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CHAPTER I

Introduction

The interaction between arithmetic and analytic objects is one of the deepest
and most fascinating themes in number theory. The general philosophy for this
interaction can be summarized as follows: To any global arithmetic object X- say
a number field, an elliptic curve, or a galois representation - we associate an L-
function L(X,s), a kind of generating function. The L-function L(X,s) provides us
with analytic tools for understanding the local or global arithmetic structure of X,
which may not be otherwise as accessible.

One classic example of this philosophy is the analytic class number formula relat-
ing the residue (the analytic data) of the L-function (analytic object) associated to
a number field K with the order of its class group (the arithmetic data). Another
famous example is the celebrated Birch-Swinnerton-Dyer conjecture that predicts
precise relations between the L-function L(FE,s) of an elliptic curve E/Q and vari-
ous arithmetic objects like the Mordell-Weil group F(Q)(the group of rational points
of F) and the Tate-Shafarevich group III(£). Amongst other things this conjecture
relates a special value of L(F,s) to the size of the group of rational points of E.

One way to approach these problems on “special values” that has had significant

success is Iwasawa Theory, which is a systematic analysis of the variation of the



p-parts of the class groups or their generalizations, Selmer groups, in question for
a fixed odd prime p. The corresponding special L-values are packaged into a single
p-adic L-function. In this framework the existence of p-adic L-functions associated
to various arithmetic objects marks a starting point for the use of this theory.

In this work we are concerned with the construction of a p-adic L-function associ-
ated to a special value of the degree eight L-function for GSp(4) x GL(2) which is the
convolution of the degree four spin L-function on GSp(4) associated to a holomorphic
Siegel cusp form and the standard degree two L-function on GL(2) associated to an
elliptic cusp form. Like the degree two L-function for holomorphic forms on G L,; the
spin L-function on GSp(4) is the L-function of a compatible family of 4-dimensional
(-adic Galois representations associated to the holomorphic Siegel cusp form. The
degree eight L-function is the L-function of the tensor product of these two and four
dimensional representations. This makes the above p-adic L-function particularly
interesting for arithmetic.

There has been no previous work constructing a p-adic L-function associated to
the spin L-function. However, p-adic L-functions interpolating the special values
of the standard L-function - the degree five L-function - have been constructed by

Panchishkin [CP04] and Bocherer and Schmidt [BS00).

1.1 The integral representation

Let F be a holomorphic Siegel eigen cusp form on H,, (the Siegel upper half-space)
and 7 the irreducible cuspidal automorphic representation of GSp(2n, A) associated
to it. Let f be an elliptic eigen cusp form on £, and o the irreducible cuspidal
representation of GLy(A) associated to it. In [Fur93] , Furusawa gives an integral

representation of the degree eight L-function L(s,m x o) for GSp(4) x GL(2). This



L-function is realized as a Rankin-Selberg integral. Global integrals for the spin
L-function were considered first by Novodvorsky and later by Piatetski-Shapiro and
Soudry, but their methods are applicable only when 7 has a Whittaker model or a
special Bessel model. On the other hand, Furusawa’s integral applies whenever 7
has some Bessel model. This is crucial to our case since we know that holomorphic
Siegel modular forms do not have Whittaker models and need not have special Bessel
models either but they do have Bessel models. Below, we outline the representation
given in [Fur93|.

In [Fur93|, Furusawa associates a  Klingen FEisenstein series E(P,g,s,0) on
GU(2,2)(A) to a form in the space of . This is done by identifying a copy of
GLs(A) in the levi of the Klingen parabolic subgroup P of GU(2,2;K) (Here K is
some imaginary quadratic extension of Q.). Then the L-function L(7 X o) is real-
ized as a Rankin-Selberg integral wherein an automorphic from ¢ belonging to the

space of 7 is integrated against the restriction of the Eisenstein series F(P,g,s, o)

to H :== GSp(4) i.e.

Z(s) = Z(s,0,¢) = / E(P, h,s,0)(h)dh.
Z(A)H(Q)\H(A)

By making appropriate choices he ensures that

Z(s) =[] Z.(s)

where v runs over all the places of Q and Z,(s) is an explicitly given local integral.
These local integrals are expressed in terms of a degenerate Whittaker model on

GU(2,2) and a Bessel model on GSp(4). For unramified places v it is shown that
Zy(s) = (normalizing factor) x L(s —1/2, 7, X &,)

where 7, denotes the contragredient of m,, the local factor at v of 7 and similarly



for &,. The normalizing factor is the inverse of a product of L-functions - the same

product that shows up in the constant term of the Eisenstein series E(P, g, s, o).

1.2 The set-up of the problem and the solution strategy

Let p be an odd prime, f € S,(To(p"), x) an ordinary elliptic cusp eigen form and
F e S, x(I'5(p"), x) be a Siegel cusp eigen form that is an ordinary eigenform for the
Hecke operator U, = 'y (p")diag(p, p, 1, 1) (p"). Let o be the irreducible cuspidal
automorphic representation of GLa(A) associated to f with central character w, =
x and let 7 be the irreducible cuspidal automorphic representation of GSp(4, A)
associated to F.

Our goal is to construct a one variable p-adic L-function interpolating special
values of the degree eight L-function L(s, F' x f) as ' and f vary through families
of forms. To construct this p-adic L-function we interpret the global integral of
Furusawa as a Petersson inner product of a holomorphic Klingen Eisenstein series

E¢(Z) and the Siegel modular form F(Z). So we can say that
(1.1) ((F\Ef)) gsp(ay = (normalizing factor)(contribution from SYLS(F x f)

where S is any finite set of places containing those places where ¢ or 7 is ramified and
L® is the L-function incomplete at S. But to be able to use this formula in general,
we need to understand the contribution due to the places in S. In Furusawa’s work
the only ramified place where he carries out the zeta integral computations is the
infinite place. Lacking a complete theory of these local zeta integrals (and strong
multiplicity one for GSp(4)), in this work we restrict our attention to when both the
Siegel and the elliptic modular form have a level a power of p (our fixed odd prime).

We now outline our interpolation argument. We vary f and F in appropriate

p-adic families {f.} and {F,} with varying weights. As explained in the previous



section, the Klingen Eisenstein series is constructed from the elliptic cusp form f. In
general, an Eisenstein series is interpolated by interpolating its Fourier coefficients.
Since the explicit formula for the Fourier coefficients of the Klingen Eisenstein series
on the unitary group are in general considerably complicated, we do not directly
interpolate them. Instead, we use a pull-back formula of Shimura [Shi97] to restrict
a Siegel Eisenstein series on U(3,3) to a Klingen Eisenstein series on U(2,2). The
pullback formula can be classically interpreted as follows:

Consider the embedding Hs x H; — Hs of the Hermitian upper half spaces given
by Z x w+ (¢ ,). Then the pullback formula asserts that for a ‘good’ choice of a

Siegel Eisenstein series E on U(3,3),

Z
(1.2) <E ,f’(w)> = () Ef(2)

where Ey is the Klingen Eisenstein series on U(2,2) associated to f, f"is a well un-
derstood transform of f and (*) a normalizing factor. The Fourier coefficients of the
Siegel Eisenstein series £/ can be explicitly computed and after suitable normalization

we show that they are p-adically interpolated. Roughly,

E(z) =Y C(B)e(tr(Bz))

where B runs over a lattice of positive semidefinite Hermitian matrices in M3(kKC). We
show that the C'(B)’s can be p-adically interpolated into a family {C\(B)} so that
{E;, = > Ci(B)e(tr(BZ))} is a p-adic family of Siegel Eisenstein series. Roughly

stated, we prove

Theorem 1.1. The Siegel Eisenstein series E can be p-adically interpolated into a

one variable p-adic family {E.} parametrized by its weight .



We then deduce that the Klingen Eisenstein series Fy can be p-adically interpo-
lated. To do this we express F as a Fourier-Jacobi expansion

E(7,)=>( Y C(Be(tr(nw))e(tr(B'Z))

7oe=(5)
where B’ varies over all positive semi definite Hermitian matrices in M, (K) and
n > 0. Let C(B,w) = ZB:(]?D}/ o) C(B)e(tr(nw)) then we show that C(B',w) is a
modular form on U(1,1). We can view it as a modular form on GL(2).
Its a theorem of Hida, that if f € S%(To(p"), x, L) is a primitive ordinary eigenform
and g € M,.(To(p"), x, L) then

<97 f,>p7'
o S

where [/ = fp|( 0 51), e is the ordinary projector, and 1 is the idempotent corre-
p

lr(g) = a(l,gle 1f) =

sponding to f in the Hecke algebra. Hida has explained how this construction works
for a p-adic family {f.} as well. By an application of Hida’s theorem to the Fourier

Jacobi coefficients of £ and relation (1.2) we get a p-adic family

{Ef, =) (,(C(B))e "2}
B/

of Klingen Eisenstein series on U(2,2) with respect to a p-adic family of modular
forms {f.} on GLs of varying weights.

Finally, to interpolate the L-values of the degree eight L-function, we vary the
Siegel modular form F in a p-adic family {F,;} and combine (1.1) with a construction
for GSp(4) analogous to Hida’s ¢;. Doing this, we get a one variable (the weight)
p-adic L-function.

The main theorem can be stated as

Theorem 1.2. Let A = Z,[[T]] and Oy, be the integral closure of A in a finite

extension L of the field of fractions of A.



Let F(resp. F) be an ordinary Op-adic elliptic eigenform of tame level 1 and
character xo(resp. an ordinary Op-adic Siegel modular form of tame level 1 and
character xo). Let S be a symmetric semi-integral matriz such that det(S) > 0
is a fundamental discriminant. Let & be an unramified Hecke character of K =
Q(\/Tt(S’)) of finite order. There exists L € L such that if k >> 0 and ¢ : Op —
Q, is a Z,-homomorphism such that $(1+T) = ((1+ p)~ for ¢ a p"* root of unity,

r > 1 then

LB G(F) x §(F), k) B (La)
O(F), ¢(F)’ |« (pT *1)> <<¢(F),¢(F)p P (pT 71)>> £,0(F)

(L) = ap(¢)<

where ay(p) is some normalizing factor depending on ¢(F) and ¢(f) and Bgg 4w (14)

is the value at 14 of the Bessel model of ¢(F') associated to S and &.

Remark 1.3. Implicit in this theorem is a choice of an embedding Q, — C.

Remark 1.4. For the definition of Op-adic forms see (9.2). The ¢(F)’s and ¢(f)’s are

weight x forms.

Remark 1.5. The Bessel model is essentially a sum of Fourier coefficients associated
to semi-integral symmetric matrices with determinant = det(S5), weighted by values
of £&. For the precise definition see (5.3). The key point is that for any given ¢ it is
possible to choose T" and & so that Bge ¢r)(1) # 0, and if Bgg 4w)(1) # 0 for some

¢ then it is nonzero for all ¢ for Kk >> 0.

Remark 1.6. The factor a,(¢) should be a ratio of partial L-factors for the represen-
tation m, x 0, of GSP(Q,) X GL3(Q,); we have yet to work this out but expect to

be able to do so following ideas of Sugano [Sug85].



CHAPTER II

Notation and Terminology

In this chapter we introduce some basic concepts and establish notation which
we shall use throughout this thesis unless explicitly specified otherwise. Throughout

this paper p is a fixed odd prime number.

2.1 Number fields and Characters

We fix once and for all algebraic closures Q and Qp of Q and Q,, respectively.
We also fix embeddings Q — Q, — C. Let K C Q be an imaginary quadratic
extension of Q and denote its ring of integers by Oy. For a place v of K, we denote
by K, the completion of K at v and by Ok, the valuation ring of C,. If v is a place
of Q then K, = K ®q Q,, and if v is a finite place then Ok ,=Ok ® Z,.

We will usually denote the action of the non-trivial automorphism of I by x — Z.
This automorphism extends to Ox ® A and K ® A by the action on the first factor
for any Z-algebra A. Let ¢ be a prime in Q. We identify Ok, with Z, x Z, and
K, with Q; x Qg if ¢ splits in K and under these identifications (z,y) = (y,z) for
(x,y) € K.

For a number field L we let A denote the adeles of L and put A := Ag. We

write Ap o and Ay s for the infinite part and the finite part of Ay respectively.

When L = Q we will sometimes drop the L from our notation of adeles. For a place



v of Q and x € Aqg we write x, for the v-component of x, and similarly for Ay.
For a place v of Q, |.|, denotes the usual absolute value of Q, i.e. |p|, = p~'. By
|.|q we shall mean the absolute value on Aq. We define an absolute |.|, on A by
|z|, = |Nmp,q(x)|q, where Nmp, q(x) is the norm from A to Ag. We shall denote
the usual absolute value on C and R by |.|.

Let N be a positive integer. A Dirichlet character modulo N is a group homo-
morphism y : (Z/NZ)* — C. We can extend x to all of Z by defining x(n) = 0 if
ged(n, N) > 1 and x(n) = x(n mod N) if ged(n, N) = 1. We will say that x’ modulo
N’ is induced from x mod N if N|N’ and x'(n) = x(n) whenever ged(n, N') = 1. If
a character cannot be induced from a strictly lower level we call it primitive.

A Hecke character of A} is a continuous homomorphism
Y L*\A] — C*.

The character v factors as product of local characters 1) = Il,4,, where v runs over

all the places of L. An ideal ¢ of Op is called the conductor of v if
1. ¢y(x,) = 1if v is a finite place of L, z, € OZW and z, — 1 € ¢cOp,,
2. no ideal ¢ strictly containing ¢ has the above property.

For any ideal m of Oy, we set ¥y, := Il,, where v runs over all finite places of L
such that v|m. We denote by ¢* the associated ideal character.

For any commutative ring R we let M, (R) denote the set of n x n matrices with
entries in R. We denote by GL,(R) the subset of M, (R) with unit determinant and
by SL,(R) the subset of GL,(R) with determinant equal to 1. Let I, denote the
identity element of GL,(R). For will denote the transpose of a matrix = by 'z and

we put z* =z and & = (z*)".
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2.2 Parabolic subgroups

We will be interested in Eisenstein series associated to various parabolic sub-
groups. In particular the maximal parabolics - Siegel parabolic and Klingen parabolic
on some unitary similitude group G,,. Here we describe some of the parabolic sub-
groups and also use this chance to fix some notation.

For an integer n > 1 let

Wp —

-1, O

and let H, be the group scheme over Z such that for any Z-algebra R
H,(R) ={h € GLy,(Z @ R)|"hw,h = pin(h)wn, pn(h) € R*}

Then H,(R) is isomorphic to the usual symplectic similitude group. We shall refer to
iy as the similitude factor; it is a homomorphism p, : H, — G,,. Let Sp(2n) C H,

be the kernel of pu,. Let

GTL(R) = {g € GL?H(O/C & R)|tgwng = ,un(g)wnnun(g> € RX}

where T denotes the nontrivial automorphism of K and R is a Z-algebra. Then G,
is the usual unitary group GU(n,n). We shall refer to u, as the similitude factor.
Let U,, C G,, be the kernel of p,,.

For g € My, let Ay, B,,C,, D, € M, be defined by

Ay By
Cg Dg
where we may drop the subscript g if it is understood.
Let P, C G, be the subgroup of elements ¢g in G,, such that C; is zero and the

last row in D, is of the form (0,---,0,*). This subgroup can be realized at the
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stabilizer of a totally isotropic line hence it is a maximal parabolic. We shall refer
to it as the Klingen parabolic. By the standard theory of reductive groups, P, has a
levi decompostion P, = Np, Mp where Np, is the unipotent radical and Mp, is the
levi subgroup. We go into more details of the levi subgroup as it plays a crucial role
in the induced representations that are used to define Eisenstein Series. The Levi

subgroup Mp, can be identified with G,,_; X Resp,zG,, under the inclusion

Ay B,
/jlnfl(g):l:_l
Gp-1 X Resp/zGy — Gr : (g,2) — m(g,x) ==
Cy Dy
x
The unipotent radical Np, is given by
( \
1 1 0 p
y 1 L'pgq
ly.p€K,q€Q
1 —ty 1
1 1
\ J

Moreover, we note that for any Q-algebra R the homomorphism (£ ® R)* X
GLy(R) — Gi(R) defined by (a,g) — ag,a € (K® R)*,g € GL3(R), induces an
isomorphism

Gi(R) ~ (K® R)* x GLy(R)/{(a,a )|a € R*}.

This identification plays a crucial role in constructing an Eisenstein on GU(2,2)
induced from modular forms on GL(2).
The Siegel parabolic @), C G, is defined by Cy = 0. Just as above ), has a levi

decomposition given by @),, = Ng, Mg, where N, is the unipotent radical and My,
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is the levi subgroup. More precisely Ng, and Mg, are given by

g
Mg, = lg € Resx/qGLy,, a € Q
atg—l

and

1, s
Ng, = { s =155 € Mn(lC)}
L,

Let B,, be the Borel subgroup containing P, and (), defined by requiring A, to be
lower triangular. We shall denote by T,, C B, the torus of diagonal matrices in the
Borel. Let J C Ok be an ideal in Ok. Let R denote any of the parabolic subgroups
mentioned above. Denote by Kp_ (J) the subgroup of G,,(Z) such that K (J) = R,
(mod J).

We can similarly define parabolic subgroups H,, and we shall denote then also as

P,, Q, and B,,. They are realized as the intersection of the parabolic in GG,, with H,,.



CHAPTER III

Modular forms

In this thesis we deal with various types of modular forms (e.g. elliptic modular
forms, Siegel modular forms and Hermitian modular forms). Each of them is dealt
with in a classical setting as well as the adelic setting. The theory of elliptic modular
forms is quiet standard by now and can be found in various textbooks and expository
articles [Bum97|, [Hid93|, [Miy89|. For the theory of Siegel modular forms one can
refer to [AZ95], and a basic introduction can also be found in [Kl1i90]. For Hermitian

modular forms see [Gri90] and [Kri91].

3.1 Elliptic Modular forms

Let I' C SLy(Z) be a subgroup. In particular we will be interested in the congru-

ence subgroup I'o(/NV) where

a b
To(N)={y= € GLy(Z)lc=0 (mod N)}
c d
and the subgroup I'y (V) where
a b
['(N)={y= elp(N)la=1 (mod N)}.
c d

The group SLy(R) acts on Hy = {z € My(C)|Ilm(z) > 0} by fractional linear

13
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transformations given by

a b _az+b
ez +d

c d

For ease of notation let us define the slash operator

, ke /2 0%+ 0 a b
(Fle)(z) = (3, 2) ™" (det 9)" 2 f(————) for all 7 = € GL(R)
where j(7v, z) = (cy2 + d).
An elliptic modular form of weight k > 0 and level I' is a holomorphic function

f :H; — C such that

(3.1) flay(z) = f(z) ~ foryel

and f extends holomorphically to every cusp of I'. We shall denote the C-vector
space of elliptic modular forms of weight x and level T'o(N) by M, (N). If x is a

character modulo N and f satisfies

f(2)]sy = x(dy)j (v, 2) " f(yz) where

instead of 3.1 for all v € I'o(NN) then we call f(z) a modular form of weight x, level
N and character x. The space of all such f(z) is denoted M, (N, x).

