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CHAPTER I

Introduction

Studies of the flow and mixing processes in nonreacting turbulent shear flows,

such as mixing layers, jets, wakes, plumes and other canonical configurations, have

represented a substantial fraction of the research efforts devoted to fluid dynamics

over the past 50 years. This has produced a substantial body of results in the

literature on the large-scale and small-sale turbulence in such nonreacting shear flows

and the resulting entrainment and mixing properties of such flows. In principle, one of

the most significant areas of potential application for these results is in nonpremixed

or partially-premixed combustion, where turbulent shear flows are routinely used to

rapidly mix a fuel and oxidizer together and allow them to react. Yet for most fuel-

oxidizer combinations of practical interest, the resulting reactions release considerable

heat on a volume or mass basis, and as a consequence the turbulent shear flow

itself is substantially modified from its original nonreacting form by the effects of

heat release. If the heat release effects are large enough, then the reacting flow

might bear little resemblance to its nonreacting counterpart, and the large body of

research results on nonreacting turbulent shear flows would then be of limited utility

in understanding combustion in such flows. On the other hand, if the effects of heat

release are sufficiently small that they can be considered as corrections to the original
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nonreacting flow, then it may even be possible to predict most of the properties

of mixing-limited combustion occurring within the flow from the entrainment and

mixing properties of the underlying turbulent shear flow itself.

Indeed, in combustion science, studies of nonreacting turbulent shear flows such

as jets and plumes without heat release were used in early investigations to gain

insights into the flow and mixing processes that may be at work in corresponding

reacting flows (e.g., Hottel and Hawthorne 1949; Hawthorne and Hottel 1949). How-

ever, it was widely observed in subsequent experimental studies that the heat release

produced by exothermic chemical reactions occurring in turbulent shear flows can

dramatically alter the resulting flow and mixing processes relative to a corresponding

nonreacting version of the same flow (e.g., Ricou and Spalding 1961; Kremer 1967;

Chigier and Strokin 1974; Takagi et al. 1981; Beér and Chigier 1983; Muñiz and

Mungal 1995; Rehm and Clemens 1998; Tacina and Dahm 2000; Han and Mungal

2001). Often, among the most obvious of such changes are those produced by buoy-

ancy effects that result from the reduced density. These can produce large changes

in the velocity field and greatly increase the associated entrainment and mixing rates

in the flow (e.g., Steward 1970; Chen and Rodi 1980; Cetegen et al. 1984; Peters and

Göttgens 1991; Delichatsios 1993; Blake and McDonald 1995; Blake and Coté 1999).

However, even under conditions for which buoyancy effects are negligible, heat release

occurring within turbulent shear flows is known to produce potentially large changes

in the flow, which in turn can create substantial changes the resulting entrainment

and mixing rates relative to an otherwise identical nonreacting turbulent shear flow

(e.g., Wallace 1981; Hermanson and Dimotakis 1989; Tacina and Dahm 2000; Dahm

2005). In general, results from turbulent shear flows without heat release are today

widely viewed as having limited relevance to exothermically reacting turbulent shear
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flows with substantial heat release (e.g., Beér and Chigier 1983; Muñiz and Mungal

1995; Han and Mungal 2001).

One approach to understanding how heat release affects the flow and mixing pro-

cesses in turbulent shear flows is to address individual canonical flow configurations

one at a time, and then conduct comparative studies of nonreacting and reacting

versions of otherwise identical versions of each flow. This is the approach that has

been used almost exclusively to date in studies of heat release effects on turbulent

shear flows. Thus, for instance, there have been numerous such comparative studies

for fundamental configurations such as mixing layers (e.g., Wallace 1981; Herman-

son and Dimotakis 1989), axisymmetric jets (e.g., Ricou and Spalding 1961; Chigier

and Strokin 1974; Takagi et al. 1981; Muñiz and Mungal 1995), planar jets (e.g.,

Rehm and Clemens 1998;), and many other canonical flows. Studies of this type

have focused primarily on reporting observations of various differences in measur-

able quantities from nonreacting and reacting versions of the same flow.

Collectively, comparitive studies of this type have served to clearly demonstrate

that there are widely differing effects produced by heat release among these flows,

but they have provided little general understanding of the physical mechanisms that

produce these differences. Even considering any one of these canonical flows alone,

there is to date no real understanding of the origins of the heat release effects seen

in that flow, and across the broad class of turbulent shear flows there is certainly

no widely accepted, fundamentally-based, physical understanding for how heat re-

lease produces the changes that it does. Consistent with this, methods to date for

predicting the effects of heat release on any given turbulent shear flow are almost

entirely ad hoc, and are based heavily on empiricism. Lacking an understanding of

the dominant physical mechanisms that cause heat release effects, there has to date

3



been little basis from which to develop any broadly applicable method for predicting

heat release effects in turbulent shear flows in general.

In principle, though, it should be possible to develop a fundamentally-based and

broadly applicable understanding of how heat release alters the flow and mixing

properties of essentially any turbulent shear flow. While studies to date have focused

almost entirely on highly exothermic reacting flows relevant to practical combustion

with hydrocarbon fuels in air, where the heat release effects are necessarily large, it

is conceptually productive to first consider the limit of a fuel with asymptotically low

heat release. In that case, when the level of exothermicity produced by the reaction

is essentially zero, the flow properties must return to those of the corresponding

nonreacting flow. With increasing but still small levels of exothermicity, the effects

of heat release should in principle be deducible from the flow and mixing properties of

the nonreacting flow. Moreover, for such small levels of exothermicity, the connection

between the properties of the nonreacting flow and the heat release effects they imply

in the reacting flow should be expressible in general terms that could be applied to

essentially any other shear flow. As the level of exothermicity increases further,

specific physical mechanisms should be identifiable that lead to the increasing effects

seen in the flow due to the heat release.

Such an approach is closely related to that taken in this study. While the level

of exothermicity is fixed in this study, the objective is to understand the specific

physical mechanisms that lead to changes in the velocity fields u(x, t) in turbulent

shear flows due to heat release occurring in the flow. However, the objective is not

simply to report empirical observations of changes due to heat release in various

measurable quantities associated with the velocity field in a particular turbulent

shear flow. Instead, this study seeks to develop a physically-based understanding
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of the underlying mechanisms by which heat release produces changes u(x, t) in

essentially any turbulent shear flow.

1.1 Present Study

The objective of this study is to develop a substantially improved understanding

of how heat release effects alter the velocity field u(x, t) in turbulent shear flows. In

particular, it seeks to clarify which of the physical mechanisms that can potentially

produce heat release effects dominate the actual changes that occur at the outer

(large) scales of the flow and at the inner (small) scales of the flow. It also seeks

to understand how the effects of heat release produced by each of these mechanisms

vary with flow conditions, or from one location to another in any particular turbulent

shear flow, and even from one turbulent shear flow to another.

The study is based on experimental measurements, using particle image velocime-

try (PIV), to obtain velocity and velocity gradient fields on both outer and inner

scales over a wide range of conditions in both nonreacting and reacting versions of

the same turbulent shear flow. These include measurements on the flow centerline,

where the mean shear is zero, over a wide range of outer-scale Reynolds numbers Reδ,

as well as measurements at a fixed Reδ over a range of radial locations, and thereby

over a range of local shear rates. The particular turbulent shear flow considered here

is an axisymmetric coflowing turbulent jet, though the data are interpreted in scaled

terms that allow the results to be applied in essentially any other turbulent shear

flow.

The approach used here is based on scaling and similarity. Identifying the domi-

nant physical mechanisms that lead to heat release effects on either the outer or inner
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range of scales in turn results in implied scaling laws for the measured quantities.

These scaling laws can be tested to determine if they provide similarity in results

obtained at widely differing conditions, meaning that the results reduce to a single

universal form in the appropriately scaled variables. Such similarity, if achieved,

is exceedingly strong evidence that the presumed physical mechanisms are in fact

the dominant ones controlling the heat release effects on the flow. This principle is

used here to determine the separate physical mechanisms that produce the domi-

nant heat release effects on the outer flow scales, and thus on quantities such as the

mean velocities and the Reynolds stresses, as well as on the inner flow scales, and

thus on quantities such as distributions of velocity gradients. Moreover, the result-

ing similarity and scaling – if successfully achieved – allows quantities measured at

essentially any location in essentially any turbulent shear flow to be rescaled to any

other location or any other flow.

This dissertation is organized as follows. Chapter II first develops key theoretical

concepts that are essential for interpreting the experimental results obtained in the

particular turbulent shear flow used for this study, and for extending these exper-

imental results to other flow conditions and to flows other than those used in this

study. It begins with the governing equations for the velocity field u(x, t) and from

these identifies the specific physical mechanisms that can lead to direct changes in

the velocity field due to heat release. It then examines each of these mechanisms in-

dividually, and proposes specific methods by which the effects of each can be related

to the local inner or outer variables associated with any particular turbulent shear

flow. Subsequent chapters then use experimental measurements to test these pro-

posed methods, and show that even highly sensitive measures of heat release effects

in turbulent shear flows, such as distributions of velocity gradient quantities based on
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(∂ui/∂xj)
n, when scaled in the manner suggested by these methods, become similar

in both reacting and nonreacting flows.

In particular, Chapter III describes the experimental facility and measurement

methods used for this study. Following this, Chapter IV examines the outer-scale

effects of heat release on the mean velocity field, specifically on the velocity uc and

the width δ that characterize the local mean shear profile in the particular turbulent

shear flow. It shows that the changes in these quantities due to heat release can be

predicted from the scaling laws for the nonreacting flow via a “general equivalence

principle” outlined in Chapter II. It also shows that previous measurements in

the same flow, by Muñiz and Mungal 1995, that have been interpreted as showing

fundamental differences between reacting and nonreacting versions of the flow, are

in fact consistent with the present measurements and can be rescaled in the same

manner as were the present results to match the nonreacting flow using the same

equivalence principle. In effect, Chapter IV shows that the effects of heat release on

the outer-scale properties of turbulent shear flows – namely those that are dominated

by the large scales of motion, such as the mean velocities ui and the Reynolds stresses

u′iu
′
j – are dominated by the inertial effects due to the reduced densities ρ (x, t), and

that these inertial effects can be accounted for via the general equivalence principle.

Chapter V then presents results from measurements of inner-scale properties of

turbulent shear flows – namely those that are dominated by the small scales of

motion, such as the velocity gradients ∂ui/∂xj – on the centerline of a nonreacting

flow over a wide range of Reynolds numbers Reδ. It first shows that classical inner

scaling (Kolmogorov 1941) in terms of the viscosity ν and the inner (viscous) length

scale λν successfully removes most of the differences in distributions measured at

different Reynolds numbers, but that there are remaining differences due to the
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incomplete resolution of the inner scale λν at the higher Reδ. It then uses the inertial-

and dissipation-range spectra to determine the actual measurement resolution and

develop the proper resolution-corrected inner scaling for velocity gradient fields. For

the same distributions as before, it shows essentially perfect similarity via this scaling

among the results for all Reδ for each of the velocity gradient quantities. This

provides the basis for using this scaling and similarity in subsequent chapters to look

for heat release effects at the inner scales of turbulent shear flow.

Chapter VI first presents results from inner-scale measurements similar to those in

Chapter V, but from the centerline of an exothermically reacting flow over a range of

Reδ from 18 000 to 200 000. It also shows that the classical inner-scale normalization

in terms of a corrected viscosity ν and the corresponding inner length scale λν removes

most of the differences in the distributions from the different Reδ. It then determines

the measurement resolution at each Reδ using the method from Chapter V, and

shows that the resolution-corrected inner scaling again gives near-ideal similarity

in the results for all Reδ for each of the velocity gradient quantities. Finally, it

compares the resolution-corrected inner-scaled self-similar forms of the distributions

from the nonreacting and reacting flows for each velocity gradient quantity. The

differences are thus the true inner-scale effects of heat release, and these are shown

and quantified. In effect, Chapters V and VI together show that, once the inertial

effects of heat release on the local outer variables uc and δ of the turbulent shear flow

have been accounted for via the equivalence principle, and the viscous effects of heat

release have been accounted for via the corrected viscosity, and the resolution limits

of the measurement have been rigorously accounted for via the resolution-corrected

inner scaling, then the remaining true effects of heat release on inner-scale properties

of turbulent shear flows are remarkably small.
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Chapters VII and VIII then extend the results obtained on the flow centerline

in Chapters V and VI, where the mean shear is zero, to numerous radial locations

across the flow, where the mean shear is no longer zero. The effect of the local

shear is to induce anisotropy in the turbulent shear flow, which in turn can lead to

departures from the inner scaling used here to identify the effects of heat release on

the small scales of the flow. Chapter VII first considers the nonreacting flow, and

considers the value of the classical Corrsin-Uberoi parameter S?
c – believed to deter-

mine whether the shear-induced large-scale anisotropy extends to the smallest scales

- that corresponds to the local shear at each radial location. It then determines the

measurement resolution at each radial location using the same spectral procedure as

above, and presents the resolution-corrected inner-scaled distributions at each radial

location for various velocity gradient quantities. By comparing the departures from

perfect similarity with the relative shear values that correspond to each location, it

shows that there is no direct effect of shear on the scaled distributions, but that there

is a subtle yet noticeable effect of the radial location that is not directly connected

with the shear value. Chapter VIII then presents corresponding results from mea-

surements at the same radial locations in the exothermically reacting flow. As a last

step, it compares the resulting resolution-corrected inner-scaled distributions at each

radial location in the reacting flow with the correspondingly scaled distributions in

the nonreacting flow. Consistent with the findings from the flow centerline in Chap-

ters V and VI, the remaining true effects of heat release at all radial locations are

seen to be small when – using the methods above – proper account has been taken of

the inertial effects on the outer variables, and the viscous effects and measurement

resolution effects on the inner variables.

Chapter IX then summarizes the overarching conclusion from this study, and
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notes several additional major conclusions implied by the findings in this study.
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CHAPTER II

Theoretical Foundation

The objective of this study is not simply to report miscellaneous empirical ob-

servations of changes due to heat release in various measurable quantities associated

with the velocity field u(x, t) in a particular turbulent shear flow. Instead, this study

seeks to develop a physically based understanding of the underlying mechanisms by

which heat release produces changes u(x, t) in essentially any turbulent shear flow,

and to clarify:

(i) which of the numerous plausible physical mechanisms that could potentially

produce heat release effects in turbulent shear flows are in fact significant,

(ii) which of these are the dominant mechanisms controlling heat release effects

under practical conditions, and

(iii) how the effects of heat release produced by each of these mechanisms vary with

flow conditions, or from one location to another in any particular turbulent

shear flow, and even from one turbulent shear flow to another.

This chapter therefore develops key theoretical concepts that are essential for

interpreting the experimental results obtained in the particular turbulent shear flow
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used for this study, and for extending these experimental results to flow conditions

other than those used in this study. The chapter is organized as follows:

• Section 2.1 first uses the governing equations and associated scaling laws to

identify individual physical mechanisms that can lead to heat release effects on

u(x, t) in turbulent shear flows.

• Section 2.2 then develops the scaling laws for the particular class of non-reacting

turbulent shear flows that are used in this study to assess how these individual

physical mechanisms contribute to the heat release effects in shear flows.

• Section 2.3 addresses the inertial effects of heat release produced by density

changes in the flow. It uses the mole-fraction-based equivalence principle

Tacina and Dahm (2000) to obtain the outer-scale changes that should occur

in the flow as a result of the purely inertial effects of heat release. Measure-

ments of outer-scale flow properties presented in Chapter IV and inner-scale

flow properties presented in Chapters V – VIII will compare the extent to which

the predicted inertial effects of heat release account for the observed changes

due to heat release in the flow.

• Section 2.4 addresses the body force (buoyancy) effects produced by density

changes due to heat release in the flow, and discusses the outer-scale changes

that occur in the flow as a result of buoyancy effects.

• Section 2.5 then addresses dilatational effects that result from the density

changes due to heat release in the flow. It develops a general theoretical frame-

work that determines the magnitude of such dilatational effects and obtains

quantitative estimates of the relative importance of dilatation effects due to
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heat release on the inner-scale flow properties. Measurement results presented

in Chapters V – VIII assess the extent to which these predicted dilatational

effects of heat release are consistent with the observed changes due to heat

release in the flow.

• Section 2.6 addresses the diffusive effects of heat release produced by viscosity

changes that result from variations in temperature and species composition

in the flow. It develops an extension of the mole-fraction-based equivalence

principle that provides an effective viscosity to allow these diffusive effects on

the inner-scale flow properties to be determined.

• Section 2.7 discusses how the relative magnitude of each of these elementary

heat release effects can vary depending on the flow conditions, or from one

location to another in any given turbulent shear flow, or from one class of

turbulent shear flows to another.

2.1 Elementary Effects of Heat Release

This study investigates the changes produced in the velocity fields u(x, t) in

turbulent shear flows due to heat released by exothermic chemical reactions occurring

within the flow. In this section, the specific physical mechanisms that can create such

changes in u(x, t) are identified.

The governing equations for conservation of mass and momentum in any flow

with spatial and temporal variations in the density ρ and in the first and second

viscosities µ and λ can be written as

Dρ

Dt
≡ ∂ρ

∂t
+ u · ∇ρ = −ρ (∇ · u) (2.1)
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Du

Dt
≡ ∂u

∂t
+ u · ∇u =

−1

ρ

{
∇p−

[
∇ · µ

(
∇u + ∇uT

)
+ ∇ (λ∇ · u)

]
− fB

}
+ u (∇ · u) (2.2)

where u is the fluid velocity, p is the hydrodynamic pressure, and fB ≡ (ρ − ρ∞)g

is the buoyancy body force per unit volume, with g the gravitational acceleration.

The form of the momentum equation in (2.2) and is obtained using (2.1) from

D

Dt
(ρu) = fnet

where

fnet = fB + ∇ · σ

is the net force per unit volume and

σij = −p δij +
[
µ
(
∇u + ∇uT

)
ij

+ λ (∇ · u) δij

]
is the stress tensor. Additional equations for conservation of energy and chemical

species account for the heat release produced by the exothermic chemical reactions

occurring in the flow, however these equations couple to (2.1) and (2.2) only indirectly

through their effect on the density and viscosity fields ρ(x, t) and ν(x, t). As a result,

the physical mechanisms that can directly produce heat release effects in u(x, t) are

limited to those found on the right-hand side of (2.2). These consist of:

(1) the inertial effect produced by the changes in the density field ρ(x, t),

(2) the body force effect produced by the buoyancy force fB,

(3) the diffusive effect produced by changes in the viscosity field ν(x, t), and

(4) the dilatation effect produced by the divergence field ∇·u in (2.2) that results

from variations in the density field ρ(x, t) via (2.1).
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Theoretical considerations relevant to each of these physical mechanisms above will

be considered separately in §§ 2.2 – 2.5. Note that the pressure gradient appears on

the right-hand side in (2.2), but it does not produce a direct effect of heat release on

u(x, t). Instead, the pressure changes due to heat release, but only as a consequence

of the direct changes that occur in the velocity field due to heat release.

While (2.1) and (2.2) apply to any flow, this study is concerned solely with

heat release effects in turbulent shear flows. Such flows typically vary far more

slowly along their downstream direction than along the lateral directions, and for

this reason can be treated as quasi-one-dimensional. Thus mean-flow properties of

turbulent shear flows scale with local outer variables δ(x) and uc(x), namely the local

length and velocity scales that characterize the local mean shear profile that sustains

the turbulence at any downstream location x, as indicated in Fig. 2.1. Appropriate

choices of δ and uc depend on the shape of the mean velocity profile for the particular

turbulent shear flow at hand, but the local peak mean shear is O(uc/δ). Scaling laws

for δ(x) and uc(x) can often be determined by simple dimensional reasoning, and in

general depend on the fluid densities even in flows without heat release. As a result,

when heat release is present the resulting density changes will therefore affect the

mean-flow properties through the density that appears in these outer-variable scaling

laws. Outer-scale properties of the flow – namely quantities that are dominated by

the large scales of motion, such as the mean velocities u′i and the Reynolds stress

components u′iu
′
j – will be altered primarily by the effects that heat release has on

the local outer variables δ(x) and uc(x).

While the largest scales of motion in the turbulent flow field u(x, t) are of the

order of the local outer scale δ, the smallest scales are set by the inertial-diffusive

balance that occurs at the local inner scale λν ∼ δRe
−3/4
δ . Here Reδ ≡ ucδ/ν is
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the local outer-scale Reynolds number, which determines the outer-to-inner length

scale ratio in the flow field. Inner-scale properties of turbulent shear flows – namely

quantities that are dominated by the smallest-scale motions, such as the velocity

gradient moments (∂ui/∂xj)n – scale with the local inner variables ν and λν . Thus,

for instance, (∂ui/∂xj)n ∼ (ν/λ2
ν)

n, and from the outer-to-inner length scale relation

this inner scaling can be equivalently written in the local outer variables uc and δ

as (∂ui/∂xj)n ∼ (uc/δ)
nRe

n/2
δ . As a consequence, when heat release is present then

such inner-scale flow properties will be affected by the changes that occur in both

the viscosity and the density. The viscosity effect enters explicitly through the ν

that appears in these inner-variable scaling relations, as well as implicitly through

its effect on Reδ in the λν scaling. The density effect enters implicitly through its

influence on uc and δ, and thus its further effect on Reδ.

A similar inertial-diffusive balance determines the smallest scale λD of the gradi-

ents in the mixture fraction field that governs the heat-releasing chemical reactions.

As indicated in Fig. 2.2, the peak strain rate S ∼ (ν/λ2
ν) in the strain-diffusion

competition produces a scalar dissipation layer thickness λD ∼ λνSc
−1/2, where the

Schmidt number Sc ≡ ν/D is the ratio of the viscosity and scalar diffusivities.

Density changes produced by heat releasing reactions occurring within this locally

two-dimensional scalar dissipation layer create a dilatation field ∇·u(x, t) via (2.1),

which in turn produces a dilatationally induced flow via the Poisson integral that

opposes the strain field. If this effect is sufficiently strong, it could in principle dis-

rupt the strain-diffusion balance that establishes the diffusion-reaction layer. The

magnitude of the dilatation field is obtained theoretically in § 2.5, and examined

experimentally in Chapters VI and VIII.
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2.2 Scaling Laws for Non-Reacting Coflowing Turbulent Jets

While the considerations in § 2.1 apply to any exothermically reacting turbulent

shear flow, the experimental measurements in this study were necessarily obtained

in a particular flow, in this case an axisymmetric coflowing turbulent jet diffusion

flame. Such coflowing jets are convenient for particle-based measurements of u(x, t),

since they readily allow introduction and removal of seed particles in the flow field.

In order to present the results for heat release effects measured in this flow in general

forms that can be applied to other turbulent shear flows, this section develops the

scaling laws for the local outer variables δ(x) and uc(x) in nonreacting axisymmetric

coflowing turbulent jets. All results in Chapters IV – VIII are then presented in

terms of these outer variables, or together with ν in terms of the inner length scale

λν implied by uc and δ, allowing these results to be rescaled to other flow conditions

and to other turbulent shear flows.

The basic configuration for an axisymmetric coflowing turbulent jet is indicated

in Fig. 2.3. A jet fluid, in this case a fuel, issues from a nozzle at bulk velocity

U0 into a surrounding coflowing fluid, in this case air, moving in the same direction

at the coflow speed U∞. Unlike a “simple” jet issuing into a quiescent surrounding

fluid, the coflowing jet is a “compound” shear flow, in the sense that it undergoes a

transition with increasing downstream distance from one power-law scaling regime

to another. The proper scaling laws for such coflowing jets can be obtained from

dimensional reasoning, as first shown by Maczyński (1962) and subsequently verified

experimentally by Biringen (1975), Nickels and Perry (1996), and Davidson and

Wang (2002).

At any downstream location x, the local streamwise velocity profile U is used
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to define the “excess velocity” profile u ≡ U − U∞, from which the local uc and δ

characterizing the local peak mean shear are obtained, as indicated in Fig. 2.3. In

the absence of buoyancy, the momentum flux J0 issuing from the jet source is an

invariant of the flow. This allows defining an invariant length scale, termed the “jet

momentum radius”, as

θ ≡
(

J0

πρ∞U2
∞

) 1
2

, (2.3)

On dimensional grounds, the resulting scalings for δ and uc must then be(
δ

θ

)
= fδ

(x
θ

)
, (2.4a)

(
uc

U∞

)
= fu

(x
θ

)
. (2.4b)

where fδ and fu are universal scaling functions for all axisymmetric coflowing tur-

bulent jets. The scaling achieved in this form is demonstrated in Figs. 2.4 and 2.5,

adapted from Dahm and Dibble (1988) using data originally published by Biringen

(1975). In each figure, the upper panel presents the data scaled by the jet nozzle

diameter for various U0 and U∞, for which no collapse to a universal scaling is seen.

The lower panel in each figure shows the same data properly scaled as in (2.4a),(2.4b),

and a good collapse of the data is seen to the two universal scaling functions fδ and

fu.

The two scaling functions fδ and fu do not have simple power-law forms, but

must approach power-law scalings in the limits as the normalized downstream dis-

tance (x/θ) becomes small or large. In particular, when (x/θ) → 0, then uc is much

larger than U∞ and thus the distinction between uc and Uc is lost. As a conse-

quence, the flow in this limit must become identical to a simple non-coflowing jet,
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which requires fδ(x/θ) = (cδ)j(x/θ) and fu(x/θ) = π1/2(cu)j(x/θ)
−1. In the oppo-

site limit, as (x/θ) → ∞ then uc becomes sufficiently small relative to U∞ that the

momentum conservation in terms of the excess velocity becomes identical to that

in terms of the “deficit velocity” for a wake, which requires fδ(x/θ) = (cδ)w(x/θ)1/3

and fu(x/θ) = (cu)w(x/θ)−2/3. The log-log form in Fig. 2.6 verifies these two power-

law limit scalings, where the data from Figs. 2.4 and 2.5 are shown together with

the more extensive data of Davidson and Wang (2002). The transition between the

jet-like and wake-like limits can be seen to occur around (x/θ) ≈ 10.

In these scalings, x is the downstream distance measured from an ideal point

source that introduces momentum flux J0 but has zero mass flux m0. Practical jets,

however, issue from finite-diameter nozzles that introduce a nonzero exit mass flux

mE when producing the exit momentum flux JE. The distinction between the ideal

and actual configurations is typically accounted for by an empirically defined virtual

origin. However, Diez and Dahm (2007) have shown that the actual flow is formally

equivalent to that produced by a point source having J0 = JE located upstream of

the actual source at a distance

xE =

√
π/2

I1 (cu)j (cδ)
2
j

[
2mE

(πρ∞JE)1/2

]
︸ ︷︷ ︸

d∗

, (2.5)

where the term in square brackets is the classical far-field equivalent source diameter

d∗. Here I1 = π/af ≈ 0.262 is an integral invariant of the flow, the value of which

depends only on the definition of the outer length scale δ. The value af = 12.0

corresponds to the choice of δ as the full width where the mean streamwise velocity

profile has decreased to 5% of its centerline value uc. From Papanicolaou and List

(1988), (cu)j ≈ 7.2 and (cδ)j ≈ 0.36. When, as is common in practice, x is used to

denote the downstream distance from the jet nozzle, then it is necessary to calculate
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the virtual origin xE from (2.5) and replace x in (2.4a) and (2.4b) with

ξ ≡ x+ xE. (2.6)

Note also that the momentum deficit produced by the boundary layers on the outer

surface of a practical nozzle in a coflowing stream must be subtracted from the

momentum excess produced by the flow issuing from the nozzle to determine the

net momentum flux JE introduced by the nozzle. For small JE, this correction can

be significant. In the present study, the wake flow produced by the nozzle with

U0 = 0 was measured directly for each coflow speed U∞. The resulting drag for each

U∞ was subtracted from the nominal outflow momentum flux for each measurement

condition to determine the net JE.

Use of the outer variables δ and uc allows the experimentally measured heat

release effects obtained at the particular measurement locations and flow conditions

for the particular turbulent shear flow used in this study to be presented in general

forms that allows these results to then be applied to any other location, any other

flow conditions, or even any other turbulent shear flow.

2.3 Heat Release: Inertial Effects of Density Variations

The reduction due to heat release in the fluid density field ρ(x, t) appearing on the

right-hand side of (2.2) will lead to a purely inertial effect of reaction exothermicity

on the velocity field u(x, t). This inertial effect of heat release can, in concept, be

quantitatively accounted for by the “general equivalence principle” of Tacina and

Dahm (2000), which provides a completely general way of predicting the inertial

effects of heat release on the outer variables δ and uc in any turbulent shear flow. This

section applies this equivalence principle to the axisymmetric coflowing turbulent
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jet configuration used in the present study, to obtain the theoretical changes due

to heat release in the local outer variables δ and uc in (2.4a) and (2.4b) and the

virtual origin xE in (2.5). In Chapter IV these predictions will be compared with

the experimentally measured changes, where it will be seen that this equivalence

principal in coflowing jets accurately predicts the inertial effects due to heat release.

The equivalence principle is based on the bilinear form of the equilibrium tem-

perature T (X) with jet-fluid elemental mole fraction X(x, t) as required by enthalpy

conservation. This can be seen in Fig. 2.7, where as the strain rate S is decreased

the temperature T (X) approaches the bilinear form for mole fraction values X suf-

ficiently far from the stoichiometric value Xs. Since a linear T (X) reflects simple

fluid mixing without reaction, in Fig. 2.8 on either side of Xs the temperature field

T (X) in the reacting flow is equivalent to that which would occur in a corresponding

non-reacting flow with the temperature T∞ ≡ T (X = 0) of the surrounding fluid

raised to a fictitious elevated value T eff
∞ , where

T eff
∞ = T0 + (Ts − T0)

X0 −X∞

X0 −Xs

(2.7)

with Ts denoting the stoichiometric temperature, as indicated in Fig. 2.8. This is

equivalent to replacing the density ρ∞ in the outer-variable scaling laws for the non-

reacting flow with the effective value that corresponds to this elevated temperature,

namely

ρeff
∞ = ρ∞

(
T∞

T eff
∞

)
(2.8)

The density field ρ(x, t) in the equivalent nonreacting flow is then identical to that

in the exothermic reacting flow wherever the jet-fluid mole fraction field X(x, t) is

above the stoichiometric value Xs. In this manner, the inertial effects of density
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changes due to heat release in the exothermic flow are obtained from the density

scaling of the equivalent non-reacting flow.

This equivalence in mole-fraction space in Fig. 2.8 is shown in physical space in

Fig. 2.9 via the mean temperature, density and velocity profiles. Where X > Xs as

indicated by the heavy line, the temperature and density profiles in the reacting flow

(solid line) are the same as those in a nonreacting flow (dashed line) produced by

simple mixing between the actual jet exit values and the effective ambient values T eff
∞

and ρeff
∞ . The equivalence thus ensures the correct density changes in those parts of

the flow where the velocity profile (shown by the bottommost profile in Fig. 2.9) is

highest, and thus where the inertial effects of heat release are most important.

Tacina and Dahm (2000) have shown that this general equivalence principle ac-

curately predicts the heat release effects in both the near and far fields of planar and

axisymmetric turbulent jet flames over a wide range of fuels and dilutions. In the

jet far field, it leads to a generalized momentum diameter d+ that extends the clas-

sical Thring and Newby (1953) and Ricou and Spalding (1961) momentum diameter

d∗ in (2.5) to exothermic jet flames. The equivalence principle accurately predicts

the reduced entrainment rate due to heat release, as well as the resulting effect of

heat release on jet flame lengths. When applied to planar turbulent jet flames, the

equivalence principle leads to an extended momentum width h+ that similarly gives

correct predictions for the much stronger effect of heat release on the scaling laws

in that flow. The equivalence principle also correctly predicts effects of heat release

on the near-field lengths of both planar and axisymmetric turbulent jets. In par-

ticular, it indicates a much larger increase in near-field length due to heat release

in planar turbulent jets than in axisymmetric jets, in good agreement with obser-

vations and measurements. Dahm (2005) has further shown that this same general
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equivalence principle, when applied to turbulent mixing layers, leads to an extended

density ratio s+ that correctly predicts the reduction in growth rate and change in

entrainment ratio due to heat release. These predicted effects are in good agreement

with experimentally measured values, and reveal an important additional influence

of stochiometry that had previously gone unnoticed in the experimental results.

The equivalence principle is valid within the range over which its physical as-

sumptions apply (Tacina and Dahm 2000). Violating these constraints invalidates

the predictions of the equivalence principle, such as in flames where buoyancy due

to heat release is large. The equivalence principle also fails near the flame tip where

mole fractions are close to the stoichiometric value – here neither the rich nor lean

branches of T (X) dominate and the equivalence principle does not apply. Further-

more, if the temperature is no longer determined solely by the mole fraction, the

equivalence principle is not to be applied – such as in strongly radiating flows or

where differential diffusion effects are non-trivial. However, many practical com-

bustion applications are within the assumptions of the equivalence principle and it

captures the dominant effects of heat release on the outer flow variables uc and δ.

