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Abstract 

 

Exocytosis is a eukaryotic process in which vesicles deliver membrane and other 

cargoes to and across the plasma membrane. The exocyst is a tethering complex 

necessary for the polarization and fusion of exocytic vesicles with the plasma membrane. 

It is conserved in eukaryotes, although it exhibits increasingly complex characteristics 

from yeasts to mammals. Exo70 is one of eight protein subunits of the exocyst. Its 

interactions with a Rho family GTPase and the Arp2/3 actin branching complex are 

important for exocytosis. 

The aim of this work is to gain greater insight into the structure and function of 

the exocyst and the role of Exo70 within it. The high-resolution structures of the C-

terminal 90% of Exo70 from the yeast Saccharomyces cerevisiae and the mouse Mus 

musculus are presented here as determined by X-ray crystallography. These structures 

provide a unique opportunity to study a near-complete component of the exocyst and to 

compare and contrast this molecule between two distantly related model organisms. A 

conserved architecture composed of a series of unique helix-turn-helix motifs organized 

into a rod shape is revealed in these molecules despite low primary sequence 

conservation. A poor understanding of the role of this domain structure makes functional 

conclusions drawn from these structures difficult. These molecules also contain a novel 

fold that has recently been observed in other proteins participating in exocytosis. Several 

significant structural deviations between these molecules raise new questions about the 

 xv



function of Exo70 and the interactions in which it is involved. These structures may 

provide information important to future studies of the exocyst and the GTPases that 

interact with Exo70 in both budding yeast and mammals. 

 xvi
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Chapter 1 

General Introduction 

 

Introduction 

 The presence of membrane-bound compartments is one of the defining 

characteristics of eukaryotic cells (Stanier and van Niel, 1962). These compartments 

require a system for the exchange of materials between them, and vesicles, small mobile 

compartments, fulfill this role by transporting cargo from one compartment to another in 

a highly regulated process that occurs in four steps (Bonifacino and Glick, 2004). First, 

the vesicle must be formed from the membrane of the donor compartment and collect 

cargo in a process known as budding. Second, the vesicle must be transported to its 

destination. Third, the vesicle must make an initial interaction with the membrane of the 

target compartment by a process known as tethering. Finally, the vesicle must fuse with 

the target membrane, releasing its contents into that compartment. Molecular events that 

mediate and regulate these four steps will be briefly reviewed in the following sections. 

The third step, tethering, which is the focus of this dissertation, will be discussed last 

(Figure 1.1). 

 

Vesicle budding 

  A class of proteins called coat proteins mediates vesicle budding (Bonifacino and 

Lippincott-Schwartz, 2003; Kirchhausen, 2000; McMahon and Mills, 2004). A number of 
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Figure 1.1: Vesicle budding, transport, tethering, and fusion 
 
A schematic diagram depicting the four stages of vesicle-mediated transport. 

1) In the first stage, budding, coat proteins ( T ), adapter proteins ( • ), and other 
factors play roles in the creation of a vesicle from the membrane of a donor 
compartment and the association of cargo within it. 

2) In the second stage, transport, motor proteins such as dynein, kinesin, and myosin 
( |  ) carry vesicles (  ) from the donor compartment along cytoskeletal 
components such as actin filaments or microtubules ( == ) to the target 
compartment. 

3) In the third stage, tethering, multisubunit tethering complexes ( Δ ) associate 
vesicles (  ) with the target compartment membrane in preparation for the fusion 
event, which requires the association of v-SNAREs ( ⁄ ) with t-SNAREs ( ≡ ). 

4) In the fourth stage, fusion, the vesicle is incorporated into the target compartment 
membrane, releasing internal cargo across it. The association of v-SNAREs and t-
SNAREs results in the formation of trans-SNARE complexes ( ⁄⁄⁄⁄ ).
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coats have been identified. The first was Clathrin, which is primarily associated with the 

trans-Golgi network and the PM (Owen et al., 2004; Pearse, 1975).Other well-studied 

coats include COP I and II, which are involved with vesicles moving between the ER and 

the Golgi and within the Golgi cisternae (Barlowe et al., 1994; Letourneur et al., 1994; 

Waters et al., 1991). Less well understood coats include exomer (Wang et al., 2006), 

FAPP (Godi et al., 2004), and retromer (Seaman et al., 1998) coats. Coats are dynamic 

structures that are recruited by Arf1/Sar1 family GTPases to sites of vesicle formation 

(Springer et al., 1999). Assembly of the coat subunits deforms the membrane into a 

spherical shape with a diameter consistent with the structure of the coat (Bi et al., 2002; 

Crowther and Pearse, 1981; Weidler et al., 2000). Adapter proteins such as AP1 and AP2 

help the coat recruit cargo into the vesicle (Lewin and Mellman, 1998) before the vesicle 

is “pinched off” from the donor membrane by dynamin (Damke et al., 1994). 

 

Vesicle transport 

 Once a vesicle is created and separated from the donor membrane it must be 

transported to a site of fusion on the target membrane. Rab GTPases have been 

implicated in the recruitment of molecular motors, including several different dyneins, 

kinesins, and myosins. These motors can then transport the vesicles along microtubule or 

actin filaments towards target membranes (Hammer and Wu, 2002). The details of the 

process that targets these vesicles to the correct location are not well understood. 

 

Membrane fusion 
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 The final step in the transportation of cargo by vesicles is the fusion of these 

vesicles with the target membrane, in which the vesicle membrane is incorporated into 

the target membrane and the contents of the vesicle are released. The formation of a 

SNARE complex, which involves several proteins containing a total of four different but 

conserved SNARE motifs (Qa, Qb, Qc, and R) (Bock et al., 2001; Fasshauer et al., 1998) 

organized into a four-helix bundle structure (Sutton et al., 1998), is sufficient for 

membrane fusion (Weber et al., 1998). These SNARE motifs are found on several 

different types of proteins, including vesicle membrane-associated v-SNAREs, target 

membrane-associated t-SNAREs, and SNAPs. The most widely accepted model for how 

these complexes assemble is the zipper model, in which SNAREs catalyze membrane 

fusion through the release of energy derived from the creation of a favorable four-helix 

bundle structure (Hanson et al., 1997; Lin and Scheller, 1997). NSF is a AAA+ ATPase 

(Hoyle et al., 1996) that hydrolyzes ATP to disassemble the SNARE complex in a 

process requiring SNAPs, allowing for the recycling of SNARE motif proteins (Jahn and 

Scheller, 2006). 

There are many different v-SNAREs and t-SNARES and several SNAPs (Hong, 

2005).  Only complimentary sets of SNAREs will interact, resulting in specific 

membrane fusion (McNew et al., 2000; Nichols et al., 1997; Parlati et al., 2000). While 

this variety initially led to the hypothesis that SNAREs could be responsible for the 

specificity of vesicle fusion (Söllner et al., 1993), it was eventually discarded as further 

evidence was acquired. The process of recycling SNAREs meant that they could be found 

on pathways both to and from the target for which they hold specificity (Cai et al., 

2007a). The interactions between various SNAREs have been shown to be promiscuous 
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(Fasshauer et al., 1999; Tsui and Banfield, 2000; von Mollard et al., 1997; Yang et al., 

1999), usually capable of weakly binding a number of SNARE partners. In addition, 

some SNAREs can be found throughout a particular system, such as in ER-Golgi 

transport (Cao and Barlowe, 2000; Hay et al., 1998) or endosome trafficking (Antonin et 

al., 2000). Also, SNAREs are found evenly throughout the PM despite the fact that 

vesicles fuse only at discrete membrane locations in Saccharomyces cerevisiae 

(Brennwald et al., 1994). Furthermore, disruption of SNARE complexes did not prevent 

association of vesicles with the target membrane (Broadie et al., 1995; Hunt et al., 1994). 

The realization that SNAREs could not be responsible for the specificity of vesicle fusion 

events led to the search for components involved in this initial tethering of vesicles to the 

target membrane. 

 

Vesicle tethering 

 Initially, a number of components in different systems were identified that played 

a role in the formation of physical links between a vesicle and its target membrane (Guo 

et al., 2000; Lowe, 2000; Waters and Hughson, 2000). To date, a total of eight 

multisubunit tethering complexes have been identified. These are the CORVET complex 

(Peplowska et al., 2007), the COG complex (Whyte and Munro, 2001), the Dsl1p 

complex (Andag et al., 2001; Reilly et al., 2001), the exocyst (TerBush et al., 1996), the 

GARP/VFT complex (Conibear et al., 2003), the HOPS/Class C VPS complex (Peterson 

and Emr, 2001), and the TRAPP I and II complexes (Cai et al., 2005). Weak primary 

sequence and secondary structure similarity were detected among components of the 

COG complex, exocyst, and GARP complex (Whyte and Munro, 2001), although the 
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quaternary structure of the COG complex (Ungar et al., 2002) more closely resembles 

that of the TRAPPI complex (Kim et al., 2006) than the exocyst (Hsu et al., 1998). The 

COG (Zolov and Lupashin, 2005) and TRAPPI (Cai et al., 2007b) complexes are also 

believed to mediate only a single tethering event, while the exocyst is known to tether 

multiple different types of vesicles to sites of polarized growth (Munson and Novick, 

2006). 

 The process of vesicle tethering is not well understood and is the focus of much 

current research. All of these tethering complexes interact with GTPases, and many of 

these interactions are required for proper function. All tethering complexes interact with 

Rab GTPases and some also interact with other classes of GTPases. In S. cerevisiae, the 

CORVET complex interacts with both the GTP- and GDP-bound forms of Vps21 through 

two different subunits (Peplowska et al., 2007), an interaction that is probably conserved 

in mammals (Rink et al., 2005); the S. cerevisiae COG complex is an effector for Ypt1 

(Suvorova et al., 2002); the exocyst is an effector of Sec4 in S. cerevisiae (Guo et al., 

1999b) and Rab11 in mammals (Zhang et al., 2004); the S. cerevisiae GARP complex is 

an effector for Ypt6 (Siniossoglou and Pelham, 2001); the S. cerevisiae HOPS complex is 

both an effector and a guanine nucleotide exchange factor for Ypt7 (Haas et al., 1995; 

Mayer and Wickner, 1997; Price et al., 2000; Seals et al., 2000; Wichmann et al., 1992; 

Wurmser et al., 2000), and the TRAPP complexes are the only tethering complexes that 

are not known to be Rab effectors. TRAPPI acts as an exchange factor for Ypt1 in S. 

cerevisiae (Sacher et al., 2001), and it is unclear whether TRAPPII is an exchange factor 

for Ypt1 or Ypt31/Ypt32 (Sacher et al., 2001; Wang et al., 2000; Wang and Ferro-

Novick, 2002). Other GTPases known to interact with some of these tethering complexes 
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include Cdc42 (Zhang et al., 2001), Rho1 (Guo et al., 2001), and Rho3 (Robinson et al., 

1999) which interact with the S. cerevisiae exocyst and Arf6 (Prigent et al., 2003), 

RalA/B (Jin et al., 2005; Moskalenko et al., 2002; Moskalenko et al., 2003; Sugihara et 

al., 2002), and TC10 (Inoue et al., 2003) which interact with the mammalian exocyst.  

 It has long been thought that coats were removed from vesicles soon after 

budding as the function of creating the vesicle and recruiting cargo was completed 

(Bonifacino and Glick, 2004). Recent work, however, has shown that tethering 

complexes can interact with vesicle coat proteins. COG interacts with COPI in both S. 

cerevisiae and mammals (Suvorova et al., 2002; Zolov and Lupashin, 2005), Dsl1 

interacts with two different subcomplexes of COPI (Andag et al., 2001; Andag and 

Schmitt, 2003; Reilly et al., 2001), TRAPPI and TRAPPII interact with COPI in both S. 

cerevisiae and mammals, and TRAPPI interacts with COPII (Cai et al., 2005; Cai et al., 

2007b; Sacher et al., 2001; Yu et al., 2006). This suggests that tethering complexes 

interact with vesicles before they reach the target membrane, that coat proteins remain on 

the vesicle until reaching the target membrane, or that both of these could occur. This 

interaction could possibly explain how the unidirectional motion of vesicles to target 

membranes is maintained and possibly links vesicle tethering and uncoating, which is 

required to expose SNAREs on the surface of the vesicle (Cai et al., 2007a). An 

interaction between the exocyst and coats has not yet been detected. 

 Tethering complexes also interact with SNAREs directly. It is not clear exactly 

what role this plays in membrane fusion, but it has been postulated that tethering 

complexes may simply bring vesicles close to the target membrane to facilitate SNARE-

mediated membrane fusion (Malsam et al., 2005) or that tethering complexes may 
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somehow actively stimulate the formation of trans-SNARE complexes (Shorter et al., 

2002). Tethering complexes also interact with SNAREs. The S. cerevisiae Vps51 subunit 

of the GARP complex binds the SNARE Tig1 (Conibear et al., 2003; Siniossoglou and 

Pelham, 2001), and this interaction has been implicated in tethering function (Conibear 

and Stevens, 2000; Conibear et al., 2003), although it is not essential (Fridmann-Sirkis et 

al., 2006). The exocyst and HOPS complex may also stimulate SNARE-mediated 

membrane fusion through an interaction with proteins of the Sec1/Munc18 family (Jahn 

and Sudhof, 1999; Waters and Hughson, 2000). Sec1 (Carr et al., 1999) and Munc18 

(Dulubova et al., 2007; Shen et al., 2007) bind trans-SNARE complexes and promote 

membrane fusion. S. cerevisiae Sec1 has been associated with the coupling of exocyst-

mediated vesicle tethering and SNARE-mediated membrane fusion (Wiederkehr et al., 

2004). The Vps33 subunit of the S. cerevisiae HOPS complex is a homolog of Sec1 and 

interacts with the t-SNARE Vam3, although the significance of this interaction is 

disputed (Laage and Ungermann, 2001; Seals et al., 2000; Wang et al., 2001). The S. 

cerevisiae HOPS complex also interacts with Vam7, an interaction that may participate in 

SNARE complex formation (Stroupe et al., 2006). The S. cerevisiae exocyst subunit Sec6 

also interacts directly with the t-SNARE Sec9 and inhibits its interaction with its partner 

t-SNARE, Sso1, suggesting a role in regulation of this SNARE complex (Sivaram et al., 

2005). 

 In conclusion, tethering complexes are factors whose rather complicated functions 

are probably regulated by Rab GTPases and several other classes of GTPases. These 

functions may include vesicle coat recognition and/or disassembly, tethering of vesicles 

to target membranes, and SNARE complex regulation, promotion or formation. 
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Functions of the exocyst 

 The exocyst is one of the best-studied tethering complexes. It is associated with 

specific types of exocytosis, defined as the fusion of vesicles with the PM (de Duve, 

1963). At a minimum, all eukaryotic cells perform exocytosis during growth as a means 

for adding membrane components to the PM. Most cells also secrete various cellular 

products by exocytic processes. In S. cerevisiae the exocyst is necessary for secretion of 

at least invertase and acid phosphatase (Novick et al., 1980), the delivery of membrane 

components to the bud tip during daughter cell growth, and can also be found at the 

mother-daughter neck during cytokinesis (Adamo et al., 2001; Finger et al., 1998; Guo et 

al., 2001; Robinson et al., 1999; Zajac et al., 2005; Zhang et al., 2005b). The functions of 

the exocyst in mammals are more complex than in S. cerevisiae. In mammals the exocyst 

is required for transport to the lateral, but not apical, membranes in epithelial cells 

(Grindstaff et al., 1998); neurite branching (Lalli and Hall, 2005) and synaptogenesis, but 

not synaptic vesicle release, in neurons (Mehta et al., 2005; Murthy et al., 2003); and 

membrane and membrane protein delivery to the PM in recycling processes (Jafar-Nejad 

et al., 2005; Prigent et al., 2003; Sommer et al., 2005). As an extension of these 

processes, the exocyst has also been found to be associated with membrane expansion 

during cytokinesis (Finger et al., 1998; Gromley et al., 2005; Wang et al., 2002) and cell 

surface receptor recycling relevant to cell fate determination (Jafar-Nejad et al., 2005). 

Recently an interaction between the ER translocation complex and the exocyst was 

identified (Lipschutz et al., 2003; Toikkanen et al., 2003), which is consistent with earlier 

observations that at least Sec10 localizes to the ER and is involved in an increase in 

synthesis and delivery of certain proteins (Lipschutz et al., 2000; Lipschutz et al., 2003).  
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In conclusion, the exocyst regulates membrane and protein addition to the PM by 

controlling the fusion of exocytic vesicles with the PM. The list of additional functions 

carried out by the exocyst continues to grow, and more have been identified in higher 

eukaryotes than in lower eukaryotes. 

 

Composition and structure of the exocyst 

The identification of the exocyst stems from work that initially identified 23 S. 

cerevisiae proteins involved in secretion of invertase and acid phosphatase that were 

sequentially named Sec1-Sec23 (Novick et al., 1980). Initial study of the Sec15 protein 

revealed that it was present in a 19.5S membrane associated particle (Bowser and Novick, 

1991). Sec8 was also identified to associate with Sec15 in this particle (Bowser et al., 

1992). Further work found that the particle contains eight proteins and identified Sec6 as 

one of them (TerBush and Novick, 1995). The complex was subsequently purified and 

named the exocyst, and the identities of four additional subunits, Sec3, Sec5, Sec10, and 

the novel Exo70 were identified. The eighth component was identified as a fragment of 

Sec3, and all subunits were determined to be present as single copies (TerBush et al., 

1996). Meanwhile, it was realized that many components of neuronal secretion systems 

shared homology with the S. cerevisiae secretion system, so homologs of exocyst 

subunits were sought and a 17S complex containing Sec6 and Sec8 was identified in 

mammals (Ting et al., 1995). This complex also contained eight proteins (Hsu et al., 

1996), and in addition to Sec6 and Sec8, homologs of Sec5, Sec10, Sec15, and Exo70 

were also identified (Kee et al., 1997). Later, the 106kDa subunit was identified as a 

homolog of Sec3 (Brymora et al., 2001; Matern et al., 2001) and the 84kDa subunit was 
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found to be a novel subunit and was named Exo84 (Kee et al., 1997). The S. cerevisiae 

homolog of Exo84 was subsequently confirmed as a component of the exocyst (Guo et 

al., 1999a). Comparison of the S. cerevisiae and mammalian exocysts reveals low 

primary sequence conservation on the order of 10-20% identity and 30-50% similarity. 

Thus, the exocyst in S. cerevisiae and mammals is composed of eight protein subunits, 

Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84. 

The internal interactions between subunits of the exocyst have been probed using 

coimmunoprecipitation in vitro and in vivo, pull-down, and yeast two-hybrid techniques. 

Only three internal interactions in S. cerevisiae (Sec3-Sec5, Sec6-Sec8, and Sec10-

Sec15) and two in mammals (Sec6-Sec8 and Sec8-Sec10) have been detected using two 

of these techniques, and none have been detected by all three techniques (Munson and 

Novick, 2006), which could suggest that different interactions are only detectable by 

certain methods or that some reaction conditions may promote or hinder the formation of 

certain interactions. Alternatively, some interactions may require the presence of 

additional subunits. The known interactions and how they were detected within the S. 

cerevisiae and mammalian complexes can be found in Table 1.1 and a diagram depicting 

both subunit and GTPase interactions can be found in Figure 1.2.  

 The exocyst has been imaged by quick-freeze/deep-etch electron microscopy, 

revealing two forms (Hsu et al., 1998). When unfixed on a mica surface, the exocyst 

appears to be composed of four to six arms with approximate dimensions 4-6×10-30nm 

radiating from a central point. When fixed to the substrate with glutaraldehyde it appears 

as a thick stalk of dimensions 13×30nm with two smaller branches radiating from one 

end. It has been proposed that the unfixed state may result from disassembly on the mica 
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Table 1.1: Exocyst subunit-subunit interactions and detection methods 

 Sc interaction Sc detection Mammal interaction Mammal detection 
Sec3 Sec5a IPi, Y2Hj Sec5f 

Sec8f 
Y2H 
Y2H 

Sec5 Sec3a 
Sec6a 
Sec10a 
Exo70a 
Exo84b 

IP, Y2H 
IP 
Y2H 
Y2H 
IP 

Sec3f 
Sec6f 
 
 
Exo84g 

Y2H 
Y2H 
 
 
Y2H 

Sec6 Sec5a 
Sec6c 
Sec8a,d 
Sec10d 
Exo70e 

IP 
PDk 
IP, PD 
PD 
PD 

Sec5f 
 
Sec8f,h 
Sec10h 
Exo70f 

Y2H 
 
Y2H, PD 
PD 
Y2H 

Sec8  
Sec6a,d 
 
Exo70e 

 
IP, PD 
 
PD 

Sec3f 
Sec6f,h 
Sec10f,h 
Exo70h 

Y2H 
Y2H, PD 
Y2H, PD 
PD 

Sec10 Sec5a 
Sec6d 
 
Sec15a 
Exo70e 
Exo84b 

Y2H 
PD 
 
IP, Y2H 
PD 
Y2H 

 
Sec6h 
Sec8f,h 
Sec15f 
Exo70h 

 
PD 
Y2H, PD 
Y2H 
PD 

Sec15 Sec10a IP, Y2H Sec10f 
Exo70f 
Exo84f 

Y2H 
Y2H 
Y2H 

Exo70 Sec5a 
Sec6e 
Sec8e 
Sec10e 

IP 
PD 
PD 
PD 

 
Sec6f 
Sec8h 
Sec10h 
Sec15f 
Exo84f 

 
Y2H 
PD 
PD 
Y2H 
Y2H 

Exo84 
 

Sec5b 
Sec10b 

Y2H 
Y2H 

Sec5g 
 
Sec15f 
Exo70f 

Y2H 
 
Y2H 
Y2H 

a (Guo, et al. 1999b) 
b (Guo, et al. 1999a) 
c (Sivaram, et al. 2005) 
d (Sivaram, et al. 2006) 
e (Dong, et al. 2005) 
f (Matern, et al. 2001) 
g (Moskalenko, et al. 2003) 
h (Vega and Hsu, 2001) 
i Detected by coimmunoprecipitation (in vivo or in vitro) 
j Detected by yeast two-hybrid 
k Detected by pull-down of recombinant proteins 
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Figure 1.2: Exocyst subunit and GTPase interactions 
  
A diagram depicting the known subunit-subunit and subunit-GTPase interactions within 
the S. cerevisiae exocyst (A) and the mammalian exocyst (B). The exocyst subunit Exo70 
is labeled and shown as a fat dark gray pill. Other exocyst subunits are labeled and shown 
as fat light gray pills. GTPases are labeled and shown as thin gray pills. The vesicle 
membrane and plasma membrane are labeled and are each represented by a pair of 
horizontal lines. Interactions are shown as lines; the interaction between Sec5 and Exo84 
is broken by a diagonal line. GTPases thought to be important for membrane association 
of the exocyst are each connected to the appropriate membrane by a pair of zig-zag lines.
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substrate and could represent a partially assembled state of the exocyst, while the fixed 

state may more closely represent the functional state (Munson and Novick, 2006). 

A speculative extended, Y-shaped architecture for the exocyst has been proposed 

based on several observations. First, the fixed form of the complex as observed by 

electron microscopy takes this shape. Second, the subunit interaction data supports the 

close association of most subunits with one another. Third, the structures of ScExo70, 

ScExo84, DmSec15, and ScSec6 each contain a series of extended α-helical bundles, 

leading to the prediction that other subunits may contain similar structures and have 

similar rod-shaped architectures (Munson and Novick, 2006). Furthermore, each domain 

of Exo70 interacts with exocyst subunits and some subunits interact with multiple 

domains of Exo70, suggesting that these subunits may pack against each other in a side-

to-side fashion to form the main trunk of the complex (Dong et al., 2005). 