Every elliptic modular form f possesses a Fourier expansion at the cusp at infinity

given by
0o 00
f(Z) _ Zanqn _ Zane%rinz'
n=0 n=0

If a,, = 0 we say that f is a cusp form. We shall denote the C-vector space of elliptic
cusp forms of weight x and level I'o(IV) by S.(N) and cusp forms in M, (N, x) by
S«(N,x). We now discuss the Hecke operators T, which Hecke used to prove the

Euler product factorization of the L-function associated certain f(z)’s. For any
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congruence subgroup I' and G = GL3 (Q) we define
Dr ={a € Glal'a™ ~ T}
Then for @« € Dr and f € M. (T, x)) let
fle[Tal] = det(a) > Z X (aa;) f |wevi

where I'al’ = | |, T'o;. We can define the Hecke operator 7,, by

T.f= > fllaIl.

a€Dr,det(a)=n

We sometimes write T'(n) for T,,.

1
Proposition II1.1. [Hid93] Let I' = I'o(N) and a = . Then the left coset
q

decomposition of Tal’ is given by

(

1 u q
1.7 11 if  q 1s prime to N,
q 1
[al' =
1 u '
T if q|N.
L q

Let A be a subalgebra of C and let
M,(N,x, A) = M(N, x) N Al[q]]
and
Sk(N, x, A) = S<(N, x) N Al[g]]-

Then it can be checked that M,(N,x,A) and S.(N,x,A) are stable under the
Hecke operators T,, if A contains Z[x|. For such an A we define the Hecke Alge-

bra H, (N, x, A) (resp. Hycusp(N, X, A)) as the A-subalgebra of End (M (N, x, A))
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(resp. End4(S.(V,x,A))) generated by T,, for all positive n. We say that f is a
Hecke eigenform if it is an eigenform for all T;,.
For f,g € Mg(T") and if either f or g is a cusp form, we define the Petersson inner

product as
1

(f,g9) = 5L@ T o, f(2)g(2)y"2dady
where SLy(Z) := SLy(Z)/ < —I, > and T := image of I" in SLy(Z)/ < —I >. This
is independent of T'.
As in the case of characters we have a notion of primitive normalized eigenforms
or newforms. These should be thought of as forms that do not arise from a lower

level. More precisely, let S%4(T'o(N), x) be the subspace of S, (I'o(N), x) generated
by the set

UULF ()£ (2) € Su(To(M), )}

M ¢
Here M runs over all the positive integers such that m,|M, M|N, and M # N, ¢
runs over all the positive divisors of N/M and m, is conductor of x. We shall refer
to the orthogonal complement of S4(Ty(N), x) in S,(To(N),x) with respect to the

Petersson inner product as S (I'g(N), x).

Theorem II1.2. (Hecke) Suppose x is a primitive Dirichlet character modulo N and

L a number field then H,(N,x; L) is semi-simple.
For a modular form f(z) =>""_ " a,q" € M.(N,x), we put
fP(z) = ang",
n=0
where @, is the complex conjugate of a, and ¢ = ¢(27iz). For a positive integer N,
we put

WN =

N 0



17

Fact II1.3. [Miy89] Let x be a Dirichlet charachter mod N.

The correspondence “f — fl,,” induces isomorphisms:
MH(N7 X) = MH(N7 X)

SK)(N7 X) = SH(N’ X)

If f(z) € M(N, x)(resp. Sx(N, X)), then

and it belongs to M,.(N, x) (resp. S.(N,X)).
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3.2 Siegel Modular forms

Let HI(R) = {y € H,(R)|ua(y) > 0} and let H,, = {Z € M,(C)|Z" =
Z,Im(Z) > 0} be the Siegel upper half space of degree n respectively. Then H,;F(R)

acts on H,, via

a b
WZ) = (@ Z+0)(eZ+d)",  y= € HY(R).
c d
We define the congruence subgroup
a b
5, (N)={y= € Sp(2n,Z)|lc=0 mod N},
c d

For k a positive integer and v € H,F(R) we define the slash operator by:

(Flay)(2) = u(y)™ (7, 2) "F(yz)  for  z€H,

where j(v,2) = det(c,2z + d,). A holomorphic function F' : H,, — C is a said to be

a Siegel modular form of weight x and level I'y, (N) if
Floy=F for all velI”.

The n = 1 case is just the case of elliptic modular forms. We denote the space of
Siegel modular forms of level I'y, (N) by M, (N). If x is a Dirchlet character of

conductor N then let Mj (N, x) be the space of F' € Mj (N, x) such that
F|, = x(det(d,))F for all v € I' (N).

If F e M,,(I'*) for some congruence subgroup I'*, then there is an integer N
depending only on I'* such that F'(z + Nh) = F(z) for h belonging to the semigroup
of symmetric integral matrices. Thus F' has a Fourier expansion given by

F(Z): Z a(T’F>62m‘N*1tr(Tz)

Tesz°(2)
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where SZ° is the semigroup of positive semi-definite n x n symmetric integral ma-
trices. We say that F' is a cusp form if for all « € HI(R),a(T, F |,) = 0 for every
T such that det T'= 0. We denote by S; .(I'g) (N), x) or Ss«(IV, x) the vector space
of Siegel cusp forms of weight x and level I';, (N) and character x. If x = 1 then
we omit any mention of the character. Just as in the case of elliptic modular forms
we define M, .(T'g, (N), x, A)(resp.Ss x(L'g, (IV), x, A)) as the space of modular (resp.
cusp) forms with Fourier coefficients in A. We can define F” for F' a Siegel modular
form just as in the case of elliptic modular forms.

Our next goal is to recall the definition of the Petersson inner product in the

Siegel modular form case. There is a H;[(R) invariant measure on H,, given by
dpz = (dety) ™" < gdz o s 0< sdYa s

where z = 241y and z = (24,3) +1(Ya,8) and dz, g and dy, g are the usual Euclidean
measures on R.

For F and G two Siegel modular forms of weight x, level I'* and either of them
being a cusp form we define for any congruence subgroup I'y C I'* the Petersson

inner product

1 K
(G = s / o FETEN et dy

where H,(Z) := H,(Z)/ < —I, > and T := image of [} in H,(Z)/ < —I,, >.
We now recall some facts about Hecke operators on Siegel modular forms. If

g€ HHNQ)and g = (%) mod N we define the Hecke operator:

0%, (N)gl'g, (N)] - My x(I', (N), x) = My x(I'g, (N), X)

(@)™ X(9)f 1x g
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where T8, (N)gT's, (N) = [T, (N)g: and X' (& 3) = x(det A) (this value is 0 if
(det A, N) # 1).

Let A¢(N) be the semigroup of elements 7 in H; (Q)NMs,(Z) such that (N, det(v)) =

Xk

land~v = mod N. We denote by H¥(N, x, Z) the Hecke algebra spanned
0 =
over Z by the double I'g, (N) cosets contained in Ag(NN). Then HI(N,x,Z) acts on

M; (N, x,Z) and this action preserves S, (N, x, Z). It is also known that S; (N, x)
has a basis of eigenforms for H(N, x,Z) which are orthogonal with respect to the
Petersson inner product.

For n a positive integer prime to N let T, € HX(N, x,Z) denote the sum of all
the I'y) (N) double cosets in Ag(N) for which u takes value n. We let H (N, x, Z)
be the subring of HX(N, x, Z) generated by these operators.

If p | N we shall also consider the operators
(3.2) Usye = [T, (N)diag(1,1, p', gL, (V).
This operator is of particular interest to us. Below we list some properties of this
operator.

Lemma II1.4. Fort >0 andp | N,

Uspe =T, (N)diag(1,1,p',p"T3 (N) = | | T%, (V)
Xex 0 p'l,

where X is a set of representatives of S,(Z) modulo p'.

Proposition II1.5. Let p | N and let x be a Dirichlet character modulo N. Then

Ut, € End(M, (T3, (N),x)) and satisfies:
1. a(TaF |US pt) = a’(ptT> F)

2. U57pr - U57pr
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3. Usp commutes with the action of Hy(N, x)
The following double coset decomposition will be useful for later.

Fact II1.6. (Andrianov)

GSp(47 Zp) dl(lg(p,p7 17 ].)GSp(4, Zp)

10z vy p00O0

- T0 (3058) (Grte) esmaz)
vyezpz N0001 0001
TRV

H (00 1 0) (Ségg)GSp(él,Zp)
z,2€Z/pZ 00 -al 0001
1000 6088

I (458) (3500) osmiaz
vezjpz N0001 000p
4000

H(OOpO)GSP(‘l,Zp)
000p

3.3 Hermitian Modular forms

Let GHR) = {y € G,,(R)|un(y) > 0} and let H,, = {Z € M, (C)|—i(Z—Z) > 0}

be the Hermitian upper half space of degree n. Then G}/ (R) acts on H,, via

a b
WZ) = (ayZ + by) (e, Z + dw>_17 Y= € G, (R).
c d
We define the congruence subgroup
N a b
Lo, (N)={v= €U,(Z)lc=0 mod N},
c d

Let x be a positive integer, v € G, (R). To simplify notation we introduce the slash

operator : for any v € G (R), set

(Flv)(2) = M(V)mﬂj'(% z) " F(yz) for all yeTh and z€H,
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where j(v,z) = det(c,z + d,). A holomorphic function F' : ‘H,, — C is a said to be

a Hermitian modular form of weight x and level I'Yy (N) if
Fly=F for all 7€an(N).

One can also define Hermitian modular forms with a character. Let 7: Ag — C* be
a Hecke character such that for all finite £, 7(z) = 1 for x € O , withz—1 € NOx,.

We say that F' is of level N and character 7 if
Fl|, = 7n(det(d,))F

for every v € TY (N). We let F' € M, (T, (N),7) be the space of such F.

If F € My,.(I'") for some congruence subgroup I'" then there is an integer N
depending only on I'* such that F(z + Nh) = F(2) for h € N,, = {h € M,,(K)|'h =
h}. Thus F has a Fourier expansion given by

F(z) = Z a(T, F)e>miN = (T2),
TeN;(Z)=20
Remark 111.7. When n = 1, H; = H; and the theory of Hermitian modular forms is

the essentially the same as the theory of elliptic modular forms.

3.4 Automorphic forms

For a reductive group G over a number field L we will write A(G) for the space
of automorphic forms on G(Ar) and A°(G) for the space of cuspforms. Sometimes

we also use A to mean A(G).

3.4.1 Automorphic forms on GL(2)

We give the adelic picture associated to the classical theory of elliptic modular

forms. Let f be a classical holomorphic cuspidal eigenform of weight « level T'g(V)
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and y a character of (Z\NZ)*. By the strong approximation we have:
GLy(Aq) = GLy(Q)GLS (R)K(N),
where K(N) = [[yy GL2(Z¢) [ [, Ken, and

a b
K&NI EGLQ(Z@) c=0 (mod N)

c d

Moreover, GLs(Q) N GL3 (R)K(N) = ['y(N). To each Dirichlet character
x:(Z/NZ)* — C*~

we can associate an idele class character as follows: The Dirichlet character y de-
termines a character x, of Z; by composition with the natural homomorphism from
Z, to (Z/NZ)*. The product [], x, then defines a character of Z*. Since Z has
class number one,

Zx _)AX/QXRX

hence we get an idele class character. We will also denote this idele class character by

a b
x and we write x = ®x,. Each x, defines a character of Ky y : — e(a)

c d
giving a character of K (V). We now define a function ¢, in A(GLs) by

¢f(79wk) = X(ak)j(goov Z.)_HH(QOO)K/QJC(QOO(Z‘)%

where v € GL3(Q), goo € GL3 (R), and k € K(N). We call ¢; the automorphic form
corresponding to f. Suppose f is a newform and let oy = ®40, denote the automor-
phic representation generated by ¢¢. Then we call o¢ the automorphic representation

corresponding to f.
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3.4.2 Automorphic forms on GSp(2n)

For any finite prime ¢ let

Kp, o(N) = “ € GSp(2n)(Zy) :¢c=0 (mod N)

c d

Now let K¢ (N) = [Iyy GSp(2n)(Ze) [1yn K5, ,0(V). Given F' € M; (I, x), define

a function ¢p by

or(g) = x(det(ar))j(goor )" 11(goo)" " F (goo (i)

where g = Y9k € GSp(2n)(Q)GSp(2n)*"(R)KP, (N). Here, as in the previous
section, y denotes the idele class character on A*/Q* associated to the Dirichlet
character y. Then ¢ is the automorphic form on GSp(2n)(A) associated to F'. We
shall denote by mr the automorphic representation generated by ¢pr. Usually we
will assume that any eigenform F' we are working with has the property that np is

irreducible.
3.4.3 Automorphic forms on GU(n,n)
Just as in the earlier two situations there is an adelic analogue of Hermitian

modular forms.

For any finite prime /£ let K¢ (N) = [Tgn GU(n,n)(Ze) [1yn K ,(N), where

a b
Kl (N) = € GU(n,n)(Zy) : c=0 (mod N)
c d
Let
r y
KM= € Gu(R)|z,y € GL(n,C), 2"z + 'y = 1,,, 2"y = y'x
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and K] be the subgroup generated by K" and diag(1,,—1,). Then K} is a

n,00

maximal compact in G, (R).

Also there exists t; € G, (Ax,f) such
hi
Gu(A) = | |G Q)G (R)E:iG, (N)
i=1

where hx = class number of IC. One can take t; = (u ul ), u; € GL,(Ax, ) such that
{det(u;)} represents the class group of K. Given an automorphic form ¢ € A(G,,)

such that
o 6(gk) = m(ar)é(g) for k € K} (N)
o o(gk) = j(k,i)"¢(g) for k € K5
e ¢(ag) = (a/la) " ¢(g) for a € C* C G} (R)

we put
Fy(Z) = j(goor )" 11(g0) " * (o)

where Z = goo(i). Then

Fy(Z) 1wy = 7(a; ) Fo(2) = 7°(d,) Fy(Z)

N

for v € Tf, (N). So Fy(Z) if homomorphic belongs to M, .(I'y (N), 7).

3.5 Relation between Adelic Hecke operators and Classical operators
In this section we define Hecke operators on the space of automorphic forms and

then relate them to the classical Hecke operators defined earlier. This will allow us

to move between the two different set ups easily.
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3.5.1 Adelic Hecke operators
GL5 local theory

Let ¢ be a finite prime of Q and (V, o) an irreducible admissible representation of
GL5(Qy). Let K,y be the maximal open compact subgroup G Ls(Zy) of GLa(Qy). Let

Hg, be the algebra of compactly supported, bi-K, invariant smooth functions from

GLy(Qy) to C. The multiplication in H, is defined by the convolution

(¢1 % d2)(g9) = / ¢1(gh™")ga(h)dh.

GL2(Qy)

Then Hg, is commutative.
The representation o defines an action of Hy, on V¢ (the vectors of V fixed by

Ky) given by v — o(¢)v where

a@nuzz;ﬂm;mma@ﬁwg

Then for a € GL2(Qy) and v € V' it is easily checked that

n

o([KeaK,))v = Z o(a;)v

=1

where [H] denotes the characteristic function of H and KyaK, have a coset decom-

position given by K,aK, = [[;_, a;K,. Let

¢ 0 =1 ¢ _p 10
H, = K, ngl_l Kg|_| K,.
0 1 =\ 0 1 0 ¢

If 0 = o(a, 3) is an unramified principle series representation and v € V5¢ is a new
vector then
[HiJo = 02(a(t) + B(O)v

GLs global theory

Let I' = I'g(IV) and ¢ be a finite rational prime not dividing N and K, = GLy(Zy).

We can define the action of [H,] on the space of functions in A(GL,) fixed by K, by
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the same formula as above. The adelic and classical picture can be now be tied up

together by the following lemma.

Lemma III.8. Let f € S.(I'o(N), x) and let ¢; be the associated automorphic form.
Then

P Higp = x(0) o,
Proof. It K¢ (*,) K, = | i, a; K, then given k¢ € Ky, kea; = ayk,; where i — i is a

permutation. Let g = vg.ok and k = k/k’, k, € K, and &k has the /" entry equal to

1. Then
[H1(9) > d5(vgsckas)
i=1
= ¢1(1gseirk'kes)
i=1
= dr(gcai)x(age)
i=1
Now observe that where v € GLy(Q), goo € GL3 (R), and k € K(N). Now observe
that
¢ —b =1 bt
Goo = ’}/ gook’
0 1 0 1
L 0o
where
) ¢ —b ¢ —=b ¢ —b
’y = Y ) Y Y
0 1 0 1 0 1
and
¢ —b ¢ —b ¢ —b
=11, , o1, -
0 1 0 1 0 1

14
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and likewise we can show that

-1

10 10

(33) o9 =f 2| = flez)er.
0 ¢ 0 ¢
¢
So finally we have
< . [z+b
e oy =30 f (S w0 + 6 (e
b=0

/—1
S ( : b) o) + £(02))
b=0
= X(E)_lngzf‘
L]

In a similar manner one defines the adelic Hecke operators for GSp(4) and relates

them to the classical Hecke operators. For me details we refer the reader to Schmidt-

Asgari, [ASO1].



CHAPTER IV

Eisenstein series

This thesis makes extensive use of Eisenstein Series on various groups. In this
chapter we shall define an Eisenstein series and state some basic facts about them.
We also give some examples which will be useful later.

Generally speaking, Eisenstein series compliment the space of cusp forms in the
space of modular forms. They are automorphic forms which are also functions of
several complex variables, often realized as a series which converges on some subset
of C™. Langlands [Lan76| established that these series have a meromorphic con-
tinuation on C" and satisfy nice functional equations. They have played a crucial
role in the study of automorphic L-functions via the Rankin-Selberg method. The
Rankin-Selberg method realizes some L-functions as inner products of cusp forms
and Eisenstein Series (as exploited in this thesis). In such cases the meromorphic
continuation and functional equation of the L-function can be derived from those
of the Eisenstein series. For a survey of the Rankin-Selberg method one can refer
to Bump, [Bum05|. Some L-functions also arise as the constant terms of Eisenstein
series. For general overview of automorphic forms and Eisenstein series we refer the

reader to [CKMO04].