This equivalence principle can be applied to the scaling laws in (2.4a), (2.4b) for

nonreacting axisymmetric coflowing turbulent jets to obtain outer-variable scaling

laws for the corresponding exothermically reacting version of this flow. In partic-

ular, note that the density ρ∞ appears in (2.4a), (2.4b) only via the momentum

radius θ from (2.3). The equivalence principle implies that the scaling laws for the

exothermically reacting flow are the same as those for the corresponding non-reacting

flow, but with ρ∞ replaced by ρeff
∞ from (2.7) and (2.8). This defines the “extended

23



momentum radius” θ+, namely

θ+ ≡
(

J0

πρeff
∞ U2

∞

) 1
2

, (2.9)

in terms of which the scaling laws for the outer length and velocity, δ and uc, in

exothermically reacting coflowing turbulent jets should be(
δ

θ+

)
= fδ

(
ξ

θ+

)
(2.10a)

(
uc

U∞

)
= fu

(
ξ

θ+

)
(2.10b)

where, from (2.6), ξ ≡ x+xE and fδ and fu are the same universal scaling functions

shown in Fig. 2.6. The ability of (2.10a), (2.10b) to account for the experimen-

tally measured heat release effects on δ and uc in exothermic reacting axisymmetric

coflowing turbulent jets will be assessed in Chapter IV.

2.4 Heat Release: Body Force Effects of Density Variations

In addition to the inertial effect of heat release in § 2.3, the buoyancy body force

term fB on the right-hand side of (2.2) will lead to an additional heat release effect

on u(x, t). Owing to the volumetric nature of the buoyancy body force, its effects

are greatest at the largest flow scales. In practice, it is extremely difficult to produce

a fully buoyancy-free flame, and as a result this “buoyancy effect” has been the most

widely investigated heat release effect. Numerous studies have proposed various ap-

proximate ways to account for its influence on the outer variables δ and uc (e.g.,

Steward, 1970; Becker and Yamazaki 1978; Heskestad 1981; Zukoski et al. 1981;

Cetegen et al. 1984; Peters and Göttgens 1991; Delichatsios 1993; Blake and Mc-

Donald 1995; Blake and Coté 1999). Most of these approaches have been based on an
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approximation referred to as the Morton entrainment hypothesis (Morton 1959), and

lead to various ad hoc expressions in terms of Froude or Richardson numbers. Diez

and Dahm (2007) have developed an integral approach that avoids this approxima-

tion altogether. Their approach, based in part on the general equivalence principle

noted in § 2.3, leads to two parameters that determine the complete buoyancy effects

on the outer variables. Comparisons of the resulting predicted heat release effects on

δ and uc over a wide range of conditions show good agreement with measured values.

Because the buoyancy effects of heat release have been widely addressed in prior

studies, and numerous methods exist for understanding and predicting the effect of

buoyancy on u(x, t), the present study is focused primarily on heat release effects

other than buoyancy. Thus in this investigation, the outer variables δ and uc are

measured directly at each flow condition, and as a consequence the effects of buoyancy

on them are directly accounted for independent of any theoretical formulation. By

presenting results normalized with these outer variables and the accompanying outer-

scale Reynolds number Reδ, or equivalently normalized on the inner variables ν and

λν , this study is able to go beyond the comparatively simple heat release effects

produced by buoyancy at the large flow scales, and can thereby investigate the heat

release effects produced at the intermediate and small scales of turbulent shear flows

by each of the terms on the right-hand side of (2.2).

2.5 Heat Release: Dilatation Effects of Density Variations

An additional effect of heat release on u(x, t) comes from the dilatation term

on the right-hand side of (2.2). The dilatation field ∇ · u is produced by density
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variations via (2.1) as

∇ · u = −1

ρ

Dρ

Dt
. (2.11)

From the ideal gas equation of state

p = ρ

(
R̃

M

)
T, (2.12)

where R̃ is the universal (molar) gas constant and M is the molecular weight, and

taking the pressure to be essentially constant in the absence of compressibility effects,

the dilatation in (2.11) becomes

∇ · u =
1

T

DT

Dt
− 1

M

DM

Dt
. (2.13)

As evident in Fig. 2.7, in the chemical equilibrium limit that applies as the strain

rate S → 0, the temperature and chemical composition become independent of S

and are functions only of the mixture fraction ζ. Thus T = T (ζ) and M = M(ζ),

and consequently the dilatation in (2.13) becomes

∇ · u =

[
1

T

dT

dζ
− 1

M

dM

dζ

]
Dζ

Dt
. (2.14)

Since the mixture fraction ζ is a conserved scalar, it satisfies the advection-diffusion

equation

Dζ

Dt
≡ ∂ζ

∂t
+ u · ∇ζ = D∇2ζ (2.15)

where D is the scalar diffusivity. As a result, the dilatation in (2.14) becomes

∇ · u =
[
F (ζ)

]
D∇2ζ, (2.16a)

F (ζ) ≡ 1

T

dT

dζ
− 1

M

dM

dζ
(2.16b)
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is an equilibrium state relation that can be readily evaluated via chemkin or any

other chemical equilibrium solver for any fuel and oxidizer combination. In general,

the effect on F (ζ) in (2.16b) from T (ζ) is found to be far larger than that from M(ζ),

consistent with Tacina and Dahm (2000).

The results in (2.16a), (2.16b) allow a comparison between the dilatation ∇·u due

to heat release and the velocity gradients ∇u ≡ ∂ui/∂xj that occur in a turbulent

shear flow even in the absence of any heat release. As noted in § 2.1, the velocity

gradients scale on inner variables and thus their characteristic magnitude is

[
(∇u : ∇u)

] 1
2 ≡

[ (
∂ui

∂xj

)2
] 1

2

∼
(
ν

λ2
ν

)
. (2.17)

From Mullin and Dahm (2005b), the proportionality constant in (2.17) is approxi-

mately 10 (see their Fig. 5 and Tables III and IV). The corresponding characteristic

dilatation magnitude from (2.16a) requires an estimate of the characteristic magni-

tude of ∇2ζ, which scales as

[
(∇2ζ)2

] 1
2 ∼

(
ζ ′rms

λD

)
, (2.18)

with λD the scalar dissipation layer thickness in Fig. 2.2. From the scalar gradient

measurements in Southerland (1994), the proportionality constant in (2.18) is found

to be approximately 0.67. Since Sc ≈ 1 in gaseous reacting flows, λD ≈ λν and thus

the ratio of the characteristic dilatation magnitude to the characteristic velocity

gradient magnitude is

R∇(ζ) ≡

[
(∇ · u)

] 1
2

[
(∇u : ∇u)

] 1
2

≈ 0.067
[
F (ζ)

]
ζ ′rms (2.19)

Since 0 ≤ ζ ≤ 1, by definition ζ ′rms ≤ 1/2, and in practice throughout most turbulent

shear flows ζ ′rms � 1.
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Figure 2.10 shows a representative computation of R∇(ζ) for the far-field of a

reacting jet, at x/d∗ = 100 where ζ ′rms ≈ 0.01, from adiabatic chemical equilibrium

calculations using the NASA cea solver (McBride et al. 1994) for hydrogen-air

chemistry. Also shown in each panel is the corresponding T (ζ), from which the

stoichiometric mixture fraction ζs = 0.028 can be readily identified. In the top

panel, it is apparent that this estimate of the relative dilatation magnitude R∇(ζ) is

essentially zero wherever the composition is fuel-rich (ζ > ζs). In the lower panel, it

can be seen that for fuel-lean compositions (ζ < ζs) the dilatation magnitude remains

negligible except possibly as ζ → 0. The relative dilatation values in Fig. 2.10 are

representative values for practical shear flows. These results thus indicate that the

dilatation ∇ · u appearing on the right-hand side of (2.2) should have no significant

direct dynamical effect in altering the gradients ∂ui/∂xj in the velocity field u(x, t).

The above finding that the velocity gradients induced by dilatation due to heat

release are negligible in comparison with the naturally occurring velocity gradients

in turbulent shear flows is independent of the Reynolds number and applies to all

turbulent shear flows. Moreover, it not unique to the hydrogen-air chemistry in Fig.

2.10, and applies to all other common hydrocarbon-air reactants as well.

As a measure of the overall levels of heat release, the present hydrogen-air chem-

istry is Ts/T∞ = 7.95, where Ts is the adiabatic flame temperature and T∞ is the

temperature of the reactants. By comparison, most hydrocarbon systems such as

methane-air (Ts/T∞ = 7.42) are lower. Thus the use of hydrogen-air represents an

upper bound of heat release for most practical combustion systems – with the no-

table exception of oxygen-enriched combustion where the levels of heat release are

much larger, such as hydrogen-oxygen , Ts/T∞ = 10.3.

Of course, it is the dilatation itself that produces the reductions in the density field
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ρ(x, t) due to heat release, as can be seen in (2.1), and in this way the dilatation has

an indirect effect on u(x, t). That indirect effect occurs via the explicit appearance

of the density ρ on the right-hand side of (2.2), which produces the purely inertial

effect on u(x, t) discussed in § 2.3, and via the implicit appearance of the density ρ

in the body force fB on the right-hand side of (2.2), which produces the buoyancy

effect on u(x, t) discussed in § 2.4. However the present section indicates that the

appearance of the dilatation ∇·u on the right-hand side of (2.2) has no direct effect

on u(x, t). In Chapters V – VIII, results from experimental measurements will be

used to assess the validity of this finding.

2.6 Heat Release: Diffusive Effects of Viscosity Variations

Additional direct effects of heat release on u(x, t) can result from changes in the

viscosities µ and λ that appear on the right-hand side of (2.2). The viscous terms in

this equation can be written as

1

ρ

[
∇ · µ

(
∇u + ∇uT

)
−∇ (λ∇ · u)

]
=

ν∇2u +
1

ρ

[
∇µ ·

(
∇u + ∇uT

)
+ ∇λ (∇ · u)

]
− λ

ρ
∇ (∇ · u) (2.20)

where ν ≡ µ/ρ. The first term on the right-hand side of (2.20) accounts for the

classical diffusion of momentum that sets the local inner length scale λν ∼ δRe
−3/4
δ

as discussed in § 2.1. In nonreacting turbulent shear flows, the constant viscosity µ

and the resulting λν then determines the values of all inner-scale quantities. In the

presence of heat release, however, the viscosity will increase over its corresponding

nonreacting value, and this acts to increase the inner length scale in the flow and

thereby alters the values of all such inner-scale quantities. In addition, ν(x, t) will
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no longer be constant, and this introduces significant complications in the inner

scaling of various turbulence quantities. While the remaining terms on the right-

hand side of (2.20) include the effects of spatial variations in the viscosities, such

nonuniformities in ν(x, t) also affects the otherwise simple strain-diffusion balance

that sets the inner length scale λν via the first term of (2.20) in nonreacting flows.

In reacting flows, lacking a uniform ν the notion of a single inner length scale and

the inner scaling based on it is, strictly speaking, no longer valid. Nevertheless,

owing to the enormous success that the “Kolmogorov 1941 theory” of inner scaling

via ν and λν (or, equivalently, via ν and ε) has had in understanding and predicting

velocity gradients and other inner-scale properties in nonreacting turbulent shear

flows, current extensions to reacting flows are largely based on preserving the notion

of inner scaling in terms of some appropriately-defined effective viscosity.

A common approximation is to ignore the spatial variations in the viscosity alto-

gether and assign a constant ad hoc “hot” value for ν. Often, this is chosen as the

viscosity νs that corresponds to the chemical equilibrium temperature and composi-

tion at the stoichiometric mixture fraction. This produces an increase in λν due to

heat release, and allows classical scaling of inner-scale flow properties based on this

νs and λνs . However, since νs is generally the highest viscosity in ν(x, t) this will

overestimate the diffusive effects of heat release.

A more accurate approach is possible by first computing the viscosity state re-

lation ν(ζ) from the chemical equilibrium temperature and composition over the

entire range of mixture fractions 0 ≤ ζ ≤ 1. This can be done with any equilibrium

calculator, or preferably with oppdif in the limit as the strain rate S → 0, since

the latter accounts for differential diffusion in the fundamentally layer-like gradient

regions shown in Fig. 2.2. The top panel in Fig. 2.11 shows the result of such calcu-
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lations for hydrogen-air chemistry over a wide range of strain rates S. At sufficiently

low S, the chemistry approaches an S-independent equilibrium limit ν(ζ); this can

be seen clearly in the lower panel of Fig. 2.11, where the ν variations are shown in

mole-based mixture fraction. The average viscosity can then be computed from ν(ζ)

as

ν(x) ≡
∫ 1

0

ν(ζ)P (ζ;x) dζ, (2.21)

where P (ζ;x) is the mixture-fraction probability density function at the particular

location x of interest in the turbulent shear flow. In the interior of the flow, P (ζ)

can often be approximated as Gaussian, namely

P (ζ;x) ≈ 1√
2π(ζ ′)2

exp

[
−
(
ζ − ζ

)2
2(ζ ′)2

]
(2.22)

where ζ(x) is the local mean mixture fraction and (ζ ′)2(x) is the local mixture-

fraction variance. In turbulent shear flows, the local mean and variance of the

conserved-scalar mixture fraction can be obtained from the outer variable scaling

laws for δ and uc, as noted in §§ 2.2 and 2.3, allowing ν(x) to be readily calculated.

This approach is used at each measurement location x in the present study to

provide a single value of the average local viscosity ν(x) that partially accounts for

the viscous effect of heat release. From this, a single local inner length scale is

obtained as λν ∼ δRe
−3/4
δ , with Reδ ≡ ucδ/ν. All inner-scale flow properties are

then scaled with this ν and λν . This provides a simple way of extending the classical

Kolmogorov (1941) inner scaling for nonreacting flows to exothermically reacting

flows. It retains the conceptual simplicity of a single local “hot” value for ν in the

first term on the right-hand side of (2.20), while providing greater accuracy than

simply choosing this to be the stoichiometric value νs.

31



2.7 Combined Effects of Heat Release

In an exothermically reacting turbulent shear flow, all of the heat release effects

in §§ 2.2 – 2.6 act to produce direct changes in the velocity field u(x, t) and the

associated velocity gradient fields ∂ui/∂xj(x, t) via the terms on the right-hand side

in (2.2). Because outer-scale properties of the flow such as the mean velocities ui and

the Reynolds stress components u′iu
′
j are dominated by the large scales of motion,

they will be altered primarily by the effects that heat release has on the local outer

variables uc(x) and δ(x). From § 2.2, scaling laws for the axisymmetric coflowing

turbulent jet configuration used in the present experiments allow the local uc and

δ to be determined at each flow condition. From the general equivalence principle

in § 2.3 and the extended scaling laws it provides for uc and δ in reacting version of

this flow, the inertial effects of heat release on the outer-scale flow properties can be

determined via (2.9) and (2.10a), (2.10b). As noted in § 2.4, the additional effects

of buoyancy on uc and δ are relatively well understood and will not be investigated

here; since uc and δ are measured directly in this study, the effects of buoyancy

on them are accounted for in all results presented herein. The dilatation effects in

§ 2.5 and the viscous effects in § 2.6 act at the inner (diffusive) flow scales, and thus

these should not directly affect outer-scale flow properties. As a result, the principal

effect of heat release on the outer-scale flow properties should be the inertial effect on

uc(x) and δ(x) via ρeff
∞ from the general equivalence principle. One of the goals of this

experimental study is to determine the extent to which the resulting theoretically

predicted heat release effects on uc(x) and δ(x) are supported by results from velocity

measurements in an exothermically reacting turbulent shear flow.

Inner-scale flow properties, such as the velocity gradients ∂ui/∂xj, are dominated
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by the smallest scales of motion. As a result, in addition to the inertial and buoyancy

effects on them from uc(x) and δ(x) via the inner-scaling (∂ui/∂xj)n ∼ (uc/δ)
nRe

n/2
δ ,

the dilatation effects in § 2.5 and the viscous effects in § 2.6 can potentially produce

additional direct inner-scale heat release effects. However, R∇(ζ) in Fig. 2.10 from

(2.19) of § 2.5 suggests that the direct effects of dilatation in altering the velocity

gradients from their values in the corresponding nonreacting flow will be negligible.

One of the goals of this experimental study is to determine the extent to which this

theoretical prediction is supported by results from velocity gradient measurements in

an exothermically reacting turbulent shear flow. With regard to direct viscous effects

of heat release on inner-scale flow quantities, the considerations in § 2.6 suggest that

these can be accounted for by retaining the classical inner scaling from Kolmogorov

(1941) theory, but using the local mixture-fraction averaged viscosity ν(x) from

(2.21) and (2.22) and the corresponding local inner scale λν . One of the further

goals of this experimental study is to determine the extent to which such classical

inner scaling correlates measured velocity gradients in an exothermically reacting

turbulent shear flow. This latter objective is made more difficult by the fact that,

at high Reynolds numbers, the diffusive scale λν may be beyond the resolution limit

of the measurements. This study thus develops methods for objectively determining

the measurement resolution, and for assessing the validity of inner scaling even when

the viscous scale λν is only partially resolved.
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Figure 2.1: Schematics indicating proper definition of local outer length and velocity
scales δ and uc from local mean velocity profiles for typical coflowing jet
profile shape (top) so that (∂u/∂u)max ≈ (uc/δ) where uc ≡ Uc − U∞ is
centerline excess velocity and typical mixing layer profile shape (bottom)
where uc ≡ (U1 − U2).
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Figure 2.2: Schematic of strained diffusion and reaction layer separating fuel-rich
and oxidizer-rich regions in mixture fraction field ζ(x, t), shown in local
Lagrangian frame moving with point P at center of layer.
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Figure 2.3: Schematic indicating basic layout and nomenclature for axisymmetric
coflowing turbulent jets as used for experimental measurements presented
herein.
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Figure 2.4: Decrease in local outer velocity uc with downstream coordinate x in
coflowing turbulent jets for three different values of jet-to-ambient ve-
locity ratios U0/U∞, showing näıve jet scaling with jet exit diameter dE

(top) and proper coflowing jet scaling with jet momentum radius θ (bot-
tom). Adapted from Dahm and Dibble (1988); symbols defined therein.
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Figure 2.5: Increase in local outer length scale δ with downstream coordinate x in
coflowing turbulent jets for three different values of jet-to-ambient veloc-
ity ratios U0/U∞, showing näıve jet scaling with jet exit diameter dE (top)
and proper coflowing jet scaling with jet momentum radius θ (bottom).
Adapted from Dahm and Dibble (1988); symbols defined therein.
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Figure 2.6: Decrease in local outer velocity uc with downstream coordinate x in
coflowing turbulent jets from Fig. 2.4 (top). Increase in local outer length
scale δ with downstream coordinate x in coflowing turbulent jets from
Fig. 2.5 (bottom). Both panels include for comparison data from David-
son and Wang (2002) spanning a large range in x/θ (grey squares).
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Figure 2.7: State relation for temperature in terms of conserved scalar ζ (top) and
mole fraction X (bottom) from oppdif computations for strain rates S
ranging from equilibrium limit to deep nonequilibrium. Note bilinear
form of T (X) in equilibrium regime at S < 1/20 s−1.
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Figure 2.8: Equilibrium temperature state relation function from Fig. 2.7 shown in
terms of mole fraction X. Departures from strict bilinear form of T (X)
for X 6= Xs (top) are due to small variations in molar specific heat c̃p.
Linear approximation of T (X) for X > Xs leads to effective ambient
temperature T eff

∞ (bottom) in a corresponding nonreacting flow.
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Figure 2.9: Schematic of equivalence principle, showing implications for mean tem-
perature (top) and density (middle) profiles in an exothermically reacting
jet. Solid lines show profiles in exothermic reacting flow; dashed lines
show profiles in nonreacting flow produced by simple mixing between
the actual source values T0 and ρ∞ effective ambient values T eff

∞ and
ρeff
∞ . Heavy line shows resulting agreement for X > Xs , where velocity

(bottom) is large, ensuring proper accounting for the dominant inertial
effects of heat release, from Diez and Dahm (2007).
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Figure 2.10: Equilibrium temperature state relation T (ζ) for H2 − air chemistry,
showing variation in temperature T with mixture fraction ζ (left axis),
and corresponding relative dilation R∇(ζ) (right axis). Results are
shown for 0 ≤ ζ ≤ 1 (top), and near stoichiometric value ζs (bottom).
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Figure 2.11: Kinematic viscosity state relationship as a function of conserved scalar
(top) and mole fraction (bottom). Results obtained via oppdif com-
putations for a wide range of strain conditions ranging from 1/10 to
1/5000 s−1.
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CHAPTER III

Experimental Facilities and Diagnostic

The particular flow used in this study of heat release effects on the velocity field

u(x, t) in turbulent shear flows is an axisymmetric coflowing turbulent jet configu-

ration. Such coflowing jets readily allow introduction and removal of seed particles

needed for particle image velocimetry (PIV) measurements of the velocity field. This

chapter describes the LTC DSPIV reacting turbulent shear flow facility designed

and assembled for this study. This facility was specifically developed to provide

high-resolution instantaneous velocity gradient fields via Particle Image Velocimetry

(PIV). The facility can be readily modified to acquire large field of view (FOV) im-

ages spanning the full extent of the jet width δ in order to accurately characterize the

outer flow quantities. Herein “small FOV” imaging refers to experiments conducted

at the inner scales of the jet where the PIV resolution is comparable to λν , the local

viscous length scale. Conversely, “large FOV” experiments refer to data acquired

where the overall PIV FOV is comparable to δ(x) the local outer length scale.

The LTC DSPIV laboratory was designed, fabricated and assembled to be capable

of sustaining large heat loads while remaining readily configurable for various types

of measurements. The basic facility is a vertical draft wind tunnel that can sustain

45



a 1 kW jet flame. The entire test section assembly can be removed in a matter of

minutes to readily permit changes between experimental configurations.

3.1 LTC DSPIV Laboratory

The LTC DSPIV facility is shown in its current experimental arrangement in Fig.

3.1. The major components shown include: the fuel mixing board on the left, the

optical table in the center, the vertical induced draft wind tunnel, the four Nd:YAG

lasers, and the data acquisition computer and data processing PC. A schematic of

the equipment layout is shown in plan view in Fig. 3.2. The current layout was

arrived at by optimization of several constraints: laboratory safety, ease of access to

bottled gases, experiment flexibility and reconfigurability, laboratory maintenance

and experimental objectives.

The vertical induced-draft test section is shown schematically in Fig. 3.3 and

photographically in Fig. 3.4. The first of the two main components of the test section

is the flow conditioning section at the base of the tunnel, where the ambient room

air enters the apparatus. A flow conditioning section (shown in Fig. 3.5) consists of

a porous plate, two screens and a layer of aluminum honeycomb. The latter removes

the unwanted large-scale motions in the induced laboratory air flow and yields a

uniform coflow with low turbulence intensity (4% − 5% as measured by PIV) for

the test section. The flow conditioner was designed according to “Roshko’s Rules”

detailed in Appendix B of Mullin (2004).

Briefly, the design parameters employed in the flow conditioning section assume

a target coflow velocity of U∞ ≈ 2.5 m/s. A porous plate with 12.7 mm holes on
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25.4 mm centers is the first element encountered by the flow. This is closely followed

by a screen 6 mm downstream. The screen consists of a mesh of wires 0.81 mm

in diameter with 2.36 mm square openings. The honeycomb section follows 62 mm

downstream. The honeycomb is 31.8 mm in length with cells 3.18 mm in width. A

second screen of the same type as the first is the final flow conditioning element.

This arrangement yields a coflow in the test section with a turbulence intensity of

approximately 5%.

Following the flow conditioning section, the test section is the second component

of the wind tunnel. Shown in Fig. 3.4, the test section consists of a constant cross-

section duct, 457 mm square, with ample optical access. Tempered glass windows

6.35 mm in thickness, 300 mm in width and 810 mm in height occupy both sides of

the test section and the rear wall. The front wall is a door with a 285 × 825 mm

tempered glass window. The tempered glass provides an inexpensive solution to the

problem of maximizing optical access while resisting fracture due to heat load. The

6.35 mm thick tempered glass was found to produce only about 10 % transmission

loss at near-UV (355 nm) wavelengths. The test section door enables rapid access

to the tunnel for routine tasks: cleaning windows, alignment of PIV camera targets,

positioning of laser sheet targets, jet nozzle alignment and jet nozzle changes.

3.2 Gas Delivery System

The laboratory schematic in Fig. 3.2 shows the key components of the gas delivery

system: the fuel mixing board and the compressed gas cylinders for both fuel and

inerts/oxidizers. For the benefit of safety and ease of laboratory access, the gas
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delivery lines are routed either overhead or beneath the raised flooring. The fuel

cylinders (shown in Fig. 3.6) are located along the south wall of the laboratory while

the oxidizers and inerts are placed along the north wall. The delivery lines are all

routed to the fuel mixing board where the gases are metered and, if appropriate,

are also mixed. The mixing board (shown in Fig. 3.7) is capable of blending three

independent gases streams to produce a wide variety of fuel mixtures. Immediately

following the fuel board, the PIV seeders (see Fig. 3.8) are located to introduce seed

particles in both the jet fluid and the coflow fluid before they enter the test section.

3.2.1 Fuel Board

The fuel mixing board provides flow metering for up to three independent lines

by use of O’Keefe calibrated choked orifices to control the flow rates. The pressure is

monitored both upstream and downstream of the orifices to determine the flow rates

within each of the delivery lines. The flow board is equipped with both coarse and

fine valve controls to provide accurate and repeatable flow rates. All delivery lines

are joined together to pass through an emergency shut-off valve before entering the

jet fluid seeder.

The mixing board also provides carrier air metering for the coflow seeder. Owing

to the much higher flow rates required by the coflow seed carrier fluid, a high volume

King rotometer capable of measuring up to 2600 SLPM of air was used to meter

the flow. The supply for this carrier gas was provided by the FXB shop air lines.

The air was filtered twice to remove both water vapor and residual oil from the

shop air compressor. Typically 200− 300 SLPM of carrier air was required for most

experimental conditions.
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3.2.2 PIV Seeders

The seeders, shown in Fig. 3.8, are fashioned from stainless steel vacuum chambers

manufactured by MDC industries. Before entering the seeders, the gas lines are split

to allow a bypass which can control the seeding level in the gas lines. The lines

entering the seeders terminate inside the seeders with highly supple flexible tubing.

This tubing oscillates wildly inside the seeders, providing a highly unsteady and

chaotic flow field to fluidize the seed particles. The seed-laden gas then exits the

seeders and is routed directly into the test section. The jet fluid proceeds to the jet

apparatus, and the coflow seed is introduced into the flow conditioning section via

seed rakes. The rakes (indicated schematically in Fig. 3.3) are oriented such that the

holes create small jets issuing fluid in the streamwise direction. The rakes are created

from thin-walled 19 mm OD tubing with 1.6 mm holes drilled 25.4 mm apart. The

numerous small-diameter holes provide a uniform distribution of seed delivery into

the flow conditioning section.

3.2.3 PIV Seed

The application of PIV to a reacting flow has been demonstrated numerous times

(e.g. Stella et al. 2001; Muñiz and Mungal 2001). Successful application of the tech-

nique rests upon judicious selection of tracer particles capable of faithfully following

the flow while surviving a flame. Consequently, solid refractory ceramic particles

have become the customary flow tracer for an exothermically reacting flow. Typical

materials include aluminum oxide, titanium oxide, zirconium dioxide and magnesium

oxide, (Reuss and Rosalik, 1998).
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The seed particle sizing criterion is usually expressed in terms of the particle

Stokes number (e.g. Raffel et al. 1998; Clemens and Mungal 1991; Melling 1997) as

St ≡ τp
τf
, (3.1)

where τp and τf are the particle and flow time scales, respectively. Following Mullin

(2004) aluminum oxide Al2O3 particles nominally 0.5 µm in diameter have been

demonstrated to satisfy the particle Stokes criteria for the expected conditions in

the present work.

Under exothermically reacting conditions, two additional considerations arise:

thermophoretic effects and index of refraction gradients. Thermophoresis accounts

for tendency of a particle suspended in a fluid to drift towards the low temperature

regions when a temperature gradient is present. The effects of beam steering and

apparent particle displacement due to changes in the index of refraction field are

discussed in Appendix A.

The effects of thermophoresis have been examined by Sung et al. (1994) and

from a more applied perspective by Stella et al. (2001). Based on counterflow flame

configurations, both these studies identified the upper bound of velocity error for

particles similar to the present 0.5 µm aluminum oxide seed to be approximately

0.15 m/s. Estimates based on jet flames studied by Muñiz (2002) provided similarly

small values, namely 0.08 m/s.

3.2.4 Jet Nozzle

The jet assembly used in the present study is shown in Figs. 3.9 and 3.10. The

jet was designed with a large area ratio contraction to create a “top-hat” flow profile
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at the exit. The jet was fabricated from aluminum with interchangeable, threaded

nozzles to allow various nozzle diameters to be used with minimal time required for

change-over.

In order to assess the likelihood of flow separation on the outer surface of the

jet nozzle, an axisymmetric Thwaites’ Method laminar boundary layer calculation

was conducted. The final nozzle designs were obtained by iterating over a family of

profiles until a satisfactory shape was reached where the area ratio was maximized

while preventing flow separation from the external wall of the nozzle.

Profiles of the two nozzles with diameters 4.0 and 5.5 mm are shown in the

subpanels of Fig. 3.9. Coupled with an inner (entrance) tube diameter of 25.4 mm,

these two nozzles yield area ratios of 40.3 and 21.3, respectively. The outer profiles

were obtained by manipulating a family of error function profile shapes given by

ρ = S +
A

2
erfc

(
−(ξσ + µ)√

2

)
, (3.2)

to produce the desired shape. The dimensionless axial and radial coordinates are

given as ξ ∈ [0, 1], ξ ≡ x/L and ρ ≡ r/L. This leaves four free parameters available

to create the desired profile shape, namely S,A, σ and µ.

3.3 Optical Layout

The optical arrangement is shown photographically in Fig. 3.11. Here the main

components include the Nd:YAG lasers, the sheet generating optics, beam positioning

equipment and image acquisition cameras.
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3.3.1 Light Sheet Generation

The PIV particles are illuminated via two Nd:YAG lasers (one Spectra-Physics

Quanta-Ray Pro-250 and one Spectra-Physics GCR 3) shown in Fig. 3.11 and schemat-

ically in Fig. 3.12. The lasers produce 400 mJ pulses 6 ns in duration at the frequency

doubled wavelength of 532 nm. Typically, only 25-35 mJ are required for the small

field of view (FOV) experiments, whereas the lasers are operated at full power for

the large FOV PIV.

The time delay ∆t between the laser pulses is controlled by a PC-based Pro-

grammable Timing Unit (PTU) operated by the DaVis software. This PTU also op-

erates the mechanical shutter by way of a Stanford Systems Delay Generator model

DG535 (S2 in Fig. 3.12) which permits the Nd:YAG lasers to maintain their internal

10 Hz operation frequency. The two beams are combined using a 50/50 power-based

beam splitter BS1 and the alignment is controlled by mirror M1, shown in Fig. 3.13.

The M1 mirror provides precise computer-controlled actuation via Thor Labs 12 V

DC servo-motors.

The motors are mounted to give control over three degrees of freedom in the

beam positioning: two angular and one translational. The Thor Labs models Z612

and Z25B servo motors are capable of a minimum increment of less than 0.20 µm.

A kinematic mount, coupled with 50 mm diameter mirrors, yields a 14 µm beam

position uncertainty over the 3.5 m path length of the laser sheets.

After combination, the laser beams pass through a CVI f = −750 mm high

energy cylindrical lens C1 to slowly expand the beams in the vertical plane. The

resulting laser sheets then pass through an f = 1000 mm CVI cylindrical lens C2

oriented to focus the sheets in the horizontal plane. The sheets arrive at the image

field of view nearly 40 mm in height and 400 µm thick.
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An optional mirror M5 can be removed/positioned in the beam path to redirect

the sheets for use in the large field of view PIV experiments. In this case, the beams

avoid the C2 lens and pass through an f = −50 mm which further increases the

sheet height while the thickness remains unchanged from the nominal 6 mm beam

diameter exiting the Nd:YAG lasers.

3.3.2 Particle Imaging

The PIV images are captured by PCO SensiCam interline transfer CCD cameras.

The CCD is rated at 200 ns interframe timing with an array size of 1024×1280 (h×w).

The physical chip size is 6.8 × 8.6 mm with 12-bit digital depth and low noise due

to electronic Peltier cooling.

The small field of view experiments use a Sigma 70−300 mm f/4−5.6 APO macro

lens while the large FOV experiments employ a Sigma 24− 70 mm f/3.5 aspherical

lens. The reacting flow cases required a narrow-band filter to reject unwanted signal

due to flame luminosity. An Andover Corp. Model 532FS10-50 bandpass filter was

selected with 532± 5 nm bandwidth and 55% peak transmission.

3.4 Experimental Conditions

Tables 3.1 – 3.6 give the experimental conditions for all cases reported in the

present study. Conditions for each of the “outer-scale nonreacting” cases, denoted

ONRX, are listed in Table 3.1, and for the “outer-scale reacting” cases, denoted

ORX, are in Table 3.2. The “inner-scale nonreacting” cases, denoted INRX, are in
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Table 3.3, and the “inner-scale reacting” cases, denoted IRX, are in Table 3.4. All of

these cases correspond to measurements obtained on the jet centerline. Additional

measurements were obtained at various radial locations off the jet centerline. Con-

ditions for each of the “radial nonreacting” cases, denoted RNX, are given in Table

3.5, and for the “radial reacting” cases denoted RRX are given in Table 3.6.