 

Sec3, Cdc42, and Rho1 

In S. cerevisiae, Sec3 arrives at the PM in a vesicle- and actin-independent 

manner while all other components arrive in a manner similar to the vesicle-associated 

Sec4 (Boyd et al., 2004). Sec3 is also thought to serve as a spatial marker for the 

localization of the exocyst (Finger et al., 1998), although this finding has been disputed 

(Zhang et al., 2005b). Sec3 is the only exocyst subunit that is not required for growth 

(Wiederkehr et al., 2003). It also interacts with Cdc42 (Zhang et al., 2001) and Rho1 

(Guo et al., 2001), two GTPases believed to be important in localization of the exocyst to 

sites of exocytosis. 
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 Cdc42 is a member of the Rho family of small GTP-binding proteins (Johnson 

and Pringle, 1990) that regulate polarization, morphogenesis, membrane traffic, cell 

growth, and development (Cabib et al., 1998; Chant, 1999; Erickson and Cerione, 2001; 

Johnson, 1999). In S. cerevisiae Cdc42 plays an important role in the initial bud site 

assembly and is required for polarized growth (Johnson and Pringle, 1990). It also 

participates in actin assembly as it is involved in type I phagocytosis (Caron and Hall, 

1998) and the formation of filopodia (Nobes and Hall, 1995) through interaction with 

WASP, an activator of the actin branching complex Arp2/3 (Aspenström et al., 1996; 

Symons et al., 1996). Cdc42 has also been deemed necessary for the polarized 

localization of ASH1 mRNA to the bud (Aronov and Gerst, 2004). Cdc42 is localized to 

sites of budding as an mRNA (Aronov et al., 2007) and its localization is maintiained by 

landmark proteins (Chant, 1999; Schenkman et al., 2002). Its interaction with Sec3 

controls the localization of Sec3, which is necessary for polarized secretion (Zhang et al., 

2001). 

 Rho1 is a another member of the Rho family of small GTP-binding proteins 

(Madaule et al., 1987). It is the S. cerevisiae homolog of mammalian RhoA (Qadota et 

al., 1994) and is considered to be the master regulator of cell wall integrity as it is 

involved in cell wall biogenesis, actin organization, and polarized secretion (Levin, 

2005). It interacts with at least four different GAPs, each of which is associated with a 

different function of Rho1 (Levin, 2005). Its interaction with Sec3 is required for the 

proper localization of Sec3 and it may compete or cooperate with Cdc42 in this role (Guo 

et al., 2001; Zhang et al., 2001). Rdi1, a GDI of both Rho1 and Cdc42 (Koch et al., 1997; 

Masuda et al., 1994), is associated with the delocalization of these GTPases from the PM 
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(Richman et al., 2004), and mammalian RhoGDIs are known to stimulate the release of 

Rho family GTPases from membranes (Hori et al., 1991; Nomanbhoy and Cerione, 1996; 

Wu et al., 1997). This is consistent with a model that calls for the GTPase-controlled 

release of the exocyst before vesicle fusion with the target membrane in mammals. 

Mammalian Sec3 does not seem to serve as a spatial marker for exocyst 

localization as it does in S. cerevisiae. It does interact with GLYT1, a glycine transporter 

that regulates NMDA receptor function, probably to promote its insertion into 

membranes (Cubelos et al., 2005). Sec3 is the largest subunit of the exocyst and appears 

to have two forms, or it may be particularly susceptible to proteolysis (TerBush et al., 

1996). It may be a peripheral component of the exocyst as it has the fewest known 

interactions among all subunits (Table 1.1). 

 

Sec5 and RalA 

In S. cerevisiae Sec5 was initially thought to be the central component of the 

exocyst due to the large number of intracomplex interactions that it was found to 

participate in (Guo et al., 1999b), but several other subunits have since been found to 

have at least as many interactions in both S. cerevisiae and mammals, weakening this 

hypothesis (Table 1.1). 

Mammalian Sec5 has fewer known intracomplex interactions (Munson and 

Novick, 2006) than S. cerevisiae Sec5. It competes with Exo84 for interaction with the 

RalA GTPase, an interaction that is important to the function of the exocyst (Fukai et al., 

2003; Jin et al., 2005). An X-ray crystal structure of the N-terminal 99 residues of Sec5 

in complex with RalA reveals that this portion of Sec5 folds into an immunoglobulin-like 
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β-sandwich (Fukai et al., 2003). Furthermore, Sec5 interaction with RalB has been 

implicated in cellular migration (Rossé et al., 2006). 

 RalA and RalB are members of the Ral family of small GTP-binding proteins 

(Chardin and Tavitian, 1986; Chardin and Tavitian, 1989), which regulate membrane 

transport, apoptosis, migration, proliferation, oncogenesis (van Dam and Robinson, 

2006), neurite branching (Lalli and Hall, 2005), and cytokinesis (Chen et al., 2006). Ral 

family GTPases also regulate secretion, filopodial function, and cell polarity through an 

interaction with the exocyst (Brymora et al., 2001). Interaction with these Ral GTPases is 

required for exocytosis (Wang et al., 2004a), as the assembly or stability of the exocyst 

depends on it (Moskalenko et al., 2002). 

 

Sec6 and Sec9 

In S. cerevisiae Sec6 is the only component found to form a homodimer in vitro 

(Sivaram et al., 2005). It also interacts with Sec9, a t-SNARE with homology to SNAP25 

(Brennwald et al., 1994), providing a direct link between the vesicle tethering and vesicle 

fusion machinery (Sivaram et al., 2005). To date, neither of these functions has been 

identified for Sec6 in mammals. Although Sec6 was one of the first proteins identified as 

a subunit of the exocyst, its specific role is not yet clear. The structure of a C-terminal 

portion of S. cerevisiae Sec6 has been determined by X-ray crystallography, revealing a 

fold similar to other components of the exocyst (Sivaram et al., 2006). 

 

Sec8, PSD-95, and SAP97 
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In S. cerevisiae the function of Sec8 is not well understood. Mammalian Sec8 

contains a PDZ binding motif (Sans et al., 2003) that is involved in an interaction with 

PSD-95 in neurons (Riefler et al., 2003) and SAP97 in adipocytes (Inoue et al., 2006), 

both of which are associated with the delivery of proteins to specific locations. 

Rheumatoid arthritis has been linked to intronic single nucleotide polymorphisms in the 

SEC8L1 allele in a Japanese population (Hamada et al., 2005), although intronic 

variability probably does not necessarily link Sec8 itself to disease. This is the only 

known link between subunits of the exocyst and a disease, although there are many links 

among various GTPases and cancer, including those that interact with the exocyst 

(Oxford and Theodorescu, 2003). 

 

Sec10 and Arf6 

In S. cerevisiae Sec10 is thought to be part of a soluble subcomplex of the exocyst 

that also includes Sec15 and requires Sec5 for association with the rest of the exocyst 

(Guo et al., 1999b). Although this specific subcomplex has not been observed in 

mammals, Sec10 does interact with the Arf6 GTPase to facilitate cell motility (Prigent et 

al., 2003). 

Arf6 is a member of the ADP-ribosylation factor family of small GTP-binding 

proteins (Graves et al., 1992), which regulate membrane trafficking through an 

association with vesicle coats (Donaldson et al., 2005; Moss and Vaughan, 1998; 

Randazzo et al., 2000). It localizes to the PM and endosomal membranes and it plays 

roles in endosome recycling, membrane remodelling, actin remodelling, and cytokinesis 

(D'Souza-Schorey and Chavrier, 2006). Its interaction with Sec10 in the mammalian 
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exocyst plays a role in the recycling of endosomal membrane to the PM at sites of 

dynamic reorganization (Prigent et al., 2003). 

 

Sec15, Bem1, Sec2, Sec4, and Rab11 

In S. cerevisiae Sec15 is thought to be part of a soluble subcomplex of the exocyst 

that also includes Sec10 and requires Sec5 for association with the rest of the exocyst 

(Guo et al., 1999b). It interacts with Bem1 (Drees et al., 2001; Zajac et al., 2005), which 

is thought to act as a scaffold for Cdc42 function (Moskow et al., 2000). Bem1 interacts 

with Cdc42 and its GEF, Cdc24 (Butty et al., 1998; Gulli et al., 2000; Yoshinaga et al., 

2003), and Cdc42 also interacts with Sec3 (Zhang et al., 2001). This provides a link that 

could possibly play a role in the assembly of the exocyst. In addition, Sec15 is an effector 

of the Sec4 GTPase, directly linking vesicles to the exocyst (Guo et al., 1999b). 

Furthermore, a GEF for Sec4, Sec2, is recruited to vesicles by the Rab family GTPase 

Ypt32 (Ortiz et al., 2002) which also interacts with Sec15 (Medkova et al., 2006) and 

activates Sec4 (Walch-Solimena et al., 1997). 

Sec4 is a member of the Rab family of small GTP-binding proteins (Salminen and 

Novick, 1987; Zahraoui et al., 1989), which regulate intracellular transportation (Seabra 

et al., 2002; Zerial and McBride, 2001). Sec4 is localized to exocytic vesicle membranes 

(Goud et al., 1988; Walch-Solimena et al., 1997) and plays a role in membrane transport, 

vesicle transport (Kabcenell et al., 1990; Walworth et al., 1989), and ASH1 mRNA 

localization to the bud (Aronov and Gerst, 2004). Sro7 interacts with Sec4 (Grosshans et 

al., 2006), and Exo84 (Zhang et al., 2005b). The interaction between Sec4 and Sro7 has 

been implicated in cell polarity (Kagami et al., 1998). Sro7 also interacts with the t-
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SNARE Sec9 (Lehman et al., 1999), providing a possible link between exocytic vesicles 

and the PM. The interaction of Sec4 with Sec15 plays an important role in vesicle 

targeting (Guo et al., 1999b). 

In mammals Sec15 is also known to interact with the Rab11 GTPase, which links 

vesicles directly to the exocyst (Zhang et al., 2004). The structure of a C-terminal portion 

of Drosophila melanogaster Sec15 has been determined by X-ray crystallography, 

revealing the Rab11 binding site as well as a fold similar to other components of the 

exocyst with available structures (Munson and Novick, 2006), except for some deviation 

in α-helical positioning at the N terminus (Wu et al., 2005). 

 Rab11 is a member of the Rab family of small GTP-binding proteins (Chavrier et 

al., 1990) that is found on the surface of recycling compartments (Green et al., 1997). It 

interacts with FIP2, FIP3 and FIP4 (Hales et al., 2002; Hickson et al., 2003), and FIP2 

interacts with myosin Vb, linking this GTPase to motor proteins and transport (Hales et 

al., 2002). Rab11 also plays a role in cell migration (Mammoto et al., 1999), and the Rab 

family is strongly associated with invasive migration of cancers by promoting integrin 

transport (Caswell and Norman, 2006; Jones et al., 2006). The interaction between Rab11 

and Sec15 links recycling compartments to the PM through the exocyst (Zhang et al., 

2004). Sec4, which interacts with Sec15 in S. cerevisiae, is also a Rab family GTPase 

(Guo et al., 1999b; Salminen and Novick, 1987; Zahraoui et al., 1989), suggesting at 

least a familial relationship between the functions of these two interactions. 

 

Exo70, Arpc1, Rho3, and TC10 
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In S. cerevisiae, Exo70 can arrive at the PM in two different manners: via an 

actin-independent manner similar to Sec3, and in a manner similar to the vesicle-

associated Sec4 and the rest of the exocyst subunits (Boyd et al., 2004). Exo70 interacts 

with Arpc1 through a conserved basic patch at its C-terminus (Zuo et al., 2006) and 

promotes actin filament formation into filopodia-like structures (Wang et al., 2004b; Xu 

et al., 2005). Arpc1 is a required component of the Arp2/3 actin branching complex 

(Harries et al., 2005; Machesky et al., 1994) and has a WD40 β-propeller-like fold with a 

strong basic patch exposed on its surface (Nolen et al., 2004; Robinson et al., 2001). The 

interaction between Exo70 and Arpc1 links vesicle tethering to the process of local actin 

remodeling that is necessary for the delivery of vesicles to the PM (Eitzen, 2003). Exo70 

also plays a specific role in the fusion of Bgl2-containing vesicles (He et al., 2007). There 

are two known classes of exocytic vesicles that transport two separate sets of cargo: one 

that carries PM proteins and cell wall modification enzymes such as Bgl2p and the other 

that carries proteins such as the periplasmic enzyme invertase (Harsay and Bretscher, 

1995). This function of Exo70 likely explains why the protein was not detected among 

the 23 original sec proteins, as the discovery of these was dependent on an assay 

detecting the release of invertase (Novick et al., 1980). In addition, Exo70 interacts with 

the Rho3 GTPase, which plays several important roles in cell growth (Levin, 2005). The 

structure of a truncated form of Exo70 missing approximately 10% of its N-terminal 

sequence has been determined by X-ray crystallography in two different crystal forms 

(Dong et al., 2005; Hamburger et al., 2006), and the structure of a second construct 

missing both the N-terminal 10% and the C-terminal domain was also determined 

(Hamburger et al., 2006). These structures reveal a fold with an N-terminal domain that 
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is similar to other components of the exocyst with available structures (Munson and 

Novick, 2006). 

Rho3 is a member of the Rho family of small GTP-binding proteins (Matsui and 

Toh-e, 1992). It is required for several processes, including growth (Matsui and Toh-e, 

1992), bud formation (Imai et al., 1996), actin organization (Imai et al., 1996; Matsui and 

Toh-e, 1992), efficient secretion of cell-wall hydrolases (Adamo et al., 1999), 

localization of ASH1 mRNA to the bud (Aronov and Gerst, 2004), and, at least in 

Schizosaccharomyces pombe, cell separation (Wang et al., 2003). Furthermore, Rho3 

plays a role in regulation of actin polarity, transportation of exocytic vesicles from the 

mother cell to the bud through interaction with the unconventional class V myosin Myo2, 

and fusion of these vesicles with the target membrane through interaction with Exo70 

(Adamo et al., 1999; Robinson et al., 1999). This interaction requires Exo70 residues 

338-515 (Dong et al., 2005) and has a KD of 70μM as measured by SPR, which is weaker 

than expected and may be artificially weak due to the soluble recombinant Rho3 used for 

this measurement (Hamburger et al., 2006). 

In mammals Exo70 maintains its conserved interaction with Arpc1 (Zuo et al., 

2006) and the TC10 GTPase interacts with Exo70 in order to localize the exocyst to sites 

of exocytosis (Inoue et al., 2003; Inoue et al., 2006). Three different forms of Exo70 have 

been identified in mammals. Two have only been found in brain while the third, studied 

here, has been found in several tissues, but not brain (Carninci et al., 2005; Guo et al., 

1997; Strausberg et al., 2002). Exo70 found in brain appears to contain either one or two 

insertions in its primary sequence. Thus, an understanding of the shorter non-brain form 

could also serve as a basis for the understanding of the longer brain forms. Furthermore, 
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in plants, Arabidopsis thaliana appears to contain up to 23 copies of a gene homologous 

to Exo70 and only 1-3 copies of genes homologous to other exocyst components, 

suggesting that Exo70-like proteins may play an additional role, and possibly form a 

family, in plants (Elias et al., 2003). These findings could suggest that Exo70 is modular, 

capable of accepting modifications to alter its function in plants and animals. 

 TC10 is a member of the Rho family of small GTP-binding proteins (Drivas et al., 

1990). It is primarily localized to the PM and can induce actin-based protrusions at the 

PM through an interaction with profilin, an actin-binding filament-forming protein, 

suggesting a role in regulation of the actin cytoskeleton and cell growth (Murphy et al., 

1999). TC10 also regulates the transport of the glucose transporter GLUT4 (Chiang et al., 

2001) and the CFTR (Cheng et al., 2005) to the PM. The transport of GLUT4 to the PM 

requires the reorganization of actin and the recruitment of the exocyst, both of which are 

functions of TC10 (Kanzaki, 2006). TC10 recruits Exo70 through residues 1-384, which 

results in the localization of the rest of the exocyst subunits to lipid rafts on the PM where 

it is required for the surface exposure of GLUT4 (Inoue et al., 2003; Inoue et al., 2006). 

This work suggests that Exo70 plays an important role in exocyst localization, but in S. 

cerevisiae the localization of the exocyst is not a function of its interaction with Rho3 

(Roumanie et al., 2005). 

 

Exo84, Sro7, and RalA 

In S. cerevisiae, Exo84 was the last component to be identified, possibly because 

it is capable of dissociating from the exocyst under certain experimental conditions (Guo 

et al., 1999a). It is required, along with Exo70, for the polarization and assembly of the 
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exocyst (Zhang et al., 2005b). Exo84 interacts with Sro7 (Zhang et al., 2005a), a member 

of the lgl family that in animal cells has been implicated in cell polarity (Kagami et al., 

1998). Sro7 also interacts with Sec4 (Grosshans et al., 2006) and the t-SNARE Sec9 

(Lehman et al., 1999), providing a possible link between exocytic vesicles and the PM. A 

structure of the C-terminal domain of S. cerevisiae Exo84 has also been solved by X-ray 

crystallography (Dong et al., 2005), revealing a fold that is similar to other components 

of the exocyst with available structures (Munson and Novick, 2006). 

In mammals Exo84 competes with Sec5 for interaction with RalA, an interaction 

important to the function of the exocyst (Jin et al., 2005). This interaction has been 

observed by X-ray crystallography, revealing a PH domain fold in Exo84 at the site of 

interaction (Jin et al., 2005). PtdIns(3,4,5)P3 may also compete with RalA for Exo84 

interaction (Moskalenko et al., 2003). 

 

X-ray crystallography 

 X-ray crystallography is a powerful method capable of examining the three-

dimensional structure of protein molecules at atomic or near-atomic resolution (Dauter, 

2006). It is particularly suitable for the study of larger molecules such as viral capsids 

(Natarajan et al., 2005), which are currently beyond the ability of NMR techniques (Xu et 

al., 2006). Protein structures can reveal features and motifs important to the function of a 

protein. A combination of structural data with primary sequence alignments and 

conservation data can be used to predict important features of a molecule that may not be 

obvious from sequence alignment alone. In addition, the identification of a known motif 

can sometimes be used to infer new functions of a protein. A particularly useful 
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comparison can be made between two related structures, such as those of homologous 

molecules from two different organisms or two molecules of similar function from one 

organism. 

One of the limitations of X-ray crystallography is the requirement of a large 

amount of highly purified protein capable of organizing into the ordered lattice of a 

crystal. A large amount of highly purified protein can usually be efficiently acquired by 

the over-expression of protein in Escherichia coli or other heterologous expression 

systems and purification using a series of chromatographic techniques. Protein capable of 

organizing into the ordered lattice of a crystal can be obtained by careful design of 

mutations and truncations to the gene encoding the protein of interest. In theory, the 

removal of domains, loops, and residues that interfere with crystal packing can improve 

both the ability of a protein to crystallize and the resolution of X-ray diffraction obtained 

from that crystal (Helliwell, 2005). This process is somewhat subjective, as there are no 

clear rules defining how to modify a protein for crystallization, although limited 

proteolysis is a technique that can often provide useful information (Fontana et al., 2004). 

In addition, the process of crystallization itself is not completely understood (Kashchiev 

et al., 2005; Vekilov, 2005), making the prediction of conditions under which a particular 

protein will crystallize difficult. For this task many screens have been developed that 

include a wide variety of chemical conditions in order to maximize the chance of 

identifying one or more that produce useful protein crystals (Page and Stevens, 2004). 

This initial screening process for crystallization conditions also contributes to the 

requirement of a large amount of purified protein. 
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Several techniques are available for the crystallization of protein, although the 

sitting drop method based the principle of vapor diffusion is the most common (Forsythe 

et al., 2002). In this technique a small μL-scale drop containing protein and dilute 

precipitant is separated from a larger reservoir of concentrated precipitant in a closed 

environment. In theory, vapor diffusion occurs, transferring water from the drop to the 

reservoir driven by the unequal precipitant concentrations between them. This results in 

the slow increase in protein concentration within the drop, and at the saturation point 

protein begins to leave the solution. In the right chemical environment and with a proper 

protein construct, the protein will organize into crystals as it leaves solution. 

Crystallization takes place in two steps: nucleation and growth. Nucleation is the 

formation of small nuclei with crystalline organization. Growth is the process of 

increasing the size of the nucleus to a maximum, usually on the order of several hundred 

μm. Some chemical environments may only promote one of these two steps. In a case 

where nucleation is not strongly promoted, existing crystals can be ground up and 

distributed as nuclei into the drop to bypass this obstacle in a technique known as 

seeding. 

 

Conclusions 

  The exocyst is composed of eight protein subunits that have received varying 

levels of study. The contributions of each subunit to the exocyst as a whole are being 

determined through the study of mutants and interactions with components outside the 

exocyst. These studies have revealed a number of differences between the interactions 

and functions of each subunit across species, particularly between the distantly related S. 
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cerevisiae and mammals. Exo70 is an important subunit of the exocyst. It mediates 

several interactions that are important to cellular function, including the polarization of 

exocytosis, the assembly of the exocyst, and the regulation of the actin cytoskeleton. The 

goal of the work presented here was to provide insight into the interactions of Exo70 and 

therefore the function of the exocyst. 

The identification, purification, crystallization, and X-ray characterization of the 

S. cerevisiae and M. musculus Exo70 molecules are described in Chapters 2 and 3, 

respectively. Chapter 4 gives a detailed description and comparison of both structures. 

Chapter 5 further elaborates on the observations made in Chapter 4 and presents several 

avenues for further study of Exo70 as a result of this work. 
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Chapter 2 

ScExo70 Expression, Purification, and X-ray Crystallography 

 

ABSTRACT 

 The function of Exo70 in the exocyst and its interactions with Arpc1 and GTPases 

are not well understood. In this chapter X-ray crystallographic data for Saccharomyces 

cerevisiae Exo70 were collected and processed. In preparation for data collection, several 

different Exo70 constructs were created, over-expressed, purified, and crystallized. The 

most successful construct contains a deletion of the N-terminal 62 residues. It crystallized 

in 20 conditions, including two small, three-dimensional forms. One of these three-

dimensional crystals yielded a high-resolution X-ray diffraction data set to 2.1Å. 

 

INTRODUCTION 

 At the start of this project there was no published information on the structure of 

the exocyst or its subunits and little information on the interactions between these and 

other cellular components. The initial goal of this project was to learn more about the 

structure and function of the exocyst by employing X-ray crystallographic techniques. 

Early published literature hinted at the importance of the role played by Exo70, which 

has been well established over the last several years. It was hoped that structural 

information would add significantly to our knowledge of the function of this protein as a 

subunit of a tethering complex and a member of the cellular transport systems. 
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This study begins with exocyst subunits from the yeast S. cerevisiae as they were readily 

available and S. cerevisiae is considered to be a model eukaryotic organism (Skoneczna, 

2006). The activities performed by the unicellular S. cerevisiae are simpler than 

multicellular organisms such as mammals, but many essential cell functions are 

conserved. The simplicity and well-studied nature of S. cerevisiae provides a eukaryotic 

system in which genetic manipulation, isolation of genes, and the study of individual 

proteins are all relatively easy to accomplish, making it a reasonable choice for initial 

work on a particular system. In particular, these features make it simple to knock out 

genes, as there are rarely pseudogenes (Cherry et al., 1998; Esnault et al., 2000; Mewes 

et al., 2000; Spingola et al., 1999) or multiple copies (Gu et al., 2002) to consider, and 

the scarcity of introns (Dujon, 2006) makes genes easy to identify and clone. Also, the 

number of protein modifications in S. cerevisiae is fewer, making manipulation and study 

simpler once again. Certainly the most valuable information comes from the study of 

human and other mammalian organisms, but the value of the model yeast S. cerevisiae 

has proven itself to be a valuable tool and focus for most studies interested in eukaryotic 

functions and features. 

