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INTRODUCT ION

The problem dealt with in this thesis is that of finding the characteristic
roots or eigenvalues and corresponding eigenvectors of real matrices using the
electronic differential analyzer.

A reasonably complete list of uses of a knowledge of the eigenvalues of an
algebraic matrix would be very large. Such eigenvalues may be interpreted as the
natural frequencies of mechanical or electrical systems, as buckling load for
elastic structures, as approximate natural frequencies of continuous systems
represented by difference equations, etc. Furthermore, for each eigenvalue so
interpreted, there corresponds an eigenvector representing a particular shape
or configuration of the physical system involved.

A technique was developed which may be used for the reduction of any real
matrix with real roots to the diagonal form of its latent roots. The technique
differs from existing methods of solving this type of problem using analog computers
in the following respects.

1. It is systematic. One eigenvector and the corresponding eigenvalue are
obtained at a time and it is known beforehand which eigenvalue (in order of size)
is obtained.

2. It uses comparatively little equipment. Previous sorts of analog matrix
reducers were all essentially modifications of simultaneous equation solvers with
expensive, hand—manipulated equipment added to make them applicable to the matrix
eigenvalue problem. The added equipment usually included at least one piece of
non-linear apparatus for each eigenvector component plus a set of ganged linear
elements to be set to the eigenvalues. The technique to be described in this thesis
works without ganged eigenvalué potentiometers.

3. It is completely automatic. No action by the operator is required except
for setting the coefficient potentiometers to the values of the matrix elements.
Scaling of these elements is done without making trial runs on the computers.

., It has a greater range of application than previous analog matrix reducer

1






2

apparatus. Heretofore, such analog computers have been restricted to dealing with
small real symmetric matrices. The range of application of the new technigue is
substantially broader than this. The extent of this range, the reasons for the
limitation of the range, and the type of failure produced when the attempt is made
to exceed this range are all derived analytically in the text.

5. It may be adapted (with considerable equipment) to obtaining the complete
diagonal matrix and the complete modal matrix in a single computer run.

6. Its iterative numerical analogue might profitably be employed as a
digital computer process,

In spite of the above list of virtues, it seems necessary to justify the
effect that has been directed to solving on the electronic differential analyzer
a problem which seems properly a part of the digital computer's domain. A careful
reading of the literature on the subject will indicate, however, that the
algebraic eigenvalue problem is hardly a completely owned part of any computer's
domain., Programs for large digital computers in fact usually produce results
whose accuracy and utility decrease rapidly with increasing matrix size,(l) While
the present investigation makes no claims to having cured these difficulties, it
does, at least, have the comparative virtues of easy setup and fast determination of
results. Its chief application may, in fact, lie in finding good starting values for
iterative digital computer improvement. It is also expected that it will be useful
in obtaining partial reduction of moderately large matrices for selected eigen-
vectors and eigenvalues.

The development to be followed in the thesis is mainly theoretical. There
are several reasons for this. First of all, the range of application of the
technique and its inherent limitations could be well defined only by a theoretical
study. Secondly, a relatively few computer runs can be used to illustrate that the
computer will solve the problem where the theory says that it should and will show
the type of fallure produced in situations where the process should theoretically

fail. Third, the theoretical development gives a good insight into the analagous

(1) see for example, Wilkinson, J.H., "Calculation of Eigenvectors by Method of
Lanczos," Computer Journal, I, 3, Oct. 1958, pp. 1k8-152.







numerical techniques. Lastly the theoretical development produced a few math-
ematical results which if not entirely new were at least unknown to me at the
start of this project.

The notation employed will be essentially that used in Guillemin,(l) A

square matrix array of n2 elements will be represented as

- -7
817 895 a13 e e B
821 8oz 823 ¢ %oy
- ° ° ° l
[A] 831 232 %33 ®3n (1)
anl anz an3 N o . ann

Where individual elements are indicated, the first subscript will indicate the
row in which the element appears, and the second subscript will indicate the

column in which the element is located. A column or row matrix will be indicated

as
X] ="
X, (2)
X
n
or
X = xl Xz ° ° ) :XLJ (3)

respectively. Such column or row matrices may be considered as n-dimensional

(1) Guillemin, E.A., The Mathematics of Circuit Analysis, John Wiley and Sons, Inc.
New York, 1949







vectors having components along mutually orthogonal axes equal to the element
valyes, with the subscript indicating the number of the axis along which the
component is measured.

With such a vector interpretation of column or row matrices, the square
matrix is interpreted as a linear vector operator which may be used to transform
one vector into another as

CERE g
by the usual law for matrix multiplication; namely,

n

Vi =j§1 %13 %3 (5)
If the [A} matrix be supposed composed of a set of n row vectors, then each
component of the y} vector in equation (4) is equal to the scalar product of the

original x| vector and one of the n vectorsﬁinﬁ of the set

=N
LR (6)
Solving equation (4) for x] s
-1
x] = [A] y] (7)
where [A] inverse,
)
Ay A A oo 0 0 An
Ay By By o o Anzg
1-1 : 1
(4] LT R A SN (8)
Aln A2n A3n . e e Ann

where Aij i the cofactor of the element 8 of [A} ; l.e., Aij is (-1)*"9 times
the determinant of the array left after crossing out the ith row and jth columns

of [A] , and where A is'the determinant of the complete array [A] . The matrix






product

[ [ = (A7 [4] - [3] ©)

where the elements ©,, of the identity matrix [I]

1J
.. = l) i = j
1) (10)
0, 1 £
and where the elements cij of a product of matrices with elements aij andbij are
given as
n
¢y = é;l 8y bkj (11)
if

] =[] 3 ' 2

and vhere
n
€157 %—.1 Pk B (13)
if
- [ [4 b

since matrix multiplication is in general not commutative. Note that[A]-l is
defined only if A, the determinant of [A] is not zero. Where the inverse does
not exist, the matrix is said to be gingular.

The matrix obtained by interchanging corresponding rows and columns of [A1

-

is designated "A transpose" and written
(4]

with elements

Oéij = ajio (15)
If
[A} X] = y] (16)

and

X XJ =¥, 3]7 (17)






then,

o] [ fA] #) &
It follows that, in this case,
W (o) = [ = [ 4 (19)

and that therefore

A = [A]-l (20)

Equation (17) may be read, "The lenghts of the original vector x} and the transformed
vector y} are the same." The transformation thus amounts to only a rotation (with
perhaps reflection) of the vector x]a Such a transformation is called an ortho-
gonal transformation and a matrix producing such a transformation must have the
property (20). This property can be written in terms of the elements of the ortho-
gonal matrix [A] ag

i3 = —- (21)
Since the rule for obtaining products of determinants is identical with that for
determining products of matrices, (20) requires that the determinant of the trans-
fqrmation matrix,

e
and, therefore,

A= +1. (22)

The matrix [AJ may be transformed by multiplication with other square matrices
of the same order (number of rows). A transformation of particular interest is that
which corresponds to identical transformations of coordinates for a vector and for
its transform under the matrix {AJ . If

44 -] @)
where

x] = [c] g] (24)

and

1 - 197, =

(4] [e]¢]= [e] ] (26)






and
o] [4) o) €1 - [5) 4)- 7. e
The transformation
] = o)™ [4] [e] (28)
is called a similarity transformation of the matrix [A], and the matrices [AJ and [B]
are said to be similar.
One of the central problems in what follows will be to find means of obtaining

a modal matrix [I] associated with a matrix {A} such that the similarity transformation

()7 (4] [2] =N (29)

where VXJ is a diagonal matrix with elements

Ayj=0 1435 (30)
The elem.ents)\;ii are called the latent roots or eigenvalues of the matrix [A}, The
columns of the modal matrix are called the principal directions or eigenvectors of the
matrix [A] and the corresponding coordinate transformation

x} = [IJ §} (31)
is called a principal axis transformation. The eigenvectors have the property

[A] X]i = /\‘ii X]i (32)
where X}i is the eigenvector corresponding to eigenvalue;kii. Equation (32) indicates
that an eigenvector and its transform have the same direction but, in general,
different lengths. The ratio of the lengths of the eigenvector and its transform is the
eigenvalue associated with that particular eigenvector. The process of searching for
the eigenvectors of [A] may be pictured geometrically as moving an x] vector about while
observing the y} vector which is the transform of x] under the process characterized
by the matrix {A] .  There may be positions of the xJ vector in which it is aligned with
the y] vector. These are the real eigenvector positions, and these are the items sought
by the new process to be described. Note that since the equation set 33 is homogeneous,
only the "directions” of the eigenvectors may be found. Any one component of any eigen-

vector may be arbitrarily assigned. It is precisely this aspect of the eigenvector






determination which has caused the most trouble with existing techniques and apparatus.
The new technique offers some relief from this difficulty.

Equation (32) may be rewritten

[ -Afe)) =] (9
which can have nén-zero solutions x]i only if the determinant
[A] - A[I] =0. (34)

Equation (34) is called the characteristic equation for the matrix [Al . Its left-hand

mémber, which is an nth degree polynomial in;kis called the characteristic function for
the matrix [A}. The roots of this polynomial equation are the eigenvalues for [A}.

This completes the list of essential operations and the notations to be used for
them in what follows. Other results from elementary matrix theory will be mentioned
when needed.

While it is true that the geometric interpretation of the matrix eigenvalue
problem adopted in this thesis is not the only interpretation possible, it is also
true thet the point of view adopted has no peculiar shortcomings and is as simple as
any possible. Furthermore, while geometric language is employed freely for spaces of
dimension 4 or more for which thereis no "real" geometry, the specialization of the
results to ordinary 3-space usually offers a clear understanding of the mathematical

operations involved in recompense for the sins committed in n-space.






EXISTING COMPUTER TECHNIQUES FOR MATRIX

DIAGONALIZATION

Mechanically assisted means for the reduction of an arbitrary matrix to the diagonal
equivalent of its latent roots may be conveniently classified according to the type

of computer, whether digital or analog, intended to be used to effect the reduction.
This classification is essentially complete and mutually exclusive. The two

different machine methods have very little in common.

Digital Techniques

Several numerical techniques for the similarity transformation of a matrix to its
diagonal equivalent have been in used for a comparatively long time. The advent
of the high-speed electronic digital computer has spurred improvements in these

processes and the development of new processes,

Since no direct method exists for the reduction of a matrix of order higher than four
to the diagonal equivalent of its latent roots, all of the numerical techniques and
digital programs for effecting such a reduction are iterative and relaxation
routines, Such a routine is initiated by "guessing" more or less arbitrarily,

at a solution of the problem., The calculation routine then develops a second

guess which, hopefully, is closer to the solution than the first. The second

guess is used to compute a third, and so forth. The process is terminated either
after a fixed number of repetitions of this process or else when a calculated guess
differs by not more than a Tixed amount from the previous one. If the process
leads to a unique solution, it is said to converge. Convergence is thus a

central problem of numerical matrix reduction routines, Improving the rate of

convergence or rate of error reduction, is the principal aim of the newer routines.
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Willersl gives sufficient conditions for convergence of elementary indirect

numerical routines. Householder2 has presented extensive analyses of the convergence
problem in certain matrix routines. The analogue computer problem analagous to the
convergence problem in digital routines is the problem of stability. Determination of
stability conditions for an analogue computer setup seems ordinarily more easy than the

determination of conditions for convergence of a numerical routine.

The initial rate of convergence of the numerical routines - that is the convergence
reflected by the first few steps - is a function of the elements of the matrix. Since
the techniques are all equivalent to similarity transformations of the matrix intended
to reduce the off-diagonal elements to zero and the diagonal elements to eigenvalues,
initial convergence rate is materially increased if the off-diagonal elementsare small
compared to the diagonal elements. A preliminary process for reducing certain large
off-diagonal elements to zero is therefore often very helpful. The Jacobi trans-

3

formation~ is such a process.

Jacobl Transformation

The Jacobi transformation isiasimilarity transformation which may be used to reduce any
pair of symmetrically located off-diagonal elements of a matrix to zero provided the
elements of the matrix satisfy certain requirements. If the selected off-diagonal

elements to be reduced to zero be designated aij and aji’ then the requirements are

that 8549 aij’ aji, aLJ.j be all real and:that

2
(aii - ajj) + haijaji

be non-negative. These requirements are obviously always met if the matrix is real

= Willers, F.A., Practical Analysis, Dover Publications, Inc. N.Y. 1948

Householder, A.8., "Approximate Solution of Matrix Problem", Assn Computing Machj-J,
Vol 5, N3, July 1958, pp. 205-243

Willers, F.A., op. cit.

3
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and symmetric. These requirements are in fact identical with the requirement that the

eigenvalues of the matrix

be real.
The Jacobli transformation is formally effected by defining quantities p, @, and Z&
as

p cos 20

i}
V)
1
©

i1 Jd
p 8in 20 = aij + aJl (35)
p sin ZZ\= a,, - a
Ji 1J
and new coordinates §i and gj as
(cos 2[&) x, = cos (o +Z§) ési + sin (a~-/&) ﬁ:
. J (36)

\\ /‘.\
(cos ZA) X, = sin (a +L\) §i - cos (& -L_,‘,\)gj
All elements in row i and J and columns i and J are replaced by elements anm according
to the formulae

cos (a -A) +a, sin (a -A), k=1, 2,00e, 1

%k = ik ik
\ \ ,
ajk=aik Sin (G-ZJ) ’ajk cOSs (a ‘A\.)’k=l, z’ooo’ n . (37)
Oy CO® 2A= a,, cos (o +A) oy sin (o +A), K =1, 20005 1
Qyj cos 2/\ - 8, sin (o ~Z&) - 84 cO8 (a.-Zﬁ )y k=1,2, coo, n
This makes &, , = ¢,, = 0.
id Ji

The previously noted restrictions on the applicability of the process amount to

guarantees that sin ZA be not greater than one.

The formal process as presented above becomes considerably more comprehensible if
analyzed as a vector operation. The entire procedure amounts to transforming the
principal minor matrix

811 P4y

a, a,.
Ji JJ






1z

to the diagonal form of its latent roots by a similarity transformation of the entire

original matrix. This is done by substituting for original coordinates x. and xj,

i

the principal axis coordinates é;_and §; in the non-principal subspace spanned by xi
and xj» In this subspace, ZZX is the angle between the ,§ vectors, and @ is the angle

between their bisector and the xi axis.