In these tables, the local outer length scale δ in Fig. 2.3 is defined as the full-

width where the streamwise velocity drops to 5% of its centerline value; for any other

choice of δ the values in these tables can be easily converted via the Gaussian shape

of the mean velocity profile. This, together with the local centerline excess velocity

uc ≡ U − U∞ in Fig. 2.3, comprises the local outer flow variables. These values,

together with the kinematic viscosity ν = 15(10−6) m2/s, yield the local outer-scale

Reynolds number Reδ. From these, the local viscous (inner) length scale λν can be

deduced following

λν

δ
= ΛRe

− 3
4

δ , (3.3)

where Λ ≈ 11.2 is from Buch and Dahm (1996). The source conditions listed in

Tables 3.1 – 3.6 include the jet nozzle diameter dE, the exit density ρE of the jet

fluid, and the coflow density ρ∞, which is taken to be that of air at 294 K. The

PIV interrogation window size is given as ∆IW and the streamwise distance from the

nozzle exit to the middle of the PIV FOV is denoted by x.
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Figure 3.2: Plan view schematic of LTC DSPIV laboratory layout, corresponding to
Fig. 3.1.
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Induced draft from 
Laboratory room air

Jet 
Fluid

seed rakes

Porous Plate

Screen

Honeycomb

To Exhaust

seed rakes

Figure 3.3: Schematic of vertical induced-draft wind tunnel, with flow conditioning
elements shown on the right. Laboratory air is drawn through the bottom
into the seeding section, where seed particles are introduced, then passes
through the flow conditioning section and proceeds into the test section,
from which it exits into the exhaust system.
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(a)

(b)

Figure 3.5: Photographs of the flow conditioning section. Upper panel: section con-
taining only the porous plate element. Lower panel: screens, honeycomb
and jet apparatus have been mounted.
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Figure 3.6: Typical cradle consisting of twelve compressed gas cylinders providing
the hydrogen fuel used in the reacting flow experiments. Flame arrestor
is visible to left of regulator.
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Figure 3.7: Photograph of fuel mixing board. The three independent gas lines are
identifiable by vertical alignment of pressure gauge pairs. Fine and coarse
flow metering valves are located near bottom of mixing board.
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Figure 3.8: Photograph of the jet seeder (left) and coflow seeder (right).
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Figure 3.9: Details of jet nozzles and entrance tube, showing entrance tube dimen-
sions with threaded fittings (top), with typical jet nozzle attached (mid-
dle), and precise shapes of inner and outer wall profiles for dE = 5.5 mm
nozzle (lower left) and dE = 4.0 mm nozzle (lower right).
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Figure 3.10: Photograph of jet nozzles and entrance tube, showing entrance tube
with threaded end visible and disassembled nozzles (top), and nozzle
fitted to entrance tube with view to mating internal threads in the
remaining nozzle (bottom).
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Figure 3.12: Schematic of the optical table arrangement in Fig. 3.11. Mirrors are
labeled MX, beam-splitting optics BSX, beam dumps BDX, mechanical
shutters SX and cylindrical lenses CX. The optical arrangement used
for this study is discussed in §3.3.1.
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Quantity Units ONR1 ONR2 ONR3 ONR4 ONR5 ONR6 ONR7

Reδ [−] 22 600 23 300 24 000 172 100 173 500 178 600 193 700

dE mm 4.00 4.00 4.00 4.00 4.00 4.00 4.00

x m 0.397 0.399 0.401 0.107 0.100 0.100 0.107

uc m/s 3.29 3.33 3.44 80.02 81.34 82.19 92.74

δ mm 103.1 104.8 104.8 32.3 32.0 32.6 31.3

δ1/2 mm 24.8 25.2 25.2 7.8 7.7 7.8 7.5

U∞ m/s 2.04 2.19 2.16 0.53 2.19 0.79 2.67

∆IW mm 2.00 3.57 2.36 0.73 0.73 0.73 0.73

ρE kg/m3 1.145 1.145 1.145 1.145 1.145 1.145 1.145

ρ∞ kg/m3 1.204 1.204 1.204 1.204 1.204 1.204 1.204

ρeff
∞ kg/m3 1.204 1.204 1.204 1.204 1.204 1.204 1.204

J0 N 0.057 0.065 0.063 1.012 0.996 1.012 1.012

D N 0.031 0.035 0.035 0.000 0.037 0.000 0.035

θ m 0.041 0.041 0.040 0.983 0.230 0.651 0.190

x/θ [−] 9.74 9.72 9.98 0.11 0.44 0.15 0.56

N [−] 500 500 500 500 500 500 500

Table 3.1: Flow conditions and relevant parameters for each of the outer-scale non-
reacting measurement cases, identified as ONRX, in this study.
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Quantity Units OR1 OR2 OR3

Reδ [−] 26 600 81 500 299 300

dE mm 4.00 4.00 4.00

x m 0.545 0.556 0.544

uc m/s 3.47 7.71 27.92

δ mm 115.0 158.5 160.8

δ1/2 mm 27.7 38.1 38.7

U∞ m/s 2.14 2.12 3.02

∆IW mm 3.02 3.09 3.01

ρE kg/m3 0.084 0.084 0.084

ρ∞ kg/m3 1.204 1.204 1.204

ρeff
∞ kg/m3 0.111 0.111 0.111

J0 N 0.006 0.056 0.623

D N 0.000 0.037 0.040

θ m 0.018 0.034 0.130

x/θ [−] 29.52 16.54 4.18

N [−] 1000 1000 1000

Table 3.2: Flow conditions and relevant parameters for each of the outer-scale react-
ing measurement cases, identified as ORX, in this study.
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Quantity Units INR1 INR2 INR3 INR4 INR5 INR6

Reδ [−] 7200 11 000 21 400 31 400 45 500 50 200

dE mm 4.00 4.00 4.00 4.00 4.00 4.00

x m 0.566 0.564 0.564 0.564 0.564 0.566

uc m/s 0.517 0.882 1.476 2.154 3.087 3.389

δ m 0.208 0.187 0.217 0.219 0.221 0.222

δ1/2 m 0.050 0.045 0.052 0.053 0.053 0.053

U∞ m/s 0.016 0.078 -0.018 -0.075 -0.114 0.009

λν mm 2.991 1.948 1.375 1.039 0.794 0.742

∆IW mm 0.468 0.375 0.375 0.375 0.375 0.468

ρE kg/m3 1.140 1.140 1.140 1.140 1.140 1.140

ρ∞ kg/m3 1.180 1.180 1.180 1.180 1.180 1.180

N [−] 300 300 300 297 297 300

Table 3.3: Flow conditions and relevant parameters for each of the inner-scale nonre-
acting on-centerline measurement cases, identified as INRX, in this study.
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Quantity Units IR1 IR2 IR3 IR4 IR5 IR6 IR7

Reδ [−] 18 300 25 900 60 600 81 900 93 700 145 300 200 100

dE mm 4.00 4.00 4.00 4.00 4.00 4.00 4.00

x m 0.613 0.613 0.614 0.614 0.614 0.614 0.614

uc m/s 1.194 1.687 4.127 5.868 7.199 11.413 15.553

δ m 0.230 0.230 0.247 0.216 0.197 0.191 0.193

δ1/2 m 0.055 0.055 0.059 0.052 0.047 0.046 0.046

U∞ m/s 0.224 0.226 0.175 0.608 0.940 1.387 1.551

λν mm 1.636 1.263 0.657 0.488 0.409 0.287 0.228

∆IW mm 0.469 0.469 0.469 0.469 0.469 0.469 0.469

ρE kg/m3 0.081 0.081 0.081 0.081 0.081 0.081 0.081

ρ∞ kg/m3 1.180 1.180 1.180 1.180 1.180 1.180 1.180

N [−] 300 289 253 295 297 253 292

Table 3.4: Flow conditions and relevant parameters for each of the inner-scale react-
ing on-centerline measurement cases, identified as IRX, in this study.
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Quantity Units RN0 RN1 RN2 RN3 RN4 RN5

Reδ [−] 19 000 19 000 19 000 19 000 19 000 19 000

dE mm 4.00 4.00 4.00 4.00 4.00 4.00

x m 0.614 0.614 0.614 0.614 0.614 0.614

uc m/s 1.407 1.407 1.407 1.407 1.407 1.407

δ m 0.202 0.202 0.202 0.202 0.202 0.202

δ1/2 m 0.049 0.049 0.049 0.049 0.049 0.049

U∞ m/s 0.277 0.277 0.277 0.277 0.277 0.277

λν mm 1.401 1.401 1.401 1.401 1.401 1.401

∆IW mm 0.413 0.413 0.413 0.413 0.413 0.413

ρE kg/m3 1.140 1.140 1.140 1.140 1.140 1.140

ρ∞ kg/m3 1.180 1.180 1.180 1.180 1.180 1.180

r m 0.000 0.008 0.024 0.039 0.055 0.071

S 1/s 4.931 17.982 27.854 27.497 20.403 11.987

N [−] 581 600 600 597 564/336 592/134

Table 3.5: Flow conditions and relevant parameters for the off-centerline (radial)
nonreacting inner-scale measurement cases, identified as RNX, in this
study.
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Quantity Units RR0 RR1 RR2 RR3 RR4 RR5

Reδ [−] 65 000 65 000 65 000 65 000 65 000 65 000

dE mm 4.00 4.00 4.00 4.00 4.00 4.00

x m 0.612 0.612 0.612 0.612 0.612 0.612

uc m/s 4.744 4.744 4.744 4.744 4.744 4.744

δ m 0.206 0.206 0.206 0.206 0.206 0.206

δ1/2 m 0.049 0.049 0.049 0.049 0.049 0.049

U∞ m/s 0.353 0.353 0.353 0.353 0.353 0.353

λν mm 0.566 0.566 0.566 0.566 0.566 0.566

∆IW mm 0.421 0.421 0.421 0.421 0.421 0.421

ρE kg/m3 1.140 1.140 1.140 1.140 1.140 1.140

ρ∞ kg/m3 1.180 1.180 1.180 1.180 1.180 1.180

r m 0.000 0.008 0.024 0.039 0.055 0.071

S 1/s 16.078 58.494 91.638 91.765 69.537 42.078

N [−] 507 467 514 563 517/267 481/125

Table 3.6: Flow conditions and relevant parameters for each of the off-centerline
(radial) reacting inner-scale measurement cases, identified as RRX, in
this study.
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CHAPTER IV

Outer Scale Effects of Heat Release

Outer-scale properties of turbulent shear flows – namely quantities that are dom-

inated by the large scales of motion, such as the mean velocities ui and the Reynolds

stress components u′iu
′
j – can be substantially different in nonreacting and reacting

turbulent shear flows. However, as noted in Chapter II, these properties will be af-

fected by heat release primarily through the changes that exothermicity induces in

the local outer variables δ(x) and uc(x) in § 2.1. These changes due to heat release

in the flow width δ and the centerline velocity uc are inertial effects that result from

the reduced densities ρ(x, t) in the flow. In theory, these changes can be predicted

via (2.7) – (2.10) from the “general equivalence principle”, which leads to the finding

that the outer-variable scaling laws in an exothermically reacting turbulent shear

flow should be identical to those in the corresponding nonreacting flow when the

ambient density ρ∞ is replaced by the effective value ρeff
∞ from (2.7) – (2.8).

In this chapter, results from PIV measurements of mean velocity profiles in non-

reacting and reacting versions of the axisymmetric coflowing turbulent jet in Chapter

III are used obtain experimental values for δ(x) and uc(x) over a wide range of condi-

tions. The resulting values, together with additional values from nonreacting studies
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of the same flow in the literature, are then compared via (2.9) and 2.10) from the

general equivalence principle. It will be seen here that, consistent with the equiva-

lence principle, the scalings of δ and uc with downstream distance and flow conditions

are identical in the reacting and nonreacting flows in terms of the effective ambient

density ρeff
∞ . As a consequence, the purely inertial effects of heat release – while im-

pressive – follow from relatively simple principles and are completely predictable. In

view of this, in the following chapters these inertial effects are taken into account via

δ and uc, and those chapters then examine the remaining inner-scale effects of heat

release on quantities associated with the instantaneous velocity gradients ∂ui/∂xj .

4.1 PIV Data and Analysis

The outer-scale PIV experiments were conducted at numerous downstream loca-

tions with different imaging fields of view (FOVs). Among the measurement cases

listed in Tables 3.1 – 3.6, at the smallest downstream location (x = 100 mm)

the FOV was as small as 46.5 × 58.1 mm, and at the largest downstream location

(x = 556 mm) the FOV was 229×286 mm. In all large FOV measurements, the size

of the FOV was adjusted to scale with the local outer jet width δ(x). In this respect

the relative resolution was held approximately constant, since the PIV processing

was identical all cases.

The PIV data processing used 32×32 pixel interrogation windows cross-correlated

with a zero-padded FFT algorithm, producing a 32× 40 vector field which was then

overlapped by 50% – yielding a final vector image of 64 × 80 for the large FOV

experiments. Owing to the very high seed densities, the DaVis PIV software obtained
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very high values (∼ 99%) of acceptable vector correlations. After processing the PIV

particle images to obtain the raw PIV vector fields, the data were effectively low-pass

filtered using a 3× 3 median filter to reduce high-frequency noise. The filtered data

planes were then ensemble averaged and subtracted to produce fluctuating quantities.

Sample images obtained under nonreacting flow conditions are shown in Figs.

4.1 and 4.2. Figure 4.1 shows a sample instantaneous image of both the absolute

streamwise component U and the transverse component V of the velocity field. Cor-

responding ensemble-averaged flow fields 〈U〉 and 〈V 〉 are shown in Fig. 4.2. These

particular example images are among those acquired closest to the jet nozzle, sim-

ilarly, instantaneous and averaged large FOV images are shown for a hydrogen jet

flame in Figs. 4.3 and 4.4. In this case, the reacting examples shown were obtained

further downstream, nearly 136 jet diameters from the nozzle. It is worthwhile to

compare the instantaneous images in Figs. 4.1 and 4.3, specifically the upper panels

where the streamwise component U is shown. Here the classical large scale structure

of the jet is observed in both the nonreacting and reacting flows.

Once the ensemble averaged and fluctuating quantities of interest were obtained,

the data were fitted with a Gaussian profile based on the four parameters uc, δ,

U∞ and yCL, denoting the centerline excess velocity, outer scale jet width, coflow

velocity and jet centerline coordinate, respectively. The fitting algorithm employs a

Levenberg-Marquardt nonlinear regression; see Bard (1974) and Draper and Smith

(1981). The algorithm takes each individual row (e.g. fixed streamwise position x) of

ensemble averaged streamwise velocity 〈U〉 data and determines the four parameters.

Thus each of the four parameters are given as a function of the streamwise coordinate

x.

With the fitted parameters, the ensemble averaged data are then normalized
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by similarity quantities. The ensemble averaged fields can be further averaged to

produce a single averaged profile for each of the quantities u, v, u′rms , v
′
rms and u′v′.

Figure 4.5 presents a sample profile of the excess streamwise velocity u(η) and u′v′(η),

where η ≡ r/δ and r ≡ y− yCL. For comparison, the sample results are shown along

with data from Antonia and Bilger (1973) and from Nickels and Perry (1996). The

sample profiles are results from the nonreacting Reδ = 22 600 case. Note that here

the jet half-width δ1/2, specifically the half-width at the half-maximum point, is used

for comparison with data from the literature.

4.2 Outer-Flow Scaling Results from Nonreacting Cases

Proper scaling of the local jet width δ(x) and local centerline excess velocity

uc(x) as outlined in § 2.2 for the nonreacting flow involves the jet momentum radius

θ, which in turn requires the jet source momentum flux J0. To obtain this, the jet

exit momentum flux J̃0 was first computed as

J̃0 = ρEU
2
EAE, (4.1)

where AE is the exit area of the nozzle, ρE is the density of the nozzle fluid and

UE ≡ QE/AE via the assumption of a “top-hat” flow profile produced by the large

contraction ratio nozzle shown in Figs. 3.9 and 3.10. This exit profile was measured

using laser Doppler velocimetry (LDV) and found to closely approximate a uniform

exit profile, validating the “top-hat” assumption. The volumetric flow rate QE was

determined by measuring the pressure drop across a choked orifice used to meter

the flow rate of the jet fluid. The use of a large diameter contraction ratio jet

nozzle allows calculation of the jet exit momentum flux J̃0 in this way, however the
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drag associated with the relatively large-diameter (38.1 mm) entrance tube in the

jet nozzle assembly (see Fig. 3.9) is not insignificant and must be accounted for

to obtain the net jet source momentum flux J0. This was done by measuring the

velocity profile in the coflowing stream without any jet fluid issuing from the nozzle,

and integrating the resulting velocity deficit profile to obtain the drag D exerted on

the flow. This was done for each case, and the resulting net jet source momentum

flux J0 was then obtained as

J0 ≡ J̃0 −D. (4.2)

Based on the J0 value for each case, results obtained for the jet width δ1/2(x) and

centerline velocity uc(x) for the nonreacting cases (ONR1 – ONR7 ) in Table 3.1,

produced by a nitrogen jet issuing into a coflowing air stream, are shown in Figs. 4.6

and 4.7. The scaling functions fδ and fu in § 4.3 are shown for comparison with the

experimental results in these figures. The data at small values of x/θ can be seen to

be well within the jet-like scaling regime, and at the furthest downstream location

(largest x/θ) just begin to enter the transition to the wake-like scaling regime. It is

apparent that the outer-scale variables δ and uc obtained for the nonreacting cases in

the present study are in generally good agreement with the accepted scaling functions

fδ and fu for nonreacting axisymmetric coflowing turbulent jets.

4.3 Outer-Flow Scaling Results from Reacting Cases

Corresponding results for δ1/2 and uc obtained for each of the reacting flow cases

in Table 3.2 are shown in Figs. 4.8 and 4.9. Here the jet momentum radius θ is based

on the actual coflowing stream density ρ∞. It is apparent in these figures that, unlike

78



the nonreactng cases in Figs. 4.6 and 4.7, the results from the reacting flows do not

collapse to universal scaling functions in terms of θ. However in accordance with the

equivalence principle (Tacina and Dahm, 2000) summarized in § 2.3, the freestream

density ρ∞ in the momentum radius should be replaced by the effective density ρeff
∞

to yield the extended momentum radius θ+ as

θ+ ≡
(

J0

πρeff
∞ U2

∞

) 1
2

. (4.3)

For each case, the resulting extended momentum radius allows the dimensionless

coordinate ξ/θ+ to be formed, where ξ ≡ x+xE is the virtual origin in (2.5), and the

same data can then be plotted as shown in Figs. 4.10 and 4.11. The scaling functions

fδ and fu outlined in §2.3 are shown for comparison with the experimental results

in these figures. It is apparent that, in terms of the extended momentum radius θ+

from the general equivalence principle, the outer-variable scaling for the reacting flow

cases is in generally good agreement with the accepted scaling for the corresponding

nonreacting flows. In Figs. 4.10 and 4.11, the virtual origin xE from (2.5) has been

used for completeness, though the effect of xE on the present data is small. It is

primarily through the extended momentum radius θ+ from the equivalence principle

that the outer-flow scalings in the reacting flow become essentially identical to that

for nonreacting flows.

The solid curves in Figs. 4.10 and 4.11 are fits to the scaling functions fδ and fu

from § 2.3. These are here given by(
δ

θ+

)
≡ fδ

( x
θ+

)
=
( x
θ+

) [
(cδ)

− 3
2

j +
( x
θ+

)
(cδ)

− 3
2

w

]− 2
3

, (4.4)

where the constants (cδ)j ≈ 0.08 and (cδ)w ≈ 0.45 are the constants in the outer

length scaling in the jet and the wake limits, respectively. Similarly for the centerline
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excess velocity decay, the fit is given by(
uc

U∞

)−1

≡ fu

( x
θ+

)
=
( x
θ+

) [
(cu)

−3
j +

( x
θ+

)
(cu)

−3
w

]− 1
3
, (4.5)

where (cu)j ≈ 0.07 and (cu)w ≈ 1.0 are the constants in the outer velocity scaling

in the jet and the wake limits, respectively. Figures 4.12 and 4.13 demonstrate the

unified scaling for both reacting and nonreacting coflowing jets from the present

measurements. The local outer length scale δ is shown in Fig. 4.12 for all seven

nonreacting flow cases (ONR1 – ONR7 ) in Table 3.1 as well as for the three reacting

flow cases (OR1 – OR3 ) in Table 3.2. The dashed line shows the jet-limit scaling

(δ ∼ x), from which the data begin to show a perceptible departure for ξ/θ+ > 1.

The outer velocity scale is similarly plotted in Fig. 4.13 for all the nonreacting and

reacting cases. For uc, the onset of the transition from the jet-limit scaling to the

wake-limit scaling is not seen over the range of x/θ in the present measurements.

This is consistent with the results of Davidson and Wang (2002), where the transition

region does not appear in the centerline excess velocity until nearly a decade later

until ξ/θ+ ≈ 10.

4.4 Comparison with Prior Studies

The present results for the local outer scale δ in Fig. 4.12 showed that, in terms

of the effective density ρeff
∞ from the general equivalence principle, the reacting and

nonreacting flows followed identical scaling laws. This finding may appear to dis-

agree with the earlier observation by Muñiz and Mungal (2001) that “. . . heat release

accounts for a reduction in the jet growth rate by 20% . . . ”, based on their PIV

measurements. Similarly, Chigier and Strokin (1974) state that the local flow width
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of δ is smaller in jet flames than in corresponding nonreacting jets, though they

provide no data to support this observation, apart from referencing the work of Kre-

mer (1967). That study consisted of dynamic pressure measurements obtained in

and near the potential core region of a planar jet flame. Yet the elongation of the

potential core region of reacting jets over their nonreacting counterparts has been

known for some time, and follows naturally from the equivalence principle as shown

by Tacina and Dahm (2000). This increase in the potential core length is taken into

account in making direct comparisons between reacting and nonreacting flows in the

downstream coordinate ξ.

To reconcile the results from Muñiz and Mungal (2001) with those from the

present study, the measured jet growth data from Muñiz and Mungal have been

reproduced in Fig. 4.14, where the cases denoted R and NR denote reacting and

nonreacting flows, respectively. The upper panel presents their data in unscaled

form, as they were originally reported, and the lower panel presents the same data

scaled by the extended momentum radius θ+ as suggested by the equivalence prin-

ciple. It is apparent in the lower panel of Fig. 4.14 that, when properly scaled by

the extended momentum radius, the data of Muñiz and Mungal show substantial

agreement between the reacting and nonreacting cases. Here the solid curve again

gives the scaling function fδ(x/θ
+), and the dashed line gives the jet-limit scaling.

Indeed, when the data of Muñiz and Mungal are compared in this properly scaled

form to the present results for the local outer length scale δ in Fig. 4.15, all of these

data agree within the range of the scatter in the measurements. Thus when properly

scaled via the equivalence principle to account for the inertial effects of heat release,

the data of Muñiz and Mungal agree with the present finding that the outer-variable

scalings in nonreacting and reacting jets become identical.
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As a final step, the data from the present study and those from Muñiz and Mungal

(2001) are presented together with the coflowing air jet data of Biringen (1975) and

the coflowing water jet data of Wang and Davidson (2001) in Figs. 4.16 and 4.17.

The Davidson & Wang data are distinguished by the exceedingly large values of

ξ/θ+ accessible in their experiments. The results for the outer length scale δ in Fig.

4.17 span nearly five orders of magnitude in ξ/θ+, and clearly show both the jet-

like and wake-like scaling regimes. The collapse of all these data from nonreacting

and reacting flows onto a single curve fu demonstrates that the inertial effects of

heat release on the outer scales uc and δ in turbulent shear flows can be properly

accounted for by the equivalence principle in § 2.3.
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Figure 4.1: Sample PIV results for instantaneous streamwise velocity field U(x, t)
(top) and transverse velocity field V (x, t) (bottom) from nonreacting case
ONR5 in Table 3.1 at Reδ = 173 500. The FOV is 46.5 × 58.1 mm and
located at a distance of 100 mm from the jet nozzle.
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Figure 4.2: Ensemble-averaged PIV results for mean streamwise velocity field 〈U〉
(top) and transverse velocity field 〈V 〉 (bottom) from nonreacting case
ONR5 in Table 3.1 at Reδ = 173 500.
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Figure 4.3: Sample PIV results for instantaneous streamwise velocity field U(x, t)
(top) and transverse velocity field V (x, t) (bottom) from reacting case
OR3 in Table 3.2 at Reδ = 299 300.
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Figure 4.4: Ensemble-averaged PIV results for mean streamwise velocity field 〈U〉
(top) and transverse velocity field 〈V 〉 (bottom) from nonreacting case
OR3 in Table 3.2 at Reδ = 173 500.
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Figure 4.5: Mean velocity profile from case ONR1 in Table 3.1 at Reδ = 22 600,
showing the mean normalized streamwise velocity u/uc (top) and
Reynolds stress u′v′/u2

c (bottom) versus radial similarity coordinate η ≡
r/δ1/2.
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Figure 4.6: Results for local outer length scale δ1/2 versus downstream distance x,
normalized by momentum radius θ, for all nonreacting cases in Table
3.1. Solid line corresponds to (4.4); dashed line gives jet-limit scaling.
Note δ1/2 is the half-width at half-maximum of the mean excess velocity
profile u(x).
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Figure 4.7: Results for local outer velocity scale uc versus downstream distance x,
normalized by momentum radius θ, for all nonreacting cases in Table 3.1.
Solid line corresponds to (4.5); dashed line gives jet-limit scaling.
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Figure 4.8: Results for local outer length scale δ1/2 versus downstream distance x,
normalized by momentum radius θ, for all reacting cases in Table 3.2.
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Figure 4.9: Centerline scaling of centerline velocity decay uc normalized by coflow
velocity U∞ in terms of x/θ for all reacting cases in Table 3.2.
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Figure 4.10: Results for local outer length scale δ1/2 versus downstream distance x,
normalized by extended momentum radius θ+, for all reacting cases in
Table 3.2. Solid line gives scaling for nonreacting flow in (4.4); dashed
line gives jet-limit scaling.
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Figure 4.11: Results for local outer velocity scale uc versus downstream distance x,
normalized by extended momentum radius θ+, for all reacting cases in
Table 3.2. Solid line gives scaling for nonreacting flow in (4.5); dashed
line gives jet-limit scaling.
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Figure 4.12: Results for local outer length scale δ1/2 versus downstream distance x,
normalized by extended momentum radius θ+, showing all nonreacting
cases in Table 3.1 and all reacting cases in Table 3.2. Solid line gives
scaling for nonreacting flow in (4.4); dashed line gives jet-limit scaling.
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Figure 4.13: Results for local outer velocity scale uc versus downstream distance x,
normalized by extended momentum radius θ+, showing all nonreacting
cases in Table 3.1 and all reacting cases in Table 3.2. Solid line gives
scaling for nonreacting flow in (4.5); dashed line gives jet-limit scaling.
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Figure 4.14: Results from Muñiz and Mungal (2001) for local outer length scale δ1/2

versus downstream distance x (top), with reacting and nonreacting cases
denoted R and NR, respectively. Same results are shown normalized
by extended momentum radius θ+ (bottom), where reacting and non-
reacting cases both follow solid line giving scaling in (4.4); dashed line
gives jet-limit scaling.
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Figure 4.15: Results for local outer length scale δ1/2 versus downstream distance x,
normalized by extended momentum radius θ+, showing all nonreacting
cases in Table 3.1 and all reacting cases in Table 3.2 as well as data
from Muñiz and Mungal (2001) from Fig. 4.14. Solid line gives scaling
for nonreacting flow in (4.4); dashed line gives jet-limit scaling.
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Figure 4.16: Results for local outer velocity scale uc versus downstream distance x,
normalized by extended momentum radius θ+, showing all nonreacting
cases in Table 3.1 and all reacting cases in Table 3.2 as well as data from
Muñiz and Mungal (2001), Biringen (1975) and Wang and Davidson
(2001). Solid line gives scaling for nonreacting flow in (4.5); dashed line
gives jet-limit scaling.
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Figure 4.17: Results for local outer length scale δ1/2 versus downstream distance x,
normalized by extended momentum radius θ+, showing all nonreacting
cases in Table 3.1 and all reacting cases in Table 3.2 as well as data from
Muñiz and Mungal (2001), Biringen (1975) and Wang and Davidson
(2001). Solid line gives scaling for nonreacting flow in (4.4); dashed line
gives jet-limit scaling.
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CHAPTER V

Inner Scaling of Nonreacting Flows: Effects of

Resolution

Those properties of turbulent shear flows that are dominated by the smallest-scale

motions, such as the velocity gradient moments (∂ui/∂xj)
n and other quantities de-

rived from them, are referred to as “inner-scale quantities”. Since the inner scales of

turbulent flows become increasingly isotropic and locally homogeneous as the outer-

scale Reynolds number Reδ is increased, inner-scale quantities follow simple scalings

(Kolmogorov 1941) in terms of the inner variables ν and λν , where λν ∼ δRe
− 3

4
δ

is the local inner (viscous) length scale. Thus, for instance, on purely dimensional

grounds (∂ui/∂xj)
n ∼ (ν/λ2

ν)
n
. Such “inner scaling” of velocity gradient quantities

in turbulent shear flows has been experimentally verified using PIV measurements

that resolve essentially all the scales of motion in a nonreacting turbulent shear flow

at relatively small values of Reδ (e.g., Mullin and Dahm 2005a; Mullin and Dahm

2005b)

In a reacting turbulent shear flow, departures from such simple inner scaling could

in principle be used to experimentally determine the effects of heat release at the

inner scales of motion. However, when Reδ becomes large then PIV measurements
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can no longer resolve all the scales of motion, and this will lead to departures from the

classical inner scaling due simply to resolution effects and not heat release effects.

Separating these resolution effects from true heat release effects requires properly

accounting for the effects of limited measurement resolution on the inner scaling. In

this chapter, a method is developed that allows the measurement resolution scale ∆∗

in any velocity gradient quantity to be objectively quantified, and the proper inner

scaling in terms of the resolution scale ∆? is developed. PIV measurements of velocity

gradients in a nonreacting turbulent shear flow over a wide range of Reδ are then used

to assess the ability of this modified inner scaling to account for resolution effects.

It will be seen here that this modified inner scaling in terms of ∆? provides near-

perfect similarity in the distributions of all velocity gradient quantities at all Reδ in

nonreacting turbulent shear flows. In following chapters, velocity gradient quantities

from PIV measurements in exothermically reacting turbulent shear flows are then

investigated with this modified inner scaling to remove the effects of resolution and

allow the true inner-scale effects of heat release to be determined.

5.1 Inner-Scale PIV Measurements

The experimental conditions for the results presented in this chapter are given in

Table 3.3. In contrast to the outer-scale PIV measurements in Chapter V, for these

inner-scale measurements the field-of-view (FOV) for the PIV measurements is much

smaller than the local outer scale of the coflowing jet, and is of the order of several

local inner length scales in each direction. Two different FOVs, corresponding to

15 × 18.7 mm and 12 × 15 mm, were used for the six cases in Table 3.3. Over the
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range of downstream locations x and outer-scale Reynolds numbers Reδ, the major

dimension wFOV of these FOVs ranged from 6 to 25 local λν .

The CCD array of 1024×1280 pixels was divided into 32×32 pixel interrogation

windows yielding a vector field of 32 × 40. The PIV interrogation windows were

not overlapped in order to clearly define the resolution of the velocity data. A total

of 300 PIV velocity fields were obtained in this manner for each measurement case.

For each case, the resulting velocity fields were ensemble-averaged to obtain a mean

velocity field across the FOV, and this mean field was subtracted from each individual

instantaneous velocity field to produce velocity fluctuation fields. All subsequent

processing and analysis was done on these velocity vector fluctuation fields.

The resulting velocity vector fluctuation fields were then differentiated to ob-

tain the gradient fields ∂ui/∂xj via a second-order central differencing scheme. The

second-order differencing template, in addition having a compact stencil that main-

tains high spatial resolution, is also well-matched to PIV data based on spectral anal-

yses of the transfer functions associated with numerous differencing schemes (Foucaut

and Stanislas 2002). Following Appendix A of Mullin (2004), a standard second-order

central-differencing stencil used four of the eight adjacent vectors (north, south, east

and west) to compute the four components of the velocity gradients, and a second

stencil in a frame rotated by 45◦ used the remaining four adjacent vectors (NW, NE,

SW and SE). The two resulting estimates of each gradient component were then

averaged to provide a more accurate value that maintains high spatial resolution.

For each of the small-FOV inner-scale PIV measurements in Table 3.3, an accom-

panying large-FOV outer-scale PIV measurement was made to determine the local

outer length and velocity scales δ and uc at that measurement location and flow

condition. For each case, the procedure was to first obtain 300 images of inner-scale
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PIV data. The laser beams were then redirected and formed into larger sheets, and

a second PIV camera was used to obtain an additional 300 images of large-FOV

data. The much larger FOV for the outer-scale PIV measurements was sufficient to

provide the mean velocity profile U(y) across the entire jet, from which the local

values for the outer length δ and outer velocity uc ≡ Uc − U∞ could be obtained.