29
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4.1 Induced representations

Let G be a quasi-split reductive group and let P = M N be the Levi decomposition
of a parabolic subgroup P defined over a field Q. Let A be the connected component
of the center of M. Let X*(M) and X*(A) be the group of Q-rational characters of
M and A respectively. Then X*(M) is of finite index in X*(A) by [CKMO04|. Hence
X*(M)®zR =X*(A) @z R. Set a* = X*(M) ®z R and a5 = a* ®g C. Let a =
Hom(X*(M),R) = Hom(X*(A), R) be the dual space. In fact, there is a canonical
pairing (-,-) : a X a* — R given by (¢, x ® r) := rip(x) where x @ r € a*,r € R and
¢ € a. The above pairing extends to a C- bilinear pairing (-, ") : ac x ag — C.
To ease notation we will denote both by (-,-). We now define a homomorphism
Hy : M(A) — a by

(¥, Hyr(m)) = log |¢(m)|a

for ¢ € X*(M). This homomorphism factors into a product of local factors Hy, =

I1, Hyvw where Hyyy @ M(Q,) — a is defined by

(¥, Hyr(my)) = log [¢(my)]q,

where v is a place of Q.
Let K be a maximal compact subgroup of G(A). Then Iwasawa decomposition

allows us to write
(4.1) G(A) =P(A)K = M(A)N(A)K.

Using 4.1 we can extend Hj; to G(A); we denote this extension by Hp. We call Hp
the Harish-Chandra homomorphism. It is closely related to the modulus character
0p of P. Note that P is not unimodular. The modulus character is the ratio of the

right and the left invariant Haar measures on P.
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Let Py = MyNy be a minimal Q-parabolic of G. As earlier we denote by A, the
connected component of the center of M,. Let R be the set of positive roots of G
relative to Ag. Then the choice of Py determines a subset of positive roots R* of R.
We denote by A C R* the simple roots. Then by standard results there is a one-
to-one correspondence between the set of standard parabolics containing Py and the
set of subsets # € A. Under this correspondence the maximal parabolic subgroups
correspond to # = A — {a} for some o € A and Py corresponds to the empty set.
Let pp be half the sum of elements of R which occur in N.

Let Ad : M — End(n) be the adjoint representation, where n is the Lie Algebra
of N. Then we can show that dp(m) = | det Ad(m)| for m € M. One can also check

that |(2pp)(m)| = dar(m). Hence

exp((tpr, Hp(m)) = exp( (2p, Hp(m))) = |(2pp)(m)] & = dp(m)?.

Let (7, W) be an irreducible automorphic representation of M(A). Then 7 factors
into a restricted product ®'r, of irreducible representations of M (Q,). For each place

v of Q and each v € ag we define
Ip(v,m,) = Ind5 ") m, @ exp((v, Hp,(+))
as the space of functions f : G(Q,) — C such that

f(mng) = m,(m) exp({v + pp, Hp(m))) f(9)

where m € M(Q,),n € N(Q,) and g € G(Q,). We let G(Q,) act on I'(v,m,) by the

right regular action. Now we define

Ip(v,m) = ® Ip(v, )
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a restricted tensor product, i.e. given f € I'(v,m) there exists a finite set S of places

of Q containing infinity such that

fe@ipvm)o@f
veES vgS
where f0(k,) =1 for all k, € K,- the maximal compact of G(Q,).

Definition IV.1. We call the functions f¥ spherical vectors.

Definition IV.2. We call f a K-finite vector if the space of functions on G(A)

spanned by the right regular translates of f by k € K is finite-dimensional.

Let Ip(v,m) be the subspace of K-finite vectors of I,(v, 7). By the Iwasawa

decomposition we have

M(Q)N(ANG(A) = (M(Q)\M(A)) - K.

Using this decomposition we can give a more convenient description of the space

Ip(v, ).

Definition IV.3. A smooth function f : M(Q)N(A)\G(A) — C is called a P-
automorphic form if f is right K-finite and for every k € K, m € M(A), m — f(mk)
is an automorphic form on M(A). We shall denote this space of P-automorphic

forms by Ap.

Proposition IV.4. [CKM04] The representation Ip(v,m) is equivalent to the right

reqular representation of G(A) on the space of functions
{f exp((v + pp, Hp(:))|f € Apx}

where Ap, ={f € Ap | m— f(mk) € W,}

In this thesis our primary interest will be in Eisenstein series associated to maximal

parabolics.
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Definition IV.5. Let f € Ip(v, 7). Define

fu = fexp({v+ pp, Hu(4))).

The function f, is not an automorphic form on the whole group G(A) as it is
not invariant under G(Q) on the left. But is it is invariant under left translation by
P(Q). To get a function which is G(Q) invariant on the left we average the function

over all coset representatives of P(Q)\G(Q).

Definition IV.6. We call

(4.2) E(Pv,m f,9)= > f(19)

1EP(Q\G(Q)

an FEisenstein series associated to the datum (P, v, f, g).

The Eisenstein series converges absolutely for v in a certain cone of aj; o and on
identification of agi with C™ by choosing a basis we can get a holomorphic function
of n complex variables on the corresponding convex subset of C". Langlands [Lan76|

showed that the series (4.2) has a meromorphic continuation to all of C™.

4.2 Examples

Now we give examples of some Eisenstein series that we will encounter in this
thesis. The Eisenstein series that we are interested in are induced from a character

or from a modular form on a lower rank group.

4.2.1 Siegel Eisenstein series on Unitary Groups

Let d¢, be the modulus character of the Siegel parabolic subgroup

A 1, S _
Qn = ’AEGLn,SGMn,tS:S
at A1
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of GG,,. Then
5o = |det Adet D3

Let I be an imaginary quadratic extension of Q, v be a place of Q, x, be a
character of K and let s € C. Let Kf; A be a compact subgroup in G,,. We let
I,(xv) be the space of functions f, : K" — C such that f,(qk) = x.(det D) f, (k)
for all ¢ € @,(Q,) N K:f,u- Given s € C and f, € I(x,) we define f, , : G,(Q,) — C
by

fos(ak) = xo(det Dg)| det A, D5 f, (k) q € Qn(Q,) and k € Kfj,v.

Remark IV.7. Note here we work with s instead of ns 4+ n/2 so that our notation is

consistent with Shimura’s [Shi97].

Let x = ®x, be an idele class character of Ag. We similarly define a space 1,,(x)
of smooth functions on K , and f, associated to f € I,(x). We can then make the

following identification
!/
[n(X) = ®[n<Xv)7

by noting

fe@Q L)@@ f

veS pES

for some finite set S containing the infinite place.
For x = ®x, a unitary idele class character of Ag and f € I,,(x) we define the
Siegel Eisenstein series on G, as

E@Qns,x. f9):= >, f(r9)

1EQR(QN\GR(Q)

This series converges absolutely and uniformly for (s,g) in a compact subset of

{Re(s) > 0} x G,(A) and defines an automorphic form on G, and a holomorphic
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function on {Re(s) > 0}. The Eisenstein series has a meromorphic continuation in

s to all of C with at most finitely many simple poles.

4.2.2 Klingen Eisenstein series

In this section we discuss a particular Eisenstein series on G = GU(2,2) that we
will be interested in. Here we drop the subscript 2 in order to avoid any confusion
with the exceptional group G5. This Eisenstein series is induced from a modular
form on GL(2) and a character. It gets its name - Klingen Eisenstein series - from
the fact that the sections are supported on the Klingen parabolic of G. Let x be a
positive integer and x be a Dirichlet character of conductor N. Let f' € S.(IV, x) be
a cuspidal eigenform on GLy and (o4, V') be the irreducible cuspidal automorphic
representation associated to it on G Ls(A). Using the canonical inclusion of G L4 (Q)
into G1(Q) for m; € G1(A) we can write m; = za with x € GLy(A) and a € Af.
Let P be the Klingen parabolic subgroup of G. Then the Levi subgroup of P can
be identified with Gy x Resx/qGm. Let p = mn € P(A) with m = m(ax,b) €
Mp,b,a € Ag,x € GLy(A) and n € Np.

Let w, = x be the central character of o and 7, 1): A — C* be Hecke characters

such that | AL = Yo Then we extend o to a representation p of M(A) on V' by

(4.3) p(g)v =10)Y(a)o(z)v,v €V

and then trivially extend it to P(A). Let I(p) be the space of K} = K}, finite

functions f : G(A) — V such that
flg)v=p(p)f(k)  where  g=pke P(A)K}
For each f € I(p) and each s € C we define a function f; on G(A) by

fs(9) = f.(pk) = 6p(p)°p(p) f(k), g = Pk € P(A)K}
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where dp is the modulus character of P,. Here one can easily check that the modulus

character is given by dp(p) = |Nmyg/q(b)|*|u(za)| . For each s € C there is a map
I(p) — A"(M(Q)N(A)\P(A))

given by
f= (g f(g)(1))

which we used to identify each f; with a function on G(A).
We define Klingen Fisenstein series on G to be

(4.4) E(Ps,f,9)= > f(9)

1EP(QN\G(Q)

This is known to converge absolutely and uniformly for (s, ¢) in compact subsets of
{s € C|Re(s) > 0} x G(A) and defines an automorphic form on G.

Let 7, ¢, x, 0 and V be as above such that 7 = ®7,, ¥ = ®@¥,, X = RXo,
o = ®c, and V = ®V,, where v runs over all the places of Q. To (7,0,%) we can
associate a representation of (P(R) N K") x (P(A;)) where K is the maximal
compact subgroup of GU(2,2). For m € P(R)NK") x P(A;) and w = Quw, € ®V,

we assume p decomposes as

p(m)w = ®,(py(my)w,)

and
fs = ®fv,s
where p, and f, ¢ are defined as follows: For p = mn,n € N(R),m = m(a,bzx) €

M(R) with a,b € C*,z € GLy(R), put

(4.5) Poo (D) Woo = Too (@) 1o0(0) 0o (T)Woo, Weo € Vo
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Let I(pso) be the space of K - finite functions f,, € C®(K"  V,.) such that fo (kiks) =

Poo (k1) foo (ko) for ky € P(R)N K. For s € C and f,, € (V) let
foo.s(p) = 0p(M)°poc(m) fos (k), p = mk € P(R)Kgo

and g € G(R) act on fo s by the right regular action.
For p = mn,n € N(Q),m = m(a,bz) € M(Q) with a,b € K,z € GLy(Qy),

put

(4.6) pe(p)we = Te(a)e(b)oe(z)we, we € Ve

Let I(p¢) be the space of functions f, such that f,(gu) = fi(g) for some open subgroup
U C Ky and fo(kiks) = po(ky) fo(k2) for ki € P(R) N K. For s € C and f, € I(py)

let

fes(p) = dp(m)*pe(m) fo(k),p = mk € P(Qu) Ky

and g € G(Qy) act on f; s by the right regular action.

If o4, 70,7, are unramified then
dimcf(pg)K? =1.

In this case fi 4 is the unique K['-spherical vector.



CHAPTER V

Whittaker and Bessel models

In this chapter we discuss the notion of Whittaker and Bessel models. We first
discuss the theory of Whittaker models for GL,, though our primary interest is in
the Whittaker models on GLy which we later extend to get a degenerate Whittaker
model on GU(2,2). Then we discuss the notion of Whittaker model for GSp(4),
partly to indicate a well known fact that a holomorphic Siegel modular form is not
generic. This leads to the study of Bessel models a kind of generalized Whittaker
model more suitable for our context. Everything discussed in this chapter is available
in the literature, for example Bump [Bum97] , Garrett |Gar84| and Novodvorsky and

Piatetski-Shapiro [NPS73].

5.1 Whittaker Models

Let (0,V,) be a smooth cuspidal representation of GL,(A), so V, C Ay. Let

¢ € V, be a cusp form on GL,, and let ¢ : Q\A — C be a character. Let

1 z9 *

N:Nn:{n: - }
xnfl,n
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be the maximal unipotent subgroup of GL,,. Then v defines a character of N(Q)\N(A)

1 z9 *

> = ’QZ}(JZLQ + -+ mn—l,n)-

xnfl,n

0 1
The Whittaker function associated to ¢ and 1 is given by

W,(g) = /N o, P9V )

It is easy to check that Wy is a smooth function on GL, (A) such that Wy(ng) =
(n)Wy(g) for all n € N(A). The Fourier expansion of ¢ then can be given as
v 0
o) = > wy ).
’YeNn—l(Q)\GLn—l(Q) O 1

In particular, for G L,

wo-w([ ).

yeQX 0 1
Let

W(o, ) = {Wsl¢ € Vo}.

The group GL,(A) acts on W(o, 1) by right translations and the map
¢ — Wy  intertwines  V, ~ W(o,1)).

As we have seen, in the case of GL,, we can recover ¢ from W, through its Fourier
expansion. So we know that W, # 0 for all ¢ # 0. The space W(o, 1)) is called
the - Whittaker model of 0. More generally a 1»—Whittaker model of (o,V,) is a

GL,(A) embedding

V, < { smooth functions W : GL,,(A) — C | W(ng) = »(n)W(g) for all n € N(A)}
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The representation (o, V,) has a Whittaker model if and only if there exists a

non-zero Whittaker functional A : V, — C such that
A(o(n)v) = 1(n)A(v) for alln € N(A),v € V, }.

A model v — W, gives a functional A(v) = W, (1) and a functional A gives a model
vi= (9= A(o(g)v)).

The notion of Whittaker models and Whittaker functionals also make sense for
GL5(Q,). We have the following fundamental result of Gelfand, Kazhdan and Sha-

lika, [GK75], [Sha74].

Theorem V.1. (Local Uniqueness) For any place v, given (o,,V,,) an irreducible
admissible smooth representation of GL,(Q,), the space of Whittaker functionals is

at most one dimensional, that is, o, has at most one Whittaker model.

Definition V.2. A representation (o, V;,) of a reductive group, having a Whittaker

model (with respect to the maximal unipotent subgroup) is called generic.
The local uniqueness has a global consequence and can be stated as

Theorem V.3. (Global uniqueness)If o = @', is an irreducible admissible smooth
representation of GL,(A) then the space of Whittaker functionals is at most one

dimensional, that is, o has at most one Whittaker model.
As an easy corollary of the above theorems we get

Corollary V.4. If (0,V,) is a cuspidal representation such that 0 = ®'c, then o

and o,’s are generic.

In many application of the Rankin-Selberg method to construct L-functions, the
existence of Whittaker models plays a crucial role in establishing the Euler product

criterion. This is essentially due to the following corollary:
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Corollary V.5. (Factorization of Whittaker functions) If (o,V,) is a cuspidal rep-

resentation with 0 = ®'o, and ¢ € V,, such that V, ~ ®'V,  where ¢ — K&, then

Wolg) = [ We. (90)

Another useful interpretation of the Whittaker models in the context of classi-
cal modular forms comes from realizing them as Fourier coefficients. In fact, let
f =13 a,e®) be a classical eigenform of weight x and let ¢ be the associated au-
tomorphic form. Then by multiplicity one both ¢ and its Whittaker function W, are
decomposable. Now if we decompose Wy as W, = W W, then using the transition

between the classical and the adelic setting one can show that
Wf = Qp.

For more details we refer the reader to [Gel75] and [CKMO04].

5.2 Whittaker models for GSp(4)

Let F' be a holomorphic Siegel eigen cusp form on GSp(4) such that ¢ generates
an irreducible cuspidal automorphic representation 7 of GSp(4, A).

In this section we show that mp is not generic. For this it is enough to show
that for any choice of additive character ¢, Wy(g) = 0 for all g € GSp(4,R)". Let
1 Q\A — C, 1 : Q\A — C be continuous characters. Then the value on g of
the Whittaker function of ¢ := ¢ with respect to 1, and 15 is a non-zero multiple

of

sy Wl = [ (M

= 0 c

)92:) 1 (z)pa(a)dr da db de
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So we have

Walo) = [ ([ P (B2l b de) (o) ()i

But F' has a Fourier expansion given by

F(Z) =Y _a(T)e(tr(TZ)) where e(Z) = exp(2miZ)

>0

for T' is in some lattice. Hence (5.1) equals

/(R/MZ) Z

T>0

(T Z)al) ([ (T (5 valoddn db de) (g i)
Let
Iy = e(tr (T(¢? s(a)da db dc

Loy T (52D (0

For T = (gg)

Ir= d 23b)db d
. /(R/MZ) e(aa)sy(a)da /(R/Mz)d 4b) /(R/Mz)ew) c

Hence I7 is non zero only if # = 0, = 0. But then T is not positive definite and

hence F' cannot be a holomorphic eigen cusp form. So we have shown that
Proposition V.6. A holomorphic Siegel eigen cusp form is not generic.

5.3 Bessel models

In this section we closely follow the exposition given by Novodvorsky and Piatetski-
Shapiro, [NPS73] and Furusawa, [Fur93]. As noted in the previous section, automor-

phic representations of GSp(4, Q) do not always have a Whittaker model. So in this
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section we shall consider a generalized Whittaker model - the Bessel Model - defined
with respect to a subgroup R introduced in the section below.
Let S € M,(Q) such that S = S*. We define the discrimnant d = d(S) by

d(S) = —4det S and assume that S is anisotropic over Q. Under this assumption

a b/2

d is not a square in Q. Let § = <b/2 .

) . Then we define an element ¢ = &g in
My(Q) by & = (b_/j _§/2> . Since 4¢? = d,Q(¢) = {z + y&|x,y € Q} is a quadratic

extension of Q in M,(Q). We identify Q(¢) with Q(v/d) via
F(§) sa+ys —a+3VdeQ(Vd),z,yeQ
Now define a subgroup T of GLs by

T ={g € GLy(Q)|'gSg = (det g)S}.

Then

7(Q) ~ Q(Vd)*.

and we identify 7(Q) with Q(v/d) using the above identifications. We consider T as

a subgroup of H := H, via

g 0
g— € Hforgel.
0 detg-tg!

Let us denote by U the subgroup of H defined by

I, X
U= {u(X) - |Xt:X}.
0 I
Then U is an abelian group and is equal to the unipotent radical of the Siegel
parabolic in H. Finally we define a subgroup R of H by R = TU. Let 9 be a
non-trivial character of Q\A. The we define a character Jg on U(A) by dg(u(X)) =

Y(tr(SX)) for X = 'X € My(A). We will sometimes write ¥g as 9. Let A be a
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character of T'(Q)\T'(A). We will denote by A ® ¥ the character on R(A) defined
by (A ® 9)(tu) = A(t)dg(u) for t € T(A) and u € U(A). Here one should note that
T as defined above is the connected component of the stabilizer of ¥g in the levi of
the Siegel parabolic.

Let m be an irreducible automorphic representation of H(A) = GSps(A) and V,

be its underlying space of automorphic functions. We assume that
A|A>< = Wr.
Then for ¢ € V;, we define a function B, on H(A) by

By(h) = (A®Us)(r)~" - p(rh)dh

/ZH(A)R(Q)\(A)
We say that 7 has a global Bessel model of type (S, A,?) if for some ¢ € V., the

function B, is non-zero.

Just as in the case of Whittaker models it is desirable to have a theory of local
Bessel models. For this we fix a local field Q, and local characters A,, 4, and ¥g,
analogous to the characters A, and ¥gabove. Let (m,, V;, ) be an irreducible admis-
sible representation of the H(Q,), when v is finite, or (g, £) when v is archimedean.
Then we say that the representation 7 has a local Bessel model of type (S,, Ay, J,)

if there is a non-zero map in

Hom(,, ]”dg(((g:))(Av ®Y,)).