The Jacobi transformation is equivalent to the similarity transformation

A - 2 ) [ )
g

is the identity matrix except for the elements

where

¢,, = cos (o +ZX)
ii
i3 = sin (o -Z&)
: /. (39)
dji = sin (¢ +L0)
¢., = -cos (a —ZX)
) 1 JJd
LC]u is thus also an identity matrix except for elements
4t o _cos (o -Z&)
ii cos 2[&
o o .sin (@ -/\)
ij cos %ﬁ
o . sin (a+0\) (40)
Ji cos 2/\
ot = _cos (o +/\)
"Jd cos 2/\

= lc]
cos-zzx
is the modal matrix for

831 843

ICERNS
The Jacobi transformation is not only a useful first step in preparing matrices for
other numerical diagonalization routines, but also, it may be used repeatedly as an
iterative technique to complete the diagonalization. When so used, the a

137 %51






13
elements selected for elimination at each step are usually the biggest magnitude off-
diagonal element and the similarly located transpose element. Since every element
in the ith and. jth rows is affected by the step which reduces aij and aji to zero, the

diagonalization is in general not complete after a finite number of steps.

When the Jacobi transformation is employed as an iterative diagonalization routine,
the modal matrix L for the original matrix

[4]
is generated as the product of the transformation matrices

‘),
L J1

ioev,

1) = [e], [e], -e[e], - (1)

The iterative Jacobi procedure may be pictured geometrically by considering the axis
position change in the two-dimensional i-j subspace for the case of the symmetric

matrix

4.

For such a matrix, the eigenvectors are the principal axes of the surface

F=x, [A] x] (42)
with
X x] = 1.0 (1) (43)
This is seen to be the case by writing the equations for the extremes of F
4 Gfa] (K x] )0 P ()

which are seen fo be the characteristic equations for the matrix [A} The surface
F is @&  Thyper-ellipsoid which intersects the 1-j subspace in an ellipse. The é;
and éﬁ axes found by the Jacobl transformation are the principal axes of this

ellipse. These may be reasonably expected to lie closer to principal subspaces of

Guillemin, E.A., The Mathematics of Circuit Analysis, John Wiley and Sons, Inc.,
New York 1949

Fox, Calculus of Variations, Oxford University Press







1k

the matrix [A] - that is, closer to principal planes of the hyper-ellipsoid,
F= x [A] x]

x x}:l,o-

—J

(45)

than do the original X, and Xj axes, although it may be appreciated that the

conditions under which this is certain to be true are not trivial.

(1)

Method of Lanczos:

A direct technique developed by Lanczos may be used to obtain a matrix similar to any
real matrix

4] - [o 9
with all elements of the transformed matrix zero whose row and column designations
différAby more than one. Such a matrix has non-zero elements only along the major
diagonal and adjecent to the major diagonal. The matrix is called "codiagonal" by

Lanczos.

The matrix [C] which effects the transformation of

4

to the codiagonal form is found by arbitrarily selecting a vector

c}l

which will serve as the first column of

o

Successive column vectors are then To€fd as
Al ¢

Jou[4 dy i s [ eh-w ek
G- o e g, el g,

1 Lanczos, C.,"An Iteration Method for the Solution of the Eigenvalue Problem of
Linear Differential and Lutegral Operators", Jorn. of Research of the National
Bureau of Standards, V 45 pp. 255







1 T ) 1
S ; - - ' !
cj3= {A] -y e, - Byl “ (&)
(Al o] A o
C A, ¢ c A ¢ .
~ e T e T A TR
P M €17 7C = CJl i ¢ cii-l
T ’ A ]1 i W L }i-l |
= i‘A} cl, - el - B c]
- f Jl L i i-70i-1
The preceding equations may be rewritten
N N 1 £
A e T c}i-tl Oy By Clia (48)
o '?
so that - ay Bz O ... 0 O

[ﬂ ﬂi 42.,.ﬂn = qlchoo.ﬂn 1 (ﬁ B.... O O
0O 1 a,...0 O
° ° n3no° ° °
O O O L) %—l Bn (’49)
0O 0-0...1 «

n

which may be written

A [e] = [c] [ove] (50)

or

o 4] [e] - o] g

which shows that the codiagonal matrix

[ ]
b
is similar to

] .

l .
Relaxation Methods )2 The method of Lenczos and the diagonalization technique using

repeated Jacobl transformation are ordinarily designated as iterative techniques.

The technique developed by Givens3

also belongs in this group. Tterative techniques
are characterized by a finite number of required operations at each step of the

process albeit there may be required indefinitely many steps. The name "relaxation

1

Allen D. N. dt G., Relaxation Methods, McGraw Hill Brook Co., Inc. N.Y. 1954

Southwell, R. V., Relaxation Methods in Engineering Science, Oxford Univ. Press,
N. Y. 1946

Givens, W., "Numerical Computation of the Characteristic Roots and Vectors of a
Real Symmetric Matrix", Oak Ridge National Laboratory Report No. 157k

3
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method” is ordinarily reserved for those procedures which require not only an
indefinite number of steps but which also require an indefinite number of operations
per step. Two criteria for terminating computation are thus necessary, one to
decide at what point a step is sufficiently well performed, a second to decide when

no more steps are necessary and the entire process is complete.

The name "relaxstion method"” is an abbreviated form of the older designation 'the
method of systematic relaxation of constraints". The method was first applied to
the engineering problem of calculating the deflection of a structure under load.
If the structure were, for instance, a bridge truss, the truss members would be assumed
constrained solidly between pairs of horizontal and vertical rails. A pair of
rails at some selected joint would then be assumed removed and the deflection of
that joint calculated. That joint would then be clamped again at its calculated
deflected position and the process repeated on some other Jjoint. Since unclamping
any Joint produced stress changes in the members connected to neighboring joints,
the deflection at any particular Jjoint would in general have to be calculated over
and over. Eventually however, every joint clamp could be removed with negligible
resulting movement. A decision as to what constituted negligible movement was

necessary to decide when to terminate the process.

Processes similar to that described above have been developed for solving many sorts
of problems in algebraic and differential equations. An example of use of the tech-

nique to solve the algebraic matrix eigenvalue problem is the Rayleighl method.

The Rayleigh method, as presented by Allen, is applicable only to symmetric,
positive-definite matrices. The most general problem soluble by the method is the

diagonalization of one symmetric positive definite matrix with respect to another.

1 Allen, D. N. de G.; Op. Cit.
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That is, the method may be used to find positive values, )v and non-zero vectors

d
2] - AL

Use is made of the fact that the "Rayleigh quotient",

for which

X}: 0 (52)

Q== {gj i} (53)
is stationary at a solution

a=A (54)

This is seen to be s0 by setting the partial derivative of the Rayleigh quotient

with respect to each component of

d

equal to zero to obtain the equations

4] - e 3]

which are seen to be-identical with the eigenvalue equations. This identification

x]: 0 (55)

requires that

~
L_>_.I
]
r
=
| FR——}
(-"

(56)

—
v
[t
il
—
33}
[
d

and

8] /40 (57)
for

xJ £0 (58)
The mechanics of the Rayleigh method consists of four steps, the last two of which
are repeated over and over until no appreciable change occurs at some step. The
four steps are the following:

(1) Guess a value for x]o If no better approach exists, this may be

done by making

q, -

s O O

o O
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(2) Calculate a value q, of the Rayleigh quotient

0 52 H ﬁjj; (c0)

I_._Jl

For the choice of

x|

in step (1) this would give
a

11
ay = —— (61)
11

(3) Define "residuals"

] - [ - 5 7]
and attempt to make

x| =0 (63)
‘by proper choice of

.
This is done by steps usually by making the biggest component of

g
equal to zero by a change in a component of

Ax).
Again, the component of

Ax].

selected is ordinarily the one having the biggest coefficient in the

(62)

Jy + A

equation for the selected component of

r.

J

This process is essentially only a means of approaching a solution

d

of the equation set

(4] - o (2]
However, in general, the only solution of this equation set is

x| =0. (65)

Therefore, when the solution is seen tending toward the null solution -

x| = 0 (6h)

and this requires some judgement - the process is halted, the vector
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x]l * Ax]
is "normalized", usually by makihg its biggest magnitude component a
certain size, and the next step in the process is performed.
(4) Use the normalized vector
x|, + Dx]| = x}z (66)

to calculate a new Rayleigh quotilent

A, (4] 3
%= T xk (67)

Steps (3) and (4) are then repeated over and over until a solution is obtained.
q = A, (68)
X]k = X]i (69)

In addition to the restrictions on the Rayleigh method noted above, it is not known

k

whether the calculated value of

A

i

is the biggest, smallest or some intermediate member of the set

oA A

n
An alternative technique which eliminates this last difficulty is available in the

"intensification method"l. The intensification method also has the comparative
virtue that each step of the process may be carried to mathematical completion -
the vectors constituting intermediste step solutions exist and in general are not
zero. Inasmuch as this method is closely related to the analog technique to be

exposed in the sequel, this method will be thoroughly described.

The intensification procedure may be used to find.A.and

d

in the equation set

([A] - A[B]) x] =0, (70)

[]= 4], (72)

-1

where

i

t

E Allen, D, N. de G., op. cit
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and
A =0 (72)

The first step of the procedure is, as in the Rayleigh method, to guess a vector

x| = x| (73)
A vector closer to the vector corresponding to the smallest eigenvalue A.is found
by solving for

kA"
from the equation set

[A] k x]"‘ = {B} @ (%)
The vector

k .4"
is then "normalized” in some more or less arbitrary fashion by selecting the constant,
"k".. A new vector

]

is found from

INN)

N [ )
etc. The process is continued until a vector

x}(n*l) = K'x](n) (76)
is obtained. Then

SR (77)
where

ICRRCIENL (
and where

o= A <A =<

This is to say, the intensification procedure finds the smallest positive eigenvalue,
)\l’ and the eigenvector
x]l
corresponding to that eigenvalue. This may be shown as follows:

If all the /X's of the set (;\1, )“2’°°°’)‘n) are positive real, then






any arbitrary Vector,xi' , may be expressed as a linear sum of the eigenvectors

=alX:|l+8.2X]2+ ono+anx]n

[B] x])
2] o,

=

i
4

where
x:‘lz)tl
4z=kz

°

LEIN

-

i
83>/

If, then we compute

4 <

i
—
w
[’
"
LAY

|
n
| 2aa
—
vs]
[Ihad

then
a

a
"— l ] 2 ]
X] --X-—' X1+T—-X2
1 2
The ratio of the component

41

X] "
to the other components
),
i
is bigger than the corresponding ratio of components

3y

i
by the factor :{««m— .
<1

By a sufficiently great number of repetitions of the

in

this ratio may be made as large as desired and thus

X](n) = K X] o

13
im 1

n-> s

The preceding statement requires that all the values

be. positive real although it does not really require

[A} - [A}t

x}l + 8 [B] x}z Fooot B [B} x]n

&
bot R x]
n

in

intensification procedure,

that

2l

(79)

(80)

(81)

(82)

(83)

(8k)






a2a

nor

[B] = "B]t . (85)

-

The method is thus applicable to finding eigenvectors and eigenvalues of a real

matrix

[a]

Lo
with respect to a real matrix

i

providing only that all such eigenvalues are positive real.

The intensification procedure finds the eigenvector corresponding to the smallest

eigenvalues,,%_. The next smallest eigenvalue,)(z, and its corresponding eigenvector

1
may be found by applying the method to an initial vector.
X, x!
1,2 ], —1 ] _ } ’ ] ] /
x] = X X, qu X|q =8, X|, + 8y |3 Foook B X[ (86)

The vector
has no

elgenvector component. The convergence is thus to the member of the set

X}z,l x}3,000) x]n
corresponding to the smallest eigenvalue of the set

Ay Ao A

i.e., to
x| -

In the successive computational steps, errors usually produce
X]l

components which have to be removed in the same menner used to remove this
component from

x]

to produce the starting vector

x] 1,2
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Compared to the Rayleigh method, the intensification method is seen to be relatively
orderly in that it produces an eigenvalue and corresponding eigenvector whose position
in the complete set is known beforehand, and relatively straightforwasrd . in that
each computational step has a unique well defined solution. This last fact allows
the residuals in a relaxation solution to be "completely relaxed" (made as near

zero as possible) instead of "partly relaxed" as in the Rayleigh method. The
Rayleigh method has the comparative advantage that no modificstion of the basic
procedure is necessary to find solutions other than the '"gravest mode" solution.
Furthermore, in justiceto Rayleigh, it must be admitted that he did not present his
technique in the same form -that Allen does. Rayleighl suggested the determinate
techhique for solving n-1 of the n homogeneous equations for n-l vector components
in terms of any one component. This procedure makes the convergence of the process
a function of the equation selected to be "left out". An alternative may be found

from considering the vector description of the process,

If matrices

2]
2]

be considered as sets of row vectors

- g

[ S l

[A} = |22 (87)

and

(8] = [ey (88)
P

B

then the goal of fﬁe Ra&ieigh method is to find eigenvalues such that the vectors
a. "'Aﬁ P i=l)z’eoa,n

are coplanar. In n-dimensional space, an (n-1) dimensional plane may be passed

through any n arbitrary points. This plane will be characterized by an equation

Yy X F¥g X et ¥ X = [ (89)

1 Lord Reyleigh, The Theory of Sound, Dover Publication, New York 1945, Vol I, p. 110.
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linear in the n coordinate variables X, The coefficients ¥y Wey in fact be
found from substituting the coordinates of the n arbitrary points in the equation
for the plane and solving the resulting n simultaneous equations. Any one of the

(n+l) unknowns

may be assigned arbitrarily. This amountsonly to multiplying the equation for
the plane by a.constant. rﬁmay be considered the scalar product of an arbitrary

vector.