From these, the local outer-scale Reynolds number Reδ ≡ ucδ/ν was calculated, and

the corresponding inner length scale λν was obtained as

λν

δ
= ΛRe

− 3
4

δ , (5.1)

where Λ ≈ 11.2, Buch and Dahm (1998). Since uc and δ are measured directly for all

cases in this study, any effects of buoyancy on these for the reacting flow cases in later

chapters are directly accounted for, and thus such effects on λν are also accounted

for.

5.2 Inner-Scale Velocities and Velocity Gradients

A typical example of the resulting instantaneous velocity fluctuation fields u(x, y)

and v(x, y) from these inner-scale measurements is given in Fig. 5.1, where the ve-

locity fluctuations are normalized by the local outer velocity scale uc. The particular

example shown is from case INR5 in Table 3.3, for which Reδ = 45 500 and thus

the FOV spans 15.1λν × 18.9λν . This FOV contains 32× 40 independent values of

each velocity component, since there was no overlap used in the PIV processing. The

corresponding velocity gradient components fields ∂ui/∂xj accessible by these mea-

surements, namely ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y, obtained as described in § 5.1

are shown in Figs. 5.2 and 5.3. Since these gradient components are inner-scale quan-
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tities, they are shown normalized by the local inner velocity gradient scale (ν/λ2
ν).

Additional gradient fields associated with various physical processes in (2.1),(2.2)

that result from these velocity gradient components are shown in Figs. 5.4 – 5.7.

These include the strain rate component fields Sxx, Syy and Sxy, together with the

“pseudo” dissipation rate field SijSij ≈ S2
xx + S2

yy + 2S2
xy (the full dissipation rate

is 2νSijSij), as well as the vorticity component field ωz and the “pseudo” enstrophy

field ϑz ≡ 3/2ω2
z . Also shown are the square-magnitude of the velocity gradient

tensor ∇u : ∇u ≈ (∂u/∂x)2 + (∂u/∂y)2 + (∂v/∂x)2 + (∂v/∂y)2 + (∂w/∂z)2 where

the additional velocity gradient component ∂w/∂z ≡ − (∂u/∂x+ ∂v/∂y) is obtained

from the ∇ · u ≡ 0 requirement in the nonreacting flow, as well as the ∂w/∂z field

itself.

Probability density functions (pdfs) for each of the quantities shown in Figs.

5.2 – 5.7 are given in Figs. 5.8 – 5.15, where a separate curve in each figure is

given to each of the six nonreacting flow cases in Table 3.3. For the four velocity

gradient components ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y in Figs. 5.8 – 5.11, the pdfs are

shown with outer-variable normalization (uc/δ) in the upper panel, and with inner-

variable normalization (ν/λ2
ν) in the lower panel. Consistent with the fact that the

velocity gradients are inner-scale quantities, as expected considerably better collapse

of the six curves is seen from the inner-variable normalization in the lower panels

than from the outer-variable normalizations. Nevertheless, even with the inner-

variable normalizations in the lower panels of these figures, there are still substantial

differences apparent among the pdfs from the six cases. In following sections, it will

be seen that these differences are due to incomplete resolution of the smallest-scale

motions by the PIV measurements as the Reynolds number Reδ increases. Those

sections will show how these resolution effects can be rigorously accounted for to
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provide essentially complete similarity in the pdfs of such inner-scaled quantities

among all six cases.

Pdfs for the additional derived gradient fields are shown in Figs. 5.12 – 5.15 with

appropriate inner-variable normalization. Consistent with the results above for the

individual velocity-gradient pdfs, it is apparent – despite the relatively wide range of

Reynolds numbers represented in these data – that the inner-variable normalization

largely accounts for the case-by-case differences among the six cases in Table 3.3.

There are, however, remaining differences still apparent in these pdfs that should

not be present if the data were fully resolved. These differences are most apparent

in the results for ∇u : ∇u in Fig. 5.15, and will be seen to result from incomplete

resolution of the measurements in the higher Reδ cases.

5.3 Isotropy Assessments

The fact that the inner-variable normalizations in Figs. 5.2 – 5.15 suffice to largely

rescale the pdfs from each of the six cases onto a single distribution for each quantity

is a substantial validation of the measurements. Further assessment of the velocity

gradients from these inner-scale PIV measurements is possible by comparing vari-

ous quantities formed from them with corresponding theoretical values for perfectly

homogeneous and isotropic turbulence. While the present measurements are from

a turbulent shear flow, where effects of spatial inhomogeneity and anisotropy will

necessarily lead to departures from these ideal theoretical values, the approach to

local homogeneity and isotropy with increasingly smaller scales in such flows suggests

that at sufficiently large values of Reδ and sufficiently high resolution the measured
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values should approach these ideal values. Moreover, prior studies (e.g., Mullin and

Dahm 2005b) have reported values for various such quantities at Reynolds numbers

comparable to those in the present study, which can be used for comparison.

One such isotropy test can be based on the ratio of mean-square values of the

available off-diagonal (i 6= j) to on-diagonal (i = j) components of the velocity

gradients ∂ui/∂xj, for which the ideal theoretical value is(
∂u

∂y

)2

+

(
∂v

∂x

)2

(
∂u

∂x

)2

+

(
∂v

∂y

)2
= 2. (5.2)

Values obtained from the present inner-scale measurements for each of the six cases

are shown in Table 5.8. These can be compared with corresponding values from

Mullin and Dahm (2005b) at comparable Reδ. In particular, that study reported

values of 1.915 at Reδ = 6000 and 1.856 at Reδ = 30 000, which generally agree well

the values ranging from 1.9-2.0 in Table 5.8.

Further comparisons are possible from ratios of the individual on- and off-diagonal

velocity gradients components, for which the ideal theoretical values in homogeneous

isotropic turbulence are [ (
∂ui

∂xj

)2
]

i6=j[ (
∂ui

∂xj

)2
]

i=j

= 2. (5.3)

The corresponding results given in Table 5.9 from the present inner-scale measure-

ments for each of the six cases are generally close to this value. Moreover, these values

also agree well with those of Mullin and Dahm (2005b), who report a u-component

ratio of 1.933 and a v-component ratio of 1.895 at Reδ = 6000, and at Reδ = 30 000

report a u-component ratio of 1.931 and a v-component ratio of 1.774.
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The values obtained for such isotropy ratios from the present measurements are

thus in generally good agreement with ideal theoretical values that apply to homo-

geneous isotropic turbulence. Moreover, they agree well with previously reported

values measured in a similar inhomogeneous, anisotropic turbulent shear flow. Devi-

ations from strict inner-scale similarity in terms of ν and λν in the velocity gradient

pdfs in Figs. 5.2 – 5.15 are thus unlikely to be due to errors in the velocity gradient

measurements themselves. Instead, it will be seen below that incomplete resolution

of the inner-scale measurements at these Reδ values is the origin of this incomplete

similarity, and that these resolution effects can be rigorously accounted for obtain

complete inner-scale similarity in these pdfs.

5.4 PIV Resolution Effects

Careful examination of the remaining departures from strict similarity in the

inner-scaled velocity gradient pdfs in Figs. 5.8 – 5.11 shows a monotonic decrease

in the width of the scaled pdfs with increasing Reynolds number. Such a decrease

is consistent with the expected lower spatial resolution relative to λν in the PIV

data as Reδ is increased. The outer scale δ(x) is essentially the same for all of

the inner-scale cases, and thus with increasing Reδ the viscous length scale λν of

the smallest-scale motions in the flow becomes increasingly smaller. Since the PIV

interrogation window size is essentially the same for most of these cases, less of the

spatial variations in velocity fields are resolved by the measurements as Reδ increases.

The effect of the relative resolution in these measurements can be accounted for

by a rigorous method based on integrating the spectral density of the quantity being
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considered. The approach developed here is, at least conceptually, somewhat similar

to that originally proposed by Wyngaard (1968) and subsequently used by Antonia

and Mi (1993), Elsner et al. (1993), Ewing et al. (1995), and Zhou et al. (2002) to

account for resolution effects on measurements in turbulent shear flows. The present

method is developed in this section, and in the following section is used to account

for resolution effects on the inner scaling of the velocity gradient pdfs obtained from

these measurements. The method is first described in the context of the simple

inertial-range scaling of the spectral density of first-order velocity gradient quantities.

A Pao-like rolloff is then incorporated to provide a higher-fidelity representation of

the spectral density. The approach is then used to infer the actual measurement

resolution for each of the six cases in Table 3.3, and this resolution scale is then

subsequently used to correct the inner-scaling of the various quantities in Figs. 5.8 –

5.11.

5.4.1 Inertial-Range Correction

Examining the measurement resolution issue from a spectral perspective, the

gradient quantity of interest, say q, can be represented in the Fourier domain by its

spectral density Q(k), where k is the wavenumber. The true average value of q is

defined by integrating this spectral density over all wavenumbers as

〈q〉∞ ≡
∫ ∞

0

Q(k)dk, (5.4)

where the notation 〈·〉∞ implies the true, or infinitely resolved, average value of the

quantity q. Here the effect of limited resolution will be examined in the context of

the inertial-range form of Q(k). Let Q(k) denote the inertial-range portion of the
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spectrum for the variance of a first-order gradient quantity such that

q′ 2 =

∫ ∞

0

Q(k)dk, (5.5)

where the left-hand side has dimensions of 1/T 2, thus Q(k) ∼ L/T 2. The physics of

the turbulence constrain the limits on the integral to those wavenumbers associated

with the inner-scales kν and outer-scales kδ of the flow, giving

q′ 2 =

∫ kν

kδ

Q(k)dk. (5.6)

Kolmogorov’s 1941 theory provides the following inertial range scaling for the right-

hand side: Q(k) ∼ ε2/3k1/3, where ε is the local averaged kinetic dissipation rate.

Substituting this inertial range scaling into (5.6) and integrating, gives,

q′ 2 ∼ ε2/3
(
k4/3

ν − k
4/3
δ

)
. (5.7)

Recalling the definition of the Kolmogorov length scale

λK ≡
(
ν3

ε

)1/4

, (5.8)

and its relationship with the viscous length scale (6λK ≈ λν), combined with the

wavenumber relationship k ≡ 2π/λ gives

q′ 2 ∼
(
ν3

λ4
ν

)2/3 (
λ−4/3

ν − δ−4/3
)
. (5.9)

For high Reynolds number turbulence, δ−4/3 � λ
−4/3
ν and thus the δ term can be

neglected, yielding the scaling relationship for inner-scale gradient moments with

dimensions of 1/T 2

q′ 2 ∼
(
ν

λ2
ν

)2

. (5.10)

This scaling relation holds when the true value of the moment is known, e.g. when

the measurements are infinitely resolved.
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However, practical measurement technique cannot provide infinite resolution, and

are typically unable to provide fully-resolved measurements of high Reynolds num-

ber turbulent flows of practical interest. Considering this practical limitation, the

previous analysis is retraced beginning with (5.6). Here the upper limit is recognized

to not always be kν , but rather k∆, where ∆ represents the spatial resolution limi-

tations of the experimental apparatus. For the present data ∆ scales with the PIV

interrogation window size. Maintaining the assumption that δ−4/3 � ∆−4/3 yields

the result

q′ 2 ∼
(
ν3

λ4
ν

)2/3

∆−4/3. (5.11)

Rearranging the left-hand side gives rise to the “correction” factor: (λν/∆)4/3,

q′ 2 ∼
(
ν

λ2
ν

)2(
λν

∆

)4/3

. (5.12)

The Reynolds number dependence in this relationship is seen by rearranging terms

and employing the viscous length-scale Reynolds number scaling: λν ∼ δRe
−3/4
δ ,

q′ 2(
ν

∆2

)2 ∼ (∆

δ

)8/3

Re2δ . (5.13)

Or, equivalently, for the rms value of the gradient

q′rms ∼
( ν

∆2

)(∆

δ

)4/3

Reδ. (5.14)

Thus for data that are acquired under the condition k∆ < kν and are under-resolving

the flow in a spatial sense, the right-hand side of (5.14) provides the K41 inertial-

range scaling correction enabling the expected data collapse.

Hence, the problem has been reduced to a single question: “what is the relevant

length scale ∆ by which the data can be correctly scaled?”
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5.4.2 PIV Resolution: Spectra

Determination of the length scale ∆ in physical space is equivalent to ascertaining

k∆ in Fourier space. Knowledge of the spectra of the measured gradient quantities is

then desirable to assess the extent to which the PIV measurements resolves the flow.

The most straightforward manner by which to obtain the spectra or power spectrum

density (PSD) is to compute the FFT of the data fields q(x), to obtain the Fourier

transform of the data Q̂(k). This is then multiplied by its complex conjugate to form

the spectrum of q(x), Q(k).

Unfortunately, this procedure is not well-suited to PIV data where the length of

the data records (e.g. the length of the rows or columns of the PIV vector field) are

relatively small. Thus this direct approach to obtaining the spectrum of the gradient

data was abandoned.

5.4.3 PIV Resolution: Low Pass Filtering

Since the direct estimation of the PSD no longer a viable option, a more indi-

rect approach was attempted. The method employed in the present study extracts

information regarding the resolution of a given gradient quantity q by artificially

degrading the data in successive measures. The statistics of the artificially degraded

data are then used to determine the level of resolution achieved .

Conceptually, this is loosely similar to the methods of Mi and Nathan (2003), and

Antonia and Mi (1993). However, the present work seeks to obtain resolution infor-

mation on a case-by-case basis, allowing the data to dictate the form of the spectrum;

as opposed to prescribing a shape for the spectra based upon present constraints from
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the archival literature, Antonia and Mi (1993). The present methodology follows

these steps:

(i) Ensemble average PIV data to obtain fluctuating velocities u, v.

(ii) Smooth the u and v fields via explicit filtering (typically Gaussian).

(iii) Calculate gradient quantities q from smoothed fluctuating velocities

ũ.

(iv) Before explicitly filtering each q field, the average is subtracted on

an plane-by-plane basis, yielding q′′.

(v) Directly filter the “fluctuating” gradient quantities q′′ at various

explicit filter scales ∆i via a spectrally sharp, low-pass filter.

(vi) For explicit filter scale ∆i, a new gradient field is produced q′′i .

Statistics are then collected for each q′′i field.

(vii) The moments from the statistics of the q′′i fields are then plotted

against the explicit filter scale ∆i.

When statistics are collected, they are averaged over all points in the data image

and over all images, thus the number of samples is typically ∼ 342 000.

Steps (v) – (vii) are shown schematically in Fig. 5.16, where the subpanels illus-

trate the successive low-pass filtering of the selected gradient quantity. Moving from

left to right, the quantity q is artificially filtered with decreasing cutoff frequency k∆i
,

corresponding to an effective spatial filter of size ∆i. The data are filtered using a

spectrally sharp FFT routine. The red data points in Fig. 5.16 represent the global

variance of the gradient q – that is, the variance of q averaged over all points in

each vector field, over all data planes. The results described in step (vii) are shown
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in Figs. 5.17 – 5.22, where the variance of the vorticity is selected as the filtered

moment. Here, the abscissa is given in explicit spatial filter size ∆i and is equivalent

to the inverse of the cutoff wavenumber ∼ 1/k∆i
.

The left-hand side of the plots represents the highest resolved values of the gra-

dients q and is unfiltered. Moving towards the right along the abscissa indicates

increasing levels of explicit filtering (e.g. increasing the size of ∆i), and thus the

gradients are (artificially) less resolved. The ordinate represents the value of the

var{ωz}∆
moment at a given explicit scale ∆i normalized by the maximum value

given by the data set (e.g. the unfiltered, initial data). Thus the first (unfiltered)

moment (left-most point) is identically unity. As the level of filtering increases (mov-

ing left to right), the inertial range behavior becomes evident, especially for the cases

at the highest Reδ. In Fig. 5.16, as well as Figs. 5.17 – 5.22, the diagonal dashed line

represents a −4/3 power law slope as (5.11) prescribes.

The zero-slope data appearing for the smallest levels of explicit filtering in the

lowest Reδ cases in Figs. 5.17 – 5.22 are evidence of the spectral signature of the

viscous roll-off in the dissipative range of scales within the turbulence. At the higher

Reδ data, this zero slope is not expected to indicate the viscous roll-off, as the data

are not fully resolved. Rather, this flat response is the result of the implicit spectral

response due to the measurement technique – in this case the spectral character of

the PIV system, (Foucaut and Stanislas 2002).

The intersection between the horizontal line set at unity (maximum measured

moment value) and the inertial range scaling, projected backwards, defines a length

scale in this diagram. This intersection is denoted with a (?) in Figs. 5.17 – 5.22.

This length scale is interpreted as the “effective resolution” length scale, where the

data begin to exhibit significant inertial range behavior. This point is noted on all
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the aforementioned figures and is labeled as ∆?. In order to extract this ∆? value

from each data set, the set of filtered moments are spectrally modeled by a function

in order to provide an unbiased projection for the inertial range slope. This method

is addressed in the following section.

While Figs. 5.17 – 5.22 present the ∆? extraction results for the all the nonreacting

cases for only the vorticity ωz, three other gradients were also processed: the three in-

plane strain rate components: Sxx, Syy, Sxy. The results from all these four gradients

were used in the present work to obtain aggregate values for ∆?.

5.4.4 PIV Resolution: Effective Length Scale ∆?

In order use the filtered moment data described in §5.4.3, a model was developed

for the spectral behavior at wavenumbers beyond the inertial range, in the dissipative

range. The Pao spectrum was chosen as a starting point for the dissipative range

model due to its good agreement with existing data, Pao (1965), and Chapman

(1979):

EP (k) ∼ k−
5
3 exp

[
−3

2
(kλK)

4
3

]
, (5.15)

where λK is the Kolmogorov length scale. The exponential function modifying the

k−5/3 inertial range scaling in the Pao spectrum gives the model its dissipative range

behavior. In similar fashion, the PSD for the gradient quantities of interest in the

present work are modified.

For first order gradient quantities: Sij and ωz, the inertial range scaling is iden-

tical, recall §5.4.1,

Q(k) ∼ ε2/3k1/3. (5.16)
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This spectrum can then be modified with the exponential function to create a dissi-

pation range, or roll-off model:

Q(k) ∼ ε2/3k1/3 exp [− (k∆R)p] , (5.17)

where the constants given by Pao (1965), have been generalized to ∆R and p to

allow flexibility. These are identified as a resolution length scale ∆R (similar to the

Kolmogorov scale in the Pao formulation) and the shape of the spectra p in the

dissipation range.

This model spectrum in (5.17) can then be integrated over all wavenumbers k ∈

{0, k∆} to obtain the value of the moment at filter cutoff k∆,

〈q̃′′〉
∆
∼
∫ k∆

0

εakb exp [− (k∆R)p] dk. (5.18)

The result in (5.18) gives the most general form for the model gradient spectrum.

For the present work, where the variance of the first order gradients which have

units of 1/T are the moments of interest, a = 2/3 and b = 1/3. This leaves two free

parameters, ∆R and p to fit the filtered moments obtained from the data.

〈q̃′′〉
∆
∼
∫ k∆

0

ε
2
3k−

1
3 exp [− (k∆R)p] dk. (5.19)

As a convenience, the expression in (5.19) is normalized by its unfiltered value 〈q′′〉
IW

(e.g. the value of the gradients at the implicitly filtered scale of the interrogation

window, before the artificial data degradation filtering) given as,

〈q̃′′〉
∆

〈q′′〉
IW

=

∫ k∆

0
ε

2
3k−

1
3 exp [− (k∆R)p] dk

〈q′′〉
IW

. (5.20)

Equation 5.20 was integrated numerically using a Romberg scheme and the error

between the filtered data points (red circles in Fig. 5.16) and the fitting function

was minimized to obtain the optimum fit. The values for the two parameters were
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obtained by searching over a large parametric space with fine increments of 0.0035

for p and 0.005 mm for ∆R.

Once the optimum value for the two parameters p and ∆R were determined, the

model spectrum was integrated out to exceedingly large wavenumbers to achieve the,

power-law, inertial range behavior. This allowed for the inertial range scaling to be

asymptotically matched and projected backwards to elucidate the value of ∆?. The

intersection point between the power law and the horizontal line set at unity was

noted is dentoted by a (?) in Figs. 5.17 – 5.22 The value of this point along the

horizontal axis is ∆? and is noted in each of the figures.

The values for these parameters (p, ∆R and ∆?) are given in Table 5.1. Note

that the 〈·〉 notation for p, ∆R and ∆? in the table indicates that the values for these

parameters have been averaged over the four gradients, each processed independently:

Sxx, Syy, Sxy and ωz. The values of the individual p, ∆R and ∆? parameters for each

of the four gradients is shown in Fig. 5.23.

5.4.5 PIV Resolution: Viscous Roll-Off

However, substituting ∆? for ∆ in (5.14), did not give satisfactory results in

terms of the expected data collapse. This correction neglects the effect of the viscous

roll-off reaching to length scales as much ten times larger than λK , Chapman (1979).

This viscous phenomenon was accounted for by adding a roll-off function D(p) to

the inertial-range correction.

The inertial-range correction term given in (5.14), assumes that the gradient mo-

ment is obtained by integrating under its spectrum to k∆? , all the while following

inertial range scaling. Thus as the spectrum nears the dissipative range and the

116



roll-off begins to manifest itself, this inertial-range correction begins to overpredict

the area under the spectrum – as shown schematically in Fig. 5.24. Since a model

spectrum has been developed (5.19), complete with dissipative range model, correct-

ing the overprediction is straightforward. For each data set, the following ratio was

computed

D(p) ≡
∫ k∆R

kδ
ε

2
3k−

1
3 exp [− (k∆R)p] dk∫ k∆R

kδ
ε

2
3k−

1
3 dk

. (5.21)

When this D(p) term is included with the inertial-range correction in (5.13), it

gives the complete normalization factor that properly accounts for both the inner

scaling and the effect of measurement resolution. This resolution-corrected inner-

scale normalization is thus

N ? =

(
ν

(∆?)2

)(
∆?

δ

) 4
3

Reδ [D(p)]
1
2 (5.22)

which can be rearranged to reveal that this is simply a correction to the classical

inner-scale normalization (ν/λ2
ν), namely

N ? ≡
(
ν

λ2
ν

)
Λ2

(
δ

∆?

) 2
3

Re
− 1

2
δ [D(p)]

1
2 . (5.23)

The normalization in (5.23) is appropriate for first-order gradient quantities, which

have dimensions of 1/T ; higher-order gradient quantities with dimension (1/T )n are

accordingly normalized with (N ?)n. Values for the parameters that comprise (5.23)

for each of the cases Table 3.3 are given in Table 5.1. Following the example of

the vorticity, Fig. 5.25 plots the rms value of the vorticity for each of the six cases.

The figure compares the difference between unscaled moments to the same moments

normalized by N ?.

If ∆? is thought to loosely behave as an inner length scale of sorts, the following
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scaling relationship can be solved for its constant Λ?:(
∆?

δ

)
≈ Λ?Re

− 3
4

δ . (5.24)

This value is also recorded in Table 5.1.

5.5 Inner Scale Pdfs with Resolution-Corrected Inner Scal-

ing

Application of the inertial-range correction given by (5.23) to the pdfs initially

presented in Figs. 5.8 – 5.15 are shown in Figs. 5.26 – 5.37. By using N ? in place of

the viscous length scale λν , an improvement in the expected collapse of the pdfs was

observed. In these figure, all six of the inner scale, nonreacting data sets are shown

simultaneously. The pdfs include the four accessible components of the velocity

gradient tensor: ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y, shown in Figs. 5.26 – 5.29. Figures

5.30 – 5.33 present the accessible strain rate components, Sxx, Syy, Sxy and SijSij.

The vorticity component ωz and its subsequent enstrophy ϑz, are shown in Figs. 5.34

– 5.35. Lastly, the two-dimensional projection of the divergence, ∇ · u and velocity

gradient contraction ∇u : ∇u are given in Figs. 5.36 – 5.37.

All of the gradients presented here have dimensions of 1/T , save for the quantities

∇u : ∇u, ϑz and SijSij, which scale as 1/T 2. By inspection, these three gradients

are normalized by (N ?)2.
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5.6 Inner Scale PIV: Corrected Moments

The first four moments of each of the data sets presented as pdfs in Figs. 5.26 –

5.37, are listed in Tables 5.2 – 5.7. The moments are listed as the mean µ, the rms

value σ, the skewness γ and the kurtosis β, where they are defined as,

µn =
1

N

N∑
j=1

(xj − µ)n , n = 2, 3, . . . (5.25)

From these central moments, σ = µ
1/2
2 is the rms value and the third and fourth

moments are non-dimensionalized by the rms value as γ = µ3/σ
3 with β = µ4/σ

4.

Here N represents the total number of samples, typically 342 000 for the present

data.

In tables 5.2 – 5.7, the fluctuating velocities u and v are normalized by the

centerline velocity while the remaining quantities are normalized via N ? defined in

(5.23).

Returning to the topic of isotropy discussed in §5.3, Fig. 5.38 presents a compar-

ison of the on-axis gradient components ∂u/∂x and ∂v/∂y for all data sets as well as

the off-axis components ∂u/∂y and ∂v/∂x. The gradients have all been normalized

by N ? and display a reasonable level of agreement.

5.7 Comparison to Existing Data

The present results are compared to Direct Numerical Simulations (DNS) studies

of periodic homogeneous isotropic turbulence from Gotoh, Fukayama, and Nakano

(2002) and Jiménez, Wray, Saffman, and Rogallo (1993), in Table 5.10. Here the third

and fourth moments γ and β for ∂u/∂x are compared to the DNS results alongside
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measured values from Mullin (2004). The values of the Taylor scale Reynolds num-

bers are roughly comparable, Reλ = 58 and 115 for the present study, Reλ = 45 and

113 from the PIV data of Mullin (2004), Reλ = 54 and 125 from the DNS results of

Gotoh, Fukayama, and Nakano (2002) and Reλ = 61 and 168 from the DNS study

of Jiménez, Wray, Saffman, and Rogallo (1993). Bearing in mind that the present

data are obtained from shear flow turbulence and the DNS results are obtained from

homogeneous isotropic turbulence (HIT), the agreement appears to be fair in an

overall sense.
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tions u (top) and v (bottom), normalized by the centerline velocity uc.
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Figure 5.10: Pdfs from all nonreacting cases INR1 – INR6 for velocity gradient
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Figure 5.11: Pdfs from all nonreacting cases INR1 – INR6 for velocity gradient
∂v/∂y normalized by outer variables uc/δ (top) and ∂v/∂y normalized
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Figure 5.12: Pdfs from all nonreacting cases INR1 – INR6 for strain rate components
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Figure 5.17: Results from low-pass filtering to determine effective length scale ∆? for
case INR1, Reδ = 7200.
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Figure 5.18: Results from low-pass filtering to determine effective length scale ∆? for
case INR2, Reδ = 11 000.

138



∆?∆R

∆?∆R

va
r{
ω

z
} ∆
/

va
r{
ω

z
} M

A
X

∆, mm

va
r{
ω

z
} ∆
/

va
r{
ω

z
} M

A
X

∆, mm

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
−1

10
0

Figure 5.19: Results from low-pass filtering to determine effective length scale ∆? for
case INR3, Reδ = 21 400.
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Figure 5.20: Results from low-pass filtering to determine effective length scale ∆? for
case INR4, Reδ = 31 400.
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Figure 5.21: Results from low-pass filtering to determine effective length scale ∆? for
case INR5, Reδ = 45 500.
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Figure 5.22: Results from low-pass filtering to determine effective length scale ∆? for
case INR6, Reδ = 50 200.
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Figure 5.25: Unscaled rms of the vorticity (ω′z)rms plotted against Reδ (top). Vor-
ticity rms (ω′z)rms normalized by resolution-corrected inner scaling N ?

(bottom).
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Figure 5.26: Pdfs from all nonreacting cases INR1 – INR6 for velocity
gradient ∂u/∂x normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 5.27: Pdfs from all nonreacting cases INR1 – INR6 for velocity
gradient ∂u/∂y normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 5.28: Pdfs from all nonreacting cases INR1 – INR6 for velocity
gradient ∂v/∂x normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 5.29: Pdfs from all nonreacting cases INR1 – INR6 for velocity
gradient ∂v/∂y normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 5.30: Pdfs from all nonreacting cases INR1 – INR6 for strain rate
component Sxx normalized by resolution-corrected inner scaling
(ν/λ2

ν) Λ2 (δ/∆?)2/3Re
−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 5.31: Pdfs from all nonreacting cases INR1 – INR6 for strain rate
component Syy normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 5.32: Pdfs from all nonreacting cases INR1 – INR6 for strain rate
component Sxy normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re
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Figure 5.33: Pdfs from all nonreacting cases INR1 – INR6 for dissipa-
tion Log10 (SijSij) normalized by resolution-corrected inner scaling

{(ν/λ2
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Figure 5.34: Pdfs from all nonreacting cases INR1 – INR6 for vor-
ticity ωz normalized by resolution-corrected inner scaling
(ν/λ2

ν) Λ2 (δ/∆?)2/3Re
−1/2
δ [D(p)]1/2, shown in linear axes (top)

and semilogarithmic axes (bottom).
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Figure 5.35: Pdfs from all nonreacting cases INR1 – INR6 for enstro-
phy Log10 (ϑz) normalized by resolution-corrected inner scaling,

{(ν/λ2
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semilogarithmic axes (bottom).

156



P

[ ∇
u

:
∇

u
/
{ (ν

/λ
2 ν
)
Λ

2
(δ
/∆

?
)2

/
3
R
e−

1
/
2

δ
[D

(p
)]

1
/
2
} 2]

∇u : ∇u/
{

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2

}2

P

[ ∇
u

:
∇

u
/
{ (ν

/λ
2 ν
)
Λ

2
(δ
/∆

?
)2

/
3
R
e−

1
/
2

δ
[D

(p
)]

1
/
2
} 2]

∇u : ∇u/
{

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2

}2

0 100 200 300 400 500
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

 

 

Reδ = 7200

Reδ = 11000

Reδ = 21400

Reδ = 31400

Reδ = 45500

Reδ = 50200

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

 

 

Reδ = 7200

Reδ = 11000

Reδ = 21400

Reδ = 31400

Reδ = 45500

Reδ = 50200

Figure 5.36: Pdfs from all nonreacting cases INR1 – INR6 for contraction of the
velocity gradient tensor ∇u : ∇u normalized by resolution-corrected
inner scaling, {(ν/λ2

ν) Λ2 (δ/∆?)2/3Re
−1/2
δ [D(p)]1/2}2, shown in linear

axes (top) and semilogarithmic axes (bottom).
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Figure 5.37: Pdfs from all nonreacting cases INR1 – INR6 for two-dimensional
divergence −∂w/∂z normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).

158



Quantity µ σ γ β

u/uc 1.744E − 17 2.666E − 01 2.676E − 02 2.849E + 00

v/uc 6.645E − 18 2.061E − 01 1.641E − 01 2.901E + 00

∂u/∂x −3.649E − 16 3.051E + 00 −4.599E − 01 4.737E + 00

∂u/∂y −5.684E − 16 4.288E + 00 −1.269E − 01 5.934E + 00

∂v/∂x 4.195E − 17 4.004E + 00 1.105E − 02 6.196E + 00

∂v/∂y −5.314E − 17 2.989E + 00 −5.032E − 01 4.690E + 00

Sxx −3.649E − 16 3.051E + 00 −4.599E − 01 4.737E + 00

Syy −5.314E − 17 2.989E + 00 −5.032E − 01 4.690E + 00

Sxy −3.622E − 16 2.571E + 00 −6.213E − 02 4.492E + 00

ωz 5.258E − 16 6.510E + 00 8.246E − 02 5.740E + 00

ε 4.952E − 02 6.830E − 02 3.847E + 00 2.675E + 01

Log10 [ε] −1.611E + 00 5.587E − 01 −4.600E − 01 3.515E + 00

−∂w/∂z −2.531E − 16 3.161E + 00 5.630E − 01 4.917E + 00

∇u : ∇u 6.265E + 01 8.006E + 01 4.120E + 00 3.571E + 01[
−∂w/∂z

(∇u : ∇u)1/2

]
1.809E − 02 4.206E − 01 2.219E − 01 1.965E + 00

Sij : Sij 3.146E + 01 4.124E + 01 3.645E + 00 2.442E + 01

Log10 [Sij : Sij] 1.212E + 00 5.421E − 01 −4.972E − 01 3.593E + 00

3/2 (ωz)
2 6.357E + 01 1.384E + 02 7.124E + 00 1.051E + 02

Log10

[
3/2 (ωz)

2] 1.060E + 00 1.063E + 00 −1.191E + 00 5.769E + 00

Table 5.2: Normalized central moments computed from pdfs for Re = 7200 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 5.26 – 5.37.

