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ABSTRACT

Radiotherapy requires accurate dose calculations in the human body, especially

in disease sites with large variations of electron density in neighboring tissues, such

as the lung. Currently, the lung is modeled by a voxelized geometry interpolated

from computed tomography (CT) scans to various resolutions. The simplest such

voxelized lung, the atomic mix model, is a homogenized whole lung with a volume-

averaged bulk density. However, according traditional transport theory, even the

relatively fine CT voxelization of the lung is not valid, due to the extremely small

mean free path (MFP) of the electrons.

The purpose of this thesis is to study the impact of the lung’s heterogeneities

on dose calculations in lung treatment planning. We first extend the traditional

atomic mix theory for charged particles by approximating the Boltzmann equation

for electrons to its Fokker-Planck (FP) limit, and then applying a formal asymptotic

analysis to the BFP equation. This analysis raises the length scale for homogenizing

a heterogeneous medium from the electron mean free path (MFP) to the much larger

electron transport MFP. Then, using the lung’s anatomical data and our new atomic

mix theory, we build a realistic 2 1
2
-D random lung model. The dose distributions

for representative realizations of the random lung model are compared to those from

the atomic mix approximation of the random lung model, showing that significant

perturbations may occur with small field sizes and large lung structures. We also

apply our random lung model to a more realistic lung phantom and investigate the

xiii



effect of CT resolutions on lung treatment planning. We show that, compared to

the reference 1 × 1 mm2 CT resolution, a 2 × 2 mm2 CT resolution is sufficient to

voxelize the lung, while significant deviations in dose can be observed with a larger

4×4 mm2 CT resolution. We use the Monte Carlo method extensively in this thesis,

to avoid systematic errors caused by inaccurate heterogeneity corrections that occur

in approximate clinical dose calculation methods.

Finally, we address potential improvements for our random lung model and some

possible future applications.
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CHAPTER I

Introduction

Cancer counts as the second largest cause of death in the US, following only heart

disease. The US 2007 statistics by the American Cancer Society [111] indicates that

(i) the death rates of lung cancer are the largest in both men and women, with a

5-year survival rate of only 16%, and (ii) in 2007, about 29% of all cancer deaths will

come from lung cancer.

Radiation therapy (radiotherapy) uses beams of energetic particles (photons, elec-

trons, protons, etc.) to kill the tumor cells by deposting energy from charged par-

ticles, which are either present directly in the primary beam (such as an electron

beam), or are emitted as secondary particles through the interactions of the primary

beam (such as a photon beam) with matter. For lung cancers, the most often-used

particle beams are external photon beams, which come from a treatment machine

outside the patient body, as compared with the brachytherapy, which implants ra-

dioactive seeds in patient’s body. Tyldesley et al. [117] estimated that 61% of patients

with lung cancer will need radiotherapy at some point in their illness.

The goal of radiotherapy [42], from the earliest time to the modern era with its

sophisticated treatment technology, has always been to tailor a high dose to the

tumor, while sparing as much normal tissue as possible. This goal is simple to state,

1
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yet “so little practical radiotherapy completely achieves this goal [123].” To achieve

the goal, each link in the “radiotherapy chain [123]” (the calibration of the treatment

machine, the acquisition of patient’s data, the dose calculation, the dose delivery, the

final quality assurance (QA), etc.) must be carefully and optimally performed. Each

of the “links” in this chain has been extensively studied and has painstakingly evolved

to its current status [42].

The goal of this thesis is to examine the dose calculation link in this “chain,” as

it currently exists for lung cancers. The special difficulty associated with estimating

dose in the lung is the extraordinarily complex physical structure of the lung, which

is only crudely approximated in current dose calculation algorithms. In this thesis,

we develop an accurate computer model of the human lung, and use this model to

assess current computational methods for estimating dose in the lung. To explain

this more fully, we must first discuss in more detail the procedures for radiotherapy,

and the physical structure of the lung. We turn to these issues next.

When a patient is diagnosed of cancer, the treatment planning process [45, 46],

which generates a patient-specific radiotherapy plan before the the actual dose de-

livery, is initiated. Treatment planning includes the following major steps:

1. Acquire the disease-related anatomy of the patient, mainly by (but not limited

to) computed tomography (CT) scans, in the treatment position.

2. Delineate the external patient contour, the target (the tumor), the organs at

risk (OARs), and the normal tissues on the patient’s anatomy scans.

3. Prescribe the beam type, and a dose to the target along with the dose tolerance

to the normal tissues and the OARs.

4. Determine the desired number, orientations, and shapes of the beams with the



3

aid of modern 3-D visual tools (e.g. the beam’s-eye-view [123]). Usually, a

multi-beam scheme is used because the dose is continuously deposited along

the beam’s pathway. Therefore, the deposition of dose in the normal tissue is

unavoidable, so to minimize this, multiple beams from different angles are used

to treat the target at the intersection of these beams.

5. Calculate the dose distribution from the chosen beam setup, using the algo-

rithm available with the treatment planning system (TPS) and the geometry

information from the patient’s CT scans as input. Then perform optimizations,

based on a preset objective function, which is used to evaluate the quality of a

particular plan, to obtain the final treatment plan for the patient.

Fig. 1.1 [2] gives an example of a modern multi-beam treatment planning setup.

Figure 1.1: Example multi-beam treatment planning setup, extracted from [2].

The accuracy of dose calculations depends on many factors. Two key ones are

(i) an accurate description of the patient’s geometry, and (ii) an accurate dose cal-

culation algorithm. This is particularly important with cancer sites having many

heterogeneities, such as the lung. After many years of clinical use of the homo-

geneous assumption, in which the human body is regarded as a block of uniform
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water-equivalent tissue at unit density, the heterogeneous correction became possible

following the advent of CT. This was because CT scans are capable of describing the

patient’s anatomy at each location, and with its particular material composition.

To generate a treatment plan for a lung caner patient, the anatomical information

of the patient’s thorax is acquired, mainly by CT scans, and is complimented by other

imaging modalities, such as magnetic resonance imaging (MRI), positron emission

tomography (PET), and single photon emission computed tomography (SPECT),

if necessary. Then a matrix of uniform geometrical voxels, which represents the

patient’s thorax, is interpolated from the CT scans at various resolutions. Each

geometrical voxel has a unique electron density, which is obtained from a calibrated

CT number-electron density relationship curve, and a type of material which has a

density range that brackets the voxel’s density. Therefore, the finer the CT resolution

is, and the more accurate the conversion from CT numbers to electron density is,

the better this geometrical matrix will represent the heterogeneities inside the lung.

The dose distribution in the patient is then calculated, based on the geometri-

cal matrix generated from the CT scans, and using the dose calculation algorithms

available in the treatment planning system. A wide spectrum of dose calculation al-

gorithms exist today, including the analytic pencil beam (PB) methods, the kernel-

based convolution/superposition (CV/SP) method, and more recently, the Monte

Carlo (MC) method. Different heterogeneity correction methods are implemented

in these dose calculation methods, and differ by the sophistication of handling scat-

tered photon contributions and lateral electron transport [5, 27]. Therefore, they

show different accuracies in predicting dose when spatial heterogeneities are present.

We describe these three different dose calculation methods, along with their hetero-

geneity correction methods as follows:
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The representative correction-based analytical methods for the pencil beam method

include:

1. The ratio of tissue-air ratios (RTAR), which essentially uses the primary beam

effective pathlength method (EPL) [5]. This simple method can yield large

errors for dose in or near heterogeneities [112].

2. The power-law (Batho) method [8], which requires lateral charge particle equi-

librium (CPE), and thus was found to cause very large errors in the lung dose

calculations involving small fields of high-energy beams [39].

3. The equivalent tissue air ratio (ETAR) method [113], which is still used widely

in modern systems [27]. Although ETAR is more accurate than the EPL and the

Batho methods, due to its 3-D capability, in a lung phantom study, Engelsman

et al. [40] found that ETAR did not correctly predict the penumbra broadening

in the low-density lung because of the method’s lack of lateral electron transport.

Overall, the pencil beam algorithms with various heterogeneity corrections share one

common constraint: they do not transport scattered electrons, hence they implic-

itly assume the presence of CPE, which makes these methods limited in accurately

handling heterogeneities in the lung.

The convolution/superposition (CV/SP) method is a kernel-based, widely-used

dose calculation algorithm with a good heterogeneity correction. Equation 1.1 illus-

trates the principle of the CV/SP method and indicates the two essential steps in

the dose calculations:

D(r) =

∫
V

T (r′)h(r − r′)dr′ , (1.1)

where D(r) is the dose at point r to be calulated, T (r′)dr′ is the terma (total energy

released per mass [6]) in an infinitesimal volume dr′ near r′ from the primary photon
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fluence, h(r) is a normalized point kernel [usually generated by the Monte Carlo

(MC) method], and describes the fractional dose distribution in an infinite water

phantom from a monoenergetic and monodirectional photon point source. The two

basic steps are: (i) calculating the primary photon fluence and the terma in the

patient body, using the ray-tracing method, while taking into account the density

variation along the pathways of the primary photons, and (ii) for each dose point

r, accumulating the contribution from the terma released near r′, by looking up

the fractional dose at the relative position r − r′ in the kernel and weighting it by

the terma. The CV/SP method was introduced independently by several investigors

in the mid 1980s [4, 13, 76, 84], and has since been extensively studied and used in

treatment planning systems [5].

The heterogeneity corrections implemented in CV/SP includes: (i) the density

scaling method, which applys to the terma “lookup” process described above, and

correctly accounts for the contribution from the first-scattered photons along the spa-

tial heterogeneities; and (ii) the kernel tilting method, which tilts h(r) according the

direction of the primary photons, and thus accounts for the geometrical divergence

of the indicent beams. These methods, along with the feature that the kernel can

implicitly transport scattered electrons, the CV/SP method is superior to the pencil

beam methods with correction-based heterogeneity corrections [27]. However, the

kernel h(r) is generated in an infinite, uniform medium. Therefore, it is expected

that inherent errors will occur when it is applied to a finite, hetergeneus geome-

try, such as the human body. Also, the heterogeneity corrections for the CV/SP

method can not correctly account for the contributions from mutiple-scattered pho-

tons. Therefore, compared to the Monte Carlo method, which is described next, the

CV/SP still shows significant errors in regions that lacks CPE [64]. Also, differences
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between different CV/SP algorithms implemented in various commercial treatment

planning systems could be significant when applied to the dose calculations in a lung

treatment planning case [120].

The Monte Carlo method is a totally different dose calculation algorithm. It

transports the particles (mostly photons and electrons in radiotherapy) explicitly by

using the first principles of physics and follows exactly the statistical nature of the

interactions between particles and the background matter by using the knowledge

of microscopic cross sections that govern different interactions. The simulation of

photon transport in the patient’s body can be briefly described as follows:

1. Generate a “source” photon with a particular initial energy and direction by

sampling the energy spectrum and the directional distribution of the source.

2. Transport this photon along its direction of flight to the next interaction point

by a pathlengh sampled from a probability distribution function (pdf) describing

the exponential attenuation of the photons in matter, which is governed by the

mean free path (MFP) of the photon.

3. Determine the type of the interaction statistically, and obtain possible secondary

electrons.

4. Continue to tranport the photon until it leaves the region of interest or is ab-

sorbed.

5. Transport the secondary electron, either in the same analog way as for the

photon, or using the approximate condensed history method [11], in which the

electron travels a greater distance between collisions (the step size) than the

actual MFP for each individul collisions.
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6. Deposit energy from the secondary electron along its track between two consecu-

tive “hard” collisions, by sampling the corresponding pdf for energy dissipation.

7. Determine the type of “hard” collision statistically, as is done with the photon

(possible secondary electron(s) can be emitted in this “hard” collision). And

8. Continue to transport all the secondary electrons generated by the primary

photon until they all stop or leave the region of interest.

During this process, the interfaces between different materials (the heterogeneities)

are crossed appropriately, and the energy deposited by the electrons is scored locally.

The distribution of dose (energy deposited per unit mass) is then obtained within the

region of interest. Because of the statistical nature of the Monte Carlo method, the

dose tallied is subject to statistical fluctuations, which are governed by the central

limit theorem. Therefore, a sufficient number of photons must be simulated be-

fore obtaining a dose distribution with good statistics. In general, the Monte Carlo

method is the slowest of the available dose calculation methods, although several

variance reduction techniques, such as splitting, Russian roulette, interaction forc-

ing, etc., can be used to increase the calculation speed. However, the Monte Carlo

method, due to its first-principles nature in explicitly transporting both photons and

electrons in the patient’s geomerty, and its sound interface crossing mechanisms, is

by far the most sophisticated and accurate dose calculation algorithm [37,64,99,120].

The expensive calulating time is still an limiting issue for the use of a general pur-

pose Monte Carlo code, such as EGSnrc [58], PENELOPE [104], and GEANT [48],

directly in the clinic. However, several Monte Carlo codes, such as DPM [108],

VMC++ [1], XVMC [41], MCDOSE [74], PEREGRINE [52], which are optimized in

particular for the radiotherapy, have been developed and have shown a large increase
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of calculation speed. In spite of the increased accuracy of Monte Carlo for geometri-

cally complex problems, its extreme slowness (compared to pencil beam methods and

CV/SP) has made Monte Carlo favored only for specialized research in the radio-

therapy community. For practical clinical treatment planning simulations, CV/SP

with inhomogeneity corrections is the principal dose calculation algorithm, and the

pencil beam method still is used by many treatment planning systems.

The calculated dose distribution can then be evaluated by several common tools,

such as the isodose lines [9], the dose volume histogram (DVH) [36, 73], the tumor

control probability (TCP) [116,129], and the normal tissue complication probability

(NTCP) [65, 73]. We describe the isodose lines and the DVH next, since these are

the two methods we use throughout our analysis.

(i) Isodose lines. The spatial dose distribution in the patient can be viewed in the

form of isodose lines, which are generated as a series of contours of various dose values

(either in relative or absolute dose values), by interpolating from the dose matrix

calculated for a treatment plan. Isodose lines, which are usually superimposed on the

patient’s anatomical images, help the dosimetrist to visually inspect the treatment

plan. Fig. 1.2 [2] shows an example.

(ii) Dose Volume Histogram (DVH). The DVH is another commonly-used graph-

ical tool to assess treatment plans. The most-seen DVHs are in a cumulative form,

which specifies the fraction of the volume of a region of interest (e.g., the target, the

normal tissue or some OARs) exceeding a given dose level. DVHs are very useful to

evaluate the uniformity of dose distributions in the region of interest, and in spot-

ting potential hot or cold spots. Fig. 1.3 [2] illustrates an example of the cumulative

DVHs. However, due to its integral nature, the DVH cannot reveal any detailed

spatial information about the dose distribution in a region of interest.
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Figure 1.2: Example isodose lines, extracted from [2].

Figure 1.3: Example DVHs, extracted from [2].
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Therefore, to minimize the systematic errors caused by the different capabilities

of handling heterogeneity correction for different calculation methods, in this thesis,

we adopt the Monte Carlo method for our dose calculations.