>

x] =

(90)

e o N
[ay}
“

X
n

extending from the coordinate system origin to a point in the plane, with the vector

= 'Vlﬁféﬁ oo °’Yn| P (91)
since the equation of the plane may be written
x) =N (92)
- _

is thus obviously normal to the plane. If | be chosen progressively smaller, the
components of

-

must decrease, and thus (ﬁserves as & measure of the "size" of the vector

L...-Y..\...J'
Provided the position of the plane is fixed, then as rﬂis reduced toward zero, the
vector

.
must also approach zero except in the case where the plane includes the origin of
coordinates., In Allen's version of Rayleigh's process, the vector

.- ,
plays the part of approximation to an eigenvector. It is to be found in spite of
the facts that

[=0 (93)
and that the plane through the tips of the vectors
NI TR -2
does not includes the coordinate origin. There would seem no lcuss of generality

and a considerable gain in computational simplicity, to result from making






[—Iz YN, (914}
say, so that, to find the jth approximation to an eigenvector, we set

Ji-‘i) X]J =1.0, i=1%3..,,N (95)

Figure I shows the three planes

., x|= 0 (96)

together with the vectors

(o, - g

o

| SRS |

A_B

—J

and

where

e 436 (97)

Bl =11 - 61 0 (98)

giving, approximately
;kl 1.95
A, = 3.73 (99)

)t3 9.35,

]

(1

it

If any value
.y # A (100)

were computed from the Rayleigh process just proposed, then the plane through the
tips of the vectors

Qg B

would not include the origin. The vector

)

normal to this plane would thus not be an eigenvector. If this vector be computed

from the equations






Figure I

Principal Planes and Vector Sets
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1
( [a] - o)) o], =1 (101)
1
then the "length" x, of the vector
X
Js
must be the reciprocal of the distance of the plane from the coordinate origin.
The length of the vector
1=Vl 4 x? . 0x" (102)

thus serves as a direct measure of the excelle nce of the approximation at each

step of the process outlined.

Difficulty occurs in the process if two or more of the vectors

a.-kﬁ

—y —q

are nearly coincident, in which case a small error’ .in the computed value for,l

can produce a plane through the tips of the vectors

Lo.g..,.}l - g L._ﬂ...Ji J q - A
markedly different from the plane of the vectors

a.-kﬁ .

——ti Celed]

This difficulty is common to all versions of the Rayleigh method.

The geometric picture of the intensification procedure is somewhat simpler than
that for the Rayleigh method. The ith step of the intensifdcation procedure pro-
duces a vector

@
such that

[A] x](l) = [B] x](l*l) H
that is, the vector found, transforms under
4]

into the same vector as the transform under
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2]
of the preceding vector. Any starting vector
(o)
is thus led through a definite sequence of positions toward some position such that

(4] X}(i) . )\j B X](i—:L) A (5] «, = (4] X]J- (103)

J ¢d

vhich is a real eigenvector position. 'In the elementary problem where

——-

10 0...0 |

O 1 0...0
. Yy D L., 0

@ 0 0 ... 1

the successive positions of the vector are given by successive "powers" of the

[
on the vector; i.e.
R B 2 ]2 5JC)
x](z) = [A]'l x}(l) = [A]_Z x](o) (105)
x]<n) <[] €
etc, In the case where
2]
is not the identity matrix, the successive vector positions are given by powers
of

operator

LRI

(4] 5] (106)
operating on the original vector. A sequence of positions for
Loz 1)
[A] = |2 5 3 (107)
1 3 6]
8] = [1] - 100
- 010 (108)
LQ 00 1

x:],(o) -0 (109)
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is shown in Figure II. Note the approximately geometric reduction of angular

error and the monotone convergence (no circulation about the limiting position).
Both characteristics are associated with the eigenvalues of the matrix, the first
with the fact that the eigenvalues are distinct, the second with the fact that they
are all real. The basis for these statements is developed in the discussion of

stability of the similar analog process to be developed later.

The problem of convergence is a central one in numerical interstive processes. A
thorough treatment of the problem in iterative solution of simultaneous linear
algebraic equation sets, (including those "approximate" to differential equations
and boundary values) is given by Householderl¢ Householder considers two
questions: First, to what field of problems may the matrix process be applied
with guaranteed convergence? Second, how maydthe process be defined to yield

as rapid convergence as possible? To answer the rirst question, that ot simple
convergence, Householder detines an error vector equal to the difference between
the solution sought and the approximate solution obtained at any step of the
process. "Norms" are then defined for this vector and also for the operation

matrix. The first is called Ne’ the second Nm. The process converges, then, if

lim Nf‘n N, = 0. (110)
Hpoo

A "steepest descent” solution is obtained if for residuals

r, = E; aij X, - b, (111)
J
and
E: 2
S =1/2 r,”, (112)
i
& change
A 25 5 Or
X = -k an = =k - P -k _r, a]j (113)

is made in the Jth component of the vector

x]

Householder, A.S., "Approximate Solution of Matrix Problems", Assn. Computing
Machy - J, v5n3 July.1958, pp. 205-243. This reference contains an extensive
bibliography
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X

Figure II Intensification Procedure Iterants
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where

r = ,I’l, rz’ voey rn " (ll"l’)

al‘].
o]y = eyl (115)

a .
nJd

and

x] = (116)

The function S defines the crater down which the process path leads most steeply.
While some such error function may be defined to make almost any convergent process
seem optimum, the above definition is reasonable and uncomplicated. Certain.

other aspects of the discussion are, if not unreasonable, at least certainly not
uncomplicated. The corresponding problem of stabilitylin the continuous analog

process is considerably simpler,

Analog Techniques

A number of analog computers have been designed to find eigenvalues and eigen-
vectors of real symmetric positive definite matrices. Certain of these will be
described in the following paragraphs. Almost . without exception, such machines
have been modified versions of machines whose basic intent was the solution of sets
of simultaneous determinate algebraic equations. The stability of such equipments
is of primary importance. Stability can, in such cases, be inferred from that of
the simultaneous equation apparatus. The next few paragraphs will present a
review of several papers on this particular topic, after which the eigenvalue

machines will be described in detailed.

An analysis of the analog equation solver stability problem is given in

Cederbaum, I; and Fuchs, A. "On the Stability of Linear Algebraic Equation Solvers",
Actes des Journees Internationale de Calcul Analogigue, Presses Academiques
Europeens, Strasbourg, 1959, pp. 174-178.
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A model equation solver employing coefficient pots, standard voltage supplies,
and summing operational amplifiers is proposed and analysed. The model is as

shown below.

R * *2
X, o— 65;} AVPT{::>—ﬂJ X, © \\}/ ~A\/—r{:>>—o
R ]
*2 ° @ /\/' *2 w /\/_ ete.

el -
+100 | +100 ;__‘4\/_.

Figure III1
Model Equation Solver

to solve the equation set

Bip Xt Bp Xt el By X, = bl
aZl X+ Byp Xg + oen By X =Dy (117)
a1 ¥t 8 Xt eeuta X o= bn
or
[A] x] - b] (118)

The model is obviously not very general since it immedistely requires
aij:> 0, for all i and j,
a condition not often encountered in simultaneous equation sets. Apparently the
model was chosen not for its practicability but primerily because it leads to a
simple stability analysis in terms of the input-output relationship or "transfer
function" of the high-gain amplifiers employed. It may be noted in passing that
this is not the only :analog computer stability analysis that suffers from an
impractical computer setup. Such a shortcoming seems, in fact, rather the rule than
the exception. In any case, with the setup as shown, Cederbaum and Fuchs find

a set of n characteristic equations

n+1 .
/lia-—a-(“iy—, i=1,2,...yn (ll9)
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where )Li is & characteristic root of the coefficient matrix

4

and where G(p) is the operator form of the differential equation relating

high-gain amplifier input and output, i.e.,
o]
e, o>
g

e, = ¢(p) e (120)

A Nyquist plot of G(Jjw) for all of w must then not encircle any point

- jfii— ,i=1,2,...,N, (121)
i
if the system is to be stable, Using a theorem a Parodi's, Fuchs then goes on to
state sufficient criteria for stability in terms of the elements of the
coefficient matrix and gains of the high-~gain amplifier at two particular

frequencies,

If Cederbaum and Fuchs's equation solver were made more practical by allowing co-
efficients of either sign, then the simple analysis presented would .not apply.
This is because additional inverting amplifiers would have to be used, each of
whose outputs would constitute an additional independent voltage source, raising
the degree of the characteristic equation for the system and obscuring the
relationship between the system stability and the characteristic roots of the

system. For the praétical system each amplifier would be associated with an

equation
n+l n+l Q. e,
1 1 i j
e . vy === -0 (122)
1 G(p) & Ry =1 By

R, e,
o, iy
O
e o f Ri,n+l
n+l _

Figure IV
Illustration of General Summer Equation
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where

%, nel ol T by (123)

and where not all the R's are necessarily identical. This formulation of the
stability problem obviously applies to setups for solution of differential
equations by merely replacing the Rij’s with complex Zij(p)’s° Here again the
technique adopted in the literature has been to simplify the model setup

enough to make the analysis possible even if the resulting setup isn't practical.
A few genéralizations about stability even if somewhat imprecise, will be found
helpful. First of all, for the sorts of amplifiers usually used in electronic
differential analyzers, the effect on the characteristic roots of a given
differential equation setup for solution on the analyzer produced by amplifier
dynamic characteristics is the following: A slight shift of the equation
characteristic roots is produced. A group of high frequency, high damping
ratio roots is added by the amplifier dynamics.ﬁgl) Both these effects

can ordinarily be neglected in the solutions generated on high-quality

equipment.

The above generslization can be used to produce s good first approximation
to a stability analysis for the practical equation solver. If the amplifiers
producing solution variables X, be transformed from summers to summing integrators

by adding to each of these a unit feedback capacitor,

a.. 1 r‘%l i
il X la‘ ' . i

a, 1 il/ \/

X o

12 '4\/.
—A—

O"I—‘ll—‘m
= :;’:l:f
»
o]
O

Figure V. TIllustration of General Integrator Equation

1 MacNee, A.B. "Some Limitations on the Accuracy of Electronic Differential
Analyzers“, Proc. of the IRE, V. 40 V 3, March 1952, pp. 303-308.
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then, independent of how many inverters are employed to produce the equivalent of
negative coefficients, the differential equation associated with the resulting
setup has characteristic roots almost exactly the negatives of the coefficient
matrix eigenvalues. In brief, the setup is stable if the matrix eigenvalues all
have positive real parts. Furthermore, the steady-state outputs of the integrating
amplifiers are, provided they exist, exactly the solution values for the algebraic
equation set. The important proposition introduced here which will be used in

the sequel is that if an analyzer setup correspond to a differential equation,

then the setup will be stable if the differential equation have only roots with
negative real parts. Inclusion of amplifier dynamics is maybe important to

dynemic error analysis but is rarely of concern in static stability studies.

Mallock's Computer: Hartreel describes an a.c, computer developed by Mallock

which uses various numbers of turns of wire on transformer cores to represent the
coefficients of a set of simultaneous algebraic equations. The coils corres-
ponding to coefficients of any one equation are connected in series with a coil
representing the size of the constant teérm in the equation, The constaht term
coils are all on a core excited by an a.c. source, The arrangement is shown in
Figure VI. The flux in each core will then be proportional to one of the

unknowns, Xs5 in the equation set

ZPQ__-————;I 2 2///7«?‘2/7/’\'19\

2SN e~ SR e 1SS | %=
x A sy v N R 7
L a1 T _% ]
T/ i !/ 1l

NS,

3
\
ly

lj%l <F%ig
Figure VI.

Mallock's Computer

1 Hartree, Douglas R., Calculatory Instruments and Machines, The University
of Illinois Press, 1949,
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{AJ x] = b] (12k)

or,what is the same thing, the voltage across a standard size coil on each
transformer can be read as the unknown. The voltages across the individual
coefficient coils are proportional to individual terms, aij xj, in the equation
set. The currents, iij in the several circuits are proportional to the solution

elements of the equation set

(4], 1] - kx| (125)

where k is a function of the magnetic permeability of the transformer coils.

Hartree states that the instrument can be used to solve the eigenvalue problem

[A] x] - )kx] (126)

although this apparently requires considerable modification of the basic

apparatus., The actual modification procedure is not described by Hartree.

Hughes and Wilson's Computer: An a.c, analog computer more explicitly designed

to solve the elementary eigenvalue problem was developed by Hughes and Wilson.
Since the passive elements of the computer are bilateral, the computer is useful:
onlg for symmetric matrices., Since only positive elements are used to represent
eigenvalues, the device is further restricted to real eigenvalues. The

arrangement of the computer is shown in Figure VII.

A
, I\/ o —
1 [ '
‘ B A, 'z 6/.//‘\/
7 ——77I 7 43
7 Z I—
_ — N
— - | & };?1 Cas Loy
. _% L c z
I Z L oy
A |
| i
— — |
. | | I
L |
o
B —
Figure VII, v 725(

Hughes' and Wilson's Computer A
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The x's are represented by voltages at the several nodes. Positive coefficients
are represented by capacitors, negative coefficients by inductors. Writing the

equations for current flow to each node,

A? .
-B.x, =A%+ a 2(xz-xl) +al3(x3~xl) +°°°+aln(xn'xl) = i

171 1 1
n
4
(-Bl-ggé 8y, -;\')xl + By pXote ity X = 0
)
2
8,1% * (-32_—5;£ 83 -,l.)xz tapy Xgbo.tay X =0 (127)
#e
) n-1
2
8.9 X ¥ 8, X+ an3 x3+,.e+(-Bn- é;i anj ~,k )xn~s 0
So that if n
By == 21 %y (128)

then except for the finite right hand member of the first equation, the equation

set is exactly

] - Al

The x's will be small except when the capacitors.are.adjusted.for resonance.
In this condition the voltages become finite and the branch currents become
large, making the current input i relatively negligible and the voltage equations
approximately the eigenvalue equations. Dissipation in the passive circuit

elements saves the system from destruction.