159



Quantity µ σ γ β

u/uc 2.159E − 17 2.498E − 01 7.533E − 02 2.671E + 00

v/uc −1.284E − 17 2.008E − 01 −8.459E − 02 2.842E + 00

∂u/∂x −5.812E − 16 2.829E + 00 −3.599E − 01 4.418E + 00

∂u/∂y 2.906E − 16 4.147E + 00 1.043E − 01 6.602E + 00

∂v/∂x 5.626E − 17 3.920E + 00 −5.465E − 02 5.999E + 00

∂v/∂y 1.056E − 16 2.823E + 00 −4.552E − 01 4.555E + 00

Sxx −5.812E − 16 2.829E + 00 −3.599E − 01 4.418E + 00

Syy 1.056E − 16 2.823E + 00 −4.552E − 01 4.555E + 00

Sxy 5.788E − 17 2.510E + 00 2.522E − 02 4.990E + 00

ωz −3.295E − 16 6.317E + 00 −3.479E − 02 6.334E + 00

ε 2.652E − 01 3.824E − 01 6.300E + 00 1.061E + 02

Log10 [ε] −8.765E − 01 5.512E − 01 −4.541E − 01 3.528E + 00

−∂w/∂z −3.805E − 16 2.952E + 00 3.666E − 01 4.819E + 00

∇u : ∇u 5.724E + 01 7.515E + 01 5.239E + 00 6.418E + 01[
−∂w/∂z

(∇u : ∇u)1/2

]
1.999E − 02 4.151E − 01 1.866E − 01 1.975E + 00

Sij : Sij 2.857E + 01 3.763E + 01 4.993E + 00 6.432E + 01

Log10 [Sij : Sij] 1.180E + 00 5.315E − 01 −5.021E − 01 3.630E + 00

3/2 (ωz)
2 5.986E + 01 1.382E + 02 7.881E + 00 1.167E + 02

Log10

[
3/2 (ωz)

2] 1.029E + 00 1.059E + 00 −1.188E + 00 5.809E + 00

Table 5.3: Normalized central moments computed from pdfs for Re = 11 000 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 5.26 – 5.37.
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Quantity µ σ γ β

u/uc −8.615E − 18 2.493E − 01 −3.642E − 02 2.815E + 00

v/uc −1.359E − 18 2.062E − 01 −1.175E − 01 3.024E + 00

∂u/∂x −5.228E − 16 2.899E + 00 −4.352E − 01 4.636E + 00

∂u/∂y −9.118E − 17 4.207E + 00 −8.245E − 02 6.214E + 00

∂v/∂x 7.344E − 17 4.000E + 00 −1.322E − 01 6.161E + 00

∂v/∂y −1.834E − 17 2.864E + 00 −4.465E − 01 4.589E + 00

Sxx −5.228E − 16 2.899E + 00 −4.352E − 01 4.636E + 00

Syy −1.834E − 17 2.864E + 00 −4.465E − 01 4.589E + 00

Sxy 7.892E − 17 2.519E + 00 −7.421E − 02 4.478E + 00

ωz 9.709E − 17 6.481E + 00 −1.147E − 02 6.589E + 00

ε 9.397E − 01 1.275E + 00 4.029E + 00 3.135E + 01

Log10 [ε] −3.233E − 01 5.503E − 01 −4.720E − 01 3.546E + 00

−∂w/∂z −4.693E − 16 2.911E + 00 3.681E − 01 4.603E + 00

∇u : ∇u 5.878E + 01 7.647E + 01 4.804E + 00 5.309E + 01[
−∂w/∂z

(∇u : ∇u)1/2

]
2.210E − 02 4.051E − 01 2.265E − 01 2.034E + 00

Sij : Sij 2.931E + 01 3.719E + 01 3.585E + 00 2.439E + 01

Log10 [Sij : Sij] 1.192E + 00 5.324E − 01 −5.167E − 01 3.630E + 00

3/2 (ωz)
2 6.300E + 01 1.489E + 02 8.696E + 00 1.575E + 02

Log10

[
3/2 (ωz)

2] 1.041E + 00 1.067E + 00 −1.178E + 00 5.673E + 00

Table 5.4: Normalized central moments computed from pdfs for Re = 21 400 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 5.26 – 5.37.
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Quantity µ σ γ β

u/uc 4.531E − 18 2.526E − 01 1.413E − 01 2.996E + 00

v/uc 1.379E − 17 2.046E − 01 −3.306E − 03 2.889E + 00

∂u/∂x 4.119E − 17 2.943E + 00 −4.526E − 01 4.484E + 00

∂u/∂y −7.627E − 17 4.139E + 00 9.692E − 02 6.185E + 00

∂v/∂x 3.671E − 17 3.957E + 00 2.080E − 01 6.317E + 00

∂v/∂y 1.888E − 17 2.894E + 00 −4.522E − 01 4.777E + 00

Sxx 4.119E − 17 2.943E + 00 −4.526E − 01 4.484E + 00

Syy 1.888E − 17 2.894E + 00 −4.522E − 01 4.777E + 00

Sxy −7.427E − 17 2.506E + 00 1.577E − 01 4.646E + 00

ωz 7.055E − 17 6.360E + 00 7.566E − 02 6.476E + 00

ε 2.512E + 00 3.488E + 00 4.632E + 00 4.532E + 01

Log10 [ε] 1.030E − 01 5.497E − 01 −4.669E − 01 3.556E + 00

−∂w/∂z −7.856E − 17 3.091E + 00 4.190E − 01 4.911E + 00

∇u : ∇u 5.938E + 01 7.729E + 01 4.715E + 00 4.883E + 01[
−∂w/∂z

(∇u : ∇u)1/2

]
1.953E − 02 4.208E − 01 2.094E − 01 1.949E + 00

Sij : Sij 2.960E + 01 3.831E + 01 4.107E + 00 3.641E + 01

Log10 [Sij : Sij] 1.195E + 00 5.328E − 01 −5.093E − 01 3.632E + 00

3/2 (ωz)
2 6.068E + 01 1.420E + 02 8.207E + 00 1.372E + 02

Log10

[
3/2 (ωz)

2] 1.021E + 00 1.068E + 00 −1.167E + 00 5.668E + 00

Table 5.5: Normalized central moments computed from pdfs for Re = 31 400 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 5.26 – 5.37.
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Quantity µ σ γ β

u/uc −1.454E − 17 2.413E − 01 4.491E − 02 2.928E + 00

v/uc 4.214E − 19 2.029E − 01 7.160E − 03 2.806E + 00

∂u/∂x 2.588E − 16 2.828E + 00 −3.876E − 01 4.517E + 00

∂u/∂y 1.348E − 16 3.963E + 00 9.128E − 02 5.901E + 00

∂v/∂x 7.658E − 17 3.840E + 00 4.669E − 02 5.945E + 00

∂v/∂y −2.254E − 17 2.761E + 00 −5.361E − 01 4.822E + 00

Sxx 2.588E − 16 2.828E + 00 −3.876E − 01 4.517E + 00

Syy −2.254E − 17 2.761E + 00 −5.361E − 01 4.822E + 00

Sxy 7.204E − 17 2.405E + 00 7.122E − 02 4.248E + 00

ωz 2.450E − 19 6.144E + 00 −4.934E − 02 6.355E + 00

ε 5.594E + 00 7.441E + 00 3.686E + 00 2.508E + 01

Log10 [ε] 4.526E − 01 5.513E − 01 −4.882E − 01 3.550E + 00

−∂w/∂z 3.284E − 16 2.962E + 00 3.825E − 01 4.599E + 00

∇u : ∇u 5.484E + 01 7.009E + 01 5.323E + 00 7.826E + 01[
−∂w/∂z

(∇u : ∇u)1/2

]
2.178E − 02 4.179E − 01 2.088E − 01 1.967E + 00

Sij : Sij 2.719E + 01 3.435E + 01 3.674E + 00 2.762E + 01

Log10 [Sij : Sij] 1.160E + 00 5.337E − 01 −5.331E − 01 3.646E + 00

3/2 (ωz)
2 5.663E + 01 1.310E + 02 9.573E + 00 2.161E + 02

Log10

[
3/2 (ωz)

2] 9.975E − 01 1.067E + 00 −1.170E + 00 5.650E + 00

Table 5.6: Normalized central moments computed from pdfs for Re = 45 500 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 5.26 – 5.37.
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Quantity µ σ γ β

u/uc −1.235E − 17 2.748E − 01 −4.827E − 03 2.725E + 00

v/uc −1.424E − 17 2.258E − 01 −2.759E − 02 2.801E + 00

∂u/∂x −3.412E − 16 3.037E + 00 −4.698E − 01 4.473E + 00

∂u/∂y 1.503E − 16 4.274E + 00 2.672E − 03 5.252E + 00

∂v/∂x −4.522E − 17 3.988E + 00 −1.793E − 02 5.228E + 00

∂v/∂y 4.200E − 17 3.006E + 00 −4.270E − 01 4.864E + 00

Sxx −3.412E − 16 3.037E + 00 −4.698E − 01 4.473E + 00

Syy 4.200E − 17 3.006E + 00 −4.270E − 01 4.864E + 00

Sxy 4.391E − 17 2.588E + 00 2.309E − 02 4.256E + 00

ωz −3.341E − 18 6.446E + 00 −5.595E − 03 5.110E + 00

ε 6.856E + 00 9.031E + 00 5.289E + 00 8.286E + 01

Log10 [ε] 5.606E − 01 5.319E − 01 −5.188E − 01 3.659E + 00

−∂w/∂z −3.140E − 16 3.340E + 00 2.942E − 01 5.451E + 00

∇u : ∇u 6.359E + 01 7.614E + 01 5.416E + 00 9.864E + 01[
−∂w/∂z

(∇u : ∇u)1/2

]
1.585E − 02 4.213E − 01 2.020E − 01 1.957E + 00

Sij : Sij 3.165E + 01 3.916E + 01 5.499E + 00 1.072E + 02

Log10 [Sij : Sij] 1.245E + 00 5.144E − 01 −5.675E − 01 3.748E + 00

3/2 (ωz)
2 6.233E + 01 1.264E + 02 5.575E + 00 5.537E + 01

Log10

[
3/2 (ωz)

2] 1.087E + 00 1.043E + 00 −1.252E + 00 6.066E + 00

Table 5.7: Normalized central moments computed from pdfs for Re = 50 200 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 5.26 – 5.37.
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Figure 5.38: Pdfs from nonreacting cases INR1 – INR6, normalized by resolution-
corrected inner scaling. On-diagonal velocity gradients (top), where the
black symbols represent the ∂u/∂x component while the grey display
∂v/∂y. Off-diagonal velocity gradients (bottom), where the black sym-
bols represent the ∂u/∂y component while the grey display ∂v/∂x.

165



Reδ

(
∂u

∂y

)2

+

(
∂v

∂x

)2

(
∂u

∂x

)2

+

(
∂v

∂y

)2

7200 1.887

11000 2.039

21400 2.028

31400 1.925

45500 1.949

50200 1.872

6000† 1.915

30000† 1.856

Table 5.8: Ratios of the variances of the on-diagonal gradient components over the
off-diagonal components. The analytical value obtained via the assump-
tion of homogeneous isotropic turbulence is 2. The final two conditions
adorned with a † are presented for comparison, and are from the data
given by Mullin and Dahm (2005b).
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Reδ

var

(
∂u

∂y

)
var

(
∂u

∂x

) var

(
∂v

∂x

)
var

(
∂v

∂y

)

7200 1.975 1.795

11000 2.149 1.928

21400 2.105 1.950

31400 1.978 1.870

45500 1.963 1.935

50200 1.981 1.760

6000† 1.933 1.895

30000† 1.931 1.774

Table 5.9: Ratios of the variances of the on-diagonal gradient components over the
off-diagonal components. The analytical value obtained via the assump-
tion of homogeneous isotropic turbulence is 2. The final conditions indi-
cated by † are from Mullin and Dahm (2005b), shown for comparison.
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Quantity Present Data Mullin Gotoh Jiménez

Reλ 58 45 54 61

γ (∂u/∂x) −0.456 −0.428 −0.517 −0.495

β (∂u/∂x) 4.74 4.22 4.47 4.60

Reλ 115 113 125 168

γ (∂u/∂x) −0.453 −0.355 −0.529 −0.525

β (∂u/∂x) 4.48 4.81 5.65 6.10

Table 5.10: Comparison of present measured velocity gradient skewness γ and kur-
tosis β with corresponding results from DNS studies of periodic homo-
geneous isotropic turbulence from Gotoh et al. (2002) and Jiménez et al.
(1993), along with measured values from Mullin (2004) at similar Reλ

values.
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CHAPTER VI

Inner-Scale Effects of Heat Release

Chapter V dealt with inner-scale velocity field data obtained on the centerline of

a nonreacting turbulent shear flow. It showed how the resolution scale ∆? in such

measurements could be objectively determined, and presented results that verified

the proper inner scaling of various velocity gradient quantities in terms of ∆? to

account for resolution effects in the measurements. In this chapter, this proper

inner scaling methodology is used as the basis for separating effects of measurement

resolution from effects of heat release in inner-scale velocity field data obtained on

the centerline of an exothermically reacting turbulent shear flow. By comparing

such inner-scaled pdfs of velocity gradient quantities from reacting and nonreacting

versions of an otherwise identical turbulent shear flow, the effects of heat release on

the inner scales of the velocity field u(x, t) can be directly determined.

6.1 Inner-Scale PIV Measurements

Table 3.4 lists the flow conditions and other relevant parameters for each of the

seven inner-scale reacting flow cases used in this part of the study. The fuel for
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all these cases was hydrogen (99.99% purity), which issued from the jet nozzle into

the coflowing air stream. Both the jet and the coflow were seeded with the same

0.5 µm aluminum oxide particles used for the nonreacting cases in Chapter V. In

all these reacting flow cases, the field-of-view (FOV) of the PIV measurements was

15 mm × 18.7 mm. The data from these reacting flow cases were processed in a

manner identical to the nonreacting cases in Chapter V. The FOV was subdivided

into a vector field of 32 × 40 vectors, with each vector corresponding to a final

interrogation window size of (0.469 mm)2. This interrogation window size for the

reacting flow cases is similar to the (0.375 mm)2 and (0.468 mm)2 window sizes

used for the nonreacting cases in Chapter V. As in Chapter V, for each of these

inner-scale reacting flow cases a companion large-FOV measurement was also made

to directly obtain the outer variables (uc and δ) needed to properly scale the results.

The procedure for acquiring 300 images for each of these inner- and outer-scale

measurements is described in §5.1.

6.2 Inner-Scale Velocities and Velocity Gradients

In keeping with the presentation format of the previous chapter, an example of the

typical instantaneous velocity fluctuation fields u(x, y) and v(x, y) from these inner-

scale reacting flow measurements, corresponding to case IR7 with Reδ = 200 100

in Table 3.4, is shown in Fig. 6.1 normalized by the outer velocity scale uc. The

corresponding velocity gradient fields ∂u/∂x, ∂u/∂y, ∂v/∂x and ∂v/∂y are shown in

Figs. 6.2 – 6.7, normalized with the measured values of the outer variables uc and δ

in the upper panel, and normalized with the classical inner variables ν and λν in the
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lower panel. Here ν is the mixture-fraction averaged viscosity evaluated as described

in § 2.6, and λν is obtained from this, together with the measured values of uc and

δ, via (5.1).

Figures 6.4 – 6.5 give the corresponding strain rate components Sxx, Syy and

Sxy, together with the “pseudo” dissipation rate field SijSij, each shown normalized

with classical inner variables. The corresponding out-of-plane vorticity component

ωz and its associated enstrophy ϑz are given in Fig. 6.6. Lastly, Fig. 6.7 gives the cor-

responding square-magnitude of the velocity gradient tensor ∇u : ∇u formed from

the above velocity gradient components, as well as the apparent two-dimensional

divergence (∇ · u)2D , which in these reacting flow cases now includes both the addi-

tional velocity gradient component ∂w/∂z ≡ − (∂u/∂x+ ∂v/∂y) as well as the true

divergence ∇ · u induced by heat release as described in § 2.5.

Probability density functions for each of the inner-scale quantities shown in Figs.

6.2 – 6.7 are given in Figs. 6.8 – 6.13, each normalized on the classical inner variables

ν and λν . A separate curve in each of these figures corresponds to each of the seven

cases denoted by IR1 – IR7 in Table 3.4, with corresponding outer-scale Reynolds

numbers Reδ ranging from 18 300 to 200 100 based on the cold air viscosity. As was

seen in Chapter V, even with the classical inner-scale normalization shown in these

figures, there are substantial remaining differences apparent among the pdfs from

these seven cases. These differences result from incomplete resolution of the smallest-

scale motions by the PIV measurements with increasing Reδ. In these reacting flow

cases the increased viscosity, due primarily to the higher temperatures, leads to

a substantial increase in λν , and as a consequence the resolution is substantially

higher at the same Reδ value than for the nonreacting cases in Chapter V. While

the reacting flow cases corresponding to the two lowest Reδ values in Figs. 6.8 – 6.13
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appear to be fully resolved, as evidenced by the fact that the classical inner-scale

normalization collapses these to a single curve in each figure, the remaining cases

clearly reflect varying degrees of under-resolution, as can be seen from the fact that

they do not match this same curve in the classical inner-scale normalization.

6.2.1 Resolution-Corrected Pdfs

The artificial resolution degradation strategy detailed in §5.4.1, is then applied

to the reacting, inner scale data. A sample set of resolution plots obtained from the

vorticity statistics is shown in Figs. 6.14 – 6.20, for cases IR1 – IR7. Qualitatively

these plots are similar in character to those obtained for the nonreacting inner scale

results of Chapter V. However the plots indicate that the filtering scheme reveals

less of the inertial range in the reacting flow fitting diagrams, as compared to the

nonreacting cases. For example, only three of the seven reacting flow cases (IR1,

IR2 and IR7 ) cases yield a value of (var{ωz}∆
/ var{ωz}MAX

) < 0.3, (see rightmost

data point in Figs. 6.14, 6.15 and 6.20). By comparison, all of the nonreacting cases

(Figs. 5.17 – 5.22) display a value < 0.3 for their data points furthest into the inertial

range (filtering at the largest values of ∆).

The parameters (p and ∆R) and length scale (∆?) resulting from the reacting

flow viscous roll-off model are shown in Table 6.1. As with the nonreacting data the

values for these parameters have been averaged over four independently processed

gradients: Sxx, Syy, Sxy and ωz; to produce one final value for each quantity.

The same inertial-range correction given by (5.23) was applied to the pdfs pre-

sented in Figs. 6.8 – 6.13 and the corrected pdfs are shown in Figs. 6.21 – 6.24, for the

four accessible components of the velocity gradient tensor. As with the nonreacting
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data, a roughly similar level of collapse in the pdfs was observed across the seven

reacting, inner scale data sets, IR1 to IR7. The inertial-range correction manages

to reconcile the lowest Reynolds number case (IR1 ) with the rest of the cases in a

satisfactory manner. This lowest Reynolds number case was acquired at a nontrivial

distance beyond the visible flame tip. The next case IR2 was such that the PIV

FOV was very near the visible flame tip. The behavior of these two conditions was

markedly different from the other cases, when scaled on classical inner variables ν

and λν , see Figs. 6.8 and 6.9. The width of the IR1 and IR2 pdfs in these figures

was at least twice as wide as the remaining reacting cases. However, by accounting

for the changes in resolution, IR1 and IR2 fall in line with the other inner scale

reacting conditions; although the degree of collapse is not quite as high as in the

nonreacting data of Chapter V.

Of the four gradient components rescaled in Figs. 6.21 – 6.24, the ∂u/∂y com-

ponent in Fig. 6.24 appears mildly pathological in its collapse. In the next section,

both off-diagonal components (∂u/∂y and ∂v/∂x) of the velocity gradient tensor will

be seen to exhibit unique behavior relative to the other gradients quantities.

The remaining pdfs normalized by N ? are displayed in Figs. 6.30 – 6.37, including

the same set of gradient quantities presented in Chapter V: strain rate quantities,

Sxx, Syy, Sxy and SijSij, vorticity and enstrophy ωz, ϑz, along with (∇ · u)2D and

∇u : ∇u. The detailed moment information for all the gradient pdfs is listed in

detail in Tables 6.4 – 6.10. Defined in §5.6, the first four moments are tabulated: the

mean µ, the rms value σ, the skewness γ and the kurtosis β.

The normalized pdfs in Figs. 6.30 – 6.37 exhibit a similar level of universality and

collapse comparable to that found for the four velocity gradient gradient components

discussed above and shown in Figs. 6.21 – 6.24. While the agreement between the

173



pdfs is not quite as good as the nonreacting data of Chapter V, the agreement is

far superior to that of the classically scaled pdfs using ν and λν . Here again the

two cases obtained beyond or near to the flame tip (IR1 and IR2 ) appeared to be

much different when scaled on classical inner variables. However, by accounting for

the varying levels of resolution, they are brought into reasonable agreement with the

remainder of the reacting flow cases.

6.2.2 Comparisons with Nonreacting Inner-Scale Results

Figures 6.25 – 6.28 now present comparisons of the nonreacting flow results from

Figs. 5.26 – 5.29 of Chapter V with the corresponding reacting results from Figs.

6.21 – 6.24 to identify the true effects of heat release in these inner-scale quantities.

Comparing the widths of the pdfs in a simplistic manner, the aggregate average

value of the rms across the six nonreacting cases (INR1 – INR6 ) for each gradient

component is computed: 2.934, (∂u/∂x); 4.173, (∂u/∂y); 3.955, (∂v/∂x); and 2.892,

(∂v/∂y). Similarly, for the seven reacting cases (IR1 – IR7 ): 3.764, (∂u/∂x); 5.689,

(∂u/∂y); 4.757, (∂v/∂x); and 3.676, (∂v/∂y). By taking the ratio of these aggregate

rms values, the on-diagonal components increase by 28% (∂u/∂x) and 27% (∂v/∂y).

The off-diagonal components are less well-behaved: 36% increase for (∂u/∂y) and

20% for (∂v/∂x).

In addition to the accessible velocity gradient components, the remaining gra-

dients quantities are also shown in direct comparison to their nonreacting coun-

terparts in Figs. 6.30 – 6.37. Focusing on the first order gradients, Sxy, ωz and

(∇ · u)2D ≡ (−∂w/∂z + ∇ · u), the same level of agreement is observed between

the reacting and nonreacting data as was seen in gradient components described

174



above. The widths of the reacting pdfs increase only a modest amount over their

nonreacting counterparts. The same aggregate averaging described above can be re-

peated to examine the changes in pdf width. The ratio of reacting over nonreacting

gradient rms values: 29% for Sxy; 29% for ωz; and 27% for (∇ · u)2D . While the

Sxx = 1/2 (∂u/∂x + ∂u/∂x), and Syy = 1/2 (∂v/∂y + ∂v/∂y) strain rate compo-

nents do not provide any new information over the velocity gradient components,

the remaining gradients Sxy, ωz and (∇ · u)2D agree quite well with the on-diagonal

velocity gradients.

Setting aside the off-diagonal velocity gradients momentarily, the augmentation

provided by exothermicity in the other first order gradients is between 27% and 29%.

This increase appears to be quite consistent and systematic amongst the measured

gradient quantities. The use of N ? to account for resolution effects in the classical

inner scaling with ν and λν allows a direct comparison between the reacting and

nonreacting gradients and thus reveals the impact of exothermicity on a turbulent

shear flow. The effect ofN ? acts, is to correct for the effect of measurement resolution

relative to the inner length scale of the flow. Additionally, by directly measuring the

outer scales δ and uc, the effects of buoyancy and coflow on the jet outer scale

properties and thereby on the inner length scale λν , is taken into account. This

allows straightforward comparisons to be made between reacting and nonreacting

flows.

6.2.3 Inner-Scale Effects of Heat Release

The goal of the effective length scale ∆? and the subsequent normalization N ? is

to remove the effects of the outer scales while simultaneously correcting for under-
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resolution. This provides an equal basis by which both the nonreacting and reacting

data can be fairly compared. The remaining differences observed between the burn-

ing and nonburning flows can then be ascribed to the effect of heat release acting

on the finest scales of the flow. Indeed, in Figs. 6.25 – 6.37, the reacting pdfs bear

a distinct and systematic departure from their nonreacting counterparts. While the

deviations are not profound, they are unmistakable.

To explore these differences more deeply, the following analysis is performed.

Each of the independent first-order gradients is considered: ∂u/∂x, ∂u/∂y, ∂v/∂x,

∂v/∂y, Sxy, ωz and (∇ · u)2D . Here the focus is on the change in width of the pdfs,

from nonreacting to reacting. Beginning with the rms values of the nonreacting cases

(INR1 – INR6 ), the statistics are first normalized using N ?,

σq ≡
( σ

N ?

)
q
, (6.1)

where σ is the rms value of the gradients and q is any of the aforementioned first

order gradients.

Since the present interest is comparing the relative change from nonreacting to

reacting, each of the selected gradients q are then reduced by their own aggregate

average value, computed in the following manner:

〈σq〉NR
≡
∑

all Reδ

σq (Reδ) . (6.2)

In this case, the brackets quantity 〈σq〉NR
is the aggregate average rms value for the

q-th gradient, across all nonreacting NR datasets (Reδ cases).

Each of the normalized gradients σq is reduced via dividing by its aggregate

average rms value, giving σq/〈σq〉NR
. The result for these reduced rms values are

then plotted against their Reδ values, as shown in the upper panel of Fig. 6.38 for

the nonreacting conditions. For these nonreacting cases the behavior of σq/〈σq〉NR
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shows no discernable Reynolds number dependence as the response is flat across all

measured values, for all gradients. The values of σq/〈σq〉NR
hover tightly about unity,

as expected from the repeated normalization described above. The plot reaffirms that

the N ? scaling has properly scaled the nonreacting data in the expected manner.

Thus the results presented in the lower panel of Fig. 6.38 for the reacting data are

processed in the same manner as the nonreacting data, where each of the normalized

reacting rms values σq are reduced by the nonreacting aggregate average rms 〈σq〉NR
.

In general, the results for the reacting hydrogen flames shown in the lower panel are

more interesting than their nonreacting counterparts. Their response of σq/〈σq〉NR

as a function of Reynolds number is not flat. At first glance there appears to be an

influence of Reδ on the reduced gradients.

The results for both the nonreacting and reacting cases are combined and pre-

sented in Fig. 6.39 to provide the current interpretation. In addition to replotting

both the nonreacting and reacting data, a heuristic diagram is supplied. Each of the

“nozzles” shown schematically corresponds to an individual Reδ condition of react-

ing measurements, e.g. one each of IR1 – IR7. The location of the FOV is shown

to scale as the green rectangle, relative to the nozzle position. As noted in Table

3.4, the streamwise location of the FOV is held constant for all the IRX cases at

approximately 153 nozzle diameters downstream. The visible flames for each Reδ

case are then drawn schematically, giving an indication of the location of the visible

flame tip relative to the FOV. Note that for the lowest Reδ case (IR1 ), the FOV is

beyond the visible flame tip.

As the exit momentum flux J0 at the nozzle is increased, increasing the Reynolds

number, the location of the visible flame tip moves further downstream. The increase

of the flame length with increased momentum flux indicates that the flame is not yet
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momentum-driven and buoyancy cannot be neglected. The ‘s’ shown schematically

on the centerline of each jet indicates the approximate location of the stoichiomet-

ric mixture along the jet axis. The diagram here depicts this stoichiometric point

starting out upstream of the FOV (low Reδ’s), passing through the FOV (near the

Reδ = 60 600 case) and then proceeding downstream of the FOV for the high Reδ

conditions.

The picture described is a conjecture based on the behavior observed in the react-

ing σq/〈σq〉NR
data shown along with each “jet flame” sketch. The lowest Reynolds

number case (IR1 ), obtained where its PIV FOV is the furthest beyond the visi-

ble flame tip, shows the smallest departure from the nonreacting data. Note that

the dashed horizontal line at σq/〈σq〉NR
= 1, indicates the averaged position of the

reduced nonreacting data. This difference between the σq/〈σq〉NR
values of the re-

acting data and the nonreacting values of σq/〈σq〉NR
is interpreted as the influence

of exothermicity on the inner scale gradients of the turbulence. Based on this hy-

pothesis, the IR1 case (where the local averaged temperatures are the smallest)

should produce the smallest amount of heat release effect. The averaged value of

reduced gradients for IR1 is σq/〈σq〉NR
= 1.117, only an 11.7% above the baseline

(nonreacting) value.

Increasing the flow rate and thus increasing the flame length, the PIV measure-

ment location is near the visible flame tip for IR2. The stoichiometric point s has

moved closer to the FOV and the local averaged temperatures are increased. The

reduced gradients demonstrate a significant increase in the IR2 as compared to the

IR2 condition. The change relative to the nonreacting data is significant. The appar-

ent effect of increasing Reδ on the reduced reacting gradients is not a true Reynolds

number effect, but rather the result of moving the stoichiometric point s relative to
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the FOV. By increasing the momentum flux J0, the averaged temperature profile

along the jet centerline changes relative to a laboratory frame, due to the influence

of buoyancy.

The reduced reacting gradients peak at the IR3 case, suggesting that the FOV

is coincident with the averaged centerline stoichiometric location s – based on the

current interpretation of the data. Further increasing J0 increases the flame length

such that the FOV is no longer located in the fuel-lean portion of the jet flame, but is

now fuel-rich, moving between the stoichiometric point s and the nozzle exit. Since

the change in relative position of the FOV is now moving away from s, the averaged

centerline temperatures are diminishing, and the impact on the reduced gradients is

slightly less for the IR4 case, relative to IR3.

Further increases in J0 push the stoichiometric point s further downstream be-

yond the FOV and the averaged temperatures continue to drop, as evidence in the

monotonic decay in the reduced gradients of cases IR5 – IR7. The final two condi-

tions at the highest nozzle exit velocities, indicate that the jet has begun to enter

the asymptotic limit of a momentum-driven flow, where the role of buoyancy is di-

minished. Comparing these two, an increase of 38% in Reδ is realized from IR6

(145 300) to IR7 (200 100), but the response of σq/〈σq〉NR
is only changed by 1%.

This suggests that the flame length is now independent of Reδ, as the temperature

(hence the location of s) is unchanged between the two conditions.

The reacting data provide information regarding the maximum amount of change

between the reacting and nonreacting flows. The data at Reδ = 60 600, IR3, rep-

resent the peak values in the reduced gradients, approximately σq/〈σq〉NR
= 1.405.

This is a 40.5% increase over the nonreacting baseline. These results, obtained for

hydrogen-air chemistry, provide insight regarding the maximum magnitude of im-
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pact due to exothermicity on the inner scale gradients of a turbulent flame. Other

fuel/oxidizer combinations could provide different levels of change between nonre-

acting and reacting flows.

6.2.4 Effects of Heat Release on Isotropy

Identical tests of isotropy presented in §5.3 for the nonreacting, inner scale data,

were applied to the reacting data and the results are listed in Tables 6.2 and 6.3.

The results from (5.2), listed in Table 6.3 are remarkably similar in comparison of

the reacting against the nonreacting cases. If the results from the reacting cases and

those of the nonreacting were averaged together, the overall values are 1.950 for the

nonreacting data, over all Reδ values and 1.986 for all reacting cases.

Despite the similarity observed by summing the on-diagonal and off-diagonal

components, the individual gradients display a non-trivial difference in behavior.

