar equals 50µm; 
hpf = hours post fertilization; O = outer nuclear layer; I= inner nuclear layer; G = 
ganglion cell layer; L = lens; CGZ = circumferential germinal zone. 
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Fig. II-8: neuroD is expressed in cone progenitors. 
 
A and B: Brightfield image of a 96 hours post fertilization (hpf) retina (A) and 
overlay with BrdU immunohistochemistry (B), respectively. Note the labeled BrdU 
positive cells directly above the outer plexiform layer (arrow). C and D: 96hpf 
retina showing neuroD in situ (C) and overlay with BrdU immunohistochemistry 
(D), respectively. Arrows in both C and D depict an individual cell, which is 
double labeled with neuroD and BrdU. NeuroD expression marks stages of cone 
development. E and F: 96hpf retina showing red opsin in situ (E) and overlay with 
neuroD in situ (F), respectively. Arrowheads in both E and F depict an individual 
cell, which co-expresses red opsin and neuroD. Note that left of this transition 
point, marked by the arrowhead, neuroD expression is downregulated in the 
more mature red opsin expressing cells (see also C and D). G and H: The same 
retina as in E and F, showing neuroD expression (G, green) and BrdU positive 
cells (G, red), and (H) overlay with both red opsin and neuroD in situs from E and 
F. Arrows in E-H depict an individual cell, which expresses neuroD and is BrdU 
positive.  The asterix indicates the CGZ. Scale bar equals 50µm; ONL = outer 
nuclear layer; INL = inner nuclear layer; CGZ = circumferential germinal zone. 
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Fig. II-9: neuroD and Crx are co-expressed in nascent cone photoreceptors. 
 
A, E, and I: Retina at 76 hours post fertilization (hpf) labeled with bisbenzimide. 
B, F, and J: Retina at 76hpf labeled with a neuroD probe, Cells throughout the 
ONL express neuroD. C, G, and K: Cells in the ONL labeled with a probe for Crx. 
Cells throughout the ONL express Crx. D, H, and L: Overlay of neuroD and Crx 
in situ shown in B, F, J and C, G, K, respectively. Cells in the ONL co-express 
neuroD and Crx. The asterix indicates the CGZ. Scale bar equals 50µm; ONL = 
outer nuclear layer; INL = inner nuclear layer; CGZ = circumferential germinal 
zone.  
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Fig. II-10: Lineage model illustrating rod and cone genesis in the teleost 
retina. 
 
A: Lineage model of rod genesis. Inner nuclear layer (INL) stem cells give rise to 
neuroD-expressing INL progenitors, which traverse to the outer nuclear layer and 
give rise to neuroD-expressing rod precursors, which give rise to rod 
photoreceptors that do not express neuroD but do express Crx. B: Lineage 
model of cone genesis. Circumferential germinal zone stem cells give rise to 
neuroD and Crx-expressing cone progenitors, which give rise to neuroD and Crx-
expressing nascent cone photoreceptor, which give rise to mature cone 
photoreceptors that do not express neuroD but continue to express Crx. ONL = 
outer nuclear layer; INL = inner nuclear layer; GCL = ganglion cell layer; MR = 
mature retina; CLZ = circumferential larval zone; CGZ = circumferential germinal 
zone. 
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CHAPTER III 

GAIN-OF-FUNCTION 

This chapter characterizes the function of NeuroD in the retina in vivo by utilizing 

a line of zebrafish line transgenic for Hsp:nrd-EGFP, which allows for conditional 

gain-of-function following application of a heat shock. 

Introduction 

The function of basic helix-loop-helix transcription factors has been extensively 

studied in the retina (Livesey and Cepko, 2001; Van Raay and Vetter, 2004; Yan 

et al., 2005; Wang and Harris, 2005). There is evidence that members of the 

bHLH class of proneural regulatory proteins act as a molecular link connecting 

withdrawal from the cell cycle, cell fate determination, and differentiation 

(Bertrand et al., 2002; Chae et al., 2004; Yan et al., 2005; Sugimori et al., 2007). 

However, the mechanisms by which bHLH proteins link cell cycle withdrawal to 

differentiation remain largely unknown. Due to structural similarity of bHLH 

proneural proteins, elucidating the role of a particular bHLH transcription factor 

may help determine the mechanisms of bHLH function in the complex process of 

neurogenesis. NeuroD is a basic helix-loop-helix (bHLH) transcription factor 

critical for determining neuronal cell fate and regulating withdrawal from the cell 

cycle (Lee et al., 1995; Farah et al., 2000). In the mammalian retina, NeuroD 

regulates neuron versus glial cell fate (Morrow et al., 1999) and amacrine cell
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genesis (Ahmad et al., 1998; Acharya et al.,1997; Moore et al., 2002; Inoue et 

al., 2002) and in chick is determinative for photoreceptors (Yan and Wang, 1998; 

Yan and Wang, 2000; Yan and Wang, 2004). In the retinas of adult teleosts, 

neuroD is constitutively expressed in a subset of amacrine cells and in the 

lineages of cells that give rise to rod and cone photoreceptors (Otteson and 

Hitchcock, 2003; Hitchcock et al., 2004; Hitchcock and Kakuk-Atkins, 2004; 

Ochocinska and Hitchcock, 2007; Chapter 2).  

I previously determined the spatial and temporal expression pattern of 

NeuroD in the embryonic and larval zebrafish retina (Chapter 2). The expression 

of neuroD begins in a cluster of cells in the early retina, presaging the location of 

the first born rod and cone photoreceptors. At later stages neuroD expression 

was established more definitively and is localized to cells of the rod and cone 

photoreceptor lineages. There is also transient expression of neuroD in nascent 

cone photoreceptors, which is turned off in mature cones that begin to express 

opsin. These findings suggest that NeuroD functions to regulate rod and cone 

genesis and maturation of cone photoreceptors. In contrast to other vertebrate 

retinas, in the teleost retina neuroD is not expressed in multipotent progenitors, 

indicating that in teleosts NeuroD does not play a role in early cell fate restriction. 

This makes the zebrafish retina a unique system to study the role of NeuroD in 

the lineages of cells that give rise exclusively to photoreceptors.  

Based on previous studies of NeuroD function and the cellular pattern of 

NeuroD expression described in Chapter 2, I hypothesize that NeuroD promotes 

cell cycle withdrawal of photoreceptor progenitors and photoreceptor genesis. To 
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test this hypothesis, I created a line of zebrafish transgenic for heat shock 

70/4:neuroD-EGFP (Hsp:nrd-EGFP) for conditional gain-of-function experiments. 

This reverse genetic approach allows for temporal control of the induction of 

NeuroD fusion protein. Following induced expression of NeuroD, the effect on 

proliferation and photoreceptor genesis was evaluated in the retinas of 

transgenic and wild type control animals. 

 

Materials and Methods 

Experimental Animals 

Zebrafish were maintained at 28.5°C on a 14/10 hr light/dark cycle in a zebrafish 

modular (ZMOD) breeding facility. Embryos were collected after natural spawns, 

developed at 28.5°C, and staged by hours post fertilization (hpf) as described 

previously (Kimmel et al., 1995). 

The Hsp70/4:nrd-EGFP expression construct.  

The pHsp70/4:nrd-EGFP construct was made by inserting the open reading 

frame of 1 kb zebrafish nrd, obtained from full-length neuroD cDNA (Korzh et al., 

1998), between the SalI and SacII restriction sites in the pHsp70/4:EGFP vector 

(provided by John Kuwada, University of Michigan). The SalI and SacII restriction 

sites were added to the nrd open reading frame by PCR. Primers were designed 

using the Primer3 program (web site address: http://primer3.sourceforge.net/) 

and used to add SalI and SacII restriction sites to flank the nrd open reading 

frame. In addition, the primer used to generate the SacII restriction site was also 
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designed to exclude the nrd stop codon. The insert was sequenced to rule out 

potential errors in the PCR using the following three primers:  

Hsp70/4-left: 5’-CAATGAACAGACGGGCATTT-3’ 

neuroD-left: 5’-GGGGTCCCAAGAAGAAGAAG-3’ 

neuroD-right: 5’-TAAGGGGTCCGTCAAATGAG-3’ 

Hsp70/4:nrd-EGFP transgenic zebrafish lines.  

Plasmid DNA was isolated for injection with the Qiagen Maxi Kit, linearized with 

the SacII restriction enzyme upstream of the Hsp70/4 promoter and diluted to 

50ng/µl in 1x Danieau buffer (Nasevicius and Ekker, 2000) that contained 0.25% 

phenol red. Micropipettes for DNA injections were pulled from thin-walled, fiber-

filled glass tubing (1 mm outer diameter) with a Flaming Brown Micropipette 

puller and back filled by capillary action with the DNA solution. Recently fertilized 

embryos (one to four cell stage) were placed in an embryo injection chamber, 

which was mounted onto a compound microscope (Olympus, BMHJ, Japan). 

Embryos were viewed at 4x magnification, and 2ng of DNA was injected by 

insertion of the micropipette tip into blastomeres from the animal pole. DNA was 

injected into embryos with several pressure pulses (40 psi, 40 msec) delivered by 

a Picospritzer (General Valve Corporation, Picospritzer II, Fairfield, NJ). The 

volume of the microinjected DNA as indicated by the phenol red was one-fifth of 

the volume of cytoplasm.  

Injected embryos were raised to sexual maturity and crossed in a pair-wise 

manner to identify founder fish. Cohorts of F1 embryos from the pair-wise 

crosses were heat-shocked at 24hpf and assayed for EGFP fluorescence at 
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48hpf to identify founders. PCR was also used to confirm these findings. 

Genomic DNA was extracted from pools of 150–200 2 day old F1 embryos from 

the pair-wise crosses using the Bio-Rad Aquapure Genomic DNA Isolation Kit 

(Hercules, CA). PCR reactions were performed with primers from the enhanced 

green fluorescent protein (EGFP) sequence to yield a 452 bp product:  

5'-CGTCCATGCCGAGAGTGATC-3' and 5'-TCAA-GTCCGCCATGCCCGAA-3' 

PCR reactions were performed on ~100–200 ng of DNA in 1x PCR buffer 

(Invitrogen, Carlsbad, CA). PCR reactions consisted of denaturing step of 4 min 

at 95°C and 30 cycles of 30 sec at 95°C, 2 min at 55°C, and 2 min at 72°C., 

followed by a final step of 72°C for 10min, and held at 4°C. 

After pairs were identified, the male and female were crossed with wild-

type fish to identify the founder fish. The F1 embryos from the founder were heat-

shocked for 1 hr in a 37°C water bath and induction of the fusion protein was 

assayed by examination on a fluorescence microscope. Since the heat shock 

protein is known to be constitutively expressed in the lens by 72hpf (Blechinger 

et al., 2002), subsequent cohorts of F1 embryos from identified founders were 

not heat-shocked but were screened at 72hpf for green lenses and raised to 

sexual maturity. Animals with green lenses were identified as transgenic fish. The 

F1 transgenic fish were bred with wild type fish to generate F2 heterozygous 

progeny. The F2 progeny were raised to sexual maturity and pair-wise crosses of 

these heterozygous animals resulted in F3 progeny with a 1:2:1 ratio of wild 

type/heterozygous/homozygous embryos. In all experiments described here 

homozygous embryos were used.  
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Zebrafish zNrd antibody and Western Blots 

A zebrafish NeuroD (zNrd) antibody was generated by ZYMED Laboratories 

(Invitrogen). The C-terminal, nonconserved region of zebrafish NeuroD, 

excluding the bHLH domain was used to produce peptide antibodies against 

NeuroD. The zNrd antibody was raised in rabbit against the synthetic peptide C 

HSHHERVMNAQLNAIFHDS-COOH, corresponding to amino acids 332-350 of 

zebrafish NeuroD. Two rabbits were injected with the synthetic peptide and 

serum containing NeuroD peptide antibodies was affinity purified. Affinity purified 

peptide antibodies were assayed through Western analysis and competition with 

synthetic peptides.  

NeuroD-EGFP from heat-shocked transgenic embryos was detected by 

Western blotting. Pools of 150–200 2 day old F3 embryos from heterozygous F2 

crosses were heat-shocked at 24hpf and processed at 48hpf. Proteins were 

extracted by lysing the embryos with protease inhibitor cocktail (Complete Mini, 

Roche, Mannheim, Germany). Protein concentration was quantified using a BCA 

Protein Assay Kit (Pierce, Rockford, IL) and a Perkin-Elmer Lamba Bio 20 

spectrophotometer. Proteins were separated in a 10% SDS-PAGE gel and 

transferred to a nitrocellulose membrane (Sigma-Aldrich, St. Louis, MO). The 

membrane was blocked in blocking buffer overnight and probed with the 

polyclonal anti-Nrd antibody (Zymed; see above) at 1:1000, and anti-GFP 

antibody (Chemokine) at 1:10,000 dilution. Horseradish peroxidase-coupled anti-

rabbit IgG (Sigma-Aldrich, St. Louis, MO) was used as a secondary antibody. 
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Chemiluminescence (ECL detection system; Amersham Biosciences, Arlington 

Heights, IL) was used to detect the immunoreactivity signal.  

Antibody specificity was further demonstrated by antigen peptide blocking. 

Briefly, 1µl of NeuroD antibody was reacted with 50µg excess peptide. 2µl of 

NeuroD antibody was placed in 100µl saline/PBS. Two tubes were prepared; one 

tube with antigen/peptide solution and another with the same volume of 

saline/PBS but without peptide/antigen. The tubes were incubated at 37°C for 2 

hrs and another 2 hrs at 4°C. The tubes were centrifuged for 15 min at 4°C in a 

microfuge (12000rpm) to pellet any immune complexes. The supernatant was 

removed from both tubes and added to two subsequent tubes plus PBS-Tween 

with BSA for a final volume of 2ml. Both solutions (with and without 

antigen/peptide) were then used for Western blotting as per protocol (see above). 