 

MATERIALS & METHODS 

Plasmids, Escherichia coli strains, and source DNA 

The pSJ series of plasmids were employed in the constructs used in this work. 

pSJ3 is based on pET21a (Novagen) and includes a His8 tag and a TEV protease cleavage 

site upstream of the BamHI restriction site as well as an insert containing the NdeI 

restriction site and the gene encoding a fragment of DnaK from pGEX2t (Novagen) 
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between the BamHI and EcoRI restriction sites. pSJ4 is based on pET30a (Novagen) and 

incorporates the same inserts used in pSJ3. pSJ5, pSJ6, and pSJ7 were created by 

insertion of a His8 tag and TEV protease cleavage site upstream of the BamHI restriction 

site in pET32a, pET41a, and pET43.1a (Novagen), respectively. pSJ5 contains a 

Thioredoxin tag, pSJ6 contains a GST tag, and pSJ7 contains a Nus tag, each upstream of 

the inserted sequence. pSJ7D is a modified version of pSJ7 to include a shorter linker 

sequence between the Nus and His8 tags in an attempt to improve expression and 

purification. pSJ3, pSJ5, pSJ7, and pSJ7D contain a Ampicilin antibiotic resistance gene; 

pSJ4 and pSJ6 contain a Kanamycin antibiotic resistance gene. 

Wei Guo (Univeristy of Pennsylvania) provided all eight S. cerevisiae exocyst 

genes in various 2μ plasmids. For primers used in this study, see Table A.1. 

 Four strains of Escherichia coli were used in this work. DH5α was used for initial 

selection and amplification of plasmids. BL21(DE3) was used for expression of all native 

exocyst proteins. B834(DE3) was used for expression of all SeMet-substituted proteins. 

BL21(DE3) pLysS was used for the expression of TEV protease (see Appendix). 

Competent cell stocks were prepared using calcium-dependent methods (see Appendix). 

 

Amplification and cloning 

 The Touchdown method of PCR (Don et al., 1991) was used to amplify genes and 

insert restriction sites at the start and end of genes. It uses a series of cycles in which the 

annealing temperature is slowly decreased in four stages. The adaptation of the 

thermocycling protocol used for this work is as follows: 95°C for 3min, four cycles of 

stage 1, four cycles of stage 2, four cycles of stage 3, eighteen cycles of stage 4, and 



 54

10min at 72°C. Stage 1 includes 2min at 95°C followed by 1.5min at 66°C and 1.5min at 

72°C. Stage 2 is like stage 1 except for a decreased annealing temperature of 63°C. Stage 

3 is also like stage 1 except for a further decreased annealing temperature of 60°C. Stage 

4 is again the same as stage 1 except for a decreased dissociation time of 1min, decreased 

annealing temperature of 55°C, and decreased annealing time of 1min. PCR products 

may be stored at -20°C if necessary before purification using a PCR purification kit 

(Qiagen). 

 Double restriction digestions were performed when both restriction enzymes 

performed sufficiently in the same reaction buffer following manufacturer protocol (New 

England Biolabs). 10 units of CIP (New England Biolabs) were added during the final 

30min of digestion to vector digestion reactions. Products were purified by gel extraction 

on a 1.0% agarose gel using a gel extraction kit (Qiagen). 

 Restriction-digested plasmids and genes were ligated in a 16°C water bath 

overnight following manufacturer protocol (New England Biolabs). All ligation products 

and controls were transformed into ultra-competent DH5α E. coli (see Appendix) and 

plated on LB-agar plates containing the appropriate selective antibiotics using a standard 

protocol. Plasmids were isolated from expanded single-colony cultures by miniprep 

(Qiagen) and digested with the appropriate restriction enzymes as before, except for a 

period of 1hr and without the addition of CIP. Products were run on a 1.0% agarose gel to 

confirm the presence of both vector and gene. Construct DNA sequences were confirmed 

by DNA sequencing of a concentrated plasmid sent to the University of Michigan DNA 

Sequencing Core. 
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Protein expression 

Plasmids containing genes of interest were transformed into BL21(DE3) E. coli, and 

colonies were tested for over-expression of the desired genes using a standard protocol 

and visualized by SDS-PAGE. After identification of an appropriate expression condition 

by test expression, large-scale expression was performed using these conditions. 5mL of 

a dense starter culture was added to each of six flasks containing 1L LB and the 

appropriate selective antibiotic and shaken at 37°C to an OD of approximately 0.375 at 

595nm. The temperature was then shifted to the appropriate temperature, if necessary, 

before overnight expression with 400μM IPTG. Cell pellets were collected and pellets 

not immediately used for protein purification were stored at -80°C. 

 

Protein purification 

 All steps were performed at 4°C or on ice. Cell pellets were thawed and 4-10g of 

cell pellet was resuspended in 50mL buffer A (20mM Tris pH8.0, 10% glycerol, 300mM 

NaCl, 0-20mM imidazole⋅HCl, 0.07% β-me, 20μg/mL PMSF, filtered at 45μm). 

Resuspended pellets were sonicated six times on ice for 30sec at power 8 on a Branson 

Sonifier 450 with 30sec breaks between pulses. Sonicated cells were centrifuged and the 

supernatant was collected. 

 A Ni2+-NTA column was washed and equilibrated in buffer A. The sonicated 

supernatant was pumped over the column and washed 3 × with buffer A. In some cases 

the addition of a small amount of imidazole⋅HCl to buffer A improved washing. A linear 

gradient of buffer B (20mM Tris pH8.0, 10% glycerol, 300mM NaCl, 250mM 

imidazole⋅HCl, 0.07% β-me, 20μg/mL PMSF, filtered at 45μm) was applied from 0 to 
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100% and fractions with a strong UV signal were analyzed by SDS-PAGE. Fractions 

containing an appropriate concentration and purity of the desired protein were collected 

and concentrated by centrifugation in a Centriprep YM-10 concentrator (Amicon). 

Concentrated protein was then dialyzed in a 10000 molecular weight cut-off 

dialysis bag with 1mL TEV protease (see Appendix) against 2L buffer C (20mM Tris 

pH8.0, 100mM NaCl, 0.07% β-me, 20μg/mL PMSF) overnight. The efficiency of the 

TEV protease digestion of the construct was analyzed by SDS-PAGE. 

Dialyzed protein was exchanged into buffer D (20mM Tris pH8.0, 300mM NaCl, 

0.07% β-me, 20μg/mL PMSF, filtered at 45μm) as before and loaded onto a second Ni2+-

NTA column equilibrated in buffer D. The column was washed with buffer D to elute 

untagged protein and washed with buffer B to remove column-bound material. Fractions 

containing an appropriate concentration and purity of the desired protein were identified 

by SDS-PAGE and were concentrated as before. In some cases a significant amount of 

contaminant also eluted with the desired protein. In this case, collected and concentrated 

protein was passed back over the same column re-equilibrated in buffer D and the process 

was repeated up to two more times in order to improve the purity of the desired protein. 

 Protein was exchanged into buffer E (20mM Tris pH8.0, 0-50mM NaCl, 1mM 

DTT, 1mM EDTA, filtered at 20μm) as before, then loaded onto a Source Q or Mono Q 

ion exchange column equilibrated in buffer E. Protein was eluted with a linear gradient of 

0 to 40% buffer F (20mM Tris pH8.0, 1M NaCl, 1mM DTT, 1mM EDTA, filtered at 

20μm) and fractions with a strong UV signal and fractions were analyzed by SDS-PAGE. 

 In some early purifications gel filtration was also performed in search of 

additional useful purification steps and to analyze the protein. Concentrated protein was 
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exchanged into buffer G (20mM Tris pH8.0, 100mM NaCl, 1mM DTT, 1mM EDTA, 

filtered at 20μm) before loading onto either a Superdex 75 or Superdex 200 column 

equilibrated in buffer G. 90mL of buffer G was passed over the column and fractions 

were identified by SDS-PAGE. 

 Purified protein was exchanged into crystallization buffer (20mM Tris pH8.0, 

150mM NaCl, 1mM TCEP) and concentrated appropriately for crystallization. The 

concentration was estimated by comparison of the UV spectrum of the purified protein to 

its theoretical extinction coefficient before storage in 50-100μL aliquots at -80°C. 

 

Limited Proteolysis and N-terminal sequencing 

 The proteases trypsin, chymotrypsin, or subtilisin are added to protein in either a 

concentration course or time course experiment. In a concentration course experiment 

1mg/mL protein is mixed with a series of diluted protease in digestion buffer (20 mM 

Hepes, pH7.5, 200 mM NaCl, 10% glycerol, 1mM DTT) for 30min. The reaction is 

stopped with 2μg PMSF and digestion products are analyzed by SDS-PAGE. In a time 

course experiment a single concentration of protease is chosen, usually based on the 

results of a concentration course experiment, and reacted for varying periods of time, 

typically 30, 60, 90, 120, 240, and 360 min, and at varying temperatures. The reaction is 

stopped with PMSF and digestion products are analyzed by SDS-PAGE. 

 Limited proteolysis products can be analyzed by N-terminal sequencing. 

Unstained protein on an SDS-PAGE gel is electroblotted onto a PVDF membrane by the 

method of Matsudaira (Matsudaira, 1987) using a BioRad electroblotting apparatus. 80V 

was applied for 2hr. and the membrane is stained with Ponceau S. The band of interest is 
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excised from the membrane and sent to the Michigan State University Protein 

Sequencing Core for N-terminal sequencing. 

 

Protein Crystallization 

 Protein crystallization was performed using the sitting drop method at two 

temperatures. Initial screening for crystal-producing conditions used the Hampton I and 

Hampton II screening kits (Hampton Research; Table A.2) and the X screen kit (Table 

A.3). 0.5-2μL of purified protein is mixed with an equal volume of precipitant from the 

kit in the presence of a reservoir containing 500μL precipitant, all sealed in the well of a 

24-well sitting drop plate (Cryshem). These are stored in a 4°C or 20°C temperature-

controlled room and observed for a period of days to months. Conditions producing 

crystals were optimized for crystal size, shape, and attachment to other crystals and 

surfaces using grid screens around the conditions of the original crystal. Drop size, 

protein:precipitant ratio, precipitant composition (buffer species, pH, PEG concentration, 

salt concentration, precipitant analogs), precipitant concentration, and protein 

concentration were all optimized. Once an optimal condition was identified, the Hampton 

Additive Screen kit (Hampton Research; Table A.4) was applied to search for any 

additional improvements in crystal attributes. Optimized crystals were harvested, 

equilibrated in a drop containing a cryo solution based on the growth conditions and 

selected to yield a transparent solid when frozen, and snap-frozen in liquid nitrogen. 

 

RESULTS AND DISCUSSION 

Identification of a ScExo70 construct as a candidate for structural studies 
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The first goal of this project was to identify one or more proteins of the exocyst 

complex as a candidate for structural studies. Plasmids containing each of the eight 

subunits of the S. cerevisiae exocyst were amplified by PCR and inserted into the pSJ4 

vector. Initial analysis found that ScExo70 expressed well but insolubly in BL21(DE3) 

Escherichia coli at 37°C. Expression at 20°C and 16°C revealed increasing solubility 

with decreasing temperature. None of the other tested exocyst subunits expressed as well 

as ScExo70. Purification of ScExo70 from the pSJ4 construct was attempted, but it 

precipitated  after concentration of the affinity-purified product. ScExo70 was then 

subcloned into pSJ5, pSJ6 and pSJ7. It expressed strongly but insolubly in pSJ5, weakly 

in pSJ6, and moderately in pSJ7 at 16°C. 

 

Purification of ScExo70 

ScExo70 was expressed from pSJ7 in BL21(DE3) E. coli. The protein eluted from 

a Ni2+-NTA column with 75mM imidazole. Overnight dialysis at 4°C with TEV protease 

was sufficient to cleave >95% of protein with some precipitation apparent. The digested 

protein was passed over another Ni2+-NTA column twice to remove >90% of the tags and 

TEV protease. Finally, ScExo70 eluted from a MonoQ ion exchange column with 

150mM NaCl. The final yield was 7.0mg/L of culture. Purified protein was exchanged 

into crystallization buffer (20mM Tris pH8.0, 150mM NaCl, 1mM TCEP) at a 

concentration of 10.8mg/mL and stored in aliquots at -80°C. Protein stored at 4°C 

precipitated over a period of weeks. Further purification was not achieved by gel 

filtration. ScExo70 eluted from a Superdex 200 column as a single peak at a volume of 

69mL, which corresponds to an apparent molecular weight of 140kDa. This result raised 
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the possibility that ScExo70 may form a homodimer, but this result was later interpreted 

as an artifact of the elongated shape of the molecule. 

 

Crystallization and diffraction of ScExo70 

The sitting drop method was employed with the Hampton Crystal Screens I and II 

and the X screen at 4°C and 20°C to screen ScExo70 for crystal formation. Only one 

condition in the X screen produced crystals, which appeared at 4°C within 24 hours and 

reached full size within 7 days. Optimized crystals grew in a 1:2 protein:precipitant ratio 

in a 3μL drop with a precipitant containing 150mM HEPES pH8.0, 18% ethylene glycol, 

2% PEG 2000, and 10mM NaCl. Crystals were mostly <0.1mm rod-shaped crystals with 

an occasional larger “football-shaped” crystal (Figure 2.1). These diffracted to a 

maximum resolution of approximately 8Å on beamline 23-ID-D (General Medicine and 

Cancer Institutes CAT) at APS. Other crystals grown in a similar condition, but in the 

absence of PEG or in the presence of the additive NDSB 195, diffracted similarly. 

 

Limited proteolysis of ScExo70 

ScExo70 was digested with subtilisin, trypsin or chymotrypsin in a concentration 

course experiment. Analysis of digestion products by SDS-PAGE revealed that all three 

proteases produced an approximately 61kDa fragment as the largest product. The band 

produced by trypsin was the easiest to separate from other digestion products (Figure 2.2) 

and was excised for N-terminal sequencing, which identified Asn63 as the N-terminal 

residue of this fragment (ScExo70Δ62). Subtilisin digestion also produced two strong 

fragments, one of which was also produced by trypsin. These bands were approximately 
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Figure 2.1: ScExo70 crystals 
 
A photograph of ScExo70 crystals grown in a precipitant containing approximately 
150mM HEPES pH8.0, 18% ethylene glycol, 2% PEG 2000, and 10mM NaCl. Several 
rod-shaped and two football-shaped crystals can be seen in the presence of light 
precipitation. 
 
 
 
 
 
 

 

 

Figure 2.2: Limited proteolysis of ScExo70 
 
A photograph of a 12% SDS-PAGE gel stained with Coomassie blue. 
Left lane: Benchmark standard (Invitrogen) with 20-70kDa bands labeled. 
(-): Purified ScExo70 treated with no trypsin protease. 
Trypsin lanes: From left to right, ScExo70 treated with a 1:1000, 1:300, 1:100, 1:30, or 
   1:10 molar ratio of trypsin:ScExo70 for 30 minutes on ice. 
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50kDa and 35kDa. Constructs lacking the first 168 (ScExo70Δ168) and 294 residues 

(ScExo70Δ294) were designed based on these sizes, secondary structure prediction, and the 

location of subtilisin-susceptible sites in the primary sequence identified by the ExPASy 

PeptideCutter tool (Gasteiger et al., 2005). Both of these constructs exhibited soluble 

expression in pSJ7 at 15°C. ScExo70Δ168 precipitated heavily during purification. 

ScExo70Δ294 also precipitated to a lesser degree and a small amount was successfully 

purified, but no conditions were found to produce crystals. 

 

Preparation and purification of ScExo70Δ62 

The ScExo70Δ62 gene was amplified by PCR and inserted into the pSJ7D vector. 

Protein expression in BL21(DE3) E. coli was strong and soluble at 37°C. The protein 

eluted from a Ni2+-NTA column with 75mM imidazole (Figure 2.3). Overnight dialysis 

with TEV protease was sufficient to cleave >95% of protein. Digested protein was passed 

over a second Ni2+-NTA column twice for improved purification and removal of >95% of 

the tag and TEV protease. Finally, ScExo70Δ62 eluted from a MonoQ ion exchange 

column with 150mM NaCl. Final yield was estimated at 12.0mg/L of culture. Protein was 

exchanged into crystallization buffer at a concentration of 15.8mg/mL and stored in 

aliquots at -80°C. 

 

Crystallization of ScExo70Δ62 

 ScExo70Δ62 was screened for crystal formation with the Hampton Crystal Screens 

I and II at 4°C and 20°C and the X screen at 4°C using the sitting drop method. The 
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Figure 2.3: Purification of ScExo70Δ62 
 
A photograph of a 12% SDS-PAGE gel stained with Coomassie blue. 120kDa bands 
represent MBP-tagged ScExo70, 70kDa bands represent untagged ScExo70, and the 
60kDa band represents the MBP tag. 
Left lane: Benchmark standard (Invitrogen) with 25-160kDa bands labeled. 
1: Soluble protein from sonicated E. coli, diluted 1:4 in buffer A (see text). 
2: Protein after two passes over a Ni2+-NTA affinity column. 
3: Protein after overnight digestion with TEV protease. 
4: Protein after passage over a second Ni2+-NTA column. 

5: Final purified ScExo70Δ62 after passage over a MonoQ ion exchange column.
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Hampton screens produced crystals in five conditions at 4°C and two at 20°C, and the X 

screen yielded thirteen at 4°C (Table 2.1). Some crystals appeared as quickly as overnight 

while others required up to three weeks to form. Most of these crystals grew from 

precipitants of various PEG/salt conditions, a few of them appeared in salt only 

conditions, and one appeared in an MPD/PEG condition. About half of the conditions, 

mostly PEG/salt conditions, produced clusters of flat, plate-like crystals of various sizes 

and shapes (Figure 2.4a,b). Four PEG/salt conditions produced fast-growing clusters of 

rod-shaped crystals of various sizes and lengths (Figure 2.4c,d). Limited success was had 

in attempts to improve size and prevent clustering of these crystals. The optimized 

condition for producing crystals of this type was 100mM Tris pH8.5, 16% PEG 8000, 

200mM CaCl2, 20°C. The Hampton Additive Screen (Hampton Research) yielded one 

additive, spermine⋅4HCl, which produced long, thick clustered rods that could potentially 

be broken away from the rest of the cluster (Figure 2.4e). These large crystals could not 

be repeated and were found to be soft when harvested. A third type of crystal observed in 

two salt-only conditions was a plentiful small, unclustered needle (Figure 2.4f). No 

improvement in size or shape was achieved. A fourth type of crystal grew in two 

conditions and yielded small three-dimensional crystals. The MPD/PEG condition 

produced small, nearly square 3D tablet-shaped crystals, but these could not be 

reproduced. The PEG/salt condition produced slow-growing, small 3D trapezoidal tablet-

shaped crystals with thick, clean edges (Figure 2.4g). These crystals appeared in about 

ten days and continued to grow for an additional seven to fourteen days. They grew 

optimally at 4°C in a 2μL drop with a 1:1 ratio of protein to precipitant and a precipitant 

composition of 100mM glycine pH9.5, 20.5% PEG 300, 200mM LiCl. Two conditions in
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Table 2.1: ScExo70Δ62 crystals produced by initial screening 

 
Crystal Type Appearance Time (days) Screen Condition 
Clustered plates 8 – 18 0.1M sodium cacodylate pH5.5, 8% PEG 8000, 0.2M LiCl, 4°C 
Clustered plates 8 – 18 0.1M sodium cacodylate pH5.5, 16% PEG 8000, 4°C 
Clustered plates 1 – 3 0.1M sodium cacodylate pH5.5, 16% PEG 8000, 0.2M (NH4)2SO4, 4°C 
Clustered plates 1 – 2 0.1M HEPES pH7.5, 16% PEG 8000, 0.2M (NH4)2SO4, 4°C 
Clustered plates 1 0.1M Glycine pH9.5, 16% PEG 8000, 0.2M (NH4)2SO4, 4°C 
Clustered plates 8 – 18 0.1M MES pH6.5, 12% PEG 20000, 4°C 
Clustered plates 7 – 17 0.1M HEPES pH7.5, 8% PEG 2000, 4°C 
Clustered plates 2 – 6 0.1M HEPES pH7.5, 8% PEG 8000, 0.2M LiCl, 4°C 
Clustered plates 2 – 6 0.1M Glycine pH9.5, 8% PEG 8000, 0.2M LiCl, 4°C 
Clustered plates 1 – 3 0.1M Bicine pH9.0, 30% PEG MME 550, 0.1M NaCl, 4°C 
Clustered rods 2 0.1M Glycine pH9.5, 16% PEG 8000, 0.2M MgCl2, 4°C 
Clustered rods 1 – 3 0.1M sodium cacodylate pH6.5, 20% PEG 8000, 0.2M magnesium acetate, 20°C 
Clustered rods 1 – 3 0.1M sodium cacodylate pH6.5, 18% PEG 8000, 0.2M calcium acetate, 20°C 
Clustered rods 1 – 3 0.1M sodium cacodylate pH6.5, 18% PEG 8000, 0.2M calcium acetate, 4°C 
Single needles 8 – 18 0.1M sodium citrate pH5.6, 1M Li2SO4, 0.5M (NH4)2SO4, 4°C 
Single needles 8 – 18 0.1M Tris HCl pH8.5, 2M NH4H2PO4, 4°C 
Spherulites 2 0.1M Glycine pH9.5, 16% PEG 8000, 0.2M LiCl, 4°C 
Spherulites 7 – 10 0.1M Glycine pH9.5, 20% PEG 600, 0.2M LiCl, 4°C 
Single 3D 2 – 6 0.1M Glycine pH9.5, 20% MPD, 5% PEG 8000, 4°C 
Single 3D 10 – 18 0.1M Glycine pH9.5, 20% PEG 300, 0.2M LiCl, 4°C 
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Figure 2.4: ScExo70Δ62 crystals 
 
Photographs of several different forms of ScExo70Δ62 crystals, each grown at 4°C unless 
otherwise noted. 
A: Plate clusters grown in 100mM glycine pH9.5, 13% PEG 8000, and 200mM NaCl. 
B: Plate clusters grown in 100mM glycine pH9.5, 13% PEG 8000, and 200mM CaCl2. 
C: Rod clusters grown in 100mM glycine pH9.5, 15% PEG 8000, and 200mM Li2SO4. 
D: Rod clusters grown in 100mM tris pH8.5, 15% PEG 20000, and 200mM CaCl2. 
E: Irrepreoducible rod clusters grown in 100mM tris pH8.5, 16% PEG 8000, 200mM 

CaCl2, and 100mM spermine⋅4HCl at 20°C. 
F: Individual needles grown in 100mM tris pH8.5 and 2M (NH4)H2PO4. 
G: Three-dimensional trapezoids grown in 100mM glycine pH9.5, 20% PEG 300, and 

200mM LiCl.
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the screen similar to this condition produced spherulites that were a degenerate form of 

this three-dimensional crystal. Crystals were transferred into a cryo solution (100mM 

glycine pH9.5, 40% PEG 300, 200mM LiCl) and snap-frozen in liquid nitrogen. 

 

X-ray diffraction, data collection, and processing of ScExo70Δ62 

Diffraction to a resolution of 2.3Å and a mosaicity of 0.3° was achieved at 

beamline 21 (Life Sciences CAT) at APS from the three-dimensional crystals of 

ScExo70Δ62. The space group of the crystal was determined to be P212121 with unit cell 

dimensions a = 45.54Å, b = 60.07Å, and c = 218.06Å (α = β = γ = 90°) using d*TREK 

(Pflugrath, 1999). The asymmetric unit was calculated to contain one molecule. 

 

Phase determination of ScExo70Δ62 

B834(DE3) E. coli containing the ScExo70Δ62 pSJ7D construct was grown in a 

minimal MOPS media substituting SeMet for Met (see Appendix) and purified using a 

method identical to that used for native ScExo70Δ62 with a yield of 4.2mg/L of culture. 