Adcock's Computer:: A machine more like the majority of modern analog

eigenvalue circuits is described by Adcock.l This machine employs a ganged
potentiometer to be set to the several real positive eigenvalues, NZ coefficient
pots set to the matrix element values, and N servomultipliers, each with N+1
identical input elements, N-1 of the servomultipliers are used to find

solutions of the N-1 determinate equations

3 Aijxj -ax; = 0, 1=23,...,N (129)

where g represents the setting of the ganged eigenvalue potentiometers and where

1 Adcock, ,W. A.,"An Automatic Simultaneous Equation Solver and Its Use in

Solving Secular Equations", Rev. Sci. Instr., 19:181-187, 19L3.
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Figure VIII  Adcock's Computer
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some one element X, is set arbitrarily. The remaining servomultiplier is used

as an error indicator with output representing

Z:A. X, = gX

q=A (130)
and

[A] x]:. )\x] (131)

An electronic differentisl analyzer circuit described by Harbertl differs
from Adcock's machine only in the substitution of summingrpperatipna;

amplifiers for the N-l servos used to compute xz,x3,., ‘
substitution of a meter for the error indicating device in Adcock's machine;

;X and in the
n N

The same limitations that apply to Adcock's machine apply also to Harbert's diff-
erential analyzer version of it, It is apparent that any of the devices described
could be set up in equivalent mathematical form on an electronic differential
analyzer. The circuit to be described next differs in certain essentials from

any of the preceeding.

A New Technique for the Diagonalization

of Symmetric Matrices

The technique to be described will be presented as a set of simultaneous
non-linear differential equationé suitable for solution on conventional electronic
differential analyzer equi?ment. . The set up of the problem is relatively
straight forwvard and principal attention will therefore be devoted to the
equations themselves, There are three pertinent questions regarding the

e@ﬁations which must be answered. First, do the equatibns have singular

points corresponding to solutions of the algebraic eigenvalue problem?

Second, are these singular points stable; i.e., will the analyzer behavior lead
to a solution?  Lastly, how may the problem parameters be scaled so as to

guarantee a solution and so as to obtain the most nearly accurate solution

1
Harbert, F. C, "Analog Computer Techniques", Electronic Engineering, V 34
N 384, 385, February 1960, pp. T4-77, March 1960, pp. 166-169.
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which the machine can produce? These three aspects of the problem will be
taken up serially, concentrating only on the equations for the first step
of the diagonalization procedure. Finally the equations for the remaining

steps in the procedure will be examined.

o
Equations for the First Step , x] = y] -ng_.y] x]

The form of the differential equations used to find an eigenvector

x]
n)
and an eigenvaluelkn, satisfying the elementary eigenvalue equations

(4] =], - S ], (132)

seems most reasonable if the process that led to the development of the

equations is presented first.

It was known initially, that the intensification procedure, computing

serially
@ - [ )
QO O 2

etc., produced in the limit, at least in certain circumstances, an

eigenvector

lim x](n) = xﬂl (134)

n—reo

where
(4] x|, = )Ll x|, (135)

It was known for instance that the procedure converged to the smallest value,

/\l of the set of values (Al’ )&2, oo

all the values of the set were positive and real. Positive realness is also

‘ln) whenever the matrix was such that

a sufficient condition for the solubility of the equation set by an array of
summing operational amplifiers. A set of simultaneous algebraic equations

cannot in general be solved by such an array unless either the eigenvalues of
[A]all have positive real parts or unless either the matrix or the setup be
modified in some way. Hand calculation of examples showed that\positive reslness
of the matrix eigenvalues was not essentlal to convergence of the intensification
procedure. An alternative procedure was therefore sought which would retain |

the great virtue of the intensification procedure of producing a unique






L1

eigenvalue solution and which would also have a direct summing amplifier setup

which was not unstable in circumstances where the numerical procedure converged.
A rather obvious solution of this problem is the iterative procedure
6 - (1]
O - [a] 4 (]2 W] (136)

etc., which must have the same properties with respect to the matrix

[

that the intensification procedure has with respect to the matrix

of

i.e., the procedure must converge to a vector
- 1 (n)
x]n = lim x] (137)
where
_[AJ x]n - ’ln X}n (138)

where ;kn is the largest positive eigenvalue of the set of eigenvalues of the matrix

4.

Also the operational amplifier setup corresponding to the modified procedure
is simply an "open-ended" array of summers -- one summer for each equation with

no interconnection betweén summers -- about which there is no question of stability.

Equations (136),
JO. [ 0 (156)

might now be modified for automatic solution on the analyzer by giving to each

component, X of the vector

x]

a velocity, gi’ proportional to the difference between X, and ith component of the
[4] =]
d

transform

of
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That is, we might solve the set

) - [a] o] - ], (139)

This will not work because the modulus,

X + X + +
l ' 2 oo XN
]

changes along with its "direction" (except in the singular case 'Kn = 1.0),

of

In order to obtain a singular point not at the origin
x| = 0 (140)

the linear equation set (139) must be made non-linear. A suitable procedure might

be to make the velocity vector
d
X

lie in the plane of

d
[4]

and be normal to

X],’

i.e., such that

and

&, x| = o, (141)
This modification changes (139) to
%] = X x] [A] x]-_EJ[A] x] xi. (1k2)
3

lies in the plane of

x]
4] =]

and
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since it is a linear sum of these vectors. (142) also satisfies (1Ll), as may

be shown by direct substitution. Equations (1hz) may be described geometrically as

a process wherein an arbitrary initial vector,

x]

pursues its own transform,

4]«

while keeping its length,

2 2 2 1/2
‘\/%l + Xk et Xy = (L%, x] ) s

constant. A remaining difficulty with (142) is the fact that this equation

set has an infinite number of singular points. It has, in fact, a "singular
line" which is the eigenvector direction. It may be transformed into a set

with at most two stable finite singular points by making the indicated modulus

e

X x] = 1,0 ;

i.e., by making

2] = [a] x]-cx[a] ] o

®O
| S— )
]
«
| VR |
1
[
>
—
w
| W

where

]

7] = [a] +]

Stability: Equations (145) will now be shown to have the required stability

properties, after which the problem of scaling for machine solution will be

considered.
The unit sphere,
X ‘x]= 1.0,

may be considered a principal surface of the set

8- 3] -z 9] o

_5;4y] - _5_,y]_z;,X]

O,,X,X]: 1.0

(1L43)

(1Lk)

(143)

(146)

(1h)

(145)

(1L6)
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This surface contains singular points of (145) where it intersects principal

direction of

for
2] = 0 = y] - ] 4] (147)
implies

(4] ] = [a] «] %] (148)

x] - o] (1k9)
L :

and thus, from (148) and (151)
(4] o] = A . (152)

If there are N distinct real values of'zx, then (152) and (1L46) together
define 2N singular points of the system (lMS). One other singular point is
given by (149). There are thus 2N + 1 finite singular points of the system.

The steady-state position of the vector

J,

if such exist, must be at a stable point of the set of singular points.
To determine the stability of the singular points requires a linearization of
the equations of motion in the neighborhood of each singular point to determine

characteristic roots of the linear system in that neighborhood.

Near the origin

8] = [a] ) - o [a] ] o]
[A] X] : (153)

approximately, retaining only the terms in the right-hand numbers linear in

the components X, . The characteristic roots for the singular point at the

origin of coordinates are thus simply the eigenvalues of

4] -
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Thus, the singular point at the origin will be unstable provided

[

‘has any eigenvalue with positive real part.

Now in the neighborhood

—\/g—l'z + §22 I+“'+§N‘2 = (Si ﬂ e < s (154)

of a singular point

where

[A] x]i A, x]i (155)

x| = x), + ] (156)

equation (145) becomes

°

J ¢ - ;
B[] £] At £1) €8] £l €, o
Ty [A] §J§]‘ g [A] §]X]i - f] [A] x]i §]
- £]la] x]i X]i - ey (4] s ] 'M (1)

or approximately

Ee (4] & ey [1) ) -£ W] 4, 4,

- Xy [A] X]i §] (159)

For

[4]
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symmetrical, (159) becomes

€le [ 8- 20, x, &4, -2, €. (160)

The linear system (159) has a "radial" principal direction

§]= a X]i (161)

with
g]: aAi x]i - Zaki x]i - a/Ai X]i = -Za)\i X]i (162)
= '2/\1 §]

It also has principal direction

JE ) (263)
where
(4] ], =7, (264)
and
a+ b X, x]j =0 =£ X]i (165)
Substituting (163), (164), and (165) into (159)
] x]l+b)( ] -a/\:.L x]i—b )tj__g_c_,i X]J x]i
X]l b)kl—J ]i X]i - aki X]i - b Ai X]J”
x]l + D Aj -/\i x]j + aAJ. X]i + a)\i x]i
. a(AJ -)&) K, + oAy -Ap) k] (166)
€l (A, -4 é] (167)

Thus, for all K's real (as must be the case for

[4]
symmetric) and distinct, there are N+l finite singular points, one at

x| = o] (168)
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with characteristic values

Ao, )

N

and with principal directions

x] = X]i (169)

where
[A] X]i =/\i X]i' (170)

The other N singular points are at

x| - x|, (171)

where
[A] X]i =’li X]i (172)
and

X X]i = 1.0 (173)

with characteristic values

Ay Ay Ay Ay Ay 2 h, Ay A A <A

-1 i

and with characteristic directions

x} =8 X]1 + by XJi’ &2 X]z * by X]i””’qi—lfxlmsl»+ i1 X]i’

x]i, 8,1 i1 * P x] ey x]N + by x]i (17h)
where
ay+byx, x|, =0 (275)
and
[A] x]j - /\J. x]j. (176)

Again, for

[4]
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symmetric, the system has in general exactly two stable singular points; namely,

those points where the principal direction

x] =k X]N

corresponding to the largest positive value ;KN’
A7 A ™ TATA,
)‘N:> 0,

pierces the unit hypersphere
X X]= loO-

The prinecipal directions at this point lie along
J,

with characteristic root,-z;kN and normal to

X]N

in two-dimensional spaces defined by
x
and. by other principal directions
x]i, i=14...,N-1,
where
[A] X]. =A. X].
i i i
with characteristic roots
A, —’Mv , i=1,2,...,N1.
The unit hypersphere

[SeS=tt |

x x]: 1.0

(177)

(178)

(179)

(180)

(181)

(182)
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is a separatrix, since, in the surface, the velocity,
o)
X ’

is everywhere either tangent to the surface or else is zero.

Also, the lines

x| = x x], (183)
[A] X]i = A.-L X]i (18k)
X x]i - 1.0 (185)

are principal directions(principal one-dimensional subspaces) since, then,

8] =[] «] - . [a] «] o
= kAi x]i - %3 Ai X]i = k)(i(l-kz) X]i (186)
2] A, ) . (187)

And in fact, the two-dimensional subspaces
x| - a x|, + x]J. (188)

where

[A] X]i = Ai X]i (189)
[A] x]j = A.j x]j (190)
X x]i =X, x]j = 1.0 (191)

are principal subspaces, since then,

9{] = a)&i X]i + b)(j x]j - (a3 )Li+ az bAJ. X x]J
+ azbli Xy x]i + a b’ AJ) X]i + (a.ab/\i + aba)kj X x]
+ abzki X, x]. + b3A.) x]
J 1 J

= o x]i+f3 X]J. (192)

J

J

Thus, neither the unit hypersphere nor the principal two-dimensional subspaces spanned
by pairs of eigenvectors can be crossed by a solution path. Each eigenvector

thus forms an edge of 2ZN-2 principal N-dimensional subspaces of the transformation

)« =8 <[]« fa] o] o] (193)
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on each side of the coordinate origin and both inside and outside the unit
hypersphere, An initial condition for the system must lie within one of these
principal subspace 'wedges" and the system must then move toward an edge
(eigenvector) of the wedge. The appearance of the system boundaries for

N=3 is sketched in Figure IX. A singular point, P, is shown in these figure,
together with the principal directions of the linearized system in the
neighborhood of P. Actually, this figure is a little more general than the

case considered so far, since for

[A; = [A]t
[a] <, = A, (194)
[A X]j = ;kj XJJ s

Eog EA]t Ay = xy, [A] (195)

and

X [A] x]j = /\J. Xy x]j . (196)
thus

(A=A ey x]y =0 (297)
and therefore

X x]j -0, A, ¥)kj, and [A] - [A]t : (198)

Thus for a symmetric matrix, the principal planes of Figure IX would be drawn

mutually orthogonadm:.

Scaling: Before equations (145),
%} = [A] x] - _EJ[A] x] x] (1k5)

can be solved on an analog computer, the matter of the relative magnitudes
of the quantities X, and the computer voltages must be considered. Several
matters can be resolved immediately. First, since the equations are non-linear,

multipliers will be required. A sort of scaling of the dependent variable X;






Figure IX

Singular Points, Lines, and Surfaces for N = 3
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H(l)

the unit of x equal to the unit used for multiplication,. 100 volts on most

called "machine-scaling is therefore highly convenient. This scale makes
electronic differential analyzers. ©Second, since the matrix elements are
coefficients for the equation set (145), it will be convenient to represent
these by coefficient potentiometers whose maximum setting is 1.0. This

may be done consistently by multiplying all elements of the matrix by

the same number, Choice of this number is tantamount to choice of a scale
for the eigenvalues. This choice is aided by first drawing a computer model
for equations (145) to show how this choise affects the set-up. Accordingly,
Figure X shows the first computer setup employing equations (145). The

particular form of the equations used was

Y]'.LY]X]

[] =] (145)

®O
—
H

e
[ S——— ]
]

r—
=
—
il

[ AVEEN S AV]

w w

= W

(199)

The following points are c¢lear from Figure X. Voltages corresponding to the

individual components of
d
and
) = (4] +]
are developed, as is the voltage corresponding to
9]

All of these voltages must be less than the maximum possible output voltages of the
amplifiers. Scaling to make the voltages all less than the unit multiplier
voltage ( follow-up pot voltage ) is in general allowable, Since

2 2 2 1 .\1/2
_\/;l XXy = (x, x] ) = 1.0 (200)

(1) Korn, G. A., and Korn, T.M. Electronic Analog Computers, McGraw Hill

Book Co., Inc., New York, 1952







Servd
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)204——{> J<, N | & ervo
e ! - V%

/
A

X 5——/\/r——(> ’\/, 7 Servd
-Xgz l/

Figure X Computer Example Setup for Equations 145
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in the steady state, the

d

component voltages will be safely scaled. Again, in the steady-state,

y] = [A] x] A x] . (201)

max.