Southern Blots 

To estimate the copy number of the integrated plasmid in the three Hsp70/4:nrd-

EGFP lines, genomic DNA from fins of F3 fish was digested with SalI, which cuts 

at a unique site on the plasmid, and the DNA was subjected to Southern blot 

analysis. The intensity of labeling of the endogenous NeuroD band was 

compared with labeling of the Hsp70/4:nrd-EGFP integrated plasmid. 

BrdU labeling 

Bromodeoxyuridine (BrdU; Sigma, St. Louis, MO) was used to label mitotically 

active cells. Embryos were exposed to BrdU for 20 minutes by soaking in 5mM 

BrdU and 15% DMSO in embryo rearing solution as previously described 
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(Ochocinska and Hitchcock, 2007). Twelve Hsp:nrd-EGFP transgenic animals 

and twelve control animals were analysed.  

Immunohistochemistry and TUNEL assay 

All immunocytochemistry protocols were performed as previously described 

(Hitchcock et al., 1996). Omitting primary antibodies served as negative controls. 

In the absence of primary antibodies, no staining was observed. Ganglion cells 

were labeled using the mouse monoclonal antibody zn-12 (The Zebrafish 

International Resource Center, Eugene, OR; catalog #072103), which labels 

early born neurons in the zebrafish and ganglion cells in the retina. Amacrine 

cells were labeled using the cell type-specific monoclonal antibody against rat 

syntaxin (Monoclonal Anti-Syntaxin Clone HPC-1; Sigma; catalog #S0664). 

Müller glia cells were labeled using a monoclonal antibody against glutamine 

synthetase (GS; Chemicon, Temecula, CA, catalog #MAB305), diluted 1:500. 

Cone photoreceptors were labeled using the mouse monoclonal antibody zpr-1, 

formerly Fret43, (Larison and Bremiller, 1990; The Zebrafish International 

Resource Center, Eugene, OR; catalog #092502), which labels an unidentified 

epitope on red/green cones. Rod photoreceptors were labeled using the mouse 

monoclonal antibody zpr-3 (The Zebrafish International Resource Center, 

Eugene, OR; catalog #011604; formerly Fret11; Schmitt and Dowling, 1996), 

which labels an unidentified epitope on rod photoreceptors. BrdU was detected 

using a monoclonal antibody against BrdU (Becton Dickinson 

Immunocytochemistry Systems, San Jose, CA; catalog #347580). For double 

immunocytochemistry experiments combining zn12, HPC1, GS, zpr-1 or zpr-3 
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and BrdU, the tissue was processed for zn12, HPC1, GS, zpr-1 or zpr-3 antibody 

staining first, fixed a second time in 4% paraformaldehyde in phosphate buffer, 

and then processed for BrdU immunocytochemistry using a rat monoclonal 

antibody (Abcam®, Cambridge, MA). All primary antibodies, unless otherwise 

noted, and secondary antibodies conjugated to fluorescent labels were diluted 

1:200. For animals heat-shocked at 24hpf and analyzed at 48hpf, twelve 

transgenic and twelve control animals were analyzed. For animals heat-shocked 

at 48hpf and analyzed at 72hpf, five transgenic and five control animals were 

analyzed. An In Situ Cell Death Detection Kit, TMR red (Roche) was also used to 

detect apoptotic cells.  

In situ hybridization 

In situ hybridization on whole embryos was performed according to Westerfield 

(2000) in 1.5ml eppendorf tubes. In situ hybridization was performed using the 

following DIG-labeled riboprobes: neuroD and Islet1. Embryos were fixed in 4% 

paraformaldehyde, dehydrated in a Methanol series and stored in 100% 

methanol at –20˚C. Embryos were returned to room temperature, rehydrated, 

fixed in 4% paraformaldehyde, permeabilized with 0.1 M proteinase K, fixed a 

second time in 4% paraformaldehyde, treated with acetic anhydride, washed in 

PBS with 1% Tween, and pre-hybridized in hybridization buffer for 1-2 hours. The 

pre-hybridization solution was removed and 200ng of probe in 80µl of 

hybridization solution was pipetted onto embryos and hybridized overnight at 

55°C. The next day, the embryos were washed and probes were detected using 

alkaline-phosphatase-conjugated antibody against digoxygenin and the 
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subsequent colorimetric reaction with 4-nitroblue-tetrazolium/5-bromo-4-chloro-3-

indolyl phosphate (NBT/BCIP; Roche Molecular Biochemicals, Indianapolis, IN). 

The color reaction was allowed to proceed for approximately 60 minutes and 

stopped with PBS. The embryos were then transferred to single concavity slides 

(Tri-Ess Sciences, Inc., Burbank, CA) and coverslipped for inspection and 

photography. For each probe, pools of 25–50 transgenic and control animals 

were analyzed. 

In situ hybridization with single probes on sections was performed as 

previously described (Hitchcock et al., 2001). In situ hybridization was performed 

using the following DIG-labeled riboprobes: neuroD, CyclinD1, CyclinB, CyclinE, 

and p27. Briefly, full-length cDNAs were linearized and DIG-labeled riboprobes 

were synthesized with an RNA labeling kit (Roche Diagnostic Corp., Indianapolis, 

IN). Following prehybridization two hundred nanograms of probe in 80µl of 

hybridization solution was pipetted onto each slide, coverslipped, and hybridized 

overnight at 55°C. The next day, the sections were washed and digoxygenin was 

immunolabeled using an alkaline-phosphatase-conjugated antibody and 

visualized with NBT/BCIP. Twelve transgenic and twelve control animals were 

analyzed. 

Cell Counts  

Transgenic and control animals were heat-shocked at 24hpf and sacrificed at 

48hpf. 12 transgenic and 12 control animals were used, and one section was 

counted per animal. Retinas were labeled with phospo-histone H3. Labeled cells 

were counted in the entire retina and divided by retinal area. Another set of 12 
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transgenic and 12 control animals were used for TUNEL cell counts. One section 

was counted per animal and labeled cells were counted in the entire retina. 

Transgenic and control animals were exposed to BrdU and heat-shocked 

at 48hpf and sacrificed at 72hpf. Five transgenic and five control animals were 

used, and three sections containing the optic nerve were counted per animal. 

Cell counts were limited to a region demarcated by BrdU+ cells just central to the 

CGZ. Retinas were labeled with a panel of cell-type specific markers, zn12, HPC-

1, zpr-1, and zpr3. The dorsal and ventral portions of the retina were analyzed 

separately. Labeled cells were counted in the demarcated region, and ratios of 

photoreceptors to other neurons and glia, as well as ratios of glia to other 

neurons were calculated. The ratio was calculated as the average number of 

cells counted in the three sections of one cell type divided by the average 

number of cells counted in the same three sections of another cell type. Ratios 

obtained for controls were compared to ratios obtained in retinas of transgenic 

animals. The standard error was calculated as the square root of the variance of 

the ratio of means (Cochran, 1977). To compare ratios between retinas of 

transgenic and control animals, the pooled two-sample t procedure was used to 

determine the t statistic (Moore and McCabe, 1998).  

Photography 

Histological sections and whole-mounts were photographed with a Nikon DMX 

1200 digital camera. Digital overlays and figures were assembled in Adobe 

Photoshop 7.0. 
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Results 

The Hsp70/4:nrd-EGFP expression construct is transcribed in vitro and 

functional in vivo. 

The Hsp70/4:nrdEGFP construct was tested in HEK293 cells in vitro and in 

transient transgenic embryos in vivo. To determine if the Hsp:nrd-EGFP 

construct is transcribed and whether it is targeted to the nucleus in vitro, HEK293 

cells were transfected with either empty Hsp:EGFP vector or Hsp:nrd-EGFP 

vector containing NeuroD (Fig.1A). HEK293 cells transfected with the Hsp:EGFP 

vector contain EGFP protein in the cytoplasm but not in the nucleus (EGFP+ 

cytoplasm; Fig.1 A and B). In contrast, HEK293 cells transfected with the 

Hsp:nrd-EGFP vector contain EGFP exclusively in the nucleus (EGFP+ nucleus; 

Fig.1C and D). These data suggest that whereas both EGFP protein and 

NeuroD-EGFP fusion protein are transcribed in HEK293 cells, the addition of 

NeuroD results in targeting of the fusion protein to the nucleus.  

Transient transgenic embryos were used to determine if the Hsp:nrd-

EGFP construct is transcribed and whether it is targeted to the nucleus in vivo. 

Wild type embryos were injected with the Hsp:nrd-EGFP construct at the 1-2 cell 

stage and heat-shocked at 24hpf. Animals were then evaluated for EGFP 

fluorescence at 12 and 24 hours post heat shock (hphs). There was a mosaic of 

EGFP-expressing cells throughout these embryos at 12 and 24hphs (Fig.2A and 

B). Transverse sections of transient transgenic embryos at 24hphs show EGFP+ 

nuclei in the brain (Fig.2C and D). These data show that the Hsp:nrd-EGFP 
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construct is transcribed in vivo, and that the NeuroD fusion protein is targeted to 

the nucleus.  

To determine if the Hsp:nrd-EGFP construct induces ectopic expression of 

NeuroD, in situ hybridization within transient transgenic embryos, using a neuroD 

riboprobe was performed on wholemounts and on sections. NeuroD in situs on 

wholemounts of transient transgenic embryos show ectopic expression of 

neuroD, from head to tail (Fig.3A-D). In transverse sections, ectopic expression 

of neuroD is also detected in clusters of cells throughout the brain and retina 

(Fig.3E). These data offer further proof that the Hsp:nrd-EGFP is transcribed in 

vivo.  

Hsp70/4:nrd-EGFP transgenic zebrafish lines.  

After the Hsp70/4:nrd-EGFP construct was validated, it was used to generate 

stable transgenic lines (see Halloran et al., 2000). Over 150 embryos were 

injected, successfully raised to adulthood, and screened for germline 

transmission. Based on the results of the screen, three transgenic lines were 

established. Southern blotting of digested DNA from each of the lines exhibited a 

strong hybridization band at 12kb compared to a 5kb band of endogenous 

NeuroD. The presence of a prominent single 12kb band in the transgenic lines 

demonstrates that multiple copies of the Hsp70/4:nrd-EGFP plasmid had been 

integrated into a single site (Fig.4). A measurement of optical density shows that 

the number of copies is equivalent to 50 copies per haploid genome. This is 

within the range previously described for other transgenic lines (Xiao et al., 

2003). Of the three lines, only one featured robust fluorescence in the retina. The 
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second line had only a few fluorescent cells in the retina. The third line did not 

have EGFP positive cells in the retina but did have positive cells in the olfactory 

placode. The transgenic line with the most robust fluorescence in the entire 

embryo including the retina was used for the remainder of the experiments.  

To determine if the NeuroD fusion protein is inducible in the Hsp:nrd-

EGFP transgenic zebrafish line, transgenic embryos and wild type controls from 

the same clutch were heat-shocked at 15hpf, 24hpf, or 48hpf and evaluated for 

the presence EGFP+ cells at 32hpf, 48hpf, or 72hpf, respectively. Compared to 

heat-shocked wild type animals from the same clutch, which do not have EGFP 

fluorescent cells, EGFP+ cells were present throughout the entire embryo 

(Fig.5A-F). Specifically, robust EGFP fluorescence can be seen in transgenic 

animals heat-shocked at 15hpf and photographed at 32hpf (Fig.5A and B), heat-

shocked at 25hpf and photographed at 48hpf (Fig.5C and D), and heat-shocked 

at 48hpf and photographed at 76hpf (Fig.5E and F). These data demonstrate that 

the NeuroD fusion protein is inducible in the Hsp:nrd-EGFP transgenic line.  

To determine if the NeuroD fusion protein is stable in vivo, a NeuroD 

zebrafish antibody (zNrd) was generated and used to detect NeuroD fusion 

protein from the Hsp:nrd-EGFP transgenic line (Fig.6). The zNrd antibody was 

affinity purified and assayed through competition with synthetic peptides and 

Western analysis (Fig.6A and B). The zNrd antibody was generated in two 

rabbits (ZYMED Laboratories; Invitrogen), and the affinity purified antibody from 

rabbit #1 was used for the remainder of the experiments (Fig.6A; lane 5). The 

pre-immune serum from rabbit #1 does not detect any bands in protein lysates 
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from adult zebrafish brain compared with pre-immune serum from rabbit #2 

(Fig.6A; lane 5; compare lane 4 with lane 3). On Western blots of protein 

obtained from adult zebrafish brain, the zNrd antibody binds 30kD and 36kD 

proteins (Fig.6A and B). In a competition assay, these protein bands can be 

blocked with NeuroD peptide (Fig.6B). This suggests that the zNrd antibody 

specifically binds endogenous NeuroD protein.  

After the zNrd antibody was characterized, it was used to detect NeuroD 

fusion protein in the Hsp:nrd-EGFP transgenic line. Protein was extracted from a 

cohort of 150 embryos from a heterozygous cross heat-shocked at 24hpf and 

sacrificed at 48hpf. The zNrd antibody binds 30kD and 80kD proteins on western 

blots (Fig.6C). The 30kD band corresponds to the endogenous NeuroD protein; 

however, the 36kD band observed in adult brain is not detected in the embryo 

(compare Fig.6B and C). The 80kD band corresponds to the NeuroD-EGFP 

fusion protein, which can also be detected using an EGFP antibody. Since the 

zNrd and EGFP antibodies detect the same 80kD band (Fig.6C; compare lane 2 

with lane 1), this suggests that the NeuroD fusion protein can be detected on 

Western blot using the zNrd antibody (Fig.6C) and that the NeuroD fusion protein 

is stable in vivo.  