1.1 The Lung Models for Heterogeneity Correction

As radiotherapy technology advances, and the high-dose region conforms more

tightly to the target, the need for more accuracy in each stage of dose delivery

increases. Webb [123] specified six points for an ideal dose calculation method, the

first two being: (i) include all 3-D geometry information; and (ii) use an accurate

3-D map of the electron density. Before the advent of CT in the early 1970’s, dose

calculations were performed by assuming the human body to be composed of uniform

water, due to the lack of information of the exact anatomy. However, the human

body in nature is complicated and contains many heterogeneities, including various

tissues of different compositions and air cavities, of different sizes. Any deviation

from the real anatomy by ignoring these heterogeneities could lead to inaccurate dose

calculations, even if one had a perfect calculation algorithms. The lung is an organ

that severely challenges in the accurate prediction of dose distributions: (i) it is highly

heterogeneous, with millions of randomly located air-tissue interfaces of various sizes;

and (ii) its shape, size, and location change continuously during breathing, which

results in a continuous change of the already-present heterogeneities. Many articles

[23, 30, 101, 102] have been published addressing the effect of the lung motion on

dose calculations. However, in this thesis, we study only the effect of the spatial

heterogeneity of the lung by assuming that the lung is static and rigid. Therefore,

no motion-related changes will be considered.

Until recently, debates [90] still existed about how to incorporate spatial hetero-
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geneities in treatment planning for lung cancer. “Many cancer centers still do not

use patient-specific tissue density corrections. [27]” However, the medical physics

community [27] has gradually realized the importance of heterogeneity corrections,

including but not limited to the lung. To provide background and motivate our work,

we next describe the lung’s highly heterogeneous anatomy and the current status of

heterogeneity corrections associated with the lung.

1.1.1 The Lung’s Anatomy

From the perspective of particle transport, we need to know two quantitative

properties of the lung: (i) the materials that composed the lung; and (ii) the spatial

location of these materials. The materials composing the lung are relatively simple:

air and tissue. However, the locations of these two materials show a “random”

character, due to the highly heterogeneous structures inside the lung: three main

bifurcating “trees”, the bronchi, the arteries, and the veins, are embedded in the

parenchyma, which occupies most of the lung, and contains hundred of millions of

alveoli [31]. The quantitative measurements of the lung’s internal structures [51,

53–55,91,115,124] show a size range covering several orders of magnitude: from the

order of 1 cm for the principle bronchi and the main vessels, to about 10−4 cm for

the alveoli in the lung’s parenchyma. The bifurcating “trees” can be quantitatively

described by an order system introduced by Horsfield [53]. In this numbering system,

the largest structures have the highest order numbers, while the smaller structures

have smaller order numbers. Using this system, the characteristics of structures,

such as their numbers in the whole lung, their diameters, and their lengths, can

be counted or measured in an order-wise manner. For example, the 25th order of

bronchi, the lower lobe bronchi, count 2 in two lungs, and measure a typical diameter

of 0.7 cm and a typical length of 1.2 cm. In comparison, the 1st order of bronchi,
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the terminal bronchioles, count 25000 in two lungs, and measure a typical diameter

of 0.051 cm and a typical length of 0.11 cm. In addition, the lung’s structures

have some unique features: (i) the arteries accompany the bronchi, while the veins

are separate from them [49]. The size of the vessels is roughly proportional to

that of the bronchus of the same order [79]. (ii) Beyond the terminal bronchioles,

the morphology of the lung changes largely due to the transit from the purely-

conducting airway to the respiratory region, where the basic parenchyma units, the

acini, are alveolated. Simultaneously, the relatively scattered blood vessels change

into a network of capillaries, which forms the part of the thin wall of the alveoli. (iv)

Since the lung consists of about 75% of air, which is either contained in the airways’

lumen, or in the hundreds of millions of small pouch-like alveoli, the number of the

heterogeneous interfaces between the two materials, tissue and air, of great density

difference, is huge. These features are reflected in the lung model soon to be discussed

in Section 1.1.4.

Overall, the heterogeneous anatomy of the lung has the following unique charac-

teristics:

(i) Chunk sizes occur in a range of several orders of magnitude;

(ii) A huge number of structures scatter “randomly” inside the lung;

(iii) Basically two materials, tissue and air, alternate inside the lung, and thus a

huge number of material interfaces exist.

1.1.2 The Atomic Mix Model

Since most of the lung is occupied by the relatively uniform parenchyma (com-

pared to the more heterogeneous large structures with higher order numbers), the

natural way to introduce a heterogeneity correction to the previous water-equivalent

assumption is to model the lung as a whole “homogenized” organ at its mean den-
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sity. This model is often called the atomic mix or mean density lung model. The

atomic mix lung model has been widely used [12,14,16,20,22,24,40,62,75,83,88,97,

103,114,118,125,126,128] to study the effect of the low-density lung on dose distri-

butions with a variety of combinations of geometry setups and beam arrangements,

and either by measurements or by calculations.

Rice et al. [97] devised four clinically-relevant phantoms, which used homogeneous

materials of different densities (0.015, 0.18 and 0.31 g/cm3, respectively) to repre-

sent the atomic mix lung, and did benchmark measurements of the dose along the

central axis (CAX) of the photon beams of various field sizes (5× 5 to 20× 20 cm2)

and two different energies (4 MV and 15 MV, to bracket the most used energies).

Fig. 1.4 contains three representative plots extracted from the same reference, which

show some common features when introducing a low-density atomic mix lung as

(a) (b)

(c)

Figure 1.4: Correction factors for:
(a), correction factors for three dif-
ferent field sizes for a 4 MV pho-
ton beam; (b), correction factors
for three different lung densities for
a 15 MV photon beam of 5×5 cm2

field size; (c), correction factors for
three different tumor widths for a
15 MV photon beam of 5 × 5 cm2

field size. All figures are extracted
from [97].
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the heterogeneity correction. The correction factor (CF) in the figures is defined as

CF = D(h)/D(w), where D(h) is the dose in the heterogeneous atomic mix lung

and D(w) is the dose at the same point if the lung were replaced by water. Fig. 1.4a

shows, for a low energy photon beam, where lateral charged particle equilibrium

(CPE) is more readily established on the central axis (CAX), than a higher energy

beam, that: (i) a lower dose occurs in the atomic mix lung in the first few cm, and

then a higher dose occurs for the remaining part of the lung for all field sizes, which

is a combined result of the reduced scattering and increased primary fluence; (ii) a

higher dose occurs in the downstream water layer for all field sizes due to the reduced

attenuation of the primary photons; (iii) a shallow gradient occurs after the lung, due

to the shorter electron range in water than in the atomic mix lung; and (iv) a smaller

difference occurs with a larger field size, due to the effect of the lateral CPE. Fig. 1.4b

shows the density effect for a beam with high energy and a small field size, where the

loss of lateral CPE exists on the CAX. Here we see two other common features: (i)

a larger difference with a lower density of the lung; and (ii) a clear “buildup” region

upon entering the water layer after the lung, with a density-dependent slope. These

two characteristics are due to the loss of lateral CPE, which is more severe with the

lung with a lower density. Fig. 1.4c shows a clinically relevant situation with a tumor

of various sizes embedded inside the lung. Also, one new feature occurs here: beside

the “buildup” region on the upstream side of the tumor, a “builddown” region occurs

on the downstream side of the tumor, due to increased forward-scattering from the

high-density tumor and decreased back-scattering from the low-density lung. Both

of these effects yield a nonuniform dose distribution inside the tumor.

Because of these “new” features (compared to the “water” lung), the low-density

atomic mix lung model has been used extensively, especially in comparing the dose
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distributions calculated by different dose calculation algorithms with measurement.

For example, Tang et al. [114] compared different pencil-beam dose calculation meth-

ods using a phantom containing two layers of atomic mix lung. Mackie et al. [75]

quantified the errors of the pencil-beam algorithms using also a layered lung phantom.

The accuracy of heterogeneity effects for eight calculation methods were recently ex-

amined by comparing the calculated CAX depth dose to the measurement [126].

More recently, the atomic mix lung model was used for validating the capability of

the Monte Carlo method in dealing with tissue heterogeneity [20–22].

The atomic mix model has also been applied to evaluate other clinically relevant

issues. Chetty et al. [24] investigated the influence of different beam models on dose

calculations using a life-size thoracic phantom with two lung regions containing a ho-

mogeneous lung-equivalent material. Klein et al. [62] performed treatment planning

for lung cancer on an anthropomorphic phantom with two atomic mix lung regions

and provided cautions of using simplistic heterogeneity correction algorithms.

1.1.3 The CT Model

Since the invention of computed tomography (CT), not only could the positions of

the target, the organs at risk (OARs), and the normal tissue for a specific patient be

precisely contoured, but the density of the anatomies could be also used as the input

for dose calculations, and thus the practical importance of heterogeneity correction

methods, such as those discussed previously, could be truly evaluated [42].

Although the results coming from the atomic mix lung model “should prove helpful

in understanding the different physical processes contributing to dose distributions

in and near the regions with lungs” [97], the direct application of the atomic mix

model in the lung treatment planning is too crude to be realistic. This is indicated

in Fig. 1.4b, where different densities of the atomic mix lung result in significant



17

changes in dose, while the mean density of the lung among people were shown to vary

widely with ages, respiration phases of the patient [119]. Van Dyk [118] analyzed

the relationship between the mean lung density and the heterogeneity correction

factor and applied this to study the difference of the dose between a CT-based lung

geometry and a homogenized atomic mix version of the same lung. He concluded

that for a majority of patients, the detailed CT-based anatomic information was

needed to achieve an accuracy of 5% in the dose delivered to the lung. A collective

work also recommended the voxel-by-voxel CT-based dose calculations [93].

Currently, the CT-based treatment planning is widely used [7, 28, 33, 37, 60, 80,

92, 98, 100, 122, 127]. Therefore, the accuracy of dose calculations depends on the

extent to which the matrix of the CT voxels represents the patient’s real geometry.

The effect of CT numbers, which determine the electron densities for each CT voxel,

has been well-investigated [25, 44, 50, 57, 61, 85, 106]. However, publications on the

effect of CT resolutions, or alternatively, the sizes of the CT voxels, are limited.

Cygler et al. [32] suggested a 1.9 mm CT voxel size over a coarser 3.9 mm one

in the proximity of air-tissue interface, due to an error of more than 5% near this

heterogeneity. Chung et al. [26] used a series of voxel sizes, ranging from 1.5 mm to

6 mm, and found differences up to 5.6%. They then concluded that a 2 mm size was

required for accurate dose calculations in heterogeneous regions. De Smedt et al. [34]

generated an geometrical grid and an dose scoring grid, which are independent of

each other, and performed treatment planning for a lung case and a head and neck

case, for a series of combinations of different sizes of the geometrical grid and different

sizes of the dose scoring grid. They showed that for the lung case, the geometrical

resolution was more important than the dose scoring resolution. This was consistent

with an early article [44], in which Geise and McCullough indicated that it was more



18

important to know the accurate distribution of the spatial heterogeneities than the

accurate electron density. De Smedt et al. [34] also recommended a CT resolution of

2 mm for the studies lung cancer cases.

1.1.4 The Validity of the Atomic Mix Approximation

As stated in Section 1.1.1, the lung is a highly heterogeneous organ consisting of

a hierarchy of structures with a dramatic range of sizes. The locations of these many

structures are spatially random and can change with time. According to traditional

transport theory [94], a heterogeneous spatial system can be accurately homogenized

into an atomic mix counterpart only when the chunk sizes in the system are small

compared to the mean free path (MFP) of particles traveling inside. This “atomic

mix” approximation has been successfully used in the nuclear engineering and physics

communities for years. However, the rigorous mathematical proof of the atomic mix

approximation was not achieved until recently by Dumas and Golse [38].

The dose deposition in matter by a photon beam consists of two processes [6]:

(i) the photons travel through the background matter and emit secondary electrons

through various types of interactions, including the photoelectric effect, Compton

scattering, and pair-production; (ii) the secondary electrons slow down in the back-

ground matter through the Coulomb force interacting with the electric field of the

atoms, and the energy of the electrons is dissipated along their tracks. Even the

largest structure of the lung is small compared to the MFP for the photons, which

is in the order of cm within the energy range of interest in radiotherapy. Therefore,

the atomic mix model is valid for photons. If electrons deposit their energy locally

(no transport), the atomic mix lung model would then be valid for the dose calcu-

lations. In effect, this situation holds true when CPE exists. However, when CPE

does not exist, for example, in the proximity of geometrical heterogeneities, or near
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the edge of a beam, the validity of the atomic mix approximation for electrons is

open to question. Since the smallest structures inside the lung are much larger than

the electron MFP, which is in the order of μm, the atomic mix lung model is not

automatically valid in the absence of CPE.

The CT-based lung model, although providing a more detailed description of the

geometry of the lung than the crude atomic mix model for the whole lung, is still

essentially the atomic mix model, which is now applied to each individual voxel.

According to the discussion above, the CT-based voxelization is not automatically

valid for electrons, and therefore, the calculated dose distribution may deviate from

the “true” one, unless the CT resolution is small enough to disclose every detail of

the lung structure.

1.2 The Goals of This Thesis

As stated above, the knowledge about the impact of the lung’s highly heteroge-

neous structures on dose calculations for lung has been limited by the CT resolutions

present, which are larger than most of the lung’s internal structures. Our primary

goal is then to investigate this impact, by explicitly building a detailed lung model,

based on the lung’s morphological data.

To our knowledge, such a detailed lung model has not previously been developed

and used to assess dose calculations, due to the huge number of structures, which

makes a literal rendering of the lung impractical as the geometry input for any

practical dose calculation method.

Since modeling every detail of lung is required, according to traditional transport

theory (because the MFP of the electrons is much less than the finest structure of the

lung and thus no atomic mix at any level is allowed), we first theoretically extend
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the traditional atomic mix theory and raise the MFP limit, in order to explicitly

model only a reasonably small number of the larger lung’s structures. By applying

a formal asymptotic analysis, which is based on the recent work by Larsen and

Liang [68], our new atomic mix theory states that a heterogeneous spatial system

can be approximated by the atomic mix model if the chunk sizes in this system

are small compared to the transport MFP of the particles, instead of the MFP. The

transport MFP is, roughly, the path length that an particle will have to travel to be

deflected by an O(1) angle. Due to the highly forward-peaked nature of the dominant

“soft” (elastic) collisions of electrons with the background matter, the transport MFP

for electrons is orders of magnitude larger than the MFP. Most importantly, the

transport MFP of the electrons, within the energy range of interest in radiotherapy,

is larger than a certain orders of structures inside the lung, and this makes a detailed

lung model possible.

Using the new atomic mix theory, we build a detailed “random” lung model, and

we assess the effect of the detailed and randomly-located lung’s structures on dose cal-

culations, compared to the atomic mix lung model. This random lung model should

be realistic, yet simple enough to implement the current Monte Carlo codes available

for simulations. Therefore, in our random lung model, all physical structures are not

explicitly modeled. Instead, we set a reasonable threshold size, guided by our new

atomic mix theory and the lung’s morphology, and we homogenize all the structures

in the lung smaller than this threshold size into an atomic mix “background” with

a density less than the mean density of the whole lung. We then explicitly embed

the remaining structures larger than the threshold size into the background. We

then compare doses obtained from different realizations of the random lung model

and the atomic mix lung model; significant perturbations in dose due to the random
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structures of the lung will be analyzed.