SeMet-substituted protein crystallized in the same form in the same condition, with 

optimal growth requiring 22% PEG 300. SeMet-substituted crystals grew faster than 

native crystals, appearing within three days and reaching full size in 5-10 days. These 

crystals were similarly prepared for diffraction. Howard Robinson, a staff scientist at 

NLS, achieved diffraction to a resolution of 2.1Å at beamline X29A at NLS. He collected 

data sets at the experimentally determined peak, inflection, and remote wavelengths of 

selenium in this protein. Data were processed using HKL2000 (Otwinowski and Minor, 

1997), revealing the same P212121 space group as the native protein with similar unit cell 
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dimensions a = 45.28Å, b = 58.78Å, and c = 222.73Å (α = β = γ = 90°). All thirteen 

expected selenium sites in the asymmetric unit were located, and phases were calculated 

and refined, using SOLVE (Terwilliger and Berendzen, 1999). Although sufficient data 

were collected to use the MAD method (Hendrickson and Ogata, 1997), experimental 

phases were determined using the SAD method because the electron density map it 

produced had improved definition (Table 2.2). 

 

Model building and refinement of the ScExo70Δ62 structure 

Solvent flattening was performed using RESOLVE (Terwilliger, 2000) and the 

initial model was built using ARP/wARP (Vonrhein et al., 2006). The remainder of the 

model was built based on the known locations of selenium atoms using O (Jones et al., 

1991) and CNS (Brunger et al., 1998) was used to refine the model and its B factors. 

Initial refinement consisted of several iterations of simulated annealing by the MLHL 

target function using amplitudes and phase probability distribution, grouped B factor 

refinement, and model rebuilding using O with data up to a resolution of 2.4Å. Later 

rounds of refinement consisted of iterations of simulated annealing by the MLF target 

function using amplitudes, individual B factor refinement, and model rebuilding using O 

with all data up to a resolution of 2.1Å. 3Fo-2Fc and Fo-Fc maps were calculated using 

CNS to aid model building and water placement. The final model consists of residues 67-

223 and 232-623 and 111 water molecules. Residues 63-66, 224-231, two residues at the 

N-terminus left over from the TEV cleavage site, and a small number of side chains were 

not included in the final model due to missing or incomplete electron density. The final 
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Table 2.2: Data, phasing, and refinement statistics for ScExo70Δ62 
 
 ScExo70Δ62 
Data collection  
Space group P212121 
Cell dimensions [a, b, c (Å)] 45.54, 60.07, 222.73 
Resolution (Å) 50.0-2.1 (2.18-2.10) 
Wavelength (Å) 0.9792 
Completeness (%) 95.4 (74.0) 
Redundancy 6.3 (3.9) 
I/σI 26.5 (2.1) 
Rmerge (%) 8.6 (35.7) 

Phasing  
Phasing power  
  Acentric anomolous 1.792 
Figure of Merit  
  Centric 0.136 
  Acentric 0.331 
  After density modification 0.795 

Refinement  
Resolution (Å) 50.0-2.1 
No. reflections in working set 32281 
No. reflections in test set 1632 
Rwork/Rfree (%) 24.1/27.1 
No. of atoms  
  Protein 4304 
  Water 111 
Average B-factors  
  Protein 44.3 
  Water 40.1 
Rms deviations from ideality  
  Bond lengths (Å) 0.006 
  Bond angles (deg.) 1.1 
Ramachandran plot  
  % in most favored regions 93.3 
  % in additional allowed regions 5.9 
  % in generously allowed regions 0.8 
Highest resolution shell shown in parentheses. 
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model and structure factors were deposited into the RCSB PDB with the PDB identified 

2PFV. Refinement statistics can be found in Table 2.2. 
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Chapter 3 

MmExo70 Expression, Purification, and X-ray Crystallography 

 

ABSTRACT 

 In this chapter additional structural information is sought to investigate the 

structure and function relationship in mammalian Exo70, enabling a comparison with 

ScExo70Δ62. In preparation for X-ray crystallographic data collection, several different 

mammalian Exo70 constructs are created, over-expressed, purified, and crystallized. The 

most successful mammalian construct contains a deletion of the N-terminal 84 residues of 

Mus musculus Exo70. It crystallized initially in eight conditions, one of which was 

optimized to yield a 2.25Å resolution data set. 

 

INTRODUCTION 

 At the start of this work on mammalian Exo70 several publications had 

determined structural information for several exocyst subunits, and more details of the 

interactions between these and other cellular components had been revealed. Additional 

roles for Exo70 specific to mammals had been detected, increasing interest in this 

mammalian Exo70. None of the available structural information was from a mammalian 

exocyst subunit, and no orthologous structural comparisons had yet been made. The 

initial goal of this stage of the project was to explore the structure and function of 
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mammalian Exo70 using X-ray crystallographic techniques and compare and contrast it 

with the ScExo70Δ62 structure. 

Although many cellular processes are well conserved in eukaryotes, those in 

mammals tend to contain additional levels of complexity not present in S. cerevisiae. 

Multiple tissue types exist in animals that can each express different forms of the same 

molecule in order to perform various tissue-specific functions. The three different forms 

of Exo70 that have been identified in mouse are an example, with additional residues in 

Exo70 likely performing brain-specific functions. (Carninci et al., 2005; Guo et al., 1997; 

Strausberg et al., 2002). The form of MmExo70 studied here is the shortest form and has 

only been identified in tissues other than the brain. Structural information of this shorter 

form can serve as a basis for the understanding of the basic conserved functions of all 

forms of Exo70. 

 

MATERIALS & METHODS 

Plasmids, Escherichia coli strains, and source DNA 

The pSJ series of plasmids were employed in the constructs used in this work. 

pSJ3, pSJ5, pSJ6, and pSJ7 are used here and are described in Chapter 2. pSJ2 is based 

on pET21a (Novagen) and includes a His8 tag and TEV protease cleavage site upstream 

of the BamHI restriction site. pSJ8 was created by inserting a PCR product containing the 

MalE gene from pMALC2 (New England Biolabs) between the NdeI and KpnI restriction 

sites and the His8 tag and TEV protease cleavage site from pSJ6 between the KpnI and 

XhoI restriction sites. pSJ8 contains an MBP tag upstream of the His8 tag. pSJ6D and 

pSJ7D are versions of pSJ6 and pSJ7, respectively, modified to include a shorter linker 
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sequence between the large protein tags and His8 tags. pSJ2, pSJ7D, and pSJ8 contain an 

Ampicilin resistance gene and pSJ6D contains a Kanamycin resistance gene. The four 

strains of Escherichia coli described in Chapter 2 are used again in this chapter. 

Alan Saltiel (University of Michigan) provided a plasmid containing the cDNA of 

Exo70 from Mus musculus. Wei Guo (University of Pennsylvania) provided a plasmid 

containing the cDNA of Exo70 from Rattus norvegicus. For primers used in this study, 

see Table A.1.  

 

Amplification and cloning 

 Two methods of PCR were implemented to optimize amplification of genes and 

insert restriction sites at the start and end of genes. The thermocycling protocol for a 

standard method of PCR begins with 5min at 95°C; is followed by 30 cycles of 1min at 

95°C, 1min at 55°C, and 3min at 72°C; and concludes with 10min at 72°C. The 

Touchdown method of PCR (Don et al., 1991) uses a series of cycles in which the 

annealing temperature is slowly decreased in four stages and is described in Chapter 2. 

PCR products are stored at -20°C if necessary before purification using a PCR 

purification kit (Qiagen). Restriction digestions and ligations were performed as 

described in Chapter 2. Plasmids were isolated from culture by miniprep (Qiagen), test 

digested with the appropriate restriction enzymes, and DNA was sequenced as described 

in Chapter 2. 

 

Protein expression and purification 
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Protein was expressed as described in Chapter 2. Protein was purified as 

described in Chapter 2 except slightly different buffer compositions were used. Buffer A 

contained 50mM Tris pH8.0, 10% glycerol, 300mM NaCl, 0-10mM imidazole⋅HCl, 

0.07% β-me, 20μg/mL PMSF, and was filtered at 45μm. Buffer B contained 50mM Tris 

pH8.0, 10% glycerol, 300mM NaCl, 250mM imidazole⋅HCl, 0.07% β-me, 20μg/mL 

PMSF, and was filtered at 45μm. Buffer C contained 50mM Tris pH8.0, 100mM NaCl, 

0.07% β-me, 20μg/mL PMSF, and was not filtered. Buffer D contained 50mM Tris 

pH8.0, 300mM NaCl, 0.07% β-me, 20μg/mL PMSF, and was filtered at 45μm. Buffer E 

contained 50mM Tris pH8.0, 1mM DTT, 1mM EDTA, and was filtered at 20μm. Buffer 

F contained 50mM Tris pH8.0, 1M NaCl, 1mM DTT, 1mM EDTA, and was filtered at 

20μm. Buffer G contained 50mM Tris pH8.0, 100mM NaCl, 1mM DTT, 1mM EDTA, 

filtered at 20μm. Crystallization buffer contained 50mM Tris pH8.0, 100mM NaCl, 1mM 

TCEP, and was filtered at 20μm. 

  

Limited proteolysis, N-terminal sequencing, crystallization, and streak seeding 

 Limited proteolysis, N-terminal sequencing, and protein crystallization were each 

performed as described in Chapter 2. Streak seeding is a technique useful for increasing 

nucleation rate, the first and often limiting step of crystal growth. Microcrystals were 

created by crushing several small crystals of the desired crystal form in crystallization 

buffer using the mortar and pestle from a Reacti-ware micro tissue grinder kit (Pierce). A 

Chinese human head hair or house cat whisker was used to distribute the microcrystals to 

freshly set-up crystallization drops by gently dragging the hair dipped in the microcrystal 

solution across the drop surface immediately before sealing the well. 
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RESULTS AND DISCUSSION 

Preparation, Purification and crystallization of MmExo70 

 The Exo70 genes from the rat Rattus norvegicus and the mouse M. musculus were 

amplified by PCR from cDNA. RnExo70 was not found to express while MmExo70 

expressed weakly in pSJ5. The poor expression of MmExo70 was compounded by its 

weak binding to a Ni2+-NTA column, as it eluted over a wide, low peak. Overnight 

dialysis at 4°C with TEV protease was sufficient to cleave >98% of protein and >95% of 

the tag was removed by two passages over another Ni2+-NTA column. Some TEV-

digested MmExo70 was retained on the column, resulting in a further loss of protein. 

Finally, MmExo70 was passed over a Source Q ion exchange column and was eluted with 

NaCl over a wide, low peak with a lagging shoulder containing 50-70kDa contaminants. 

Further passage of contaminated fractions over a Mono Q ion exchange column shifted 

the protein away from the shoulder, increasing yield. Final yield was approximately 

1mg/L of culture, and protein was placed in crystallization buffer at a concentration of 

9.62mg/mL. Due to poor yield, only the X screen was used at 4°C to search for 

crystallization conditions. Most conditions precipitated quickly, suggesting that full-

length MmExo70 is not a good candidate for crystallization. 

 

Limited proteolysis of MmExo70 

 MmExo70 was digested with subtilisin, trypsin or chymotrypsin in a 

concentration course experiment. All proteases produced stable fragments at 

approximately 65kDa, 46kDa, 31kDa, and 25kDa at increasing concentrations of 
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protease. The 65kDa fragment was of the greatest interest, as it was the largest and 

similar in relative size to ScExo70Δ62. The band produced by subtilisin was the easiest to 

separate from undigested MmExo70 (Figure 3.1) and was excised for N-terminal 

sequencing, which identified Asp85 as the N-terminal residue of this fragment 

(MmExo70Δ84). A second construct lacking the first 75 residues (MmExo70Δ75) 

corresponds to the successfully crystallized ScExo70Δ62 construct (see Chapter 2). This 

was based on an early alignment of Exo70 that was validated by the presence of a short 

stretch of conserved residues in this region. Expression of MmExo70Δ75 in pSJ5 at 16°C 

was soluble and of greater quantity than MmExo70 and it was purified to low yield, but 

no useful crystallization conditions were identified. 

 

Preparation and purification of MmExo70Δ84 

The MmExo70Δ84 gene was amplified by PCR. A pSJ5 construct expressed a 

moderate quantity of protein that was greater than both MmExo70 and MmExo70Δ75 at 

16°C. Expression from a pSJ2 construct was soluble and of an even greater quantity. The 

protein eluted from a Ni2+-NTA column with 115mM imidazole (Figure 3.2). Overnight 

dialysis at 4°C with TEV protease was sufficient to cleave >98% of the protein. The 

digested product was passed over a second Ni2+-NTA column for removal of >95% of the 

tag and TEV protease. Finally, MmExo70Δ84 eluted from a Source Q ion exchange 

column with 55mM NaCl. Final yield was estimated at 13.0mg/L of culture. Protein was 

stored in crystallization buffer at a concentration of 14.5mg/mL and stored at -80°C. 

 

Crystallization and diffraction screening of MmExo70Δ84 
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Figure 3.1: Limited proteolysis of MmExo70 
 
A photograph of a 12% SDS-PAGE gel stained with Coomassie blue. 
Left lane: Benchmark standard (Invitrogen) with 20-70kDa bands labeled. 
(-): Purified MmExo70 treated with no subtilisin protease. 
Subtilisin lanes: From left to right, MmExo70 treated with a 1:289, 1:86, 1:29, 1:9, or 1:3 
molar ratio of subtilisin:MmExo70. 
 

 

 

Figure 3.2: Purification of MmExo70Δ84 
 
A photograph of a 12% SDS-PAGE gel stained with Coomassie blue. 70kDa bands 
represent His8-tagged MmExo70Δ84 and 60kDa bands represent untagged MmExo70Δ84. 
Left lane: Benchmark standard (Invitrogen) with 20-70kDa bands labeled. 
1: Soluble protein from sonicated E. coli, diluted 1:2 in buffer A (see text). 
2: Protein after passage over a Ni2+-NTA affinity column. 
3: Protein after overnight digestion with TEV protease. 
4: Protein after passage over a second Ni2+-NTA column. 
5: Final purified MmExo70Δ84 after passage over a SourceQ ion exchange column. 
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 MmExo70Δ84 was screened for crystal formation with the Hampton Crystal 

Screens I and II and the X screen at 4°C and 20°C using the sitting drop method. The 

Hampton screens produced crystals in two conditions at 20°C that appeared within 24 

hours and the X screen yielded six conditions at 4°C (Table 3.1). The X screen produced 

clustered rods or needles in 1-6 days, but no conditions could be found to improve size 

and prevent clustering of these crystals. The Hampton screens produced hexagonal plates 

at 20°C that formed within 24 hours, but optimization only increased the size of the plate 

and not its thickness. In addition, the diffraction of these crystals was found to only reach 

a resolution of about 8Å. The Hampton screens also produced small three-dimensional 

crystals at 20°C that formed within 24 hours and were only sometimes found in clusters. 

Optimization was able to improve size, and an additive screen revealed a number of 

potentially useful additives, including MgCl2, urea, Cys, EDTA sodium salt, spermidine, 

trimethylamine hydrochloride, and NDSB 195. Some of these had an effect on the size 

and/or shape of the crystal while most had no visible effect (Figure 3.3). These crystals 

were difficult to duplicate, so two different techniques were employed to improve 

reproducibility. First, the composition of the precipitant added to the protein drop was 

changed from that of the well solution to alter crystal growth kinetics. Second, streak 

seeding was employed to improve the nucleation rate. While these crystals appeared 

within 24 hours, they continued to grow for up to 14 days. A sticky film would form on 

all surfaces during and after crystal growth, and after about fourteen days the film would 

begin to impede crystal harvesting by adhering the crystals to surfaces, resulting in 

increased crystal breakage and leaving sticky film on the surface of crystals. Ultimately, 

crystals were harvested between 10-13 days to maximize growth and minimize the effect 
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Table 3.1: MmExo70Δ84 crystals produced by initial screening 

 
Crystal Type Appearance Time (days) Screen Condition 
Clustered rods 4 – 6 0.1M HEPES pH7.5, 16% PEG 8000, 0.2M LiCl, 4°C 
Clustered rods 1 – 3 0.1M HEPES pH7.5, 10% 2-propanol, 4°C 
Clustered rods 4 – 6 0.1M glycine pH9.5, 8% PEG 2000, 10% ethanol, 4°C 
Clustered rods 4 – 6 0.1M glycine pH9.5, 20% MPD, 4°C 
Clustered rods 1 – 3 0.1M glycine pH.5, 10% 2-propanol, 4°C 
Clustered rods 4 – 6 1.5M sodium tartrate pH7.0, 4°C 
Single 3D 1 0.1M MES pH6.5, 12% PEG 20000, 20°C 
Single 3D 1 0.1M HEPES pH7.5, 10% PEG 8000, 8% ethylene glycol, 4°C 

 
 

 

 

 

 

 

Figure 3.3: MmExo70Δ84 crystals 
 
Photographs of two different forms of MmExo70Δ84 crystals, both grown at 20°C. 
A: Hexagonal three-dimensional crystals grown in 100mM hepes pH7.5, 9% PEG 8000, 

10% ethylene glycol, and 100mM EDTA sodium salt. Crystals grown without EDTA 
sodium salt look identical and also grow flat, on edge, individually, and in clusters as 
shown. 

B: Octahedral three-dimensional crystals grown in 100mM hepes pH7.5, 9% PEG 8000, 
7% ethylene glycol, and 100mM MgCl2⋅6H20. 
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of the film. For crystal harvesting, cryo solution was added directly to the drop, the film 

was removed from the surface of the drop using microtools, crystals were removed from 

clusters and surfaces as intact as possible, and crystals were soaked in cryo solution for 

more than 1min before snap-freezing in liquid nitrogen on a nylon loop. Except for snap-

freezing, crystals were moved by pipette because some crystals were believed to have 

cracked as a result of exposure to air during transfer on a nylon loop. The optimized 

MmExo70Δ84 condition used a well solution containing 8.5% PEG 8000, 10% ethylene 

glycol, and 100mM HEPES pH7.5 and a drop precipitant (mixed 1:1 with protein) 

containing 5.5% PEG 8000, 10% ethylene glycol, 10mM MgCl2, and 100mM HEPES 

pH7.5. The cryo solution was optimized to contain 100mM HEPES pH7.5, 10% PEG 

8000, 30% ethylene glycol, 10mM MgCl2, and was filtered at 0.22μm. 

 

X-ray diffraction, data collection, and processing of MmExo70Δ84 

X-ray diffraction screening on beamline 23-ID-D (General Medicine and Cancer 

Institutes CAT) at APS revealed that MmExo70Δ84 crystals grown in the presence of PEG 

8000 and ethylene glycol without additives diffract to a resolution of about 3.5Å. Similar 

crystals grown with the additive trimethylamine hydrochloride diffracted to a resolution 

of about 9Å. The addition of EDTA sodium salt, spermidine, or NDSB 195 improved 

diffraction to a resolution of 2.8-3.5Å, and the addition of MgCl2 was found to further 

improve diffraction to a resolution of 2.25-2.7Å. The best data set from a native crystal, 

which was ultimately used to refine the final model, was harvested from a small cluster of 

sharp-edged crystals and had a usable resolution limit of 2.25Å and mosaicity less than 

0.2°. 95° of data were collected in 0.5° increments. The diffraction images also contain a 
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second crystal lattice, possibly the result of twinning, but it was offset by a large enough 

angle to be ignored during processing using HKL2000 (Otwinowski and Minor, 1997). 

The space group of the crystal was determined to be P3221 with unit cell dimensions of 

a = b = 61.52Å and c = 294.73Å (α = β = 90°, γ = 120°). The asymmetric unit was 

calculated to contain one molecule. Data collection statistics can be found in Table 3.2. 

 

Phase determination of MmExo70Δ84 

 Attempts were made to solve the structure of MmExo70Δ84 using molecular 

replacement with ScExo70Δ62 as a search model using Phaser (McCoy et al., 2005) or 

CNS (Brunger et al., 1998). Many variations of the ScExo70Δ62 model were used, 

including combinations of domains, with or without loops present, and with or without 

trimming of side chains to serine or alanine. No statistically significant solution was 

identified. 

 B834(DE3) E. coli containing the MmExo70Δ84 pSJ2 construct was grown in a 

minimal MOPS media substituting SeMet for Met (see Appendix) and purified using a 

method identical to that used for native MmExo70Δ84 with a yield of 10.1mg/L of culture. 

SeMet-substituted protein crystallized in the same crystal form under the same condition, 

with optimal growth requiring 7.5% ethylene glycol in the well solution and 4.5% in the 

drop precipitant. They grew at about the same rate as native crystals and were harvested 

and prepared for diffraction in a similar manner. Diffraction to a resolution of 2.5Å was 

achieved at beamline 23-ID-D (General Medicine and Cancer Institutes CAT) at APS and 

data sets were collected at the experimentally determined peak, inflection, high remote, 

and low remote wavelengths. Data were processed using HKL2000, revealing the same  
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Table 3.2: Data, phasing, and refinement statistics for MmExo70Δ84 
 
 
 MmExo70 Native MmExo70 SeMet substituted 
Data collection   
Space group P3221 P3221 
Cell dimensions [a, b, c (Å)] 61.52, 61.52, 294.73 61.64, 61.64, 294.68 
Resolution (Å) 50.0-2.25 (2.33-2.25) 50.0-2.5 (2.59-2.50) 
  Peak Inflection Remote 
Wavelength (Å) 0.97926 0.97926 0.97942 0.95660 
Completeness (%) 93.7 (77.7) 98.6 (89.2) 97.1 (77.5) 93.4 (59.2) 
Redundancy 4.2 (3.1) 6.2 (4.6) 5.7 (3.0) 5.4 (2.3) 
I/σI 24.6 (3.0) 34.0 (4.7) 32.0 (2.8) 29.8 (1.8) 
Rmerge (%) 5.4 (41.6) 7.9 (29.7) 6.9 (36.5) 6.9 (42.3) 

Phasing     
Phasing power     
  Centric isomorphous  --- 1.275 1.011 
  Acentric isomorphous  --- 1.354 1.097 
  Acentric anomolous  2.415 1.361 1.032 
Figure of Merit     
  Centric  0.387   
  Acentric  0.563   
  After density modification  0.865   

Refinement     
Resolution (Å) 50.0-2.25    
No. reflections in working set 27369    
No. reflections in test set 1435    
Rwork/Rfree (%) 23.5/28.5    
No. of atoms     
  Protein 4099    
  Water 170    
Average B-factors     
  Protein 54.4    
  Water 54.8    
Rms deviations from ideality     
  Bond lengths (Å) 0.006    
  Bond angles (deg.) 1.1    
Ramachandran plot     
  % in most favored regions 92.8    
  % in addl. allowed regions 6.5    
  % in gen. allowed regions 0.6    
Highest resolution shell shown in parentheses. 
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space group as the native protein with unit cell dimensions of a = b = 61.64Å and c = 

294.68Å (α = β = 90°, γ = 120°). Initial heavy atom sites were found using CNS and 

Table 3.2. Crystallographic data, phasing, and refinement statistics for MmExo70 were 

confirmed using Shake-N-Bake (Weeks and Miller, 1999).  Refinement of the heavy 

atom sites was carried out using autoSHARP (Vonrhein et al., 2006), and ten of the 

expected eleven selenium sites in the monomer were found (the missing selenium site 

was later determined to be located in a disordered portion of the molecule). Phases were 

calculated using the MAD method (Hendrickson and Ogata, 1997) and refined using the 

peak, inflection, and high remote data sets using autoSHARP. Data collection statistics 

can be found in Table 3.2. 