To determine if the NeuroD fusion protein is functional in vivo, Hsp:nrd-

EGFP transgenic embryos were examined for the expression of neuroD or islet-

1, a putative downstream target of NeuroD (Wang et al., 2000). Transgenic and 

wild type embryos from the same clutch were heat-shocked at 15hpf and 

assayed at 25hpf for neuroD and islet-1 expression (Fig.7A and B). Compared to 
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controls, there was ectopic expression of both neuroD (Fig.7C and D) and its 

downstream target islet-1 (Fig.7E and F). These data show that the NeuroD 

fusion protein is transcribed, as neuroD message can be detected, and that the 

fusion protein can induce ectopic expression of its downstream target islet-1. 

This demonstrates that the NeuroD fusion protein is functional in vivo. 

NeuroD promotes cell cycle exit in vivo 

NeuroD has been shown to promote cell cycle withdrawal in other systems (Lee 

et al., 1995; Farah et al., 2000). Zebrafish transgenic for Hsp:nrd-EGFP were 

used to test the hypothesis that NeuroD promotes cell cycle withdrawal among 

photoreceptor progenitors in the retina. Approximately 12 hours following heat 

shock animals from a single heterozygous cross were sorted based on EGFP 

fluorescence into wild-type (no EGFP+ cells), heterozygous (few EGFP+ cells), 

and homozygous groups (many EGFP+ throughout the embryo including the 

retina). Only the wild-type and homozygous, here termed transgenic, groups 

were used for these experiments. The heterozygous animals were discarded. 

After sorting, wild-type and transgenic animals were exposed to a brief systemic 

pulse of BrdU at 48hpf by immersion in a 5mM solution of BrdU in 15% DMSO 

for 20 minutes and sacrificed immediately afterward.  

The retinas of transgenic fish contained many EGFP fluorescent cells 

throughout the retina (Fig.8A). The control retinas (Fig.8D) contained many 

mitotically-active, BrdU-positive cells in the circumferential germinal zone, the 

outer nuclear layer, and portions of the inner nuclear layer. In contrast, the 

retinas of transgenic fish contained many fewer BrdU+ cells (Fig.8B). This 
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difference is especially striking for the CGZ, which, in wild-type retina, contains 

many BrdU-positive cells and, in retinas of transgenic animals, contains none or 

few BrdU-positive cells (compare with Fig.8B and Fig.8D; arrows). Only a few 

BrdU positive cells can be seen in the transgenic retina at 48hpf, and these cells 

do not co-localize with EGFP (Fig.8C). The number of mitotically active cells was 

quantified using another marker of proliferation, phospho-histone H3. The data 

show significantly fewer ph3 labeled cells in transgenic retinas following heat 

shock compared to controls (Fig.9A). Taken together, the BrdU and phospho-

histone H3 data suggest that NeuroD fusion protein promotes cell cycle exit in 

the embryonic zebrafish retina.  

An alternative explanation for the data, however, is that the transgenic 

cells do not exit from the cell cycle but rather undergo apoptosis. To test for this, 

apoptotic cells in the retinas of transgenic and wild type fish were labeled using 

the TUNEL assay. Cell counts show that compared to controls there is no 

increase in TUNEL+ cells in the retinas of transgenic fish and, in fact, there are 

significantly fewer TUNEL+ cells in the retinas of transgenic fish (Fig.9B). These 

data show that the presence of the NeuroD fusion protein does not result in 

increased cell death. This suggests that the decrease in BrdU+ and pH3+ cells is 

a consequence of cells withdrawing from the cell cycle and not cell death. 

A panel of probes for cell cycle regulatory proteins including CyclinD1, 

CyclinB, CyclinE, and the cyclin inhibitors p27 and p57 was used to investigate 

the potential mechanism by which NeuroD promotes cell cycle exit. Animals were 

heat-shocked at 24hpf and assayed by in situ hybridization at 48hpf. The retinas 
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of transgenic and control animals were processed on the same slides with a 

panel of cyclin probes. Compared to controls, the retinas of transgenic animals 

contain many fewer cells that express CyclinD, CyclinB, and CyclinE (Fig.10A-F). 

In control retinas, CyclinD1 is expressed in cells in the CGZ, and this expression 

is absent in the retinas of transgenic animals (Fig.10A and B). In controls, 

CyclinB is expressed throughout the retina, but the level of expression, as 

indicated by the intensity of riboporobe staining, is higher in cells found in the 

circumferential germinal zone (Fig.10C; arrows). In contrast, in the retinas of 

transgenic animals, CyclinB expression is significantly reduced in the retinas of 

transgenic animals, including in cells in the CGZ (Fig.10C and D; arrows). In 

control animals, CyclinE is expressed in the CGZ and in scattered cells in the 

remainder of the retina (Fig.10E). In contrast, in the retinas of transgenic animals, 

CyclinE expression is absent (Fig.10F; arrows). The retinas of transgenic and 

control animals were also processed with probes for cyclin inhibitors. In controls, 

p27 is expressed throughout the retina (Fig.10G). In the retinas of transgenic 

animals, the level of p27 expression is significantly increased, as indicated by the 

intensity of riboporobe staining, and p27 riboprobe label is especially intense in 

the CGZ (Fig. 10G-J; arrows). In controls, low level of p57 expression is present 

throughout the retina except for the peripheral portion of the CGZ where p57 is 

not expressed (Fig.10 I; arrows). In contrast, in the retinas of transgenic animals, 

p57 is expressed in the CGZ (Fig.10J; arrows), and the level of p57 expression, 

as indicated by the intensity of p57 riboprobe staining, is increased throughout 

the retina (compare Fig.10 I and Fig.10 J). These data suggests that the 



 

 91 

presence of NeuroD fusion protein results in a decrease in the expression of 

CyclinD, CyclinB, and CyclinE and an increase in the expression of p27 and p57. 

Based on these data, I conclude that NeuroD promotes cell cycle withdrawal by 

regulating the expression of cyclin inhibitors and cyclins required for cell cycle 

progression. 

NeuroD promotes photoreceptor genesis and inhibits gliogenesis in the 

late but not early stage of retinal neurogenesis. 

bHLH transcription factors, including NeuroD, have been shown to be sufficient 

to induce neuronal determination and differentiation (Lee et al., 1995; Farah et 

al., 2000). To test the hypothesis that NeuroD promotes photoreceptor genesis, 

transgenic and control embryos were heat-shocked at 24hpf and assayed at 

48hpf using a panel of cell-type specific neuronal markers, including zn12 

(ganglion cells), HPC-1 (amacrine cells), zpr-1 (cone photoreceptors), and zpr-3 

(rod photoreceptors). The data show that cells which withdraw from the cell cycle 

in retinas of transgenic animals between 24-48hpf do not express markers of 

differentiated cells (Fig.11E-H). This demonstrates that, between 24-48hpf, the 

NeuroD fusion protein is not sufficient to promote photoreceptor or neuronal 

genesis in vivo. 

One explanation for these data is that between 24-48hpf the retinal 

environment is not permissive for photoreceptor genesis, which could explain 

why the NeuroD fusion protein is not sufficient to promote photoreceptor genesis 

at this time. To surmount this potential problem, zebrafish were exposed to BrdU 

and heat-shocked at 48hpf, a time when the retinal environment is permissive 
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(Raymond et al., 1995). NeuroD fusion protein was strongly induced in the CGZ 

following heat shock at 48hpf (Fig.12; arrows), but EGFP fluorescence was not 

detectable in the retina by conventional fluorescence microscopy at 72hpf 

(Fig.13). Therefore, BrdU was used to track the cohort of cells within the CGZ at 

48hpf, and the fates of these cells were assayed at 72hpf using the panel of cell 

type specific markers described above, plus glutamine synthetase (GS) for Müller 

glia. Further, because there is a dorsal and ventral asymmetry in the zebrafish 

retina at 72hpf (Hyatt et al., 1996; Schmitt and Dowling, 1999), the dorsal and 

ventral portions of the retina were analyzed separately. Cell counts were limited 

to a region demarcated by BrdU-labeled cells just central to the CGZ (Fig.14A 

and B; the white lines indicate the left and right boundary for the dorsal and 

ventral retina regions evaluated, respectively). Cell labeled with cell-type specific 

markers were counted, and ratios of photoreceptors to other neurons and glia, as 

well as ratios of glia to other neurons were calculated (Fig.14C-H; see also Table 

1 for original tabulated cell counts). Three major observations emerged from this 

experiment, corresponding to cone photoreceptor ratios, rod photoreceptor 

ratios, and Müller glia ratios. First, in the dorsal retina of transgenic animals, 

there is no significant difference in the proportion of cone photoreceptors to other 

cell types (Fig.14C). However, data show that there is a higher proportion of cone 

photoreceptors to Müller glia and a lower proportion of cone photoreceptors to 

amacrine cells (Fig.14D). Second, the data show a significantly higher proportion 

of rod photoreceptors compared to all other cell types in the dorsal retina 

(Fig.14E). In the ventral retina, the data also show a higher proportion of rod 



 

 93 

photoreceptors to Müller glia (Fig.14F). Third, in dorsal retina of transgenic 

animals, the proportion of Müller glia is significantly lower compared to rod 

photoreceptors (Fig.14G). In ventral retina of transgenic animals, the proportion 

of Müller glia is significantly lower compared to all other cell types (Fig.14H). 

Taken together, these data show that among the cells born at the CGZ, there 

was a higher proportion of rod and cone photoreceptors and a concomitantly 

lower proportion of Müller glia in the retinas of transgenic animals. These results 

suggest that induced expression of NeuroD in retinal progenitors of the CGZ is 

sufficient to generate photoreceptors between 48-72hpf. The data further suggest 

that the NeuroD fusion protein inhibits gliogenesis.  

Discussion 

The present study used a line of zebrafish transgenic for Hsp70/4:nrd-EGFP for 

conditional gain-of-function experiments to test the hypothesis that NeuroD 

promotes cell cycle withdrawal of photoreceptor progenitors and promotes 

photoreceptor genesis in the zebrafish retina. Proliferation and photoreceptor 

genesis, the two components of the hypothesis, were examined separately. The 

Hsp70/4:nrd-EGFP line of zebrafish allowed for temporal control of induced 

expression of NeuroD. Proliferation was examined using BrdU and phospho-

histone H3 labeling, and potential mechanisms were investigated utilizing probes 

for cell cycle regulatory proteins. Photoreceptor genesis was characterized using 

a panel of cell type-specific antibodies. Results indicate that NeuroD promotes 

cell cycle withdrawal, and at 48hpf is sufficient to promote photoreceptor genesis 
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and inhibit gliogenesis. These experiments are the first in vivo functional assay of 

cell cycle regulation by NeuroD in the vertebrate retina. 

Previous in vitro studies have shown that NeuroD promotes cell cycle 

withdrawal (Farah et al., 2000; Ohnuma et al., 2001; Ohnuma et al., 2002). In my 

study, two approaches were used to determine the effect of NeuroD on the cell 

cycle in vivo. The first used cell cycle markers, BrdU and phospho-histone H3, to 

compare proliferation in retinas in transgenic and control animals. The second 

approach investigated the potential mechanism of cell cycle regulation using 

probes for cell cycle regulatory proteins, CyclinD1, CyclinB, CyclinE, p27, and 

p57, to evaluate induced NeuroD on the expression of cell cycle regulatory 

proteins. The conditional gain-of-function experiments reveal that in the zebrafish 

retina NeuroD promotes cell cycle exit. Following heat shock retinas in transgenic 

animals showed robust EGFP fluorescence throughout the retina, indicating the 

presence of NeuroD fusion protein. In addition, compared with wild type controls, 

there was a significant decrease in the number of BrdU+ and phospho-histone 

H3+ cells. This was especially striking in the circumferential germinal zone, 

which, in the transgenic retinas, was almost devoid of BrdU labeled cells. These 

results suggest that NeuroD plays a key role in promoting cell cycle withdrawal.  

To investigate the mechanism through which NeuroD promotes cell cycle 

withdrawal in the retina, probes for cell cycle regulatory proteins, CyclinD1, 

CyclinB, CyclinE, p27, and p57, were used to evaluate induced NeuroD on the 

expression of cell cycle regulatory proteins. Several studies indicate that NeuroD 

promotes cell cycle withdrawal by modulating the expression of cell cycle 
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regulatory proteins. Cells transfected with NeuroD show elevated expression of 

the cyclin-dependent kinase inhibitor p27Kip1 and cell cycle withdrawal (Farah et 

al., 2000). In enteroendocrine cells, NeuroD induces cell cycle arrest with a 

concomitant increase in p21 expression, an inhibitor of cyclin-dependent kinases 

(Naya et al., 1997; Mutoh et al., 1998; Schonhoff et al., 2004). In the mouse 

retina, it has been shown that p27 can regulate cell cycle withdrawal of late 

progenitor cells (Levine et al., 2000; Dyer and Cepko, 2001a,b). In the present 

study, induced expression of NeuroD leads to the upregulation of p27 and p57 

and concomitant downregulation of CyclinD1, CyclinB and CyclinE. Thus, in the 

zebrafish retina, consistent with the previous studies, NeuroD may promote cell 

cycle withdrawal by modulating the expression of cell cycle regulatory proteins. 

Based on the literature and my observations in this study, a parsimonious 

interpretation of the results is that NeuroD upregulates the expression of p27 and 

p57, which, in turn, leads to the downregulation of the expression of cyclins D, B 

and E, which are required for cell cycle progression. This suggests that cyclin 

inhibitors p27 and p57 may be downstream targets of NeuroD. Several lines of 

evidence support this speculation. Cell cycle exit of NeuroD-transfected cells is 

preceded by elevated expression of the cyclin-dependent kinase inhibitor 

p27Kip1 and cell cycle withdrawal (Farah et al., 2000). NeuroD null mice show 

reduced p21 expression, with increased expression of cell proliferation markers, 

suggesting that NeuroD regulates cell cycle progression though p21 (Schonhoff 

et al., 2004). Another bHLH transcription factor MyoD has been shown to 

synergize with p27 to promote cell cycle withdrawal of muscle progenitors 
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(Vernon and Philpott, 2003). Taken together, based on its expression pattern in 

photoreceptor progenitors (Chapter II) and the data presented here, NeuroD may 

act on a network of cell cycle regulatory genes, which are modulated by cyclins 

and cyclin inhibitors, to promote cell cycle exit of photoreceptor progenitors in the 

zebrafish retina.  