To illustrate the application of the random lung model, we apply our random

lung model, by voxelizing it for different geometrical realizations and CT resolu-

tions, to assess the effect of CT resolutions for lung dose calculations in a more

realistic treatment-like phantom setup with a tumor embedded inside the lung. The

differences between the dose distributions from different CT resolutions will be ex-

amined. The result of this process is an estimated value of the CT resolutions at

which Monte Carlo dose calculations are accurate. (We do not assess the accuracy of

pencil beam or convolution methods for these problems; this is beyond the scope of

our project and there is no theoretical reason why these methods, with their crude

inhomogeneity corrections, will be accurate for such highly heterogeneous systems.)

1.3 Organization of this thesis

The remainder of this thesis is organized as follows:

Chapter II describes the relevant detailed morphology of the human lung, which

is a highly heterogeneous organ consisting of a hierarchy of structures in a dramatic

range of sizes. Using this published information on the lung’s structures, we will (in

Chapter IV) build a “random lung model,” which is a simplified 2 1
2
-D version of the

3-D lung, preserving essential features of the realistic 3-D lung.

Chapter III, which is partly based on a paper accepted for publication in SIAM J.

Appl. Math., deals with the atomic mix approximation for charged particle transport

in a heterogeneous random system [68]. In this chapter, a one-dimensional Boltzmann

equation is approximated by its Boltzmann Fokker-Planck (BFP) limit by applying

the theoretical approach of Pomraning on the “soft” collision operator, using the

highly forward-peaked nature of the “soft” (elastic) electron scattering in matter.



22

Then, by introducing two independent dimensionless variables to express the “fast”

and “slow” component of the angular flux, a formal asymptotic analysis is applied

to obtain the atomic mix approximation of the BFP equation. The purpose of

this analysis is to show that when charged particle transport occurs in a random

heterogeneous system and the chunk sizes of the materials are small compared to the

transport mean free path, then the solution of the Boltzmann equation is very well

approximated by the solution of the atomic mix Boltzmann equation (in which all

the cross sections are replaced by their volume averages). We then build a random

“droplet” model to numerically demonstrate the validity of this asymptotic theory.

Chapter IV is partly based on a paper published on Medical Physics [70]. In this

chapter, we use the anatomical data discussed in Chapter II and apply the atomic

mix approximation theory discussed in Chapter III to build a realistic “mixed” 2 1
2
-D

random lung model. In this model, structures larger than a threshold size (which is

carefully selected at the order of the terminal bronchioles) are explicitly modeled and

embedded in the homogenized “background” with an adjusted density, which repre-

sents the structures smaller than the same threshold size. We then use the Monte

Carlo method to compare the dose distributions between different realizations of our

random lung model and their atomic mix equivalent, using a one-beam phantom

setup.

In Chapter V, we present an application of our random lung model: we deter-

mine an optimal CT resolution for lung treatment planning, in a realistic treatment

planning phantom setup. The effect of different sizes of geometrical voxels used to

describe the lung’s geometry on dose calculations is analyzed, for various tumor and

field sizes.

We summarize our conclusions and suggest future work in Chapter VI.



CHAPTER II

The Lung’s Anatomy

The lungs [49] are the air exchange part of the respiratory system. They are

spongy and look roughly like a half-cone. Down from the end of the trachea, the

conducting airway consists of tubular structures with concentric layers of different

tissues [105], which divides continuously to the edge of the lung. As the sizes of these

structures decrease, the purely conducting airway transitions from the large principal

bronchi, through the medium lobar bronchi and small intrasegmental bronchi, to the

terminal bronchioles. Each terminal bronchiole then leads to a parenchymal unit: the

acinus, which contains alveolated respiratory brochioles, alveolar ducts and numerous

pouch-like alveoli that serve as the place of air exchange. These small structures are

separated by thin walls that consist of the capillary network and the interalveolar

septa of epithelium. There are two kinds of pulmonary blood vessels: the arteries and

the veins. They bifurcate into binary vessel trees like the bronchi from the hila of

the lungs, and the two vessel trees meet at the capillaries in the walls of the alveoli.

2.1 The Lung’s Morphology

In order to model the transport of particles (photons/electrons) in the lung, both

the material composition and the geometrical arrangement of the internal structures

of the lung are needed.

23
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The lung is made up of three basic components: air, blood and tissue [124]. The

blood and the tissue can be well-approximated as water.

However, compared to the relatively simple material composition of the lung, the

hierarchical information, such as the variation of diameter and length of branches

of the lung’s internal structures with successive levels, are more complicated. There

have been systematic, quantitative morphologic analyses of the structures of the

human lung over the last several decades, either by measuring prepared casts of the

airways and vessels [51, 53–55, 91, 124], or by visualizing and analyzing them on in

vivo CT scans [115]. Our realistic lung model (see Chapter IV) is based on these

quantitative works, which are briefly described next.

2.1.1 The Horsfield Orders

Two different methods have been developed to describe the hierarchy of the

branches of the airways and the arterial and venous trees in the lung: generation [124],

which numbers from principal bronchi down to the periphery, and order [53], which

numbers in the other way from the periphery toward the stem.

In the generation system, the trachea is generation 0, the principal bronchi gen-

eration 1, etc., with the generation number increasing by 1 at each division. In the

order system, the farthest (smallest) branches are defined as order 1. Two small

branches join together and become a larger branch, which is one order greater than

the higher one of the two small branches. This yields the so-called Horsfield orders.

In the Horsfield method, order numbers are continuous along the longest pathway,

where they are equal to the generation numbers. While the generation method is

natural for an asymmetric binary tree such as that in the lung, the order system

is better in grouping similar size of levels of branches together. The difference and

relationship between these two numbering systems are illustrated in Fig. 2.1. We use
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the Horsfield order throughout this thesis.
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Figure 2.1: (a) Horsfield orders; (b) Weibel’s generations

2.1.2 The Morphometric Data

Within each order, the lengths and diameters of the branches have a typical range

of sizes [54]. The mean size of the bronchi decreases continuously. The purely con-

ducting airways of the bronchial tree start from the right/left principal bronchus,

with a typical luminal diameter of 1.2 cm, and end at terminal bronchioles, with an

internal diameter in the range of 0.03 cm to 0.1 cm [31]. After each terminal bronchi-

ole is the acinus: the complex of alveolated airways and the largest parenchymal unit,

which contains three generations (on average) of respiratory bronchioles and numer-

ous alveoli, where gas exchange mainly occurs. The acinus has an average volume

of 187 ml and numbers 26,000–32,000 in both lungs, assuming a total lung capacity

of 5–6 liters [51]. The internal airway diameter inside an acinus falls from 0.05 cm

to 0.027 cm [51]. The end structure containing air is the thin-walled bubble-like

alveolus, with a mean diameter of about 0.025 cm and a membrane thickness on the
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order of μm [31]. The total number of alveoli in each adult lung ranges from 2× 108

to 6×108, depending on body size [31]. Fig. 2.2a [19] is a resin cast of a human lung

which shows the bifurcating style of the bronchi (B) that originate from the trachea

(T). The pulmonary arteries (PA) and veins (PV) are also indicated in this figure.

Fig. 2.2b [19] is an scanning electron micrograph of the distal airways, which include

the small bronchioles (BL), the terminal bronchioles (T) and the parenchymal res-

piratory bronchioles and alveolar ducts. A pulmonary artery (a) and a vein (v) are

also shown. The scale marker included is 200 μm.

Table 2.1 shows the characteristic numbers and sizes for each order of structures in

the lung’s conducting airways and blood vessels. In this table, the terminal bronchi-

oles have order 1 and the main bronchi have order 28. The lengths and diameters are

from reference [53] and [105], but the diameters for the accompanying arteries and

veins are calculated according to the method in Section 2.2. Also, n is the number

of structures in the corresponding order and m the number of the same structures

in the model (see Section 4.2). Table 2.2 provides the morphometric data for the

parenchymal unit, the acinus. In this table, the terminal bronchioles are order 0 as a

reference point and all the smaller structures have a negative order accordingly. All

the parameters have the same meaning as in Table 2.1, but no blood vessels are listed

here because down from the terminal bronchiole, the blood vessels begin to develop

into the capillary network surrounding the acini. This morphological transition will

be reflected in our lung model used for the numerical validation of the theory in

Chapter IV.
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(a) Bronchial tree

(b) Distal airways

Figure 2.2: Lung’s airways
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Table 2.1: The conducting airways and the accompanying vessels’ morphometry [53]

Horsfield Structures Length Lumen Bronchus Artery/vein
order diameter diameter diameter n m

(mm) (mm) (mm) (mm)
28 Large 100 16 26.67 22.86 0 0
27 bronchi 40 12 20.00 17.14 0 0
26 26 10.3 17.17 14.71 2 1.86
25 18 8.9 14.83 12.71 2 1.29
24 Medium 14 7.7 12.83 11.00 2 1.00
23 bronchi 11 6.6 11.00 9.43 3 1.18
22 10 5.7 9.50 8.14 6 2.14
21 10 4.9 8.17 7.00 8 2.86
20 10 4.2 7.00 6.00 12 4.29
19 Small 10 3.5 5.83 5.00 14 5.00
18 bronchi 9.6 3.3 5.50 4.71 20 6.86
17 9.1 3.1 5.17 4.43 30 9.75
16 8.6 2.9 4.83 4.14 37 11.36
15 8.2 2.8 4.67 4.00 46 13.47
14 7.8 2.6 4.33 3.71 64 17.83
13 7.4 2.4 4.00 3.43 85 22.46
12 7 2.3 3.83 3.29 114 28.50
11 6.7 2.2 3.67 3.14 158 37.81
10 6.3 2 3.33 2.86 221 49.72
9 5.7 1.78 2.97 2.54 341 69.42
8 5 1.51 2.52 2.16 499 89.11
7 4.4 1.29 2.15 1.84 760 119.43
6 3.9 1.1 1.83 1.57 1104 153.77
5 3.5 0.93 1.55 1.33 1675 209.38
4 Bronchioles 3.1 0.79 1.32 1.13 2843 314.76
3 1.1 0.64 1.07 0.91 5651 222.00
2 1.3 0.56 0.93 0.80 11300 524.64
1 1.1 0.51 0.85 0.73 25000 982.14
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Table 2.2: The acinus morphometry [105]

Horsfield Structures Number Length Diameter
order in n m

acinus (mm) (mm)
0 Terminal

Bronchiole
1 1.10 0.51 25000 982.14

-1 Respiratory
bronchiole 1

2 0.97 0.47 50000 1732.14

-2 Respiratory
bronchiole 2

4 0.97 0.47 100000 3464.29

-3 Respiratory
bronchiole 3

8 0.88 0.49 200000 6285.71

-4 Alveolar
duct 1

19 0.66 0.50 475000 11196.43

-5 Alveolar
duct 2

45 0.51 0.49 1125000 20491.07

-6 Alveolar
duct 3

108 0.58 0.51 2700000 55928.57

-7 Alveolar
duct 4

254 0.43 0.40 6350000 97517.86

-8 Alveolar
duct 5

374 0.41 0.38 9350000 136910.71

-9 Alveolar
duct 6

366 0.30 0.30 9150000 98035.71

-10 Alveolar
duct 7

146 0.28 0.27 3650000 36500.00

-11 Alveolar
duct 8

58 0.22 0.24 1450000 11392.86
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2.2 Other Relevant Parameters

2.2.1 Lung Density

The mean bulk density of the lung can vary dramatically among different people

[119]. Depending on the specific conditions such as age, respiration phase, body

position, disease, etc., the mean lung density can range from less than 0.2 g/cm3 to

greater than 0.4 g/cm3. We will adopt the ICRU [87] value 0.26 g/cm3 for the whole

lung density in all our calculations.

2.2.2 T/D Ratio

Table 2.1 only gives the luminal diameters of the airways. The wall thickness

of the bronchi is approximately proportional to the luminal diameter and can be

determined by the “T/D ratio” [47,78,79], which is defined as the wall thickness (T)

divided by the total diameter of the bronchus (D). The T/D ratio has no statisti-

cally significant difference between segments, lobes and lungs; and furthermore, no

significant correlation was shown between T/D ratio and age [79]. A T/D ratio of

0.2 is used in our lung model.

2.2.3 Bronchoarterial Ratio

The pulmonary arteries run parallel to the bronchi, while the veins are separate

from these. In healthy individuals, the diameters of the pulmonary artery is ap-

proximately equal to that of its accompanying bronchus [79]. The “bronchoarterial

ratio” is the diameter of the bronchial lumen (D-2T) divided by its accompanying

pulmonary artery. The bronchoarterial ratio shows a significant correlation with age.

A mean value of 0.695 [79] is adopted in our lung model.



CHAPTER III

The Atomic Mix Approximation for Charged Particle
Transport

3.1 Introduction

Particle transport in a physical system can be described by a linear Boltzmann

equation [10,18,56,94]. For a complicated heterogeneous system consisting of two or

more materials with varying chunk sizes, a general linear Boltzmann equation with

both space- and energy-dependent cross sections is usually difficult and expensive

to solve. If the typical chunk sizes of different materials in such a system are small

compared to the mean free path (MFP) of the particles transporting inside, an

accurate solution of the original Boltzmann equation can be obtained by solving

an equivalent “atomic mix” Boltzmann equation in which the spatially-varying cross

sections are replaced by their volume-averaged counterparts over the physical system

[94]. This atomic mix Boltzmann equation is simpler and much easier to solve than

the original one.

The atomic mix approximation has recently been proved mathematically by Du-

mas and Golse [38]. The more recent work by Larsen, Vasques, and Vilhena [66,67]

also showed, using a formal asymptotic analysis, that the atomic mix approximation

is valid in a 1-D diffusive stochastic system when the chunks are comparable in size

to a mean free path.

31
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In this chapter, we show that to accurately homogenize a heterogeneous system,

the typical chunk sizes should be small compared to the transport MFP of the parti-

cles, which for charged particle is much larger than their MFP, because the scattering

is very forward-peaked.

For simplicity, we consider the 3-D Boltzmann equation for electrons and specialize

this equation to planar geometry. We apply Pomraning’s method [95] to approxi-

mate the “soft” collision operator by its Fokker-Planck limit [17] (valid because of

the forward-peaked scattering nature of these collisions) and obtain the Boltzmann-

Fokker-Planck (BFP) equation [15, 96]. Finally, we express the solution of the BFP

equation using two independent dimensionless spatial variables and employ a formal

asymptotic analysis to obtain the atomic mix limit of the BFP equation. Numerical

results obtained by employing Monte Carlo method are provided to validate this

new theory. A thorough analysis using a 3-D, energy-dependent transport equation

is presented in a recent work by Larsen and Liang [68].