The comparison of on/off-diagonal gradients within each velocity component in Table

6.2 are noticeably asymmetric – where the u-component ratio is significantly larger

than the tranverse v-component ratio. Indeed, if the same averaging across all Reδ

cases is applied, the mean value of var{∂u/∂y}/var{∂u/∂x} is 2.280 in contrast to

1.678 for the quantity of var{∂v/∂x}/var{∂v/∂y} for the burning flow data. The

disparity is larger for the reacting cases as compared to the nonreacting cases where

the u-component ratio is 2.025 and the v-component ratio is 1.873.
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Figure 6.1: Sample velocity fields at Reδ = 200 100. Instantaneous velocity fluc-
tuations u (top) and v (bottom), normalized by the centerline velocity
uc.
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Figure 6.9: Pdfs from all reacting cases IR1 – IR7 for velocity gradient ∂v/∂x (top)
and ∂v/∂y (bottom) normalized by inner variables ν/λ2
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Figure 6.10: Pdfs from all reacting cases IR1 – IR7 for strain rate components Sxx

(top) and Syy (bottom) normalized by inner variables ν/λ2
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Figure 6.12: Pdfs from all reacting cases IR1 – IR7 for in-plane vorticity ωz (top)
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taneous velocity gradient tensor ∇u : ∇u (top) and two-dimensional
divergence (−∂w/∂z + ∇ · u) (bottom) normalized by inner variables
(ν/λ2

ν)
2

and ν/λ2
ν .
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Figure 6.14: Results from low-pass filtering to determine effective length scale ∆? for
case IR1, Reδ = 18 300.
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Figure 6.15: Results from low-pass filtering to determine effective length scale ∆? for
case IR2, Reδ = 25 900.
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Figure 6.16: Results from low-pass filtering to determine effective length scale ∆? for
case IR3, Reδ = 60 600.
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Figure 6.17: Results from low-pass filtering to determine effective length scale ∆? for
case IR4, Reδ = 81 900.
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Figure 6.18: Results from low-pass filtering to determine effective length scale ∆? for
case IR5, Reδ = 93 700.
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Figure 6.19: Results from low-pass filtering to determine effective length scale ∆? for
case IR6, Reδ = 145 300.
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Figure 6.20: Results from low-pass filtering to determine effective length scale ∆? for
case IR7, Reδ = 200 100.
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Figure 6.21: Pdfs from all nonreacting cases IR1 – IR7 for velocity gra-
dient ∂u/∂x normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 6.22: Pdfs from all nonreacting cases IR1 – IR7 for velocity gra-
dient ∂u/∂y normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top)

and semilogarithmic axes (bottom).
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Figure 6.23: Pdfs from all nonreacting cases IR1 – IR7 for velocity gra-
dient ∂v/∂x normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top)

and semilogarithmic axes (bottom).
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Figure 6.24: Pdfs from all nonreacting cases IR1 – IR7 for velocity gra-
dient ∂v/∂y normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top)

and semilogarithmic axes (bottom).
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Figure 6.25: Pdfs from all on-axis cases, reacting (open, red symbols) and nonreact-
ing (closed, black symbols) for velocity gradient ∂u/∂x normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2,

shown in linear axes (top) and semilogarithmic axes (bottom).
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Figure 6.26: Pdfs from all on-axis cases, reacting (open, red symbols) and nonreact-
ing (closed, black symbols) for velocity gradient ∂u/∂y normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2,

shown in linear axes (top) and semilogarithmic axes (bottom).
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Figure 6.27: Pdfs from all on-axis cases, reacting (open, red symbols) and nonreact-
ing (closed, black symbols) for velocity gradient ∂v/∂x normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2,

shown in linear axes (top) and semilogarithmic axes (bottom).
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Figure 6.28: Pdfs from all on-axis cases, reacting (open, red symbols) and nonreact-
ing (closed, black symbols) for velocity gradient ∂v/∂y normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2,

shown in linear axes (top) and semilogarithmic axes (bottom).
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Figure 6.29: Pdfs from all reacting cases IR1 – IR7, normalized by resolution-
corrected inner scaling. On-diagonal velocity gradients (top), where
the black symbols represent the ∂u/∂x component while the grey dis-
play ∂v/∂y. Off-diagonal velocity gradients (bottom), where the black
symbols represent the ∂u/∂y component while the grey display ∂v/∂x.
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Reδ

var

(
∂u

∂y

)
var

(
∂u

∂x

) var

(
∂v

∂x

)
var

(
∂v

∂y

)
18300 2.129 1.678

25900 2.124 1.664

60600 2.399 1.484

81900 2.418 1.774

93700 2.353 1.736

145300 2.294 1.704

200100 2.243 1.703

Table 6.2: Ratios of the variances of the on-diagonal gradient components over the
off-diagonal components. The analytical value obtained via the assump-
tion of homogeneous isotropic turbulence is 2.
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Reδ

(
∂u

∂y

)2

+

(
∂v

∂x

)2

(
∂u

∂x

)2

+

(
∂v

∂y

)2

18300 1.899

25900 1.893

60600 1.955

81900 2.113

93700 2.055

145300 2.006

200100 1.984

Table 6.3: Ratios of the variances of the on-diagonal gradient components over the
off-diagonal components. The analytical value obtained via the assump-
tion of homogeneous isotropic turbulence is 2.
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Figure 6.30: Pdfs from all on-axis cases, reacting (open, red symbols) and nonreact-
ing (closed, black symbols) for strain rate Sxx normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in

linear axes (top) and semilogarithmic axes (bottom).

213



P
[ S

y
y
/
{ (ν

/λ
2 ν
)
Λ

2
(δ
/∆

?
)2

/
3
R
e−

1
/
2

δ
[D

(p
)]

1
/
2
}]

Syy/
{

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2

}

P
[ S

y
y
/
{ (ν

/λ
2 ν
)
Λ

2
(δ
/∆

?
)2

/
3
R
e−

1
/
2

δ
[D

(p
)]

1
/
2
}]

Syy/
{

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2

}

−20 −15 −10 −5 0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 

 

Reδ = 7200

Reδ = 11000

Reδ = 21400

Reδ = 31400

Reδ = 45500

Reδ = 50200

Reδ = 18300

Reδ = 25900

Reδ = 60600

Reδ = 81900

Reδ = 93700

Reδ = 145300

Reδ = 200100

−50 0 50
10

−4

10
−3

10
−2

10
−1

10
0

 

 

Reδ = 7200

Reδ = 11000

Reδ = 21400

Reδ = 31400

Reδ = 45500

Reδ = 50200

Reδ = 18300

Reδ = 25900

Reδ = 60600

Reδ = 81900

Reδ = 93700

Reδ = 145300

Reδ = 200100

Figure 6.31: Pdfs from all on-axis cases, reacting (open, red symbols) and nonreact-
ing (closed, black symbols) for strain rate Syy normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in

linear axes (top) and semilogarithmic axes (bottom).
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Figure 6.32: Pdfs from all on-axis cases, reacting (open, red symbols) and nonreact-
ing (closed, black symbols) for strain rate Sxy normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in

linear axes (top) and semilogarithmic axes (bottom).
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Figure 6.33: Pdfs from all on-axis cases, reacting (open, red symbols) and
nonreacting (closed, black symbols) for pseudo-dissipation
Log10 (SijSij) normalized by resolution-corrected inner scaling

{(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2}2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 6.34: Pdfs from all on-axis cases, reacting (open, red symbols) and nonreact-
ing (closed, black symbols) for vorticity ωz normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in

linear axes (top) and semilogarithmic axes (bottom).
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Figure 6.35: Pdfs from all on-axis cases, reacting (open, red sym-
bols) and nonreacting (closed, black symbols) for enstrophy
Log10 (ϑz) normalized by resolution-corrected inner scaling

{(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2}2, shown in linear axes (top)

and semilogarithmic axes (bottom).
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Figure 6.36: Pdfs from all on-axis cases, reacting (open, red symbols) and nonre-
acting (closed, black symbols) for contraction of the velocity gradi-
ent tensor ∇u : ∇u normalized by resolution-corrected inner scaling
{(ν/λ2

ν) Λ2 (δ/∆?)2/3Re
−1/2
δ [D(p)]1/2}2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 6.37: Pdfs from all on-axis cases, reacting (open, red symbols) and
nonreacting (closed, black symbols) for two-dimensional divergence
(−∂w/∂z + ∇ · u) normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Quantity µ σ γ β

u/uc 3.995E − 18 2.767E − 01 1.351E − 01 2.760E + 00

v/uc −9.080E − 18 2.321E − 01 −1.396E − 02 2.924E + 00

∂u/∂x 4.888E − 17 3.257E + 00 −4.091E − 01 4.658E + 00

∂u/∂y 4.101E − 16 4.752E + 00 4.912E − 02 6.146E + 00

∂v/∂x −4.303E − 17 4.300E + 00 −9.098E − 02 5.883E + 00

∂v/∂y −7.703E − 17 3.319E + 00 −4.325E − 01 4.720E + 00

Sxx 4.888E − 17 3.257E + 00 −4.091E − 01 4.658E + 00

Syy −7.703E − 17 3.319E + 00 −4.325E − 01 4.720E + 00

Sxy 1.333E − 16 2.793E + 00 4.425E − 03 4.541E + 00

ωz −6.673E − 16 7.138E + 00 −5.901E − 02 6.057E + 00

ε 4.055E − 01 5.584E − 01 3.776E + 00 2.611E + 01

Log10 [ε] −7.031E − 01 5.658E − 01 −4.711E − 01 3.522E + 00

(−∂w/∂z + ∇ · u) 1.777E − 16 3.410E + 00 3.648E − 01 4.737E + 00

∇u : ∇u 7.433E + 01 9.620E + 01 4.058E + 00 3.287E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
2.041E − 02 4.176E − 01 1.905E − 01 1.972E + 00

Sij : Sij 3.722E + 01 4.840E + 01 3.428E + 00 2.162E + 01

Log10 [Sij : Sij] 1.279E + 00 5.497E − 01 −5.066E − 01 3.586E + 00

3/2 (ωz)
2 7.643E + 01 1.719E + 02 7.044E + 00 9.540E + 01

Log10

[
3/2 (ωz)

2] 1.125E + 00 1.071E + 00 −1.179E + 00 5.702E + 00

Table 6.4: Normalized central moments computed from pdfs for Re = 18 300 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 6.21 – 6.37.
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Quantity µ σ γ β

u/uc 2.005E − 17 3.358E − 01 5.936E − 01 3.388E + 00

v/uc −1.350E − 17 2.531E − 01 −8.130E − 03 2.967E + 00

∂u/∂x 5.509E − 16 3.857E + 00 −4.766E − 01 4.981E + 00

∂u/∂y 8.207E − 17 5.621E + 00 −3.240E − 02 7.789E + 00

∂v/∂x −3.290E − 17 4.987E + 00 1.364E − 01 6.207E + 00

∂v/∂y 1.361E − 16 3.866E + 00 −5.188E − 01 5.147E + 00

Sxx 5.509E − 16 3.857E + 00 −4.766E − 01 4.981E + 00

Syy 1.361E − 16 3.866E + 00 −5.188E − 01 5.147E + 00

Sxy 8.675E − 17 3.332E + 00 5.610E − 02 5.092E + 00

ωz −2.468E − 16 8.279E + 00 8.970E − 02 6.931E + 00

ε 1.150E + 00 1.700E + 00 4.818E + 00 4.397E + 01

Log10 [ε] −2.590E − 01 5.717E − 01 −4.786E − 01 3.596E + 00

(−∂w/∂z + ∇ · u) 8.218E − 16 4.012E + 00 3.307E − 01 4.677E + 00

∇u : ∇u 1.024E + 02 1.444E + 02 6.145E + 00 9.599E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
2.793E − 02 4.190E − 01 1.997E − 01 1.958E + 00

Sij : Sij 5.203E + 01 7.198E + 01 4.341E + 00 3.685E + 01

Log10 [Sij : Sij] 1.417E + 00 5.555E − 01 −5.145E − 01 3.665E + 00

3/2 (ωz)
2 1.028E + 02 2.504E + 02 9.375E + 00 1.931E + 02

Log10

[
3/2 (ωz)

2] 1.217E + 00 1.092E + 00 −1.120E + 00 5.415E + 00

Table 6.5: Normalized central moments computed from pdfs for Re = 25 900 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 6.21 – 6.37.
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Quantity µ σ γ β

u/uc 2.656E − 18 3.623E − 01 2.884E − 01 3.033E + 00

v/uc −1.042E − 17 2.563E − 01 4.071E − 02 2.741E + 00

∂u/∂x 1.773E − 15 4.152E + 00 −5.821E − 01 5.109E + 00

∂u/∂y 9.483E − 16 6.430E + 00 −1.977E − 01 6.391E + 00

∂v/∂x 9.727E − 17 4.914E + 00 −8.719E − 02 5.099E + 00

∂v/∂y 5.775E − 17 4.034E + 00 −1.947E − 01 4.003E + 00

Sxx 1.773E − 15 4.152E + 00 −5.821E − 01 5.109E + 00

Syy 5.775E − 17 4.034E + 00 −1.947E − 01 4.003E + 00

Sxy 7.492E − 16 3.511E + 00 −1.438E − 01 4.566E + 00

ωz −1.378E − 15 9.039E + 00 7.633E − 02 5.199E + 00

ε 4.972E + 00 6.839E + 00 4.548E + 00 4.088E + 01

Log10 [ε] 3.972E − 01 5.609E − 01 −5.708E − 01 3.712E + 00

(−∂w/∂z + ∇ · u) 1.684E − 15 4.389E + 00 1.655E − 01 4.003E + 00

∇u : ∇u 1.183E + 02 1.486E + 02 4.282E + 00 3.810E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
1.604E − 02 4.265E − 01 1.222E − 01 1.912E + 00

Sij : Sij 5.816E + 01 7.460E + 01 4.401E + 00 4.196E + 01

Log10 [Sij : Sij] 1.487E + 00 5.443E − 01 −6.302E − 01 3.805E + 00

3/2 (ωz)
2 1.225E + 02 2.511E + 02 5.742E + 00 6.011E + 01

Log10

[
3/2 (ωz)

2] 1.367E + 00 1.057E + 00 −1.232E + 00 5.830E + 00

Table 6.6: Normalized central moments computed from pdfs for Re = 60 600 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 6.21 – 6.37.

223



Quantity µ σ γ β

u/uc −2.680E − 17 3.475E − 01 2.409E − 01 2.822E + 00

v/uc 4.353E − 18 2.475E − 01 −1.605E − 02 2.751E + 00

∂u/∂x 1.198E − 15 4.068E + 00 −4.696E − 01 4.405E + 00

∂u/∂y 3.358E − 16 6.326E + 00 −3.554E − 01 6.603E + 00

∂v/∂x 3.522E − 16 5.136E + 00 −1.730E − 01 6.533E + 00

∂v/∂y 7.087E − 17 3.856E + 00 −2.891E − 01 4.037E + 00

Sxx 1.198E − 15 4.068E + 00 −4.696E − 01 4.405E + 00

Syy 7.087E − 17 3.856E + 00 −2.891E − 01 4.037E + 00

Sxy −3.053E − 17 3.594E + 00 −1.720E − 01 4.783E + 00

ωz 6.978E − 17 9.006E + 00 8.757E − 02 5.723E + 00

ε 9.691E + 00 1.375E + 01 5.224E + 00 6.147E + 01

Log10 [ε] 6.912E − 01 5.452E − 01 −4.607E − 01 3.626E + 00

(−∂w/∂z + ∇ · u) 7.434E − 16 4.218E + 00 3.989E − 01 4.379E + 00

∇u : ∇u 1.156E + 02 1.502E + 02 5.029E + 00 5.014E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
1.974E − 02 4.144E − 01 1.831E − 01 1.985E + 00

Sij : Sij 5.726E + 01 7.376E + 01 4.288E + 00 3.979E + 01

Log10 [Sij : Sij] 1.489E + 00 5.250E − 01 −5.304E − 01 3.733E + 00

3/2 (ωz)
2 1.217E + 02 2.644E + 02 7.227E + 00 9.348E + 01

Log10

[
3/2 (ωz)

2] 1.388E + 00 1.032E + 00 −1.274E + 00 6.063E + 00

Table 6.7: Normalized central moments computed from pdfs for Re = 81 900 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 6.21 – 6.37.
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Quantity µ σ γ β

u/uc −4.621E − 18 3.313E − 01 1.078E − 01 2.760E + 00

v/uc 1.422E − 18 2.538E − 01 9.871E − 02 2.897E + 00

∂u/∂x −8.555E − 16 3.853E + 00 −4.413E − 01 3.908E + 00

∂u/∂y −3.728E − 16 5.909E + 00 −8.500E − 02 5.754E + 00

∂v/∂x 9.816E − 17 4.910E + 00 −6.366E − 02 5.430E + 00

∂v/∂y 7.151E − 17 3.727E + 00 −2.926E − 01 4.099E + 00

Sxx −8.555E − 16 3.853E + 00 −4.413E − 01 3.908E + 00

Syy 7.151E − 17 3.727E + 00 −2.926E − 01 4.099E + 00

Sxy −2.534E − 16 3.345E + 00 −7.218E − 02 4.433E + 00

ωz −1.185E − 17 8.562E + 00 4.325E − 02 5.401E + 00

ε 1.423E + 01 1.886E + 01 4.310E + 00 3.604E + 01

Log10 [ε] 8.745E − 01 5.367E − 01 −5.587E − 01 3.792E + 00

(−∂w/∂z + ∇ · u) −8.048E − 16 3.888E + 00 2.777E − 01 3.853E + 00

∇u : ∇u 1.029E + 02 1.237E + 02 4.235E + 00 3.784E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
1.966E − 02 4.110E − 01 1.667E − 01 1.996E + 00

Sij : Sij 5.110E + 01 6.172E + 01 3.607E + 00 2.619E + 01

Log10 [Sij : Sij] 1.453E + 00 5.181E − 01 −6.168E − 01 3.891E + 00

3/2 (ωz)
2 1.100E + 02 2.307E + 02 6.726E + 00 8.434E + 01

Log10

[
3/2 (ωz)

2] 1.347E + 00 1.030E + 00 −1.257E + 00 6.017E + 00

Table 6.8: Normalized central moments computed from pdfs for Re = 93 700 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 6.21 – 6.37.
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Quantity µ σ γ β

u/uc −1.064E − 17 2.974E − 01 4.409E − 02 2.779E + 00

v/uc −7.828E − 18 2.246E − 01 −6.304E − 02 2.844E + 00

∂u/∂x −5.638E − 16 3.579E + 00 −4.643E − 01 4.259E + 00

∂u/∂y 2.779E − 16 5.421E + 00 −1.153E − 01 5.545E + 00

∂v/∂x 3.042E − 18 4.558E + 00 8.422E − 02 5.153E + 00

∂v/∂y 1.344E − 17 3.492E + 00 −4.163E − 01 4.163E + 00

Sxx −5.638E − 16 3.579E + 00 −4.643E − 01 4.259E + 00

Syy 1.344E − 17 3.492E + 00 −4.163E − 01 4.163E + 00

Sxy 1.126E − 16 3.135E + 00 −1.768E − 02 4.210E + 00

ωz −7.920E − 16 7.810E + 00 1.053E − 01 5.028E + 00

ε 3.470E + 01 4.545E + 01 3.948E + 00 3.148E + 01

Log10 [ε] 1.259E + 00 5.358E − 01 −4.980E − 01 3.652E + 00

(−∂w/∂z + ∇ · u) −7.261E − 16 3.733E + 00 3.428E − 01 3.989E + 00

∇u : ∇u 8.910E + 01 1.040E + 02 3.645E + 00 2.711E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
1.554E − 02 4.149E − 01 2.202E − 01 1.992E + 00

Sij : Sij 4.467E + 01 5.431E + 01 3.385E + 00 2.252E + 01

Log10 [Sij : Sij] 1.390E + 00 5.177E − 01 −5.427E − 01 3.736E + 00

3/2 (ωz)
2 9.149E + 01 1.836E + 02 5.553E + 00 5.304E + 01

Log10

[
3/2 (ωz)

2] 1.268E + 00 1.035E + 00 −1.265E + 00 5.956E + 00

Table 6.9: Normalized central moments computed from pdfs for Re = 145 300 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 6.21 – 6.37.
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Quantity µ σ γ β

u/uc 5.822E − 17 3.215E − 01 5.906E − 02 2.626E + 00

v/uc 5.744E − 18 2.256E − 01 1.374E − 02 2.901E + 00

∂u/∂x −9.236E − 16 3.583E + 00 −4.747E − 01 4.227E + 00

∂u/∂y 1.063E − 15 5.366E + 00 −4.769E − 02 5.124E + 00

∂v/∂x −9.648E − 17 4.489E + 00 −2.462E − 02 4.902E + 00

∂v/∂y 1.552E − 17 3.441E + 00 −4.238E − 01 4.150E + 00

Sxx −9.236E − 16 3.583E + 00 −4.747E − 01 4.227E + 00

Syy 1.552E − 17 3.441E + 00 −4.238E − 01 4.150E + 00

Sxy 4.210E − 16 3.061E + 00 −1.422E − 02 3.943E + 00

ωz −9.526E − 16 7.772E + 00 −3.682E − 02 4.897E + 00

ε 7.575E + 01 9.456E + 01 3.478E + 00 2.278E + 01

Log10 [ε] 1.609E + 00 5.294E − 01 −5.341E − 01 3.658E + 00

(−∂w/∂z + ∇ · u) −1.051E − 15 3.696E + 00 3.996E − 01 4.088E + 00

∇u : ∇u 8.728E + 01 9.883E + 01 3.369E + 00 2.259E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
1.754E − 02 4.171E − 01 2.066E − 01 1.990E + 00

Sij : Sij 4.342E + 01 5.098E + 01 3.171E + 00 1.918E + 01

Log10 [Sij : Sij] 1.388E + 00 5.100E − 01 −5.819E − 01 3.793E + 00

3/2 (ωz)
2 9.061E + 01 1.789E + 02 5.170E + 00 4.541E + 01

Log10

[
3/2 (ωz)

2] 1.268E + 00 1.032E + 00 −1.273E + 00 6.017E + 00

Table 6.10: Normalized central moments computed from pdfs for Re = 200 100 case.
The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the skewness
and β = µ4/σ

4 is the kurtosis. All quantities normalized by resolution-

corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as shown in

Figs. 6.21 – 6.37.
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Figure 6.38: Reduced rms values for the four ∂ui/∂xj components, Sxy, ωz and
(−∂w/∂z + ∇ · u). Here σq is normalized by N ? and by the nonre-
acting ensemble value 〈σq〉NR

for each of the aforementioned gradients
q. Results for nonreacting gradient data (top) and reacting gradients
(bottom).
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CHAPTER VII

Inner-Scaling of Nonreacting Flows: Effects of

Shear

Chapter V developed and demonstrated the proper inner scaling for velocity gra-

dient quantities in turbulent shear flows in terms of the measurement resolution scale

∆?. The self-similar forms of the resulting distributions for various inner-scaled ve-

locity gradient quantities in a nonreacting turbulent shear flow then served as the

basis in Chapter VI for comparisons with similarly-scaled distributions from a cor-

responding reacting turbulent shear flow, and thereby allowed effects of heat release

on these quantities to be directly determined. Those comparisons involved velocity

gradients measured around the centerline of an axisymmetric coflowing turbulent

jet, where the mean shear S ≡ (SijSij)
1/2 is essentially zero. Since the inner scaling

is fundamentally based on an approach to locally homogeneous and isotropic tur-

bulence at increasingly smaller scales, the inner scaling should be most nearly valid

on the jet centerline, since the mean shear S is zero there. At increasing radial

distances r from the centerline, the mean shear S(r) initially increases, then peaks

at about r ≈ δ1/2 and returns to zero for r & 2 δ1/2. Where S > 0 the mean shear

induces anisotropy in the large scales of the local turbulence, and any anisotropy
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that remains at the smaller scales will lead to departures from the strict inner-scale

similarity seen in Chapter V. In this chapter, inner-scaled distributions of velocity

gradients quantities from PIV measurements at various radial locations in a nonre-

acting turbulent shear flow are investigated for such departures from strict similarity

due to the local relative mean shear (Sδ/uc). These results then serve as the basis

in Chapter VIII for comparisons with corresponding PIV measurements at the same

radial locations in an exothermically reacting turbulent shear flow, to identify the

combined effects of shear and heat release on the small scales of a turbulent shear

flow.

7.1 Inner Scale PIV: Off-Axis Experiments

Table 3.5 lists the experimental conditions for each of the six radial nonreacting

flow cases for which results are presented in this chapter. All measurements were

made at x/d = 154 downstream of the jet exit, and correspond to the same flow

condition but different radial positions in the flow. The six radial locations r ranged

from the jet centerline (r = 0) to near the outer edge of the jet (r = 1.45 δ1/2). At

each radial location, 600 instantaneous inner-scale velocity fields were measured, each

with a 13.2 mm × 16.5 mm field-of-view containing 32 × 40 instantaneous velocity

vectors. At each location, the measurement resolution scale ∆? was obtained in

the same manner as described for the measurements in Chapters V and VI. An

additional 600 outer-scale velocity fields were measured, from which the local outer

variables uc and δ were obtained. The resulting outer-scale Reynolds number was

Reδ = 19 000.
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7.2 Inner-Scale Velocity Gradients

Probability density functions for each of the resulting inner-scale velocity gradient

components are given in Figs. 7.1 – 7.12. Each quantity is normalized by the proper

form that accounts for both the inner scaling and the measurement resolution scale

∆?. A separate curve in each figure panel corresponds to each of the six cases,

denoted RN0 – RN5. In each figure, the corresponding pdf is shown in linear form

in the upper panel, where the distributions at small values of the quantity can be

clearly seen, as well as in semi-logarithmic form in the lower panel, where the tails

of the distributions can be more clearly discerned.

It is apparent in the pdfs in Figs. 7.1 – 7.12 that, unlike for the on-centerline

nonreacting flow results in Chapter V, the inner-scaled pdfs from these differing

radial locations do not fall onto a single curve, even when the resolution scale ∆? has

been accounted for. There are clear differences apparent among the distributions for

different radial locations. This is especially evident, for example, in Figs. 7.8 and

7.10, where the shape of the distributions can be seen to vary widely among the

radial locations shown. In the upper panel in each of these figures, the two extreme

curves corresponding to cases RN0 and RN5 give an indication of the nature of these

differences. The distributions for case RN0, from measurements on the jet centerline,

peak at values nearly two orders of magnitude larger than do the distributions for

case RN5, from measurements nearer to the jet edge. Furthermore, comparing the

distributions at increasing radial locations suggests that these are each a “blend” of

the distribution from the jet centerline and a distribution corresponding to nearly-

irrotational fluid, with the contribution from the latter becoming larger at increasing

radial locations.
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Moreover, close inspection shows that in all these figures the pdfs for cases RN0,

RN1 and RN2, which correspond to the jet centerline and the two smallest off-

centerline radial locations, are very nearly identical. The differences become clearly

apparent, however, at the three largest radial locations. These differences are not

a result of anisotropy due to the local mean shear, since the mean shear (Sδ/uc)

increases for the first three cases, but then decreases again to similar values for the

last three cases.

Instead, the reason for these differences becomes apparent when examining the

velocity fields themselves. For the cases corresponding to the three largest radial lo-

cations off the jet centerline, namely RN3, RN4 and RN5, these fields were found to

include large regions of essentially-irrotational fluid that had been entrained into the

turbulent shear flow from the surrounding coflowing stream. The size and frequency

of appearance of such regions in these fields increases dramatically at larger radial lo-

cations, where most of the newly-entrained fluid is to be expected. These regions can

be readily identified in the data by the fact that they contain essentially no vortic-

ity, consistent with fluid that has been newly entrained from the nearly-irrotational

coflow.

The presence of such large regions of newly-entrained irrotational fluid among

the otherwise turbulent flow has often been referred to as “external intermittency”

(Corrsin and Kistler 1955; Wygnanski and Fiedler 1969; Hinze 1975), and was the

subject of considerable research on turbulent shear flows during the 1970’s and 80’s.

Turbulence statistics obtained at locations where such irrotational regions occur with

significant frequency are found be “contaminated” by contributions from this irro-

tational fluid. Since the present study seeks to investigate the effects of heat release

only on the turbulence statistics, this newly-entrained fluid must be removed from
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the statistical ensemble.

7.3 Data Conditioning

The enstrophy field can in principle be used to identify and exclude such large

irrotational regions from the statistical ensemble, yet doing this accurately is far

more difficult than it might seem. A local condition based on the enstrophy field

values over a small spatial stencil would indeed allow essentially-irrotational points

to be excluded from the statistics, but would also exclude points in the interior of

the flow where the vorticity happens to be below a threshold value. The goal is

to only exclude the large regions that account for “external intermittency” due to

newly-entrained irrotational fluid, without excluding smaller regions that account for

the “internal intermittency” that characterizes fully turbulent flow. Yet there is no

clear distinction between these two types of regions that would reliably allow only

the former to be excluded, since even the newly-entrained fluid is not completely

irrotational. Increasingly elaborate schemes could be devised to identify and exclude

regions based on various criteria, but any such approach to data conditioning creates

significant potential for introducing bias in the statistics beyond the original ill-

defined goal of excluding only the newly-entrained fluid from the ensemble.

For this reason, the present study uses a very simple global approach for exclud-

ing such regions. Rather than developing complex local criteria for rejecting data

on a point-by-point basis, entire data planes are rejected if the average enstrophy

value in them is below a threshold value. This is done using the raw velocity fields,

before any smoothing or filtering has been applied. Such a plane-by-plane exclusion
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approach necessarily rejects valid regions of fully turbulent flow in the discarded

planes, but the principal effect of this is simply a reduction in the size of the re-

maining statistical ensemble. A sufficiently large ensemble can be maintained by

choosing the rejection criterion accordingly, in this case setting the threshold value

for the average enstrophy to be sufficiently low. This will necessarily admit at least

some regions of essentially-irrotational flow into the ensemble, and evidence of these

in the resulting probability density functions. The final threshold value represents a

compromise between maintaining an adequate ensemble size and achieving adequate

rejection of essentially-irrotational regions of the flow.

This data conditioning approach was applied to the original ensembles for each

of the six cases in Table 3.5 and Figs. 7.1 – 7.12. For the three cases on or near the

jet centerline – namely RN0, RN1 and RN2 – none of the 600 planes in each of these

velocity fields was rejected. For case RN3 just 4% of the 600 planes were rejected,

while for cases RN4 and RN5 respectively 38.0% and 76.3% of the 600 planes were

rejected.

7.4 Conditioned Inner-Scale Velocity Gradient Statistics

After data conditioning as described above to remove most of the effects of “ex-

ternal intermittency” from newly-entrained irrotational fluid near the jet edge, the

remaining ensemble of velocity fields was processed in the same manner as before.

This included determination of the measurement resolution scale ∆? from the condi-

tioned data. The resulting spectral parameters p and ∆R, as well as the corresponding

∆? and other associated information, are given for each case in Table 7.1. Note that
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changes in the inner-scale normalization factors N ? due to the data conditioning

process were essentially negligible. From the conditioned data and these N ? values,

the distributions for the same velocity gradient quantities shown previously in Figs.

7.1 – 7.12 are now shown in Figs. 7.13 – 7.24. Corresponding moments from each of

these distributions are given in Tables 7.2 – 7.7.

Consistent with the fact that few or no planes were rejected for the four cases

closest to the centerline, the distributions for cases RN0 – RN3 are essentially the

same as before. However for the cases that correspond to the two outermost radial

locations, namely RN4 and RN5, the effect of removing the essentially-irrotational

regions due to newly-entrained fluid is substantial. This can be most clearly seen

by comparing the upper panels in Figs. 7.20 and 7.22 with the earlier Figs. 7.8 and

7.10. For the radially outermost case, RN5, the previous peak in each distribution

at low values has essentially disappeared, verifying that this was indeed the result

of “external intermittency” from newly-entrained fluid and not an effect of shear.

A small peak remains in Fig. 7.22 for cases RN4 and RN5, but this is now at

larger enstrophy values and presumably results from the relatively simple global

data conditioning approach used here due to the compromise between maintaining

an adequate ensemble size and achieving adequate rejection.

In essentially all of Figs. 7.13 – 7.24, the distributions corresponding to the six

radial locations in each figure panel fall onto two relatively distinct self-similar curves.

The first corresponds to cases RN0, RN1 and RN2, for which all three curves are

relatively similar, and the second corresponds to cases RN3, RN4 and RN5, for which

all three curves are again essentially similar but substantially different from the first

group. This is especially evident in Fig. 7.20, though the same grouping can generally

be seen in the other figures as well. It is unlikely that the differences between these
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two groups is primarily due to the incomplete removal of “external intermittency”

by the data conditioning approach, since the two cases in which 38% and 76% of the

planes were rejected essentially agree with case RN3, in which just 4% of the planes

were rejected. This suggests that these differences are real, though the reason why

these distributions might fall into two such self-similar groups is not apparent. It

is noteworthy that the first group corresponds to locations radially inward from the

point of maximum shear, and the second group is radially outward from this point.

Even if the evidence for grouping these cases into two more or less distinct self-

similar curves is regarded as insufficiently compelling, it is undeniable that in all of

Figs. 7.13 – 7.24 there is a limiting form apparent for cases RN0 and RN1, and a

transition to a second limiting form that clearly applies for cases RN4 and RN5.

These two pairs of cases show distinctly different limiting forms even though the

mean shear rates that correspond to them are essentially similar. Moreover, the

transition between these two limiting forms occurs over a remarkably narrow range

of shear rates. In general, while these distributions do not appear to correlate simply

with the mean shear rate (Sδ/uc), there does appear to be a clear effect of the radial

position within the shear profile on these inner-scale flow properties.

7.5 Effects of Shear on Inner-Scale Statistics

Relatively little is currently understood about the extent to which the local shear

affects the inner-scale properties of turbulent shear flows. In broadest terms, what

is known is based on the classical hypothesis of a universal approach to a locally ho-

mogeneous and isotropic state at sufficiently small scales. Beyond this local isotropy
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assumption, however, the precise extension of classical turbulence theory to turbulent

shear flows is still a subject of considerable uncertainty. The approach to a univer-

sal, homogeneous, isotropic state at small scales is complicated in turbulent shear

flows by the presence of organized large-scale structure, spatial inhomogeneity and

anisotropy, as well as the comparatively small scale-range achievable at the moderate

Reynolds numbers of most experimental studies and the limitations of measurement

resolution in accessing the small-scale structure of the flow. To date, relatively little

is known about the range of scales over which these characteristics of shear flow tur-

bulence will create significant departures from the asymptotic state that is presumed

to apply at sufficiently small scales.