The Hsp:nrd-EGFP transgenic line was also used to test the hypothesis 

that NeuroD promotes photoreceptor genesis. In other systems NeuroD is 

sufficient to promote neurogenesis (Lee et al., 1995; Lee et al., 1997; Farah et 

al., 2000). In the central and peripheral nervous systems, NeuroD is expressed 

transiently in a subset of neurons at the time of their terminal differentiation (Lee 

et al., 1995). Ectopic expression of NeuroD in Xenopus embryos causes 

premature differentiation of neuronal precursors in the embryo and ectopic 

differentiation of neurons in the retina (Lee et al., 1995; Moore et al., 2002; Logan 

et al., 2005). NeuroD can also convert presumptive epidermal cells into neurons 

(Lee et al., 1995; Lee et al., 1997). In the present study, although NeuroD is 

sufficient to promote cell cycle withdrawal in the retina at 24hpf, it is not sufficient 

to promote photoreceptor genesis. The transgenic cells that withdraw from the 

cell cycle do not precociously express markers of differentiated cells. In contrast, 

at 48hpf, NeuroD is sufficient to promote photoreceptor genesis, and, in addition, 

inhibit gliogenesis. These results suggest that NeuroD is sufficient to promote 

photoreceptor genesis in a retina that is permissive for this process to occur. 

The significant increase in the proportion of photoreceptors, and the 

concomitant decrease in the proportion of Müller glia, in transgenic fish are 
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consistent with the role of endogenous NeuroD, and bHLH transcription factors in 

general, as promoters of neurogenesis and inhibitors of gliogenesis (Sun et al., 

2001; Morrow et al., 1999; Tomita et al., 2000). In the retinas of NeuroD-null mice 

there is a three to fourfold increase in Müller glia, and forced expression of 

NeuroD in progenitors promotes neurogenesis and blocks gliogenesis (Morrow et 

al., 1999). In chick, retinal cells transfected with NeuroD never express glutamine 

synthetase, suggesting that NeuroD suppresses glial differentiation (Fischer et 

al., 2004). In the mammalian cerebral cortex, a panel of bHLH transcription 

factors was investigated, and a subset of the bHLH genes, including NeuroD, 

was capable of promoting the choice of neuronal versus glial cell fate (Cai et al., 

2000).  

The data from my present study support the hypothesis that NeuroD 

promotes photoreceptor genesis in the retina. However, the process of genesis 

involves everything from division, cell fate specification, withdrawal from the cell 

cycle, and differentiation. It is important to parse out the exact function of NeuroD 

in this process. So far I have offered evidence that NeuroD promotes cell cycle 

withdrawal, but whether NeuroD is determinative for photoreceptors or only 

promotes their differentiation is still not resolved. There are lines of evidence that 

support both scenarios. In the chick retina, NeuroD is determinative for 

photoreceptors, and misexpression of NeuroD through replication-competent 

transformation-deficient retroviruses results in retina with three instead of two 

layers of photoreceptor cells (Yan and Wang, 1998), and loss-of-function assays 

result in absence of photoreceptors (Yan and Wang, 2004). In addition, 
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misexpression of NeuroD in monolayer cultures of retinal pigment epithelium 

yields de novo production of photoreceptor cells only (Yan and Wang, 1998; Yan 

and Wang, 2000), which express visinin and a number of photoreceptor genes. 

These findings suggest that NeuroD promotes photoreceptor cell production in 

the chick retina and may function in both determination and differentiation of 

photoreceptors. In my present study, I induce expression of NeuroD fusion 

protein in the CGZ, which contains cells that don’t normally express this gene 

(see Chapter2). The data show that among cells born at the CGZ, induced 

expression of NeuroD results in an increased proportion of photoreceptors and 

decreased proportion of Müller glia, suggesting that NeuroD functions in 

photoreceptor determination. In addition, fewer Müller glia are generated 

suggesting that NeuroD also inhibits gliogenesis and that cells destined to the 

glia cell fate now become photoreceptors. Thus, one interpretation is that NeuroD 

functions in the determination step of the photoreceptor genesis process.  

In contrast to chick and zebrafish retina, in mouse and rat retinas NeuroD 

is expressed in postmitotic photoreceptor precursors in early as well as late 

neurogenesis suggesting that NeuroD plays an important role in the terminal 

differentiation of photoreceptors (Ahmad et al., 1999; Akagi et al., 2005; Cheng et 

al., 2006). Along with other key transcriptional regulators Nrl, Crx, and Nr2E3, 

NeuroD forms part of a large regulatory complex which promotes rod 

photoreceptor differentiation in the mouse retina (Mears et al., 2001; Cheng et 

al., 2006; Oh et al., 2007). Overexpression of NeuroD during late neurogenesis 

promotes premature differentiation of late-born neurons, including rod 
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photoreceptors, and NeuroD specifically interacts with the E-box element in the 

proximal promoter of the phenotype-specific gene, opsin (Ahmad et al., 1999). 

These findings suggest that NeuroD promotes differentiation of photoreceptors. 

Thus an alternative interpretation of results from the present study is that NeuroD 

may function in the terminal differentiation step of photoreceptor genesis. The 

induction of NeuroD may simply promote premature differentiation of 

photoreceptor cells leading to the increased proportions of photoreceptors 

observed in the retinas of transgenic animals.  

In summary, conditional induction of NeuroD expression reveals that 

NeuroD promotes cell cycle withdrawal, potentially by inducing the expression of 

cyclin inhibitors p27 and p57, and promotes photoreceptor genesis and inhibits 

gliogenesis. This suggests that in mitotically active cells of the rod and cone 

lineages, NeuroD normally functions as the molecular link that ties cell cycle 

withdrawal with determination and or differentiation.  
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Fig. III-1: The Hsp:nrd-EGFP construct is transcribed in vitro. 

A: The Hsp70/4-EGFP construct and 1kb coding region of the zebrafish nrd. The 
Hsp70/4:nrd-EGFP construct was assembled by subcloning the 1kb coding 
region of the zebrafish nrd gene into the Hsp70/4:EGFP vector. A1-A3 and B: 
The empty Hsp:EGFP construct is localized in the cytoplasm of HEK293 cells. 
C1-C3 and D: The Hsp:nrd-EGFP construct is selectively targeted to the nucleus 
and transcribed (EGFP+ nucleus). 
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Fig. III-2: The Hsp:nrd-EGFP construct is transcribed in vivo. 

A: Transient transgenic embryo heat-shocked at 24hpf showing mosaic EGFP+ 
cells 24 hours post heat shock (hphs) and at 12hphs (inset). B: Control embryo 
24hphs. C-D: Nuclear localization of the Hsp:nrd-EGFP construct in a transient 
transgenic embryo. hphs-hours post heat shock 
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Fig. III-3: The Hsp:nrd-EGFP construct induces ectopic neuroD expression.  
 
A-D: NeuroD in situs showing ectopic NeuroD expression in wholemounts from 
head to tail. E: Transverse section of Hsp:nrd-EGFP injected embryo 72hphs 
(96hpf).  
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Fig. III-4: Southern analysis of zebrafish lines transgenic for Hsp:nrd-EGFP.  
 
The first lane is the marker lane and lanes labeled 1-3 correspond to the three 
Hsp:nrd-EGFP transgenic lines. Lane 3 is from the line that was chosen based 
on robust fluorescence throughout the embryo and retina. Note the endogenous 
5kb NeuroD band and the intensely labeled 12kb band depicting the transgene. 
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Fig. III-5: The NeuroD fusion protein is inducible in the Hsp:nrd-EGFP 
transgenic zebrafish line.  
 
A and B: Transgenic embryo (A) and wild type control (B) heat-shocked at 15hpf 
and photographed at 32hpf. C and D: Transgenic embryo (C) and wild type 
control (D) heat-shocked at 25hpf and photographed at 48hpf. E and F: 
Transgenic embryo (E) and wild type control (F) heat-shocked at 48hpf and 
photographed at 76hpf. 
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Fig. III-6: Western analysis of the zebrafish NeuroD antibody (Ab zNrd).  
 
A: Pre-affinity purified (1, 6), Affinity purified (2, 5) and pre-immune serum (3, 4) 
immunoreactivity with adult zebrafish brain. Lanes 1-3 correspond to rabbit #2 
and lanes 4-6 correspond to rabbit #1. B: Peptide competition of Ab zNrd. 
Uncompeted (1), competed (2), and (3) blot 2 stripped and reprobed with Ab 
zNrd. C: Ab zNrd binds endogenous NeuroD and fusion protein in HnE 
transgenic line. 24HS48hpf embryos labeled with Ab zNrd (1) and EGFP 
antibody (2). 
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Fig. III-7: The NeuroD fusion protein is functional in vivo. 
 
A and B: transgenic and wild type embryos from the same clutch heat-shocked at 
15hpf and assayed at 25hpf. C and D: neuroD expression in transgenic and wild 
type control embryos, respectively. Note the ubiquitous expression of EGFP 
fluorescence throughout the transgenic embryo (C) compared to the control (D). 
E and F: Islet-1 expression in transgenic and wild-type control embryos. Note the 
ectopic expression of both neuroD (C, arrows) and its downstream target islet-1 
(E, arrows) in the Hsp:nrd-EGFP transgenic embryos compared to controls (D 
and F, respectively). 
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Fig. III-8: NeuroD promotes cell cycle exit in vivo. 
 
A and B: EGFP expression (A) and BrdU labeling (B) in the retina of a transgenic 
embryo heat-shocked at 24hpf and sacrificed at 48hpf; Note the absence of BrdU 
labeling in the circumferential germinal zone (CGZ). C: Overlay of A and B. D: 
BrdU labeling in an age-matched heat-shocked wild-type control (compare with 
B). 
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Fig. III-9: NeuroD promotes cell cycle exit in vivo and the presence of the 
NeuroD fusion protein does not result in cell death.   
 
A: Bar graph showing tabulated pH3 data for 12 transgenic and 12 wild type 
retinas. Note the significant decrease in the number of mitotically active cells in 
the transgenic compared to control retinas. B: Bar graph showing tabulated 
TUNEL data for 12 transgenic and 12 wild type retinas. Note the low levels of 
TUNEL+ cells in both wild type and transgenic retinas, plus a significant 
decrease in TUNEL+ cells in the transgenic compared to control retina.  



 

 109 

 
 
Fig. III-10: NeuroD inhibits cyclin expression and promotes the expression 
of cyclin inhibitors.  
 
A-F: The expression of CyclinD, CyclinD, and CyclinE is downregulated in 
transgenic retinas compared to controls. G-J: The expression of cyclin inhibitors 
p27 and p57 is upregulated in transgenic retinas compared to controls. Animals 
were heat-shocked at 24hpf and assayed at 48hpf.  
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Fig. III-11: Transgenic cells that withdraw from the cell cycle do not 
precociously express markers of differentiated cells in the early retina.  
 
A-D and E-H: wild type and transgenic retina, respectively, heat-shocked at 
24hpf and assayed at 48hpf for zn-12 (ganglion cell marker), HPC-1 (syntaxin, 
ganglion and amacrine cell marker, zpr-1 (cone marker), and zpr3 (rod marker) 
staining). Note the absence of neuronal marker staining in transgenic retinas (E-
H). 
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Fig. III-12: The NeuroD fusion protein is induced following heat shock at 48 
hours post fertilization. 
 
A, B, and C: transgenic and wild type embryos from the same clutch heat-
shocked at 48hpf and assayed at 56hpf. A: Control embryo showing absence of 
EGFP fluorescence. B and C: The majority of the cells in the retina and brain are 
EGFP positive. 
 



 

 112 

 
 
Fig. III-13: EGFP fluorescence is not detected by fluorescence microscopy 
in embryos heat-shocked at 48 hours post fertilization and sacrificed at 72 
hours post fertilization. 
 
A and B: Transgenic embryos heat-shocked at 48hpf and assayed at 72hpf. 
EGFP fluorescence is not detectable by conventional fluorescence microscopy 
by 72hpf. Note the presence of EGFP positive cells in the lens, where the fusion 
protein is constitutively active. 
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Table1: Cell Counts in Dorsal and Ventral Retina of 48BrHS72hpf Hsp:nrd-
EGFP zebrafish cohorts. 
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Fig. III-14: The NeuroD fusion protein promotes photoreceptor genesis and 
inhibits gliogenesis. 
 
A and B: 72hpf wild type and transgenic retinas, respectively, labeled with BrdU 
and heat-shocked at 48hpf showing the area in ventral and dorsal retina that was 
used to count cells generated from the CGZ at 48hpf (here is an example of 
retinas labeled with zpr3 (rod marker)). C-G and D-H: Graphs showing the 
tabulated ratios of cone, rods, and Muller glia to other cell types in control and 
transgenic retinas in the dorsal and ventral retina, respectively. Cell type specific 
markers used include zn-12 (ganglion cell marker), HPC-1 (syntaxin, ganglion 
and amacrine cell marker, zpr-1 (cone marker), and zpr3 (rod marker) staining). 
Note the significant increase in the proportion of rod photoreceptors and the 
significant decrease in the proportion of Muller glia cells to other cell types in the 
transgenic compared to control retinas. The asterisks (*) indicate a statistically 
significant difference as calculated by the pooled two-sample t-test procedure 
(p<0.05; Moore and McCabe, 1998; Cochran, 1977)  
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CHAPTER IV 

LOSS-OF-FUNCTION 

This chapter extends the studies described in Chapter II and Chapter III by using 

Morpholino oligonucleotides to block translation of the NeuroD protein. 