The

d

component voltages can certainly be developed if
A,

This condition may effectively be obtained by multiplying the matrix

[4]

by a scale factor k, such that

-
= 1,0, i =1,2,...N . (202)

k | A nax. = 1.0 (203)
Then if

[A] x]m =Amtat;x x]m ’ (20k4)
k[A] X]m =k Amax. x]m = lI'nax X]m ) (205)

The factor k is thus a scale factor for the eigenvalues and does not affect the
eigenvectors. A suitable value for k may be found from a theorem of Wilczynski,

n(1)

"The coefficients of a unique canonical form are invarié.nts, and from a statement
in Birkhoff and MacLane(z)

"One such invariant (under the group [A] [P] -1 [A] [P] ) is

(1) Wilczynski, Proc. Nat. Acad. Sci., k4, 1918, 300-5.

(2) Birkhoff, G. and MacLane, S., A Survey of Modern Algebra, The Macmillon Co.,
New York, 1958, p. 313
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This invariant is a function of two of the coefficients of the characteristic

function for

N N-1
'[A] - )k[I] = ( —,l )+ 1 ( -)&) +...-cl;k + ey (206)
then
cC = ‘A'
o
N
¢y = 2: A , (207)
=1
where
A,
ii
is the principal minor formed by crossing out row and column i from ‘A l, (208)
N
ey = ) 8y (209)
i=1
and
N N
z N-1
DY a,, a,, =¢ + (-1) 2¢c (210)
=1 3=l iJ Ji N-1 N-2

Now, invariant (210) is obviously equal to the sum of the squares of the

eigenvalues of

[4] 5
N N
Z Z 855 %31 < 2.

i=1 j=1 i=1

2

A

i (211)

The square root of this invariant must therefore be larger than any of the

eigenvalue moduli;

\/i._.ij: j=Z_1[\I %9 %3 = ‘A‘Imax ’ (212)

The reciprocal of the square root (212) is therefore a satisfactory maximum value

for the matrix multiplier, k. Letting






[ =2
N N
5 )3 8, 8.
{=1 =1 Y
the eigenvalues, ,l', of
1
[4]
will obey the inequality
2,
and the eigenvectors of
[4] ¢
will be identical with those of
[4]

Furthermore, since

= 1.0

a satisfactory scale for

4]

is

Loy ﬂi==£ﬁ[qt[qiqi=)&2

4],

-

1.0

56

(213)

(202)

(203)

(20k)






in the steady state. Thus, the ¥ voltages may be satisfactorily developed.

Furthermore, with the above scales, and again in the steady state

-

Xy ﬂi = AiQLi 41 1.0

and the x,Ay} voltages may be formed by amplifier outputs.

Finally, then, with

[A] N [A]t ’

the equations

(o]
—
I

y]ziﬁd y] X]

] = (4] 4

may be solved with an analog computer setup of the form shown in Figure X

]

provided

For the problem shown in Figure X

N N
2
2% ;gl 255 = 2T

.

1

with this scale,

N
i

= 0194k
)( = ,1387
AL = 7418

approximetely. The setup shown displays ;k3 and
d
3

as shown in Appendix II, Figure II.

o7

(205)

(206)

(207)

(208)

(209)

(210)

(211)

(212)

(213)
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When the first eigenvalue and eigenvector have been successfully obtained using

the intensification procedure, succeeding eigenvectors may be obtained by

applying the original technique to a modified vector, the modification involving

a8 computation using the previously obtained eigenvectors. Provided the
matrix is symmetrical, all that is necessary is to subtract from the trial

vector all the components of that vector along the previously obtained

eigenvectors. Geometrically speaking, we know that the remaining eigenvectors

must be orthogonal to those already found, consequently we look for these
only in the (principal) subspace orthogonal to the eigenveétors already

obtained. Trials of several.analog variants of this procedure led to the
conclusion that a straightforward formulation of the exact same technique

is as stable and convenient as any of the easily formulated alternatives.

Accordingly, the eigenvector corresponding to the next largest member of

the set of eigenvalues of a symmetric matrix is obtained from the formulae

3]

y]_' - X, Y]' X]

where

<
[ — )
I
<<
| VS |
i
[
=
S
>
[ ——
=

and

Now, since as shown in the development leading to equation (198), the
eigenvectors of a symmetric matrix form a mutually orthogonal set, all the

eigenvectors except

3JN

lie in the principal subspace defined by

y]'

(21k4)

(215)

(216)
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as given in equation (215). There are several means of implementing, on the
computer, equations (214) and (215), one of the simplest of which follows
from a result deduced in the following stability analysis of these equations.

The stability of equations (214) and (215) may be conveniently inferred from

considering the equivalent set
8 = v]' -x.v]" (214)
)" - (], x - [4] x| x [4] x| X]N ° (217)
This mekes
(2], = ([1] - X]N ) [A] (218)
sere
=40 (219)

as may be verified by writing out equations (217). The formulation (217)
makes the second step process identical with that for the first set except

for the substitution of matrix
(],
for

4] .

The stability properties of a setup corresponding to the second step equations
follows immediately from the analysis of first step stability . The only

remaining problem is then to obtain the eigenvalues of
It

then
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/\i X]i’ Ai * AN
(4], ], - o], A, = Ay (220)

since

X 0 x] = 0, /\i # )&N (221)
and

X N X]i = l_,O, Aif:AN‘ (222)
The matrix

[a],
thus has the same eigenvectors as

[4]
It has also the same eigenvalues except that corresponding to

X]N
it has the eigenvalue

| BN

lN =0 . (223)
The set (214) (215) (216) has then exactly two stable singular points

x = x|, (22k)
where

XNl X]N—l = 1.0
[A] X]N-l =/\N-l x]N-:L
3 > = )

AN-.lv N-2 " Az A (225)
provided only that

A .= o. (226)

N-1

The principal directions of the linearized system in the neighborhood of these

singular points lie along the eigenvectors
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X]i ) 1= 1,2,”.,1\]

where
[A] X]i =Ai X]i (227)

with characteristic roots of the linearized system

XA oA, Ay LA, A

N-2 N-17

-2\

N-17° N-17 N-1

respectively. The principal subspace boundaries are the same as for the
first step. The stability characteristics are altered by substituting zero

for eigenvalue )kNa It may be noted that the singular points

x]N’
[A] X]N =/\N X]N
Xy x]N = 1.0 (228)

which were stable for the first step are now unstable with linearized system

characteristic roots

Xy Xy h

N-1° o .

The zero root appears troublesome, since it applies in any neighborhood of
the line

X] N

independent of location along that line. This appearance proves practically
deceptive since the remaining characteristic roots in such a neighborhood normally

includes at least one strongly unstable root.

Equations (214)-(216) may be mechanized in any of several ways. A straight-
forward technique would be to use a setup like Figure X with summers added

to form components of

y]'

as shown in Figure XI






/ /
Xpt
L&//v)’] /xN// T / A / A
"’ - N l>
/X,W/J\l i ¥’ Vv )70
i ) /Xpz/ / [Q / [Q
T el |V Loy
| /
% ° v / /
/X/Vj/ l/%/ J\/ l/-)\/yzo
| /
X% © v

Figure XI  Computer Example Setup for Equations for Second Step
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This adds to the original system 2N potentiometers and (2N+2) summers.
If sufficient equipment is available, the entire circuit of Figure X could

be duplicated and the additional pots needed to compute

y]'

obtained as multiplier pots from the part of the setup used to obtain

If only a limited amount of equipment is available, the setup used to
obtain )\n could be modified to obtain )“n-l and

X] N-1

by resetting the coefficient pots from the elements of

A

. J

to elements of

A = 1] -y (] (229)

L

Succeeding eigenvalues ;ki and corresponding eigenvectors

J
1

may be found as steady-state solutions of equations

2 - v] - ]t A | (230)
where
y]" = Y] - Xy y] X]N Tl Y] X]N—l X 3’] 4’&1
(231)
s) - (4] = (232)

which is equivalent to

y]' = [A]i X: (233)

where

[A]i = ([I]' X]N—X—'N' - X] N-lvxmwi"“"X].i-hj.iJi-+1) M (234)

These equations have exactly two stable singular points at
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[A] x]i = )\i x]i (235)

provided
A.>O (236)

where

)Li>)‘i-l>'“'>kz>A1 (237)

symmetric, all of the eigenvalues may be obtained from the described procedure

provided

)tN> AN-1> ces "‘)Lz" )\f 0. (238)
If, on the other hand,

Ai-l> 0 >)ti’ (239)

the procedure will fail at the ith step. The remaining i eigenvalues may

be obtained by applying the same process to the matrix

- [4]

which has the same eigenvectors as

4

and whose eigenvalues are the negatives of those of

2] -

Succinctly, the process works without modification for positive definite
matrices and works with minor modification for symmetric indefinite

matrices.

If only the moduli of the eigenvalues of an indefinite symmetric matrix be

wanted, the reduction process may be applied to the matrix

[A]z = [A][A] (2L0)

which has the same eigenvectors as

2]
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but whose eigenvalues are the squares of those for the corresponding

eigenvectors in

4]

This is seen to be the case since if

[A] X]i‘= Ay X]i ) (241)

then
2 J S N S - }
and, in fact,
n n
o= A, o
For symmetric matrices ‘Ai is always real and hence, 12 Z0 (2kk)

The above statement offers incidentally a clear picture of the Cayley-

Hamilton theorem from an operational point of view, for, if

[a] )y = Ay oy (2h5)

where
[4] - A E| - F(A,) =0, i=12..., N (246)
then for an arbitrary
x| = ay x|+ a, x,remay x|, (247)
F( [A]) x| = o K[a]) x|+ e, F([a) x|, +...
oy 51([A]) X]N
= a) KA o+, BAY) x|pper e WA o,
=0 . (248)

Thus since

d

was arbitrary, it follows that

F ( [A] ) =0 ; (2k9)

i.e., the matrix satisfies its own characteristic equation.
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The suggested modification of the

[4]

matrix has no bearing on the amount of equipment required for the diagonalization
of the matrix. The most economical technique with respect to equipment

requirements is that of developing the eigenvectors

X]i

and eigenvalues ;ki serially, resetting the matrix element coefficient

pots each time to elements of the modified matrix

[A]i - ([I] i x]l T X]Z“-z‘-'—’z et x]1-1 X]i-l) [A] (250)

The equipment required is

N integrating operational amplifiers
3N + 2 summing " "
N servomultipliers each with 2 multiplying pots

N2 coefficient pots.

J,

eigenvector components are displayed as amplifier output voltages and also
as sefvo-multiplier dial readings. Eigenvalues, )ki’ are displayed as

summing operational amplifier output voltages
oy yJi = Ay xy X]i - Ay (251)
for
[A] x]i = /\i X]i (252)

and

Xy X]i = 1.0 (253)

Saving the computation of successive

(4],

matrices necessitates adding the circuit of Figure XI which increases the

above list to

N integrating operation amplifiers
N3 + 2N + 2 summing operational amplifiers
N servomultiplie rs each with 2 multiplying pots

A Y "
N7 (2@ coeffieient  potentionetersi
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The number of summing amplifiers required is excessive even for only
moderately large N. For this reason, the minimum equipment procedure was
used for all experimental studies. The even more elaborate technique of

solving for all eigenvalues and eigenvectors simultaneously requires

N2 integrating operational amplifiers
6N° - N summing operational amplifiers
N2 servomultipliers, N each with s(N-i) multiplying pots

N3 coefficient potentiometers,

This procedure would involve setting up all Nz equations of the set (230)
(231) (232) simultaneously. This requires modifying the subscript notation of
the equations to identify the different groups of N equations. Accordingly,
(230) (231) (232) become

0
X]N-l = y]ﬁ—l = y]ﬁ-i X]N-i’ 1=0,1,2...,N-1 (25h)
i-1
y]l‘v-i = y]N~i ) jgou——’f—'N-j y]N_i X]N-J (255)
yL\I-i - [4] x]N-i (256)
where
xli_
x]i = X1 (257)

The notation differs from that used previously in that the subscripts identify
variables réther than solution constants., A double subscript notation is

used with the first subscript denoting the number of the elements in a vector,
the second denoting the number of the vector. The steady state values of the

elements, X;5 80 numbered are the elements of the modal matrix.

1 - @5)

where — _

(@

L] [a][t] = /\3..0 (259)

QO oo
O e
Oooe
s
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The equipment requirements for solving equations (254),(255),(256) are as follows:

(254) requires N summing integrators

(N2 + 2N) summers

N2 servomultipliers -~ N each with

(2N-21i) multiplying pots,i=0,1,2,...,N-1.

(255) requires (3N2 - N) summers
(256) requires (ZN2 - 2N) summers

N3 coefficient pots.

A circuit for the example of Figure X is shown as Figures XII through XVI.
The complete equations for the circuit are written out below. Note from the
form of the circuit that there is no new question of stability raised by the
circuit since the preceding stability analysis applies completely.

In Figure XII, the solution for )k and

3
x| 4

proceeds as before with no new inputs to this part of the circuit. Once
this. part of the circuit is near steady-state, the multiplying pots act
in the same fashion as fixed coefficient pots to make the behavior of the

part of the circuit solving for }\ and

2
x]z

the same as in the serial procedure, etc. Note also that the circuit is very
large for so modest a problem and that the added computation necessary in
the simple serial procedure seems an attractive exchange for the added circuit

complexity.