Here the Hom-space is the collection of H(Q,)-intertwining maps when v is finite,
and the collection of all (g, £)-maps when v is archimedean. In fact we can define

the Bessel functionals just like the Whittaker functionals as [, : V;, — C such that
Ly(mo(r)&y) = (Ay @ 9,)(1)1(&) for all r e R(Q,) and & € Vi,

Then we have a local uniqueness result
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Theorem V.7. [NPS73] Let (,Vy) be an irreducible smooth admissible representa-
tion of H(Q,) and let A, ® ¥, be a character of R(Q,) as above. Then the space of
Bessel functionals is at most one dimensional, that is , there is at most one Bessel

model.
The local uniqueness has a global consequence

Theorem V.8. (Global uniqueness)If m = ®'m, is an irreducible admissible smooth
representation of H(Q,) then the space of Bessel functionals is at most one dimen-

stonal, that is, m has at most one Bessel model.
Just as in the case of Whittaker models we have

Corollary V.9. (Factorization of Bessel functions) If (m,Vy) is a cuspidal represen-

tation with m = ®'m, and ¢ € V, such that V, ~ &'V, where p — K&, then

Wo(9) = [T We. (90)

Suppose F' € S, .(I'g, (N),x) and the Fourier coefficient a(F,S) # 0 for some

a b/2
S = such that —D = b? — 4ac is the discriminant of the imaginary

b/2 ¢
quadratic extension Q(v/—D).

Now let us define a two-by-two symmetric matrix S(—D) by

(

D/4 0
: if D=0 (mod 4)

0 -1

(5.2) S(—D) =

(1+D)/4 1/2
, if D=3 (mod 4)

1/2 1
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Let T(Q) = Ts(-p) = {9 € GL2(Q)|'gS(=D)g = (det g) - S(=D)} ~ Q(v—=D)".
Let £ be any unramified ideal class character of K = Q(v/—D) and let

A: (XONIII;C/Q) Og

which we view as a character of A* using the identification T'(A) >~ Ag. Let ¥ =

ea(-) be the standard additive character. We consider the Bessel model of type

(S(=D), A, 9) associated to @

Bg(h) = (A®Is)(r)~" - @(rh)dh

/ZH(A)R(Q)\R(A)
where @(h) = ¢(h) and ¢ = g is the automorphic form associated to F. Then we
have the following important proposition that relates this global Bessel model to the

Fourier coefficients of F'.

Proposition V.10. Let hy, € H, then

h(—D)
By(hoo) = Hz(hoo)"j (hoo, 1) ~Fe(—tr(S(=D)hoo(i))) Z A(t;) " a(S;, F)
where h(—D) is the class number of Q(v/—D), t; (j =1, ,h(=D)) are the repre-
sentatives of T(Q)\T'(A)/T(R) [[,.o.(T(Qp) N GLa(Zy)) =~ class group of Q(v/-D)

such that t; € [T . T(Qp) , S; = det~; " - 17, S(=D)v; where

p<oo

tj = ymk;, 75 € GLa(Q),my € GLy(R)T ky € ] GLa(Z,).

p<oo

Proof. See Sugano,[Sug85| O

Here we note that S; (j =1,---, h(v/—D)) are the representatives of the SLs(Z)
equivalence classes of primitive semi-integral two-by-two matrices of discriminant

—D/4.

Remark V.11. By our assumption on F' there exists a £ such that Bpge(14) # 0.



CHAPTER VI

L-functions

In this chapter we discuss the various L-functions that we will encounter in this

work. For L-functions associated to elliptic cusp forms one can see Miyake, [Miy89.

6.1 Standard L-function on GL(2)

Let f € Sx(I'o(N), x) be an elliptic cusp form with a Fourier expansion of the

form
00
f(Z) _ Z ane27rinz'
=1

To f we can associate an L-function given by

L(s, f) = iann_s.
i=1

Then L(s, f) converges absolutely and uniformly on any compact subset of Re(s) >

1+ x/2. For N > 0 we put

At = () T,

Then An(s, f) can be analytically continued to the whole s-plane, satisfying the

functional equation

An(s, f) = i"An(k =5, f |« (y 7))-

47
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If fe S.(I'o(NV),x) is an eigenform then L(s, f) has an Euler product expansion

given by

Lis, f) = [ ] = ap™ + x()p" 7)< [ [ = ap™) !

p|N p|N

Now suppose (o,V,) is an irreducible cuspidal automorphic representation of
GL(2) and 0 = ®0,. Let

L(s,0) = [ [ L(s, 00).

vtoo

For an unramified place v and o, = 0,(aq, az) define
L(s,0,) = L(s,a1)L(s, az).
Then for f an eigenform and o = oy,
L¥(s, f) = L*(s — (k — 1)/2,5)

where o is the contragredient representation associated to oy and X is the set

ramified places of o¢. If f is a new form then

L(s, f) = L(s = (v = 1)/2,77)

6.2 Spin L-function on GSp(4)

Let (m,Vy) be an irreducible cuspidal automorphic representation of GSp(4) and
suppose m = ®m,. Let S be the set of places where 7 is ramified and the infinite
place. Let B be the Borel of GSp(4) and p1, p2 and A be characters of Q. Consider

the character of B(Qy) given by

a % * *
b % *
= iy (a) pa(b)A(E).
ta=t %
th!
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One can check that the modulas character is given by dp(h) = |aj—§’2\ Then for each
unramified place ¢, 7, is realized as the right regular representation on the space of

locally constant complex valued functions ¢ on GSp(4, Q) satisfying

6(hg) = S5(h)" (@) s (BYN(E)b(g) for all b <aztfl )

For such ¢ we write 7w, = m,(p1, 12, A). Now we define

L (spin, s, ) = L%(s,7) = H L(s,m)
(¢S
where for ¢ ¢ S and

L(s,mg) = L(s, \)L(s, iy A\)L(8, poN) L(8, pi1 praX).

Then by Piatetski-Shapiro [PS97|, L°(spin, s, 7) converges in some real half plane
Re(s) > s, satisfies a functional equation and has a meromorphic continuation to
the whole s-plane.

Suppose F' is a Siegel eigenform and ¢ is the associated automorphic form on
GSp(4). Further assume that the automorphic representation wp generated by ¢p is

irreducible. Then we define the spin L-function associated to F' as
L®(spin, s, F) = L%(s, F) = L°(spin, s — k + 3/2, 7p)

6.3 L-function for GSp(4) x GL(2)

Using the notation in the previous section. Let S’ also denote the union of all the
ramified places of o and 7 and infinity. Then we define the degree eight L-function
L5(s,m x o) as the convolution of L% (s,7) and L% (s,0). For F and f as above
we can define a degree eight L-function L%(s, F' x f) as the convolution of L(s, F')
and L°(s, f). Then it follows from the discussion above that L°(s, F x f) has the
property:

L5(s,F x f) = L5(s — 3K/2 + 2,7 X G¢)



CHAPTER VII

Global Integral

7.1 The Global Integral

In this section we discuss the integral representation of the degree eight L-function
associated to a holomorphic Siegel cusp eigenform on GSp(4) and a cusp eigenform

on GL,.

Let (m, V) be an irreducible cuspidal automorphic representation of G\Sp(4, A).

Suppose (7, V) has a Bessel model (as in section 5.3) of type (S, A, ?) denoted by
o B, = / (A ® 0s) " (r)p(rh)dh
Zu(A)R(Q)\R(A)
Let
e (0,V,) be an irreducible automorphic cuspidal representation of GLs(A)
e L =Q(4/d(S)) be an imaginary quadratic extension of Q

e 7,1 be characters of Ag/IC* such that ¢ [ax= w, and A = 7.
Let I(p) be the space of functions associated to ¢, 7, in the discussion of Klingen
Eisenstein series. For f € I(p) let E(P,s, f,g) be the Klingen Eisenstein series

associated to it as in (4.4).

Now consider the global integral

25) = 2. f.0) = | o, U5 S R0
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Remark VII.1. In our normalization we write s for 3s + 3/2 in Furusawa [Fur93].

Proposition VIL.2. [Fur93/(Basic Identity)

Z(s) = / W (f: 0h, ) B.(h)dh
R(A)\H(A)

W(f;g,s) = /Q\Af(CITI)Q,S) Vg(ax)dz,

Vg is the additive character associated the Bessel model B(S, A,9) where

where

S = <b?2 bf) and 0 is the nontrivial representative of the coset Q(Q)\G(Q)/H(Q)

j e
given by( by )whe'r’ea:%.

—al
By the uniqueness of the Bessel model B, and its local analogs we know that
there are local Bessel models ¢, — B, (h,) of m, of the type (S, A,,,), one for each

finite place v of Q such that

e for all but finitely many places v at which 7, is unramified B@zph(lél) =1,
PP € V. being the distinguished unramified vector implied in the identification
Vi >~ @y Vi

o if p = ®,y, is a pure tensor then

h) =] Bo(h)

The function W (f;g,s) is essentially a degenerate Whittaker model and has a
similar product decomposition.
Recalling that y — fs(m(y,1)g) is a cuspform in V;, we see that if A: V, — C is

the Whittaker functional for the character ¥g(a(-)) such that

/ng ) Vs (az)



52
then
W(fig,s) = Afs(g))

The uniqueness of the Whittaker functionals implies that there are local Whittaker

functionals \, : V,,, — C for 9J,(a(+)), one for each place v of Q such that

e for all but finitely many places v at which o, is unramified \,(¢*P") = 1, ¢FP €
V,, being the distinguished unramified vector implied in the identification V, ~

Qo Vi s

o if f =®,f, then

W(f,g,8) = [[W(for 90 9)
where W (fy; gv,8) = Ao(fo,s(g0))-

Theorem VIL3. If f = ®,f, and ¢ = Q,p,, Re(s) >> 0 then

Z(s) = ][ Zu(s)

where

Zy(s) = / W (fy;6hy, s)By,(hy)dh,
R(Qu)\H(Qv)

7.1.1 Unramified calculations

Let 2 be a finite set of places of Q such that €2 contains the infinite place and for

a finite ¢, ¢ ¢ Q implies
1. the local components of 7,0, 7,1 at ¢ are all unramified;

2. the conductor of ¥, is Zy;

a b/2
3. 5= € My(Zy) and a € Z/;

b/2 ¢

4. d =d(S) = b* — 4ac is the generator of the discriminant of I/ Q.
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Under the above assumptions the local integral Z,(s) for ¢ ¢ § can be computed
by explicitly understanding the contribution of the Whittaker model and the Bessel
model using a theorem of Sugano [Sug85]. After a lengthy computation Furusawa

proves that

Theorem VIL4. [Fur93] For { ¢ Q, i, = ™" and f, = £

L(S — l,ﬁ'g X 5’4)
L(QS —Q,Tg ’ Q;)L(S —3/2,0’g X O'g(Ag) X Ty | QZ)

Zi(s) = Wy, (1)

where 7y (resp. &) denotes the contragredient of m, (resp. oy).
7.1.2 Archimedian place calculations

Let F' be a holomorphic Siegel eigenform of weight « such that ¢ generates an
irreducible cuspidal automorphic representation 7. Suppose that ¢ = pp € 7p.

Then we can decompose ¢ as

P = Poo ® P ® (Queuroct™) € OFFy

for some finite set of finite places €2. Suppose f’ is a holomorphic modular eigenform
of weight x such that ¢y generates an irreducible cuspidal representation o and
0 = Q0,.

Let
e K =Q(1/d(95)) be an imaginary quadratic extension of Q;
e 7, ¢ be characters of Ag such that 7o.(2) = Vo (2) = () 7"

Let I(p) be the space associated to o, 7,1 as in the discussion of Klingen Eisenstein

series. Suppose fo € I(p) such that

foos(Dk) = 8p(5)°* plp) j (K, 1)~
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where p € P(R), k € K!v* - the maximal compact of U(2,2).

Now consider the local integral at infinity

Zoo<5) - Z(Safomgpoo) - / W(fooaeha S)Bsooo(h)dh
R(R)\H(R)

and we further assume that:

For F' the Siegel cusp form of degree two and weight

L. a(S,F)#0

2. the weight & is divisible by w(—D), the number of roots of unity in Q(v/—D)
then

Theorem VIL.5. [Fur9s/

['(s +3k/2 —3)

Zoo<5) — 7T<47T>—s—3/£/2+3(DI/Q)—28+3—H P —

Weo(foo3 1, 8)ar(1)

where Bg,p(1) = Z?SD) A(t;) ta(S;, F) as in (V.10).



CHAPTER VIII

Special Eisenstein series and Pull back formula

In this chapter we choose a special Siegel Eisenstein series on GU(n,n). The sup-
port for the sections defining this Eisenstein series are chosen so that the Eisenstein
series is suitable for the pullback formula and has Fourier coefficients that can be
easily interpolated. In the first section we recall the doubling method of Piatetski-
Shapiro and Rallis. In their work [GPSR&7|, they use this method to construct
L-functions on classical groups. We are interested in a generalization of the dou-
bling method to construct Eisenstein series. This generalization gives an Eisenstein
series on a lower rank group as restriction (‘pullback’) of an Eisenstein series on a
higher rank group. We refer the reader to Garrett [Gar84] and Shimura [Shi97] for
additional discussions.

To precisely state the pullback formula, we first fix some embeddings and isomor-
phisms. Then we make a ‘good’ choice of sections for the Seigel Eisenstein series
for our pullback formula. For purposes of interpolation, we explicitly compute the
Fourier coefficients of the Seigel Eisenstein series associated to these sections. Here
we consider an Eisenstein series of level N, though we will later restrict ourselves to
p-power level. Having done that we state the pullback formula in the adelic language

and check that the Klingen Eisenstein series obtained by the pullback with the above

99
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choices, is up to some normalization, of the type one defined in an earlier chapter.
Finally, we interpret the pullback formula in the classical set up, as an inner product.
The classical interpretation is done in such a way that the Klingen Eisenstein series

can be easily seen to be interpolated via an application of a theorem of Hida.

8.1 Doubling method

As we have already seen in an earlier chapter, the cuspidal automorphic represen-
tations for GL,, are generic, i.e. they have global Whittaker models (cf. 5.1). These
Whittaker models have played a crucial role in the Euler product decomposition of
the integral representation of L-functions for GL,. But for some reductive groups
the cuspidal representations need not be generic. Yet most integral representations
of their L-functions rely on Whittaker models. In the 1980’s Piatetski-Shapiro and
Rallis discovered a family of Rankin-Selberg integrals for classical groups that did
not rely on Whittaker models using the doubling method, which we discuss below. We
follow the exposition of Cogdell, [Cog| and Rallis and Piatetski-Shapiro, [GPSR&7|.

Let V' be a vector space of dimension n over K (a quadratic extension of Q),
equipped with a non-degenerate Hermitian pairing (-,-). Let G = U(V) C GL,(K)
be the associated unitary group. Let W =V & (—=V) be the doubled space with the

Hermitian pairing on W defined by

(((v1,v2), (u1,u2))) = (v1,u1) — (v2, uz) .

Let G' = U(W) C G Ly, (K) be the associated unitary group. Then G’ is a quasi-split
group with G’ ~ U(n,n) and we have a natural embedding G x G — G’, so we can

identify G x GG as a subgroup in GG'. Now define subspaces X and X' of W by

X ={(v,v) |veV}
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X' ={(v,—v) |veV}
Then X and X' are totally ((-, -)) - isotropic spaces and W = X®X'. Let Qx C G’ be
the parabolic subgroup preserving X (we call it the Siegel parabolic). Then @ = Qx
has a levi decomposition @ = M N with M ~ GL,(K) and M N (G x G) ={(4g,9) |
g € G} C G x G. Let 7 be an idele class character of K and E(Qx, s, 7, f,¢') be an
Eisenstein series given by

EQx.s,m 1) = Y.  fv9)

Ax(Q\G'(Q)

where f, is a section obtained from the induced representation

L,(7) = Indg, (&3, (7(det)| det |*~1/2).

If the section fs is K¢-finite; then E(Qx, s, T, f,¢’) converges for Re(s) >> 0, is
automorphic in ¢’, has a meromorphic continuation in s and satisfies a functional
equation.

We can now consider the global integral. Let (m,V}) be a cuspidal representation
of G(A) and ¢ € V. Let (7, Vz) be the contragredient representation of (m, ;) with
$ € Vi Let E (@x,s,7, f,g') be an Eisenstein series as above, which we restrict

(‘pullback’) to G(A) x G(A) C G'(A). We consider the global integral

[<¢7 (57877-7 f) = / Qﬁ(gl)é(.éh)E(QXﬂS?T; f7 <g17g2))7—71(det92>dgldg2~
(GXG)(QN(GXG)(A)

This integral extends to a meromorphic function of s and satisfies a functional equa-
tion thanks to the analytic properties of E(Qx, s, T, f,q').

To see that it has an Euler product decomposition, one inserts the definition of
the Eisenstein series into the integral and unfolds it. Then an analysis of the orbits

of G x G on Qx\G' needs to be carried out. One can check that all but one orbit is



58

negligible (the stabilizer in G x G contains a unipotent radical of a proper parabolic
subgroup of one of the factors of G as a normal subgroup, hence the contribution of
the integral over that orbit is zero since ¢ and ¢ are cusp forms). The non-negligible

orbit is stabilized by G¢ = {(g,9) | g € G} and for Re(s) >> 0 we get

106.,5,7.f) = / (7(01)6.7(62)) £((1,92))7(det g2)dgndgs
\(GXG)(A)
/ (9. 1) {(0)0, 3 dg
G(A)
where

(6,6) = / (9)(g)dy.
G(Q\G(A)
Now if we assume that all the functions above are pure tensors then this integral has

an Euler decomposition

1(¢,6,5,7, f) = | [ 1o(d0s b0, 5,70, f)

where

LGudus it = [ 01 (mlo)ondi)dg  Re(s) >0
G(Qv)

for ¢ = Qudy, ¢ = @by, T = DTy, fs = Dy fen; for K,- fixed vectors ¢? and ¢,
we assume < 0 ggg> = 1. The identification with L-functions comes from analyzing
these local integrals, which are shown to be up to normalization, the Euler factors

of the standard L-function for 7 ® 7.
8.2 Isomorphisms and embeddings
In this section we choose some isomorphisms and embeddings that we need for

the pullback formula. The set up can be viewed as a generalization of the doubling

method though with the intention of just constructing an Eisenstein series. The



99

maps discussed below are very similar to those of the doubling formula discussed
above. Here we are using the formulation from a preprint of Skinner-Urban, [SUJ.

Let V,, = K*" then w, defines a skew Hermitian pairing (-,-), on V,, : (z,y) =
rwyy* where y* = 'y. Then G, /Q is the unitary similitude group GU(V;,) for the
Hermitian space (V,, (-,-),,)-

We denote v € V,, as v = (v, v9) where v; € K™ and write an element v € V,, 4 as
v = (v1,2,v9,y) where (v1,v2) € V,, and z,y € K. Now let W,, = V.1 & V,,. Then
we have a Hermitian pairing on W,, defined by w1 ® w,. Let GU(W,,) denote the
associated unitary similitude group. Now consider the maximal isotropic subspace
X, = {(v1,0,v9,9) ® (v1,v9)} and let Qx, C GU(W,,) be its stabilizer.