Introduction 

NeuroD is a member of the family of basic helix-loop-helix (bHLH) transcription 

factors that shares properties of other bHLH transcription factors (Livesey and 

Cepko, 2001; Van Raay and Vetter, 2004; Yan et al., 2005; Wang and Harris, 

2005; Chapter III). In other systems, NeuroD is involved in regulating withdrawal 

from the cell cycle and neuronal differentiation (Lee et al., 1995; Farah et al., 

2000). In the retina, NeuroD regulates neuron versus glial cell fate (Morrow et al., 

1999) and promotes amacrine cell genesis (Ahmad et al., 1998; Acharya et al., 

1997; Moore et al., 2002; Inoue et al., 2002), and in chick and in zebrafish 

promotes photoreceptor genesis (Yan and Wang, 1998; Yan and Wang, 2004; 

Chapter III). 

In larval and adult teleosts NeuroD is expressed in proliferating cells of rod 

and cone photoreceptor lineages and in differentiating cone photoreceptors 

(Otteson and Hitchcock, 2003; Hitchcock et al., 2004; Hitchcock and Kakuk-

Atkins, 2004; Chapter II). I previously used lines of zebrafish transgenic for Heat 

shock-NeuroD-EGFP (Hsp:nrd-EGFP) for conditional gain-of-function
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experiments to test the hypothesis that NeuroD promotes cell cycle withdrawal 

and photoreceptor genesis. Results from these studies showed that NeuroD 

promotes cell cycle withdrawal in the retina and is sufficient to promote 

photoreceptor genesis. These findings combined with the cellular pattern of 

expression suggest that NeuroD functions to modulate the mitotic activity of cells 

in the rod and cone photoreceptor lineages and to promote photoreceptor 

genesis. As an additional test of this hypothesis, I used NeuroD morpholino 

oligonucleotides in loss-of-function experiments. 

 

Materials and Methods 

Experimental Animals 

Zebrafish were maintained at 28.5°C on a 14/10 hr light/dark cycle in a zebrafish 

modular (ZMOD) breeding facility. Embryos were collected after natural spawns, 

developed at 28.5°C, and staged by HPF as described previously (Kimmel et al., 

1995). Wild-type zebrafish were used for this study. 

Morpholinos and microinjections 

Morpholinos (MOs) were synthesized by Gene Tools, LLC (Cowallis, OR). The 

nrd MO1 was complementary to the initiation codon (AUG) of the zebrafish nrd 

mRNA sequence (GenBank accession number: AF036148). A 5-bp mismatch 

morpholino was used as a control. The sequences of 25-mer MOs used were as 

follows:  

nrd MO1: 5'-TGACTTCGTCATGTCGGAACTCTAG-3' 

5-mis-nrdMO1: 5' TGAgTTgGTCATcTCGcAACTgTAG-3' 
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The MOs were diluted in 1x Danieau buffer (Nasevicius and Ekker, 2000) at 

1mg/ml. Embryos were injected with 5nl of MOs at 2- to 8-cell stages. Morphant 

retinas were compared to uninjected and mis-match injected retinas at 72 hours 

post fertilization using BrdU incorporation and a series of cell type specific 

markers. 

BrdU labeling 

Bromodeoxyuridine (BrdU; Sigma, St. Louis, MO) was used to label mitotically 

active cells. Embryos were exposed to BrdU for 20 minutes by soaking in 5mM 

BrdU and 15% DMSO in embryo rearing solution as previously described 

(Ochocinska and Hitchcock, 2007). Twelve morphant and twelve control animals 

were analyzed. 

Immunohistochemistry 

All immunocytochemistry protocols were performed as previously described 

(Hitchcock et al., 1996). Omitting primary antibodies served as negative controls. 

In the absence of primary antibodies, no staining was observed (data not shown). 

Ganglion cells were labeled using the mouse monoclonal antibody zn-12 (The 

Zebrafish International Resource Center, Eugene, OR; catalog #072103), which 

labels early born neurons in the zebrafish and ganglion cells in the retina. 

Amacrine cells were labeled using the cell type-specific monoclonal antibody 

against rat syntaxin (Monoclonal Anti-Syntaxin Clone HPC-1; Sigma; catalog 

#S0664). Cone photoreceptors were labeled using the mouse monoclonal 

antibody zpr-1 (The Zebrafish International Resource Center, Eugene, OR; 

catalog #092502), which labels an unidentified epitope on red/green cones.  Rod 
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photoreceptors were labeled using the mouse monoclonal antibody zpr-3 (The 

Zebrafish International Resource Center, Eugene, OR; catalog #011604). BrdU 

was detected using a monoclonal antibody against BrdU (Becton Dickinson 

Immunocytochemistry Systems, San Jose, CA; catalog #347580) diluted 1:200. 

Proliferating cells were also labeled with a monoclonal antibody against 

Proliferating Cell Nuclear Antigen (PCNA). All primary antibodies and secondary 

antibodies conjugated to fluorescent labels were diluted 1:200. For each label, 

twelve morphant and twelve control animals were analyzed. 

In situ hybridization 

In situ hybridization with single probes on sections was performed as previously 

described (Hitchcock et al., 2001). In situ hybridization using CyclinD1 and p27 

DIG-labeled riboprobes was performed on wild type and morphant retinas. 

Briefly, full-length cDNAs were linearized and DIG-labeled riboprobes were 

synthesized with an RNA labeling kit (Roche Diagnostic Corp., Indianapolis, IN). 

Following prehybridization two hundred nanograms of probe in 80µl of 

hybridization solution was pipetted onto each slide, coverslipped, and hybridized 

overnight at 55°C. The next day, the sections were washed and digoxygenin was 

immunolabeled using an alkaline-phosphatase-conjugated antibody and 

visualized with NBT/BCIP. The slides were then coverslipped for microscopy or 

combined with several immunocytochemistry protocols described below. 

Following hybridization with neuroD sense probes, no staining was observed 

(data not shown). For each probe, twelve morphant and twelve control animals 

were analyzed. 
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Results 

Nrd atg morpholinos: effects on development and specificity. 

The presence of morpholino oligonucleotides may have non-specific effects on 

embryonic development (Corey and Abrams, 2001). To determine if the NeuroD 

morpholino affects general development, embryos from a wild-type cross were 

divided into three groups. The first experimental group was injected with a 25-bp 

atg-morpholino (atg-MO) targeted against the translation start site of NeuroD. 

The second control group was injected with mismatch morpholinos (MM-MO), 

which contained a 5-bp mismatch in the 25-mer atg sequence. The third control 

group consisted of uninjected, wild-type embryos. The morphology of the 

embryos was then compared among the three groups. Gross examination at 

72hpf indicated there was no apparent difference in morphology between the 

uninjected controls, embryos injected with the MM-MO, or embryos injected with 

the atg-MO (Fig.1A-C). In all three groups, embryos developed normally, and the 

size of the body and eyes was comparable. These data suggest that the NeuroD 

morpholino oligonucleotides used here do not affect the general development of 

zebrafish embryos.  

The specificity of the NeuroD morpholino was tested in Western blots and 

in the Hsp:nrd-EGFP transgenic line (see Chapter III). The zNrd antibody (see 

Chapter III) was used on Western blots of protein lysates from 72hpf morphant 

and control embryos. The zNrd antibody binds to NeuroD in uninjected controls, 

and this 30kD band is significantly reduced in the NeuroD morphants (Fig.1D). 

This shows that the atg-MO prevents translation of NeuroD protein in vivo. As a 
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second, independent test of specificity, atg-MO and MM-MO controls were 

injected into embryos from the Hsp-nrd-EGFP line (see Chapter 3), and EGFP 

expression was assayed following heat shock. A clutch of embryos from a 

heterozygous cross was divided into two groups at the 1-2 cell stage. One group 

was injected with atg-MO and the other group was injected with the MM-MO 

control. All injected embryos were heat-shocked at 24hpf and assayed at 48hpf 

for induction of the NeuroD-EGFP fusion protein. At 48hpf, embryos injected with 

the MM-MO showed robust EGFP fluorescence (Fig.2A), whereas embryos 

injected with the atg-MO showed an absence of EGFP fluorescence or only a few 

EGFP+ cells (Fig.2B). These data show that the presence of the atg-morpholino 

results in a significant decrease in EGFP fluorescence (Fig.2A and B; though, 

see ‘Specific rescue of morphant retinas’), demonstrating that, in embryos at 

24hpf, the atg-MO prevents translation of the NeuroD fusion protein in vivo.  

NeuroD is required for photoreceptor progenitors to exit the cell cycle.  

As an additional test of the hypothesis that in photoreceptor progenitors NeuroD 

promotes cell cycle withdrawal, the effect of NeuroD protein knock-down on the 

cell cycle was analyzed. BrdU incorporation and Proliferating Cell Nuclear 

Antigen (PCNA) labeling was used to determine whether or not NeuroD knock-

down alters proliferation. In contrast to the gain-of-function experiments (Chapter 

III) where NeuroD was induced in all cells, in these loss-of-function experiments, 

NeuroD is only removed from cells that normally express this protein. Since 

NeuroD is expressed in mitotically active cells of the rod and cone lineages, 
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these studies can directly test the consequence of removing NeuroD in these 

cells. 

Embryos from a wild-type cross were divided into three groups. The first 

control group was not injected, the second group was injected with mismatch 

morpholino control (MM-MO), and the third group was injected with the atg-

morpholino (atg-MO). At 72hpf all three groups were exposed to a brief pulse of 

BrdU by immersion in a solution of 5mM BrdU in 15% DMSO for 20 minutes and 

sacrificed immediately afterwards. In both control groups, BrdU+ cells were 

present in the circumferential germinal zone and absent in the inner and outer 

nuclear layer (Fig.3A and B; arrows). Similar to controls, the retinas of atg-

morphants contained BrdU+ cells in the CGZ (Fig.3C; arrows), however, in 

striking contrast to controls, BrdU+ cells were present throughout the outer 

nuclear layer (Fig.3C; arrows) and individual cells and clusters of cells were 

present in the inner nuclear layer (Fig.3C; arrow heads). These data show that in 

the absence of NeuroD, cells in both the inner and the outer nuclear layers 

continue to proliferate.  

Proliferating Cell Nuclear Antigen (PCNA), another marker which labels a 

larger proportion of mitotically active cells during the cell cycle than BrdU, was 

used at 72hpf to label retinas of uninjected, MM-MO and atg-MO injected 

animals. In both control groups, PCNA+ cells were present in the CGZ, but 

labeled a larger cohort of cells than with BrdU (Fig.3A and B; arrows; compare 

with Fig.2A and B). In morphant retinas injected with atg-MO, as for BrdU+ cells, 

there were PCNA+ cells throughout the outer and inner nuclear layers (Fig.4C). 
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To investigate the potential mechanism by which NeuroD promotes cell 

cycle withdrawal, morphant retinas were analyzed with probes for cell cycle 

regulatory proteins CyclinD1 and p27. At 72hpf, retinas of morphants and 

uninjected controls were labeled with CyclinD and p27 riboprobes. In the wild-

type control retina, CyclinD is expressed in the CGZ (Fig.5A1), whereas in the 

morphant retina CyclinD is also expressed in portions of the inner and outer 

nuclear layers (Fig.5A2; arrows). These data suggest that the absence of 

NeuroD protein results in the upregulation of CyclinD expression in the outer 

nuclear layer. There is no clear difference observed in p27 expression between 

morphant and control retinas (Fig.5B1 and B2).  

NeuroD morphant retinas fail to express markers of differentiated 

photoreceptors.  

NeuroD, along with other bHLH transcription factors, has been shown to be 

sufficient to induce neuronal differentiation (Lee et al., 1995; Farah et al., 2000). 

Even though the BrdU data suggests that, in the morphant retina, most cells in 

the outer nuclear are dividing, there may be some cells that have exited the cell 

cycle. If this is the case, knock down of NeuroD in these cells may affect their 

differentiation. To test the hypothesis that NeuroD promotes photoreceptor 

genesis, morphant and wild type retinas were assayed at 72hpf using a panel of 

cell-type specific markers. The data show that the gaglion cell layer and inner 

nuclear layer develop normally in wild-type and morphant retinas (Fig.6A-B and 

E-F). However, retinas in NeuroD morphants do not express markers of 

differentiated photoreceptors (Fig.6C-D and G-H). This suggests that, in the 
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absence of NeuroD protein, any postmitotic cells present in the outer nuclear 

layer in the morphant retina fail to differentiate into photoreceptors. 

Specific rescue of NeuroD morphant retinas 

As another test of specificity of NeuroD ATG morpholino and as a test of the 

hypothesis that NeuroD promotes cell cycle withdrawal among photoreceptor 

progenitors, a rescue experiment was devised using the Hsp70/4:nrd-EGFP 

transgenic line (Fig.7; see also Chapter 3 for description of transgenic line). atg-

MOs were injected into 1-2 cell stage Hsp70/4:nrd-EGFP embryos, which were 

heat-shocked at 48hpf and at 72hpf were separated based on EGFP 

fluorescence. In contrast to embryos from the Hsp:nrd-EGFP line injected with 

atg-MOs heat-shocked at 24hpf and evaluated at 48hpf (see above and Fig.2), it 

was possible to sort embryos according to fluorescence at 72hpf (Fig.7). These 

embryos were exposed to BrdU at 72hpf, and BrdU incorporation was compared 

between transgenic and wild type retinas. Wild-type embryos show BrdU+ cells in 

the CGZ, the outer nuclear layer and inner nuclear layer (Fig.7A and B), 

consistent with the morphant phenotype. In contrast, the retinas of transgenic 

embryos have significantly fewer BrdU+ cells (Fig.7C and D). This demonstrates 

that inducing NeuroD fusion protein can partially rescue the morphant phenotype 

and induces cell cycle withdrawal specifically among photoreceptor progenitor 

cells.  