The equations for the circuit are

o) ) . . _
X13 = yis - X 3 y]3 xl3 3 summing integrators
) ) - i X
x23 = y23 _§u3 y]3 x23 3 summers
9 1 - [ . . .
x33 = y33 ;5;3 y]3 x33 3 multiplier
_5;3 Y]3 =ux13 yi3 + X23'Yé3 + x33 yé3 2 summers
yi3 = O.Zx13 + O.lx23 + O.2x33
Va3 = O.lx13 + O.3x23 + O.3x33 6 summers
y33 = O.le3 + O.3x23 + O.hx33 9 coefficient pots
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%lz = yiz- X o y]é X5 summing integrators
(o]
Xop = YponXp y]é *22 Summers
Q R B ]v ; s .
x32 = y32“ X0 V3 x32 multipliers
| . t ] ]
X y]z = X o ¥y + Xpp Yoo t x32 y32 summers
‘ — -
Y12 = N2 "Xy Y]z %13
' — " -
Vo2 = ¥go "X V]2 *23 summers
‘ — -
Y32 = Y32 X3 V]2 *33
X 3 y]z = x13 Yyp * x23 yéz + x33 y32 summers
Yig = O°2x12 + O.lx22 + O,2x32 summers
Yoo = Oolx12 + O°3x22 + O,3x32
Y3z = 0.2x), + 0.3%,, + O.)-lx32 coefficient pots
QO _ o 14 o
X19 = Y11 X Y X, summing integrators
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Q — t - 1 . .
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- y]l = X191 Va1 T *n V3 sumners
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Y11 = V11 "X V1 ¥i137E g y]l %12
9
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yZl = yZl h_.')_C_‘B y‘l XZ}_}_(_‘Z y 1 X22 summers
[} = - - X
Y31 = Y31 Ez Vi *337%2 y]l 32
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2 summers

12 Y11 Y Fa2 Va1 T %32 Y31

2 summers

+ O.3x21 + 0.3x

+ 0.3%5, + 0.khx

6 summers

9 coefficient pots

9 summing integrators
51 summers
9 servos

27 coefficient pots
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Modification of the Techniqge for Asymmetric Matrices

Real symmetric matrices have real eigenvalues and real orthogonal
eigenvectors. Asymmetric matrices have, in general, complex eigenvalues
and complex eigenvectors. Since the diagonalization technique already
described deals only with real quantities and relies for completion of

the diagonalization process on the orthogonal property of the eigenvectors,
considerable modification is necessary to adapt the process to the

asymmetric case.

The case of an asymmetric matrix with real eigenvalues only requires the

least modification. For this case, the equations for the first step

®O
—
|

-y +] (260)
7] = (4] 4

apply without modification. Furthermore, the stability analysis given

i

previously for the first step still applies, since the condition of symmetry
was nowhere necessary in that analysis. The system possesses 2N+l finite

singular points at

-

x| =0 (261)
and at -

x: - x]i (262)
where

[a] =]y = Ay (263)
and

x, x|, = 1.0 (26h)

The linearized system in the neighborhood of the singular point at the origin

has characteristic roots

I'i= li’ l:l’Z)ooo,N

The singular points corresponding to eigenvalue

Y






have linearized characteristic roots

re AL A Ay A A2 A A - A A AL

i

Two of these singular points at

-,

where

and

= =
N

are completely stable provided

A=o .

N

So far the situation is exactly the same as for the symmetric case,

an attempt to apply the equations for the second step

| T (I

Xl =¥y - X,y X
"—- -
y}"y}«—x—wy]x]lv
v] = [a] o

fails to produce the eigenvector

x] N-1

since, in general

Xy X]N-l #0 .

7

(267)

(268)

(269)

(270)

(271)

However,

(272)

A modified process may be developed using the results of the following section.

Principal Subspaces of [A] and[A]

t

What is required for the succeeding steps of the process for asymmetric

matrices is a vector,

X]ﬁ # XJN

such that
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X x]ﬁ:O, i4 N (274)
Note first that
]
XJN
will in general be confined to one dimension, since the space spanned by
x]i , igN

will be, in general, (N-1) -dimensional. This is to say

i
is a unique vector. Thus

0= Ai E x]ﬁl = [A] x]i)t x]ﬂl (275)

- x, [a]y s

whence

(e =i = ey = Ay s (276)
which is to say

x]ﬁ

is the eigenvector of

[
corresponding to eigenvalue

A= )tN (277)
Briefly then, given a real eigenvalue

A- AN (278)

of the transpose matrix

(4]

the eigenvector

X] Nt

corresponding to this eigenvalue is orthogonal to the principal subspace of

4

not containing the eigenvector of

(4]






9

corresponding to,the root )& = A’N

The second step of the asymmetric matrix reduction procedure follows

immediately as

9:] - y]' - X y]' x] (279)
where
y]' = V]CX-—Nt y] X]Nt
(] +] = 4]
[A]‘b X]Nt = AN X]Nt (280)
and
g A = 1.0 (281)
The equations for the 1" step are then
%= v] - xv] o (282)
y]’ = y] ANt y] X]N,t "X N1, y] X]N—l;-t e
E gl y] X]N—i-tl,t (283)
y] = [4] %] (284)
[A] x]j - AJ. x]J, j=1,2,...,1-1, (285)
X x]j = 1.0 . (286)

Equation (283) may be rewritten

)
y]' = [a l; «] (287)

[A]i = ([I]" X]Nt‘—E—JNt } X]N-l, 2 N-1,t
-X].Nw.-j.t;,"ﬁhiﬂ\l-i+l,t) [A] (288)
The elgenvectors of

4],

are identical with those for

[4]

but the eigenvalues

AJ,J ~1
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are zero for

4],

rather than the originsl values,

The discussion of principal directions and characteristic roots in the
neighborhood of singular points not at the origin was kept sufficiently
general in the section on symmetric matrices to cover the present situation.
Symmetry was not. a reguirement for the results then derived although
realness of the matrix eigenvalues was required, If any of the matrix
eigenvalues are complex, as they may be for real asymmetric matrices, then
the stability of the singular points for equations (282)-(286) must be
reinvestigated.

Comptex Roots

First of all, equations (267), for the characteristic roots of the linearized

system near a singular point,
r =Al~A’i’ Az-ki’“'ki-l-ki’-zki’A -)\i)““}AN"Ai) (267)

still apply for ;\i real whether or not any of the other characteristic roots

+1

are complex, Thus the equations for the first step will have two completely

stable singular points if

A= Re /\j, j=1,2...081 (289)

A~ 0.

N
If

Im/\kyéo
then there is no eigenvector corresponding to )kk and its oconjugate. There

is, however, a principal plane corresponding to )~ with the property that

k
any vector in this plane transforms into another vector in the plane and

that no vector in the plane transforms into itself under the transformation
y] = (4] A . (291)
To investigate the behavior of the system of equations (282)-(286), it is

netessary to consider the properties of prineipal Z-dimensional subspaces

of the matrix

4] -
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If, again, )\k be & complex eigenvalue of

4]

then a direct application of classic techniques for obtaining eigenvectors

yields a corresponding complex eigenvector

X]k = X]Kr * X]ki (292)
where

= VY-1. (293)
It is easily shown that the vectors

X]kr

and

x]ki
define a principal plane of the transformation

y] = [A] x| (294)
since if

[A] X]k = Ak X]k (295)

then

[A] X]kr = )“kr XJ kp " )“ki X; ki = y]kr (296)

and

- -

[A] S )kkr Xy * Aki Xkr = y]ki (297)

which is to say, the transforms of the real and imaginary parts of a complex
eigenvector both lie in the plane defined by the real and imaginary parts of
that vector. Further more, there is no unique correspondence between eigenvalue

)‘k and any particular

is a complex eigenvector, then so is

)\ka x]k, i=1,2,3...






Unless ,Xk'is a root of unity, the above set will be infinite.

Of course, the fact that a complex eigenvalue ;kk defines a principal plane

is not a pecularity of complex eigenvalues. There are (N-1) principal planes
through each real eigenvector of a set of N real eigenvectors. Each pair of
complex conjugate eigenvalues likewise defines a principal plane although

(2N-2) of the m(le)/z principal planes that would exist if all the eigenvalues
were real, do not exist if the eigenvalues are instead complex. . Thus, if one
pictures a transition from real to complex eigenvectors, there does not occur an
exchange of a principal plane for two principal vectors but rather merely a loss
of (2N-2) principal planes along with the two principal vectors. In the set

of non-linear differential equations designed to produce eigenvectors as
steady-state solution, one vector of the complex set of N vectors might be
called a dominantvplane since any velocity vector in the space would have a
component directed toward this vector. The dominant vector in the space

would have a component directed toward this vector. The dominant vector is

thus the cne having the largest real value. Similarly, the plane of the two
eigenvalues could be called a dominant plane since every velocity vector in the
space would have a component directed toward the plane, at least in the
neighborhood of the plane, Furthermore, there will exist a dominant plane even
if this plane is associated with complex conjugate eigenvalues rather than

with a pair of real eigenvalues. This will occur if
Re )tk Re A, 14k (298)
Re )\k 0.

This may be shown as follows:
If all the eigenvalues

)\i, i 1,2,.00,N,

are real with the exception of the pair

Ay

and its conjugate

A

k
then the singular points at

X] = X]i’ i#k






. /
X, x]i = 1.0 (299)
where

[A} X}i =)Ki X]i (300)
will be unstable if

Re )\k> )\i (301)
since they will have neighborhood principal roots

A A
with

re (A, -A,) = o. (302)
Thus all the system singular points will, under the assumption

re A7 A, (303)

be unstable. The only possible stable region will then be the principal
palen associated with the complex pair )kk and X K This plane can next

be shown to contain a stable limit cycle under the condition

&BAK>O= (304)

The plane corresponding to the conjugate pair }kk’ ,A. is a principal plane

k
of the transformation

?‘] = Y]' -_Ly]' X] | (305)

The transformation can be written in this plane in terms of new orthogonal axes,

'gl and ng, as
£l €] (306)

where _
t t
11 12
- | (307)
2l 22
and
2 Y11 Y
(t,, + t22) <L4D = L4 & N (condition for complex (308)

2l 22 eigenvalues)






Now form 0
£da iﬂ&[ﬂ {
L§ -
1 __JgI' l - rz
where
5.8
But
? _ a0 r
r(l-ra) at Q,lur
= [tl §12 * ta2 §22 + (tp + ty) §1 §z] ——
=t cos® © + top sin® 0 + (tlz + tZl) sindcose
where
§i = I Ccos ©
~§é = r sin ©

Hence, the net change in
r

1
> ;|l-;r’ '

per trip around the coordinate origin along a solution path will be

an

t cosz~® + 1

. e .
11 op SinT O + (tlz + t2l) sin © cos @] ae

= a{ty) + tzz) = 2n Re)\k

this is positive for

Re Ak>00

8k

(309)

(313)
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It is, of course, assumed that an increase in © corresponds to an increase
in time. Since this assumgiion is equivalent to an assumed sense for ©, the

above result is completely general.

Now the function

r

7

log

has the appearance shown in Figure XVII. It is clear that an increase in this

gquantity amounts to an approach to the value.

r=1 (315)
Hence, the limit cycle

r=1 (315)
is stable for the plane corresponding to )\k for

R A - o
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A limit cycle for a 3-dimensional system of the sort just considered is
shown as Figure IV, Appendix II. Evidently, once a stage of the reduction
procedure has been reached which produces such a limit cycle behavior, the
process cannot be continued by direct application of any of the equations
so far developed. To see what might be done, it is helpful to consider
further some of the transformation properties of the matrix in a principal
plane (which is also a principal plane of the non-linear position to
velocity transformation

0O

2] - v ] x]). (317)

A real principal plane of the transformation

y] = [A] x] (318)

contains both
y]
x]
x]

Assuming that orthogonal axes have been chosen in this plane, the transformation

and

for any

can then be represented by a 2nd order matrix. The relative positions of

the vectors

are of primary interest. Obviously if the angle between these two vectors is
zero, then that position is an eigenvector. There may be an infinite number
of such positions in the plane, or there may be two or one or none. These
cases correspond respectively to the case of equal roots with a symmetric
matrix, real and distinct roots, equal roots with an asymmetric matrix and

complex roots with an asymmetric matrix. Also of interest are the positions of

x]
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for extreme differences between the positions of

J

and
;] -
Taking
y
© = arctan —2 arctan x2 ;
1 1
@ has extremes at
® o1 (1 Yp Y3 ayl)_ 1 (_xz)
axl y2 yl axl ayl axl X2 xg
1+ e 1
W 1t~
1 Xl
i !
Yy @xl - Y 8xl . xa |
) + 2 X 2 FoX 2
MRS 1 2
_ fa T 'Y *2
N 2 P 2 2 (319)
Jp T Y 1t
where
1 =811 X1t 32 %
Ty o= 8y X+ By X (320)
Now,
8y Yy f 8 Yy = IA| X, . (321)
Thus for © an extreme,
xz = ‘Al X
2 _ 2 2

2 +
1 "% Y1 Y,
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2 2
MRS
Lz IA (322)

Now, calling the two eigenvalues characterizing the principal plane }kl and

2)

Ao A, = , A \ (323)

1 Ny (32L4)

K e
1]
P
P

which is to say, the ratio of the lengths of a vector and its transform is the
geometric mean of the eigenvalues at a position such that the angle between

the vector and its transform is either a maximum or a minimum. There are, in
each principal plane, two such positions, independent of the nature of the
eigenvalues.  The important point here is that if the eigenvalues are complex,
then the ratio of the length of the transform to the length of the vector is the

modulus of the eigenvalue at positions of extreme ©. Thus, finally if

x|

is a unit vector, as it will be on the steady-state limit cycle in a

principal plane corresponding to complex eigenvalues, then at extremes of o,
] - [ A
The modulus of a complex root couwld thus be obtained by adding equipment to

© = arc cos ?=é=—;§l7§—— (326)

o

. (325)

compute

and arranging either manually or automatically to hold the computation

at an extreme of this value, at which point could be read

(v apMe - | A (327)






The diagonalization process can be continued beyond finding a dominant

complex eigenvalue ;Kk by usiﬁg as equations for succeeding steps

x O
—
i}

y]“;&w]“ X]

k-1 |
y] - ;;£4§Jit y] X]it yl—ﬁdkt
1=

e
e
I

- CH— )-fylkt y] y]kt
&Ykt y]kt
where
x]kt
and
y]kt

are any vectors in the principal plane of the transpose matrix

[4];

corresponding to complex eigenvalue )ﬂf This can be shown to work by

showing that the orthogonality property of eigenvectors of
[4]:
to the (N-1) - dimensional principal subspaces of

4]

extends to 2-dimensional principal subspaces of

[4);

being orthogonal to (N-2) - dimensional principal subspaces of

4

Let ;Xc and )kct be complex eigenvalues of

[4]
2],

and

90
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with corresponding complex eigenvectors

x], = x| op 3 1oy (329)
and

X]ct = X]ctr + x] cti (330)
then

(2] =] = A, =, (331)
and

[A]t x]ct = At X]ct (332)

Transposing the two members of the second equation and post-multiplying by
x] c’
et [A] x]c = Act oot X]c (333)
Premultiplying the first equation by
e ST
oot [A] x]c = )Lc (334)
Subtracting (333) from (334) ,
(Ac _Act) et X]c =0 (335)
and thus, either

)kc = Act5 (336)

i.e.,

)kcr = )tctr (337)
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and

Aci = Acti (338)
or else
er X|o=0 (339)

which implies

Eetr X]cr T Eeti X]ci =0 (340)
and

et X]ci et X]cr =0 (341)
Since

xq

is not unique, either of the preceding equations can hold only if each of
the terms in the left hand members is individually zero. Thus,the 2~dimensional

principal subspace corresponding to a complex eigenvalue )\ of

[l

is normal to the (N-2) - dimensional principal subspace of
2]

not corresponding to A.