The map

(vlaxav%y) @ (u17u2) = (Ulamau%v%yaul)

gives an isomorphism between W,, and V5, 1. This map is given by the matrix

100000
000100

R = 000010
000001
001000

and the map g — R 'gR determines a Q-isomorphism a,, : GU(W,,) =~ Ga,41. We

define another map
(v1, T, ug, Vo, Yy, uy) — (V] — Uy, T, Uy — Vo, U2, Y, Uq).
This map can be represented by the matrix

S = e G,

| cooor
o

coocoro

|

oo lmoo
corocoo
o~ ococoo
—~ooooo

and the map g — S~1¢S determines an isomorphism 3, : Gante1 ~ Gopyi. Together

a, and (3, determine an isomorphism

Tn = ﬁnan : GU(Wn) = G2n+1-
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Then we can observe that 7, (X,) = {(0,0,0,*,*,%)}. Since Q2,11 is the stabilizer

of the space {(0,0,0, *,*, x)}, we immediately get that v,(Qx,) = Qan+1, the Siegel

Parabolic subgroup.

Let Gunt1 ={(9,9) € Guy1 X Gy @ fin1(9) = 1n(g)} be a subgroup of GU(W,,).

Then we have

7;1(Q2n+1) = {(m(g,x)n,g) 1gc Gmx € ReSIC/QGman € NQn+l}

a1

as
For future use we note that if g =

C1

C3

3]
as
(9, 91) =
c1 — 7

C3

a; — «
and

3]
as
an(9, 1) =
1

C3

a2

aq

C2

Cy

a2

Qay

0

Co

Cq

a2

as

(2]

C2

C4

by by
bs by
dy do
ds dy
—b;
—by
)
0 —dy
—dy
G —b
b
bs
)
dy
ds
s

and g, =
by by
bs by
0 0
dy do
ds dy
by bo
by
bs

Y
da
dy

o

We also note that a;, : G,11(R) X G,(R) — G2,.1(R) induces a map

Hn+1 X Hn — H2n+1
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given by

(z,w) =

S

8.3 A particular choice of section

Let k, N be positive integers and let p be an odd prime. Let 7 be a Hecke character

of Ag such that

(8.1) Too(Zo0) = (f"i) B

|$OO|

and

(8.2)mp(xg) =1 if 01 o0, ze € OF, and  z,— 1€ NOk,.
Archimedian sections
Let froo € I(Too) be given by fi (k) = 7 (k,1)7". So we have
froos(qk) = Tos(det Dy)| det AgD,** 5, (K, 1) 7" q € Qn(R), ke K}
{-adic sections
1. ¢|N
Let f, € I,,(17) be a function given by

;

m(det(D,Ag)) if g = qu,k € Qn(Zg)wanme(N)
folg) =

0 otherwise.

\

Hence f; is supported on Q,,(Z¢)w,Ng, (Z).
2. 0{N

Let fo € I,,(1¢) be given by

filg) =1 ifge K} ,1).
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Notation VIII.1. We let

(83) f:‘i = fli,OO & (®€f€)
and observe that f, is spherical for all £{ N.

8.4 Fourier coefficients of Siegel Eisenstein series

8.4.1 Haar Measure

To assign a measure on A, for each place of Q we fix an additive Haar measure
on Q, such that for each finite place v = ¢, Z, has measure one and at the infinite
place v = oo we use the usual Lebesgue measure. We define a Haar measure on
A by defining an additive Haar measure on K, such that Ok, has volume |D; ,IC/Q
where Dy is the local different and such that on K., the measure is 2dxdy where
z =z +1y € C. With this measure the volume of Ay /K with respect to the induced
measure is one. Finally, we define the multiplicative measure on Ag and Ag as the
ratio of the additive measures with |-|q and |- |, respectively. Since we shall refer to

Shimura [Shi97] in this section, we note here that the Haar measure used by Shimura

is slightly different for Aj.

8.4.2 TFourier coefficients

The Siegel Eisenstein series

E(s,9) = E(Qu.s,7. f,9) = Y, [iag)

a€Qn(Q)\Gr(Q)

has a Fourier expansion given by

E(Svg): Z Eh<8>g)

heSn(Q)

where

En(s,9) = / E(s,n(0)g)e(tr(—ho))do,
Sn(Q)\Sn(A)
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Sn = {0 € M,(K)|o* = o} and n(o) refers to the unipotent element with o as the

upper right hand entry.

Lemma VIIL.2. Let f = ®,f, € L,(7) be such that for some prime ¢ the local

function f(g) is supported on Q,(Q)w,@Q,(Qy). Then forh € S,(Q) andq € Q,(A)

En(s.q) =[] / Fos(Wan(0)gy)en(—tr(ha))do
)

Y 5,(Qu

if Re(s) > 0.

Proof. If o € G,(Q) and fi((aq)e) # 0, then apqr € Qn(Qr)w,Q(Qr). Hence
ay € Qn(Qp)w,Q(Qg). This implies that det(C,), # 0 which in turn implies that
det(C,) # 0. We also have that o € Q,w,Q, if and only if det(C,) # 0. But
Qnwn,Qy = Quuw,Mg, Ng, = Qu,w,Ng,. Hence only the subset w,n(S,(Q)) of
the coset representatives of @, (Q)\G,(Q) contributes towards the Eisenstein series.
Since f and e (+) decompose into local components Fj, (s, ¢) decomposes into its local

components as desired. O

Proposition VIIL3. Let D,,(N) = Gn(R) [[ 4, K§, o(N) C Go(A) be an open sub-
group of G, (A). Then we can find a set of representatives for G,(Q)\Gr(A)/D,(N)

consisting of elements b = diag(u,w) with uw € GL,(Ax)s such that u, =1 for £ | N.

Proof. See Shimura, [Shi97|, lemma 9.8. O

Local Archimedean Fourier coefficients

For s € C and z € H,, we choose the branches of det(z)* and det(z) so that
the values at z = il, are ¢™ and i~ ™, respectively, where i“ is defined by ¢ =
exp(mia/2). Now define a function

(8.4) E(y, h;s,s') = / det(z + iy)~* det(x — iy) " e(tr(—hx))dx
Sa(R)
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for 5,5 € C,0 <y e S,(R),h € S,(R).

Lemma VIIL.4. Given h € S,(R) and u € GL,(C) consider the local Fourier

coefficient

Coo(hy 1, 8) = / froos | wan(o) e(—tr(ho))do.

n

Z

z
>

Then

Coo (P, u, 8) = (—1) "7 (det(u))| det(u)|*¢ (uu*, h, s + K /2,5 — K/2).

~

U 0 U
Proof. Let g = w,n(o) = . Suppose g = gk for q €

U —u  —Uo
Qn(R) and k € KI' . Observe that j,(qk,i) = jn(q, ki)jn(k,1) = ju(q,1)jn(k, i) and

|7n(k,1)| = 1. So |jn(qk,1)| = |jn(q,1)| = | det D,|. Since

Too(Dy) = (det(Dy) | det(Dg)[)™ = (g, 1)| " jn(g,1)"

and

| det A, det Dq_1|8 = |jn(g, i)|_28

we get fro0,5(9) = Jn(9,1)"*1jn(g,1)***. Now we note that j.(g,i) = det(—ui—1io).

So we get
(8:5)  froos(g) = det(—u)~"| det(—u)|" T det(iuu* + o) "| det(iuu* + o)|" .
Hence

calhtn,s) = e / det(iuu® + o) det(iuu® + o) 2e(—tr(ho))do
Sn(R)

where ¢, = det(—u)~"| det(—u)|**?. Using 8.4 we get

Coo (P, u, 8) = (—1) "7 (det(u))| det(u)|*¢ (uu*, h, s + K/2,s — K/2).
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Local non-archimedean Fourier coefficients
We break up the study at the finite places into two cases
1. (| N

Lemma VIIL.5. Let
co(h,u, s) = /fgﬁ (wpn(o)) ep(—tr(ho))do.
Sn,[

Then .
n(n—1)

| Dy if h € S,(Zy)*

Cg(h, u, 8) =

0 otherwise

\

where S,(Zy)* = {h € S,(Qq) : tr(hS) € Z,S € S,.(Z,)}.
Proof. By 8.3 we know that f,; is supported on

Qu(Qowi G, (") = Qu(Qe)wnNg, (Ze).

So w,n(o) € Qn(Qr)w,Ng, (Z,) if and only if o € S,,(Z,). Using the definition

of the section we get

(8.6) co(hu, 5) = / Frs (100) eo(—tr(ho))do
Sn(zl)
n(n—1)
(8.7) = |Dy| 7
if h € S,,(Z)* and 0 otherwise. O

2. LN
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Lemma VIIL.6. Let f;, be the section as in 8.3, uy € GL,(K;). Consider the

local Fourier coefficient

ce(h,u, s) ::/fe,s wyn(o) ! e/(—tr(ho))do

Sn,é

>

Then

co(h,u, s) = N’”2|Dg]n(n471) To(det(u))] det(uu*)| " H T (T (0)07%)

(8.8) . tee
sy Ln(2s—n—1i, 7' e

Hz’:() Ly(2s — i, 7€)
where r = rank(h), ex the Hecke character of Q corresponding to K/Q, 7" =

T |QZX, c a certain finite set of primes and fy ., 15 a polynomial with constant

term 1 and coefficients in Z independent of T.

Proof. This is a well-known result due to Shimura, [Shi97]|, lemma 18.13. Though
one must note that the character inducing our Eisenstein is inverse of that he

uses and take into account the difference in Haar measures. OJ

Proposition VIIL.7. Let u € GL,(Ax) such that u, =1 if €| N. Let c¢(h,u,s) =
[1ce(h,u,s) then c(h,u,s) # 0 only if hy € S,.(Ze)*, in which case
cthyu,s) = (=1)=" |Dg| (det( )| det(u*u)e|”*| det(uu*)oo)|®

(8.9) ay(uhu, 25, 7)E(u*u, h, s + /2,5 — K/2)

—r—1
n—r Lyv(2s — =/ n+i— 1
ay(u*hu,2s,7) = [ n_iv( ST LT Hfh7u7[(f’(€)€_2s).
[T2, Ln(2s — i, 7€) ree

Proof. Follows immediately from lemmas VIII.4, VIII.5 and VIIIL.6. O]

Definition VIII.8. We denote by V(p, q,r) the subset of S, consisting of the ele-

ments with p positive, ¢ negative, and r zero eigenvalues.
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Definition VIIL9. T,(a) = 7""VAT[Z T(a — k).
Lemma VIII.10. (Shimura) The function (g, h, a, 3) has an expansion given by

&(g,h,a, B) = " mage D20 (o4 B — n)Dyg(a) T, ()7

(8.10) 5(g)" 76, (hg)* ™25 _(hg)* " Pw(2mg, h, v, )
if h € V(p,q,r), where

(8.11) ¢ = (2p—n)a+(2¢—n)B+n(n+r)+pg

(8.12) Vv = pa+qBf+ri—opq

where 04 (g) is the product of all positive eigenvalues of g and §_(g) = 04(—g) and

w(2mg, h,a, B) is as defined in (4.6.K),Shimura [Shi82.

Proof. See Shimura, [Shi82]. The volume form we use is 2""~1/2 times the volume

form used in loc cit. O

Fact VIIL.11. (Shimura [Shi82] 4.35.K)
(g, hym, B) = 2 e(—itr(gh)

if h € V(p,0,71).

In particular if « =n and f =n—~k and h € V(p,0,7) we have for A =n(n—1)/2

(8.13)
E(uu*, hyn,n — k) = '_"”2”“_’\7rp”+’”2+p’"f‘n(n)_lé(uu*)”_”é_ (u*hu)P/*~ " e(—itr(uhu®))
(8.14) = AT () T (wn®) T (u hu)P P e(—itr (uhu®))

By the correspondence between classical Hermitian modular forms and associated

automorphic forms for each ¢ € G,,(Ay) (for example we can take t = b as in Prop.
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VIII.3) we can define a function F(s, z) of C x H,, by

Et(sa gw(i)) = j(gom i)ﬁﬂ(gw)_nﬁpE(Sv tQOO)

where z = g (i).

u
Lemma VIII.12. Suppose t = t with uy € GL,(Axf) and z = x + iy €

A

Uy
H, put ci(h,y,s) = det(y)%c(h,u,s) with u € GL,(Ax) such that u¢ = u; and

Uoo = Y2, Then

(8.15) E(s,2) = Y _ c(h,y, s)e(tr(ha)).

heSy,
Proof. Shimura [Shi97|, lemma 18.7. O
Theorem VIII.13. Ei(s, z) is holomorphic at s =n — K/2

Proof. Follows from theorem 17.12 (iii),[Shi00] O

Lemma VIIIL.14. For k > n, the fourier coefficient c;(h,y,n — k/2) = 0 for all

h < 0.
Proof. By lemma (18.12), Shimura ([Shi97]),
E(,hy 8,8 g p(n+n—r—n) Ty y(n)ho(n — k)

is holomorphic, where a is the number of positive eigenvalues of h, b is the number
of negative eigenvalues of h. Since h < 0, a <n, b > 0 and a+ b < n. So we have
[, as(n—k)~! has a zero of order n —a — b, T',,_y(n) has no poles and T,,_,(n — k)

has a pole of order n — a. So overall,
Tpoas(n+n—r—n)"Ty y(n),_a(n— k)

has a pole of order (n —a) — (n —a —b) = b > 0. Hence {(h,y,n,n — k) must be 0

for all h < 0. So we get ¢;(h,y,n —r/2) =0 for all h < 0. O
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By (8.13) we have for h positive semi-definite

n(n—1)

c(h,y,n—k/2) = (—1)_’{]\7_”2 det(y)_“/ZT(det(u))|D;c| 1 |det(utu>tk)|“/2

(8.16) | det(y)|" "%y, hynyn — K)an (u*hu, 2n — K, 7')
= (=1)7F T NV, (n) " (det(w))

(8.17) | det(u@)|*?an (u*hu, 2n — &, 7 )e(itr(hy))

Definition VIII.15. With notation as in lemma (VIII.12) let

(—1)mime 2 120 Lv(2n — & — i, 7'el)

Dt(n—fﬂl/2’2’) = WnQN_nQF (n>_1

Ein—k/2, z)

and

Di(n—r/2,2)= > ci(h,n—r/2)e(tr(hz))

h€Sn,h>0

where

(8.18) &(h,n — k/2) = 7(det(u))| det (u@)|* 2y (v hu, 2n — &, 7).

and o'y (u*hu,2n — Kk, 7') = H?:_Or_l Ly(n—k —i, 7t [rce fhue(T'(£)052)
Remark VIII.16. We will be interested in the p-adic interpolation of Dy(n — k/2, z).

8.5 The pull-back formula

Let 7 be a unitary character of the idele class group K*\Ag,  a positive integer,
and ¢ be a cusp form on G,,. Associated to f, € I, 1(7) we define

(819)  Fy(furg) = / Fra(v(g, 01h))7(det(g1 1)) d(g1h)dgn

Un(A)

where g € Gp41(A), pint1(g9) = pn(h). We note that F, s(f, g) is independent of h.

Proposition VIIL.17. If f, € Ir,11(7) and Re(s) > (3n+1)/2, then Fy s(fx, g) con-

verges absolutely and uniformly for (s, g) in compact sets of { Re(s) > n} x G,11(A).
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If h € G,(A) such that p,(h) = pns1(g) then

(8.20)
[ BQuis fernlg o)rdet gih)o(gih)dg = 3 Foulfi9)

Un(Q)/Un(A) vEA

where A = P, 11(Q)\Gr+1(Q). The series on the right hand side converges absolutely

and uniformly for (s, g) in compact subsets of {Re(s) > (3n+1)/2} x Gn11(A).

Proof. This result is a generalization of the doubling method of Piatetski-Shapiro
and Rallis. The proof can be extracted out of Shimura [Shi97|. The general out-
line of the proof is as follows: One first writes down a coset decompostion of
Q2n+1\G2n+1/7(Gr 1) as in Prop. 2.4 [Shi97]. Then one can expresses Qon+1\G2nt1
as a set of coset representatives as in formula [Shi97] (2.7.1). Then an analysis of
the orbits of Gy, ;.11 00 Q2n41\Gant1 needs to done. One can check that all but one
orbit is "negligible". Hence using the cuspidality of ¢ one notes that only one coset
representative contributes to the integral as in [Shi97] (22.9). The integral then de-
fines the section which is summed over the "nonnegligible" orbit giving the above

result. O

8.5.1 Klingen Eisenstein series

Of particular interest to us will be the case n = 1. Suppose (0,V) is a cuspidal
automorphic representation on G'Ly(A) and v is a Hecke character of K such that
¥ |ax= w,. Using the canonical inclusion of GLy(Q) in G1(Q) the pair (o,v) de-
termines a representation of G1(A) on V' by oy(g9)v = oy(za)v = ¥(a)o(x) where
a € Af and x € GLy(A). Now suppose f, € I3(7) then Fy4(f.,¢g) is convergent if

Re(s) > 0 and for such s, s — Fj 4(f., —) defines a holomorphic map.

Lemma VIIL.18. For F,(f.,g) as above, Fys(fq,pg) = p(p)ép(p)gF(b,s(fmg) for

all p € P(Qy) where p(p) is the modulus character of the Klingen parabolic P = Ps.
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Proof. By the choice of embeddings made we have
THQs) = {(m(g,z)n',g9) g€ G,z € Resk /@G, € Np}.

Using this let us write p = y(m(g’, x)n’, ¢'). Then

Fyu(ferpg) = / Fres (1(pg, 1 1)) (det (g1 1))o (gu 1) bdgn
U1(Qr)

- / Fes((mlgs ), ¢ V19, o~ guh)F(det (i) (g1 ) ddgy

= 7(det(g"))x)|px/z|* / Frs(1(9, 9™ g1h)7(det(g1h)) oy (1) ddgy

U1(Qe)

= (@) |u/z2l oy (g / fes(r(g.9 " g1))7(det(g' " 1)) o (9197 ) bdgn
U1(Qp)

= ‘M/m‘f‘sp(p)Ftﬁ,s(fm g)

(8.21) = 5p(p)3p(p) Fps(fur 9)
0

Remark VIIL.19. From this lemma it follows that the right hand side of (8.20) is a

Klingen Eisenstein series when n = 1.
Definition VIII.20. We will denote the Klingen Eisenstein series obtained above

from the pullback as E(s, Fy(f.), g) i.e.