A second rescue experiment was performed to determine whether the 

morphant retinas recover from the effect of NeuroD loss-of-function. Embryos 

from a wild-type cross were injected with atg-MOs at the 1-2 cell stage. A subset 
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of these embryos was tested at 72hpf (see previous section and Fig.8A-D), and 

another subset was set aside to be evaluated at 7 days post fertilization (dpf) 

using cell-type specific markers for cone and rod photoreceptors. In contrast to 

72hpf, by 7dpf photoreceptors in NeuroD morphants express protein found on 

mature cone and rod photoreceptors (Fig.8E-F).This demonstrates that between 

72 hpf and 7dpf, as the effect of the morpholinos is attenuated, the cells that at 

72hpf are either mitotically active, or don’t express markers of differentiated cells, 

now exit the cell cycle and express markers of differentiated cone and rod 

photoreceptors. Thus, the progenitor cells of the rod and cone progenitor 

lineages cells, which normally require NeuroD protein, upon re-expression of 

NeuroD protein exit the cell cycle and differentiate. 

Discussion 
 
The present study used a loss-of-function approach which is complementary to 

the gain-of-function studies described in Chapter III. To test the hypothesis that 

NeuroD promotes cell cycle withdrawal among photoreceptor progenitors and 

promotes photoreceptor genesis, morpholino oligonucleotides were used to block 

translation of NeuroD protein. The loss-of-function experiments described in this 

chapter reveal that, in the absence of NeuroD, cells of the rod and cone 

photoreceptor lineages that normally express NeuroD continue to proliferate and 

fail to exit the cell cycle. In addition, whereas the inner nuclear layer markers are 

expressed, cells in the outer nuclear layer fail to express markers of differentiated 

photoreceptors. Thus the complementary results from both the gain and loss-of-
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function suggest that NeuroD is required for the cell cycle exit of rod and cone 

photoreceptor lineages. 

NeuroD promotes cell cycle withdrawal in other systems (Lee et al., 1995; 

Farah et al., 2000). I have previously shown that NeuroD promotes cell cycle 

withdrawal in the retina (Chapter III). As an additional test of the hypothesis that 

in photoreceptor progenitors NeuroD promotes cell cycle withdrawal, the effect of 

NeuroD protein knock-down on the cell cycle was analyzed. In the absence of 

NeuroD protein, cells, which normally express NeuroD in both the inner and outer 

nuclear layer, are labeled with BrdU and PCNA. The mitotically active cells in the 

outer nuclear layer correspond to photoreceptor progenitor cells. In addition, cells 

in the inner nuclear layer labeled with BrdU are scattered and sometimes appear 

in clusters extending towards the outer nuclear layer. Based on location, 

morphology, distribution, and the cellular pattern of neuroD expression, these 

cells, which continue to proliferate in the absence of NeuroD protein, are cells of 

the rod photoreceptor lineage, as described in embryonic, larval and adult 

teleosts (Otteson et al., 2001; Hitchcock and Kakuk-Atkins, 2004; see also 

Chapter 2). In addition, cells in the outer nuclear layer in morphant retinas fail to 

express markers of differentiated photoreceptors. This demonstrates that, in the 

absence of NeuroD, photoreceptor progenitors continue to proliferate and fail to 

differentiate.  

The morphant phenotype described here is consistent with NeuroD loss-

of-function results in the chick retina (Yan and Wang, 2004). Regions of retina 

infected with NeuroD repression construct show absence of photoreceptor 
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marker staining and presence of Chx10+ cells in the outer nuclear layer, a 

marker of progenitor cells. As the authors note, the Chx10+ cells may be 

progenitor cells unable to proceed to differentiation as photoreceptor cells due to 

NeuroD repression. The present study is consistent with this and shows that 

NeuroD in the zebrafish retina is required for cell cycle exit of photoreceptor 

progenitors. In addition, by 7dpf photoreceptors in NeuroD morphants can be 

labeled with markers of cone and rod photoreceptors, suggesting that between 

72 hpf and 7dpf as the effect of the morpholinos is attenuated, mitotically active 

cells exit the cell cycle and generate photoreceptors. 

To investigate the mechanism through which NeuroD promotes cell cycle 

withdrawal in the retina, probes for cell cycle regulatory proteins, CyclinD1 and 

p27 were used to evaluate the absence of NeuroD on the expression of cell cycle 

regulatory proteins. NeuroD null mice show reduced expression of the p27, an 

inhibitor of cyclin-dependent kinases, combined with increased expression of cell 

proliferation markers (Schonhoff et al., 2004). In the present study, at 72hpf 

CyclinD1 expression is increased in the morphant retinas and includes portions 

of the outer and inner nuclear layers. The absence of NeuroD protein does not 

appear to affect the expression of the cyclin-inhibitor p27. However, there are 

high levels of p27 expression at this time and it may be difficult to detect subtle 

changes in this expression. Alternatively CyclinD1 expression at this time may be 

regulated by other cyclin inhibitors, such as p57. Taken together, the gain-of-

function data presented in Chapter III and the loss-of-function data suggest that 
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NeuroD may function to coordinate cell cycle arrest with the upregulation of 

cyclin inhibitors and concomitant downregulation of cyclin expression. 

In contrast to the gain-of-function experiments (Chapter III), where NeuroD 

was expressed in all cells, in the loss-of-function experiments, NeuroD was only 

removed from cells that normally express this protein. Since NeuroD is 

expressed in mitotically active cells of the rod and cone lineages, these studies 

could directly test the consequence of specifically removing NeuroD from the 

cells that normally require NeuroD. As another test of the hypothesis that NeuroD 

promotes cell cycle withdrawal of rod and cone photoreceptor progenitors, a 

rescue experiment was devised using the Hsp70/4:nrd-EGFP transgenic line 

(Chapter 3). Wild-type embryos injected with atg-morpholino show BrdU+ cells in 

the CGZ, the outer nuclear layer and inner nuclear layer, consistent with the 

morphant phenotype. In contrast, the retinas of transgenic embryos injected with 

atg-morpholino, following heat shock and induction of NeuroD fusion protein, 

have significantly fewer BrdU+ cells. This demonstrates that inducing NeuroD 

fusion protein can partially rescue the morphant phenotype and promotes cell 

cycle withdrawal specifically among photoreceptor progenitor cells.  

Earlier work has speculated that based on the cellular expression pattern 

in nascent cones, NeuroD may regulate early aspects of cone maturation 

(Chapter 2). NeuroD is expressed in immature cones, and this expression is 

turned off in mature cones which begin to express opsins (Chapter 2). This 

suggests that, in addition to its role in cell cycle withdrawal of cone progenitor 

cells, NeuroD may also regulate early aspects of their maturation. NeuroD 
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morphant retinas fail to express markers of differentiated cone photoreceptors, 

but after the effect of the morpholino is attenuated, cells in the outer nuclear can 

be labeled with cone photoreceptor markers. One potential explanation is that, in 

the absence of NeuroD, cone photoreceptors remain in an immature state and 

NeuroD is required for their differentiation. This is consistent with the presence of 

cone photoreceptor differentiation once the effect of the NeuroD morpholino is 

removed. As the levels of NeuroD protein return to normal, the nascent cones 

begin to mature and express markers of differentiated cone photoreceptors. 

Several lines of evidence support this and show that NeuroD plays a role 

in the maturation of other cell types in the brain. NeuroD may play a role in the 

maturation of olfactory and taste bud cells (Bedard and Parent, 2004; Suzuki et 

al., 2002). NeuroD is expressed in newborn cells in the granular and glomerular 

layers of the human olfactory bulb, and in immature taste buds. NeuroD is also 

expressed strongly in immature neurons, but not in mature neurons, in cultured 

cortical neurons, and expression of NeuroD decreases with increasing days in 

culture, as neurons become mature (Katayama et al., 1997); In the cerebellum 

(Miyata et al., 1999), the olfactory bulb (Lee et al., 2000), and the olfactory 

epithelium (Nibu et al., 1999), where active neurogenesis occurs even in the 

adult stage, high levels of NeuroD expression persist during postnatal 

development. In the dentate granule cell layer, where neurons continue to be 

added at later ages, NeuroD continues to be expressed and is at its highest 

levels in the most immature neurons (Pleasure et al., 2000). This implies that 

NeuroD regulates the expression of genes involved in the maturation of granule 
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cells and their integration into the existing neuronal network. Likewise, in the 

zebrafish retina NeuroD may promote the expression of genes involved in the 

maturation of cone photoreceptors.  

Taken together, based on the cellular pattern of neuroD expression 

(Chapter II) combined with gain-of-function (Chapter III) data, the present results 

confirm that NeuroD plays a direct role in promoting the cell cycle withdrawal of 

photoreceptor progenitors, as well as a potential role in cone photoreceptor 

maturation. In the absence of NeuroD, photoreceptor progenitor cells remain 

mitotically active. There is a concomitant increase in markers of mitotically active 

cells as assayed by BrdU incorporation and PCNA labeling and an increase 

CyclinD1 expression. In addition, morphant retinas fail to express markers of 

differentiated photoreceptors. This indicates that NeuroD is required for cell cycle 

withdrawal of photoreceptor progenitor cells, and may also function in maturation 

of cone photoreceptors, which, in the absence of NeuroD protein, fail to 

differentiate. Thus a model is emerging for NeuroD function in the retina. The 

cellular pattern of neuroD expression and the complementary results from gain-

of-function and loss-of-function experiments suggest that NeuroD promotes cell 

cycle withdrawal of photoreceptor progenitors, promotes photoreceptor genesis, 

and may function in maturation of cone photoreceptors. In addition, NeuroD 

functions as the molecular link that ties cell cycle withdrawal with determination 

and or differentiation. 
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Fig. IV-1: NeuroD morpholino oligonucleotides (MOs): effect on 
development and Western analysis.  
 
A, B, and C: Wild type (uninjected), mismatch-ATG morpholino injected, and MO-
ATG injected morphants at 72hpf. D: Western blot showing the knock-down of 
NeuroD protein in 72hpf morphants compared to uninjected controls. 
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Fig. IV-2: NeuroD morpholino oligonucleotides (MOs) inhibit induction of 
NeuroD fusion protein in the Hsp:nrd-EGFP transgenic line.  
 
A1 and 2: One half of a cohort of Hsp:nrd-EGFP embryos from a heterozygous 
cross injected with mismatch-ATG morpholino control, heat-shocked at 24hpf 
and photographed at 48hpf. Note the presence of EGFP+ cells throughout the 
embryo (arrows). B1 and 2: The other half of the cohort of Hsp:nrd-EGFP 
embryos from the heterozygous cross injected with MO-ATG morpholino, heat- 
shocked at 24hpf and photographed at 48hpf. Note the absence of EGFP+ cells 
in the embryos or a significant decrease in EGFP fluorescence (arrow). 
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Fig. IV-3: NeuroD is required for cell cycle exit of photoreceptor 
progenitors.  
 
A, B, and C: uninjected (wt), MM-ATG and MO-ATG morphant sections through 
the brain and retina assayed for BrdU incorporation at 72hpf. Note the 
persistence of mitotically active cells in the outer nuclear layer of the morphant 
retinas compared to controls. 
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Fig. IV-4: NeuroD is required for cell cycle exit of photoreceptor 
progenitors.  
 
A, B, and C: uninjected (wt), MM-ATG and MO-ATG morphant sections through 
the brain and retina assayed PCNA labeling at 72hpf. Note the persistence of 
mitotically active cells in the outer and inner nuclear layers of the morphant 
retinas compared to controls. 
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Fig. IV-5: Cyclin D1 is upregulated in the absence of NeuroD. 
 
A and B: The expression of CyclinD is upregulated in morphant retinas compared 
to controls. C and D: The expression of cyclin inhibitors p27 remains unchanged 
in morphant retinas compared to controls.  
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Fig. IV-6: NeuroD morphant retinas fail to express markers of differentiated 
photoreceptors.  
 
A-D and E-H: wild type and NeuroD morphant retina, respectively, assayed at 
72hpf for zn-12 (ganglion cell marker), HPC-1 (syntaxin, ganglion and amacrine 
cell marker, zpr-1 (cone marker), and zpr3 (rod marker) staining. Note the 
absence of photoreceptor marker staining in morphant retinas (G, H) compared 
to controls (C, D). 
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Fig. IV-7: The NeuroD fusion protein rescues the NeuroD morphant 
phenotype.  
 
A and B: Hsp:nrd-EGFP control retinas from embryos injected with Nrd-ATG 
morpholino at the 1-2 cell stage and assayed for BrdU incorporation at 72hpf. C 
and D: Hsp:nrd-EGFP transgenic retinas from embryos injected with Nrd-ATG 
morpholino at the 1-2 cell stage and assayed for BrdU incorporation at 72hpf. 
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Fig. IV-8: Photoreceptors recover in NeuroD morphant retinas by 7 days 
post fertilization.  
 
A-B and C-D: wild type and NeuroD morphant retinas, respectively, assayed at 
72hpf for zpr-1 (cone marker) and zpr3 (rod marker) staining. E-F: NeuroD 
morphant retinas assayed at 7dpf for zpr1 and zpr3, respectively.  
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CHAPTER V 

DISCUSSION AND FUTURE DIRECTIONS 

 
Summary of results 

 

In summary, I took advantage of two complementary reverse genetic approaches 

to determine the function of NeuroD in the zebrafish retina, utilizing both gain and 

loss-of-function methods. In Chapter II, I showed that there is a dynamic 

expression pattern of neuroD in lineages of rod and cone photoreceptors, 

suggesting that NeuroD plays a fundamental role in photoreceptor genesis and 

cone maturation. For Chapter III, I created lines of zebrafish transgenic for 

HSP70/4:neuroD-EGFP for conditional gain-of-function experiments, and in 

Chapter IV, I used morpholino oligonucleotides to block translation of the NeuroD 

protein for loss-of-function experiments. The cellular pattern of neuroD 

expression and results from gain-of-function and loss-of-function experiments 

reveal that NeuroD promotes cell cycle withdrawal among photoreceptor 

progenitors, promotes photoreceptor genesis, and may play an additional role in 

early aspects of cone photoreceptor maturation.  