K

Repeated Roots

The case of repeated eigenvalues, which is a singular case between that for
real and that for complex eigenvalues, offers distinctly different problems
depending on whether the matrix is symmetric or asymmetric. In the symmetric
case, no modification in the reduction procedure is necessary at all since

in this case a straightforward application of the procedure outlined will
produce orthogonal eigenvectors in the principal plane corresponding to the

repeated eigenvalue. Except for being orthogonal, the orientation of the






two vectors in this plane is undefined. The singular points on the unit
circle in the plane are neutrally stable along the tangent to the circle
so that the computed position of the first eigenvector will be purely a

matter of chance.

Thus any vector in the principal 2-d subspace corresponding to a repeated
elgenvalue of a symmetric matrix is an eigenvector. On the other hand, only
one vector in the principal Z-d subspace corresponding to a repeated eigenvalue
of an asymmetric matrix is an eigenvector. There still exists, of course, two

positions for which
Ayl . (342)

onhe of these being a position of minimum angular displacement between

q

and

namely, the eigenvector position; the other being a position of maximum

angle between

4

),

In order to apply the modified equations for succeeding steps, (328), it is

and.

necessary to hold the. computer in the neighborhood of the position of

maximum angle between

s

J .

This proves a very difficult trick practically inasmuch as this is the region

and

of maximum rate of change of the-






9);.

x)

vector on the limit cycle. Situations wherein an asymmetric matrix has nearly

equal roots offer real practical difficulties in the reduction procedure.

Figures XVIII through XXVII illustrate the vector field of equations (282)
in a principal 2-d subspace for various characters of the eigenvalues
characterizing that subspace. The figures were obtained by running

trajectories of the transformation

8] - v) - xv] 4

a 0.50

11
y) - | A (343)
-.a5 0.75
for various values of 8- Both x~ and y-plene trajectories are shown for

each value of 8- Figure XX shows the important case

)Ll =0 (34k)

which characterizes several principal 2-4 subspaces in all but the first

step of the general procedure. Note that the process indicates no strong
tendency to "hang up" on the zero root eigenvector. Figure XXI shows the
most significant property of the transformation; namely, that the transformed

space is N-1 dimensional -- the 2-d space transforms into a line.
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Figure XXIII illustrates the important (if negative) property of the

asymmetric transformation that the two eigenvectors are not orthogonal

and are not conjugate diameters of the ellipse into which the circle

X X]: 1.0

transforms. This is basically the reason why the transpose field is

needed for the complete reduction of asymmetric matrices. Figure XXIV
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(345)

shows the repeated eigenvalue field with the velocity vector directed in a

single sense along the unit circle.

Figure XXVI displays the complex eigenvalue case with no singular point at all

on the unit circle, which is (in this case) a stable limit cycle. This limit

cycle is in general traversed at a non-uniform rate, for using

gives

Thus

-] o] ]

81 83
y] = X]
851 822
X
@ = arctan xz
' 1
0 2 2
Xl] = [311(1 x)7) - agy Xy - (aptan) X Xz] X) + 8, X,

o 2 a
xz] =[-all X"+ ey, (l-x2 ) - (apgtay) %) XZ] X, + 8y X

v 2,52
5. A2Tan
o X é + X é
1 2

0 2 2 2
80 (azz-all) %, (xl +X, ) +2(a21+a12) X %,
ox, 2 2\ 2

1 (Xl + X, )

(346)

(347)

(348)

(349)

(350)

(351)

(352)






106

if and only if

azz = all = a (353)

812 = "8 =0 (354)
A=a+jb . (355)

This gives

%l = a(l-xlz-xzz) X + b x, (356)

&, = -bx, + a(l-x 4 x 2) X (357)
2 1 1 2 a

o

e = -b (358)

Since equation (358) holds independently of the size of the vector

J

equations (356) and (357) may conveniently be used as design equations for a

resolver with input © as shown in Figure XXVIII.

K1
L

Y
A
/\/ SEr VY -__Q>
Exoe A l — —
‘ X/O (/-Xlg'g)
_ 2
/

=

=X (/-7 -x5 )

¥

L// (saﬂua | '*—iI
1
-6 — Py
’o—/\,——, | S ] - %, O (/- %2752
-X

/ (o~ =S/NVE “Xj
2 v
-X- /
o—~—H >Ai>l>
-)Q? /| - (F~xFE) (/-xZ -x5)
+/ /
O_._J\/__

Figure XXVIII
Resolver with & Input
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Modification of the Technigue for the

-Simultaneous Diagonalization of Two Matrices

Under certain circumstances, the techniques so far described may be

modified to obtain solutions of the general eigenvalue problem

(4] u] = Al) 4] (359)

The following few paragraphs are devoted to describing the modifications
required and to defining the circumstances in which such modification will

yield solutions of equation (359).

Relationship to Elementary Problem

Equation (359) is seen to be equivalent to equation (32) provided
(4] w] = 4]
8] u] = =] . (360)

Thus the eigenvalues of

4

with respect to

3]

are identical with the eigenvalues of

B [

provided, of course, that

g

is non-singular. Criteria for stability and scaling can thus be inferred from

[}

applying results already obtained to the matrix

o

except insofar as the new problem requires modified circuitry.

Computer Equations

Subject to the definitions, (360) and (361),the equations
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2] - v] - ]« (363)
(4] o] = ¥] (364)
(3] 4] (365)
will yield an eigenvector

“]N

as a steady-state solution, where

]
»
—_—

bEJN X]N = 1,0

(] uly -
[B] “]N =

Note that since

“]N

is not in general aligned with either

X]N

I
>~
=2
e
S )
=

(366)

|
K
=

or

y]N

the equations of motion (363) force the

g

transform of

d

10 pursue the

4]

transform to a position where the two transforms are aligned although

neither one is necessarily aligned with

4]

If both

and






3

are symmetric, succeeding step equations are

2] = y]r xy]t x
ARt

{B: u] = x] -

ul' = u] - ;EQ_HAN_j u].u}N_j

where

4 g = Ay s
[B] [

I I ek

Equations (367) may be rewritten as

LA]' u] = y]'
where
. i-1 u] T S -
R R Ryl L
B YN
If either
[4]
or
E
is asymmetric, succeeding steps are
| = y]' - X y]' x]
LA‘} u 1 = y]l
LB ul = X]
3 i=1
u]' = u] - u . u] u] .
jgf‘”‘“ -3,
where i
[-B]t X]N-=j,t = AN-j u]N—j,t
[A t XIN-3,t = u]N—j,t.
Stability:

A new stability question is introduced with the above equations since

the vector

1)

109

(367)

(368)

(367")

(367")

(369)

(370)
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is obtained by solving a set of simultaneous algebraic equations.

This difficulty was avoided in the case

(3] = [1] (372)
essentially by solving for the eigenvalues with largest real parts
first instead of following the intensification procedure directly to
solve first for eigenvalues with smallest real parts. In the general

case where

M # [1] (372)

the solution of a set of simultaneous equations is unavoidable,

A straightforward electronic differential analyzer setup to solve a set
of simultaneous algebraic equations may or may not be stable depending

on the nature of the coefficient matrix, and, to some extent, on the
design of the operational amplifier., Positive realness of the eigenvalues
of the coefficient matrix is in general sufficient, though not necessary,
to guarantee stability. A favorite technique with designers of

algebraic equation solvers is to modify the set

(8] u] = x] (373)

to
x 8] = [B}t (x] - [B] u]) (374)

which hag positive real characteristic roots since the matrix

3], 5

has necessarily positive real eigenvalues only. Solving equations (37h)
rather than (373) requires doubling the number of operational amplifiers
and the number of coefficient pots, which seems a small price for
guaranteed stability. The time constant 7 in equations (37&) may be made
small (of the order of milliseconds) in order to avoid spoiling the

dynamic behavior of the rest of the system.
Scaling:

A new scaling problem is also introduced in equations (363), (364), (365)

since there are, in this set; three vectors to be generated; namely,
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u| = [6]™ (375)

_X] = [B] u] (376)
and

y] = (4] u] (377)
Equation (363) guarantees that in the steady-state

%, x| = 1.0 . (378)
In order to keep

_u,u|= 1.0 (379)
and

Y, y] = 1.0 (380)

we require (from (375) and (377)),all eigenvalues of

[4]
=]

to have modulus not greater than 1.0. Using a result of Hadamard's(l),

and

this may be done by making

[A]' =k, {A] (381)
[B]' = kg [B] (382)
where
k, T —= (383)
A (L Iaij I)"‘maxq
J
k. = = (38Y4)
’ (Z:‘ bijl )min
J
i#d
(1)

Parodi, Maurice M., "Sur Quelqggs Proprié%éé des Valeurs Characterist-
iques des Matrices Carréés", Mém Sci. Math., Gauthier - Villars, Paris,

1952







This follows from Hodsamord's vesndlh thal an elgenvalue

HIERW

A

i bounded in modulus by

idr Smin.

11z

(385)






APPENDIX I

A Related Problem - Function Factoring

on the Analog Computer

An article by Pike and Silverbergl furnishes a technique for design of

generators of functionsof two (or more) independent variables. A slight

modification of the techniques previously described in this dissertation

113

provides convenient cbmputation of the less manageable parts of the computations

necessary for such design.

The gist of the article is that two-varisble function genersators with outpuls
_ 23 I

z (%,¥)

may be made from single variable function generators with outputs
g, (x)

and
h, ()

according to the formula
2197 %1 84 '*Z 8ix Byx = Cij

Data for the design consists of a set of mn values

Z, .

lJ’ lzl,z,nvv,m; J:l’a’aoa,n D

The constant, a and the sets of values, 8y and hk’ are chosen so that

1 & 2 2
mn igl jgl (245 - gi'J)

is a minimum. This leads to the design formulae

1 Pike, E. W. and Silverberg, T.R., "Designing Mechanical Computers",
Machine Design, July 1952, pp. 131-137; August 1952, pp. 159- -163
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1 ;E <
8 = m———— 3 Z. . (2)
ma i=1 J:l +J
n
1
g, = Y. Ty (3)
il n 51 iji
m
1
h o — Z r,. (LL)
Ji m i ij1
n
r,. .
: ijk T jk
=1
gik= Jn )k = 2;3:h°°° (5)
> h‘.k2
j=1
m
iél i3k 8ik
hjkz m 2 ’k= 2;3})-‘}':0 (6)
). 8
i ik
where
ri,jl == Zi,j -a (7)
Tige = Tig1 “811 Py (8)
Ty 5, kel = Tigk “8ix By X = 23k ... (9)

The calculation procedure is straightforward except for formulas (5) and (6) which
require an iterative routine for solution. The iterative routine involves starting
with incorrect elements oOf one set (either g, or hk) and recomputing elements
of the two sets until consistent sets are obtained., The computer technique to
be described formulates this procedure by assigning to each element of the

two inconsistent sets a time rate of change proportional to the difference
between the two members of the defining equation. Since the modulus of the two

sets is undefined, the requirement that, in'the steady-state,

Z gikz = 1.0 (10)

is added. The computer equations are then
85y 321 ik Pk )
&t - n Z ik
h
=1

(11)
jk






- h, (12)

Solution of this set of equations requires

n ¢+ 1 multipliers
3(m+n) + 1 operational amplifiers

2 mn coefficient potentiometers

Scaling is chosen to make

rijk = 1.0

A computer circuit to solve this problem for a typical Lxkh array is shown in

FiguresAIl through AIk.
The gain K is adjusted experimentally to make

2 2 1.0
=1
with P as large as possible and with K a conveniently available computing

circuit element. An example was run with K = 1/2 and

Ty 4, kel Ty3 = -.3910 T123 = -,0508 Y133 = -,1968 Ty)3 = 005386
r213 = -,0570 r223 = -.1142 r233 = =-.7310 Tol3 = 0.9022
T3 = 0.1890 T3p3 = 0.1030 Tyug = 0.6118 T3 = -.9038
T3 = 0-2590 1),q = 0.0620 T)33 = 0.3160 Thy3 = ~.6370

Steady state values read from the computer were

815 = =+3730 h,, = 0.1958 x 2 = (;O?§£ reading)
8yp = =:6015 by, = 0.0859 x 2
833 = 0.581k h32 = 0.4966 x 2
gy, = 0.3910 by, = -.T777 x 2
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Equations,

[1;0{0]
il

il ; "851
2
by
j=1 Y
m
831 = %;1 ijz i1 " Pq
make
m
. 2
Y g.%-1.0.
jo1 AL
2 & 2 =
k is adjusted to make k > h,." =1,0. 4 x k4 example
I
. /\,
Sr . T
J' le jl i _L (J\vﬁ

- =S —5— O»~~-~/\/— >}_«g—1 i A\ DJ )
ioh,. 11 l.l.
Tl
J
- 1
§=r232h31 Vﬁ}

L A vl o
% h +81 &1
.