 

Model building and refinement of the MmExo70Δ84 structure 

Solvent flattening was performed using autoSHARP and the initial model was 

built using ARP/wARP (Vonrhein et al., 2006). The remainder of the model was built 

based on the known locations of selenium atoms using O (Jones et al., 1991), and all 

refinement procedures were performed using CNS. Initial refinement consisted of several 

iterations of simulated annealing using the MLHL target function with amplitudes and 

phase probability distribution, grouped B factor refinement, and model rebuilding using 

O utilizing data from the peak wavelength of the MAD data set to a resolution of 2.7Å 

and later 2.5Å. Further refinement was done against the native data set to a resolution of 

2.2Å. This consisted of iterations of simulated annealing by the MLF target function 

using amplitudes, individual B factor refinement, and model building using O. Final 

refinement was done to a resolution of 2.25Å to improve statistics. 3Fo-2Fc and Fo-Fc 
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maps were calculated using CNS to aid model building and water placement. The final 

model consists of residues 85-179, 188-241, 275-446, and 455-652, and 170 water 

molecules. Residues 180-187, 242-274, 447-454, 653, two residues at the N-terminus left 

over from the TEV cleavage site, and a small number of side chains were not included in 

the final model due to missing or incomplete electron density. The final model and 

structure factors were deposited into the RCSB PDB with the PDB identifier 2PFT. 

Refinement statistics can be found in Table 3.2. 
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Chapter 4 

The Structures of ScExo70Δ62 and MmExo70Δ84 

 

ABSTRACT 

 The expression, purification, crystallization, and data collection for the structures 

of ScExo70Δ62 and MmExo70Δ84 was performed in Chapters 2 and 3, respectively. The 

structures of these molecules are presented in this chapter. Both structures share a 

common architecture of 19 α-helices organized into three domains forming a long rod. 

These structures permit the creation of a structure-based primary sequence alignment, 

which is significantly more accurate than previous sequence-based primary sequence 

alignment due to the misalignment of more than 100 residues in three sections as a result 

of the low degree of sequence conservation in Exo70. This alignment reveals two 

significant patches of conserved residues on the surface of the crystallized fragments. The 

largest patch is at least partly involved in Arpc1 interaction while the smaller patch has 

not been studied but probably maintains the structure of an interesting loop structure. In 

addition, the N domain shows similarity to several other exocyst subunits and the 

unconventional myosin ScMyo2. The differences between these two structures include 

the orientation of the C domain, the organization of the domain boundaries, the 

organization of several loop structures, and the surface properties of the molecule. The 

data presented in this chapter reveal features of Exo70 that provide information helpful to 

the study of several known Exo70 interactions and provide evidence for the function of 
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the molecule, both conserved and species-specific. Analysis of this structural information 

suggests the prsence of several potential mechanisms that may be important for the 

function of Exo70, including reorientation of the C domain and flexibility at the N-M 

domain interface. 

 

MATERIALS AND METHODS 

Structure-based primary sequence alignment 

 The primary sequence alignment of Exo70 as calculated by Clustal W (Thompson 

et al., 1994) contains errors stemming from the low sequence identity among Exo70 

molecules in distantly related species. In order to improve the accuracy of this alignment, 

overlapping three-helix sections of the ScExo70Δ62 structure were aligned with 

corresponding sections of the MmExo70Δ84 structure by the Dali server’s DaliLite 

Pairwise comparison tool (Holm and Park, 2000). Residues in similar positions were 

aligned within the overall structure-based primary sequence alignment. Sequences from 

Candida albicans, Schizosaccharomyces pombe, Caenorhabditis elegans, Drosophila 

melanogaster, and Homo sapiens were then added. Plants such as Arabidopsis thaliana 

and Oryza sativa were not included due to the presence of multiple Exo70 genes (Synek 

et al., 2006). These sequences were aligned by Clustal W and then adjusted to align with 

the structure-based alignment with preference given to α-helical regions and conserved 

residues. Completely conserved residues are defined as those that always contain the 

same amino acid at a particular position in at least six of these seven species. Partially 

conserved residues always contain an amino acid that is always hydrophobic (alanine, 

isoleucine, leucine, methionine, phenylalanine, or valine), aromatic (phenylalanine, 
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tryptophan, or tyrosine), polar (asparagine, aspartic acid, glutamine, or glutamic acid), or 

basic (arginine or lysine). Selections identified only as conserved contain both completely 

and partially conserved residues. 

 

Identification of similar structural motifs 

 The Dali Server’s Database Search tool (Holm and Sander, 1995) was used to 

search the RCSB PDB (Berman et al., 2000) for proteins with structures similar to 

individual domains or combinations of those domains from ScExo70Δ62 or MmExo70Δ84. 

The top 30 results of each search were evaluated for overall structural similarity. 

 

Structural alignment of molecules 

 The Dali Server’s DaliLite Pairwise comparison tool (Holm and Park, 2000) was 

used to align molecules. The alignment with the greatest Z score was selected for use. For 

full-molecule alignments based on a particular subset, PDB files were edited to contain 

only the residues of interest and aligned using the DaliLite tool. The full-length 

molecules were then aligned to these fragments. 

 

Calculation of surface electrostatic potentials 

 The APBS Tools plug-in for PyMOL (www.umich.edu/~mlerner/Pymol) was 

used in combination with MacPyMol (http://www.pymol.org) to calculate the surface 

electrostatic potential of each molecule. Molecules used in this calculation had all 

missing side chains added to the model in a standard rotamer position. 
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RESULTS AND DISCUSSION 

Overall structure of ScExo70Δ62 

ScExo70Δ62 is composed of 561 residues (native ScExo70 contains 623 residues) that 

compose nineteen α-helices (H1-H19) connected by loops of varying lengths (L1-2-L18-19; 

subscript numbers identify α-helices connected by the loop). These structures are 

organized into a series of right-handed helix-turn-helix motifs (Figure 4.1). The overall 

shape of the molecule is that of a bent and twisted rod with approximate dimensions of 

165Å × 35Å × 35Å and can be divided into three distinct domains: the N (N-terminal) 

domain, the M (Middle) domain, and the C (C-terminal) domain. Contacts between 

domains are relatively few and do not exhibit extensive packing as observed among α-

helices within a domain. A long α-helix with a kink at the domain boundary links each 

consecutive pair of domains. 

 

N domain of ScExo70Δ62 

 The N domain is composed of residues 1-344, which make up 55% of the 

molecule. It includes H1-H9 and the first half of H10. The right-handed helix-turn-helix 

motifs that compose the domain pack against one another with a slight right-handed 

super-helical twist. H4 is unusually short, containing only seven residues, and is 

perpendicular to other α-helices within the domain. The first four residues of the 

crystallized construct, Asn63-Ser66, are not present in the structure and are presumably 

disordered within the crystal. Most loops in this domain contain between 1-9 residues. 

The longest loop of the domain, L6-7, is adjacent to H4 and contains 16 residues, nine of 

which are disordered. The interface between H2 and H4 and bisecting H3 buries 644Å2 
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Figure 4.1: Structure of ScExo70Δ62 
 
A stereo cartoon diagram of ScExo70Δ62. α-helices are labeled H1-H19 with the N 
domain colored brown, the M domain colored green, and the C domain colored cyan. A 
dashed line indicates residues not present in the structure. 
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of surface area, which is more area than the N and M domain interface but less area than 

the M and C domain interface. It has been described as a domain boundary (Dong et al., 

2005), but here it is not because there is no organizational change here as there is at other 

domain boundaries (Hamburger et al., 2006). Another notable interface within the N 

domain is between a four-helix bundle, composed of H1-H3 and H5, and a five-helix 

bundle, composed of H6-H10 (Hamburger et al., 2006). These bundles are defined by a 

significant change in angle between H5 and H7, although the overall organization of α-

helices here is not disrupted. This feature gives a slight curve to the overall shape of the 

domain. 

 

M domain of ScExo70Δ62 

 The M domain is composed of residues 345-516, which make up 28% of the 

molecule. It includes the second half of H10, H11-H15, and the first half of H16. H10, 

H11, H13, H14, and H16 compose a five-helix bundle that is tilted approximately 40° 

from the long axis of the complete structure. H13 is located at the center of the domain 

and is surrounded by H10, H11, H14, H16, L10-11, and L11-12. H12 and H15 are unusually 

short at eight and six residues, respectively, and both are found at one end of the helical 

bundle perpendicular to all other α-helices. L11-12, L14-15 and L15-16 contain only 1-2 

residues each while the other loops in the domain are much longer. L12-13 and L13-14 are 

29 and 18 residues long, respectively, and pack against the surface formed by H10, H13, 

and H16. These loops form a hydrogen bond between the side chains of Lys409 and 

Asp457. This domain is known to interact with Rho3 (Dong et al., 2005), but it is not 

obvious from the structure what portion of this domain is involved. 
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C domain of ScExo70Δ62 

 The C domain is composed of residues 517-623, which make up 17% of the 

molecule. It includes the second half of H16 and H17-H19. These α-helices are organized 

into a four-helix bundle that is angled away from the long axis of the complete structure, 

adding a slight twist to it. The hydrophobic core contains a high concentration of 

aromatic residues, especially near the tip of the molecule. Arpc1 interacts with ScExo70 

by yeast-two-hybrid, and probably interacts with the C domain (Zuo et al., 2006). L13-14 

and L15-16 are eight and thirteen residues long, respectively, and are adjacent to one 

another at the tip of the molecule. L14-15 is five residues long and is near the interface with 

the M domain. 

 

N-M domain interface of ScExo70Δ62 

 The N-M domain interface in ScExo70 buries 580Å2 of surface area and forms a 

constricted “waist” at the midsection of the molecule. The interaction between these 

domains is composed only of the linking H10 and a small hydrophobic patch composed 

of five aromatic residues that will be discussed later. This interface is may be flexible, as 

each of the four molecules in the asymmetric unit of the C2 crystal form structure is 

identical except for the angle of the kink in H10 that varies by up to 14.6° (Hamburger et 

al., 2006). No hydrogen bonds are present in this structure. 

 

M-C domain interface of ScExo70Δ62 

 The M-C domain interface in ScExo70Δ62 buries a surface area of 772Å2 that also 

appears somewhat constricted, although not as much as at the N-M domain interface. It is 
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primarily composed of a significant number of poorly conserved hydrophobic residues 

participating in the hydrophobic core. Two direct hydrogen bonds are found in the M-C 

domain interface. Several water-mediated hydrogen bonds are also found at this interface. 

In contrast to the N-M domain interface, this interface appears to be rigid, as all 

structures of ScExo70 share an identical M-C domain interface organization (Dong et al., 

2005; Hamburger et al., 2006). 

 

Overall structure of MmExo70Δ84 

MmExo70Δ84 contains 569 residues of 653 found in full-length MmExo70 and is 

composed of nineteen α-helices connected by loops of varying lengths organized into a 

series of right-handed helix-turn-helix motifs (Figure 4.2). The molecule takes the shape 

of a slightly bent and twisted rod with approximate dimensions of 170Å × 35Å × 35Å. 

Like the structure of ScExo70Δ62, it can be divided into three distinct domains (the N, M, 

and C domains) and contacts between domains are relatively weak and do not exhibit the 

same extent of packing as found within a domain. A single long α-helix links each 

consecutive pair of domains and a kink in H16 exists at the M-C domain boundary. 

 

N domain of MmExo70Δ84 

 The N domain is composed of residues 1-393, which make up 60% of the 

molecule. It includes H1-H9 and the first half of H10, and the right-handed helix-turn-

helix motifs pack against one another with a slight right-handed super-helical twist. H4 is 

unusually short, containing only ten residues, and is perpendicular to other α-helices of 

the domain. Most loops in this domain contain between 2-5 residues, but two loops, L4-5 
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Figure 4.2: Structure of MmExo70Δ84 
 
A stereo cartoon diagram of MmExo70Δ84. α-helices are labeled H1-H19 with the N 
domain colored red, the M domain colored yellow, and the C domain colored blue. The 
orientation of this molecule is aligned with ScExo70Δ62 in Figure 4.1. Dashed lines 
indicate residues not present in the structure. 
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and L6-7, are considerably longer. L4-5 is composed of sixteen residues, nine of which are 

disordered. L6-7, the longest loop of the domain, is located between H4 and L4-5 and 

contains 33 residues, all of which are also disordered. H6 leads into, and H7 exits from 

the disordered region without loss of α-helical structure, making it unclear at exactly 

what point these α-helices end and L6-7 begins. All of the disordered residues are 

predicted by jnet (Cuff and Barton, 2000) to be unstructured, which is consistent with the 

definition of all disordered residues as a part of L6-7. The forms of Exo70 found in the 

brain contain an additional 31 residues at the end of this loop (Carninci et al., 2005; Guo 

et al., 1997; Strausberg et al., 2002) that are predicted by jnet to form a single α-helix 

and extend H7. The interface between H2 and H4 and bisecting H3 buries 621Å2 of 

surface area, which is less area than either of the domain interfaces. Although this 

interface has been described as a domain boundary in ScExo70 (Dong et al., 2005), it is 

not considered a domain boundary here because it does not result in any change in overall 

organization. The N domain can also be divided into a pair of α-helical bundles. A four-

helix bundle, composed of H1-H3 and H5, and a five-helix bundle, composed of H6-H10 

are defined by a change in angle between H5 and H7, although the overall organization of 

α-helices here is not disrupted (Hamburger et al., 2006). Finally, the Rho-family GTPase 

TC10 is known to interact with this domain in Homo sapiens (Inoue et al., 2003). 

 

M domain of MmExo70Δ84 

 The M domain is composed of residues 394-538, which make up 22% of the 

molecule. It includes the second half of H10, H11-H15, and the first half of H16. H10, 

H11, H13, H14, and H16 are organized into a five-helix bundle that is tilted 
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approximately 40° from the long axis of the complete structure. H12 and H15 are 

unusually short at eleven and eight residues, respectively, and both are found at one end 

of the helical bundle perpendicular to all other α-helices in the domain. Most loop 

structures in this domain are short, containing only 1-5 residues each, while L10-11 

contains 15 residues and L12-13 contains ten residues, eight of which are disordered. 

Thirteen additional residues are inserted at the beginning of this loop in the longest form 

of Exo70 found in brain. 

 

C domain of MmExo70Δ84 

The C domain is composed of residues 539-653, which make up 18% of the 

molecule. It includes the second half of H16 and H17-H19, which are organized into a 

four-helix bundle. In R. norvegicus, deletion of Lys571-Glu572 or Lys628-Pro630 

prevented direct interaction with Arpc1 of the Arp2/3 actin-branching complex, although 

it is not clear if this phenotype is the result of structural disruption or the removal of 

important residues (Zuo et al., 2006). L13-14 and L15-16 are both fifteen residues long and 

are adjacent to one another at the tip of the molecule. L14-15 is six residues long and 

interacts with the M domain. 

 

N-M domain interface of MmExo70Δ84 

 The N-M domain interface in MmExo70Δ84 buries 741Å2 of surface area and 

appears as a constricted “waist” at the midsection of the molecule. The interface between 

these domains contains the linking H10, two small, mostly aromatic hydrophobic patches, 

and several water-mediated hydrogen bonds. The hydrophobic patches at this interface 
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will be discussed later. Water-mediated hydrogen bonds exist between the carbonyl of 

Ile339 on H8, the side chain of His342 on L8-9, and the side chain of Asn400 on H10; the 

η amine of Arg355 on H9 and the carbonyl of Asp433 on H11; and the side chain of 

Glu436 on H12, the side chain of Glu387 on H10, and the side chain of Gln445 on H12. 

 

M-C domain interface of MmExo70Δ84 

 The M-C domain interface in MmExo70Δ84 also appears somewhat constricted, 

burying a surface area of 754Å2. It is primarily composed of a significant number of 

poorly conserved hydrophobic residues participating in the hydrophobic core of the 

molecule. Six direct and several water-mediated hydrogen bonds strengthen this 

interface. 

 

Comparison of the N domain 

 The N domain of ScExo70 and MmExo70 share several common features. Both 

are composed of a similar set of α-helices, no α-helix or loop deviates by more than six 

residues, and each α-helix or loop is found in a similar position, except in the case of two 

loops (Figure 4.3 and Figure 4.4). L6-7 contains disordered residues in both structures, 

suggesting an inherent flexibility in this loop. The truncated residues at the N-terminus of 

the molecule contains several completely conserved residues and is predicted by jnet 

(Cuff and Barton, 2000) to form two α-helices, possibly continuing the particular style of 

right-handed helix-turn-helix motif found throughout the rest of this domain. The 

ScExo70Δ62 structure begins with a loop that turns 180° (Thr67-Ser74), which is also 

consistent with this prediction. In addition, the site of truncation may be flexible as it is
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Figure 4.3: Structural alignment of Exo70 
 
An alignment of the primary sequences of Exo70 in five species, M. musculus, H. 
sapiens, D. melanogaster, S. pombe, and S. cerevisiae. This alignment was constructed 
by first aligning the structures of ScExo70Δ62 and MmExo70Δ84 using the DALI server in 
overlapping three-helix chunks and second aligning the Clustal W-aligned primary 
sequences of Candida albicans, S. pombe, Caenorhabditis elegans, D. melanogaster, and 
H. sapiens with the structural alignment. Adjustments were made to minimize breaks 
within α-helices. Residue numbers are indicated at the beginning of each line of sequence 
alignment. Secondary structural elements are indicated above the sequence block for 
MmExo70Δ84 and below for ScExo70Δ62. α-helices are indicated by rectangles, loops are 
indicated by lines, no β-strands are present in the structure, and residues not found in the 
structure are indicated by dashed lines. Domains are indicated by secondary structure 
coloration. In MmExo70Δ84 the N domain is red, the M domain is yellow, and the C 
domain is blue. In ScExo70Δ62, the N domain is brown, the M domain is green, and the C 
domain is cyan. Residues invariable in six of these seven species were considered 
completely conserved and are highlighted in purple.  Residues that always appear as a 
particular residue type in six of these seven species were considered similarly conserved 
and are highlighted in pink. For clarity, sequences lacking homology have been replaced 
wit7h bracketed numbers indicating the number of residues omitted.
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Figure 4.4: Structural organization of the N domain 
 
A cartoon diagram of the N domain of ScExo70Δ62 (top) and MmExo70Δ84 (bottom). Left 
panels are in the same orientation as in Figures 4.1 and 4.2 and right panels are related to 
the left panel by a rotation of -90° about the long axis of the molecule. α-helices are 
labeled H1-H10. H1-H5 form a four-helix bundle and are colored raspberry in 
ScExo70Δ62 and ruby in MmExo70Δ84. H6-H10 form a five-helix bundle and are colored 
brown in ScExo70Δ62 and red in MmExo70Δ84. The side chains of three completely 
conserved residues found in this domain are shown as stick models with oxygen colored 
red, nitrogen colored blue, and carbon colored purple. These residues are Leu145/150 on 
H3, Arg206/223 on H6, and Glu253/296 on H7 (ScExo70Δ62/MmExo70Δ84). Red lines 
indicate hydrogen bonds. Dashed lines indicate residues not present in the structure. 
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succeptible to proteolysis in both species and ScExo70Δ62 and MmExo70Δ84 are stable and 

crystallizable while full-length Exo70 is not. 

Of the residues found in each crystallized construct, 17.7/17.8% 

(ScExo70Δ62/MmExo70Δ84) of those in the N domain are conserved while only 1.0/1.0% 

are completely conserved. Of these conserved residues, 88.0/83.6% are hydrophobic and 

12.0/16.4% are hydrophilic. The majority of these conserved residues participate in the 

hydrophobic core of the domain. The three completely conserved residues, Leu145/150 

on H3, Arg206/223 on H6, and Glu296/253 on H7, are presumed to be important for the 

structure of the domain (Figure 4.4). Leu145/150 participates in hydrophobic interactions 

with several similarly conserved residues from H2 and H4. Arg206/223 and Glu296/253 

form two hydrogen bonds between the two carboxylic oxygens of glutamic acid and the ε 

and η amines of arginine. This interaction is surrounded by hydrophobic residues, about 

half of which are similarly conserved, and is located beneath L3-4 and L4-5. Arg206/223 

also forms a third hydrogen bond with Tyr174 at the end of L4-5 in S. cerevisiae or Ser162 

at the start of L3-4 in M. musculus. 

The N domain also exhibits several major differences between ScExo70 and 

MmExo70. First, the truncated N terminus contains thirteen more residues in MmExo70 

than in ScExo70. Second, L4-5 is eight residues longer in MmExo70Δ84. Although nine 

residues of this loop are disordered and the position of H4 is shifted, there is little effect 

on the rest of the structure. Lastly, L6-7 contains up to nineteen more residues in 

MmExo70 than in ScExo70. Although the complete disorder of L6-7 limits what can be 

learned from this region, it is clear that this is a generally unstructured region of the 

molecule. In addition, its significantly increased length and further extended form in 
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brain MmExo70 suggests a species-specific and possibly tissue-specific function may be 

associated with this loop in MmExo70. 

ScExo70Δ62 has a greater angle between the four-helix bundle and the five-helix 

bundle than in MmExo70Δ84, resulting in greater curvature of the N domain in ScExo70Δ62 

and a more linear domain in MmExo70Δ84 (Figure 4.4). Despite this difference, there is no 

evidence for flexibility within the N domain, as other ScExo70 structures exhibit no 

variability in this region (Dong et al., 2005; Hamburger et al., 2006). 

Finally, several α-helices contain kinks that are not conserved (Figure 4.4). 

MmExo70Δ84 H1 contains a kink near its middle for which the effect and function is 

difficult to determine due to its proximity to, and possible interaction with, truncated 

residues. This kink could have an effect on the organization of preceding residues. 

Alternatively, this kink could also be an artifact of truncation. ScExo70Δ62 H6 contains a 

kink near its C-terminal end, possibly positioning the partially disordered region of L6-7 

along the body of the molecule over H8 and H9. In contrast, MmExo70Δ84 H6 is not 

kinked and points into solution where the disordered residues of L6-7 may exist, away 

from the body of the molecule. MmExo70Δ84 H9 also contains a kink not found in 

ScExo70Δ62, bringing a portion of this α-helix closer to H12 in the M domain, possibly 

contributing to the increased interaction between these domains. 

 

Comparison of the M domain 

 The M domain of ScExo70Δ62 and MmExo70Δ84 share several common features. 

Both are composed of a similar set of α-helices, no α-helix or loop deviates by more than 
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four residues, and each α-helix or loop is found in a similar position, except in the case of 

two loops (Figure 4.5). 

 Of the residues found in each construct, 19.8/24.8% (ScExo70Δ62/MmExo70Δ84) 

are conserved while 5.2/4.1% are completely conserved. Of all conserved residues, 

82.4/83.3% are hydrophobic and 17.6/16.7% are hydrophilic. The majority of these 

conserved residues participate in the hydrophobic core of the domain. There are nine 

completely conserved residues within the M domain of ScExo70 and ten in MmExo70. 

These are Pro363/412 and Val368/417 on L10-11; Glu370/419, Thr372/421, Leu379/428 

and MmLeu431 on H11; Leu426/462 and Leu427/463 on H13, Asn372/421 on H14, and 

Leu385/434 on H15 (Figure 4.5). Most of these residues probably participate in the 

maintenance of conserved structural features. The first three completely conserved 

residues of the M domain form a patch on its surface and may maintain the conserved 

structure of L10-11. Pro363/412 is found at the start of a conserved sharp bend in L10-11. 