Based on these expression and function data, combined with other studies 

(Otteson et al., 2001; Hitchcock and Kakuk-Atkins, 2005; Raymond et al., 2006; 

Bernardos et al., 2007), a model emerges, which incorporates the function
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of NeuroD in adult rod and cone genesis (Fig.1A and B). For rods, Pax6-

expressing Müller glia serve as stem cells, which give rise to neuroD-expressing 

INL progenitors, which traverse to the outer nuclear layer and give rise to 

neuroD- and Crx-expressing rod precursors, which give rise to rod 

photoreceptors that no longer express neuroD, but do express Crx. For cones, 

stem cells in the circumferential germinal zone (CGZ) give rise to neuroD and 

Crx-expressing cone progenitors, which give rise to nascent cone photoreceptors 

that express neuroD and Crx. As nascent cone photoreceptors mature, they no 

longer express neuroD, but continue to express Crx.  

The current studies further suggest a potential mechanism through which 

NeuroD promotes cell cycle withdrawal of photoreceptor progenitor cells by 

regulating the expression of cell cycle regulatory proteins. The cell cycle of 

eukaryotic cells is composed of four phases, which include: 1) Mitosis (M) phase, 

when the nucleus and the cytoplasm divide, 2) DNA synthesis (S) phase, when 

DNA is replicated, 3) Gap 1 (G1) phases, when mitotically active cells respond to 

signals that promote cell cycle progression or withdrawal from the cell cycle (G0) 

and differentiation, and 4) Gap 2 (G2) phase between the DNA synthesis phase 

and Mitosis phase, when DNA replication is completed before the onset of cell 

division. The progression through all of the phases of the cell cycle is under the 

control of cyclin–CDK (cyclin-dependent kinase) complexes, and the activity of 

these cyclin:CDK complexes is regulated by CDK inhibitors, including the 

CIP/KiP family (Soprano and Giordano, 2003; Dehay and Kennedy, 2007). 

Whereas cyclin–CDK complexes positively drive progression of the cell cycle, 
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CDK inhibitors negatively regulate progression through the cell cycle by binding 

to and inactivating cyclin–CDKs (Dyer and Cepko, 2001a,b; Soprano and 

Giordano, 2003; Dehay and Kennedy, 2007).  

The cyclin inhibitors are regulated at the transcriptional and post-

translational levels and studies have shown that NeuroD upregulates the 

expression of CDK inhibitors p21, p27, and p57 (Naya et al., 1997; Mutoh et al., 

1998; Farah et al., 2000; Schonhoff et al., 2004; Chapter III and Chapter IV). 

Based on the current data, I propose that NeuroD promotes cell cycle withdrawal 

of photoreceptor progenitor cells by induction of cyclin inhibitors p27 and p57. 

Induction of p27 and p57, in turn, inhibits cyclin expression and leads to cell cycle 

withdrawal of photoreceptor progenitor cells (Fig.1C).  

NeuroD also promotes photoreceptor genesis and inhibits Müller glia 

genesis in the zebrafish retina (Fig.1D). Induction of NeuroD expression in cells 

in the CGZ, which do not normally express NeuroD, promotes the generation of 

photoreceptors and inhibits the generation of Müller glia. This is consistent with 

other studies of NeuroD, and bHLH transcription factors in general, as promoters 

of neurogenesis and inhibitors of gliogenesis (Sun et al., 2001; Morrow et al., 

1999; Tomita et al., 2000). 

 

NeuroD and photoreceptor genesis 

Whereas in homeothermic vertebrates, such as the mouse and chick, NeuroD 

appears to play a role in cell fate determination, the teleost retina offers a unique 

opportunity to study the function of NeuroD specifically in lineages of cells that 
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give rise to rod and cone photoreceptors. The results in Chapters II-IV show that, 

in the teleost retina, neuroD is only expressed in mitotic cells that give rise 

exclusively to rod and cone photoreceptors, promotes cell cycle withdrawal of 

these photoreceptor progenitors, and may function in cone photoreceptor 

maturation. In contrast, in the mouse retina, neuroD is expressed in multipotent 

retinal progenitors, regulates neuronal versus glial cell fate, is determinative for 

amacrine cells, and is required for the survival of rod photoreceptors (Morrow et 

al., 1999; Ahmad et al., 1998; Acharya et al., 1997; Moore et al., 2002; Inoue et 

al., 2002; Pennesi et al., 2003). NeuroD is also expressed in multipotent 

progenitors in the chick retina, but is only determinative for cone and rod 

photoreceptors (Yan and Wang, 1998; Yan and Wang, 2000; Yan and Wang, 

2004; Yan et al., 2005; see also Fischer et al., 2004). 

The existence of a mitotic lineage generating a single cell type, such as 

the rod photoreceptor lineage, is not unique and is present in other persistently 

mitotic regions in the adult central nervous system, including cells in the 

subventricular zone, dentate gyrus, and cerebellum (Miyata et al., 1999; Schwab 

et al., 2000; Pleasure et al., 2000; Lee et al., 2000; Alvarez-Buylla and Garcia-

Verdugo, 2002; Bedard and Parent, 2004; Hevner et al., 2006; see also Naya et 

al., 1997; Mutoh et al., 1998; Schonhoff et al., 2004). In each of these regions, 

neuroD is expressed in late stage progenitors, perhaps during their ultimate or 

penultimate mitosis, and appears to be essential for terminal differentiation. This 

suggests that NeuroD may have a common function in all of these cell lineages 



 

 151 

and insight gained from the teleost retina may be applied to the role of NeuroD in 

other persistently mitotic tissues of adult vertebrates. 

 

Future Directions 

The results in Chapter II, III and IV demonstrate that in the teleost retina NeuroD 

promotes photoreceptor genesis. However, the precise role of NeuroD in 

photoreceptor genesis remains to be determined. The process of neurogenesis 

spans division, cell fate specification, withdrawal from the cell cycle, and 

differentiation. It is not possible at the present time to parse out the precise role 

of NeuroD in photoreceptor genesis, due to limitations in currently available 

methods. These limitations include: 1) absence of available markers that 

exclusively label mitotically-active photoreceptor progenitors or newly post-mitotic 

and undifferentiated photoreceptors, 2) lack of reliable methods to track 

individual cells in the retina, 3) no temporal control of morpholino knock-down.  It 

will be important to address these issues in the future and the Hsp:nrd-EGFP 

construct, as well as the line of fish transgenic for Hsp:nrd-EGFP that I have 

created, can be useful tools in this process. I present several approaches below 

that can be utilized to surmount the potential limitations of both the gain and loss-

of-function approaches.  

A limitation of the current studies is that there are no available markers 

that exclusively label mitotically-active photoreceptor progenitors or newly post-

mitotic, undifferentiated photoreceptors. While other markers such as cone-rod 

homeobox, Crx, and retinal homeobox, rx1, genes have been identified, they 
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label both mitotically-active progenitor cells and differentiated photoreceptors 

(Shen and Raymond, 2004; Raymond et al., 2006). Thus, it has not been 

possible to label or track individual photoreceptor progenitor cells to determine 

the precise function of NeuroD in these cells. In the gain-of-function experiments 

presented in Chapter III, NeuroD was induced in all cells. However, it is also 

possible in the Hsp:nrd-EGFP line to induce NeuroD expression in individual 

cells and this expression can be controlled in both space and time. Methods have 

been established for zebrafish lines transgenic for a heat shock fusion protein 

that can allow laser-induced gene expression in specific cells (Halloran et al., 

2000). Targeted cells, after application of a sublethal laser microbeam appear to 

develop normally: progenitor cells divide and give rise to normal progeny, cells 

migrate normally, and neurons project axons that follow normal pathways 

(Halloran et al., 2000). It is thus possible, with the use of the sublethal laser 

microbeam, to induce NeuroD expression in individual cells. In addition, taking 

advantage of the accessibility and optical clarity of zebrafish embryos and time 

lapse imaging technology (Das et al., 2003; Baye and Link, 2007), it would be 

possible to examine in the retina the in vivo activity of NeuroD by laser-inducing 

specific cells and tracking their progeny or developmental process upon induction 

of NeuroD.  

Another approach is to use transient transgenic embryos and evaluate the 

clones of cells generated in the retina. In Chapter III I show that, in the retina of 

animals with transiently transgenic for Hsp:nrd-EGFP, there is ectopic expression 

of neuroD. Furthermore, these cells appear as clusters throughout the retina. 



 

 153 

This suggests that by inducing NeuroD fusion protein in the retina at 48hpf and 

assaying 24 or 48 hours later, clones of cells can be tracked and characterized. 

This is another approach to determine whether NeuroD functions in 

determination or differentiation of photoreceptors.  

Since there are both intrinsic and extrinsic factors involved in 

photoreceptor genesis, it is important to study both the effect of transcription 

factors as well as the environment on photoreceptor genesis. To determine 

whether NeuroD functions in a cell-autonomous or cell-nonautonomous manner, 

cells from Hsp:nrd-EGFP embryos can be transplanted into wild type retinas. In 

addition, a method for zebrafish cell culture has been recently established 

(Vallone et al., 2007). It is possible to culture Hsp:nrd-EGFP retinal cells and 

determine the optimal factors required for photoreceptor genesis. 

The limitation of the loss-of-function approach is that NeuroD is knocked 

down from the very beginning of retinal development and there is no temporal 

control knock-down of NeuroD. In vivo electroporation has recently been 

developed as a method for studying gene function at different developmental 

time points and in specific regions of the organism (Cerda et al., 2006; Hendricks 

and Jesuthasan, 2007). The focal application of current allows macromolecules 

to be efficiently introduced into a targeted region at any point in development 

(Cerda et al., 2006). Transfected cells in the zebrafish brain are amenable to in 

vivo time-lapse imaging and explants containing transfected neurons can be 

cultured for in vitro analysis. Furthermore, due to their optical clarity, embryos 

can be electroporated with NeuroD morpholinos and the dividing photoreceptor 
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progenitor cells can be tracked using in vivo time-lapse imaging (Das et al., 

2003).  

In the loss-of-function studies described in Chapter IV, cells continue to 

proliferate in the outer nuclear layer in the absence of NeuroD. However, it is not 

possible to determine whether NeuroD only functions in promoting the cell cycle 

withdrawal of cone photoreceptor progenitors or if it also plays a role in their 

maturation after they exit from the cell cycle. The electroporation experiments 

described above can be used to parse out the role of NeuroD in proliferation vs. 

maturation of cone photoreceptors. This approach can be used to effectively 

knock-down NeuroD after 48hpf, at a time when the majority of cone progenitors 

have exited the cell cycle, but do not yet express opsins. At this point in time it 

will be possible to test whether NeuroD plays a direct role in the maturation of 

cone photoreceptors. If these nascent cone photoreceptors, in the absence of 

NeuroD, fail to express markers of differentiated cones, then this will 

demonstrate that NeuroD does play a role in their maturation. Alternatively, if 

these nascent cone photoreceptors, in the absence of NeuroD, re-enter the cell 

cycle, this will demonstrate that NeuroD plays a role in maintaining nascent 

cones in a post-mitotic state and preventing cell cycle re-entry. There is evidence 

that differentiated cells must actively maintain their cell cycle in check and 

perturbations in gene expressions can initiate cell cycle re-entry (Herrup and 

Yang, 2007). Furthermore, In Chapter IV, I demonstrate that between 72hpf and 

7dpf, the effect of morpholinos is attenuated and cells of the rod and cone 

photoreceptor lineages exit the cell cycle and differentiate. Time-lapse imaging 
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could also be used to track diving cells during this recovery period and determine 

if and when they generate photoreceptors. 

Another approach that can complement the results from my loss-of-

function data in Chapter 4 is the use of the newly developed ZeneMark® 

Retroviral Insertional Mutation Library. This library contains a comprehensive 

retroviral insertion library in zebrafish including catalogued mutations in many 

zebrafish genes. There is a ZeneMark® line currently available that has a 

mutation in the NeuroD coding region. It would be important to characterize the 

phenotype of this line and determine whether it phenocopies the morpholino-

induced loss-of-function phenotype observed here. This line could also be used 

to identify other cell cycle regulatory proteins that are altered in the NeuroD 

mutant line. 

 

NeuroD and downstream targets 

Although the pro-neural function of NeuroD has been extensively characterized, 

the mechanism of its action, including downstream targets, remains largely 

unknown. In Chapter III, I describe the Hsp:nrd-EGFP transgenic line as well as 

the production of a polyclonal zebrafish NeuroD antibody (zNrd). Both the 

transgenic line and the zNrd antibody can be used in Chromatin 

Immunoprecipitation assays (ChiP) to determine DNA sequences, which bind to 

NeuroD in vivo. ChiP is a procedure used to determine whether a given protein 

binds to or is localized to a specific DNA sequence in vivo. This assay is based 

on the principle that DNA-bound proteins, such as transcription factors, in living 
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tissue can be cross-linked to the chromatin on which they are localized. Proteins 

are first immobilized on the chromatin and the chromatin is then fragmented, 

allowing for whole protein-DNA complexes to be immunoprecipitated using an 

antibody specific for the protein in question. The DNA obtained from the 

protein/DNA fraction that is labeled with the specific antibody, can then be 

purified. For candidate genes that are hypothesized to bind to NeuroD, the 

identity of the DNA fragments isolated in complex with the protein of interest can 

be determined by PCR. Alternatively, to identify unknown gene targets of 

NeuroD, a DNA microarray can be used (ChIP-on-chip or ChIP-chip). Based on 

its role in promoting cell cycle withdrawal of photoreceptor progenitors, NeuroD 

may interact with specific cell cycle regulatory proteins. Previous studies show 

that NeuroD promotes the upregulation of cyclin-dependent kinase inhibitors, 

such as p21 and p27 (Farah et al., 2000; Schonhoff et al., 2004). Here I report 

that NeuroD fusion protein also upregulates p27 and p57 in the retina (Chapter 

III). It would be important to determine if NeuroD interacts directly with p27 and 

p57 by utilizing the ChiP assay. Other potential downstream targets of NeuroD 

could also be identified using this method. Recent studies in Xenopus have 

identified several putative transcription targets of NeuroD (Logan et al., 2005). 