E: 1

_ 3aa R51 o__/ B

Zh 3

ATl - Function Factoring Circuit - Sheet 1






v T 1 Z:ru.z h,
Khyy rhlz = - > - —
T [ryg| l Ty Y hjlz
= J
“haz j . X
K h P N
2L fryap] rruzz d v [ |
K h -[—-———ru32 .
. Servos Amps Pots
r 1
huz j 5=n+1 25 = 32=2mn
Kh <
l+1|rm| eruuz A 3(men)+1
1
2 2 4T 1 ‘ .
K hll ] /V 3 12 seiyo
i K Zth
o J

2 2 1 :

-K hz 1 <'<_—/V“"_
_;__

2 2
-K h3l

2 2 1
-K™ h !

b1 e

AIZ - Function Factoring Circuit - Sheet 2
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AT3 - Function Factoring Circuit - Shcet 3
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AI5 - Function Factoring Circuit - Sheet 5
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Hand calculated values were

8, = =+37H9 hy, = 0.1966 x 2
Boo = -.6027 h,, = 0.0862 x 2
833 = +.58kY h32 = 0.4980 x 2
8, = +.3933 hy, = -.7809 x 2

The biggest discrepancy is less than 0.6% of the correct value.

Computer records Figure_Als through AI3 show the transient behavior of the
computer solving this problem for four different sets of initial conditions,
The system is obviously stable, relatively insensitive to initial condition
changes, and reaches sufficiently close to steady-state conditions in about
ten seconds. Changes in potentiometer settings to accomodate different
ri,j,k+l sets takes about 15 minutes, Alternatively, the process of finding

elements of the seks 8 and h, may be pictured as a process for finding

k
eigenvectors of a symmetric matrix, thus giving & possibility of using the

same techniques employed in the text,

Acquisition of product factors gik and hjk may be considered as a method for
finding the m components gik(i = l,2,...,m) of a vector E]k and n scalar

multipliers h k(j =1,2,...,n) from a set of n vectors ;]j’k each with m

components I ,k(l =1,2,...,m)., These n vectors will occupy not more than n-1
dimensions since their sum is zero ( Z:r = 0). They can occupy not more

1,3,k

than m dimensions since this is the ntmber of dimensions of the space in which
they are embedded. Thus finally they will occupy no more dimensions than the

smaller of o and n-1l., The conditions defining E] and hjk(j = 1,2,.ﬁ.,n)nare

k

2 . : _
that Z Z (rl, 3K " 1kh3k) be a minimum, This can be written Z _,Z
1=1 J = m 1:1,121 J.:l
2 z
T3, 3, kg Ust be @ minimum whcfe s, m Ti, gk T Bndyxe JoV ggl ;gir R

n n
S ._] _Tn )2l } P s

5:](r ik gk,jk) = EEALT'J’R+1 r 3, k+1? which is to say ﬁhat the sums of the
squared magnitudes of the remainder vectors formed by subtracting from the

original remainder vectors r} the vectors hjkg}k must be & minimum. Now this

Jo kK , -
sum of squares can be 1nterpreted as the moment of sinertia about the g]k axis of
unit masses at the tips of the f], Kk vectors. This moment of inertia will be a

3
minimum for g] the principal axis of minimum moment of inertial. Furthermore, the
-1k+l vector will be the axis of minimum moment of inertia for a set of unit masses
at the tips of the r]J kil

minimum moment of inertia for the set of unit masses at the tips of the r]

vectors which is also the principal axis of next to

Jr kK






vectors, The successive gJ vectors are thus the principal axes of moment

~of inertia of the get of unit masses gt the tips of the ?}. vectors.,

J> K
These axes exist, are orthogonal, and there can be no more than
m of them. The symmetric inertia tensor from which they can be obtained can

be written

m m 2 n n |
E: E: iy -~ 3 1y oy oo T E: mj ij
i=1 J=1 j:l J:l
1#1
n m n 2 n
- E: Y23 T Y E: 13 e T E: Y23 Tmj
J:l i=l Jj=1 J=1
if2
n n m n 2
B Ej mj "1 E: Tmyg a3 ~—° ° ° E: i3
J:l le i=1l J=l
ifm

The g] vectors are the eigenvectors of this matrix. If n-l<m, then there
will be m-n+l equal maximum eigenvalues. The first g] vector ( 42) will
correspond to the fundamental eigenvalue. The 's represent moments of
inertié.about the corresponding eigenvector axés,

K hjk and r]j,k

The above analysis obviously applies without change if g]
are replaced by h]k’ 8:x and ;L,k respectively. From this last fact we
deduce that we require no more than m-l or n product sets, whichever is fewer.
Therefore, considering this and the corre3ponding statement made previously,

no more than m-1 or n-1 sets (whichever is fewer) will ever be required for a

perfect and complete reproduction of the original data.

The preliminary steps of the function-factoring process may likewise be
examined from the point of view of their effect on a vector set of function
values. The first such steps consists of subtracting from the original

function values their average value. We define a set

where
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If now we consider the fij as a set of vectors f]. each with m components,
then the preceding step forms a new set r]jl by subtracting from each f]j
the vector a 1| where the vector i} is the vector with unit positive

components along each axis.

The next step is to form

Tise = Tigl - 811 " By

where

L]

851 131

by = Tig

.
LD 1BLDS

'EIF‘ I

or equivalently

r]jz = r]jl i g]l - By l]

where

g] is the vector to the center of gravity of the r] vectors and where m h,. =

1 Ji

r]jl ’ l] is the scalar product of the r 1 vector and the l] vector.
Since

R 1 {Ei

BRI RN

41 v R,

e =rlg o] -

N P Y -1 1} - by, L] 1}

I‘_J.2 l] = m h.l -0 -m hjl = 0

which is to say, the ;]. vectors all lie in the m-1 dimensional subspace normal

- Ja
to the l] vector. This may be otherwise stated

Also, since

n
251 Fi52 = °

[






[
[AV]
1

which is to say, the vector sum of the r]jz

thus occupy not more than m-1 or n-l1 dimensions whichever is fewer.

vectors is zero. The r}jz vectors

Example: At this stage a 3 x 3 set of data points would present a picture

~like Figure 1, In this figure we have taken

rp(x,¥) = rppp = 1 Tlgz = 73 T30 = 2
rlxpyy) = rpp =2 Tppp =l Ta32 = "1
rz(x3,yl) = Typ = -3 ki L Y335 = -1

so that r]jz = r}lz has components 1,2, -3, r]22

etc. In the figure, the observer is looking toward the origin from a point
‘ 1

has components -3, -1,k

in the first octant equidistant from the axes. The plane of the rjvectors,

X+ Xy + x3 = 0, is thus normal to the line of sight. The moment of inertia

metrix is formed as

3 3
2 2 2 2 .2 2 2
Ty = z: E: rij =2+ 1+ 1% + 37+ L 4+ 1% = 32
171 .
i=2 J:l
3
I ,)=-Z r. . Lo, = = lx2+(-3)(-l)+2(~l)]=-3=1
xlxz 1 1j7a) X, X
ete.
so that, finally
3a -3 17
I = -3 Lo 9

17 9 20

—t— —

The eigenvalues of this matrix, from

32 A -3 17
-3 o -A 9
17 9 20-A

i
(@]
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Figure I6

Function PFactoring Vector Sets
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are

A= 5.56,40.47, 45.97 .

The eigenvector corresponding to ’Xl = 5.56 is

| 0.542 €11
gl, = 0.257| = &y
- 799 &1 |
Thus
h, = B, © T|,=1°0.5k8 + 2:0.257 + (~3) (-.799) = 3.453
hy, = &), © szz = -5,079
h32 = g]z 0 ris, = 1.626.

2 using the above values of hJ.2

Recalculating the elements of g]
the original set. The eigenvalue 5.56 is the moment of inertia about the g]

yields exactly

2
axis or, equivalently, it is the mean square error of fit after the terms

8o hjz are subtracted from the elements rijZ“ The g]z hJ,2 vectors are shown
in Figure 1. Also shown are the remainders

r]j3 = r]jz ) g] P

The r]j3

are colinear so that subtracting one more product g] h, will
annihilate them. g]g is the eigenvector

3 J3

gl3 -0.611
g]3 = 8| = +-O.Z74
€33 "e10

corresponding to )\2 = 4O.47. The 40.47 would be the mean square error of
fit if the vectors hj3 gﬂ‘

subtracting the set hJ.2 gjze The vector g]
of the moment of inertia matrix.

were subﬁracted from the set r]JZ without

corresponds to a zero eigenvalue

3

349 2.63  -.559
I, = | 263 2.22 0.710
2 -.559 0.710 5.41
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of the remainder set

-.872  -.247 1.118
l__riJ’J] = | 1.112 -.305 -1.418
-.241  -,058 0.299

The eigenvector corresponding to the eigenvalue 45.97 of the matrix I s

gl
the vector

0.578

0.578

0.578

corresponding to the line of sight of the observer in Figure 1. Remainder
components in this direction were eliminated by the first 3 steps of the

function-factoring process.

Two important points are made clear by the preceding discussion. First,
the best choice for a starting set of values for the iteration procedure for

finding 8y and hjk is that row or column of ri,j,k

numbers. Not only will this set lie in the proper subspace containing.tgik or

hjk

the axis through the origin of minimum moment of inertia must lie reasonably

which contains the biggest
but also 1t must lie reasonably near the set being looked for since obviously
close to the mass point furthest removed from the origin.

Second, the function factoring iterative procedure converges slowly whenever
the remainder set is such that the corresponding moment of inertia ellipsoid
is nearly a surface of revolution. In such ‘a case the axis of minimum moment
of inertia may be nearly arbitrary in two or more dimensions. Practically,
the difficulty is not serious since, in such a case, it really wouldn't make
much difference which wéy the axis pointed as long as it was in the subspace
whose intersection with the ﬁomental ellipsoid was the hypersurface equivalent

of an only slightly distorted sphere.
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APPENDIX II

A Three-Dimensional Display Technigue

Stereoscopic Projection on the Analog Computer

At a certain point of the development of the preceding work, it became
important to have available a readily perceived display of & curve in

space. In spite of the obvious utility of such a device, this seems to

have remained on of the many problems which anyone could solve but which,
somehow, no one ever got around to solving. There follows a set of equations
which may be set up on an electronic differential analyzer for steroscopic
projections onto a plane of a point specified by components along three

axes. Objects thus transformed may be plottéd separately to large scale

for photographing and viewing through an optical stercosidpeor they may be
plotted as small side-by-side diéplays to be viewed with the exercise of

some ocular gymnastics.

Viewing a steroscopic projection necessarily involves some eyestrain since
the eyes must be focused and converged inconsistently. That is, the eyes
must be aimed at the point in space to be viewed but they must be focused
on the projection plane. This difficulty is minimized if the projection
plane is passed through the approximate center of the object to be viewed.
The specialization that the projection plane be passed through the three

dimensional coordinate origin will therefore be assumed.

21 e KIght ey e
2, e
P ::——-F) ! X rr
\Z] N ~ )Y(/" /7/’2
~— T
\\ '
X, T~ [

\Z] \\\\\ /0j
— /47&7‘ and /er7 cyes

s

Figure I
ATT1 - Stereoscopic Display Diagram
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The basic arrangement is shown in Figure I. A projection plane parallel to
a line between the: eyes is assumed. On this are drawn orthogonal axes_ X and
Y with the X axis parallel td the line between the eyes. Then, for any point
P in space, the lines of sight joining P to the pupils pierces the projection
plane at a unique distance Y above the X axis. If n]'be a unit vector normal
to the projection plane directed toward the observer and p] a unit vector
along the Y axis in the projection plane,and if n. be the distance from
pupil to projection plane, then calling v] the veétor to the point P from the

origin of the projection plane,

Y n
P| T n-nyv
or
_ J_.Q]
Y 1-%}“] (1)

Letting r} be a unit vector along the positive X axis of the projection plane,
and calling one-half the interpupillary distance r, the X projection for the

right eye becomes

r - X
_—
r -V I]* n-n v]
I—’V_Jr-r «
X, = I—j—J;——E] +T (2)
n

Similarly, the left eye projection X, is

X = v r] T (3)

If the projections are to be made side by side, then they must be separated
some distance less than 2r. This may be done by adding some quantity

slightly less than r to Xr and subtracting a similar amount from Xl .
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A convenient specialization of the above equations is that obtained from

looking toward the origin from a point centered in the first octant. Taking

V 2
r = ;L_
Ve
O—
.
Nl
p = -1
VT
2
gives
1
‘. Wﬁg-(2x3 - % - xz)
) 1- = (x, + x, + %)
3 YL T2 T 73
-V-%-'-(xz-xl) -T
Xr = T + T+ C
1 "3 (xl * Xyt x3)
\[%'(XZ + xl) +r
Xl= -I'-C

1
1- 5 (xl + Xy + x3)

With a multiplier scale of 100 volts per unit, and a plotter scale of 10 volts
per inch.

v x 1 unit
in. 100 v,

r=1.25 in. x 10 = 0,125 units

For a focal distence of 20 inches

n=2.0units
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Thus,
1
. z (2x3 - % - xa)
1
1 W(Xl + X2 + X3
% (x2 —xl) 0.125
X, = + 0.23, (letting C = 0.105
1- §V§'(xl + Xy x3)
% (x2 - xl) + 0.125
Xl = T T - 0.23

= (x:L + Xy + x3)

These were the transformation equations used in making Figures II, III, and IV.
In addition, "throttle" control of the integrators in the setup of the
differential equations whose solution paths are plotted was employed to make
possible good enough simultaneous contrel of compﬁter and plotter to allow
showing visibility in the plots. This required preliminary plots to ascertain
-which line lay in front at each intersection of two lines in each of the two
plots. The final plot was made by lifting the plotter pen each time the

solution path passed behind another line,
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