The departures from isotropy in turbulent shear flows are generally believed to

depend on how the local shear S compares with the local turbulence time scale k/ε,

where k ≡ 1/2u′iu
′
i is the local turbulence kinetic energy and ε is the local dissipation

rate of k, and with the local viscous time scale (ν/ε)1/2 or equivalently (λ2
ν/ν). These

provide two dimensionless parameters that characterize the extent of the anisotropy

induced by the mean shear. The first of these is

S? ≡
(
Sk
ε

)
, (7.1)

and as S? increases the anisotropy induced at the large scales is believed to extend

to increasingly smaller scales. Note that, since ε ∼ (u3
c/δ), the shear parameter S?

above is proportional to (Sδ/uc) given in the legends in Figs. 7.13 – 7.24. The second

ratio, termed the Corrsin-Uberoi parameter (Corrsin 1958; Uberoi 1957), is

S?
c ≡ S

(ν
ε

) 1
2 � 1, (7.2)

and when S is sufficiently large that S?
c approaches one then even the smallest scales

will be affected by the shear. When this parameter is small, then the inner time
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scale is sufficiently fast compared to the shear time scale for the inner scales to

maintain their natural isotropic state. The effects of S? and S?
c in characterizing

the anisotropy in the velocity field is consistent with measurements in a large-scale

turbulent boundary layer by Saddoughi and Veeravalli (1994). For the cases in Table

3.5 and Figs. 7.13 – 7.24, corresponding values of the Corrsin-Uberoi parameter based

on the local shear are S?
c ≤ 0.156, with the maximum value occurring for case RN3.

Here the dissipation ε is estimated from the measured gradient values as

ε = 15ν

[
3

2

(
S2

xx + S2
yy

)
+ 6S2

xy

]
(7.3)

Since S?
c � 1 these values suggest that the smallest scales in the flow should remain

largely isotropic, and that the inner-scaled distributions in Figs. 7.13 – 7.24 might

thus be largely unaffected by the local shear. This is partly consistent with the

distributions in these figures, since the three cases RN0, RN1 and RN2 all have

S?
c ≤ 0.156 and all fall onto essentially the same limiting curve. However, it is

inconsistent with the transition to a different limiting curve in cases RN3, RN4 and

RN5, since these also all have S?
c � 1.

Additional insights can be obtained by examining the moments in Tables 7.2

– 7.7 obtained from these distributions. Key ratios of these moments are shown

as a function of the dimensionless shear Sδ/uc in Figs. 7.25 and 7.26, where cor-

responding results from Mullin and Dahm (2005b) are shown for comparison. In

Fig. 7.25, two moment ratios are used to indicate the degree of anisotropy in the

velocity gradient fields and any correlation this may have with the mean shear. The

upper panel compares the rms values of the on-diagonal strain rates Sxx and Syy, for

which the isotropic value is 1. The leftmost point, labeled RN0, is from the present

measurements on the jet centerline, and proceeding rightward the measurement lo-
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cation moves from the centerline towards the jet edge. At the maximum shear value,

the curve reverses and proceeds leftward as the measurement location further pro-

ceeds radially outward. It is apparent that there is essentially no variation in this

anisotropy measure with increasing Sδ/uc, or equivalently with increasing Sk/ε. The

lower panel presents a similar anisotropy measure based on a ratio rms values for the

on-diagonal and off-diagonal components of the strain rates, for which the isotropic

value is 0.25. Here, too, there is little variation in the degree of anisotropy with

increasing Sδ/uc. The curves in both panels, however, show two distinct branches

that correspond to the two distinctly different limiting forms of the distributions in

Figs. 7.13 – 7.24.

Further such tests are shown in Fig. 7.26, where the upper panel is the ratio of

the rms values of the u and v components velocity fluctuations, and the lower panel

is ratio of the rms value of −∂w/∂z inferred from continuity. The upper panel thus

reflects the anisotropy at the large scales of the flow, while the measure in the lower

panel is dominated by small-scale anisotropy. For these anisotropy measures as well,

there is little consistent variation in the degree of anisotropy with increasing Sδ/uc.

The upper panel does show a slightly larger departure from the isotropic value of 1

with increasing shear rate, as would be expected for a measure that is sensitive to

large-scale anisotropy. However, the measure in the lower panel shows little effect of

the shear rate on the level of small-scale anisotropy. The curves in both panels of

both figures again show two distinct branches that correspond to the two distinctly

different limiting forms of the distributions in Figs. 7.13 – 7.24.
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Figure 7.1: Pdfs from all nonreacting, off-centerline cases RN0 – RN5 for ve-
locity gradient ∂u/∂x normalized by resolution-corrected inner scal-

ing (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 7.2: Pdfs from all nonreacting, off-centerline cases RN0 – RN5 for ve-
locity gradient ∂u/∂y normalized by resolution-corrected inner scal-

ing (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 7.3: Pdfs from all nonreacting, off-centerline cases RN0 – RN5 for ve-
locity gradient ∂v/∂x normalized by resolution-corrected inner scal-

ing (ν/λ2
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Figure 7.4: Pdfs from all nonreacting, off-centerline cases RN0 – RN5 for ve-
locity gradient ∂v/∂y normalized by resolution-corrected inner scal-

ing (ν/λ2
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Figure 7.5: Pdfs from all nonreacting, off-centerline cases RN0 – RN5 for strain
rate component Sxx normalized by resolution-corrected inner scaling
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Figure 7.6: Pdfs from all nonreacting, off-centerline cases RN0 – RN5 for strain
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Figure 7.7: Pdfs from all nonreacting, off-centerline cases RN0 – RN5 for strain
rate component Sxy normalized by resolution-corrected inner scaling

(ν/λ2
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Figure 7.8: Pdfs from all nonreacting, off-centerline cases RN0 – RN5, for dissi-
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{(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2}2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 7.9: Pdfs from all nonreacting, off-centerline cases RN0 – RN5 for
vorticity ωz normalized by resolution-corrected inner scaling
(ν/λ2

ν) Λ2 (δ/∆?)2/3Re
−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 7.10: Pdfs from all nonreacting, off-centerline cases RN0 – RN5, for en-
strophy Log10 (ϑz) normalized by resolution-corrected inner scaling,
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Figure 7.11: Pdfs from all nonreacting, off-centerline cases RN0 – RN5, for contrac-
tion of the velocity gradient tensor ∇u : ∇u normalized by resolution-
corrected inner scaling, {(ν/λ2
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Figure 7.12: Pdfs from all nonreacting, off-centerline cases RN0 – RN5 for two-
dimensional divergence −∂w/∂z normalized by resolution-corrected in-
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Figure 7.13: Pdfs from all nonreacting, off-centerline cases RN0 – RN5 for ve-
locity gradient ∂u/∂x normalized by resolution-corrected inner scal-

ing (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 7.14: Pdfs from conditioned data for all nonreacting, off-centerline cases RN0
– RN5 for velocity gradient ∂u/∂y normalized by resolution-corrected

inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes

(top) and semilogarithmic axes (bottom).
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Figure 7.15: Pdfs from conditioned data for all nonreacting, off-centerline cases RN0
– RN5 for velocity gradient ∂v/∂x normalized by resolution-corrected

inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re
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Figure 7.16: Pdfs from conditioned data for all nonreacting, off-centerline cases RN0
– RN5 for velocity gradient ∂v/∂y normalized by resolution-corrected

inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re
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δ [D(p)]1/2, shown in linear axes

(top) and semilogarithmic axes (bottom).
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Figure 7.17: Pdfs from conditioned data for all nonreacting, off-centerline cases RN0
– RN5 for strain rate component Sxx normalized by resolution-corrected
inner scaling (ν/λ2

ν) Λ2 (δ/∆?)2/3Re
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Figure 7.18: Pdfs from conditioned data for all nonreacting, off-centerline cases RN0
– RN5 for strain rate component Syy normalized by resolution-corrected

inner scaling (ν/λ2
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Figure 7.19: Pdfs from conditioned data for all nonreacting, off-centerline cases RN0
– RN5 for strain rate component Sxy normalized by resolution-corrected

inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes

(top) and semilogarithmic axes (bottom).
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Figure 7.20: Pdfs from conditioned data for all nonreacting, off-
centerline cases RN0 – RN5, for the pseudo-dissipation
Log10 (SijSij) normalized by resolution-corrected inner scaling

{(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2}2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 7.21: Pdfs from conditioned data for all nonreacting, off-centerline cases RN0
– RN5 for the vorticity ωz normalized by resolution-corrected inner
scaling (ν/λ2

ν) Λ2 (δ/∆?)2/3Re
−1/2
δ [D(p)]1/2, shown in linear axes (top)

and semilogarithmic axes (bottom).

262



P

[ L
og

1
0

( ϑ
z
/
{ (ν

/λ
2 ν
)
Λ

2
(δ
/∆

?
)2

/
3
R
e−

1
/
2

δ
[D

(p
)]

1
/
2
} 2)]

Log10

(
ϑz/

{
(ν/λ2

ν) Λ2 (δ/∆?)2/3Re
−1/2
δ [D(p)]1/2

}2
)

P

[ L
og

1
0

( ϑ
z
/
{ (ν

/λ
2 ν
)
Λ

2
(δ
/∆

?
)2

/
3
R
e−

1
/
2

δ
[D

(p
)]

1
/
2
} 2)]

Log10

(
ϑz/

{
(ν/λ2

ν) Λ2 (δ/∆?)2/3Re
−1/2
δ [D(p)]1/2

}2
)

1/2

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

RN0 : Sδ/uc = 0.7

RN1 : Sδ/uc = 2.6

RN2 : Sδ/uc = 4.0

RN3 : Sδ/uc = 3.9

RN4 : Sδ/uc = 2.9

RN5 : Sδ/uc = 1.7

−8 −6 −4 −2 0 2 4
10

−4

10
−3

10
−2

10
−1

10
0

 

 

RN0 : Sδ/uc = 0.7

RN1 : Sδ/uc = 2.6

RN2 : Sδ/uc = 4.0

RN3 : Sδ/uc = 3.9

RN4 : Sδ/uc = 2.9

RN5 : Sδ/uc = 1.7

Figure 7.22: Pdfs from conditioned data for all nonreacting, off-centerline cases
RN0 – RN5, for pseudo-enstrophy Log10 (ϑz) normalized by resolution-

corrected inner scaling, {(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2}2, shown

in linear axes (top) and semilogarithmic axes (bottom).
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Figure 7.23: Pdfs from conditioned data for all nonreacting, off-centerline
cases RN0 – RN5, for contraction of the velocity gradient ten-
sor ∇u : ∇u normalized by resolution-corrected inner scaling,
{(ν/λ2

ν) Λ2 (δ/∆?)2/3Re
−1/2
δ [D(p)]1/2}2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 7.24: Pdfs from conditioned data for all nonreacting, off-centerline cases
RN0 – RN5 for two-dimensional divergence −∂w/∂z normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2,

shown in linear axes (top) and semilogarithmic axes (bottom).
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Quantity µ σ γ β

u/uc −6.820E − 18 2.526E − 01 9.158E − 02 2.818E + 00

v/uc −1.534E − 18 2.172E − 01 7.718E − 03 2.847E + 00

∂u/∂x −7.643E − 16 3.016E + 00 −4.640E − 01 4.544E + 00

∂u/∂y 3.240E − 16 4.280E + 00 3.320E − 02 6.152E + 00

∂v/∂x 1.612E − 17 4.053E + 00 5.213E − 02 5.970E + 00

∂v/∂y −2.913E − 17 2.928E + 00 −3.641E − 01 4.382E + 00

Sxx −7.643E − 16 3.016E + 00 −4.640E − 01 4.544E + 00

Syy −2.913E − 17 2.928E + 00 −3.641E − 01 4.382E + 00

Sxy 1.728E − 16 2.560E + 00 3.999E − 02 4.503E + 00

ωz −2.371E − 16 6.579E + 00 3.875E − 02 5.912E + 00

ε 8.965E − 01 1.215E + 00 4.383E + 00 4.100E + 01

Log10 [ε] −3.377E − 01 5.449E − 01 −4.950E − 01 3.638E + 00

−∂w/∂z −6.601E − 16 3.096E + 00 3.380E − 01 4.296E + 00

∇u : ∇u 6.200E + 01 7.835E + 01 4.349E + 00 3.899E + 01[
−∂w/∂z

(∇u : ∇u)1/2

]
1.847E − 02 4.162E − 01 1.912E − 01 1.968E + 00

Sij : Sij 3.078E + 01 3.886E + 01 3.765E + 00 2.872E + 01

Log10 [Sij : Sij] 1.219E + 00 5.275E − 01 −5.419E − 01 3.734E + 00

3/2 (ωz)
2 6.492E + 01 1.439E + 02 6.679E + 00 8.084E + 01

Log10

[
3/2 (ωz)

2] 1.076E + 00 1.052E + 00 −1.198E + 00 5.839E + 00

Table 7.2: Normalized central moments computed from pdfs of conditioned data for
RN0 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 7.13 – 7.24.
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Quantity µ σ γ β

u/uc −2.867E − 17 2.679E − 01 6.893E − 02 2.665E + 00

v/uc 7.022E − 18 2.072E − 01 3.742E − 02 2.801E + 00

∂u/∂x −1.279E − 15 2.939E + 00 −3.747E − 01 4.557E + 00

∂u/∂y −9.341E − 16 4.174E + 00 −2.872E − 01 6.248E + 00

∂v/∂x 3.038E − 17 3.828E + 00 −1.140E − 01 6.232E + 00

∂v/∂y −2.407E − 17 2.875E + 00 −4.183E − 01 4.628E + 00

Sxx −1.279E − 15 2.939E + 00 −3.747E − 01 4.557E + 00

Syy −2.407E − 17 2.875E + 00 −4.183E − 01 4.628E + 00

Sxy −5.233E − 16 2.508E + 00 −2.016E − 01 4.413E + 00

ωz 8.971E − 16 6.245E + 00 7.236E − 02 6.359E + 00

ε 8.728E − 01 1.170E + 00 4.048E + 00 3.410E + 01

Log10 [ε] −3.561E − 01 5.535E − 01 −4.867E − 01 3.533E + 00

−∂w/∂z −1.260E − 15 3.150E + 00 4.135E − 01 4.664E + 00

∇u : ∇u 5.890E + 01 7.524E + 01 4.307E + 00 4.072E + 01[
−∂w/∂z

(∇u : ∇u)1/2

]
1.655E − 02 4.239E − 01 1.902E − 01 1.931E + 00

Sij : Sij 2.948E + 01 3.698E + 01 3.504E + 00 2.464E + 01

Log10 [Sij : Sij] 1.192E + 00 5.370E − 01 −5.268E − 01 3.600E + 00

3/2 (ωz)
2 5.850E + 01 1.354E + 02 7.520E + 00 1.084E + 02

Log10

[
3/2 (ωz)

2] 1.005E + 00 1.063E + 00 −1.143E + 00 5.599E + 00

Table 7.3: Normalized central moments computed from pdfs of conditioned data for
RN1 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 7.13 – 7.24.
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Quantity µ σ γ β

u/uc 3.028E − 17 2.626E − 01 3.276E − 01 2.831E + 00

v/uc 4.392E − 18 2.045E − 01 2.771E − 01 3.083E + 00

∂u/∂x −2.343E − 16 2.705E + 00 −4.395E − 01 4.840E + 00

∂u/∂y −1.322E − 15 3.977E + 00 −4.453E − 01 6.832E + 00

∂v/∂x −7.517E − 17 3.589E + 00 2.845E − 02 6.573E + 00

∂v/∂y −4.636E − 17 2.777E + 00 −5.546E − 01 5.260E + 00

Sxx −2.343E − 16 2.705E + 00 −4.395E − 01 4.840E + 00

Syy −4.636E − 17 2.777E + 00 −5.546E − 01 5.260E + 00

Sxy −6.091E − 16 2.397E + 00 −2.546E − 01 4.874E + 00

ωz 1.361E − 15 5.865E + 00 2.791E − 01 7.151E + 00

ε 7.192E − 01 1.050E + 00 4.410E + 00 3.799E + 01

Log10 [ε] −4.719E − 01 5.808E − 01 −4.524E − 01 3.486E + 00

−∂w/∂z −2.174E − 16 3.004E + 00 3.024E − 01 4.830E + 00

∇u : ∇u 5.275E + 01 7.250E + 01 4.481E + 00 4.014E + 01[
−∂w/∂z

(∇u : ∇u)1/2

]
2.224E − 02 4.295E − 01 1.700E − 01 1.901E + 00

Sij : Sij 2.652E + 01 3.624E + 01 3.929E + 00 3.003E + 01

Log10 [Sij : Sij] 1.116E + 00 5.639E − 01 −4.927E − 01 3.545E + 00

3/2 (ωz)
2 5.160E + 01 1.280E + 02 7.857E + 00 1.120E + 02

Log10

[
3/2 (ωz)

2] 9.060E − 01 1.086E + 00 −1.096E + 00 5.445E + 00

Table 7.4: Normalized central moments computed from pdfs of conditioned data for
RN2 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 7.13 – 7.24.
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Quantity µ σ γ β

u/uc −1.703E − 17 2.371E − 01 4.633E − 01 2.922E + 00

v/uc 2.370E − 18 1.817E − 01 5.530E − 01 3.387E + 00

∂u/∂x 5.084E − 16 2.306E + 00 −4.161E − 01 6.005E + 00

∂u/∂y 1.325E − 16 3.431E + 00 −8.452E − 01 9.804E + 00

∂v/∂x −4.979E − 17 3.045E + 00 −1.878E − 01 8.591E + 00

∂v/∂y 4.348E − 17 2.364E + 00 −5.424E − 01 5.763E + 00

Sxx 5.084E − 16 2.306E + 00 −4.161E − 01 6.005E + 00

Syy 4.348E − 17 2.364E + 00 −5.424E − 01 5.763E + 00

Sxy 4.628E − 17 2.050E + 00 −4.499E − 01 6.070E + 00

ωz −1.455E − 17 5.029E + 00 4.108E − 01 9.394E + 00

ε 4.883E − 01 8.183E − 01 7.851E + 00 2.281E + 02

Log10 [ε] −7.049E − 01 6.432E − 01 −4.394E − 01 3.289E + 00

−∂w/∂z 5.203E − 16 2.522E + 00 3.851E − 01 5.668E + 00

∇u : ∇u 3.831E + 01 6.256E + 01 8.778E + 00 2.441E + 02[
−∂w/∂z

(∇u : ∇u)1/2

]
2.265E − 02 4.308E − 01 1.513E − 01 1.892E + 00

Sij : Sij 1.931E + 01 3.012E + 01 6.016E + 00 1.132E + 02

Log10 [Sij : Sij] 9.138E − 01 6.283E − 01 −4.716E − 01 3.319E + 00

3/2 (ωz)
2 3.793E + 01 1.099E + 02 1.335E + 01 4.546E + 02

Log10

[
3/2 (ωz)

2] 6.798E − 01 1.125E + 00 −9.560E − 01 5.086E + 00

Table 7.5: Normalized central moments computed from pdfs of conditioned data for
RN3 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 7.13 – 7.24.
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Quantity µ σ γ β

u/uc 1.052E − 17 1.873E − 01 4.867E − 01 3.132E + 00

v/uc 6.367E − 18 1.503E − 01 2.661E − 01 3.292E + 00

∂u/∂x 5.224E − 16 2.007E + 00 −3.011E − 01 6.418E + 00

∂u/∂y 4.262E − 16 3.053E + 00 −5.758E − 01 7.728E + 00

∂v/∂x −1.051E − 17 2.679E + 00 −2.343E − 01 1.112E + 01

∂v/∂y 1.776E − 17 2.121E + 00 −5.835E − 01 6.176E + 00

Sxx 5.224E − 16 2.007E + 00 −3.011E − 01 6.418E + 00

Syy 1.776E − 17 2.121E + 00 −5.835E − 01 6.176E + 00

Sxy 1.853E − 16 1.811E + 00 −3.275E − 01 5.435E + 00

ωz −2.538E − 16 4.459E + 00 2.654E − 01 1.015E + 01

ε 3.393E − 01 5.502E − 01 5.864E + 00 8.207E + 01

Log10 [ε] −8.562E − 01 6.444E − 01 −5.008E − 01 3.338E + 00

−∂w/∂z 4.793E − 16 2.213E + 00 4.543E − 01 5.934E + 00

∇u : ∇u 2.993E + 01 4.990E + 01 9.713E + 00 2.448E + 02[
−∂w/∂z

(∇u : ∇u)1/2

]
1.996E − 02 4.222E − 01 1.655E − 01 1.927E + 00

Sij : Sij 1.509E + 01 2.351E + 01 6.170E + 00 1.051E + 02

Log10 [Sij : Sij] 8.114E − 01 6.294E − 01 −5.272E − 01 3.380E + 00

3/2 (ωz)
2 2.982E + 01 9.022E + 01 1.966E + 01 9.261E + 02

Log10

[
3/2 (ωz)

2] 6.017E − 01 1.096E + 00 −9.497E − 01 5.173E + 00

Table 7.6: Normalized central moments computed from pdfs of conditioned data for
RN4 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 7.13 – 7.24.
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Quantity µ σ γ β

u/uc −2.105E − 17 1.686E − 01 6.619E − 01 3.722E + 00

v/uc 2.358E − 17 1.462E − 01 3.196E − 01 3.147E + 00

∂u/∂x −3.448E − 16 1.849E + 00 −4.373E − 02 6.862E + 00

∂u/∂y −1.003E − 16 2.858E + 00 −1.037E + 00 7.950E + 00

∂v/∂x −9.358E − 17 2.800E + 00 3.855E − 01 9.038E + 00

∂v/∂y 1.911E − 17 1.983E + 00 −5.870E − 01 6.586E + 00

Sxx −3.448E − 16 1.849E + 00 −4.373E − 02 6.862E + 00

Syy 1.911E − 17 1.983E + 00 −5.870E − 01 6.586E + 00

Sxy −2.806E − 17 1.767E + 00 −3.594E − 01 5.408E + 00

ωz 1.601E − 16 4.418E + 00 9.112E − 01 8.707E + 00

ε 2.711E − 01 4.463E − 01 6.408E + 00 8.961E + 01

Log10 [ε] −9.635E − 01 6.573E − 01 −5.085E − 01 3.259E + 00

−∂w/∂z −2.469E − 16 2.000E + 00 2.873E − 01 8.732E + 00

∇u : ∇u 2.735E + 01 4.692E + 01 8.196E + 00 1.447E + 02[
−∂w/∂z

(∇u : ∇u)1/2

]
1.892E − 02 3.978E − 01 1.757E − 01 2.064E + 00

Sij : Sij 1.359E + 01 2.139E + 01 6.615E + 00 9.747E + 01

Log10 [Sij : Sij] 7.595E − 01 6.407E − 01 −5.447E − 01 3.299E + 00

3/2 (ωz)
2 2.928E + 01 8.127E + 01 8.207E + 00 1.113E + 02

Log10

[
3/2 (ωz)

2] 6.284E − 01 1.040E + 00 −9.302E − 01 5.515E + 00

Table 7.7: Normalized central moments computed from pdfs of conditioned data for
RN5 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 7.13 – 7.24.
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Figure 7.25: Rms values of the strain rate components as a function of shear S
nondimensionalized on outer variables. The ratio of the rms of the on-
diagonal strain rates Sxx/Syy, (top), is shown with the ratio (σSxx +
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1/2/σSxy , (bottom). The black circles are data from the present
study, the red squares are from the data of Mullin and Dahm (2005b).
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CHAPTER VIII

Inner-Scaling of Nonreacting Flows: Effects of

Shear and Heat Release

In Chapters V and VI, results for nonreacting and reacting inner scale gradients

were presented. The measurement resolution scale ∆? permitted the comparison

across both flow conditions to be on an equal basis. Chapter VII explored the effect

of mean flow shear on the inner scales of a nonreacting flow by relaxing the S ≈ 0

constraint. While the mean shear was introducing anisotropic tendencies into the

local outer scales, the inner scales were largely unaffected – as corroborated by the

Corrsin-Uberoi criteria.

In the present chapter, the simultaneous presence of exothermicity and nonzero

mean shear are investigated. Following the established pattern of Chapters V –

VII, the reacting data have been corrected with their measurement resolution scale

∆? via the extended inner normalization N ? described in §5.4.5. Secondly, the

off-centerline reacting data were conditioned according to the strategy outlined in

§7.3. These results for chemically reacting exothermic flows are then able to be

directly compared to their nonreacting counterparts from Chapter VII. From these

comparisons, the combined effects of heat release and shear on the small scales of a
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turbulent shear flow are identified.

8.1 Inner Scale PIV: Off-Axis Reacting Flow Experiments

The experimental conditions for each of the six radial nonreacting flow cases for

which results are presented in this chapter are listed in Table 3.6. All measurements

were made at the same axial location, x/d = 153 downstream of the jet exit, and

correspond to the same flow condition but different radial positions in the flow. The

six radial locations r ranged from the jet centerline (r = 0) to near the outer edge of

the jet (r = 1.45 δ1/2). At each radial station, 600 instantaneous inner-scale velocity

fields were measured, each with a 13.5 mm×16.8 mm field-of-view containing 32×40

instantaneous velocity vectors. At each location, the measurement resolution scale

∆? was obtained in the same manner as described for the measurements in Chapters

V and VI. An additional 600 outer-scale velocity fields were measured, from which

the local outer variables uc and δ were obtained. Based on these measurements, the

resulting outer-scale Reynolds number was Reδ = 65 000.

8.2 Inner Scale Velocity Gradients

For each of the off-centerline reacting flow cases, pdfs are shown in Figs. 8.1 – 8.12.

Each of the selected gradients are normalized by the proper N ? value which corrects

for both measurement resolution while accounting for inner scaling. In each of the

figures, individual curves are presented, corresponding to each of the six cases RR0

– RR5 listed in Table 3.6. The figures are shown in the typical fashion with linearly
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plotted pdfs in the upper panels and the same pdfs plotted in a semilogarithmic

manner in the lower panels. The spectral parameters from the N ? corrections are

tabulated in Table 8.1. Note that similar to the off-centerline, nonreacting results

of Chapter VII, the measurement resolution correction provides little impact on the

final gradient values – a difference of only 20% by comparing the most disparate

cases, RR0 and RR3. This change between the extrema is nearly identical to the

differences observed in the nonreacting cases reported in the previous chapter. The

detailed moment information for each of the reacting, off-centerline cases is reported

in Tables 8.2 – 8.7, where the first four central moments are presented.

8.3 Inner Scale, Off-Axis: Reacting & Nonreacting

Similar to the nonreacting off-centerline results of Chapter VII, the statistics for

the reacting cases do not collapse onto a single curve. Although two groups of “self-

similar” curves were noted in §7.4, for the nonreacting cases – the same behavior is

not easily identified in the reacting cases. However, for reasons that are again not

readily apparent, cases RR0 and RR1 agree well across the gradients in Figs. 8.1

– 8.12. Similarly, RR3 and RR4 have generally high levels of self-similarity. The

remaining two cases, RR2 and RR5, are more ambiguous and do not clearly find

themselves in one of the two groups.

Direct comparison between the reacting and nonreacting off-centerline cases is

shown in Figs. 8.13 – 8.15. In these plots, both upper and lower panels are shown

in linear axes. The upper panels reproduce the nonreacting data from Figs. 7.20,

7.22 and 7.24, while the lower panels reproduce the reacting data from Figs. 8.8,
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8.10 and 8.12. Three gradients were selected for these comparisons, the pseudo-

dissipation, SijSij, the pseudo-enstrophy ϑz and the apparent two-dimensional diver-

gence (∇ · u)2D . As stated in Chapter VI, the apparent two-dimensional divergence

in these reacting flow cases now includes both the additional velocity gradient com-

ponent ∂w/∂z ≡ − (∂u/∂x+ ∂v/∂y) as well as the true divergence ∇ · u induced

by heat release as described in § 2.5. Direct comparison between the two panels for

each gradient is permitted as the pdfs have been corrected by N ? and the data con-

ditioned according to §7.3. Note that care has been taken to display each respective

pdf on the same axes scales for both the upper and lower panels. At first glance,

the overall comparison between the reacting and nonreacting cases is generally sim-

ilar. The combined effects of shear and exothermicity do not dramatically alter the

statistics as compared to the sheared, nonreacting conditions. The spread amongst

the pdfs, moving from one radial station to the next, is comparable from nonreacting

to reacting. That is, the differences observed between the RN0 and RN5 cases are

similar to the corresponding differences exhibited between RR0 and RR5.

The differences between the reacting and nonreacting conditions, while not pro-

found, are noticeable. The apparent two-dimensional divergence pdfs in Fig. 8.15 are

wider for the reacting cases. This is consistent with the behavior noted in Chapter

VI for data obtained on the jet centerline. Examination of the 2nd-order gradients in

Figs. 8.13 and 8.14 reveal a systematic trend. The squared gradients of SijSij and ϑz

are more sharply peaked for the reacting pdfs than their nonreacting counterparts.

This is most noticeable for radial positions RN3 – RN5 and RR3 – RR5. This

observation is consistent with the noted widening in the apparent two-dimensional

divergence pdfs.

Another observation is noted in Fig. 8.14. Here the pseudo-enstrohpy reveals the
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lingering signature of entrained coflow fluid evident in the RN5 pdf of the nonre-

acting, off-centerline results (top). Furthermore, a less pronounced impact on the

RN3 and RN4 pdfs is also visible. By comparison, the RR5 case in the lower panel

reveals only the slightest perturbation in its pdf – the type of perturbation due to

the freshly entrained, irrotational coflow fluid. Similarly, in the RR3 and RR4 cases

there is a reduced signature of irrotational fluid as compared to their nonreacting

RN3 and RN4 radial counterparts. This observation is consistent with the reduced

entrainment levels widely reported in jet flames, over nonreacting jets, (Ricou and

Spalding, 1961). The jet-scaling entrainment relationship, (Diez and Dahm, 2007),

m(x) = I1 (cu)j (cδ)
2
j (ρ∞J0)

1
2 x, (8.1)

where I1, (cu)j and (cδ)
2
j are constants identified in §2.2. The entrainment rate, E(x)

is,

E(x) ≡ dm

dx
= I1 (cu)j (cδ)

2
j (ρ∞J0)

1
2 . (8.2)

For jet-like scaling, the entrainment depends explicitly on the coflow density ρ∞.