(822) E(S’Fqb(fn)ag) = / E(QBasaTa fm7n<gaglh))%(detglh)0w<glh)¢dgl'
U1(Q)/Ur(A)

In the notation of the section on Klingen Eisenstein series

E(37F¢(fn)>g) = E(P7 S7F¢(fn))'
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8.6 Local decomposition of [ ,

The section defining the Klingen Eisenstein series above can be decomposed as

F¢(fﬁ) = Foo,n ® (®€F¢(f£))

In this section we recall the results of Shimura, Lapid-Rallis and Skinner-Urban
relating the local components in the above decomposition to the local components

in the decomposition of ¢.

8.6.1 Archimedian sections

Let (0, V') be an irreducible cuspidal automorphic representation on GL(2)(R). We
can extend o to a representation of Gi(R) by setting oy (g)v = oy (za) = ¥(a)o(x)
for g = (a,2),a € K*,x € GL(2)(R). Let ¢ € V be the unique (up to scaler)
non-zero vector such that o (k)¢ = j(k,i) "¢ for all k € K ., the maximal compact
in GL(2). Let

(823) FOO,H(Sag) = / foo,n,s(s_la<gaglh))%(det(glh>>a¢(glh>¢dgl
U;(R)

where g € G(R), u2(g) = p1(h). Then just as in the previous lemma one can see
that Fa (s, pg) = p(p)d(p)*/3Fa «(s, g). Also, by Skinner-Urban, [SU| and Shimura,
[Shi97], the integral (8.23) converges for Re(s) > max(x/2,3/2) and

I(s—kr/2—1)

Foon — 272372
’ (S7g> F(S_ff/2)

F.:(9)

where F}(g) is the unique vector in I(ps)*= such that F,(1) = ¢ where py, is as in
(4.5) and &o = Yoo/ Too-

8.6.2 (-adic sections

Let (o4, Vi) be an irreducible cuspidal automorphic representation on GL(2)(Qy)

and 7,1, as in section (4.2.2). We can extend o, to a representation of G1(Qy) by
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setting ¢y, (9) = oey,(va) = Yi(a)o,(z) for g = (a,x),a € K,z € GL(2)(Qy). If

¢¢ € Vy be a new vector of oy and oy, 7y and 1), are unramified we define F), as

F,,(pk) = pe(p)¢e for pk € P(Zy) K}

where py is as in (4.6) and I(p)X? is spanned by F,,. Let
(8.24) Fy(fe,s,9) = / fes(7(g, g1h))7e(det(g1h)) oy, (917) dedgy

where g € G(R), ua(g) = p1(h). Then just as in the previous lemma one can see
that Fy(fe,s,p9) = pe(p)0e(p)*>Fy(fs, 5, ). Also, by Skinner-Urban, [SU| and Rallis-

Lapid [LRO5|, the integral (8.24) converges for Re(s) > 0 and

L(&,&, S — 1/2)
H’:L'l:() L(2s —i,7'el)

F¢(f57379) = Fpe,S(g)

where & = 1y /7.

Let F = F, ® (®F,,) and

E(s,F.9)= Y  F(y)

1EP(Q\G(Q)

— 272872 F(S—H/Q—l) L(576518_1/2)

be the Klingen Eisenstein series associated to it. Let W (1) TGr/2) Ty Ls—in)”

Then

E(SaFv g) - W¢<1>E(87F79)

8.7 Summary

Now we put together the results in this section and relate them to the global inte-
gral of Furusawa, [Fur93|. Let f, be the section as defined in (8.3) and F(Qs, s, T, fx, 9)
be the Siegel Eisenstein series associated to it. Let E(Qs, s, T, frs (g, g1h)) be the

normalized Siegel Eisenstein series

2

E(QS? S, T, fm’)/n(gaglh)) = E(Q?w S, T, fm’yn(gvglh))HLN(ZS - 2.777—,6%)‘

1=0
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Let

(825) E(87F¢7g> = / E(Q37877—7 f/mVn(g?glh’>>7_—(detglh)a¢(glh>¢dgl
U1(Q)/U1(A)

be the Klingen Eisenstein series associated to normalized Siegel Eisenstein series.

Then by the pull back formula (8.22) we have

(8.26) E(s, Fy, g) = Wy(1) H Ly(2s —i,7)E(s, F,g)

I(s—r/2—1)L(6,&,s —1/2) ~

(8.27) =2 NSy Les—2m PEF)

Using the notation in section (7.1) and applying the integral representation of
Furusawa [Fur93] to the Klingen Eisenstein series E(s, Fj, g) we get for 7 a cuspidal

automorphic representation on GSp(4)(A) as in section (7.1) and ¢ ¢ Q
(8.28)

i=1 - .
oy L(s— 1,7 X &y) L(s —1/2,wy, )
Zy(s) = | |L 25 — 2, 7)€, ’ . — B,,(1
o (m > ’TZ%)) L(2s = 2,7)) L(s = 1/2,we,60) [TZg L(2s — 2, Tjelc,) o)

= L(S — 1,7?[ X 5’[)
8.8 Classical interpretation of Pullback formula

In this section we interpret the pullback formula in the classical set up as a
Petersson inner product of the Siegel Eisenstein series and a cusp form (with slight
modification). This interpretation will relate the Klingen Eisenstein series to a Pe-
tersson inner product which is easily seen to be interpolated.

Let p be an odd prime that splits in . Let f € S.(To(p"), x) be an eigenform
and (o, V) be the irreducible automorphic cuspidal representation associated to it
on GLy(A). Let V = ®V,, 0 = ®0a,, ¢ = ®¢p, € V be the completely reducible
automorphic cusp form associated to f. Let x be the central character of ¢ and

) = @, and T = ®7, unitary Hecke characters of Ag/K* such that
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1. o4 is ramified only at p
2. ¢y is a spherical vector for all finite places ¢ # p
3. ¥ =1 -& where ¢ is an unramified character.
4. 05 (K)o = j(k,i) "o for k € K/ |
5. w‘Aé =X
6. Too(z) = (2/[x]) ™" = thoo ()

Assumptions (1) and (2) have been made since we will finally be interested only

in elliptic and Siegel modular forms of level a power of p. Let

¢'(g9) =0 (( o )p> #(9)

Using the notation as in section (8.2) let

E(Sa fm Oé(gmgl)) = E(Q37S’T’ f“’a(g’gl))'

Then
E(87 fm Oé(g7 gl)) = E(87 fm Sila(g7 gl))

= E(s, f.7(9, 91))

100000
. 010000
where f.(s,9) = fo(s,9S Hand S = | § 524939 | . Then by the pullback formula
%88 807
we know that
Bls.Fo(Fhg) = [ Bl Furlg.0) (et )6, (o)do
U1(Q)/Ur(A)
= [ B dealea)n(detg)d) (o)
U1(Q)/U1(A)
Now we study the integral
(8.29) Ho= [ Blaile.o)r(det o) (o0)ds

U1(Q)/U1(A)
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where E(s,a(g,91)) = E(Q3,5,7, fxs,a(g,91)) and ¢, is a cusp form on G1(A) such

that ¢'((a, g)) = v(a)¢'(9),a € Axx,g € GLa(A).
We want to interpret this integral in a classical setup. For the rest of this section

we will suppress s and the section f, unless needed. Let

J(9,91) = E(au(g, 91))7(det g1)dy (g1)

and

K(p") ={(¢}) € U1(Z) | b=0 mod p'},
Lemma VIIL21. J(g,g:k) = J(g, q1) for k € K°(p").

Proof.
(8.30)  J(g,q1 (7)) = E(ou(g, 1 (ip;b)»%(det(glad))dp(gl (e7h))

12
since a(1, (270)) = < ¢ C) we have
p

(8.31) = Elax(g,90)7(d)7(det g0)7(ad) (@)l (1 (a7l )

since 7 =1 - £ where £ is unramified, we get

(8.32) =J(9.9)
O

Remark VIII1.22. Note here that we work with ¢’ instead of ¢ since we want invariance

under K%(p") when we classically interpret the pullback formula.

Let hyx denote the class number of K and let ay,--- ,ap, be representatives for
the class group of K. Then by Cebotarev density theorem, we can assume that each
representative can be represented by a uniformizer at a degree one prime. So we

assume a;@; = ¢; - where g; splits in K.
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Now we note that Uy(A) = ||, U1(Q)Ur(R) (™ z—1) K°(p") (cf. Hida, [Hid93],

chapter (9)) so we have

U((Q\U1(A)/ Ko KO(p") = T\SLy(R)/SO5(R) x | | (" o)

where I' = U;(Q) N K°(p"). Let

and

For I(g) as in 8.29 we have
1(g) =Volz/ a(g, 91( ) )f (det( (ai a;1>))¢;p(gl (ai a;1>)d91
a
= VOIZ (a;/a;) /E a(g, g1 .al. ))) o (g1 (1 qi)qi>dgl
R;

S S
[U1(2):K°(p))

We now want to rewrite this integral in a form more suitable for a classical inter-

where vol =

pretation. For this we note that

(8.33) =o, (") _a)
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Also,

(8.34) — r(a2), E <a(g, ?) ( “ 1)()

Now observe that

hence we get

b (0‘(9791 ( a;l))) = 7(¢; )7q(ai®) E
(8.35) = Tq(ai/a;) E (a (( ’ 4[112> g <ai71 ai) ' <1 0 ) 91)>

since
Tp(qz_l) = 7_(17 7Qi_17 )
p
—T(QZa 7]-7' , 4, )
p qi
= TOO(qi)TQi(a’lal)
(8.36) = 7, (a;a;) 7"

Observe that since 7 is unitary

T(a;/a;)(a;) g, (ai/a;) = ¥(a;) = 7(a;).
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So far we have

(8.37)
I(g) = VOIZT(C“)/E <a ((12 q;llz) g(“ " a) (1 0 ) 91>> Oo(on (M o), )dg1-

We now transform the functions above into their classical analogues.Suppose g €
Us(R) and ¢g(i) = Z and ¢,(i) = w.

Since ¢ is the automorphic form associated to f we get
Py ((1p*)oo (lq,-‘l)oogl) =3((" ) (1 qi‘l)gl, i)~ g f(wa/p')
(8.38) = (g1, )" f(w) s (") -

Observe that if g = (2%) € SLy(R) then wygwy ' = (—db _ac) J

i(g', i) = jlwigrwi ™, 4) and i(g1, 1) j(wigrwy ™, i) = iw/Im(w).

For k > 6 we can define classical Hermitian modular forms on Hs : E; (Z') =

al
J(0, 0 u(9)* 2 E(tig), g € KLt gli) = tswmm:( u,>W@t
1

B ()00 (1))

. 1 —1 - —k/2 .1 N\ —K K —K %z

= ](wl ( gt > 91w, 172)7ﬁqi /2](< ’ qi_llz) 972) ,U(g) q; "Er, ( qilm )
. —1 K/2 K K auZ

= (wigrer (0, (o) B, (7 1)

q; W

= jlwigrwi ", i) =gl (=) 5 (g, 1) " u(9) e, (%7 o) 1e (& 1)

Let
E§(2) = j(g,)"1lg) "1 (9)

then putting together the above facts, we get

(Z) = VOIZT(az’)Qf/E@ (%7 o) e ()

R;

- fw) |« (q" pr) (—w)" (iw/Im(w)) " "dvol(w)
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On making a change of variable u = —w this becomes

= VOlZT(Gi)in_H(—l)N_l /Eti (52,) |« (‘Zi _1)

f(=a) | (q" pT) (Im(—u))"dvol(u)
- volzrmi)qfr“(—w* (B (0 ) e ()07 e (),

=vol 3 rla)aie ™ (1 {EL(#20) 7700 be (5 7)),

this follows from the definition of I';

= vol 3 mla)af i~ (= 1) (Bu (%7 ,), 2w L (),

Hence we have

Theorem VIIL.23. Let EF(Z) be the Hermitian Eisenstein series associated to

E(s,F(f),g) where guo(i) = Z, then for Z in Hy

CZ T(a;)gri " (—1)"" 1<Et (s, %% ), fP(w )|~(’_1)>ri

I B g :
where C' = TN and a;’s are the representatives of the class group of K.

The above classical interpretation of the pull back formula plays an important

role in the interpolation of the Klingen Eisenstein series.



CHAPTER IX

p-adic interpolation

In this chapter we first recall the Leopoldt-Kubota-Iwasawa p-adic Dirichlet L-
function. We then discuss p-adic families of modular forms for GL,, GSp(2n) and
GU(n,n), especially Hida families. As important examples we construct p-adic fam-
ilies interpolating Siegel Eisenstein and then combine this will the pullback formula
to construct a p-adic family of Klingen Eisenstein series. The latter is then used to

construct a p-adic L-function on GSp(4) x GL(2).

9.1 p-adic Dirichlet L-functions

In this section we give a brief outline of p-adic Dirichlet L-functions which are p-
adic analogues of Dirichlet L-functions. The usual series of the Dirichlet L-functions
do not converge p-adically. But the values of L(s, x) at negative integers are algebraic,
so we look for a p-adic function which agrees with L(s, ) at the negative integers.
Here we do not explicitly construct the measures or the corresponding power series
but simply recall the results available. We refer the reader to [Lan90| and [Hid93|
for more details.

Let p be a fixed odd prime. Let x be any Dirichlet character of (Z/p"Z)* having
values in a finite extension of Q,. Let w be the Teichmuller character. The p-adic L-

function £, (s, x) is a continuous function on Z, except when x = id, and in this case

81
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G(s) = L,(s,1d) is a continuous function defined on Z, — {1}, having the following

interpolation property
Ly(=m,x) = L(=m, (xw ™ o) (1 = xw ™™ Yo(p)p™)  forallm € N

where x¢ = x if x is non-trivial and xy is the constant function 1 on Z,, if x is trivial.

Let

{ 1 if cond(x) # a power of p,1
X1+p)(1+T)—-1 otherwise
Theorem IX.1. [Was97] Given H,(T) as above there exists G, (1) € O[[T]] (O =

Z,[x]) such that

and s # 1 if x = 1.

9.2 A-adic forms: GL,

In this section we recall the general theory of A-adic modular forms. These have
come to be known as Hida families. We shall give definitions and examples and
state some well-known results about A-adic forms. For more details one can consult
[Hid93]. Finally, we introduce a linear map ¢; which plays an important role in the
interpolation of the Klingen Eisenstein series.

Let p be a fixed odd prime. Let N be a fixed integer (N, p) = 1. Let
X (Z/NpZ)" — Q;

be a Dirichlet character. Here let O be the ring of integers of some finite extension of
Q, containing Z[x|. Let A = Ap = O[[T]]. For  a positive integer and £ a p-power

root of unity let 9, ¢ : A — O[] be given by 1+ T — £(1 + p)~.
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Definition IX.2. A A-adic modular form of level N and character x is a collection
F=Acn(T)eAN|n=0,1,2,---}

such that

Une(F) =D Vrelen)q" € Mu(Np", xw "1, O[€])

n=0

for all but finitely many pairs (k,&), (k > 2). Here by ¢" we mean ¢*™* and 1) is
the p-power order character of conductor a power of p such that ¢¢(1 + p) = € and
where £ is a p"~! root of unity. We denote the space of such forms by M(N, x). We
say F is a A-adic cusp form if O, ¢(F) € Su(Np”, xw™"1be, O[¢]) for all but finitely

many pairs (k,&) as above. We write S(IV, x) to denote the space of such forms.

We give an example of a A-adic modular form below. Besides serving as an
example we will use it to introduce some notation that we will need for interpolation

arguments.

Example IX.3. Let x : (Z/N'Z)* — O* be a primitive Dirichlet character with

N’ = N or Np and ged(N, p) = 1. Recall that
(Z/p2)" % Ty~ T;
via the map (0, a) — (1 + p)®. For ¢ # p define a, € Z, by the equation
C=w(l)(1+p)*.

We now define ¢, (T)’s as follows

cor(T) = co(T)cpr— (T) — x(O) (1 + T)*cprs(T) (r>2)
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cn(T) =y (T) -+ - c* (T) (ged(n,p) = 1,n = 1I}})

eralT) = calT)  (ged(n,p) = 1)

1G\(T
CO(T) — 5 AX( )
H,\(T)

where G\ (T) = G (1 +T) — 1) and H(T) = H,((1+ T) — 1). Suppose that

x # 1 so that H,(T) = 1. Consider &, = {¢,(T)}. Then ¥, ¢(Ey) = > e g Vnelcn)g™

Below we check that &, is a A-adic form.
1 K
D) = 5Gr(E0+p) = 1)

91) = L1~ xto)

1
= SL(1— Xw ™ ) (1 = xw ™" e (p)p™ )

O,.e(co) 1+ x(0)07e% (1 4 p)xe®

(9:2) = 1+ x(O ()1 +p)"

= 1+ xw ()t
The above calculations show that 0, ¢(€,) gives the Eisenstein series
E(2) = B}y, (2) = xw ™ e (p)p" B (p2).

Suppose L is a finite extension of Fj, the fractional field of A. Let O be the
integral closure of A in L. We can extend the notion of a A-adic modular form to

that of an Or-modular form. Set
(9.3) X, = {¢: O — Q, extending some 9, ¢ (k > 2)}

where 9, ¢ : A — O[¢] is the specialization map 1+ T +— &(1 + p)*. Then we define

a Op-modular form of character y to be

F={c,€0p,|n=0,1,2,---}



85

such that
(9.4) S(F) = dlca)q" € Mu(Np", xw ™", $(O1))
n=0

for almost all ¢ € X. Denote by M(N, x, Or) the Or-modular forms of character
x and by S(N, x, Op) the Op-cusp forms of character .
It is desirable to have a notion of Hecke operators in this setting just as in the

setting of classical modular forms. One can extend our Hecke operators to act on

these spaces as follows. Let F = {¢,} € M(N, x, Opr) then define
TF = {c,}

where
co = co+x(O)H(1+T)%cq
0 it 04,0t Np
Cfn = Cpp +
X1+ T)*%c,ye  ln, 0 Np
c =em  LNp.

Fact IX.4. ¢(1T,F) = Typ(F) whenever ¢p(F) is a modular form.

By multiplicativity we can define the action of 7;, on M (N, x, Or) and S(N, x, Op).
It can be checked that S(N, x, Op)) is stable under 7,,. The modules M(N, x,O})
and S(N,x,Op) are generally not finitely generated. To remedy this problem we
“cut down the space” via the ordinary projector. For any finite extension K of Q,(¢)

and A its p-adic ring of integers recall the ordinary projector:
e= limmﬁong'” € Enda M, (Np", xw "¢, A).
Definition IX.5. We shall denote the space of ordinary modular forms by

MY(Np", xw " be, A) := eM,(Np", xw "¢, A)
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and ordinary cusp forms by
Se(ND", xw ™" he, A) == eSY(Np", xw "1, A).
Definition IX.6. We define M°(N, x,O;) as
{Fe M(N,x,0r) : ¢(F) € MY(Np", xw "¢, p(O1)) for a.e. ¢ € X}

Similarly we define S°(N, x, Or) € M°(N, x, Or).

Fact IX.7. rkogeS.(Np", xvew™, O[¢]) and rkogeM.(Np", xtpew™, O[¢]) are in-

dependent of k and &.