Other studies describe the interaction of bHLH transcription factors with 

chromatin during retinal development (Skowronska-Krawczyk et al., 2004). It will 

be important to determine in the zebrafish retina whether these mechanisms are 

conserved and if NeuroD interacts with homologous downstream targets.  
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NeuroD regulation 

In addition to putative downstream targets, NeuroD itself is also a highly 

regulated molecule. Recent data has shown that NeuroD is regulated at both the 

post-transcriptional and post-tanslational level (Gaudilliere et al., 2004), and the 

consequence of NeuroD protein modification is context-dependent at both the 

molecular and functional levels (Dufton et al., 2005; Song et al., 1998; Khoo et 

al., 2003). The isolation and characterization of the zebrafish NeuroD gene 

promoter would be useful in determining elements involved in photoreceptor 

genesis and differentiation in the retina. 

Characterizing the zebrafish NeuroD promoter would enable investigators 

to describe the structure and regulation of the zebrafish NeuroD gene. In 

addition, lines of zebrafish transgenic for NeuroD could be created to elucidate in 

vivo the complex expression pattern of NeuroD during retinogenesis. This data 

could also complement the expression data described in Chapter 2. To date, 

both the mouse and human NeuroD promoters have been characterized. The 

Mouse Beta2/NeuroD gene promoter was isolated and characterized (Xu and 

Murphy, 1998). The cloning and sequencing of the NeuroD promoter allowed for 

detailed investigation of the elements responsible for islet restricted expression 

and provided insight into the molecular mechanisms underlying pancreatic β–cell 

differentiation. The human NeuroD (BETA2/BHF1) gene was isolated and 

characterized (Miyachi et al., 1999). NeuroD transfection assays revealed that 

the E1 and E4 boxes are associated with autoactivation. Results suggest that 

NeuroD gene expression is positively regulated though the E box sequence, not 
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only by NeuroD itself but also by another E box binding protein (Ahmad et al., 

1998).  

Along with other key transcriptional regulators Nrl, Crx, and Nr2E3, 

NeuroD forms part of a large regulatory complex, which promotes rod 

photoreceptor differentiation in the mouse retina (Ahmad et al., 1998; Mears et 

al., 2001; Cheng et al., 2006; Oh et al., 2007). In the zebrafish retina, NeuroD is 

co-expressed with the cone-rod-homeobox transcription factor, Crx, in putative 

cone progenitors and nascent cone photoreceptors (Chapter III; see also Shen 

and Raymond, 2004), suggesting that in the zebrafish retina, like in other 

vertebrate retinas, similar genetic cascades regulate photoreceptor genesis and 

maturation. However, since neuroD is not expressed in multipotent progenitors in 

the teleost retina, it will be possible to study its function specifically in lineages of 

cells that give rise to photoreceptors.  

The consequence of NeuroD protein modification is context-dependent at 

both the molecular and functional levels (Dufton et al., 2005).  In Xenopus, 

mutation of serines 266 and 274 of NeuroD to alanines has a positive impact on 

ectopic neurogenesis, in contrast to its negative effects on mouse NeuroD 

activity in pancreatic beta cells (Khoo et al., 2003). The modification of the same 

residue in NeuroD can change its activity by invoking different molecular 

mechanisms in different cell types. The mutations also result in higher NeuroD 

protein accumulation, since phosphorylation may directly regulate protein stability 

by targeting it for ubiquitin-mediated degradation. A similar strategy is used to 

control the degradation of a related bHLH protein, MyoD (Song et al., 1998), 
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where phosphorylation of a single serine residue was found to catalyze ubiquitin-

mediated targeting to the proteosome. In the zebrafish retina, this same strategy 

is used by GSK3β, which has been shown to phosphorylate NeuroD and inhibit 

its function in the early retina and this inhibition is removed during later stage of 

retinal development (Moore et al., 2002).  

Growth hormone may be another factor that modulates the activity of 

NeuroD. Growth hormone acts through IGF-I in a signaling pathway to promote 

neurogenesis in the retina by regulating the mitotic activity of the resident 

populations of stem cells (Boucher and Hitchcock, 1998). NeuroD in 

photoreceptor progenitor cells may interact with the GH/IGF-I axis in modulating 

the pool of photoreceptor progenitor cells. Recent evidence has shown that cone 

photoreceptors are a source of Igf-1 that regulates rod progenitor proliferation in 

the retina (Zygar et al., 2005). It has been suggested that Igf-1 promotes the 

proliferation of rod progenitor cells and may be involved in a feedback loop 

during development. Growth hormone has been shown to inhibit another bHLH 

factor Ngn1 (Turnley et al., 2002). Since my data indicates that NeuroD promotes 

cell cycle withdrawal of rod photoreceptor progenitors, Igf-1 may regulate the 

action of NeuroD.  

Studies have shown that chromatin modification plays a critical role in the 

regulation of cell-type-specific gene expression. An inhibitor of histone 

deacetylase (HDAC), valproic acid (VPA), promotes neurogenesis and inhibits 

gliogenesis through the induction of neurogenic transcription factors, including 

NeuroD (Hsie et al., 2004). Recent evidence, however, has shown that HDAC 
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activity is required for rod photoreceptor genesis (Chen and Cepko, 2007). HDAC 

inhibition in the retina results in cell death, reduction in proliferation, and a 

complete loss of rod photoreceptors and Müller glial cells, with a concomitant 

increase in bipolar cells. The precise role of NeuroD in this process and its 

interaction with HDAC remains to be determined. 

In addition, NeuroD is the first identified transcription factor involved in 

neuronal development and survival whose activity is modulated by Huntingtin, 

Htt, a key protein associated with Huntington’s disease (Marcora et al., 2003). 

Two proteins have been identified that interact with NeuroD, Huntingtin-

associated protein 1 (HAP1) and mixed-lineage kinase 2 (MLK2) and Htt, 

together with HAP1, may function as a scaffold for the activation of NeuroD by 

MLK2. The zebrafish Huntingtin gene has been cloned (Karlovich et al., 1998) 

and its role on development has been recently investigated (Lumsden et al., 

2007). It would be important to determine if in the zebrafish NeuroD interacts with 

Huntingtin to investigate the potential mechanisms involved in Huntington’s 

disease.  

 

NeuroD and cone photoreceptor maturation 

Based on its expression pattern, I hypothesized that in the zebrafish retina 

NeuroD functions in the maturation of cone photoreceptors. NeuroD is expressed 

in cone progenitors and then remains transiently expressed in immature cones. 

This expression is turned off in mature cones which begin to express opsin. This 

is consistent with data that shows that NeuroD plays a role in the maturation of 
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numerous other cell types in the brain, including cells in the olfactory bulb and 

olfactory epithelium, taste bud cells, and granule cells in the dentate gyrus and 

cerebellum (Bedard and Parent, 2004; Suzuki et al., 2002; Katayama et al., 

1997; Miyata et al., 1999; Lee et al., 2000; Nibu et al., 1999; Pleasure et al., 

2000; Hevner et al., 2006). In all of these cases, NeuroD may regulate the 

expression of genes involved in the maturation of these cells and their integration 

into the existing neuronal network.  

A clue to a possible mechanism for the role of NeuroD in cone 

photoreceptor maturation has recently come from work in a related bHLH 

transcription factor, NeuroD2 (Ince-Dunn et al., 2006). During cortical 

development both activity-dependent and genetically determined mechanisms 

are required to establish proper neuronal connectivity. The existence of a 

mechanism of activity-dependent transcription and synaptic modification has 

been postulated 60 years ago by Donal Hebb (1948). A recent study indicates 

that NeuroD2, a calcium-regulated transcription factor, plays a critical role in 

regulating activity-dependent maturation of glutamatergic synapses (Ince-Dunn 

et al., 2006; Molnar and Molnar, 2006). NeuroD was recently shown to be 

calcium regulated and requires phosphorylation of a key serine residue for 

activation (Wu et al., 1996; Gaudilliere et al., 2004). The fact that both NeuroD 

and NeuroD2 act as calcium-regulated transcription factors identifies this protein 

family as a major target of calcium signaling in neurons. Like its counterpart 

NeuroD2, NeuroD may also regulate the expression of factors that are required 

for synaptic maturation.  
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It is interesting to note that the photoreceptor ribbon synapse is a highly 

specialized glutamatergic synapse designed for the continuous flow of synaptic 

vesicles to the neurotransmitter release site (Dick et al., 2003). NeuroD may 

function in cone photoreceptor maturation by promoting synaptogenesis. 

Synaptic maturation at the photoreceptor terminals in zebrafish was examined 

with antibodies against synapse associated proteins (Biehlmaier et al., 2003) and 

similar methods can be used to evaluate cone photoreceptor maturation in 

NeuroD gain and loss-of-function studies.  

 

NeuroD and cell migration 

Another possible function of NeuroD in neurogenesis is neuronal migration. 

There is misdirected migration of inner ear sensory neurons in NeuroD null mice, 

suggesting that NeuroD not only regulates survival of inner ear sensory neurons 

but also plays a role in placing neurons in proper topological positions (Kim et al., 

2001). A similar defect is found among NeuroD-null pancreatic endocrine cells 

which cluster near the ductal epithelium, rather than migrating and forming islets 

(Naya et al., 1997). NeuroD may control some factors involved in cell migration, 

however, such a developmental defect could also be due to incomplete 

differentiation resulting in arrested or defective migration. In Chapter IV, I 

describe that, in the absence of NeuroD protein, photoreceptor progenitor cells 

continue to proliferate in the inner and outer nuclear layer. Cells in the inner 

nuclear layer labeled with BrdU are scattered and sometimes appear in clusters 

extending towards the outer nuclear layer. In Chapter IV, I propose that these are 
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cells of the rod photoreceptor lineage (Otteson et al., 2001; Hitchcock and 

Kakuk-Atkins, 2004; Chapter 2), which continue to proliferate in the absence of 

NeuroD fusion protein. These cells normally migrate from the inner to the outer 

nuclear layer where they generate rod photoreceptors. In the morphant retina, 

they remain in the inner nuclear layer and may fail to migrate to the outer nuclear 

layer. NeuroD may thus play a role in the migration of rod precursors from the 

inner nuclear layer to the outer nuclear layer. 

 
Photoreceptor genesis and disease 

Retinal degenerative diseases result in irreversible and permanent vision loss. 

Extensive research has focused on understanding the mechanisms involved in 

stimulating photoreceptor genesis, repair, protection, and regeneration in the 

retina. NeuroD, a basic helix-loop-helix transcription factor, which is a member of 

a large family of proneural genes, has been implicated in cell cycle regulation, 

retinal cell genesis, and neuronal development, and misexpression of this gene 

in other systems has led to de novo photoreceptor genesis in the retina.  

NeuroD may be one of the key transcription factors that can promote 

photoreceptor genesis to compensate for photoreceptor degenerative diseases in 

the human retina. Results reveal that NeuroD not only plays an important role in 

terminal differentiation of photoreceptors but also serves as a potential survival 

factor (Pennesi et al., 2003). Loss of NeuroD results in an age-related 

degeneration of both rods and cones. NeuroD is thus important for photoreceptor 

survival and maintenance. NeuroD transcripts and NeuroD immunoreactivity in 

the human retina are predominantly localized to the outer nuclear layer which 
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contains photoreceptors (Acharya et al., 1997). Based on the expression and 

localization analysis NeuroD may be involved in the differentiation as well as 

maintenance of the differentiated properties of photoreceptors.  

There is mounting evidence pointing to a common role for NeuroD in 

persistently mitotic cellular lineages, linking cell cycle withdrawal with terminal 

differentiation. In all persistently mitotic regions in the adult central nervous 

system, neuroD is expressed in late stage progenitors and appears to be 

essential for terminal differentiation. (Miyata et al., 1999; Schwab et al., 2000; 

Pleasure et al., 2000; Lee et al., 2000; Bedard and Parent, 2004; Hevner et al., 

2006; see also Naya et al., 1997; Mutoh et al., 1998; Schonhoff et al., 2004). 

Determining the mechanisms involved in persistent neurogenesis in the teleost 

retina will be instrumental in developing methods of stimulating photoreceptor 

genesis in the human retina following photoreceptor degenerative diseases.  
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Fig. V-1: Model illustrating rod and cone genesis in the teleost retina and 
the function of NeuroD. 
 
A: Lineage model of rod genesis. Inner nuclear layer (INL) stem cells give rise to 
neuroD-expressing INL progenitors, which traverse to the outer nuclear layer and 
give rise to neuroD-expressing rod precursors, which give rise to rod 
photoreceptors that do not express neuroD but do express Crx. B: Lineage 
model of cone genesis. Circumferential germinal zone stem cells give rise to 
neuroD and Crx-expressing cone progenitors, which give rise to neuroD and Crx-
expressing nascent cone photoreceptor, which give rise to mature cone 
photoreceptors that do not express neuroD but continue to express Crx. C: 
NeuroD induces expression of p27 which inhibits cyclin expression and leads to 
cell cycle withdrawal of photoreceptor progenitor cells. D: NeuroD promotes 
photoreceptor genesis and inhibits Muller glia genesis in the zebrafish retina. 
ONL = outer nuclear layer; INL = inner nuclear layer; GCL = ganglion cell layer; 
MR = mature retina; CLZ = circumferential larval zone; CGZ = circumferential 
germinal zone. 
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