The similarly conserved and solvent exposed Asn365/Asp414 is found at the other end of 

this bend, and its side chain forms a hydrogen bond with the main chain amide of 

Gly367/Thr416. Val368/417 is found at the end of a linear stretch of residues that began 

with Asn365/Asp414, and its side chain is both solvent exposed and positioned over a 

hydrophobic patch of residues. Ile362/Met411 and Ala371/Leu420 are somewhat 

conserved residues that interact are positioned so that they could possibly stabilize the 

ends of this conserved loop structure by interacting with the hydrophobic core of the 

domain. Glu370/419 is the first residue of H11 and its side chain is completely solvent 

exposed. Although it is common for completely conserved surface exposed residues to be 

involved in a conserved interaction, only the few other conserved residues just mentioned
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Figure 4.5: Structural organization of the M domain 
 
A cartoon diagram of the M domain of ScExo70Δ62 (top) and MmExo70Δ84 (bottom). Left 
panels are in the same orientation as in Figures 4.1 and 4.2 and right panels are related to 
the left panel by a rotation of -90° about the long axis of the molecule. α-helices are 
labeled H10-H16, and H10 is located behind H13 and is not labeled in the right panel. 
H10-H13 align with the N domain and are colored green in ScExo70Δ62 and yellow in 
MmExo70Δ84. H14-H16 align with the C domain and are colored splitpea in ScExo70Δ62 
and wheat in MmExo70Δ84. The side chains of ten completely conserved residues and one 
similarly conserved residue found in this domain are shown as stick models with oxygen 
colored red, nitrogen colored blue, and carbon colored purple in completely conserved 
residues and pink in the similarly conserved residue. These residues are Pro363/412 and 
Val368/417 on L10-11; Glu370/419, Thr372/421, Leu379/428, and MmLeu431 on H11; 
Leu426/462 and Leu427/463 on H13; Asn479/498 on H14; Leu492/511 on H15; and 
Asn365/Asp414 on L10-11 (ScExo70Δ62/MmExo70Δ84). Red lines indicate hydrogen bonds. 
Dashed lines indicate residues not present in the structure.
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are nearby on the surface of the molecule. Thr372/421 follows Ala371/Leu420 and forms 

a hydrogen bond inside the domain with the other completely conserved residue 

Asn479/498. Leu379/428, MmLeu431, Leu426/462, and Leu385/434 are completely 

conserved and are clustered together in the hydrophobic core of the domain. 

There are several features within the M domain that differ by more than four 

residues between ScExo70Δ62 and MmExo70Δ84. In MmExo70Δ84 L12-13 and L13-14 are ten 

and three residues long, respectively. In ScExo70Δ62 L12-13 and L13-14 are 29 and eighteen 

residues long, respectively, forming two meandering horseshoe-shaped loops that mostly 

lay along the surface created by H10, H13, and H16. These loops share a hydrogen bond 

between the side chains of Lys407 and Asp457. The length of L12-13 is variable among 

species, being longest in budding yeast and shortest in some mammalian forms. The 

length of L13-14, however, is long in budding yeast and uniformly short in other 

organisms. 

Despite several conserved residues in the M domain that appear to stabilize its 

internal packing, the interface between H11-H13 and H14-H16 exhibits two different 

organizations that are related by a rotation of H14-H16 by approximately 20° on the 

surface of H11-H13 (Figure 4.6). The C domain is rigidly associated with H14-H16 and it 

also rotates similarly. Alignment of H1-H13 reveals that the conserved hydrogen bonding 

pair, Thr372/421 and Asn479/498, is located at what may be a pivot point around which 

H14-H19 rotates. This conserved interaction, therefore, may play an important role in this 

interface. There is no evidence for flexibility at this location, as all structures of ScExo70 

(Dong et al., 2005; Hamburger et al., 2006) have identical M domain and M-C domain
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Figure 4.6: Conserved surface residues of the M and C domain interface 
 

A cartoon diagram of the M and C domain interface of ScExo70Δ62 (left) and 
MmExo70Δ84 (right). Both panels are in the same orientation as in Figures 4.1 and 4.2. 
Several relevant structural features are labeled in red. The M domain is colored green in 
ScExo70Δ62 and yellow in MmExo70Δ84, and the C domain is colored cyan in ScExo70Δ62 
and blue in MmExo70Δ84. The main chains of important sections of L10-11, L17-18, and H18 
are shown as sticks with oxygen colored red and nitrogen colored blue. The side chains of 
surface exposed conserved residues are shown as sticks with oxygen colored red, 
nitrogen colored blue, and carbon colored purple in completely conserved residues and 
pink in the similarly conserved residue. Red lines indicate hydrogen bonds. H13-H16 and 
H19 are faded to emphasize other α-helices and loops. 



 113

interface structures, and this organizational difference may be explainable by several 

structural features that stabilize these two interfaces. 

There are two structural features of ScExo70Δ62 that stabilize its internal M 

domain packing. First, L13-14 connects H1-H13 to H14-H19, restricting the possible 

positions that H14-H19 can take in relation to H1-H13 through its length. This loop is 

composed of eighteen residues in ScExo70Δ62, giving freedom for a wide range of 

possible positions. This organization is the same in all ScExo70 structures, suggesting 

that L13-14 does not actually provide flexibility to the region, but does allow for the 

observed packing. Second, L12-13 and L13-14 both interact with H10, H13, and H16 

through five direct hydrogen bonds and several water-mediated hydrogen bonds. The 

interactions of these loops with H16 may have an effect on the organization of this 

interface. 

MmExo70Δ84 also exhibits two structural features that stabilize the conformation 

of the interface between H1-H13 and H14-H19. First, L13-14 is only three residues long in 

MmExo70Δ84, restricting the possible positions that H14-H19 can take in relation to H1-

H13. Alignment reveals that all animals and possibly other organisms probably have a 

similar L13-14. This would impose similar restrictions on this organization in these 

organisms, suggesting that the MmExo70Δ84 orientation is more common than the 

ScExo70Δ62 orientation. Second, L10-11 interacts with L17-18 through a hydrogen bond 

between the main chain carbonyl of Asp414 and the main chain amide of Ala592 (Figure 

4.7). As mentioned above, L10-11 contains a number of conserved residues that may 

maintain the structure of the loop. Here, the linear portion of the loop is parallel to a 

similarly linear section of L17-18, which has a conserved structure but only one completely 
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Figure 4.7: α-helical packing of the M domain 
 
A cartoon diagram of the M domain in ScExo70Δ62 (left), MmExo70Δ84 (right), and both 
aligned using PyMOL (center) with α-helices shown as cylinders and loops omitted for 
clarity. H11-H16 are labeled, and H10 appears behind H11 and H14. H10-H13 align with 
the N domain and are colored splitpea in ScExo70Δ62 and wheat in MmExo70Δ84. H14-
H16 align with the C domain and are colored green in ScExo70Δ62 and yellow in 
MmExo70Δ84. The side chains of completely conserved residues located at a proposed 
pivot point, Thr372/421 and Asn479/498 (ScExo70Δ62/MmExo70Δ84), are shown as sticks 
with carbon colored purple, oxygen colored red, and nitrogen colored blue. Red lines 
indicate hydrogen bonds. 
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conserved residue, Asp570/Asp595 (ScExo70Δ62/MmExo70Δ84), at the end of the loop. 

The interaction between these loops may stabilize the conformation of the H1-H13 and 

H14-H19 interface in MmExo70Δ84. The conservation of these structures does not have an 

obvious function in ScExo70Δ62, raising the possibility that, although it lacks any 

evidence, rotation at this interface may indeed be possible in ScExo70 in order to bring 

these two conserved structures together under certain circumstances. 

 

Comparison of the C domain 

 The C domain of ScExo70Δ62 and MmExo70Δ84 are highly similar. Both are 

composed of a similar set of α-helices, no α-helix or loop deviates by more than three 

residues, and each α-helix or loop is found in a similar position, except in the case of H16 

and L16-17. The overall shape of each α-helix and loop is conserved, although L16-17 and 

L18-19 exhibit some flexibility in position that appears to be affected by crystal packing. 

 This domain contains the highest number and percentage of conserved residues in 

the molecule. Of the residues found in each construct, 32.7/31.3% 

(ScExo70Δ62/MmExo70Δ84) are conserved while 12.1/12.2% are completely conserved. Of 

these conserved residues, 57.1/58.3% are hydrophobic and 42.9/41.7% are hydrophilic, 

the greatest percentage of conserved hydrophilic residues in any domain of Exo70. Most 

of these conserved hydrophobic residues participate in packing within the hydrophobic 

core of the domain. 40.0/47.6% of these residues are aromatic and most of these are 

concentrated near the tip of the molecule, suggesting that the internal structure of this 

domain is important. The conserved hydrophilic residues are mostly concentrated in a 

large surface exposed patch (Figure 4.8). These residues are Lys540/565, ScAsp541, 
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Figure 4.8: Surface exposed conserved residues of the C domain 
 
A molecular surface diagram of the C domain of ScExo70Δ62 (left) and MmExo70Δ84 
(right). The left and right panels are rotated 45° about the long axis of the molecule with 
respect to Figure 4.1 and 4.2, respectively. The M domain is colored green in ScExo70Δ62 
and yellow in MmExo70Δ84, and the C domain is colored cyan in ScExo70Δ62 and blue in 
MmExo70Δ84. Completely conserved residues are colored purple and similarly conserved 
residues are colored pink. Lines indicate residues contributing to the large conserved 
surface patch on the C domain. Arrows indicate conserved residues on the back of the 
molecule. Residues highlighted in red are homologous to residues required for Arpc1 
binding in R. norvegicus. 
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Lys542/Arg567, Glu543/Gln568, Lys546/571, Glu547/572, ScAsn553, Glu557/582, and 

Asp558/Glu583 on H17; Lys601/628, Asn602/629, Lys605/632, MmTyr633, Ile607/634, 

Lys608/635, and Tyr609/636 on L18-19; and Glu613/Gln640 and Val617/Met644 on H19. 

Lys571-Glu572 and Lys628-Pro630, residues found to be important for Arpc1 interaction 

in R. norvegicus (Zuo et al., 2006), are included in this patch except for Pro630, 

implicating this patch in the Arpc1 interaction. However, mutation of Lys565, found on 

the edge of this patch, has no effect on Arpc1 binding (Zuo et al., 2006). This suggests 

that at least one of the conserved residues in this patch are redundant or not required for 

this interaction. It is also possible that Lys565 could participate under circumstances 

other the experimental conditions applied, or that a second interaction could occur at this 

site that requires this residue. Despite the strong conservation of residues both on the 

surface of the molecule and within the hydrophobic core, the surface topology of this 

patch does not appear to be well conserved between species due to variations in the 

positions of L16-17 and L18-19 among all structures. This suggests that these loops may be 

inherently flexible and may be stabilized by interaction with other proteins. These loops 

form intermolecular interactions within the crystal lattice except for L16-17 in the C2 

crystal form, where it is disordered (Hamburger et al., 2006). Thus, it is possible that the 

surface topology of this domain can reorganize when interacting with a binding partner 

such as Arpc1. 

A second difference between the C domains of ScExo70Δ62 and MmExo70Δ84 is 

found in the length of H16 and L16-17. H16 is eight residues shorter and L16-17 is seven 

residues longer in MmExo70Δ84 than in ScExo70Δ62. This apparent exchange of residues 

from H16 to L16-17 may result from a partial unwinding of H16, which could theoretically
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Figure 4.9: Residues involved in the N and M domain interface 
 
A stereo cartoon diagram of the N and M domain interface of ScExo70Δ62 (top) and 
MmExo70Δ84 (bottom). H8-H12 are shown as ribbons with the N domain colored brown 
in ScExo70Δ62 and red in MmExo70Δ84 and the M domain colored green in ScExo70Δ62 
and yellow in MmExo70Δ84. These sections were aligned using the DALI server. The side 
chains or main chains of residues that participate in the interface between the N and M 
domains are labeled and shown as sticks with oxygen colored red and nitrogen colored 
blue. Relevant water molecules are shown as magenta spheres. Red lines depict hydrogen 
bonds. 
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be the result of a pulling force exerted by the intermolecular contacts. It is also possible 

that this difference in H16 and L16-17 lengths could be a true representation of the 

molecule. It is unclear if this feature has any effect on the conserved regions of the 

domain, whether it is naturally occurring or an artifact of crystallization. 

 

Comparison of the N-M domain interface 

The N-M domain interface in ScExo70Δ62 is composed of H10, which is kinked at 

the domain boundary, and a single patch of hydrophobic residues composed of Phe303 

and Phe306 on H9, Leu344 and Phe345 on H10, Phe382 on H11, and Tyr385 on L11-12 

(Figure 4.9). All of these residues except Tyr385 are conserved hydrophobic residues. 

The interface between these two domains buries only 580Å2, the smallest interface of any 

Exo70 molecule. 

The N-M domain interface in MmExo70Δ84 is composed of H10, which is not 

kinked, two small hydrophobic patches, and several water-mediated hydrogen bonds 

(Figure 4.9). The first hydrophobic patch is composed of Phe344 on H9, Phe397 on H10, 

and Phe427 on H11. These residues correspond to ScExo70Δ62 Phe303, Phe345 and 

Phe382, respectively. The second hydrophobic patch, which is separated from the first by 

a space of 6Å, is composed of Phe351 and Leu354 on H9, Leu394 on H10, and Phe434 

and Met441 on H12. Phe351, Leu394, and Phe434 correspond to ScExo70Δ62 Phe306, 

Leu344, and Tyr385, respectively. All of these residues except Phe344, Phe427, and 

Phe434 are conserved hydrophobic residues. The MmExo70Δ84 N-M domain interface 

buries an area of 741Å2, which is 27.8% greater than the interface in ScExo70Δ62. Water-

mediated hydrogen bonds that participate in this interface exist between the carbonyl of 
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Ile339 on H8, the side chain of His342 on L8-9, and the side chain of Asn400 on H10; the 

side chain of Arg355 on H9 and the carbonyl of Asp433 on H11; and the side chain of 

Glu387 on H10 and the side chains of Glu436 and Gln445 on H12. 

The N-M domain interface in ScExo70 is composed of only H10 and a single 

hydrophobic patch. The C2 crystal form contains four molecules in the asymmetric unit, 

each of which has a different angle in the kink of H10 that differs by up to 14.6° 

(Hamburger et al., 2006). This observation, combined with the presence of only a single 

small patch of residues adjacent to H10 at this interface, suggests that this interface is 

flexible. It is unclear what the actual range of motion is for this feature or what function 

could be associated with it. The N-M domain interface in MmExo70Δ84 is unlikely to be 

as flexible as in ScExo70Δ62 as a result of the increased buried surface area and the water-

mediated hydrogen bonds. These features are predicted to have a stabilizing effect on this 

interface, although flexibility at this location has not been ruled out. 

 

Comparison of the M-C domain interface 

 The overall organization of the M-C domain interface is conserved, as each 

feature that is involved appears in a similar location and position. The residues 

participating in this interface, however, are not well conserved. The interface is 

composed of a large hydrophobic core surrounded by hydrogen bonds. The only notable 

feature of this interface is the hydrogen bond that is formed between the carbonyl of 

Asp414 on L10-11 and the amide of Ala592 on L17-18, as described previously. 

 

Comparison of overall surface electrostatic potentials 
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 ScExo70Δ62 has been noted for the polarity of its surface electrostatic potential 

(Dong et al., 2005; Hamburger et al., 2006). Its N-terminus is strongly electronegative, 

resulting from a patch of residues found on H2, H3 and H5 (Figure 4.10). Its C-terminus 

is primarily electropositive, resulting primarily from residues on L10-11, H11, L13-14, H14, 

and H16-H19. This polarity is not observed in MmExo70Δ84 (Figure 4.10). Its N-terminus 

lacks a strong electronegative patch, and the C-terminus retains only a small 

electropositive patch at the extreme tip of the molecule that is primarily composed of 

Lys561, Arg563, Lys565, Arg567, Lys571, Lys575, Lys628, Lys632, and Lys635. All of 

these residues except Lys561, Arg563, and Lys575 are conserved, and Lys571 and 

Lys628 have been implicated in Arpc1 interaction (Zuo et al., 2006). The middle of 

MmExo70Δ84 has an overall electronegative potential that contrasts with the mixed 

potential found in this region of ScExo70Δ62. Residues found primarily on H4, L4-5, H7, 

H9-H12, H14-H15, L17-18 and H18 contribute to this feature of MmExo70Δ84. Only a few 

small regions have the same electrostatic potential in both structures. In addition to the C-

terminal electropositive patch, residues on H6 form a second electropositive patch that is 

opposite the strong N-terminal electronegative patch on ScExo70Δ62. Two electronegative 

pockets are composed of residues found on H7 and H9, and H14-H15. Thus, Exo70 has 

highly variable surface electrostatic properties, suggesting great variability in any 

electrostatic requirements for Exo70-mediated protein-protein interactions. 

 

Comparison to other molecules 

 The overall organization of Exo70 is novel. The Dali Server’s Database Search 

tool (Holm and Sander, 1995) was used to search the RCSB PDB (Berman et al., 2000) 
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Figure 4.10: Surface electrostatic potential 
 
The molecular surfaces of ScExo70Δ62 (left two panels) and MmExo70Δ84 (right two 
panels). The left panel of each pair is oriented as in Figures 4.1 and 4.2, respectively. The 
right panel of each pair is rotated 180° about the long axis of the molecule with respect to 
the left panel. The surfaces are colored on the basis of the solvent-accessible electrostatic 
potential of the molecules. Blue and red depict positive and negative electrostatic 
potential, respectively, with a range of ±10kBT/e. White depicts neutral electrostatic 
potential. All missing side chains, but not completely missing residues, were modeled in 
a rotamer allowed by the surrounding structure for this calculation.Electrostatic potentials 
were produced using the adaptive Poisson-Boltzmann solver in the APBS Tools plug-in 
for PyMOL (www.umich.edu/~mlerner/Pymol). 



 123

for proteins with structures similar to each domain or pair of adjoining domains of 

ScExo70Δ62 or MmExo70Δ84. No strong matches were detected except with the N domain. 

High-scoring matches for all queries found helix-turn-helix motifs from various proteins 

that overlapped for only one or two motifs, even when multiple motifs were present, 

suggesting that the arrangement of helix-turn-helix motifs found in Exo70 is unique 

among structures in the PDB. Good matches with extensive similarity to the N domain 

include the N domain of the opposite Exo70 molecule, the C-terminus of ScExo84 (Dong 

et al., 2005), the C-terminus of D. melanogaster Sec15 (Sivaram et al., 2006; Wu et al., 

2005), the C-terminus of ScSec6 (Sivaram et al., 2006), and the C-terminal cargo-binding 

domain of ScMyo2 (Pashkova et al., 2006). Each of these molecules is primarily 

composed of a domain that corresponds well to the N domain of Exo70, including a 

corresponding α-helix for each α-helix of the domain (Figure 4.11). ScMyo2 is an 

unconventional Myosin V motor protein involved in the transport of exocytic vesicles 

and other organelles along actin filaments (Govindan et al., 1995; Johnston et al., 1991). 

Like ScExo70, it interacts with Rho3, although this domain is probably not involved in 

both cases (Robinson et al., 1999). Each of these crystal structures begins with the same 

corresponding α-helix, suggesting that there is a common property associated with the N-

terminus of this domain that disfavors crystallization. This could possibly be a flexible 

loop immediately prior to H1. So far, Exo70 is the only molecule known to contain this 

domain near its N-terminus. 

The function of this fold remains unclear despite its presence in these structures. It 

has been speculated that other exocyst subunits may also contain this fold (Munson and 

Novick, 2006), and it is possible that it plays a general role in protein-protein  
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Figure 4.11: Similarity of the N domain to other molecules 
 
A cartoon diagram of structures with similarity to the N domain of Exo70. From left to 
right the structures shown are the N domain of MmExo70Δ84, the N domain of 
ScExo70Δ62, a C terminal portion of S. cerevisiae Exo84, a C-terminal portion of D. 
melanogaster Sec15, a C-terminal portion of S. cerevisiae Sec6, and the C-terminal cargo 
binding domain of S. cerevisiae Myo2. All structures were aligned using the DALI server 
to ScExo70Δ62 and MmExo70Δ84 in orientations similar to Figures 4.1 and 4.2, 
respectively. Except for ScExo70Δ62 and MmExo70Δ84, the entirety of these structures are 
shown. Portions of these structures that correspond to H1-H10 of ScExo70Δ62 and 
MmExo70Δ84 are colored red, and additional residues are colored yellow. 
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interactions, as these are a common feature among exocyst subunits and ScMyo2. A large 

number of interactions have been identified among exocyst subunits (Munson and 

Novick, 2006). In S. cerevisiae Exo70 interacts with Sec6, Sec8 and Sec10 in a manner 

that may require at least a portion of its N domain in each case (Dong et al., 2005), and 

the C-terminus of Sec6 interacts with Exo70 and Sec10 (Sivaram et al., 2006). Also, in 

H. sapiens Exo70, the N domain is required for interaction with TC10 (Inoue et al., 

2003). In D. melanogaster Sec15, the C-terminal half of this domain is required for its 

interaction with Rab11 (Wu et al., 2005; Zhang, 2003). The cargo-binding domain of 

ScMyo2 is capable of binding to multiple protein targets, including ScVac17 and an 

unidentified protein required for secretory vesicle binding at two separate sites (Catlett 

and Weisman, 1998; Catlett et al., 2000; Pashkova et al., 2005; Pashkova et al., 2006; 

Schott et al., 1999). Taken together, these findings are consistent with a general function 

of protein-protein interaction for this domain. Given the relationship between these 

molecules and the rarity of this fold, it is also possible that this fold plays a specific role 

in exocytosis. 
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Chapter 5 

Discussion of the Structures of ScExo70Δ62 and MmExo70Δ84 

 

Introduction 

  The examination of the structures of ScExo70Δ62 and MmExo70Δ84 reveal several 

interesting features that deserve further study. The interaction of a GTPase with Exo70 is 

conserved only as far as the family of that GTPase is concerned. Rho3 and TC10, both 

Rho family GTPases, interact with Exo70 at different locations in the respective species 

they are found (Inoue et al., 2003; Robinson et al., 1999). Arpc1, in contrast, interacts 

with Exo70 at a highly conserved location. At least one of the conserved residues in this 

region is not involved in Arpc1 interaction, making a complete understanding of this 

interaction desirable (Zuo et al., 2006). 

The overall architecture of Exo70 is relatively well conserved between S. 

cerevisiae and M. musculus despite low sequence similarity (12% identity and 35% 

similarity) between these two species. A truncation deleting approximately 10% of the 

residues from the N-terminus of the molecule leaves questions about the function, 

organization, and conservation of these residues. In addition, differences in L4-5 and L6-7 

reveal the potential for a functional association. The N-M domain interface appears to be 

stabilized in MmExo70Δ84 in comparison to the flexible interface ovserved in ScExo70Δ62 

and could serve to prevent an undetermined ScExo70-specific function from occurring in 

mammalian Exo70. Lastly, observations and comparisons between the M and C domains 
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of these structures suggest the possibility of a functional reorganization within the M 

domain, resulting in the reorientation of the C domain. 

 

GTPase interactions 

 It is not clear how ScRho3 and mammalian TC10, both Rho GTPases, have 

evolved to interact with Exo70 on two separate domains (Inoue et al., 2003; Robinson et 

al., 1999). It would be useful to understand how these two different binding sites offer 

species-specific interactions important for their functions. ScRho3 interacts with the M 

domain, a central location that could allow the interaction to affect a large part of the 

structure within the molecule. Mammalian TC10 is known to interact with the N domain, 

probably near its N-terminus. This location presents a different electrostatic environment 

and probably a different topological organization for GTPase interactions. Neither of 

these interaction sites is well conserved, which is not surprising given the inconsistency 

of the GTPase interaction site. In the following sections more will be discussed 

concerning the possible effects of GTPase binding on each structural feature. 

 

N-terminal truncation 

 The N-terminal 62 and 84 residues are truncated in ScExo70Δ62 and MmExo70Δ84, 

respectively. Both of these constructs begin with a portion of the loop preceding H1. 

Each of the structures containing a fold similar to the N domain, ScExo84 (Dong et al., 

2005), DmSec15 (Wu et al., 2005), ScSec6 (Sivaram et al., 2006), and ScMyo2 

(Pashkova et al., 2006), has a variable number of residues N-terminal of H1. Each of 

these constructs was identified by limited proteolysis or, in one case, domain prediction 
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by BLAST (Marchler-Bauer et al., 2003). The fact that many of these similar constructs 

were identified by limited proteolysis suggests that this beginning region is commonly 

accessible and susceptible to general proteolysis, and therefore likely to be unstructured 

and flexible. The MmExo70Δ75 construct was created based on the ScExo70Δ62 construct 

by beginning at the same relative location. Its failure to crystallize is consistent with the 

idea that this region is flexible, although the successful crystallization of the similar 

ScExo70Δ62 construct suggests that this flexibility may not be identical in all molecules. 