3.2 The 1-D Linear Boltzmann Equation

The 3-D energy-independent particle transport equation is as follows:

Ω · ∇Ψ(x,Ω) + Σs(x)Ψ(x,Ω)

=

∫
4π

Σs(x,Ω · Ω′)Ψ(x,Ω′) dΩ′ , x ∈ V , (3.1)
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where:

Σs(x,Ω · Ω′) = Σs(x, μ0) (μ0 = Ω · Ω′ = scattering cosine)

=
∞∑

n=0

2n+ 1

2
Σsn(x)Pn(μ0) (Pn(μ0) = Legendre polynomials)

= differential scattering cross-section , (3.2)

Σsn =

∫ 1

−1

Σs(x, μ0)Pn(μ0)dμ0 , 0 ≤ n <∞ , (3.3)

Σs(x) = Σs0 . (3.4)

For simplicity, we ignore the boundary conditions and source for Eq. (3.1). These

can be included without difficulty. Since electrons are not absorbed in their interac-

tions with matter, the macroscopic total cross section Σt is equal to the macroscopic

scattering cross section Σs.

We can group the electron collisions with matter into two types [6,104]: (i) “soft”

collisions, which include both elastic and inelastic scattering occurring when the

impact parameter b is far greater than the atomic radius a (and thus the electrons

mainly interact with the Coulomb field of the atom); and (ii) “hard” collisions,

which occur when b is comparable to or less than a and include large-angle elastic

scattering, bremsstrahlung emission and δ-ray emission. Typically, the number of

“soft” collisions during the slowing down process is around 105 ∼ 106, depending on

the initial energy and the matter, while the number of “hard” collisions is small and

is on the order of 10 [11]. An individual soft collision causes little loss of energy and

very small deflections of the angle of flight (hence it is very forward-peaked), while

a hard collision (termed “catastrophic”) causes large changes in both the angle of

flight and the electron energy [11].

We then split the differential scattering cross section into a “hard” and a “soft”
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component:

Σs(x, μ0) = Σh(x, μ0) + Σr(x, μ0) , (3.5)

where Σh is the differential scattering cross section for hard collisions and Σr is the

differential scattering cross section for soft collisions (differential “restricted” cross

section).

As with Eqs. (3.2) through (3.4), we have:

Σh(x, μ0) =
∞∑

n=0

2n+ 1

2
Σhn(x)Pn(μ0)

= differential scattering cross section for hard collisions, (3.6)

Σhn(x) =

∫ 1

−1

Σh(x, μ0)Pn(μ0)dμ0 , 0 ≤ n <∞ , (3.7)

Σr(x, μ0) =
∞∑

n=0

2n+ 1

2
Σrn(x)Pn(μ0)

= differential scattering cross section for soft collisions, (3.8)

Σrn(x) =

∫ 1

−1

Σr(x, μ0)Pn(μ0)dμ0 , 0 ≤ n <∞ . (3.9)

Also, Eqs. (3.4), (3.3), (3.5), (3.7) and (3.9) give:

Σs(x) = Σs0(x)

=

∫ 1

−1

Σs(x, μ0)dμ0

=

∫ 1

−1

[Σh(x, μ0) + Σr(x, μ0)] dμ0

=

[∫ 1

−1

Σh(x, μ0)dμ0

]
+

[∫ 1

−1

Σr(x, μ0)dμ0

]

= Σh0(x) + Σr0(x) . (3.10)

By using Eq. (3.5) and Eq. (3.10), Eq. (3.1) can be written in terms of the hard
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and soft (restricted) cross sections:

Ω · ∇Ψ(x,Ω) + Σh0(x)Ψ(x,Ω) =

∫
4π

Σh(x,Ω · Ω′)Ψ(x,Ω′)dΩ′ + LrΨ(x,Ω) ,

(3.11)

where Lr is the restricted scattering operator:

LrΨ(x,Ω) =

∫
4π

Σr(x,Ω · Ω′)Ψ(x,Ω′)dΩ′ − Σr0(x)Ψ(x,Ω) . (3.12)

For the case of problems with 1-D planar symmetry, the above equations reduce

to:

μ
∂Ψ

∂x
(x, μ) + Σh(x)Ψ(x, μ) =

∫ 1

−1

Σh(x, μ, μ
′)Ψ(x, μ′)dμ′ + LrΨ(x, μ) , (3.13)

where:

LrΨ(x, μ) =

∫ 1

−1

Σr(x, μ, μ
′)Ψ(x, μ′)dμ′ − ΣrΨ(x, μ) . (3.14)

In Eqs. (3.13) and (3.14),

Σh(x, μ, μ
′) =

∞∑
n=0

2n+ 1

2
Σhn(x)Pn(μ)Pn(μ′) , (3.15)

Σhn = defined by Eq. (3.7) , (3.16)

Σr(x, μ, μ
′) =

∞∑
n=0

2n+ 1

2
Σrn(x)Pn(μ)Pn(μ′) , (3.17)

Σrn = defined by Eq. (3.9) , (3.18)

and

Σh(x) = Σh0(x) , (3.19)

Σr(x) = Σr0(x) . (3.20)

3.3 The Fokker-Planck Approximation to Lr

As defined in Eq. (3.12), Lr describes the restricted collisions of electrons with

matter, which includes scattering with very small change in direction of flight, and
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which indicates that the differential scattering cross section Σr(x, μ, μ
′) is strongly

peaked around μ′ ≈ μ. Up to this point, we have not introduced any approximation

to Eq. (3.1). However, in this section, we use the method by Pomraning [95] to derive

the Fokker-Planck approximation of Lr . This yields the Boltzmann-Fokker-Planck

(BFP) approximation to Eq. (3.13).

We have from Eq. (3.14) (temporarily ignoring the spatial variable x):

LrΨ(μ) =

∫ 1

−1

Σr(μ, μ
′)Ψ(μ′)dμ′ − ΣrΨ(μ) , (3.21)

and from Eq. (3.17):

Σr(μ, μ
′) =

∞∑
n=0

2n+ 1

2
ΣrnPn(μ)Pn(μ′) . (3.22)

From Eq. (3.18) and (3.9), we also have:

Σrn =

∫ 1

−1

Σr(μ0)Pn(μ0)dμ0 , (3.23)

where (Eq. (3.8))

Σr(μ0) = 3-D differential cross section for soft collisions,

and μ0 = Ω · Ω′ = scattering cosine.

The differential scattering cross section Σr(μ0) is strongly-peaked near μ0 =

1 (Ω ≈ Ω′). Therefore, a Taylor expansion of Pn(μ0) around μ0 = 1 in Eq. (3.23)

gives:

Σrn =

∫ 1

−1

Σr(μ0)

[
Pn(1) + (μ0 − 1)

dPn

dμ0

(1) + · · ·
]
dμ0

≈
∫ 1

−1

Σr(μ0)Pn(1)dμ0 +

∫ 1

−1

Σr(μ0)(μ0 − 1)
dPn

dμ0

(1)dμ0

=

[∫ 1

−1

Σr(μ0)dμ0

]
Pn(1) −

[∫ 1

−1

(1 − μ0)Σr(μ0)dμ0

]
dPn

dμ0

(1)

= [Σr0]Pn(1) − [Σr0 − Σr1]
dPn

dμ0

(1) . (3.24)
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But, we have the identities [3]:

Pn(1) = 1 , 0 ≤ n <∞ , (3.25a)

dPn

dμ0

(1) =
n(n+ 1)

2
, 0 ≤ n <∞ , (3.25b)

and the definition:

Σr,tr = Σr0 − Σr1

= restricted transport cross section . (3.26)

Then, by introducing Eqs. (3.25) and Eq. (3.26) into Eq. (3.24), we get

Σrn ≈ Σr0 − Σr,tr
n(n+ 1)

2
. (3.27)

Combining Eqs. (3.21), (3.22), and (3.27), we obtain

LrΨ(μ) =
∞∑

n=0

2n+ 1

2
ΣrnPn(μ)

∫ 1

−1

Pn(μ′)Ψ(μ′)dμ′ − Σr0Ψ(μ)

=
∞∑

n=0

2n+ 1

2

[
Σr0 − Σr,tr

n(n+ 1)

2

]
Pn(μ)

∫ 1

−1

Pn(μ′)Ψ(μ′)dμ′ − Σr0Ψ(μ)

= Σr0

[ ∞∑
n=0

2n+ 1

2
Pn(μ)

∫ 1

−1

Pn(μ′)Ψ(μ′)dμ′ − Ψ(μ)

]

+
Σr,tr

2

∞∑
n=0

2n+ 1

2
[−n(n+ 1)]Pn(μ)

∫ 1

−1

Pn(μ′)Ψ(μ′)dμ′ . (3.28)

Now we use two other identities of the Legendre polynomials [3]. First, for any

function Ψ(μ),

Ψ(μ) =
∞∑

n=0

2n+ 1

2
ΨnPn(μ) ,

Ψn =

∫ 1

−1

Pn(μ′)Ψ(μ′)dμ′ .

Therefore,

(i) Ψ(μ) =
∞∑

n=0

2n+ 1

2
Pn(μ)

∫ 1

−1

Pn(μ′)Ψ(μ′)dμ′ . (3.29)
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Also,

(ii)
∂

∂μ
(1 − μ2)

∂

∂μ
Pn(μ) = −n(n+ 1)Pn(μ) . (3.30)

Using these identities, Eq. (3.28) becomes:

LrΨ(μ) ≈ Σr,tr

2

∞∑
n=0

2n+ 1

2

[
∂

∂μ
(1 − μ2)

∂

∂μ
Pn(μ)

] ∫ 1

−1

Pn(μ′)Ψ(μ′)dμ′

=
Σr,tr

2

[
∂

∂μ
(1 − μ2)

∂

∂μ

] [ ∞∑
n=0

2n+ 1

2
Pn(μ)

∫ 1

−1

Pn(μ′)Ψ(μ′)dμ′
]

=
Σr,tr

2

∂

∂μ
(1 − μ2)

∂

∂μ
Ψ(μ)

≡ Lr,FP Ψ(μ) . (3.31)

Thus, Eq. (3.13) becomes the well-known Boltzmann-Fokker-Planck (BFP) equa-

tion for Ψ:

μ
∂Ψ

∂x
(x, μ) + Σh(x)Ψ(x, μ) =

∫ 1

−1

Σh(x, μ, μ
′)Ψ(x, μ′)dμ′

+
Σr,tr(x)

2

∂

∂μ
(1 − μ2)

∂Ψ

∂μ
(x, μ) , (3.32)

where

Σr,tr(x) = Σr0(x) − Σr1(x)

=

∫ 1

−1

(1 − μ0)Σr(x, μ0)dμ0 . (3.33)

The Fokker-Planck approximation developed here depends only on the fact that

Σr(x, μ0) is strongly peaked near μ0 = 1. This approximation is valid independently

of any assumptions about the space-dependence of Σr and Σh. As can be seen

from the derivation, the BFP equation applies to transport problems in which the

dominant scattering is highly forward-peaked. The Fokker-Planck approximation

eliminates this highly forward-peaked scattering kernel, which makes the resulting

BFP equation easier to solve.
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Before proceeding, we note from Eqs. (3.33) that

Σr,tr = 2π

∫ 1

−1

(1 − μ0)Σr(μ0)dμ0

= Σr0 − Σr1

= Σr0

(
1 − Σr1

Σr0

)

= Σr0

[
1 −

∫ 1

−1
μ0Σr(μ0)dμ0∫ 1

−1
Σr(μ0)dμ0

]

= Σr0[1− < μ0 >] ,

where

< μ0 > =
Σr1

Σr0

= mean scattering cosine . (3.34)

Thus,

Σr,tr = Σr0[1− < μ0 >] (3.35)

is, for electrons, much smaller than Σr0. Hence,

λr0 =
1

Σr0

= restricted MFP , (3.36a)

and

λr,tr =
1

Σr,tr

= restricted transport MFP , (3.36b)

satisfy

λr,tr =
λr0

1− < μ0 >
, (3.37)

and the restricted transport MFP is much greater than the restricted MFP.
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3.4 The Atomic Mix Approximation to the BFP Equation

For a heterogeneous medium consisting of “chunks” of two materials, we define

the three length scales:

1

λh

= typical value of Σh(x) , (3.38a)

1

λr,tr

= typical value of Σr,tr(x) , (3.38b)

1

λch

= typical value of Σch(x) , (3.38c)

where λh is the typical distance an electron will travel between two consecutive hard

collisions. λr,tr is the typical distance an electron will travel for its direction of flight

to be altered an O(1) amount through soft collisions only. λch is the typical width

of a chunk in such a heterogeneous medium.

We make the following assumption:

λch 	 λr,tr ≈ λh . (3.39)

Thus,

λh

λr,tr

≈ 1 and ε ≡ λch

λr,tr

	 1 . (3.40)

Eqs. (3.39) and (3.40) state that a typical chunk size is small compared to λh and

λr,tr, while λh and λr,tr are comparable.

We then introduce a “fast” spatial dimensionless variable y and three functions

in terms of y:

y ≡ x

λch

, (3.41a)

σh(y) ≡ λr,trΣh(λchy) = λr,trΣh(x) , (3.41b)

σh(y, μ, μ
′) ≡ λr,trΣh(λchy, μ, μ

′) = λr,trΣh(x, μ, μ
′) , (3.41c)

σr,tr(y) ≡ λr,trΣr,tr(λchy) = λr,trΣr,tr(x) . (3.41d)
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Since λh and λr,tr are comparable to each other, σh(y), σh(y, μ, μ
′), and σr,tr(y)

are dimensionless and O(1) in magnitude. The BFP equation (Eq. (3.32)) becomes:

μ
∂Ψ

∂x
(x, μ) +

1

λr,tr

σh(y)Ψ(x, μ) =
1

λr,tr

∫ 1

−1

σh(x, μ, μ
′)Ψ(x, μ′)dμ′

+
σr,tr(y)

2λr,tr

∂

∂μ
(1 − μ2)

∂Ψ

∂μ
(x, μ) . (3.42)

Here the scaled cross sections (σh and σr,tr) are expressed in terms of the “fast”

variable y, which means that they change by an O(1) amount over a typical chunk

size λch.

Similarly, we also introduce a “slow” spatial dimensionless variable z:

z =
x

λr,tr

, (3.43)

which is used to express an O(1) varying component in Ψ over a typical distance

where the direction of flight has an O(1) change.

Mathematically, we assume that Ψ can be expressed in terms of y and z:

Ψ(x, μ) = ψ(y, z, μ) . (3.44)

Applying the chain rule, we obtain

∂Ψ

∂x
=
∂ψ

∂y

1

λch

+
∂ψ

∂z

1

λr,tr

. (3.45)

Introducing Eqs. (3.43) – (3.45) into (3.42), we have:

μ

(
1

λch

∂ψ

∂y
+

1

λr,tr

∂ψ

∂z

)
+

1

λr,tr

σh(y)ψ(y, z, μ)

=
1

λr,tr

∫ 1

−1

σh(y, μ, μ
′)ψ(y, z, μ′)dμ′

+
σr,tr(y)

2λr,tr

∂

∂μ
(1 − μ2)

∂ψ

∂μ
(y, z, μ) .
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Multiplying by λr,tr and using ε ≡ λch

λr,tr
, we get

μ

ε

∂ψ

∂y
(y, z, μ) + μ

∂ψ

∂z
(y, z, μ) + σh(y)ψ(y, z, μ) =

∫ 1

−1

σh(y, μ, μ
′)ψ(y, z, μ′)dμ′

+
σr,tr(y)

2

∂

∂μ
(1 − μ2)

∂ψ

∂μ
(y, z, μ) . (3.46)

Now we asymptotically expand the solution of (3.46) in terms of ε:

ψ = ψ0(y, z, μ) + εψ1(y, z, μ) + · · · , (3.47)

where y and z are independent.