According to the Equivalence Principle outlined in Chapter II, this ρ∞ is replaced

by ρeff
∞ to obtain the corresponding entrainment rate for an otherwise equivalent

reacting flow. From (2.8), and taking T eff
∞ ≈ 3259 K, (Tacina and Dahm, 2000), this

gives a reduction in entrainment for a hydrogen-air reacting jet of,

[E(x)]R
[E(x)]NR

=

(
ρeff
∞
ρ∞

) 1
2

≈ 0.30, (8.3)

where [E(x)]R is the entrainment rate for a reacting flow and [E(x)]NR is for a

nonreacting flow.
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8.4 Effects of Shear and Exothermicity on Local Isotropy

The Corrsin-Uberoi parameter defined in (7.2), is used to measure the degree of

local (an)isotropy present at the small scales of a turbulent shear flow. (Recall that

for S?
c � 1 the smallest scales in the flow should remain largely isotropic). For the

off-centerline reacting data, the maximum Corrsin-Uberoi parameter based on the

local shear S (listed in Table 3.6) is S?
c = 0.185, occurring for case RR3. This is

only a small departure from the maximum value admitted by the nonreacting off-

centerline data from Chapter VII, S?
c = 0.156, at RN3. This suggests that, similar

to the nonreacting results of the previous chapter, the smallest scales in the flow

should remain largely isotropic, and that the inner-scaled statistics presented as pdfs

in Figs. 8.1 – 8.12 might be largely unaffected by the local shear.
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Figure 8.1: Pdfs from all reacting, off-centerline cases RR0 – RR5 for veloc-
ity gradient ∂u/∂x normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 8.2: Pdfs from all reacting, off-centerline cases RR0 – RR5 for veloc-
ity gradient ∂u/∂y normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 8.3: Pdfs from all reacting, off-centerline cases RR0 – RR5 for veloc-
ity gradient ∂v/∂x normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes (top) and

semilogarithmic axes (bottom).
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Figure 8.4: Pdfs from all reacting, off-centerline cases RR0 – RR5 for veloc-
ity gradient ∂v/∂y normalized by resolution-corrected inner scaling

(ν/λ2
ν) Λ2 (δ/∆?)2/3Re
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δ [D(p)]1/2, shown in linear axes (top) and
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Figure 8.5: Pdfs from conditioned data for all reacting, off-centerline cases RR0 –
RR5 for strain rate component Sxx normalized by resolution-corrected
inner scaling (ν/λ2

ν) Λ2 (δ/∆?)2/3Re
−1/2
δ [D(p)]1/2, shown in linear axes

(top) and semilogarithmic axes (bottom).
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Figure 8.6: Pdfs from conditioned data for all reacting, off-centerline cases RR0 –
RR5 for strain rate component Syy normalized by resolution-corrected

inner scaling (ν/λ2
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Figure 8.7: Pdfs from conditioned data for all reacting, off-centerline cases RR0 –
RR5 for strain rate component Sxy normalized by resolution-corrected

inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2, shown in linear axes

(top) and semilogarithmic axes (bottom).
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Quantity µ σ γ β

u/uc −7.313E − 19 3.319E − 01 3.907E − 01 3.190E + 00

v/uc 1.092E − 17 2.421E − 01 −9.903E − 02 2.779E + 00

∂u/∂x −2.463E − 16 3.697E + 00 −6.207E − 01 5.474E + 00

∂u/∂y −1.080E − 15 5.849E + 00 −1.607E − 01 6.961E + 00

∂v/∂x 5.877E − 17 4.445E + 00 1.214E − 02 6.649E + 00

∂v/∂y 4.983E − 17 3.627E + 00 −4.011E − 01 5.241E + 00

Sxx −2.463E − 16 3.697E + 00 −6.207E − 01 5.474E + 00

Syy 4.983E − 17 3.627E + 00 −4.011E − 01 5.241E + 00

Sxy −5.766E − 16 3.199E + 00 −1.100E − 01 5.016E + 00

ωz 1.067E − 15 8.186E + 00 5.734E − 02 5.958E + 00

ε 5.756E + 00 8.537E + 00 5.570E + 00 6.751E + 01

Log10 [ε] 4.515E − 01 5.548E − 01 −4.221E − 01 3.567E + 00

(−∂w/∂z + ∇ · u) −3.506E − 16 3.716E + 00 2.183E − 01 4.885E + 00

∇u : ∇u 9.461E + 01 1.318E + 02 6.233E + 00 9.921E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
2.700E − 02 4.125E − 01 1.693E − 01 1.983E + 00

Sij : Sij 4.730E + 01 6.631E + 01 5.386E + 00 7.335E + 01

Log10 [Sij : Sij] 1.387E + 00 5.368E − 01 −4.600E − 01 3.652E + 00

3/2 (ωz)
2 1.005E + 02 2.238E + 02 7.302E + 00 9.673E + 01

Log10

[
3/2 (ωz)

2] 1.263E + 00 1.057E + 00 −1.190E + 00 5.715E + 00

Table 8.2: Normalized central moments computed from pdfs of conditioned data for
RR0 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 8.1 – 8.12.
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Quantity µ σ γ β

u/uc 3.474E − 18 3.461E − 01 2.499E − 01 2.777E + 00

v/uc −4.925E − 18 2.330E − 01 2.602E − 01 3.002E + 00

∂u/∂x −6.864E − 17 3.475E + 00 −6.497E − 01 5.497E + 00

∂u/∂y 0.000E + 00 5.120E + 00 −3.875E − 01 6.220E + 00

∂v/∂x −8.090E − 17 4.322E + 00 −1.250E − 01 7.174E + 00

∂v/∂y 4.841E − 17 3.389E + 00 −4.265E − 01 4.645E + 00

Sxx −6.864E − 17 3.475E + 00 −6.497E − 01 5.497E + 00

Syy 4.841E − 17 3.389E + 00 −4.265E − 01 4.645E + 00

Sxy −1.324E − 16 2.956E + 00 −1.714E − 01 4.780E + 00

ωz 2.390E − 16 7.406E + 00 9.662E − 02 6.273E + 00

ε 5.400E + 00 7.851E + 00 4.855E + 00 4.810E + 01

Log10 [ε] 4.223E − 01 5.575E − 01 −4.201E − 01 3.513E + 00

(−∂w/∂z + ∇ · u) −3.513E − 16 3.638E + 00 2.843E − 01 4.879E + 00

∇u : ∇u 8.169E + 01 1.119E + 02 5.076E + 00 5.235E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
2.393E − 02 4.225E − 01 1.592E − 01 1.941E + 00

Sij : Sij 4.103E + 01 5.653E + 01 4.571E + 00 4.375E + 01

Log10 [Sij : Sij] 1.324E + 00 5.401E − 01 −4.587E − 01 3.609E + 00

3/2 (ωz)
2 8.227E + 01 1.889E + 02 8.105E + 00 1.268E + 02

Log10

[
3/2 (ωz)

2] 1.172E + 00 1.058E + 00 −1.193E + 00 5.761E + 00

Table 8.3: Normalized central moments computed from pdfs of conditioned data for
RR1 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 8.1 – 8.12.
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Quantity µ σ γ β

u/uc −8.776E − 18 3.116E − 01 7.594E − 01 3.600E + 00

v/uc 8.959E − 18 2.088E − 01 5.174E − 01 3.391E + 00

∂u/∂x 2.869E − 16 2.976E + 00 −4.827E − 01 5.248E + 00

∂u/∂y 1.233E − 15 4.511E + 00 −7.853E − 01 7.108E + 00

∂v/∂x −7.456E − 17 3.602E + 00 −1.948E − 01 7.244E + 00

∂v/∂y −8.296E − 17 2.979E + 00 −4.166E − 01 5.262E + 00

Sxx 2.869E − 16 2.976E + 00 −4.827E − 01 5.248E + 00

Syy −8.296E − 17 2.979E + 00 −4.166E − 01 5.262E + 00

Sxy 6.483E − 16 2.609E + 00 −5.001E − 01 5.330E + 00

ωz −1.411E − 15 6.278E + 00 5.003E − 01 7.026E + 00

ε 4.810E + 00 7.454E + 00 5.718E + 00 6.610E + 01

Log10 [ε] 3.562E − 01 5.706E − 01 −4.113E − 01 3.518E + 00

(−∂w/∂z + ∇ · u) 3.666E − 16 3.249E + 00 2.240E − 01 4.464E + 00

∇u : ∇u 6.160E + 01 8.851E + 01 5.811E + 00 7.854E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
1.992E − 02 4.326E − 01 1.176E − 01 1.878E + 00

Sij : Sij 3.134E + 01 4.540E + 01 5.359E + 00 6.064E + 01

Log10 [Sij : Sij] 1.193E + 00 5.535E − 01 −4.539E − 01 3.579E + 00

3/2 (ωz)
2 5.913E + 01 1.451E + 02 9.140E + 00 1.883E + 02

Log10

[
3/2 (ωz)

2] 1.006E + 00 1.058E + 00 −1.161E + 00 5.792E + 00

Table 8.4: Normalized central moments computed from pdfs of conditioned data for
RR2 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 8.1 – 8.12.
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Quantity µ σ γ β

u/uc 2.875E − 17 2.512E − 01 7.938E − 01 3.917E + 00

v/uc 2.148E − 18 1.834E − 01 7.636E − 01 4.260E + 00

∂u/∂x −4.989E − 16 2.290E + 00 −2.905E − 01 5.229E + 00

∂u/∂y −1.190E − 16 3.532E + 00 −8.140E − 01 7.755E + 00

∂v/∂x −4.615E − 17 2.883E + 00 1.697E − 01 1.016E + 01

∂v/∂y 1.774E − 17 2.474E + 00 −6.267E − 01 6.429E + 00

Sxx −4.989E − 16 2.290E + 00 −2.905E − 01 5.229E + 00

Syy 1.774E − 17 2.474E + 00 −6.267E − 01 6.429E + 00

Sxy −4.162E − 17 2.048E + 00 −4.952E − 01 5.873E + 00

ωz 2.238E − 16 4.980E + 00 7.550E − 01 9.594E + 00

ε 3.961E + 00 6.506E + 00 6.247E + 00 7.262E + 01

Log10 [ε] 2.618E − 01 5.752E − 01 −3.798E − 01 3.490E + 00

(−∂w/∂z + ∇ · u) −5.010E − 16 2.736E + 00 1.219E − 01 4.790E + 00

∇u : ∇u 3.963E + 01 6.200E + 01 8.315E + 00 1.759E + 02[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
1.738E − 02 4.483E − 01 8.301E − 02 1.817E + 00

Sij : Sij 1.975E + 01 3.049E + 01 6.137E + 00 7.555E + 01

Log10 [Sij : Sij] 9.814E − 01 5.590E − 01 −4.182E − 01 3.545E + 00

3/2 (ωz)
2 3.720E + 01 1.090E + 02 1.932E + 01 8.594E + 02

Log10

[
3/2 (ωz)

2] 7.788E − 01 1.062E + 00 −1.132E + 00 5.744E + 00

Table 8.5: Normalized central moments computed from pdfs of conditioned data for
RR3 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 8.1 – 8.12.
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Quantity µ σ γ β

u/uc −1.472E − 17 1.958E − 01 4.150E − 01 3.446E + 00

v/uc −7.908E − 18 1.483E − 01 5.712E − 01 3.717E + 00

∂u/∂x −3.391E − 17 2.131E + 00 −4.610E − 01 5.363E + 00

∂u/∂y −7.548E − 17 3.398E + 00 −7.784E − 01 6.885E + 00

∂v/∂x −3.884E − 17 2.774E + 00 1.018E − 01 6.960E + 00

∂v/∂y −9.299E − 18 2.218E + 00 −4.773E − 01 4.769E + 00

Sxx −3.391E − 17 2.131E + 00 −4.610E − 01 5.363E + 00

Syy −9.299E − 18 2.218E + 00 −4.773E − 01 4.769E + 00

Sxy −6.646E − 17 1.988E + 00 −3.166E − 01 4.884E + 00

ωz 1.400E − 16 4.761E + 00 5.040E − 01 6.816E + 00

ε 2.927E + 00 4.364E + 00 5.138E + 00 5.025E + 01

Log10 [ε] 1.502E − 01 5.650E − 01 −4.461E − 01 3.561E + 00

(−∂w/∂z + ∇ · u) −1.012E − 17 2.365E + 00 2.693E − 01 4.857E + 00

∇u : ∇u 3.429E + 01 4.831E + 01 5.188E + 00 5.525E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
2.490E − 02 4.190E − 01 1.482E − 01 1.933E + 00

Sij : Sij 1.736E + 01 2.407E + 01 4.545E + 00 4.029E + 01

Log10 [Sij : Sij] 9.463E − 01 5.466E − 01 −4.902E − 01 3.647E + 00

3/2 (ωz)
2 3.400E + 01 8.200E + 01 7.748E + 00 1.183E + 02

Log10

[
3/2 (ωz)

2] 7.459E − 01 1.068E + 00 −1.099E + 00 5.477E + 00

Table 8.6: Normalized central moments computed from pdfs of conditioned data for
RR4 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 8.1 – 8.12.
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Quantity µ σ γ β

u/uc 1.335E − 17 1.491E − 01 3.529E − 01 3.067E + 00

v/uc 6.811E − 18 1.246E − 01 4.686E − 01 3.572E + 00

∂u/∂x 6.271E − 17 1.634E + 00 −4.595E − 01 4.754E + 00

∂u/∂y 4.046E − 17 2.756E + 00 −5.802E − 01 6.426E + 00

∂v/∂x 8.800E − 17 2.286E + 00 −2.578E − 01 6.596E + 00

∂v/∂y 3.692E − 17 1.771E + 00 −5.249E − 01 5.264E + 00

Sxx 6.271E − 17 1.634E + 00 −4.595E − 01 4.754E + 00

Syy 3.692E − 17 1.771E + 00 −5.249E − 01 5.264E + 00

Sxy 2.630E − 17 1.647E + 00 −2.725E − 01 4.384E + 00

ωz −1.500E − 16 3.846E + 00 3.463E − 01 6.736E + 00

ε 2.257E + 00 3.221E + 00 4.410E + 00 3.674E + 01

Log10 [ε] 3.271E − 02 5.782E − 01 −4.937E − 01 3.469E + 00

(−∂w/∂z + ∇ · u) 9.104E − 18 1.815E + 00 9.746E − 02 4.793E + 00

∇u : ∇u 2.192E + 01 3.008E + 01 4.810E + 00 4.195E + 01[
(−∂w/∂z + ∇ · u)

(∇u : ∇u)1/2

]
2.116E − 02 4.084E − 01 1.576E − 01 1.997E + 00

Sij : Sij 1.123E + 01 1.499E + 01 4.213E + 00 3.389E + 01

Log10 [Sij : Sij] 7.562E − 01 5.566E − 01 −5.502E − 01 3.566E + 00

3/2 (ωz)
2 2.219E + 01 5.314E + 01 7.575E + 00 1.004E + 02

Log10

[
3/2 (ωz)

2] 5.555E − 01 1.085E + 00 −1.130E + 00 5.497E + 00

Table 8.7: Normalized central moments computed from pdfs of conditioned data for
RR5 case. The mean is µ, σ is the rms fluctuation, γ = µ3/σ

3 is the
skewness and β = µ4/σ

4 is the kurtosis. All quantities normalized by

resolution-corrected inner scaling (ν/λ2
ν) Λ2 (δ/∆?)2/3Re

−1/2
δ [D(p)]1/2 as

shown in Figs. 8.1 – 8.12.
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Figure 8.13: Results from nonreacting and reacting, off-centerline cases: RN0 – RN5
(top), and RR0 – RR5 (bottom), spanning the entire range of shear
values S investigated. Pdfs of dissipation Log10 (SijSij) normalized by
(N ?)2. Statistics are shown with application of the enstrophy rejection
strategy.
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Figure 8.14: Results from nonreacting and reacting, off-centerline cases: RN0 – RN5
(top), and RR0 – RR5 (bottom), spanning the entire range of shear val-
ues S investigated. Pdfs of enstrophy Log10 (ϑz) normalized by (N ?)2.
Statistics are shown with application of the enstrophy rejection strategy.
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Figure 8.15: Results from nonreacting and reacting, off-centerline cases: RN0 –
RN5 (top), and RR0 – RR5 (bottom), spanning the entire range of
shear values S investigated. Pdfs of the two-dimensional divergence
(−∂w/∂z + ∇ · u) normalized by N ?. Statistics are shown with appli-
cation of the enstrophy rejection strategy.
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CHAPTER IX

Conclusions

The overarching conclusion from the theoretical considerations and experimental

results in this dissertation is that differences observed between otherwise equivalent

reacting and nonreacting turbulent shear flows are accounted for by changes in the

local outer scales to within the level of agreement seen in the figures. Specifically,

these changes in the local outer length δ and velocity uc scales are due primarily to

inertial effects and the influence of buoyancy – the physics of which are both widely

understood. Subsequently, these two principle mechanisms dictate the behavior of

the local inner scales by means of physical processes that are well-established for

nonreacting turbulent shear flows. In this respect, principles which hold true for

nonreacting turbulent shear flows can be directly extended to otherwise equivalent

reacting turbulent shear flows.

Furthermore, the individual findings presented in Chapters V – VIII lead to the

following additional major conclusions from this study:

(1 ) Classical inner scaling must be corrected as shown herein to account for res-

olution effects, and the analysis presented herein gives the expression that

“recovers” the unresolved portions of a given gradient’s spectrum by means of
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a combined inertial- and dissipation-range model.

(2 ) Essentially near-perfect similarity is demonstrated in perfect collapse of the

nonreacting, on-centerline results of Chapter V – verifying conclusion (1).

(3 ) When the inner-scale resolution N ? is applied to the on-centerline reacting

data of Chapter VI, it provides strong similarity of the data. This verifies (as

suggested by Chapter II) that this is also the correct scaling for reacting flow.

(4 ) While these results were obtained from a coflowing jet, the care taken to prop-

erly scale the inner-scale results renders them universally applicable to any

turbulent shear flow, reacting or nonreacting.

(5 ) Small differences between the nonreacting (Chapters V and VII) and react-

ing (Chapters VI and VIII) results are the influence of exothermicity at the

small scales. The aforementioned overarching conclusion asserts the primacy

of inertia and body forces acting on the local outer scales – implying that the

influence of dilation and exothermically altered viscosity are second-order ef-

fects. Furthermore, the influence of viscosity can be readily accounted for via

a mixture-fraction averaged viscosity, as described in (2.21). These second-

order effects are observed at the finest scales of the turbulence, shown in the

nonreacting/reacting comparisons of Chapters VI and VIII.

(6 ) Changes in the local outer length scale δ of turbulent reacting jets have been

widely cited as an effect of heat release. Theoretical considerations of Chapter

II and experimental verification in Chapter IV demonstrate that modulation

of the local outer length scale is due solely to inertial effects. Exothermicity

has no direct impact on the local outer length scale, apart from its indirect
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influence on the ambient density – which using the Equivalence Principle can

be produced in an otherwise equivalent nonreacting jet with fictitious effective

density ρeff
∞ .

(7 ) Consistent with the fact that the Corrsin-Uberoi parameter S?
c is sufficiently

small, there should be no shear effects at the inner scales for the nonreacting

results of Chapter VII, nor for the reacting results of Chapter VIII.

(8 ) By application ofN ? to different radial locations, two self-similar groups emerge

for the nonreacting results for Chapter VII. Following conclusion (7), little

evidence exists which would suggest that this is the influence of mean shear.

The mechanism for this apparent self-similar clustering is not immediately

obvious.

(9 ) The results in Fig. 6.39 show an increase over the nonreacting baseline values

in the rms of the velocity gradients due to effect of exothermicity at the inner

scales, with a maximum observed level of increase of 42 %, for hydrogen-air

chemistry.

These results are directly relevant to nonpremixed and partially-premixed com-

bustion and following (4) above, are generally applicable to turbulent shear flows.

Moreover, while the heat release effects presently studied are from a hydrogen-air

flame, the heat release levels (Ts/T∞) represent and upper bound for most hydrocar-

bon combustion systems.

Collectively the findings in this study have provided the first rigorous theoretical

foundations, strongly supported by experimental verifications presented herein, of

the changes that are produced by heat release in essentially any reacting turbulent

shear flow.
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Based on these results, distributions of essentially any quantity derived from

the velocities ui or the velocity gradients ∂ui/∂xj in any exothermically reacting

turbulent shear flow, can be inferred a priori from corresponding quantities in an

otherwise equivalent nonreacting turbulent shear flow.
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APPENDIX A

Index of Refraction Effects in a Reacting Flow

The statistical character of randomly oriented sheet-like structures and their effect

on beam deflection is investigated. Via a Monte-Carlo (MC) simulation, probability

distribution functions (Pdfs) are obtained and found to have an analytical basis.

Furthermore, summation of a large number of statistically independent interfaces

yields an unexpected result, contrary to the näıve expectations of Central Limit

Theorem (CLT). Yet, this result is found to be entirely consistent with probability

theory.

Experimental results agree with the predictions made by the MC simulations

and a Reynolds number scaling is found in the positional uncertainty of the beam

deflections.

“Now in the further development of science, we want more than just a

formula. First we have an observation, then we have numbers that we

measure, then we have a law which summarizes all the numbers. But the

real glory of science is that we can find a way of thinking such that the

law is evident.”

—Richard P. Feynman, The Feynman Lectures on Physics, vol. I.
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A.1 Concept

Based upon the known character of the fine-scale structure of turbulent shear

flows where scalar gradients are highly-concentrated into thin sheet-like structures,

a physically based model is developed to predict the effect of flow exothermicity on

the propagation of laser light. The scalar jump across these structures can be related

to the index of refraction (IoR) and the structure treated as an IoR interface to a

first-order approximation. If the orientation of the interface is known, the deflection

of the beam from its unperturbed path can be readily determined from Snell’s law

of refraction. In order to estimate the overall uncertainty of a beam passing through

an exothermic flow, the beam path can be modeled as a series of discrete interfaces

through which the beam passes. The sum of the individual deflections from each of

the interfaces yields the overall positional uncertainty of the beam.

The two main challenges lie in first modeling the scalar jump across each interface

and relating to the refractive index and second in determining the orientation of each

interface. The first challenge will be dealt with later, but the second will be attacked

via a Monte Carlo (MC) simulation. The MC simulation will allow the interfaces to

be randomly oriented and the statistics of their orientations will be then collected.

With the statistics understood, the character of the interface orientations can be

predicted and used to obtain the overall uncertainty of the beam’s position.

A.2 Formulation

Consider a spherical coordinate system as shown in Fig. A.1. Now let the radius

ρ denote the unit normal n̂ vector associated with a plane which defines the IoR

interface. Since these interfaces (or unit processes) are assumed to be statistically
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independent, the plane is taken to be infinite. In order to use Snell’s Law:

n1 sin(θ1) = n2 sin(θ2), (A.1)

to determine the beam steering effects, the orientation of the plane (unit normal)

must be known (NOTE: the angles in (A.1) are defined in Fig. A.2; also, n1 & n2 are

the refractive indicies on either side of the interface). Since it is not possible to know

x

y

z

O

x
y

z

θ

φ

ρ

r

P

{
(x, y, z)
(ρ, φ, θ)

Figure A.1: Spherical coordinate system.

the precise, instantaneous orientation of the plane, it is assumed that each plane is
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randomly oriented in an isotropic manner. Returning to the spherical coordinate

system, the radius (n̂) is arbitrarily fixed at ρ = 1, the angle φ is varied through

φ ∈ [0, π/2] and θ ∈ [0, 2π]. Conventionally, φ is allowed in the domain φ ∈ [0, π],

however since the plane is infinite, all unique orientations of the plane (thus n̂)

are obtained by defining a hemisphere with the radius (n̂). Due to mathematical

considerations which will arise later, φ is limited to the domain φ ∈ [0, π/2].

z

n̂

−n̂

θ1, ψi

εi

θ2

Randomly oriented index of refraction interface-

Deflected beam

?

Refractive index: n2

Refractive index: n1

Figure A.2: Nomenclature for Snell’s law applied to randomly oriented index of re-
fraction interface.

Since the aim is to employ an MC technique to obtain solutions, φ and θ must be

cast in statistical terms. Statistically, φ and θ are described by their respective prob-

ability distribution functions (Pdfs): β(φ) and β(θ). To determine these functions

consider spherical coordinates and a differential surface element dS on the sphere of

radius ρ, see Fig. A.3. The size and location of dS describe the probability that n̂

will be oriented in a given manner.
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dS

Figure A.3: Differential surface element in spherical coordinates.

This surface element is known in terms of ρ, φ and θ:

dS = ρ2 sinφ dφdθ. (A.2)

Probability theory states that the only two necessary and sufficient conditions

for a function to be a PDF are that it must be positive everywhere and that the

probability of an event occuring somewhere within the domain is unity; or (letting

f(x) represent an arbitrary PDF):

f(x) ≥ 0, −∞ < x <∞, (A.3)
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∫ ∞

−∞
f(x′)dx′ = 1. (A.4)

Since ρ is fixed as the unit normal n̂, (i.e. ρ = 1), the surface area of such

a hemisphere is A = 2π. Thus by normalizing (A.2) by 2π it is found for φ ∈

[0, π/2] and θ ∈ [0, 2π] that the normalized form of (A.2) satisfies the conditions in

(A.3),(A.4), giving:

β(φ, θ) dφ dθ =
1

2π
sinφ dφ dθ. (A.5)

Thus, by inspection, the joint PDF is found: β(φ, θ) = 1
2π

sinφ. Since φ and θ

are statistically independent, (A.5) can be decomposed into the Pdfs of φ and θ:

β(φ, θ) = β(φ)β(θ). (A.6)

To obtain the specific form of the individual Pdfs, it is noted that β(θ) is constant

over its entire domain for fixed φ. Thus to satisfy (A.4),

β(θ) =
1

2π
, (A.7)

and by inspection with (A.5),

β(φ) = sinφ. (A.8)

Now that the orientation of n̂ is completely described in statistical terms (i.e. the

Pdfs of φ and θ are known and ρ is fixed), the Pdfs must be sampled and recreated

to perform an MC Simulation. At this point the cumulative distribution function

(CDF) is introduced. The CDF gives the probability that a random variable x′ is

less than or equal to x:

CDF ≡ prob(x′ ≤ x) ≡ F (x), (A.9)

F (x) =

∫ x

−∞
f(x′) dx′. (A.10)

The CDF is characterized by a few useful properties:
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(a). F (x) increases monotonically.

(b). F (−∞) = 0.

(c). F (∞) = 1.

An elegant methodology for efficient sampling was proposed by von Neumann;

it utilizes the CDF and is sometimes called the The Golden Rule of Sampling, von

Neumann (1946), see Fig. A.4:

(i). Sample a random number ξ from the uniform distribution U [0, 1].

(ii). Equate ξ with the CDF: F (x) = ξ.

(iii). Invert the CDF and solve for x: x = F−1(ξ).

Thus for the Pdfs of φ and θ:

Quantity φ θ

PDF β(φ) = sin(φ) β(θ) = 1
2π

CDF B(φ) = 1− cosφ B(θ) = θ
2π

Sampling Function (SF) φ = B−1(ξ) = cos−1 (1− ξ) θ = B−1(ξ) = 2πξ

Range φ ∈ [0, π/2] θ ∈ [0, 2π]

Table A.1: Sampling functions for φ and θ: β(φ) and β(θ).

In order to apply Snell’s Law and sum the deflections from the IoR interfaces

over M interfaces, it is necessary to project φ and θ onto the xz and yz-planes and

define the angles ψx and ψy, see Fig. A.5.

Where ψx and ψy are given in terms of φ and θ by:

ψx = sin−1

(
sinφ cos θ√

sin2 φ cos2 θ + cos2 φ

)
, (A.11)
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F (x)f(x)

-
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x

ξ
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0

0.5

1

1.5

Figure A.4: von Neumann’s Golden Rule for sampling a distribution.

ψy = sin−1

(
sinφ sin θ√

sin2 φ sin2 θ + cos2 φ

)
. (A.12)

Here it is seen that the judicious choice of domain for φ keeps (A.11) and (A.12)

finite and well-defined ∀ φ ∈ [0, π/2], θ ∈ [0, 2π]. The range of both ψx and ψy is

[−π/2, π/2], which is consistent and well-defined for Snell’s Law as applied to this

problem.
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Figure A.5: Projection of φ and θ onto ψx and ψy.

A.3 Index of Refraction Interface Deflections

The deflections caused by an IoR interface can be calculated using Snell’s Law,

see Fig. A.2. The angles associated with these deflections are given by,

εi = ψi − sin−1 (η sinψi), i = x, y, (A.13)
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where η is defined as η ≡ n1

n2
, which is ratio of the IoR before the interface over the

IoR after the interface. Employing the small angle approximation:

tanα ≈ α, (A.14)

the deflections are simply given by,

δi = εil, (A.15)

where l is the path traveled by the ray after the IoR interface until it reaches the next

IoR interface. NOTE: the quantities η and l are taken as constant as a first-order

approximation to the solution.

Thus from the Pdfs of φ and θ the statistics of the IoR interface orientations can

be determined; from those statistics the Pdfs of ψx and ψy are known and finally the

statistics describing the deflections and deflection angles are found.

A.4 First-Order Approximation Results

The MC simulation was programmed in FORTRAN to improve the speed of the

numerical algorithm. As a validation for the sampling algorithm outlined above, the

results for the PDF sampling of φ and θ are presented in Figs. A.6-A.8 for various

samples sizes: N = 1000, 1× 106, and number of discrete histogram bins: 100, 1000.

Each figure plots the sampling function (see Table A.1) vs. N in the upper graph

and the sampled & analytical Pdfs in the lower graph for both φ and θ. The sampled

results are plotted on top of the analytical form of the Pdfs at the same φ and θ

values. All the Pdfs have been numerically integrated to verify unity area.

Having a high N/bins ratio yields a smoother (more accurate) reproduction of

the PDF, but sacrifices the fidelity of the result by having fewer bins. Overall the
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sampling scheme appears to perform quite well in reproducing the shape of the PDF,

especially at high sample sizes.
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Figure A.6: Sampling of β(φ) and β(θ): N = 1000, bins = 100.

A.5 Random Number Generator

A random number generator (RNG) routine was implemented into the Monte-

Carlo (MC) simulation in order to improve the uniformity of the sampling on the

unit interval U [0, 1]. This was motivated by the implicit assumption that no self-

respecting MC simulator would use the intrinsic RNG function provided by any

programming language to form the basis of the algorithm. Thus a new RNG was

selected as described Press, Teukolsky, Vetterling, and Flannery (1989) The intrinsic
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Figure A.7: Sampling of β(φ) and β(θ): N = 1× 106, bins = 100.

RNG within FORTRAN has an effective period of 232; thus, approximately 4.29

billion samples will be obtained before the RNG begins to “recycle” values. The

RNG suggested by Flannery et al. has an effective period of 264, or 18.4 quintillion

(1.84× 1019). A reasonable MC simulation sums over N = 100 interfaces M = 108

times requires 1010 random samples. This typical simulation exceeds the intrinsic

period by a factor of two. Half of the simulation is effectively rendered redundant

and wasteful. Furthermore, this imposes a restrictive limit on the accuracy of the

simulation by limiting the sample size to a relatively meager proportion. Thus the

need for a new RNG function is readily justified.
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Figure A.8: Sampling of β(φ) and β(θ): N = 1× 106, bins = 1000.

A.6 Probability Distribution of Individual Interfaces

Initial results from this MC simulation indicate that the beam deflections due

to interaction with a single interface (unit process) are governed by a Cauchy (or

Lorentzian) distribution, given by the general form

β(x) =
1

π

1
2
Γ

(x−m)2 +
(

1
2
Γ
)2 , (A.16)

where Γ is defined as the full-width at the half-maximum (FWHM) value and m is

the statistical median. The the Cauchy or Lorentzian distribution is a two-parameter

distribution which is interpreted as having two-degrees of freedom.

As an aside, it should be noted that the Cauchy distribution is a “pathological”
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Figure A.9: Sampling of β(φ) and β(θ): N = 900, binsφ,θ = 10, binsεx,y = 100.

distribution in that it has no moments for n ≥ 1. It is able only to be normalized,

which satisfies one of the key requirements for it to be a valid distribution.

In general, the moments of the Cauchy distribution µn are undefined for n ≥ 1

since the corresponding integrals diverge,

µn =

∫ ∞

−∞

Γ

2π

xn

(x−m)2 +
(

1
2
Γ
)2 . (A.17)

Thus it has no definable mean and its variance is infinite.

One interpretation of the practical implications of the Cauchy distribution’s lack

of a finite variance is to examine the history of the running average of a sample set.

If the running average is plotted against the samples size, it is found that regardless

of how large the sample size is, the mean never converges, see Fig. A.11.
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Figure A.10: Sampling of β(εx) and β(εy) forN = 2000, binsφ,θ = 50, binsεx,y = 1000.

321



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

−1

0

1

2

3

4

5

6

7
x 10

−6

Samples n

A
ve

ra
ge

Figure A.11: History of running average plotted against sample size for a record
length of n = 107 samples.

A.6.1 Geometric Interpretation

One interesting geometric interpretation of the Cauchy distribution arises from

the definition of the distribution itself. Consider a Cartesian plane with the point

b fixed along the ordinate some arbitrary distance from the abscissa. Now let the

angle θ describe the angle between the ordinate and a line segment extending from

the point b and intersecting the abscissa, (see Fig. A.12). If θ is allowed to vary

randomly within its range [−π/2, π/2], then the probability of realizing a given length

x is described by the Cauchy distribution. The following derivation provides such a

proof:

tan(θ) =
x

b
(A.18)
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Figure A.12: Geometric origin of Cauchy distribution.

θ = tan−1
(x
b

)
(A.19)

dθ = − 1

1 + x2

b2

dx

b
(A.20)

= − bdx

b2 + x2
, (A.21)

The distribution of the angle θ is given by,

dθ

π
= − 1

π

bdx

b2 + x2
(A.22)

This expression is normalized over all angles since∫ π/2

−π/2

dθ

π
= 1 (A.23)

and

−
∫ ∞

−∞

1

π

bdx

b2 + x2
=

1

π

[
tan−1 b

x

]∞
−∞

(A.24)

=
1

π

[
1

2
π − (−1

2
π)

]
(A.25)

= 1. (A.26)

Thus interpreting x as the beam deflection from its unperturbed path and θ as

the deflection angle εx,y the analogy is clear.
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A.7 Probability Distribution of a Sum over N Individual
Interfaces

From Central Limit Theorem (CLT) it is expected that any sum over a large

number of statistically independent random variables should result in a Gaussian

distribution of the resultant sum’s values. However, CLT theorem also requires that

the mean and variance of the distribution(s) which govern these individual processes

be defined and finite. The Cauchy distribution which does govern the individual

interfaces fails both these criteria: it has no definable mean and its variance is

infinite. However, given a large number of statistically independent processes which

are governed by a Cauchy distribution, the sum of these processes it itself distributed

in a Cauchy manner. This result is born out in the MC simulations (Fig. A.10) as

well as experimentally, see Fig. B.1.
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APPENDIX B

Experimental Results for Index of Refraction

Effects in a Reacting Flow

Monte-Carlo simulations predicted the same Reynolds number scaling of the beam

position uncertainty as was found experimentally, see Fig. B.2.
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Figure B.1: Profiles of the beam position uncertainty and the analytical Cauchy fit
using the experimentally determined parameters. Upper panel: posi-
tional uncertainty for a reacting jet flame; lower panel: uncertainty for
nonreacting Nitrogen jet.
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Figure B.2: Reynolds number scaling of beam position uncertainty. Plotted on linear
axes in the upper panel and log-log in the lower panel. The squares and
circles indicate experimental data and the red triangles are the results
from corresponding MC simulations.

B.1 Conclusions

Employing knowledge of the fine-scale structure of the scalar fields in shear driven

turbulent flows, a model is developed to predict the positional uncertainty of a laser

beam propagating through an exothermic flow field. A Monte Carlo simulation

was created to determine the statistical character of randomly oriented scalar jump

interfaces corresponding to gradients in the index of refraction field in a turbulent

reacting shear flow. The interface orientations are distributed in a Cauchy manner.

Central Limit Theorem does not apply due to the pathological nature of the Cauchy

distribution. However, sums of Cauchy random variables are distributed in a Cauchy

manner. This theoretical (and numerical) result for the overall positional uncertainty
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of the beam is supported by experimental data with reasonable agreement. Reynolds

number scaling is apparent in the preliminary experimental results and this finding

is also in accord with the concomitant MC simulations.
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