This is not unexpected due to the low sequence homology among these molecules 

(MmExo70 is composed of 5.1% completely conserved residues and 23.1% partially 

conserved residues based on Figure 4.3). 

 Exo70 contains a cluster of conserved residues among the 28 residues preceding 

H1, including four of nine completely conserved residues in the N domain. There are also 

seven similarly conserved residues, including two hydrophilic residues. Although there 

are only a few, other conserved residues in the structures of Exo70 appear to play a role 

in either conservation of structure or protein interaction. A few of these N-terminal 

conserved residues are present in the structures, including Leu68, Val71, and Val74 in 

ScExo70Δ62 and Val87 in MmExo70Δ84. Asp85 is also present but lacks side chain 

density. Val74/87 packs against L2-3, and ScLeu68 and ScVal71 are solvent exposed. It is 

unusual to have solvent exposed, conserved hydrophobic residues unless they have a 

specific function usually involved in protein-protein interaction, but it is not clear if these 

residues are actually solvent exposed in the full-length protein. The truncated residues are 

predicted by jnet (Cuff and Barton, 2000) to form two α-helices, and these could be 

organized in the style of right-handed helix-turn-helix motif found throughout the rest of 
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this domain. The positions of these solvent exposed hydrophobic residues could be 

artificial due to the proximity of the truncation, or they could be involved in packing with 

the α-helices formed by the truncated residues. Currently there is not enough data to 

determine the role that any of these residues might play in the structure and function of 

Exo70. If some of these conserved residues did indeed form a surface exposed patch, this 

would suggest a conserved interaction at this site. The only known interaction in this 

region would be TC10 in mammals, although this raises the additional question of why 

TC10-interacting residues would be conserved in ScExo70 since this interaction does not 

exist in S. cerevisiae. 

 

L4-5 and L6-7 

 L4-5 and L6-7 are both significantly longer in MmExo70Δ84 than in ScExo70Δ62. 

MmExo70Δ84 H4 also contains three extra residues and lays flat across H6 and H7, while 

ScExo70Δ62 H4 projects out and away from the surface of these α-helices. This is not too 

surprising, as the interactions between L3-4 and H6 are not conserved and may affect the 

organization of this region. The skewed angle of ScExo70Δ62 H4 increases the distance 

traveled by L4-5, causing it to traverse a relatively linear path along H7. The position and 

length of MmExo70Δ84 H4 puts the start of L4-5 on a different face of H7. MmExo70Δ84 

L4-5 contains additional residues and covers less distance than ScExo70Δ62 L4-5, resulting 

in a meandering, non-linear path for this loop. Nine residues are missing from the 

structure of this loop, making it unclear how exactly these residues interact with the rest 

of the molecule, but it could also suggest that they are flexible. In addition, of the 

molecules with structural similarity to the N domain mentioned above, only one, ScSec6, 
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contains an α-helix corresponding to H4, although with a different conformation. Thus, 

H4 may have a specific function in Exo70 and ScSec6, and its position is not important to 

this function. ScExo84, DmSec15, and ScMyo2 structures each have a short loop 

connecting the α-helices equivalent to H3 and H5, demonstrating that H4 and its 

adjoining loops are not necessary for the general function of this domain. 

 L6-7 has the most variable length of any region in Exo70 and has no obvious 

correlation between length and species complexity. For example, Schizosaccharomyces 

pombe L6-7 contains more residues than either Caenorhabditis elegans or S. cerevisiae. 

ScExo70Δ62 L6-7 is composed of 16 residues and MmExo70Δ84 has 33. There are also 

several forms of MmExo70 found in different tissues, including two longer forms in brain 

(Carninci et al., 2005; Guo et al., 1997). These include an additional insert at the end of 

this loop that is predicted by jnet (Cuff and Barton, 2000) to contain an additional α-helix 

and an extension of H7. The specific function of this insert has not been studied to date, 

and its absence from the structure prevents any direct conclusions from being drawn. 

Comparison to other molecules with structural similarity to the N domain reveals that L6-7 

is always partially disordered, except in ScSec6, which contains a short loop interrupted 

by a small α-helix. This again suggests that some amount of variability is inherent in this 

region, and that a function not necessary for the general function of the domain may be 

associated with this flexible region. MmExo70Δ84 is unique among similar structures both 

for the long length of L6-7 and the high number of disordered residues present. Also, it is 

conceivable that some secondary structure may form within L6-7, although it predicted to 

be unstructured. 
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N-M domain interface 

 The N and M domain interface is flexible in ScExo70Δ62 (Hamburger et al., 2006). 

One possible reason for this feature could be that the association between the vesicle and 

the plasma membrane as mediated by the exocyst is not rigid, and some flexibility is 

required within the exocyst in order to properly maintain this dynamic interaction. 

Alternatively, the conformation of this interface could be stabilized by interactions with 

other exocyst components, making innate stability unnecessary. Conversely, the 

conformation of this interface may be part of an important function of ScExo70. This 

could be modulated by interaction with another factor, usch as Arpc1 (Zuo et al., 2006), 

GTPases (Inoue et al., 2003; Robinson et al., 1999), other exocyst subunits (Munson and 

Novick, 2006), and potentially other factors that could modify the interactions made by 

ScExo70, possibly affecting the function of the complex. As an example, the interaction 

of Rho3 with the M domain of ScExo70 could dictate a particular organization at this 

interface, which could potentially affect the organization and interactions between Exo70 

and exocyst subunits. 

If some flexibility is required for a dynamic interaction between the vesicle and 

the plasma membrane in ScExo70Δ62, the structure of the MmExo70Δ84 N and M domain 

interface suggests that this motion is either diminished or prevented in this molecule (see 

Chapter 4) and must either be relegated to another part of the exocyst or is otherwise not 

a necessary feature. Another possibility could be that the flexibility of this interface is 

required for Rho3 to affect exocyst function, but not for TC10, which could account for 

the lack of flexibility found in MmExo70Δ84. Finally, Arpc1 probably does not have a 
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functional association with the N and M domain interface because its interaction is 

presumed to be important and conserved while the flexibility of this interface is not. 

 

M domain packing and C domain orientation 

 The internal packing of the M domain between H11-H13 and H14-H16 may be 

intrinsically linked to the orientation of the C domain (see Chapter 4). Although it 

appears that the orientation of the C domain is stable in both ScExo70Δ62 and 

MmExo70Δ84, the apparent conservation of the L10-11 and L17-18 structures is conspicuous 

in ScExo70Δ62 where they do not interact. Rho3 could possibly interact with L12-13 or L13-

14, and the loss of a lengthy L13-14 in more complex organisms would correlate with the 

loss of this function. If Rho3 does interact with one or both of these loops, this interaction 

could possibly affect the organization of the M domain and the orientation of the C 

domain, allowing it to be repositioned, possibly like that observed in MmExo70Δ84. If 

movement is actually possible here, then a conserved function is likely to be associated 

with it based on the conservation of these structures. The conserved interaction of Exo70 

with Arpc1 occurs on the C domain, and if the MmExo70Δ84 orientation is active for 

Arpc1 interaction while the ScExo70Δ62 orientation is not, Rho3 binding could potentially 

control the interaction between ScExo70 and Arpc1. 

 The only completely conserved interaction at the interface between H11-H13 and 

H14-H16 is a hydrogen bond found between the side chains of Thr372/421 and 

Asn479/498 (ScExo70Δ62/MmExo70Δ84). A hypothetical rotation from one of the two 

observed interfaces to the other could pivot about this interaction, which otherwise 

appears only to have a limited role in stabilization of the M domain. This rotation is 
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consistent with the hypothesis that this region can be reoriented, and it provides a clear 

path for this rotation to the other position. In addition, if a conserved pivot point does 

exist here, then it also exists in MmExo70Δ84, which does not obviously require any 

reorientation. This could suggest the possibility of a similar movement in MmExo70, and 

although the available structural data do not support these theories of movement at this 

position, they do not preclude this possibility. Finally, the interaction of Arpc1 with the C 

domain could function through these loops. Different control mechanisms may be in 

place in different organisms, and separate proteins in mammals could effectively play the 

role of this feature in budding yeasts. 

 

C domain conservation and interaction 

 The C domain contains a large, mostly basic conserved surface patch at the tip of 

the molecule and an underlying conserved core of aromatic hydrophobic residues (see 

Chapter 4). Arpc1 interacts with Exo70 in S. cerevisiae and Rattus norvegicus, and at 

least a portion of this conserved basic surface patch is involved in R. norvegicus (Zuo et 

al., 2006). It is assumed that similar residues are involved in the S. cerevisiae interaction 

because these residues are conserved. It has also been found that at least one of these 

conserved residues, Lys565, is not required for Arpc1 interaction, and the effect of 

mutations on a large section of this patch has not been published. The fact that not all 

conserved residues of this patch are required for Arpc1 interaction raises interest in what 

conserved role they may actually be involved in. It is possible that Lys565 is involved in 

Arpc1 interaction, but in a manner that is more complex or difficult to detect. It is also 

possible that it, and other residues in the patch, are involved in interaction with other 
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proteins, although there are no known candidates at this time. It has also been proposed 

that this basic patch may be associated with the membrane (Dong et al., 2005). This is 

based on the ideas that large basic patches can be associated with phospholipids, the 

exocyst is known to be closely associated with vesicles and the plasma membrane (Guo 

et al., 1999b), and Exo70 is possibly involved in the localization of the exocyst and could 

serve as a spatial marker for its assembly in mammals (Boyd et al., 2004; Inoue et al., 

2003). While this idea was proposed before the publication of the Arpc1 interaction data, 

this idea is not yet invalid, although the larger basic patch is found in S. cerevisiae where 

Exo70 has not been shown to be directly important for localization of the exocyst, which 

would require a specific link to the PM. In any case, it remains possible that this 

conserved site on Exo70 can support multiple interactions, either simultaneously or 

individually. 

 

Future directions 

 The solution of the crystal structures of ScExo70Δ62 and MmExo70Δ84 has 

answered a few questions, such as questions about the shape, organization, and 

conservation of Exo70. These structures, however, raise many more questions that need 

to be answered before the function of Exo70 can be completely understood. The general 

lack of conservation and comparability to other existing protein structures contributes to 

the shortage of conclusions that can immediately be drawn from these structures. This 

section focuses on several questions that have been raised by these structures as 

hypothesized above. 
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 It has been known for several years that Exo70 interacts with a different Rho 

family GTPase in S. cerevisiae than in mammals, and that these interactions occur 

through two separate domains. However, the details of these interactions have never been 

characterized in the published literature. As the interaction with GTPases is critical to the 

role of Exo70, it is important to gain a full understanding of how these interactions result 

in function, and several hypotheses posited above could explain the regulation of these 

important GTPases. It would also be of interest to understand how these two different 

binding sites are similar and different in order to further understand the function of the 

exocyst across species once these sites of interaction have been identified. 

 One of the curiosities found in comparing Exo70 to other similar structures was 

the corresponding start position of all N-domain-like structures with an α-helix 

corresponding to H1. This consistency raises interest in this feature. Additionally, the 

structure and function of the whole truncated portion of Exo70 is not yet understood, 

although it is likely to play some role in TC10 interaction in mammals. A study of this 

region might also determine if these truncated residues should indeed be classified as a 

part of the N domain or if they actually form an independent domain. The presence of a 

cluster of conserved residues within this truncated region suggests an important function, 

and further experiments are necessary to understand the full role of this region. 

 L4-5 is the first of several loops in the crystallized Exo70 fragments to exhibit 

significant variability in length across species. The purpose of this variation is not clear, 

and further study needs to be done to determine if there is a function associated with this 

feature and what it may be. Similarly, of the structures similar to the N domain of Exo70, 

all except Exo70 and ScSec6 have a short loop in place L3-4, H4, and L4-5. This suggests 
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that H4 and possibly the surrounding loops may be present in these molecules in order to 

play some role, although more investigation is needed to determine the role of H4 and its 

surrounding features, and if a similar feature is associated with the corresponding region 

of ScSec6. 

 L6-7 is also noteworthy due to its extreme variability in length between distantly 

related species. Mammals seem to have multiple forms with varying lengths of this loop, 

and both forms are of interest. This entire loop is disordered in MmExo70Δ84, making it a 

portion of the molecule in need of further study in order to understand its role in the 

structure and function of Exo70 and the exocyst. It is possible that an interaction with 

another molecule here could stabilize the structure of this loop. Although a 

comprehensive study has not yet been made, the longer forms of Exo70 are expressed in 

the brain while the shorter form is expressed elsewhere. This suggests that the longer 

form may have a brain-specific function that could be tied to the presence of these 

additional residues. It would be useful to understand the expression patterns of different 

forms of Exo70 in different tissues and how exactly these different forms function. 

 The N and M domain interface appears to be flexible in ScExo70Δ62 but not in 

MmExo70Δ84. The functional implication of this conclusion is not clear and further study 

is needed to determine if flexibility at this interface is required for ScExo70Δ62 function 

and if it is actually possible in MmExo70Δ84. In addition, its possible association with 

GTPase functions should be examined. Further work is needed to determine not only the 

role of this interface but also with what various control elements it is associated with. 

 The packing within the M domain and the orientation of the C domain are 

probably the most interesting observations to result from this study, as they suggest a 
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possible mechanism in ScExo70. Although present structural data does not support 

motion of the C domain, the conservation of several residues at the interface of H11-H13 

and H14-H16 could suggest otherwise. There are several facets here that are worth 

investigating under the hypothesis of movement at this location. First, several conserved 

surface exposed residues appear in L10-11 that may be stabilizing the conformation of the 

loop in such a way as to maintain an orientation parallel to L17-18, even in ScExo70Δ62 

where these loops do not interact directly. The function of these residues needs to be 

investigated in order to understand the exact role they play in these structures, in this 

interaction in MmExo70, and to determine if a similar interaction can occur in ScExo70 

and what its role may be. Additionally, the fact that these conserved residues are surface 

exposed could suggest a conserved interaction, although the likelihood of this is 

diminished by the lack of strong surface conservation. Second, the function of the 

conserved hydrogen bond between Thr372/421 and Asn479/498 

(ScExo70Δ62/MmExo70Δ84) is conspicuous and should also be investigated, as it may play 

an important role in the hypothesized motion. Third, ScExo70Δ62 L12-13 and L13-14 may 

stabilize the C domain orientation observed in crystal structures by interacting directly 

with H16. These loops are only long enough to interact with H16 in budding yeast. 

Fission yeasts also have Rho3 that interacts with Exo70, but L12-13 and L13-14 are not as 

lengthy as they are in budding yeast, suggesting that Rho3 may not have a conserved 

interaction in all yeast. At least the interaction of these loops with H16 should be 

investigated, especially in relation to the possible movement of the C domain mentioned 

above, and any possible interaction with Rho3 should also be considered here. Finally, 

L13-14 has a short length that appears to be conserved in all organisms other than budding 
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yeast. It is possible that this short loop restricts the position of the C domain in these 

Exo70 molecules from moving into a position similar to that observed in the ScExo70Δ62 

structure. An investigation of the role of this loop could reveal more about the possibility 

of movement in this region and the relationship of this loop to the function of Exo70 in 

most organisms. 

 The C domain is known to contain a conserved basic surface patch, of which at 

least part of it interacts with Arpc1. This patch is rather large, and at least one residue is 

not required for this interaction. The role of this residue and its conservation are therefore 

curious, and the deletion method used to identify the necessary residues could have had 

unintended effects. Further study is necessary to determine the exact nature of this 

interaction and to what extent this conserved patch is involved. If not all conserved 

residues are involved in Arpc1 interaction, then the role of these residues should be 

further investigated and possibly other interactions should be sought. 

  

Conclusion 

 The goal of this project was to gain an understanding of the structure and function 

of Exo70 and to make a comparison across distantly related species in order to gain 

further insight into its static and variable features and functions. In this work X-ray 

crystallographic methods were used to determine the structures of ScExo70Δ62 and 

MmExo70Δ84. It was revealed that Exo70 is a long, rod-shaped molecule that lacks strong 

sequence conservation and contains a unique fold found only in a few other molecules 

also involved in exocytosis. The overall fold and organization of the molecule is 

strikingly similar across such distantly related species despite low primary sequence 
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conservation, although there are several notable differences in this organization. The 

unusual architecture of Exo70 makes it difficult to draw strong conclusions about its 

functions, but the plethora of new questions raised by these structures may lead to a more 

detailed understanding of the interplay between structure and function in Exo70. 
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Appendix 

 

Contained in this appendix are protocols necessary for the complete and exact 

reproduction of this work. Most of these are variations on standard protocols (Ausubel et 

al., 1998) that have proven to be more successful in the hands of the Xu lab. 

  

Preparation of competent cells 

 A desired strain of Escherichia coli is streaked onto an agar LB plate (0.5% yeast 

extract, 1% tryptone, 1.5% agar (BD Biosciences) 10mM NaCl, 1mM NaOH) from a 

frozen stock. A colony is grown overnight at 37°C and a single colony is used to 

inoculate 3mL of sterile LB media (0.5% yeast extract, 1% tryptone, 10mM NaCl, 1mM 

NaOH) in an autoclave tube. The culture is grown overnight at 37°C and 1mL is used to 

inoculate 20mL of sterile LB media in a 125mL Erlenmeyer flask. The culture is grown 

at 37°C and shaken at 250rpm to an optical density at 595nm of 0.2. The culture is chilled 

on ice for 5min before centrifugation in a chilled Oakridge tube in an SS-34 rotor 

(Sorvall) at 10000rpm and 4°C for 2min. Cells are resuspended in 2.5mL chilled 50mM 

CaCl2 and chilled on ice for 15min before centrifugation as above. Cells are resuspended 

in 2.5mL chilled TCM buffer (10mM Tris pH8.6, 50mM CaCl2, 50mM MgCl2) and 

aliquoted into Eppendorf tubes. Aliquots are snap-frozen in liquid nitrogen before storage 

at -80°C. 
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Preparation of ultracompetent cells 

 The DH5α strain of Escherichia coli is streaked onto an agar LB plate from a 

frozen stock. A colony is grown overnight at 37°C and a single colony is used to 

inoculate 250mL of sterile SOB media (0.5% yeast extract, 2% tryptone, 8.6mM NaCl, 

2.5mM KCl, 10mM MgCl2) in a 2L flask. The culture is grown at 20°C and shaken at 

250rpm to an optical density at 600nm of 0.6. The culture is chilled on ice for 10min 

before centrifugation in 500mL Sorvall bottles in a GS-3 rotor (Sorvall) at 2500×g and 

4°C for 10min. Cells are resuspended in 80mL ice-cold TB media (10mM PIPES pH6.7, 

55mM MnCl2, 15mM CaCl2, 250mM KCl) and chilled on ice for 10min before 

centrifugation as above. Cells are resuspended in 20mL ice-cold TB media and DMSO is 

added to a final concentration of 7%. Cells were chilled on ice for 10min and aliquoted 

into Eppendorf tubes. Aliquots are snap-frozen in liquid nitrogen before storage at -80°C. 

 

Preparation of TEV protease 

 TEV protease is used in the removal of tags from over-expressed proteins in the 

pSJ series of plasmids. 1μL of pET21d-TEV-NIa plasmid containing the oligo-histidine 

tagged TEV protease gene was added to 100μL competent BL21(DE3)pLysS E. coli and 

put on ice for 10min. The cells were then heat shocked for 2min in a 42°C water bath and 

1mL LB media was added. After incubation for 1hr in a 37°C water bath 200μL cells 

were plated on LB-agar culture plates containing 100μg/mL ampcillin and 34ng/mL 

chloramphenicol and incubated overnight at 37°C. A single colony is used to inoculate 

100mL LB media containing 100μg/mL ampcillin and 34ng/mL chloramphenicol. The 

culture is grown overnight at 30°C and shaken at 250rpm and 6×10mL culture is used to 
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inoculate 6×1L LB media containing 100μg/mL ampcillin and 34ng/mL 

chloramphenicol. These cultures are grown at 37°C to an optical density at 595nm of 0.4 

and the temperature is reduced to 20°C. At an optical density at 595nm of 0.8 IPTG 

(Calbiochem) is added to a concentration of 100nM to induce protein expression for 8hr 

at 20°C. Cell pellets are collected by centrifugation in a GS-3 rotor at 6500rpm and 4°C 

for 15min and stored at -80°C. 

 Cell pellets are resuspended in buffer A (25mM Tris⋅HCl pH8.0, 300mM NaCl, 

5mM β-me, 10% glycerol) and sonicated six times on ice for 30sec at power 8 on a 

Branson Sonifier 450 with 30sec breaks between pulses. Sonicated cells are centrifuged 

in an SS-34 rotor at 18000rpm and 4°C for 1hr and the supernatant is collected. The 

supernatant is passed over a Ni2+-NTA Superflow column washed in buffer A. Material 

not bound to the column is washed away with 3×15mL buffer A before elution with 

4×15mL buffer B (25mM Tris⋅HCl pH8.0, 300mM NaCl, 5mM β-me, 10% glycerol, 

250mM imidazole⋅HCl). Column flow-through is analyzed by SDS-PAGE. Fractions 

containing an appropriate concentration and purity of the desired protein were collected 

and concentrated by centrifugation at 2750 × g in a Centriprep YM-10 concentrator 

(Amicon). Concentrated protein is then aliquoted into 500μL aliquots, snap-frozen in 

liquid nitrogen, and stored at -80°C. 

 

Primer design 

 Many primers were used in this study for gene amplification and insertion of 

restriction sites using PCR (Table A.1). In general, primers were designed to contain 

three elements. The 5’ element contains six or seven nucleotides that do not form 
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Table A.1: Primers used in this study 
 
Name Sequence 
Exo70 5’ BamHI ATCGTAA GGA TCC ATG CCC GCT GAA ATT GAC ATT G 
Exo70 3’ SalI ATCGTAA GT CGA CTA TCT CAC TAA TTG GTT AAG AAC 
Exo84 5’ NdeI ATCGTAA CAT ATG GTT GAG TTT TCT TTG AAG AAG 
Exo84 3’ HindIII ATCGT A AGC TTA GCG AAT TTT ATC ACT GTT CTT 
Sec3 5’ BamHI ATCGTAT GGA TCC ATG AGG TCC TCG AAG TCT CC 
Sec3 3’ XhoI ATCGTAA CTC GAG TTA GGC ATT CTT GTA TTC CTC 
Sec5 5’ BamHI ATCGTAA GGA TCC ATG GAT AGG TTT CAA ATT GGC G 
Sec5 3’ XhoI AACGTAT CTC GAG CTA GCT GAA GGC GGC GAA TTG 
Sec6 5’ BamHI ATCGTAT GGA TCC ATG TCT TCA GAC CCC TTG CAG C 
Sec6 3’ XhoI ATCGTAA CTC GAG TTA TTG CTT TTC GAA TTC TAA TAC A 
Sec8 5’ BamHI ATCGTAA GGA TCC ATG GAT TAC CTA AAA CCA GCG 
Sec8 3’ SalI ATCGTAA GTC GAC TCA TTT TTC GTT TGC AGT ATG GAC 
Sec10 5’ BamHI ATCGTAA GGA TCC ATG AAC TCA TTA TAT GAA CTC GA 
Sec10 3’ XhoI ATCGTAA CTC GAG CTA TCT AAA ATT CAA TTT AAC GCT 
Sec15 5’ BamHI ATCGTAA GGA TCC ATG GAC CAA GAA GGC CAG CC 
Sec15 3’ XhoI ATCGTAA CTC GAG TTA ACG TCT ATT AAA AAA TTT GGC 
Exo70d168 5’ BamHI AGCTTAA GGA TCC ATG CCA TTT CCA TAC TAC GAG 
Exo70d294 5’ BamHI ATCCTAA GGA TCC CGA AGC AAC CTC GAG AAC TTT G 
Exo70d62 5’ BamHI ATCCTAA GGA TCC AAT ATT GAA AGT ACA TTG AAT TCC G 
mExo70 5’ EcoRI ATCGTAA GAA TCC ATG ATT CCC CCG CAG GAG G 
mExo70 3’ XhoI ATGGTAA CTC GAG TCA AGC AGA GGT GTC GAA AAG 
RnExo70 5’ EcoRI ATCGTAA GAA TTC ATG ATT CCC CCG CAG GAG GC 
RnExo70 3’ XhoI TAGGTAA CTC GAG TTA AGC AGA GGT GTC GAA GAG G 
MmExo70d75 5’ EcoRI ATGCTAA GAA TTC AAC GTG GAG AAG ACG TTA TCC 
MmExo70d84 5’ EcoRI AAGCTA GAA TCC GAC CAC GTT ATC AGC TAC TAC C 
Restriction sites are underlined 
Gene codons are separated by spaces 
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significant interactions with other nucleotides of the primer and are present to facilitate 

restriction digestion of the final PCR product. The central element contains a six-

nucleotide restriction site that is unique to the target plasmid and not present in the 

amplified gene. The 3’ element contains 17-24 nucleotides specific to the gene or gene 

fragment to be amplified. For a 5’ primer this sequence matches the start sense strand of 

the desired amplification product. For a 3’ primer this sequence matches the reverse 

compliment of the end of the sense strand of the desired amplification product. In order to 

ensure a strong enough interaction between primer and source DNA the following 

formula is applied: 2A + B ≥ 30, where A is the total number of cytosine-guanine pairs 

and B is the total number of adenine-thymine pairs formed between the primer and the 

source DNA strands. Primers containing high concentrations of adenosine and thymidine 

pairs often require a longer primer in order to achieve a score of 30 than primers 

containing high concentrations of cytidine and guanosine pairs, which can often use a 

shorter primer and still achieve a score of 30. It is also beneficial in choosing these 

sequences to end them with a cytidine or guanosine pair to improve the stability of the 

interaction. As a final check, the primer sequence is entered into the PrimerSelect 

program in the Lasergene package (DNA*) to detect the formation of any problematic 

primer dimers or hairpins. If any are detected the interacting sequences can be modified. 