Fact IX.8. The spaces M°(N,x,Or) and S°(N, x, O1) are finitely generated torsion-

free Op-modules and M°(N, x,Or) and S°(N, x,Or) are free A-modules.
Remark 1X.9. One can also define an ordinary projector
€. M<N7 X OL) - MO(Nv X5 OL)
and
e: S(N7 X5 OL) - SO(N> X5 OL)
such that ¢(eF) = ep(F) for a.e. ¢ € X.
Remark 1X.10. T, acts on M°(N, x,Or) and S°(N, x, Or) as well.

Fact IX.11. The eigenvalues of Ty acting on M°(N,x, O1) ®0, L are integral over

Or.
Fact IX.12. If ¢ = p orif ordy(N) = ordy(cond (x)), then Ty can be diagonalized on
MO(N7 X5 OL) ®(9L L.

Definition IX.13. The ordinary Hecke algebra H°(N, x) (resp. HC.. (N, X)) is the

cusp

subalgebra of Endy (M°(N, x))(resp. Enda(S°(N, x)) generated by all the T},’s over
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A. For any A-algebra A, we define H(N, x, A) (resp. HO., (N, x, A)) by HO(N, x) @4

cusp

A (resp. H2. (N, x) @4 A).

cusp

Proposition IX.14. (semi-simplicity) Let x be a primitive Dirichlet character mod-
ulo N,(N,p) = 1 then H°(N,x) (resp. H°,. (N,x)) is reduced; i.e. H°(N,x, Fy)

cusp

(resp. HY,.,(N,x, Fr)), for Fx the quotient field of A, is semisimple.

cusp

Proof. Follows from fact 1X.12. O]
9.2.1 An inner product relation

Let f be a primitive ordinary elliptic eigen cusp form of level N and character y
with coefficients in a number field L. Then we have a map from H°(N,x, L) to L
given by T'(n) — X, where T'(n)f = \,f. Since H’(N, x, L) is semi-simple we can
write

H)(N,x,L)~ L& A

Let 1; € HY(N, x, L) denote the idempotent projecting onto L. Now we associate to

[ alinear form ¢; on M, (N, x, L) given by

ls(g) = a(leg | 1f)
where e is the ordinary projector. Then its a theorem of Hida that

Theorem IX.15. Let f be a p-stabilized new form of level p", weight k > 2, and

character x. Then, for g in M.(p", x),

where h = f* |, (o o) -

p'r

Proof. Page 175, |[Hid85| O
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Similarly, in the context of Op-adic forms,given F an ordinary normalized Op-adic

cusp eigenform, the homomorphism
HO(N,x, L) — L given by H + A\, HF = A\gF
is split. We denote by 1x the projection as above. Let
Hy := Denominator(1z) := {a € Op | alz € H'(N, x, OL)}.

We pick an element Hr € Hr. All our future interpolations associated to p-adic

modular forms will depend on this choice. We now define
Tr=Hyr-1r € H'(N, x, L).

Let

lr(G) = a(l,eG | Tr)

for G € M(N, x,Op). For any ¢ extending vV, ¢, ¢({£(G)) € ¢(OL) and for almost
all ¢, ¢((r(G)) = ¢(HF)lyr)(0(G))-

9.3 A-adic forms: GSp(4)

In this section we recall the theory of A-adic Siegel modular forms and ordinary A-
adic Siegel modular forms. Most of the material in this section is a generalization of
the results in the case of p-adic families of elliptic modular forms. The results referred
to in this section can be found in the work of Hida [Hid02|, Tilouine-Urban|TU99]
and Urban [Urb05]. Throughout this section we shall work with Siegel modular forms
on H,,.

Let N be a fixed integer (N,p) = 1. Let x : (Z/NpZ)* — Q; be a Dirichlet

character. Here let O be the ring of integers of some finite extension of Q, containing
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Z[x]. Let A = O[[T]]. For  a positive integer and ¢ a p'- power root of unity let

Ve : A — O[¢] be given by 1 +T +— £(1 +p)~©. Put
B, = {9 € Mm(Q)w = t9,¢9,~i,29i]~ S Z,O > 0}

Definition IX.16. A A-adic Siegel modular form of level N and character y is a
collection

F={cp(T)e AN |Be€ B,}

such that

Ore(F) = D Duelen)q” € Myu(Np', xw e, O[€])

BeBm

for all but finitely many pairs (k, &), (k > 3) where £ is a p"~! root of unity and )¢
is the character of p-power order and conductor such that 1¢(1 + p) = £. Here, by
q® we mean e?™*(B%) We denote the space of such forms by M,(N,y). We say F
is a A-adic cusp form if O, ¢(F) € S o(Np", xw™ "¢, O[¢]) for all but finitely many

pairs (k, &) as above. We write S;(/V, x) to denote the space of such forms.

Remark IX.17. One can explicitly construct examples of such A-adic Siegel modular
forms by interpolating the Fourier coefficients of Siegel Eisenstein series obtained

from some good sections. One can refer to Courtieu-Panchishkin [CP04] for details.

Let A C C be any p-adic ring containing O[¢] and Us, be the Hecke operator
defined in (3.2) then as in the case of the elliptic modular forms we can define the

ordinary projector :
e = lim, oo UL € EndaM, . (Np", xw™ "1, A).
Definition IX.18. We denote the space of ordinary modular forms by

MS’H(NpT, xw e, A) = eM; o (Np", xw™ "1, A)
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and cusp forms by
Sg’n(NpT, Xw e, A) = eSs o (Np", xw™ "¢, A).

Fact IX.19. rkogeSs.(Np", xtbew™, OE]) and rkogeM; .(Np", xipew™, O[E]) are

bounded independent of k and &.

Suppose L is a finite extension of Fj, the fractional field of A. Let O be the
integral closure of A in L. We can extend the notion of a A-adic Siegel modular form

to that of an Op-adic Siegel modular form. Set
(9.5) X, ={¢: O — Q, extending some 9, ¢ (k > 2)}

where ¥, ¢ : A — O[¢] is the specialization map 1+ T+ &(1 + p)*. Then we define

a Or-adic Siegel modular form of degree n and character y to be
F = {cg € Op | B € symmetric n X n semi positive definite matrices}

such that

(9.6) S(F) = 6(cp)g” € Myn(Np', xw ™™, 6(O1))

for almost all ¢ € X. Denote by M (N, x, O) the Op-adic Siegel modular forms of
character x and by S(N, x, Or) the Op-adic Siegel cusp forms of character .

Just as in IX.6 we can define the space of ordinary Op-adic Siegel modular forms
and ordinary Op-adic Siegel cusp forms and we can denote them by M%(N, x, Op)

and SY(N, x, Or) respectively.

Fact IX.20. The spaces M2(N, x, Or) and S%(N, x, Or) are finitely generated torsion-

free Orp-modules and M2(N, x, Or) and S%(N, x, Or) are free A-modules.

Definition IX.21. Let the ordinary Hecke algebra HY y (N, x) (resp. HY (N, %))

s,IN,cusp

be the subalgebra of Endy(M?(N, x))(resp. Endy(S%(N,x)) generated by all the
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Tin's , (n,N) = 1 over A. For any A-algebra A, we define HY (N, x, A) (resp.

HgJV,cusp(N’ X5 A)) by HS,N(Na X) XA A (resp. H(sJ,N,Cusp(N7 X) ®A A)

Remark 1X.22. We note that unlike in the case of elliptic modular forms, there
is no non-degenerate pairing between the space of Siegel modular forms and Hecke
operators. This can be observed from the fact that Hecke operators move the Fourier

coefficients of a theta series in square classes.

Proposition IX.23. (semi-simplicity) The Hecke algebras HY (N, x) and HY y ,.,(N, X)

are reduced.

9.3.1 Another inner product relation

We need an analogue of the inner product relation of Hida in the setting of Siegel
modular forms.

Let F' be an ordinary Siegel eigen cusp form of weight x > 2n and level p” and
character x with Fourier coefficients in a finite extension L of Q,. Then there exists a
natural map from H,(I'g, (p"),x,L) - L, Ts,, — A\, where Ty , F = A\, F. By a the-
orem of Hida (cf. page 46, [Hid98|) we know that H) (p", x, L) is semisimple. Hence
we have H? (p",x,L) = L ® A. We let 1z € H)(N,x, L) denote the idempotent

projecting onto L.

Lemma IX.24. Let F and G be Siegel cusp forms of degree n, weight k > 2n, level

N and character x.Then

<<TS,ZG, o _01)>> = <<G (TeF?) o _01)>> |

Ts,é = KQn (N)dzag(l, L,¢, K)KQn (N)

where
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Proof. Let ¢ be the automorphic form associated to F” and ¢’ be the automorphic

form associated to G.

(2 ey )

_ / Tt (9)6(g (V1 ))x"(det(g))dg

GSpan(Q)\GSpan(A)

- ¥ [ e o els (G detlo)ds
u€Sn(2) mod fegy, (Q\GSpan(A)

. / YU (@0 (1) (1) (o 5 ))x (det(g))dg
u€Sn(Z) mod logy,, (Q\GSpan(A)

= > / X' (9ol (1) (V) v 1))x ! (det(g))dg

(rint)/2 / X (9)lg (1) (L V))xH(det(g))dg

GSp2n (Q)\GSp2n(A)
< <¢/7 (Ts,€¢) ’ ( ](\)[ _01 ) > >

_ / () Tordlg (L ¥ ) H(det(9))dg
GSp2n(Q)\GSp2n(A)

- ¥ [ e T T i Wenlo)ds

u€Sn(Z) mod legy,, (QN\GSpan(A)

while

- X [ @R DT (7 ) detlg))ds

u€Sn(2) mod gy, (QN\GSp2n(A)

= / &g (N1 ))olg (Yy) (V7)) x(det(g)~1)dg
u€Sn(Z) mod KGSpQ’n(Q)\GSan(A)

= (r(mt/2 / X 1) (9)plg (1)) (LN 7))x M (det(g)e—1)dyg
GSPQn(Q)\GSPQn(A)
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<<¢,7<Ts,€¢)|<](\)[ —01)>> = <<Ts,e¢/,¢|(]% —01)>>~

The lemma follows for ¢ | N from the relationship between adelic Hecke operators

Hence

and classical Hecke operators for Siegel modular forms.. Similarly, one handles the

case { { N using the coset decomposition for T, given in (IIL.6). O]

Corollary IX.25. If F' and G are Siegel cusp eigenforms of degree n, weight k > 2n,

(67 g ) =0

unless F and G have the same eigenvalues.

level N and character x then

Lemma IX.26. For G a Siegel modular form of degree n, weight k > 3, level p" and
character x and F' an ordinary Siegel cusp eigenform of degree 2, weight k > 3, level

p" and character x where p" = cond(x) if x # 1 and p" =p if x = 1. Then

(G F 1 (p 7)) = (G F2 1 (7))

Proof. Let U, ,F' = apF'. We can decompose M, (p", x) into generalized eigenspaces

obtained from the action of U, , operator as
Mn(pra X) = @aMoz-

So we have
G=> G,

where G,, is a generalized eigenvector with eigenvalue o and

(9.7) (G F 1 (7)) = 22 (UG 7 1 (e 7))
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Now (Us, — a)'G, = 0 for some t. So we have
0= ((Usp = )G F* | (,» 7))

by lemma (IX.24)

= (G (Usp =)' ) 1 (7))

On expanding (Us, — «)" and using corollary (IX.25) we get

(9:8) {(Gas F? | (7)) =0

unless o = ap. So from (9.7) we have

(9.9) <<G,Fp | (pr 71)>>:<<G007Fp B (pT 71>>>

hence

0100 (G F L (™)) = (eGone P L (1))

Recall e = lim,, ...U™ and «y is a p-adic unit hence limm_)ooag“ =1. So

s’p

((€Gag: F* | (r 1)) =l (U Gag: F* | (1))
= lim,, 0o <<Gao7 (U:;!F)p |H (p’" _1)>>

= (G 1 (» 7))

Hence we have the result

(e B2 1w (1)) = (G F | (i 7))



95

Definition IX.27. We say a Siegel modular form F' of degree n, weight x and level
N satisfies the multiplicity one hypothesis if 7z occurs with multiplicity one in the

GSp(2n, Ay) space generated by {¢r | F' holomorphic of degree n, weight x level N }.

Just as in the case of GL, we associate to an ordinary Op-adic Siegel cusp eigen
form an idempotent 1g. Given F an ordinary normalized Op-adic Siegel eigen cusp

form, the homomorphism
H) (N,x,L) — L given by Hw— Ay
where HF = AyF is split. We denote by 1g the projection as above. Let
Hp := Denominator(lg) = {a € Oy, | alp € H) y(N,x,0)}.

We pick an element Hr € Hr. Many of our future interpolations associated to p-adic

Siegel modular forms will depend on this choice. Let
(9.11) lr = Hplp
then by the theory of A-adic Siegel modular forms we have

(9.12) o(lrG) = ¢(Hr)¢(1r)H(G)

Lemma IX.28. Let F' and G be ordinary Siegel eigenforms of degree 2, level p
and trivial character such that wp(resp wg) is irreducible and F(resp G) satisfies the

multiplicity one hypothesis. Then G must be a multiple of F'.

Proof. By the definition of 1p, 1zG = G implies that F' and G have the same
T, eigenvalues for all ¢ # p. The trace of galois representation for F' and G' on
a Frobenius at a prime ¢ (for almost all ¢) is the eigenvalue of T}, since the L-

function of the representation is the spin-Lfunction for the Siegel modular form, Eric
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(|[Urb05]). Hence by Chebotarev density theorem, the ¢-adic Galois representations
associated to F' and G must be the same for every prime ¢. Now observe that 7z and
T are unramified away from p by the assumptions on F and . At an unramifed
place the Galois representation gives back the Satake parameters by the identification
of the L-functions. Hence the Satake parameters of 7,(F') and 7,(G) are determined
by the f-adic representations of F' and G respectively for ¢ # ¢q. But since the ¢-adic
representations of F' and G are the same, we conclude that 7,(F) = m,(G) for ¢ # p.
By prop 3.2 in Tilouine-Urban, [TU99|, both F' and G are p-stabilizations of a form
of full level. Hence m,(F') and m,(G) are unramified. But then by a similar argument
as above this implies that m,(F) = m,(G). So m,(F') = m,(G) for all primes ¢ hence
7(F) ~ w(G). But by the multiplicity one hypothesis on F' and G, this implies
7(F) = n(G). But we know that the spherical vector in 7,(F)(q # p) is unique and

by Hida, [Hid98|, the ordinary vector in m,(F) is unique. Hence F' = ¢G O

Lemma IX.29. Let G be a Siegel modular forms of degree 2, weight k > 3, level p"
and character x and F' an ordinary Siegel cusp eigenform of degree n, weight k > 3,
level p" and character x where p" = cond(x) if x # 1 and p" = p if x = 1. If

1peG = cF then

(G P71 (1))
(FFe L (571))

CcC =

Proof. Since 1peG = cF

((LreG F? | (i 71))) = (B 1 (i 7)) -

So
c= <<1F€G7 F? |« (pr _1)>>

(L (1))
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But now 1peG = elpG so by lemma (IX.26),
(9.13) ((LpeG F? 1 (7)) = (LG F7 1 (7))
= (G F s (7))

by lemma (IX.25). Hence

_ UG F L ()

((FF 1 (7))

]

Just as in the case of G L, we associate to an ordinary Op-adic Siegel cusp eigen
form an idempotent 1g. Given F an ordinary normalized Op-adic Siegel eigen cusp
form, the homomorphism

H) (N, x,L) — L given by Hw— Ay
where HF = AgF is split. We denote by 1g the projection as above. Let

Hp := Denominator(l) = {a € Oy, | alp € H) y(N,x,0)}.

We pick an element Hr € Hg. Many of our future interpolations associated to p-adic

Siegel modular forms will depend on this choice. Let
(9.14) lp = Hylp
then by the theory of A-adic Siegel modular forms we have

(9.15) o(lrG) = ¢(Hr)o(1r)9(G)

Theorem IX.30. Let F € S%(1,x,0r) be an Op-adic Siegel eigen cusp form such
that for a Zariski dense subset ¢ € X, ¢(F) is such that ¢(F) generates an ir-
reducible cuspidal representation for which multiplicity one hypothesis holds. Let
G € M,(1, x,0p) then lp(eG) = cF and

(0(G). 0B | (,» 1))

(9.16) p(c) = ¢(Hr) <<¢(F), H(F)r | (pr _1)>>
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Proof. Write G = ). ¢;F; as where F; = F and F,’s are distinct eigenforms. Then

But then 1gF; = 0 if ¢ > 2. Suppose not, without loss of generality assume ¢ = 2 and
1gF5 # 0. Since F and Fy are linearly independent over L, there are two symmetric
martices T} and 75 such that det(Cr,(F;)) # 0. The determinant of this matrix is
in Op,. Since the determinant is non-zero, on specialization, det(Cr,(F;)) being an
Iwasawa function it can have only finitely many zeros. So the specialization is non-
zero for infinitely many specializations with character unramified at p. But then by
lemma (IX.28), the specialization ¢(F;) and ¢(F3) are linearly dependent. So the
matrix of the specialized Fourier coefficients must be zero, a contradiction. Hence

1pF2 = 0. So 1p(eG) = clp and by lemma (IX.29) the result follows. O

9.4 A-adic forms: GU(n,n)

We want to interpolate the normalized Siegel Eisenstein series D;(n—k/2, z) from
VIIL.15. To achieve this we interpolate the Fourier coefficients ¢,(h,n — k/2) for h
a symmetric semi-definite n x n matrix. Here ¢ = diag(u, @) with u, = 1 for ¢ | N.

Recall that
c,(h,n — k/2) = 7(det(u))| det(u)|"a/y (u*hu, 2n — Kk, 7')

where oy (u*hu,2n—rk,7') = H?:_OT_l Ly(n—r—i, 7elt=1) [Lce frue(T'(£)052™). In
order to carry out this interpolation we first construct a p-adic character and discuss

A-adic Hermitian modular forms.
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9.4.1 Construction of a p-adic character

We first discuss the strategy for interpolation of the values of the character 7. Let

L be a number field and L., its maximal free Z, extension. Let
I'p = Gal(Ls/L) ~ Z¢,
d some positive integer. Then by class field theory we have a surjection

¢r: LN\AS /LG x []OF, — T

vip

This map then extends to a map
O, L\AL 25Ty, — Z,[[TL]]

where the second inclusion is the tautological map.

For the current work we restrict ourselves to L = K. We also assume that p
splits in /C. In this case the action of the nontrivial automorphism of Gal(X/Q)
decomposes ['x as

Ie=T{aTk
where ')\ ~ Z,, and ' ~ Z,, with topological generators say v, and v_ respectively.