By introducing Eq. (3.47) into Eq. (3.46) and equating the O(1
ε
) terms, we obtain:

μ
∂ψ0

∂y
(y, z, μ) = 0 ,

which implies

ψ0(y, z, μ) = ψ̂0(z, μ) , (3.48)

where ψ̂0 is independent of y but is otherwise arbitrary.

Next the O(1) terms in Eq. (3.46) give:

μ
∂ψ1

∂y
(y, z, μ) + μ

∂ψ̂0

∂z
(z, μ) + σh(y)ψ̂0(z, μ) =

∫ 1

−1

σh(y, μ, μ
′)ψ̂0(z, μ)dμ′

+
σr,tr(y)

2

∂

∂μ
(1 − μ2)

∂ψ̂0

∂μ
(z, μ) .

Now, we operate on this equation by the spatial averaging operator:

1

2Y

∫ Y

−Y

(·)dy

and get:

μ

2Y
[ψ1(Y, z, μ) − ψ1(−Y, z, μ)] + μ

∂ψ̂0

∂z
(z, μ) +

[
1

2Y

∫ Y

−Y

σh(y)dy

]
ψ̂0(z, μ)

=

∫ 1

−1

[
1

2Y

∫ Y

−Y

σh(y, μ, μ
′)dy

]
ψ̂0(z, μ

′)dμ′

+
1

2

[
1

2Y

∫ Y

−Y

σr,tr(y)dy

]
∂

∂μ
(1 − μ2)

∂ψ̂0

∂μ
(z, μ) .
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Letting Y → ∞, and using

ψ1 is a bounded [O(1)] function of y

〈·〉 = lim
Y →∞

1

2Y

∫ Y

−Y

(·)dy

= averaging operator in y (3.49)

we obtain the following equation for ψ̂0(z, μ):

μ
∂ψ̂0

∂z
(z, μ) + 〈σh〉ψ̂0(z, μ) =

∫ 1

−1

〈σh(μ, μ
′)〉ψ̂0(z, μ

′)dμ′

+
〈σr,tr〉

2

∂

∂μ
(1 − μ2)

∂ψ̂0

∂μ
(z, μ) , (3.50)

in which all the cross sections are volume-averaged.

Next, we convert Eq. (3.50) back to the original dimensional dependent and in-

dependent variables. From Eqs. (3.44), (3.47), (3.48), and (3.43), we have:

Ψ(x, μ) = ψ(y, z, μ)

= ψ0(y, z, μ) +O(ε)

= ψ̂0(z, μ) +O(ε)

= ψ̂0

(
x

λr,tr

, μ

)
+O(ε) . (3.51)

Let us define

Ψ̂(x, μ) = ψ̂0(z, μ) , (3.52)

where, by Eq. (3.43),

z =
x

λr,tr

.

Then

∂ψ̂0

∂z
=
∂Ψ̂

∂x

dx

dz
=
∂Ψ̂

∂x
λr,tr .
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Eqs. (3.52) and (3.50) give

μλr,tr
∂Ψ̂

∂x
(x, μ) + 〈σh〉Ψ̂(x, μ) =

∫ 1

−1

〈σh(μ, μ
′)〉Ψ̂(x, μ′)dμ′

+
〈σr,tr〉

2

∂

∂μ
(1 − μ2)

∂Ψ̂

∂μ
(x, μ) . (3.53)

By using the averaging operator in Eq. (3.49) on Eqs. (3.41), we obtain:

〈σh〉 = λr,tr〈Σh〉 ,

〈σh(μ, μ
′)〉 = λr,tr〈Σh(μ, μ

′)〉 ,

〈σr,tr〉 = λr,tr〈Σr,tr〉 . (3.54)

Introducing Eqs. (3.54) into (3.53), we obtain:

μ
∂Ψ̂

∂x
(x, μ) + 〈Σh〉Ψ̂(x, μ) =

∫ 1

−1

〈Σh(μ, μ
′)〉Ψ̂(x, μ′)dμ′

+
〈Σr,tr〉

2

∂

∂μ
(1 − μ2)

∂Ψ̂

∂μ
(x, μ) . (3.55)

Thus, we have shown that the solution Ψ(x, μ) of the BFP equation (3.32) satisfies

Ψ(x, μ) = Ψ̂(x, μ) +O(ε) ,

where Ψ̂(x, μ) satisfies Eq. (3.55). Eq. (3.55) is the atomic mix approximation to the

BFP equation (3.32).

To summarize, we have:

(i) Assumed that Lr has a forward-peaked differential scattering kernel to derive

the approximate Fokker-Planck operator Lr,FP to Lr.

(ii) Assumed that λh

λr,tr
= O(1) and λch

λr,tr
≡ ε 	 1 to derive the atomic mix

approximation to the BFP operator.

Under these assumptions, we have shown that the solution Ψ(x, μ) of Eqs. (3.13)

and (3.14) is well-approximated by Ψ̂(x, μ), the solution of the atomic mix BFP

equation (3.55).
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Now, if we consider the atomic mix approximation to Eqs. (3.13) and (3.14):

μ
∂Ψ

∂x
(x, μ) + 〈Σh〉Ψ(x, μ) =

∫ 1

−1

〈Σh(μ, μ
′)〉Ψ(x, μ′)dμ′ − 〈Lr〉Ψ(x, μ) , (3.56a)

〈Lr〉Ψ(x, μ) =

∫ 1

−1

〈Σr(μ, μ
′)〉Ψ(x, μ′)dμ′ − 〈Σr〉Ψ(x, μ) , (3.56b)

and if we apply the Fokker-Planck approximation to 〈Lr〉

〈Lr〉Ψ(x, μ) ≈ −〈Σr,tr〉
2

∂

∂μ
(1 − μ2)

∂Ψ

∂μ
(x, μ) , (3.56c)

we obtain Eq. (3.55). Therefore, under the assumptions used in this section, the

atomic mix transport equation for electrons [Eqs. (3.56)] is a good approximation

to the original transport equation for electrons [Eqs. (3.13) and (3.14)]. In these

circumstances, the original Boltzmann equation is well-approximated by the atomic

mix Boltzmann equation. In particular, Monte Carlo simulations of the original

Boltzmann Eqs. (3.13) and (3.14) are well-approximated by Monte Carlo simulations

of the atomic mix Boltzmann Equation (Eq. (3.56)).

The asymptotic analysis presented here is based on a simplified 1-D Boltzmann

equation with no energy dependence. The work by Larsen and Liang [68] gives a

similar but more complicated analysis on a physically realistic 3-D, energy-dependent

Boltzmann equation. The results for that analysis are essentially the same as here:

if charged particles in a random medium are slowing down over a specified range

of energies, and if the sizes of the material “chunks” are small compared to the

transport mean free path of the charged particles over this energy range, then the

slowing-down of the charged particles in this energy range is well-approximated by

the atomic mix Boltzmann equation.
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3.5 Numerical Results and Discussion

In order to test the asymptotic theory, which states that it is the transport MFP

that should be used to determine the validity of homogenizing a heterogeneous

medium, we next devise a random “droplet” model (Fig. 3.1) and use the Monte
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Figure 3.1: R-Z plane view of the “droplet” model. The dark cells are water and the blank cells
are air. The droplet cell size ds = 0.1 cm in this figure.

Carlo method to conduct a series of comparison simulations between this model and

its atomic mix counterpart.

3.5.1 “Droplet” model and Monte Carlo simulation

As depicted in Fig. 3.1, this “droplet” model is a cylinder with a radius of 5.1 cm

and a depth of 6 cm. It consists of a mesh of small square cells of the same size in

R-Z plane (they are concentric rings in the radial plane). We randomly fill the mesh

with water (dark) and air (blank) cells, which combine to form an average density

of 0.201 g/cm3 (a typical lung’s parenchymal density (see Section 4.2.1)). The side
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length ds of these uniform square cells can be set at a series of decreasing values,

which then enable us to explore a hierarchy of “droplet” sizes. We not only change

the droplet size, but we also generate various realizations for a specified droplet size.

We use the Monte Carlo code PENELOPE [104] to do the simulations. Two types

of monoenergetic particle beams are employed: electrons and photons. The incident

electron energy is 2 MeV and the incident photon energy is 3.4 MeV. (The photon

energy of 3.4 MeV is selected to generate secondary electrons with a mean energy of

about 2 MeV.) The beams are circular, with a radius of 1 cm, and are incident parallel

to the axis of the cylinder. The cutoff energies are: Ecut = 100 keV for electrons and

Pcut = 10 keV for photons. The dose tally grid has a size of 0.1 cm in both the radial

and axial directions and forms concentric rings throughout the cylinder. Thus, the

dose distribution is essentially 2-dimensional in the R-Z plane. The 1σ statistical

deviation at the maximum dose Dmax is less than 0.1 % for electrons and 0.3 % for

photons. The dose is normalized to Dmax and in subsequent figures is shown as the

percentage of Dmax.

3.5.2 Dose Distribution for Electrons and Photons

Our asymptotic analysis predicts, essentially, that a heterogeneous medium lim-

its to its atomic mix counterpart when the material chunk size is sufficiently small.

Furthermore, this theory predicts that when the typical material chunk size in this

heterogeneous medium is small compared to the transport MFP of the particle trav-

eling inside, the results can be accurately represented by that from a homogenized

version of this medium. The dose is deposited by electrons through their interactions

with matter (the photons, however, deposit the dose indirectly by generating sec-

ondary electrons in matter). Therefore Fig. 3.2 (data from PENELOPE), containing

the relevant length scales for electrons as a function of energy, is used to estimate
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Figure 3.2: The relevant length scales in the electron transport within a range of energy of interest
for radiotherapy: (i) transport MFP, the dash line; (ii) CSDA range, the dotted line; (iii) hard
MFP, the dash-dotted line; and (iv) MFP, the solid line.

the valid length range of the asymptotic theory. In this figure, the energy ranges

from 100 keV, which is the cutoff energy for electrons (Ecut) in our Monte Carlo

simulations, to 10 MeV. This energy range covers most of the energy of interest in

radiotherapy. The dashed line is λtr(E), the transport MFP. The dash-dotted line

is λh(E), the MFP between consecutive hard collisions. The solid line is λr(E), the

restricted MFP between consecutive soft collisions. Also included is the dotted line

for the continuous slowing down approximation (CSDA) range RCSDA(E), which can

be calculated by Eq. (3.57)

RCSDA(E) =

∫ E

0

dE ′

S(E ′)
, (3.57)

where S(E ′) is the stopping power for electrons as a function of energy. RCSDA(E) is

the range that an electron with energy E will travel before completely being stopped

by soft collisions only. RCSDA(E) shows the length scale over which an O(1) amount

of change in energy is expected. We can also see from this figure that the transport

MFP’s are orders of magnitude larger than the MFP’s over the whole energy range.
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Fig. 3.3 shows the dose distribution for the atomic mix case (a) and the droplet

model with one realization at each cell size: (b) at ds = 0.1 cm, (c) at ds = 0.05

cm and (b) at ds = 0.01 cm. It is clear that when the cell size decreases to 0.01

cm, the dose distribution in the heterogeneous medium limits very well to that in

the atomic mix case. This is because the typical chunk size λch at this cell size

approaches the transport MFP, λr,tr. This result shows the validity of the previous

asymptotic analysis. We can also see that in Fig. 3.3d, the difference between the

heterogeneous and the atomic mix cases are negligible, except for the 90% and 95%

contour lines. All realizations at ds = 0.01 cm level show a similar behavior. Two

reasons may explain this discrepancy: (i) the strong electron flux gradients near the

boundary; and (ii) λch is still not small enough compared to λr,tr, which can be seen

in Fig. 3.2: in the energy range we transport the electrons, the lowest λr,tr is around

0.01 cm. With a droplet size ds = 0.01 cm, however, the typical chunk size λch is

about 0.013 cm for water and 0.05 cm for air.

Similar to that from an electron beam (Fig. 3.3), the dose distribution from a

photon beam is depicted in Fig. 3.4: the dose distribution for the atomic mix case

(a) and the droplet model with one realization at each cell size: (b) at ds = 0.1 cm,

(c) at ds = 0.05 cm and (d) at ds = 0.01 cm. The same trend of convergence of the

dose distribution to the atomic mix case occurs here, with less significant differences

between the heterogeneous and the atomic mix results for case (d). This is due to the

coupled transport of both photons and electrons. Two transport equations need to be

solved in this photon beam simulation: one for external photon beam and one for the

secondary electrons generated by interactions of photons with matter. Since the MFP

for photons is on the order of tens of cm in water, which is much larger than even the

largest chunk size in our test system, the atomic mix approximation is automatically
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Figure 3.3: Dose contours for 2 MeV electron beam: (a) is for the atomic mix case. The other three
are for the droplet model with a cell size at (b) 0.1 cm, (c) 0.05 cm, and (d) 0.01 cm, respectively.
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Figure 3.4: Dose contours for 3.4 MeV photon beam: (a) is for the atomic mix case. The other three
are for the droplet model with a cell size at (b) 0.1 cm, (c) 0.05 cm, and (d) 0.01 cm, respectively.
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valid for the photon Boltzmann equation. Although now the source term for the

electron Boltzmann equation is volumetric inside the medium and different from that

of an external beam, the asymptotic analysis remains the same. Thus, it is expected

that when the cell size decreases from 0.1 cm to 0.01 cm, the dose distribution limits

well to that of the atomic mix case, with some possible difference in the regions with

deep flux gradient and/or near the boundary. However, the more uniform source

term for electrons helps reduce the significance of such differences.

Fig. 3.3 and 3.4 illustrate the typical results from all the realizations we simulated

at different droplet sizes. This shows that for charged particle transport in a hetero-

geneous medium, when the typical chunk size are small compared to the transport

MFP of the charged particles, the atomic mix approximation can replace the original

transport equation and accurately predict the results.