If the problem exists in the 5’ element, any change can be made to this sequence to 

prevent the formation of secondary structure. A problem in the restriction site can only be 

solved if another restriction site can be substituted. A problem in the 3’ element can be 

solved if a wobble codon mutation will disrupt it. This type of mutation has no effect on 
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protein sequence but does require an extension of the primer to accommodate the 

mismatch between the primer and source DNA. 

 

Crystal screening 

 A variety of conditions must be tested in order to identify those that promote 

protein crystal formation. Two screens were employed in this work in order to identify 

initial crystallization conditions. The Hampton crystal screens I and II (Hampton 

Research; Table A.2) are commercially available sparse matrix screens. The X screen 

(Table A.3) is a systematic screen developed by Zhaohui Xu. Crystallization screening is 

carried out in Cryshem 24-well sitting drop trays (Hampton Research). The Hampton 

screens are utilized by adding 500μL of the supplied precipitant to the well and 1-4μL of 

a 1:1 mixture of protein and precipitant from the well to the drop. Wells are immediately 

sealed and trays are stored in a 4°C or 20°C temperature- and humidity-controlled room 

and observed regularly for crystal growth. The X screen is utilized by first determining 

the pH stability of the protein. A 1:1 mixture of protein and one of a panel of pH 

stabilized 100mM buffers is observed at 4°C for 5-10min, then up to three buffers at 

particular pH values are chosen for which the protein remains soluble. The screen’s 

precipitants are then mixed with each of the chosen buffers to a volume of 500μL in the 

well of the Cryshem tray and protein and well solution are mixed, sealed and stored as for 

the Hampton screen. 

 Once a crystal condition has been identified and optimized, a second round of 

screening can be performed in order to identify closely related crystal forms by the 

addition of other chemical species. For convenience the commercially available Hampton 
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Table A.2.1: Hampton Crystal Screen I 
 
Condition # Precipitant contents 
1 30% (±)-2-methyl-2,4-pentanediol, 0.02M CaCl2⋅2H2O, 0.1M sodium acetate⋅3H2O pH4.6 
2 0.4M potassium sodium tartrate⋅4H2O 
3 0.4M NH4H2PO4 
4 2M (NH4)2SO4, 0.1M Tris⋅HCl pH8.5 
5 30% (±)-2-methyl-2,4-pentanediol, 0.2M trisodium citrate⋅2H2O, 0.1M HEPES⋅Na pH7.5 
6 30% PEG 4000, 0.2M MgCl2⋅6H2O, 0.1M Tris⋅HCl pH8.5 
7 1.4M sodium acetate⋅3H2O, 0.1M sodium cacodylate⋅3H2O pH6.5 
8 30% 2-propanol, 0.2M trisodium citrate⋅2H2O, 0.1M sodium cacodylate⋅3H2O pH6.5 
9 30% PEG 4000, 0.2M ammonium acetate, 0.1M trisodium citrate⋅2H2O pH5.6 
10 30% PEG 4000, 0.2M ammonium acetate, 0.1M sodium acetate⋅3H2O pH4.6 
11 1M NH4H2PO4, 0.1M trisodium citrate⋅2H2O pH5.6 
12 30% 2-propanol, 0.2M MgCl2⋅6H2O, 0.1M HEPES⋅Na pH7.5 
13 30% PEG 400, 0.2M trisodium citrate⋅2H2O, 0.1M Tris⋅HCl pH8.5 
14 28% PEG 400, 0.2M CaCl2⋅2H2O, 0.1M HEPES⋅Na pH7.5 
15 30% PEG 8000, 0.2M (NH4)2SO4, 0.1M sodium cacodylate⋅3H2O pH6.5 
16 1.5M Li2SO4⋅H2O, 0.1M HEPES⋅Na pH7.5 
17 30% PEG 4000, 0.2M Li2SO4⋅H2O, 0.1M Tris⋅HCl pH8.5 
18 20% PEG 8000, 0.2M magnesium acetate⋅4H2O, 0.1M sodium cacodylate⋅3H2O pH6.5 
19 30% 2-propanol, 0.2M ammonium acetate, 0.1M Tris⋅HCl pH8.5 
20 25% PEG 4000, 0.2M (NH4)2SO4, 0.1M sodium acetate⋅3H2O pH4.6 
21 30% (±)-2-methyl-2,4-pentanediol, 0.2M magnesium acetate⋅4H2O, 0.1M sodium cacodylate⋅3H2O pH6.5 
22 30% PEG 4000, 0.2M sodium acetate⋅3H2O, 0.1M Tris⋅HCl pH8.5 
23 30% PEG 400, 0.2M MgCl2⋅6H2O, 0.1M HEPES⋅Na pH7.5 
24 20% 2-propanol, 0.2M CaCl2⋅2H2O, 0.1M sodium acetate⋅3H2O pH4.6 
25 1M sodium acetate⋅3H2O, 0.1M imidazole pH6.5 
26 30% (±)-2-methyl-2,4-pentanediol, 0.2M ammonium acetate, 0.1M trisodium citrate⋅2H2O pH5.6 
27 20% 2-propanol, 0.2M trisodium citrate⋅2H2O, 0.1M HEPES⋅Na pH7.5 
28 30% PEG 8000, 0.2M sodium acetate⋅3H2O, 0.1M sodium cacodylate⋅3H2O pH6.5 
29 0.8M potassium sodium tartrate⋅4H2O, 0.1M HEPES⋅Na pH7.5 
30 30% PEG 8000, 0.2M (NH4)2SO4 
31 30% PEG 4000, 0.2M (NH4)2SO4 
32 2M (NH4)2SO4 
33 4M sodium formate 
34 2M sodium formate, 0.1M sodium acetate⋅3H2O pH4.6 
35 0.8M NaH2PO4⋅H2O, 0.8M KH2PO4, 0.1M HEPES⋅Na pH7.5 
36 8% PEG 8000, 0.1M Tris⋅HCl pH8.5 
37 8% PEG 4000, 0.1M sodium acetate⋅3H2O pH4.6 
38 1.4M trisodium citrate⋅2H2O, 0.1M HEPES⋅Na pH7.5 
39 2% PEG 400, 2M (NH4)2SO4, 0.1M HEPES⋅Na pH7.5 
40 20% 2-propanol, 20% PEG 4000, 0.1M trisodium citrate⋅2H2O pH5.6 
41 10% 2-propanol, 20% PEG 4000, 0.1M HEPES⋅Na pH7.5 
42 20% PEG 8000, 0.05M KH2PO4 
43 30% PEG 1500 
44 0.2M magnesium formate⋅2H2O 
45 18% PEG 8000, 0.2M Zinc acetate⋅2H2O, 0.1M sodium cacodylate⋅3H2O pH6.5 
46 18% PEG 8000, 0.2M Calcium acetate⋅2H2O, 0.1M sodium cacodylate⋅3H2O pH6.5 
47 2M (NH4)2SO4, 0.1M sodium acetate⋅3H2O pH4.6 
48 2M NH4H2PO4, 0.1M Tris⋅HCl pH8.5 
49 2% PEG 8000, 1M Li2SO4⋅H2O 
50 15% PEG 8000, 0.5M Li2SO4⋅H2O 
Concentrations given are those of the initial well solution 
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Table A.2.2: Hampton Crystal Screen II 
 
Condition # Precipitant contents 
1 10% PEG 6000, 2M NaCl 
2 0.01M hexadecyltrimethylammonium bromide, 0.5M NaCl, 0.01M MgCl2⋅6H2O 
3 25% ethylene glycol 
4 35% 1,4-dioxane 
5 5% 2-propanol, 2M (NH4)2SO4 
6 1M imidazole pH7.0 
7 10% PEG 1000, 10% PEG 8000 
8 10% ethanol, 1.5M NaCl 
9 2M NaCl, 0.1M sodium acetate⋅3H2O pH4.6 
10 30% (±)-2-methyl-2,4-pentanediol, 0.2M NaCl, 0.1M sodium acetate⋅3H2O pH4.6 
11 1M 1,6-hexanediol, 0.01M CoCl2⋅6H2O, 0.1M sodium acetate⋅3H2O pH4.6 
12 30% PEG 400, 0.1M CdCl2⋅H2O, 0.1M sodium acetate⋅3H2O pH4.6 
13 30% PEG MME 2000, 0.2M (NH4)2SO4, 0.1M sodium acetate⋅3H2O pH4.6 
14 2M (NH4)2SO4, 0.2M potassium sodium tartrate⋅4H2O, 0.1M trisodium citrate⋅2H2O pH5.6 
15 1M Li2SO4⋅H2O, 0.5M (NH4)2SO4, 0.1M trisodium citrate⋅2H2O pH5.6 
16 2% ethylene imine polymer, 0.5M NaCl, 0.1M trisodium citrate⋅2H2O pH5.6 
17 35% t-butanol, 0.1M trisodium citrate⋅2H2O pH5.6 
18 10% Jeffamine M-600, 0.01M FeCl3⋅6H2O, 0.1M trisodium citrate⋅2H2O pH5.6 
19 2.5M 1,6-hexanediol, 0.1M trisodium citrate⋅2H2O pH5.6 
20 1.6M MgSO4⋅7H2O, 0.1M MES⋅H2O pH6.5 
21 2M NaCl, 0.1M NaH2PO4⋅H2O, 0.1M KH2PO4, 0.1M MES⋅H2O pH6.5 
22 12% PEG 20000, 0.1M MES⋅H2O pH6.5 
23 10% 1,4-dioxane, 1.6M (NH4)2SO4, 0.1M MES⋅H2O pH6.5 
24 30% Jeffamine M-600, 0.05M CsCl, 0.1M MES⋅H2O pH6.5 
25 1.8M (NH4)2SO4, 0.01M CoCl2⋅6H2O, 0.1M MES⋅H2O pH6.5 
26 30% PEG MME 5000, 0.2M (NH4)2SO4, 0.1M MES⋅H2O pH6.5 
27 25% PEG MME 550, 0.01M ZnSO4⋅7H2O, 0.1M MES⋅H2O pH6.5 
28 1.6M trisodium citrate⋅2H2O pH6.5 
29 30% (±)-2-methyl-2,4-pentanediol, 0.5M (NH4)2SO4, 0.1M HEPES pH 7.5 
30 10% PEG 6000, 0.1M HEPES pH 7.5 
31 20% Jeffamine M-600, 0.1M HEPES pH 7.5 
32 1.6M (NH4)2SO4, 0.1M NaCl, 0.1M HEPES pH 7.5 
33 2M ammonium formate, 0.1M HEPES pH 7.5 
34 1M Sodium acetate⋅3H2O, 0.05M CdSO4⋅H2O, 0.1M HEPES pH 7.5 
35 70% (±)-2-methyl-2,4-pentanediol, 0.1M HEPES pH 7.5 
36 4.3M NaCl, 0.1M HEPES pH 7.5 
37 10% PEG 8000, 8% ethylene glycol, 0.1M HEPES pH 7.5 
38 20% PEG 10000, 0.1M HEPES pH 7.5 
39 3.4M 1,6-hexanediol, 0.2M MgCl2⋅6H2O, 0.1M Tris pH8.5 
40 25% t-butanol, 0.1M Tris pH8.5 
41 1M Li2SO4⋅H2O, 0.01M NiCl2⋅6H2O, 0.1M Tris pH8.5 
42 12% glycerol, 1.5M (NH4)2SO4, 0.1M Tris pH8.5 
43 50% (±)-2-methyl-2,4-pentanediol, 0.2M NH4H2PO4, 0.1M Tris pH8.5 
44 20% ethanol, 0.1M Tris pH8.5 
45 20% PEG MME 2000, 0.01M NiCl2⋅6H2O, 0.1M Tris pH8.5 
46 20% PEG MME 550, 0.1M NaCl, 0.1M bicine pH9.0 
47 2M MgCl2⋅6H2O, 0.1M bicine pH9.0 
48 2% 1,4-dioxane, 10% PEG 20000, 0.1M bicine pH9.0 
Concentrations given are those of the initial well solution 
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Table A.3.1: 
X Screen initial pH screen 
 
Condition # Buffer species 
1 Sodium acetate pH4.5 
2 Sodium cacodylate pH5.5 
3 PIPES pH6.5 
4 HEPES pH7.5 
5 Tris pH8.5 
6 Glycine pH9.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A.3.2: X Screen additional buffer screen 
 
Condition # Precipitant contents 
1 0.8M NaH2PO4/KH2PO4 pH5.2 
2 1.6M NaH2PO4/KH2PO4 pH5.2 
3 2.4M NaH2PO4/KH2PO4 pH5.2 
4 0.8M NaH2PO4/KH2PO4 pH6.8 
5 1.6M NaH2PO4/KH2PO4 pH6.8 
6 2.4M NaH2PO4/KH2PO4 pH6.8 
7 0.8M NaH2PO4/KH2PO4 pH8.2 
8 1.6M NaH2PO4/KH2PO4 pH8.2 
9 2.4M NaH2PO4/KH2PO4 pH8.2 
10 1M NH4H2PO4 pH6.5 
11 1.5M NH4H2PO4 pH6.5 
12 2M NH4H2PO4 pH6.5 
13 0.8M sodium citrate pH6.0 
14 1.2M sodium citrate pH6.0 
15 1.6M sodium citrate pH6.0 
16 1.5M sodium formate pH8.0 
17 2.5M sodium formate pH8.0 
18 3.5M sodium formate pH8.0 
19 0.5M sodium tartrate pH7.0 
20 1M sodium tartrate pH7.0 
21 1.5M sodium tartrate pH7.0 
22 1M ammonium acetate pH7.5 
23 2M ammonium acetate pH7.5 
24 3M ammonium acetate pH7.5 
Concentrations given are those of the initial well solution 

Table A.3.3: X Screen precipitants to be mixed with variable buffer species 
 
Condition # Set 1 precipitant contents Set 2 precipitant contents Set 3 precipitant contents 
1 1.2M (NH4)2SO4 8% PEG 2000 20% MPD 
2 1.2M (NH4)2SO4, 2% MPD 8% PEG 2000, 5% MPD 20% MPD, 0.2M LiCl 
3 1.2M (NH4)2SO4, 5% ethanol 8% PEG 2000, 10% ethanol 20% MPD, 5% PEG 8000 
4 1.2M (NH4)2SO4, 0.25M Li2SO4 8% PEG 2000, 0.2M calcium acetate 35% MPD 
5 2M (NH4)2SO4 16% PEG 2000 35% MPD, 0.2M LiCl 
6 2M (NH4)2SO4, 2% MPD 16% PEG 2000, 5% MPD 35% MPD, 5% PEG 8000 
7 2M (NH4)2SO4, 5% ethanol 16% PEG 2000, 10% ethanol 50% MPD 
8 2M (NH4)2SO4, 0.25M Li2SO4 16% PEG 2000, 0.2M calcium acetate 50% MPD, 0.2M LiCl 
9 2.8M (NH4)2SO4 24% PEG 2000 50% MPD, 5% PEG 8000 
10 2.8M (NH4)2SO4, 2% MPD 24% PEG 2000, 5% MPD 20% PEG 300, 0.2M LiCl 
11 2.8M (NH4)2SO4, 5% ethanol 24% PEG 2000, 10% ethanol 30% PEG 300, 0.2M LiCl 
12 2.8M (NH4)2SO4, 0.25M Li2SO4 24% PEG 2000, 0.2M calcium acetate 40% PEG 300, 0.2M LiCl 
13 0.5M CaCl2 8% PEG 8000 20% PEG 600, 0.2M LiCl 
14 1M CaCl2 8% PEG 8000, 0.2M LiCl 30% PEG 600, 0.2M LiCl 
15 2M CaCl2 8% PEG 8000, 0.2M MgCl2 40% PEG 600, 0.2M LiCl 
16 0.5M Li2SO4 8% PEG 8000, 0.2M (NH4)2SO4 20% ethanol 
17 1M Li2SO4 16% PEG 8000 30% ethanol 
18 2M Li2SO4 16% PEG 8000, 0.2M LiCl 40% ethanol 
19 0.5M MgSO4 16% PEG 8000, 0.2M MgCl2 10% 2-propanol 
20 1M MgSO4 16% PEG 8000, 0.2M (NH4)2SO4 20% 2-propanol 
21 2M MgSO4 24% PEG 8000 30% 2-propanol 
22 1M NaCl 24% PEG 8000, 0.2M LiCl 25% ethylene glycol 
23 2M NaCl 24% PEG 8000, 0.2M MgCl2 35% ethylene glycol 
24 4M NaCl 24% PEG 8000, 0.2M (NH4)2SO4 40% ethylene glycol 
All precipitants include 0.1M of a chosen buffer species at a specific pH value 
Concentrations given are those of the initial well solution 
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Table A.4: Hampton Additive Screens 
 
Condition # Screen 1 Screen 2 Screen 3 
1 0.01M BaCl2⋅2H2O 0.1M NaI 0.1M (NH4)2SO4 
2 0.01M CdCl2⋅2H2O 0.01M L-cysteine 0.1M CsCl 
3 0.01M CaCl2⋅2H2O 0.01M EDTA⋅Na salt 0.1M KCl 
4 0.01M CoCl2⋅6H2O 0.01M β-NAD 0.1M LiCl 
5 0.01M CuCl2⋅2H2O 0.01M ATP⋅2Na salt 0.2M NaCl 
6 0.01M MgCl2⋅6H2O 3% D(+)-glucose⋅H2O 0.05M NaF 
7 0.01M MnCl2⋅4H2O 3% D(+)-sucrose 0.2M NaSCN 
8 0.01M SrCl2⋅6H2O 3% xylitol 3% dextran sulfate⋅Na salt 
9 0.01M YtCl3⋅6H2O 0.01M spermidine 5% Jeffamine M-600 pH7.0 
10 0.01M ZnCl2 0.01M spermine⋅4HCl 4% 2,5-hexanediol 
11 3% ethylene glycol 3% 6-aminocaproic acid 4% (±)-1,3-butanediol 
12 3% glycerol anhydrous 3% 1,5-diaminopentane⋅2HCl 4% PPG P 400 
13 3% 1,6-hexanediol 3% 1,6-diaminohexane 4% 1,4-butanediol 
14 3% MPD 3% 1,8-diaminooctane 4% t-butanol (v) 
15 5% PEG 400 0.1M glycine 4% 1,3-propanediol (v) 
16 0.01M (CH3)3N⋅HCl 0.03M glycyl-glycyl-glycine 4% acetonitrile (v) 
17 0.1M guanidine⋅HCl 0.01M [Co(NH3)6]Cl3 4% 4-butyrolactone (v) 
18 0.01M urea 0.01M taurine 4% n-propanol (v) 
19 1.5% 1,2,3-heptanetriol 0.01M betaine⋅H2O 0.5% ethyl acetate (v) 
20 2% benzamidine⋅HCl 0.5% polyvinylpyrrolidine K15 4% acetone (v) 
21 3% dioxane (v) 0.3M NDSB 195 0.025% CH2Cl2 (v) 
22 3% ethanol (v) 0.2M NDSB 201 0.7% n-butanol (v) 
23 3% isopropanol (v) 0.01M phenol 4% TFE (v) 
24 3% methanol (v) 3% DMSO (v) 0.01M DTT (v) 
Concentrations given are those of the initial drop 
Conditions followed by (v) are volatile 



 155

Additive screens I, II, and III (Hampton Research; Table A.4) are employed. For non-

volatile additives, 500μL precipitant is added to the well and the drop is composed of 

4μL 5:4:1 protein:precipitant:additive. For volatile additives, the precipitant is modified 

to include the additive and added to the well and the drop is composed of 1:1 

protein:precipitant. Wells are immediately sealed and trays are stored in a 4°C or 20°C 

temperature- and humidity-controlled room and observed regularly for crystal growth. 

 

Preparation of SeMet substituted minimal MOPS media 

 The composition of SeMet substituted minimal MOPS media is complicated 

because Met must be avoided in all media components. As a result, several stock 

solutions are composed in advance to simplify the process. All stocks are autoclaved or 

contain autoclaved water and were filtered with a sterile 0.22μm filter. In addition, only 

sterile tools are used to minimize Met contamination from outside sources. 

Six 1L cultures are typically grown at once. 1L of media is composed of 660mL 

ddH2O, 200mL 5× amino acid and nucleotide stock (4mM Ala, 14.3mM Arg, 2mM Asn, 

2mM Asp, 0.5mM Cys, 3mM Glu, 3mM Gln, 1mM His, 2mM Phe, 2mM Pro, 50mM 

Ser, 2mM Thr, 0.5mM Trp, 4mM Iso, 8mM Leu, 4mM Lys, 2mM Tyr, 6mM Val, 1mM 

adenine, 1mM guanine, 1mM cytosine, 1mM thymine), 94mL 10× MOPS stock (426mM 

MOPS, 43mM tricine, 3mM K2SO4, 5μM CaCl2, 6mM MgCl2, 532mM NaCl), 30mL 

20% glucose stock, 10mL 132mM K2HPO4 stock, 5mL 1.9M NH4Cl stock, 1mL 

antibiotic, 500μL 2000× vitamin stock (20mM thiamine⋅HCl, 20mM pantothenic 

acid⋅0.5Ca, 23mM p-hydroxybenzoic acid, 20mM p-aminobenzoic acid, 20mM 2,3-

dihydroxybenzoic acid), 20μL 5000× micronutrients stock (706μM (NH4)6Mo7O24⋅4H2O, 
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20mM H3Bo3, 6mM CoCl2⋅6H2O, 344μM CuSO4⋅5H2O, 4mM MnCl2⋅4H2O, 501μM 

ZnSO4⋅7H2O), 122mM SeMet stock, and 1mL 10mM FeSO4 stock. It is noted that the 5× 

amino acid and nucleotide stock can remain cloudy with undissolved components even 

after several days of stirring. As a result, the actual concentrations of some components 

may be lower than listed here. The concentration and type of antibiotic used is dependent 

on the expression vector used. The 122mM SeMet stock and the 10mM FeSO4 stock are 

made fresh immediately before use. 
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