So we have
O KV\AE 25 T = Z,[[Tf & Ty]] = Z,[[X,, X_]]

where vy — 14+ X, and 7~ — 1+ X_. Since p splits, Ok, ~ Z, ® Z, and
kp = Zy x Zy. Now we note that Og  C K*\Ag. By the action of complex

conjugation we can decompose O p a8
X X,+ X,—
Kp — O’Qp X O/C,p

where



100

0%, ={la,0) | a € Z;} = 7 ~ (Z/pZ)* x 1 + pZ,
Oy ={la,a7) [a € Z)} ~ Z) ~ (Z/pZ)" x 1+ pZ,

By class field theory we have

Of, = 05, x Og,
! ! l
Ty = T x Tg

where the central map is a surjection and the map to the right has image with finite
index say m (m reflects the possibility that p may divide the class number of K).

Now suppose ', u; are the topological generators 1+ p of 1+ pZ, C (’),é’;, O,é’p_

PP

respectively. We may further assume that under the maps above

Let £ = (ky,k_) and § = (&4,&-). Now consider the specialization

Uag = P mod (X — (€ ()" = 1), X = (€ ()" = 1))

where k,,k_ € Z/27Z, k. + k_ € Z and &, and £_ are roots of unity of p*® power
order. Then 1, ¢ is a Zy[[¢4, & (uy )/™]]* valued character of K*\ Ag. To this Galois

character we can associate a Hecke character (i.e. a character of *\Ag with finite

conductor).
(9.17) ¢/5§(x) = (TooToo) ™ (Too/Too) " (Tpy Tpy ) ™" (Tpy [0py) ™" @%,g(x)
(9.18) = gl g a:;l(’”Jr“*)x;;”'“* Vie()

Then the values of zﬁ’ﬁé(x) are interpolated by v, ¢() whenever v, = 1 = w,, (the

case of interest).
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9.4.2 One variable character

As a first step towards interpolating the Siegel Eisenstein series we interpolate
the contribution of 7(det(u))|det(u)|". The p-adic character constructed above has
two variables namely X, X_. Since we are interested in a one variable p-adic family
we would like to turn it into a one variable character ®}- (say in 7") such that for
1+T — &(14p)” the resulting Hecke character has the infinity type of the character
-1 ie. (Too/|Too|) " |Too|® = T%,. Now note that when k+ = k/2 and k_ = —r/2,
the infinity type of ®x is given by z%..

Let A = Z,[[T]] and A" = Z,[[S]] which we transform into a A-algebra via 14+7" —

(1+S)™. Consider,
Ok AR/KY = Z[[ X1, X" — Z,[[S]]”
where the map on the right is given by
14+ X, = (14+9™?2 14+ X_— (14872

Let £ be a p power root of unity and & be an integer. Let 9, ¢ : A — Q, be a character
such that ¥, ¢(1+7T) = &(1+p)* and ¢ : A’ — Q,, such that 1+ .5 — &'(1 +p)~ /™
where €™ = ¢ where is a p!" power root of unity. Or to be consistent with the

notation earlier ¢ extends some ¥, ¢. Let
w(;g = (b 9] CI);C
and ¢}, denote the associated Hecke Character. Then this Hecke character has infinity

type T5,.

9.4.3 A-adic forms: GU(n,n)

Let 75 be a Hecke character of conductor Np, (N,p) =1 We let O be the integer

ring of some finite extension of Q, containing Z,[r]. Let A = Ap = O[[T]] and let
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A = O][5]] be as in 9.4.2. Let L be a finite extension of F)y» and Op, be the integral
closure of A’ in L. We will choose this extension to be as large as needed for our
applications. Also in this section by ¢ for any n x n Hermitian matrix 7" we mean
e(tr(T2)) for Z € H,,.

Let ¥, ¢ : A" — O[¢] be given by 14+ 5 +— &(1 + p)* for £ a p"! root of unity and

K > 2n.

Definition IX.31. A A’-adic Hermitian modular form of level N character 7y is a
collection

Epr = {cs(5) € A'| Be N}
such that

ﬁn,f(Eh,‘ro) = Z ﬁmﬁ(cB)qB € Mh,N<NpT>TO¢//@,§O[€D
BeN
for all but finitely many pairs (x,&), (x > 2n) where ¢ . is as in (9.17) and N
is the space of semi positive definite Hermitian matrices. We denote the space
of such forms by M,(N, ). We say Ej, ., is a A'-adic cusp form if U, ¢(Ep ) €
Sh(NDP", 1oty ¢, O[§]) for all but finitely many pairs (x,€) as above. We write

Si(N, 79) to denote the space of such forms.

We can extend the notion of A’-adic Hermitian modular forms to that of Op-adic

Hermitian modular forms. Set

(9.19) X, ={¢: O — Q, extending some 9, ¢ (k > 2)}.

Then we define a Op-adic Hermitian modular form of character 75 to be
E,.,={cs €O | BeN}

such that

(9.20) O(Enm) =Y d(cp)g” € My(ND", 700(¢¢), 9(O1))

B



103

for almost all ¢ € Xp. Denote by My, (N, 19, Or) the O —modular forms of character

70 and by Sp, (N, 1, Or) the Op-cusp forms of character 7.

9.4.4 Example: Siegel Eisenstein series

As an example of a A-adic Hermitian modular form we discuss the interpolation
of the normalized Siegel Eisenstein D;(n—k/2, z) from section (VIIL.15). We do this
by interpolating the Fourier coefficients ¢} (h,n—k/2) for h a symmetric semi-definite

n x n matrix. Here t = diag(u, u) with uy =1 for ¢ | N. Recall that
¢i(hyn — k/2) = 7(det(u))| det(u)|"a/y (u*hu, 2n — K, 7')

where aly(uhu, 20 =k, 7) = T[Z5™ Lv(n — = i, 76 ) Tieq frane(P(O0),

Theorem IX.32. Let 1 be a finite order Hecke character and Ny a positive integer
such that cond(ty) | No. Let t = diag(u,u), u € GL,(Ax) such that uy = 1 for all
(| Nop. Let A = O[[T]] and N’ = O[[S]] as before. Let 9,.¢: A = O[[T]] — Q, such
that 14+ T +— &(1+p)~ and ¢ : ' — Q,, extends U, ¢. Let T,¢ be the Hecke character

associated to T1o®y composed with ¢. Then there exists a N'-adic form
Di,, = {Ch,e N | h € S,(Q),h > 0,ubu* € S,(Z)*}

such that

¢(Dyr) = D H(Ca)d" = Diln = 5/2, 2 7ic)

h
for almost all k and .
Proof. By the construction of the one variable character above we know that val-
ues of the Hecke character associated to ¢ o (179®P)) are p-adically interpolated.

We also observe that the infinity type of this character is z% . Hence the values
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7(det(u))| det(u)|® for a Hecke character 7 of infinity type (Zoo/|%Too|) ™ are also in-

terpolated. It remains to interpolate

n—r—1

I Znv(n— k=i, 7 ) [ frue(m (€572,

=0 lec

But the values of the incomplete Dirichlet L-function are see to be interpolated
by the existence of the Kubota-Leopoldt p-adic Dirichlet L-function (discussed in
section(IX.1)). Finally, fh..(7(€)¢""2") is seen to be p-adically interpolated by
considering the restriction of the character ¢o(7y®}-) to Q and then explicitly writing

out the A-adic form as in example (IX.3). O

9.5 p-adic interpolation of Klingen Eisenstein series

In this section we first discuss some generalities about the Fourier-Jacobi series
of a Hermitian modular form. We then apply this theory to the interpolation of the
Klingen Eisenstein series obtained from the pullback of the Siegel Eisenstein series
on GU(3,3). The notation chosen is suggestive of the setup to which we will apply

this theory.

9.5.1 Some generalities

Let z € Hy and w € H; and let Hy X Hy < Hj given by z X w — (z,w). Let E
be an Hermitian modular form on Hj then we can write £ (* ) as

(9.21) E(%,)= Z a(B)e(nw)e(tr(B'z))
B:(%/Z>EA@
where N3 is some lattice in the space of 3 x 3 positive semi-definite Hermitian modular

forms. We can also write this series in terms of its Fourier-Jacobi coefficients C'(B’, w)

as

(9.22) E(*,) =) C(B w)e(tr(Bz))
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where

C(B,w)= Y a(B)e(nw).

!
By b

Lemma IX.33. The Fourier-Jacobi coefficient

C(B w)= Y a(B)e(nw)

5=(% 1)

T n

1s a Hermitian modular form on Hi of weight k.

e

Proof. Let ~ = ( © il b) € I'h,(N) where (24) € T} (N) and g is the
c d

automorphy factor of (¢%). We have

E(*y) = E(%u) =157, (7)) "E(y(* w))
PP det(ew + d) 7 E (7 (awb)(ewra)t )

= ()" det(cw +d)"E (7 (@wb)(ewra1)

Now using the definition of the Fourier-Jacobi coefficients we see that C'(B’, w) is an

Hermitian modular form of weight « for I'Yy (N). O

Let L be a finite extension of the field of fractions of A’ as in section (9.4.2). Now

we restrict ourselves to Op-adic Hermitian modular forms on Hs. Let
(9.23) Enr ={c € O | B € N3}

be such that for each B’, a semi positive definite 2 x 2 Hermitian matrix
b
Ep .5 ={cwp = Z cg €0 | B= € N for some b, nonnegative integer n}
b

is an Or-adic modular form such that

(9.24) O(Bprp) = D 0(Cop)d" € Mo(Th, (ND'), 700 ¢, #(O1))-
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Let F € M(N, 15, 0L) be an eigen cusp form on GL(2).We put
Er = {{z(Ep..p5) € Or | B semi positive definite 2 x 2 Hermitian matrix}.

Now we note that

!

= ¢(lr(Eprp)q®
B/

!

— Z £¢(f)¢(Eh,To,B’)qB
B/

- (9(Enryp), O(F)° [Npr) p
= HHD) 2R ) )

)
|

cn.B)q", F)P Npr) B
. :¢(Hf>§@n@((f),;%fﬁ(@' '
(5, 6(en s )00 S(F) )

=) ) S e )
(X Zb #(c8)q"¢", O(F)? |npr)

) D =250 6T np)

where B = (Ef' b)

<ZB 7", $(F)’ Inwr)

o > S ) €00

(9.26) — 6(Hy)

where B = ( b)

n

For each Z, ¢(Ey ) (Z ,,) is a modular form of level N and weight x and we have

(0(Enr) (7 .), ¢(F)” |npr)
(O(F), d(F)° [npr)

o(Er) = ¢(Hr)

9.5.2 Application: p-adic interpolation of Klingen Eisenstein series

In this section we use the classical interpretation of the pullback formula and the

preceding generalities to interpolate the Klingen Eisenstein series.
Assumption IX.34. Let

e x be an even Dirichlet character mod (Z/pZ)*
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o F e S%1,x,0) an ordinary Op-adic eigenform
e IC be the tmaginary quadratic extension
e 7y a finite order Hecke character of IC such that

— 70 |ax= X
— 19 takes values in O,
— unramified away from p.

Recall that in section (9.4.4) we proved that for ¢ = diag(u,u), where u €

GLy(Ax), u, = 1, there exists
D, ={Cg: | Cp: € N =0O|[5]], B € N3}

such that ¢(Dy.,) = > ¢(Cps)q? = Di(n — k, z;70¢") where ¢ extends ¥, ¢ and
Kk > 6.

With notation as in section (8.8) let

(927) Eh770 = {Z To(ai)q);(ai)CBi7ti e N | B e Ng}

a;!
WhereB:(%Z),Bi:<qi§/z) andti:( e )
1
Lemma IX.35. E,,,, satisfies condition (9.24).

Proof. Ej, -, is a linear combination of A’-adic forms Cp, ;,. From lemma (IX.33) it
follows that each of these A’-adic forms satisfies condition (9.24). Hence the result

follows. L

Theorem IX.36. Let F € S°(1,x,0L) and By, be a N'-adic form as in formula

(9.27). Then ¢(Ex) is a N'-adic Klingen Eisenstein series on Hy such that

(0(Enr) (7 .), ¢(F)” npr)
(O(F), d(F)° [npr)

o(Er) = ¢(Hr)
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for almost all ¢ where ¢ extends ¥y ¢.

This theorem gives the interpolation of the Klingen Eisenstein series obtained

from the pullback of the normalized Siegel Eisenstein series.

9.6 The global integral - a classical interpretation

As discussed in chapter (7.1) the degree eight L-function has a global integral
representation as a Rankin Selberg integral obtained by integration of a Klingen
Eisenstein series on GU(2,2) restricted to GSp(4) against a Siegel eigen cusp form
on GSp(4). We interpret his global integral as an inner product and finally construct
the p-adic L-function. In this section we interpret the global integral as an inner
product.

Let

e f € S.(p", x) be an eigen cuspform and let ¢ = ¢ be the associated automorphic

form.

F e S, .(p", x) be a nonzero Siegel modular form on Hy with a(S, F) # 0 for
a b/2

some S = with —D = d(S) as in section (5.3)
b/2 ¢

e © = pr be the automorphic form associated to F.

K be the quadratic extension Q(v/'—D).

e 7 be an Hecke character of K such that

— Too = (2/2)7"
—Tlax=x

— 7 is unramified away from p
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e ¢ be any unramified character of Ag of finite order.

* Y =1¢

p be the representation associated to (0,1, 7) as in (4.3)

Fy(f.) € I(p) as in (8.8)

E¢ be the classical Eisenstein series associated to E(s, Fy(f),g) as in section

(8.8)

We recall the pullback formula 8.20 for the Klingen Eisenstein series i.e.

/ E(Q2n+17 S, T, fm %(9; glh))%(det glh)¢(glh)dgl
Un(Q)/Un(A)

= Z F¢,s(fn779>'

7€Pn+1(Q)\Gn+1(Q)
Now note that

E(Q?n—l—la S, T, flia an(g, glh)) - E(Q2n+17 S, T, fm S_lan(g7 glh))

= E(Qons1, 5,7, fro Yu(g, g1h))

where fi(s,g) = fa(s,957).

Next we observe that for (5 ) € Kb, (p"),

Z Fys(fasv9 (éyr D))

VEPr+1(Q)\Grn+1(Q)

= / E(anﬂ, 5,7, frs 041(9 (cf;‘f g) 791h))7_'(det glh)¢(91h)d91
Un(Q)/Un(A)

= T(det(A)) / E(Q2n+1asa7_7 fﬁaa1<g (C/]ir g) 7glh))7i(detglh’)¢(glh')dgl
Un(Q)/Un(A)

= T(det(A)) Z F¢,s<fm’7g>

YEP4+1(QN\Gr+1(Q)
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Let F € Sp,(I°(p"),7') and ¢ be the automorphic form associated to
F? (p* _1)

then we know that

for (p’AC IE;) = Kég(pr)
Hence

E(S7 F¢<f)’ h)@(h)

is invariant on the right by K¢, (p").

Now we consider the global integral of Furusawa.

Z(s, Fyulf),0) = / E(Fypa(f). h)@(h)dh

_ / E(Fyo(f), )@ (h)dh

H(Q)Zu (AM\H (A)/ K5, () K3 o

_ / Ey(s, 2)F/(Z) |n (,r ") (det YY) dpZ

T8, (P)\H>

So by 8.21 at s = (1 — x/2)/3 the point of holomorphicity of E(s, Z) we have

Lemma IX.37.

Z(s, Fys(f),0) = ((Bf(1/3 = £/6,2), F* | (y )))

9.7 Construction of a p-adic L-function

In this section we construct a p-adic L-function associated to the degree eight

L-function on GSp(4) x GL(2). Let

e Y be an even character modulo p
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o Fe8%1,x,0r) be an Op-adic ordinary eigenform
e F € S%1,x,0;) be an Or-adic Siegel eigen cusp form.
Assumption IX.38. Let
e O is an extension of N = O|[5]]

o for a Zariski dense subset of ¢ € X, ¢(F) is such that @gm) generates an

wrreducible cuspidal representation for which multiplicity one holds

e S = semi-integral matriz such that d(S)= discriminant of an imaginary quadratic

field IC in which p splits.
e & is an unramified idele class character of IC of finite order with values in Op

We want to associate a p-adic L-function to these objects. To do this we also need
to assume that there exists 7y a finite order Hecke character such that 7y | A5~ X
and 7y is unramified away from p. But this can be seen to be always satisfied: yx is
an even character. Hence y = w?®, where w is the Teichmuller character. So we can
take 79 = w® o Nmg q.

Let 1)y = 70€. Then associated to the datum (F, 79, o) we have a Op-adic Klingen
Eisenstein series

E}-:{CBGOL‘BENQ}

as in theorem (IX.36). Let
Er ={Ap= Z Cp | B € symmetric 2 X 2 matrices }.
B’such that tr(B’'Z)=tr(BZ),B'eN>
Then E’ is an Op-adic Siegel modular form in M(1, x, Or) and ¢(E’;) is the re-

striction to Hy of ¢(Ex).
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Let /g be the projection associated to F defined in (9.14). Then by the mutliplicity

one assumption on F in (IX.38) and theorem (IX.30) we have

(9.28) lp(eEr) = cF

where e is the ordinary projection. For x large enough on specialization we get
(9.29) ¢(lr(eE%)) = ¢(c)o(F).

By (9.15), ¢(lr(eE%)) = ¢(Hr)lsw) (6(cEj)) hence

(9.30) ¢(c)o(F) = ¢(Hr)1lsr)(ep(Ef))

By the inner product relation (IX.30) for Siegel modular forms we have

(O(EF), o(F)" | (,r 1))
(AE),0F) | (, )))

Now ¢(E’) is the Klingen Eisenstein series in Furusawa up to the section at p and

(9.31) ¢(c) = ¢(Hr)

a factor of the period (¢(F),¢(F)” | (,- ')). From the classical interpretation of
the global integral as in section (9.6) it follows that ((#(E’), ¢(F)” | (,» ~'))) is
the zeta integral up to the period (¢(F),d(F)” | (,- ~')). Hence c gives us a p-
adic L-function with the required interpolation property so on putting together the

information at the infinite place in (8.7) we have

Theorem 1X.39. Let F(resp.F) be an ordinary family Op-adic elliptic eigenform
of tame level 1 and character x( resp. an ordinary O, adic Siegel modular form of
tame level 1 and character x). Suppose ¥ satisfies the multiplicity one hypothesis.
Let S be a symmetric semi-integral matriz such that det(S) > 0 is a fundamental
discriminant. Let £ be an unramified Hecke character of K = Q(y/— det(S)) of
finite order. There exists L € L such that if K >> 0 and ¢ : O — Q, is a Z,-

homomorphism such that ¢(1 +T) = ((1 + p)* for ¢ a p"~! root of unity, r > 1
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LPHH(F)? x ¢(F), x) B¢ sm)(
SFOFY Tx (1)) (), oE Jx ()} oo™

qb(ﬁ) - G’P<¢)< 14)

where a,(®) is some normalizing factor depending on ¢(F) and ¢(F) and B¢ s (1s)

is the value at 14 of the Bessel model of ¢(F') associated to S and &.
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