3.6 Conclusion

We have used a formal asymptotic analysis to show that for transport problems

inside a heterogeneous medium involving highly forward-peaked scattering charged

particles, when the typical chunk sizes of different materials in the heterogeneous

medium are small compared to the transport MFP of the charged particles, the trans-

port equation limits to its atomic mix approximation. In other words, the atomic mix

approximation can accurately predict the results of the more complicated transport

equations with space-dependent cross sections. The numerical results from Monte

Carlo simulations using the PENELOPE code [104] show a very good agreement with

the theory. This theory increases the length scale of the chunks for the validity of

the atomic mix approximation for electrons by more than two orders of magnitude,

from the traditional MFP to the transport MFP.
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This asymptotic theory is useful in modeling a heterogeneous system such as the

human lung, which consists of a hierarchy of structures ranging in size from 1.0 cm to

10−4 cm. According to the traditional atomic mix theory, even the smallest structure

in the lung is not small compared to the electron MFP, and hence the atomic mix

approximation for electrons should not be assumed to be valid in the lung. However,

the theory discussed in this chapter reveals that the atomic mix approximation for

electrons is valid for structures which are small compared to the electron transport

MFP, and the vast majority of structures in the lung are indeed small compared to the

transport MFP. This suggests a practical way to build a model of the heterogeneous

lung which will be realistic and accurate for electrons. We develop this model in the

next chapter.



CHAPTER IV

A 2 1/2-D Random Lung Model

4.1 Introduction

Tissue inhomogeneity corrections are necessary for treatment planning in sites

such as the lung [43,77,82,88,89,93,121]. Previous work [14,16,24,40,63,75,83,97,125]

modeled the lung as a homogenized mixture of tissue and air, at a lower density

than the surrounding tissue, in order to gain understanding of certain inhomogeneity

effects between the lung and surrounding tissue. This homogeneous model is also

called the atomic mix [94] or mean density model. However, as shown in Chapter II,

the lung is a highly complex organ, consisting of “chunks” of tissue and air ranging in

diameter from about 10−4 to 1.0 cm, with millions of air-tissue interfaces [31,81], and

it is not obvious that the mean density model should be acceptable for treatment

planning. In fact, modern treatment planning uses a CT-based patient geometry,

in which the voxels are relatively small local homogenized volumes with varying

densities and compositions. However, the resolution at which one can adequately

represent the lung remains an open question. In this chapter, we (i) propose a realistic

heterogeneous model of the lung and (ii) present some Monte Carlo (MC) calculations

that compare this model to the mean density model and a single voxelized version

of the original random lung. We find that in some important situations, dose is not

54
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well-predicted by the mean density or CT models. In Chapter V, we use our random

lung model to systematically assess the adequacy of current methods for treatment

planning in the lung.

As stated before (Chapter II), the human lung is a spongy, heterogeneous organ

consisting of two materials of great density variation: air and tissue. The relative

positions and local composition of these two materials are patient-specific and time-

dependent, showing a feature of unpredictable “randomness.” In the traditional

atomic mix approximation, a heterogeneous particle transport region may be accu-

rately treated by the mean density model if a typical “chunk” size in the region is

smaller than the MFPs of the particle [38, 94](also see Chapter III). For electrons,

however, we show in Chapter III that instead of the MFPs, the chunk size should

be compared to the transport MFPs, which are orders of magnitude larger than the

MFP. For megavoltage photons with a MFP of tens of cm, the lung’s structure is

sufficiently fine to be treated by the mean density model. However, dose deposition

is a two-step process: (i) charged particles are generated by interactions between in-

cident photons and irradiated matter; and (ii) these charged particles deposit their

kinetic energy along their flight path. The charged particles set in motion by mega-

voltage photons have a range on the order of centimeters, with a MFP on the order

of microns and a transport MFP as low as 0.01 cm in the range of energy relevant

to radiotherapy. Under charged particle equilibrium (CPE), the charged particles

can be thought to deposit all their energy locally; only the MFPs of photons matter,

and the mean density approximation is valid. However, for situations where CPE

does not exist, such as within a small beam, or near a beam’s edge or a material

interface, it becomes an important consideration that there are still a considerable

amount of lung’s structures whose sizes are greater than the charged particles’ trans-
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port MFPs. In these conditions, the homogenization in the mean density (either in

a single volume or in the CT subvolumes) approximation is no longer guaranteed to

be valid, and the “random” lung structure could lead to perturbations in the dose

distribution. The actual dose would then deviate from that obtained from the mean

density or the CT voxelized lung model, in which every order of lung’s structure is

homogenized.

In this chapter we develop a simplified but geometrically sound heterogeneous

random lung model, based on morphological data of the human lung. We use the

Monte Carlo method to perform dose calculations for the “random” and “mean

density” lung models, because Monte Carlo is capable of yielding highly accurate

dose distributions for generally heterogeneous systems. We also use the Monte Carlo

method to compare, in a preliminary simulation, the random lung model and one of

its “voxelized” versions. We find that the mean density and voxelized approximations

to the random lung model can be inadequate, particularly for small field sizes.

4.2 The Lung Model

4.2.1 “Random” 2 1/2-D geometry

Due to the extreme geometrical complexity of the lung, it is not practical to

build a real lung model down to the smallest order of the hierarchical structures and

simulate this model in Monte Carlo calculations. Fortunately, a theoretical part of

our work [68] (also see Chapter III) indicates that we can employ a simplified model

that (i) retains structures of sizes larger than a threshold size, and (ii) homogenizes all

structures finer than the threshold size into a homogeneous mean density background.

The threshold size should be (i) sufficiently small that in regions with no structures

larger than this threshold size, the dose distribution is nearly the same as the dose

distribution in the homogenized model, and (ii) as large as possible, to minimize the
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complexity of the geometry and the cost of the Monte Carlo simulations.

Furthermore, in our model, we do not duplicate the bronchial/arterial/venous

trees in their real 3-D form. Instead, to make our model as simple as possible for MC

simulations, yet geometrically sound, a “random” 2 1/2-D model is proposed, which

is essentially a 2-D (x-y plane in the simulation coordinates) geometry extending a

finite distance in the third dimension (z-direction in the simulation coordinates) and

cut to fit into the simulated lung region (see Fig. 4.1). Due to the fact that the
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Figure 4.1: Three-dimensional view of the simulated phantom geometry and corresponding dimen-
sions (cm) with the 2 1/2-D lung model embedded inside the surrounding water. The coordinate
system is shown in the upper left corner; the photon beams are incident in the positive y direction
and perpendicular to the x-z plane; the upper legend illustrates modeled airways (concentric cylin-
ders), arteries (single cylinders attached to the airways in the lung) and veins (independent single
cylinders in the lung) inside the lung.

airway element has the approximate shape of a hollow cylinder [124], in this model,

the “airways” and the “arteries/veins” are modeled as randomly-positioned cylinders

with axes parallel to the z-direction (Fig. 4.1). Each airway consists of two concentric

cylinders with the outer cylinder being the wall. The radius of the airway lumen

for each order is taken directly from the available morphological data (Table 2.1 and
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Table 2.2), and the wall thickness is calculated from the T/D ratio (Section 2.2.2). An

artery/vein is taken to be a solid cylinder. Based on the information in Chapter II, an

airway is always attached to the artery at a randomly chosen position, while the vein

of the same order has a positive distance to the airway/artery bundle. Because of the

lack of data on this distance, we assume that the veins of the last seven simulated

orders (including all lobar and broncho-pulmonary segment bronchi) should stay

in close proximity to the airways/arteries of the same order before entering the

broncho-pulmonary segments. In our model, the distance between the center of

the vein and the center of the smallest circle containing the airway/artery bundle

(the circumcircle) is set to double the radius of this circumcircle. The position is

randomly selected around the bundle. The remaining smaller orders of veins have no

such restriction on position and are uniformly distributed within the model. Arteries

and veins are assumed to have the same number of orders as the airways, and to

have equal radii, which are computed from the bronchoarterial ratio for the same

order. Values computed under this assumption are consistent with the results of a

morphological study [55]. Representative top views in the x-y plane are given in

Fig. 4.2.

An important feature of our model is that it conserves the volume ratio of each

order of structure, in such a way that the mass for the entire lung (not local regions

such as the four particular realizations which are shown in Figs. 4.2 and will also be

discussed in Section 4.3.) is the same for both the homogeneous (mean density) and

the heterogeneous (random 2 1/2-D) models. To achieve this goal, two quantities

need to be computed correctly. One is the adjusted number of structures for each

order in the 2 1/2-D geometry. The other is the adjusted mass density for the

homogenized part (parenchyma) of the 2 1/2-D model.
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Figure 4.2: Top view of the random heterogeneous lung model in which the concentric circles
represent bronchi, the single circles attached to the bronchi are arteries and the independent single
circles are veins: (a–b) two realizations of the modeled “whole” lung, with four selected 10.2×10 cm2

regions to fit in the lung block in the simulated phantom (see also Fig. 4.1) respectively. (This figure
is continued on Page 60)

We used the following equation to map the number n of the structures in a specific

order from a real lung to the number m of the same order in our 2 1/2-D model,

based on the morphometric data in Tables 2.1 and 2.2:

mmodel
structure · astructure

Smodel

=
nlung

structure · vstructure

Vlung

(4.1)

Here we have defined:

mmodel
structure = number of structures of a specific order in the model,

nlung
structure = number of structures of the same order in the real lung,

astructure = cross-section of the structure,

vstructure = volume of the structure,

Smodel = area chosen to be able to generate all orders of structures,

Vlung = volume of a lung.

In Eq. (4.1), Smodel is determined in such a way that the smallest calculated m is

greater or equal to 1, i.e., this order of structures must appear at least once in the
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Figure 4.2: (continued from Fig. 4.2 on Page 59) (c) realization L1, indicated in (a) by the lower
right framed region, with one large bronchus, artery and vein close to the CAX. (Lines (i) and (ii)
are used in Fig. 4.3); (d) realization L2, indicated in (b) by the right framed region, with two large
bronchi, arteries and veins off the CAX; (e) realization S1, indicated in (a) by the upper left framed
region, with no large structures; (f) realization S2, indicated in (b) by the lower left framed region,
with no large structures.
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model geometry. Vlung is set to a typical 3000 ml in this study. The calculated m’s

are presented in Table 2.1 and 2.2 in which most of the m’s are not whole numbers.

Since the structures in the geometry cannot be fractional, a new m is recalculated

by generating a random number ξ. If ξ < m− [m], m = m + 1; otherwise, m = m.

We note that the last two orders of largest structures are not included in the model

because these two are the trachea and the principal bronchus, which are not part of

the lung. The minimum value of Smodel which allows at least one structure from each

order is 2143 cm2 (46.3×46.3 cm2). We construct “whole lung realizations” using

this value of Smodel but then select 10.2×10 cm2 subregions to represent an actual

lung. This is illustrated in Fig. 4.2.

The density of the background homogeneous parenchyma is computed using Eq. (4.2):

ρbackground =

ρlungVlung −
∑

order norder

[
ρairv

lumen
order + ρwater(v

wall
order + vartery

order + vvein
order)

]
Vlung −

∑
order norder

[
vlumen

order + vwall
order + vartery

order + vvein
order

] , (4.2)

where ρ = density, and other parameters are defined in Eq. (4.1).

As stated in Section 2.2, we use a mean density of the lung ρlung = 0.26 g/cm3;

ρparenchyma is then 0.201 g/cm3 accordingly for a threshold set at the terminal bron-

chiole level (see Section 4.2.2); and a T/D ratio 0.2 and a bronchoarterial ratio 0.695.

Specifically, we use four different densities of water as four materials appearing in the

geometry: (i) water of density 1.0 g/cm3 as the matter of the airway wall, artery and

vein, as well as that of the phantom outside the lung; (ii) water of density 0.26 g/cm3

as the homogenized (mean density) lung; (iii) water of density 0.201 g/cm3 as the

lung parenchyma (the background); and (iv) water of density 0.00120479 g/cm3 as

the air inside the airways. We used only water composition for all different tissues in

order to eliminate any factors that might affect the dose calculation other than the
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random geometry itself. The line density change in the lung along the y-direction

at two different widths in Fig. 4.2c are depicted in Fig. 4.3. These figures show the

major differences in local densities between the mean density and the heterogeneous

lung models.
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Figure 4.3: Line density change in y-direction in the lung. The thick lines depict the uniform
mean density (MD) case. The thin lines are for the heterogeneous realization L1 in Fig. 4.2c: (a)
corresponds to dashed line (i) and (b) corresponds to dashed line (ii).

4.2.2 The Threshold Size

The classic atomic mix (mean density) approximation states that in a geometri-

cally random system in which the chunk sizes are small compared to a mean free

path, one can replace the geometrically random system by the homogenized mean-

density system, and the resulting dose will accurately match the dose for the original

system [38,94]. To apply this classic approximation, the threshold size should be on

the order of a mean free path for the radiation delivering the dose (the electrons).

Unfortunately, the electron mean free path is so small that this would require almost

the entire geometrical structure of the lung to be explicitly modeled; doing this would

be prohibitively costly.

However, our theoretical work has shown that the atomic mix approximation is
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valid for a random system in which the chunk sizes are small compared to a transport

mean free path λtr, which is defined as [71,72]: λtr = λ
1−〈μ〉 , where λ is the mean free

path and 〈μ〉 is the mean scattering cosine. This result implies that it is acceptable

to choose a threshold size on the order of an electron transport mean free path, which

because 〈μ〉 ≈ 1, can be orders of magnitude greater than an electron mean free path.

This extension of the classic atomic mix approximation makes it feasible to construct

a practical model of the lung for accurately assessing dose deposited by photon and

electron beams.

For the lowest electron energies treated (electron transport cutoff energy = 100

eV, see Section 4.3), the electron transport MFP in water is about 0.02 cm, which is

comparable to the size of the lowest order of alveolar ducts (Table 2.2). According our

theory, we can select a threshold size at this order of alveolar ducts, and homogenize

all structures with lower order numbers to a uniform “background” with an adjusted

mean density. However, it is almost impossible to include such a huge number of

small structures the Monte Carlo simulation (even in the 2-D form) due to the very

slow speed to transport the particles. Alternatively, we choose to select the threshold

size at the level of the terminal bronchiole around 0.05 cm, which is comparable to

the transport MFP of electrons of energy 200 keV, an electron cutoff energy often

used in Monte Carlo simulations. Coincidently, this part of the lung beyond the

terminal bronchioles is the parenchyma (Chapter II). It contains about 90% of the

total lung volume (with structures typically 0.01 cm in diameter) and about 70% of

the lung mass.

Since we use a fine dose grid (Section 4.3) and thus a low electron cutoff energy

at 100 keV, we will show that practically, the threshold selected at the terminal

bronchiole level is accurate enough, by comparing the dose distributions in a se-
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ries of random lung realizations which contain increasing numbers of orders of lung

structures.

4.3 Monte Carlo Simulations

The Monte Carlo code PENELOPE [104] is employed for most of the calculations

in this study. For the comparison between the atomic mix mean density lung model

and the random lung model, we simulate the open field X-ray from a point source,

with two clinical photon beam spectra (6 and 18 MV, which are calculated by Sheikh-

Bagheri and Rogers [109] for the Varian Clinac) and four field sizes (1 × 1, 5 × 5,

10×10, and 20×20 cm2) at an SSD = 100 cm. For the threshold selection, however,

only one beam with a field size of 2 × 2 cm2 and the energy spectrum of 6 MV is

used. The photon fluence at the entrance surface of the phantom is uniform across the

field. Cutoff energies of 100 keV for electrons/positions (Ecut) and 20 keV for photons

(Pcut) are used throughout. The photon transport is performed with analog Monte

Carlo. The electron transport is performed with condensed history method, using

step sizes sufficiently small that at least 5 steps are required to transport electrons

through each chunk. Dose scoring voxel sizes are 1 mm in the lung region and 2

mm in surrounding water in the y-direction (beam’s direction). In the x-direction,

a 2 mm voxel size is adopted (except for a 1 mm voxel size used for the 1 × 1 cm2

field size). In the z-direction (the modeled airway/vessel axes’ direction), a 2 mm

voxel size is used between -3.1 cm and 3.1 cm, and a 4 mm voxel size is used for the

remaining lung region. No variance reduction options are used. For the threshold

selection, a uniform dose grid size of 1 × 1 × 2 cm3 is applied. The 1σ statistical

uncertainties at the Dmax point along the CAX are < 0.5% for all field sizes.

A water phantom of 30× 30× 20 cm3 with a lung region of 10.2 × 10.2× 10 cm3
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embedded is used for simulations (Fig. 4.1). The front buildup water layer is 5 cm

for the 18 MV beams and 3 cm for the 6 MV beams. The lung region extends from 5

to 15 cm for the 18 MV beams and 3 to 13 cm for the 6 MV beams in the y- direction

and from -5.1 cm to 5.1 cm in both the x- and z-directions. The surrounding water

extends from -15 cm to -5.1 cm and 5.1 cm to 15 cm in both the x- and z-directions.

For the threshold selection, the phantom setup is similar to Fig. 4.1. However,

this phantom and the corresponding embedded lung portion are smaller because the

increasing number of bodies as a result of a lower order of structures being selected

as the threshold would significantly decrease the calculation speed if we still used

the same phantom. Hence a smaller water phantom of 11× 11× 11 cm3 with a lung

region of 5 × 5 × 5 cm3 embedded in the center is used.

In the lung region, we first simulate a homogeneous mean density lung and

then four heterogeneous lung realizations representing different parts of a real lung.

Fig. 4.2 illustrates how a partial realization is selected from a whole lung realization,

as described in Section 4.2.1. Realization large #1 (L1) is depicted in Fig. 4.2c. This

is a magnified view of the lower right framed region in Fig. 4.2a. It contains one

bronchus, one accompanying artery, and one vein of the same order with diameters

larger than 1 cm (in the range of the orders of “large” bronchi, which include main

bronchi and lower lobe bronchus), all close to the central axis region. This is in-

tended as a representative situation in which large structures are encountered in the

middle of the beam’s pathway. Realization large #2 (L2; Fig. 4.2d, the upper right

framed region in Fig. 4.2b) consists of two large bronchi, arteries, and veins and is

intended as a representative situation in which large structures occur off the CAX.

Realization small #1 (S1; Fig. 4.2e, the upper left framed region in Fig. 4.2a) and

small #2 (S2; Fig. 4.2f, the lower left framed region in Fig. 4.2b) are two variants
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including only small structures (belonging to the orders of intrasegmental bronchi to

terminal bronchioles), which may represent intrasegmental lung regions free of large

structures. The results from the four heterogeneous realizations are then compared

against the homogenized mean density lung.

To mimic the CT scan, we also “voxelize” this detailed random lung by superim-

posing a rectilinear grid on it and calculating the mass/density accordingly for each

voxel, and homogenizing the material with each spatial cell (voxel). In this way, we

obtain a “voxelized” random lung phantom in which the density within each voxel is

uniform, but the density generally varies from one voxel to the next. The resulting

voxelized random lung model is analogous to the lung models obtained from CT

data. Fig. 4.4 shows the voxelized version (top view in the x-y plane) of Fig. 4.2c

at a resolution of 0.4 × 0.4 × 0.4 cm3. We used a voxel-based MC code, DPM [108]
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Figure 4.4: Top view of a voxelized version of realization L1 as shown in Fig. 4.2c to mimic the
CT-scan. The resolution is set to be 0.4 × 0.4 × 0.4 cm3.
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to perform a preliminary calculation for a voxelized version of one detailed random

lung realization, L1, for the 6 MV 1× 1 photon beam. DPM has the same cross sec-

tion libraries as PENELOPE and is optimized for medical physics applications [108].

In our problems, DPM runs about 40 times faster than PENELOPE. For voxelized

problems in which the two codes can both be run, they give virtually the same re-

sults, and PENELOPE and DPM have both been shown to yield excellent results

when compared to experiments [20–22,108]. The DPM cutoff energies are the same

as PENELOPE, while the DPM step sizes for electrons at 0.5 cm above 5 MeV and

0.1 cm otherwise.

On the other hand, we use the same strategy to generate a series of random lung

realizations which include three threshold levels at the Horsfield orders of 6, 1, and -3

from Table 2.1 and Table 2.2, to fit in the smaller phantom setup. Fig. 4.5 shows the

top views of all the six random lung realizations for the purpose of threshold selection.

Figs. 4.5a and 4.5b are a large and a small realization with a threshold level at the

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x (cm)

y 
(c

m
)

th
e 

in
ci

de
nt

 d
ire

ct
io

n 
of

 th
e 

be
am

(a)

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x (cm)

y 
(c

m
)

th
e 

in
ci

de
nt

 d
ire

ct
io

n 
of

 th
e 

be
am

(b)

Figure 4.5: Top view of the random heterogeneous lung model used for threshold selection: (a) and
(b) are a large and a small realization with a threshold level at the Horsfield order 6, 5 order higher
than the terminal bronchiole. (This figure is continued on page 68)
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Figure 4.5: (continued from page 67.) (c) and (d) are a large and a small realization with a threshold
level at the Horsfield order 1, i.e., the terminal bronchiole. Figs. (e) and (f) are a large and a small
realization with a threshold level at the Horsfield order -3, the last respiratory bronchiole level.
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Horsfield order 6, 5 order higher than the terminal bronchiole. Figs. 4.5c and 4.5d

are a large and a small realization with a threshold level at the Horsfield order 1,

i.e., the terminal bronchiole. Figs. 4.5e and 4.5f are a large and a small realization

with a threshold level at the Horsfield order -3, the last respiratory bronchiole level.

Because the morphology changes in the acinus (Section 2.1.2), only the air cylinders

are generated as the respiratory bronchioles’ lumen, while the alveolated wall and

the blood capillaries are homogenized together with the numerous alveoli into the

background. This is different from the method used to build structures with Horsfield

orders larger or equal to that of the terminal bronchiole, where the full airway and

its accompanying vessels are generated as a bundle. The background density varies

among the three levels of realizations according to Eq. (4.2).

4.4 Results and Discussion

We report the simulation results in the forms of the central axis (CAX) percent

depth dose (PDD), isodose lines/central dose profiles and the mean lung doses (MLD,

which is calculated by dividing the total energy deposited to the lung by the total

mass of the lung). All numbers are relative dose normalized to the Dmax along

the CAX of the mean density case for each field size, respectively. The difference

Δ(x, y, z) between a certain realization and the mean density model is calculated

using Δ(x, y, z) =
Dhetero(x,y,z)−Dmean density(x,y,z)

Dmax,mean density
.

Due the existence of a large number of small structures and the fine scoring voxels

used in the MC simulations, we have investigated the validity of using a 100 keV

electron cut-off energy. The results show no significant differences between a much

lower 10 keV and the 100 keV we adopted. We also show the results for the threshold

selection. Besides the main focus on comparisons between the mean density and the
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random lungs, we show a comparison between realization L1 and its voxelized version

in terms of the CAX depth dose.

4.4.1 Electron Cutoff Energy

We use a homogeneous atomic mix and a heterogeneous “droplet” realization (see

Section 3.5) with a cell size at 0.01 cm for this electron cutoff energy test. All the

Monte Carlo simulation parameters are the same as in Section 3.5. The dose grid size

is 0.1 cm in both the radial and the axial directions. Fig. 4.6a shows the CAX depth
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Figure 4.6: The CAX depth dose for (a): the atomic mix model, and (b): the “droplet” model

dose for the atomic mix case and Fig. 4.6b for “droplet” model. In both figures,

the solid line is for the 100 keV cutoff and the dotted line for the 10 keV cutoff.

The 1σ statistical error is less than 0.6% at all depths. Fig. 4.7 shows the percent

difference between the two Ecut’s, which is calculated by normalizing the absolute

dose difference by the Dmax of the 100 keV case, for both the atomic mix (4.7a) and

the “droplet” realization (4.7b). This illustrates that for both the homogeneous and

heterogeneous cases, the CAX depth dose is virtually the same when Ecut is reduced

from 100 keV to 10 keV, and it indicates that an Ecut = 100 keV is adequate for the

fine dose tally grid and the complex geometry such as in our random lung model in
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Figure 4.7: The percent difference between the two Ecut’s. It is calculated by normalizing the
absolute dose difference by the Dmax of the 100 keV cutoff case, for (a): the atomic mix , and (b):
the “droplet” realization.

which there are numerous small structures and many boundaries for the electrons to

cross.

4.4.2 Threshold Selection

Fig. 4.8 gives the normalized CAX PDD for the large and the small realizations

for three threshold levels (Fig. 4.5): the terminal bronchiole (TB, the solid lines), the

small bronchiole at a level of 5 orders more than the TB (TB+5, the dash lines) and

the respiratory bronchiole at a level of 3 orders less than the TB (TB-3, the dotted

lines). Fig. 4.8a is for the large realizations and Fig. 4.8b for the small realizations.

The same dose distribution in terms of isodose lines is shown in Fig. 4.9 for the large

realizations and Fig. 4.10 for the small realizations; in both figures, (a) represents

the TB+5 level, (b) represents the TB level and (c) represents the TB-3 level.

There is almost no difference in the CAX PDD between the TB and the TB-3

levels where three more orders of airways are added: the maximum difference is less

than 0.5% of D100keV
max for both the large and the small realizations in the lung region.

This is reflected in both figures: the dotted lines and the solid lines are essentially
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Figure 4.8: The normalized CAX PDD for the large and the small realizations for three threshold
levels: the terminal bronchiole (TB, the solid lines), the small bronchiole at a level of 5 orders more
than the TB (TB+5, the dash lines) and the respiratory bronchiole at a level of 3 orders less than
the TB (TB-3, the dotted lines). (a) is for the large realizations and (b) is for the small ones. In
both figures the solid lines and the dotted lines are essentially on top of each other.
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Figure 4.9: Isodose lines for large realizations: (a) represents the TB+5 level, (b) the TB level and
(c) the TB-3 level.
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Figure 4.10: Isodose lines for small realizations: (a) represents the TB+5 level, (b) the TB level
and (c) the TB-3 level.
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the same. However, if we try to reduce the number of structures in the lung model by

increasing the Horsfield order from the TB to TB+5, we see noticeable differences,

especially in the small realizations, where the maximum difference is greater than

1.2% of D100keV
max . Also noticed is the consistency that the dose in the TB case is

lower than the TB-5 case, again, especially in the small realization (although it is

difficult to tell from the figures because the difference is small). The reason for this

partly lies in Table 4.1. For a small field size such as the 2 × 2 beam with such a

high energy, which is used in this threshold selection, charged particle equilibrium

does not exist along the CAX. The dose deposited then depends on the density of

the interaction sites in a complicated way. In principle, the less that CPE exists,

the more heavily the dose can change with the density. For the TB+5 level, the

background density is 7.8% larger than that of the TB level because when going up

from the terminal bronchiole to the stem, more mass in the blood vessels and the

bronchiole wall is homogenized into the background. Therefore, an increase in the

dose compared to the TB level is expected. However, when going down from the

terminal bronchiole to the periphery, due to different lung’s morphology beyond the

terminal bronchiole (see Section 4.3) and the small sizes of the structures compared

to the dose scoring grid, although there is a slightly increasing density (1.07% larger),

the low-density airways within each dose grid partially suppress this increase. As

a result, the average density changes very slightly, so that the dose difference can

be ignored. Such a trend can also be seen in Fig. 4.9 and Fig. 4.10, which are the

isodose lines on the x-y plane at z = 0. While there is negligible difference in the

large realizations, in the small realizations, the 60% isodose line exhibits a more

distorted shape in the TB and the TB-3 levels than in the TB+5 level. Furthermore,

two 60% islands can be detected in this narrow beam’s pathway in the TB and the
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Table 4.1: Background density

TB+5 TB TB-3
ρ (g/cm3) 0.217186 0.201388 0.203552

TB-3 levels, while there are no such islands in the TB+5 level because the structures

causing such perturbations are homogenized in the TB+5 level.

Based on the results and the discussion here, a threshold size of 0.05 cm, selected

at the terminal bronchiole order, is suitable for our purpose: adding more lower

orders of structures gains little extra accuracy but dramatically increases the Monte

Carlo simulation time; while reducing some orders of structures up from the terminal

bronchiole results in a noticeable difference in the dose distribution. Henceforth, our

random lung model will use this 0.05 cm threshold.

4.4.3 CAX Depth Dose

Fig. 4.11 shows the CAX percent depth doses for the 6 and 18 MV photon beams

and the 1 × 1, 5 × 5, 10 × 10 and 20 × 20 cm2 field sizes, respectively. When the

lung is represented by the mean density model, for both energies, the basic shape of

the CAX curves are well known: (i) the builddown region upon entering the lung,

which is due to a longer secondary electron range in the low-density lung and the

loss of charged particle equilibrium (CPE), along with a reduced photon scattering

in the low-density medium; and (ii) the buildup region distal to the lung, which

is due to the shorter range and the recovery of lateral CPE. These two phenomena

become less pronounced and finally disappear as the field size increases because CPE

is gradually recovered in the CAX region. The situation for higher energy beams

with the same field size is enhanced because the range of the secondary electrons is

longer, and thus more volume is needed for compensation. When the mean density

lung is replaced by one of the four heterogeneous realizations simulated in this study,
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deviations of different magnitudes occur, depending on conditions such as whether

a large structure is in the beam’s path, the size and location of the structure, the

material components of the structure, the field size, and the beam’s energy.
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Figure 4.11: The CAX percent depth doses for: 1 × 1 cm2 field size and for (a) 18 MV, (b) 6 MV
beams; 5 × 5 cm2 field size and for (c) 18 MV, (d) 6 MV beams. (to be continued on page 78)

1 × 1 field size

The most significant perturbations for the 1×1 cm2 field size come from the three

large structures in realization L1. The dose percent differences in non-air region are

as high as 34% and 26% for the 18 and the 6 MV beam, respectively. The buildup

and builddown regions within the large structures are clearly visible in Figs. 4.11a
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Figure 4.11: (cont’d from page 77.) The CAX percent depth doses for: 10×10 cm2 field size and for
(e) 18 MV, (f) 6 MV beams; 20× 20 cm2 field size and for (g) 18 MV, (h) 6 MV beams. The thick
solid lines are for the mean density (MD) lung model. The thin solid and the dashed lines are for
two large realizations, respectively. The dash-dot and the dotted lines are for two small realizations.
All curves for the same field size are normalized to the Dmax along the CAX of the corresponding
mean density (MD) case. Also indicated in (a) and (b) are the large structure locations (an airway,
an artery and a vein) on the CAX for realization L1.
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and 4.11b. The difference is greater in the 18 MV than in the 6 MV beam, due to

the longer electron range, causing an enhanced loss of lateral CPE for higher energy

photons. The situation is just the opposite with regard to the dose deposited in

the airway lumen. In Fig. 4.11b for the 6 MV beam, the airway lumen (air inside)

is identified by the lowest dose “valley” (13% lower than the mean density model),

which is less significant in Fig. 4.11a for the 18 MV beam. This is mainly a result

of upstream photon scattering, since few secondary electrons originate from within

the airway lumen. The same explanation applies to the region between the vein and

artery, and the region after the airway, which are mostly occupied by the homoge-

nized background tissue. For realization L2 (with large structures mostly outside the

beam and only two large veins partly sliced by the beam) and the other two small

realizations, smaller perturbations are observed in the beam. For the 1× 1 field size,

the difference between the density of the background tissue and that of the mean

density lung can cause a significant change in calculated dose. Within the beam,

the dose in the small realizations is lower (<4.5% and <5.4% for the 18 and 6 MV

beam) than the mean density case due to the lower density. As a consequence of the

extra attenuation of the primary photons caused by large structures (increased local

density) inside the beam, and the fact that the dose is dominated by electrons from

primary photons, a “shadow” region with reduced dose in the water block distal to

the lung appears. This is the case in realization L1, where the percent difference is

4.4% for the 18 MV beam and 7% for the 6 MV beam. For the other realizations,

with most regions inside the beam being low-density background (and hence lower

dose), the dose in the distal water region is slightly higher (<1% for the 18 MV and

<1.5% for the 6 MV) than that of the mean density lung. The softer spectrum of

the 6 MV beam accounts for the larger differences versus the 18 MV beam.
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Larger field sizes

Figs. 4.11c through 4.11h show that with increasing field size, dose perturbations

decrease, becoming 7% and 2% at the large structures for the 5× 5 cm field size and

for the 18 and 6 MV beams respectively. When the field size exceeds 10×10 cm2, the

differences become <1.3% for the 10× 10 cm2, and even smaller for the 20× 20 cm2

field size. This is because for the same local density variation inside the beam, the

increasing field size leads to gradual recovery of CPE. A similar trend occurs with

the “shadow” region behind the lung with realization L1. The percent differences in

the region distal to the lung for the 18 and 6 MV are <3.9% and <6.2% for the 5×5,

<3.8% and <6% for the 10 × 10 and <3.8% and <5.9% for the 20 × 20 cm2 beam,

respectively. However, these changes as a function of field size are less than those

within the large structures. This indicates that even though CPE exists in the CAX

and local perturbations are negligible, the accumulated attenuation by the upstream

structures is still present. The magnitude of the differences is not sensitive to the

field size but is mainly determined by the structures in the beam’s pathway. For

the cases in which the tumor is on the distal side of a large structure in the beam’s

pathway, simply increasing the field size may not be an effective way to increase

the dose to the tumor. For the two small realizations without significant large local

density variations, the differences in the lung from the mean density model are small,

even for the 5 × 5 cm2 field size (< 2.3% for the 18 MV beam and < 1% for the 6

MV).
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4.4.4 Isodose Lines and Profiles

1 × 1 field size

Fig. 4.12 shows the isodose lines for the mean density model and realization L1 on

the x-y plane at z = 0 for the 1×1 cm2 field size and for the 6 MV energy. Two central

dose profiles at selected depths are also shown in Fig. 4.13. The selected depths are

(i) 3.1 cm depth in the lung (i.e., y=6.1 cm), crossing the large vein; (ii) 7.9 cm deep

in the lung (i.e., y=10.9 cm), crossing the airway lumen. The purpose of presenting

isodose lines and central dose profiles together is to provide a more complete picture

of the perturbations to the dose distribution caused by the structures in the lung,

while simultaneously giving typical depth information.

The deviation from the mean density model is that the smoothness of the isodose

lines is altered, due to local density variations from randomly positioned structures.

Apart from the mean density model, large solid structures inside the beam attenuate

more primary photons and become additional local secondary particle “sources”;

while at regions free of these structures, lower dose occurs due to the lower density of

the background. These result in either the broadening or contracting of the penumbra

region, as is clearly indicated by the 10% and 5% isodose lines in Fig. 4.12b. A similar

result is also recognized with the 18 MV beam. Also, a structure can increase or

decrease the local dose, depending on whether it is tissue or air, with the extent

of distortion depending on the size and location of the structure. Compared to the

mean density model, two hot spots are present in Fig. 4.12b for realization L1 (similar

hot spots appear for realization L2, as well). This is also the case for the 18 MV

beam. These can also be seen in Fig. 4.13a, which shows at 3.1 cm depth in the

lung, the large vein is almost centered on the CAX; therefore a nearly symmetric

profile for realization L1 occurs. In the profile for realization L2 in Fig. 4.13a, the
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Figure 4.12: Isodose lines on x-y plane (z = 0) for 1 × 1 cm2 field size for (a) mean density model,
6 MV; (b) realization L1, 6 MV. The abscissa is in y-direction and the ordinate is in x-direction.
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Figure 4.13: CAX dose profiles for 1 × 1 cm2 field size for 6 MV at (a) y=6.1 cm; (b) y=10.9 cm.
The thick solid lines are for the mean density (MD) lung model. The thin solid and the dashed
lines are for two large realizations, respectively. The dash-dot and the dotted lines are for two small
realizations. All curves for the same field size are normalized to the Dmax along the CAX of the
corresponding mean density (MD) case.
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peak corresponds to a small vein with diameter about 0.22 cm, located at about x=-

0.125 cm and totally inside the beam. For the small 1 × 1 field size, CPE does not

exist inside the beam, so even a small structure perturbs the dose significantly. The

same situation applies to the profiles at depth 7.9 cm deep in the lung (Fig. 4.13b,

where the large airway’s wall and lumen in realization L1 are indicated with the clear

asymmetry.

Larger field sizes

As discussed in Section 4.4.3, CPE is gradually recovered inside the beam with

increased field sizes. For the 10×10 cm2 field size and for both energies, the differences

between the mean density model and all four realizations are negligible (<1.5% on

average) at the high dose region, except for the middle (realization L1), due to the

extra upstream attenuation. The large structures off the CAX yet inside the 10× 10

cm2 field size in realization L2 lead to a similar but smaller attenuation effect, which

is clearer for the softer 6 MV beam (∼4% at 1.1 cm behind the lung) than the 18

MV beam (∼2.5% at the same depth). Although the lateral CPE is well established

deep inside such a wide beam, in regions close to the beam’s edge, lateral CPE does

not exist because there is no compensation scattering from outside. Therefore, any

significant local density variations occurring close to the beam’s edge may possibly be

of concern. To investigate this, we examined the central dose profiles in realization

L2 for the 10 × 10 cm2 field size at two different depths (Fig. 4.14, 6.1 cm and 7.5

cm deep in the lung), in which the first depth crosses the two large airways’ lumens

and the second depth crosses the two accompanying arteries and a single vein near

the CAX. The two airways and their arteries are close to the lung-tissue interface

(<1 cm). However, only slight local perturbations (<2%) are found to be associated

with these structures, which indicates a state close to CPE. For this large field size,
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the increased scattering within water may be compensating for the dose reduction

in the large structures.

4.4.5 Mean lung doses

The mean lung dose (MLD = total energy deposited in the lung divided by the

total mass of the lung) can illustrate from another point of view the perturbations

caused by the random structures. Table 4.2 gives the MLDs for each geometry and

field size, for both the 18 and 6 MV energies. We observe: (i) the MLDs are not

directly related to the mean density of the whole lung. Rather, they are mainly

determined by the tissue of the region through which the beam passes. For example,

the L1 and L2 realizations have almost the same whole lung mean density (with

a mean lung density of 0.293 and 0.306 g/cm3, respectively, both greater than the

mean density model’s 0.26 g/cm3) but differ much in structures in the narrow central

regions covered by the 1× 1 cm field. Along the CAX, realization L1 has three large

structures, but realization L2 has mostly small background structures. For the 6 MV

beam, this difference results in a much higher (55% larger than the mean density

model) MLD for the L1 realization and a significantly lower (9.2% smaller) MLD for

the L2 realization. This can also be seen in more detail from the corresponding CAX

depth doses and the central dose profiles, which show that most energy is deposited

within the beam and in the high density regions (for the 1× 1 cm2 field size). (ii) As

the field size increases, the differences between the MLDs for the two large realizations

decrease for 5 × 5 cm2 field size and become negligible for the 10 × 10 and 20 × 20

cm2 field sizes. The differences between the four heterogeneous realizations and the

mean density model also show a similar trend. Two reasons contribute to this (as

a function of field size): (a) more structures are present in the open beam, so more

energy is absorbed; and (b) the gradual recovery of CPE inside the beam. (iii) At
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Figure 4.14: CAX dose profiles for 10× 10 cm2 field size for 6 MV at (a) y=9.1 cm (6.1 cm deep in
the lung); (b) y=10.5 cm (7.5 cm deep in the lung). The thick solid lines are for the mean density
(MD) lung model. The dashed lines are for large realization L2. All curves for the same field size
are normalized to the Dmax along the CAX of the corresponding mean density (MD) case.
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Table 4.2: Mean lung dose for each field size (cm2) and beam energy for the mean density lung
model (MD) and one of the four random heterogeneous realizations as a percentage normalized to
the Dmax(MeV/g) along the central axis of the corresponding mean density lung case. (The mean
lung density (g/cm3) for the corresponding case is also listed in the parentheses.)

field size Dmax MD L1 L2 S1 S2

(×10−4)(0.26) (0.293) (0.306) (0.242) (0.246)
6 MV

1 × 1 369 0.98 1.52 0.89 0.92 0.92
5 × 5 16.0 22.41 24.41 21.73 21.95 22.32
10 × 10 4.08 77.21 77.06 76.73 77.13 77.22
20 × 20 1.07 83.32 82.83 82.68 83.42 83.42

18 MV
1 × 1 571 1.29 2.01 1.19 1.22 1.22
5 × 5 30.2 24.12 26.47 23.68 23.50 23.92
10 × 10 7.67 79.69 80.17 79.82 79.32 79.52
20 × 20 2.01 87.84 87.60 87.31 87.81 87.87

all field sizes and beam energies, the MLDs of the two small realizations (with a

mean lung density of 0.242 and 0.246 g/cm3, respectively, both < the mean density

model’s 0.26 g/cm3) are much closer to each other and also closer to that of the mean

density model than those of the two large realizations.

4.4.6 Detailed vs. voxelized lungs

Fig. 4.15 is a preliminary calculation showing the difference between a detailed

random lung realization L1 (Fig. 4.2c) and its voxelized version (Fig. 4.4) in terms

of CAX depth dose. Basically, the two curves agree reasonably well with each other.

The voxelized lung at the resolution of 0.4×0.4×0.4 cm3 reveals most of the structures

in the detailed one, and in particular, the magnitude of the underdosing distal to

the lung is reproduced. This is as expected, because the underdosing is almost

entirely affected by the amount of attenuation of the primary photons, which in turn

depends on the radiological length along the beam’s path. The average density in the

beam’s pathway is conserved, even though the homogenization in each voxel tends to

smooth out the details of the structure. However, the voxelization still causes local

differences up to 5% in the non-air region (up to 12% in the airway), which is due to
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the smoothing of the structures in the voxels. Appropriate resolutions of voxelization

is a complex issue and subject to further investigation. More comprehensive results

are presented and discussed in Chapter V.
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Figure 4.15: The CAX percent depth doses for a 1×1 cm2 field size and 6 MV beam. The solid line
is for the detailed realization L1 (Fig. 4.2c) and the dash line is for its voxelized version (Fig. 4.4),
respectively. Both curves are normalized to the Dmax along the CAX of the detailed L1 case.

4.5 Conclusion

We have developed a random heterogeneous 2 1/2-D lung model, based upon real

lung physical data, by explicitly treating the bronchial and vessel tree structures

within a homogenized tissue background with adjusted density. A threshold size of

0.05 cm, at the order of the terminal bronchiole, has been selected for this random

lung model. Four realizations of this model were chosen to represent various scenar-

ios that may be encountered in lung treatment planning. Monte Carlo simulations

using the PENELOPE Monte Carlo code were performed on the homogeneous mean

density lung model and the four heterogeneous realizations, for a single beam of two

different energies (6 MV and 18 MV) and four field sizes (1 × 1, 5 × 5, 10 × 10 and
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20× 20 cm2). By comparing the CAX percent depth doses, the central dose profiles,

and the MLD among all the cases, we conclude that when the beam traverses a

region with significantly large local structures, such as the regions close to the main

and lobar bronchi and the vessels of the same order, a serious concern can exist if

these structures are inside the beam. Also, significant local perturbations in dose

(more than 30% of Dmax larger than the mean density model for the 18 MV) are

found for the small 1 × 1 cm2 field size. As the field size increases, the local pertur-

bation may finally vanish as CPE is established. However, an extra concentration

of density inside the beam can lead to dose reduction as high as 7% of Dmax in the

distal “shadow” part of the beam, which is not compensated by inward scattering,

even with the largest field size (20 × 20 cm2) in this study. This situation affects

low-energy beams more than high-energy ones because of their softer spectra. Also,

the reduction in dose in the “shadow” regions behind large structures is largely in-

dependent of the field size. On the other hand, if there are no large structures inside

the beam, the results (especially the MLD) are closer to the mean density model (yet

still show geometry-specific variation). For the small field sizes, such as the 1 × 1

cm2 beam where lateral CPE is absent, even a relatively small structure (∼0.22 cm)

simulated in the heterogeneous model can significantly perturb the dose.

Also, in a preliminary calculation, we compared the CAX depth dose for a random

lung and a voxelized counterpart using a 0.4 cm resolution. We found a difference

up to 5% of Dmax in a non-air region.

Our results show that the mean density model for the whole lung is not generally

a good approximation, especially for small field sizes, and that a voxelized model

with 0.4 cm resolution can also have significant errors.



CHAPTER V

CT Resolution for Lung Treatment Planning: An
Application of the Random Lung Model

5.1 Introduction

Most current treatment planning methods are CT-based [7, 28, 33, 37, 60, 80, 92,

98,100,122,127], in which the patient geometry is delineated by a matrix of uniform

rectangular box-like voxels of various sizes. These CT voxels are interpolated from

the CT scans of the patient body, with resolutions that correspond to the number

of the voxels across the CT images. Each voxel has a specific electron density ob-

tained from the CT number of this voxel, which then maps to a specific homogenized

material according to a prescribed electron density to material curve.

The better the CT voxels match the patient geometry and material composition,

the more accurate the CT-based dose calculations will be. Two influencing factors

exist: (i) the accuracy of the CT numbers obtained from the CT scans, and (ii)

the resolution of the patient geometry represented by the CT voxels. Many previous

publications [25,44,50,57,61,85,106] have considered the effect of CT numbers on dose

calculations. In particular, Geise and McCullough [44] indicated that it was more

important to know the accurate distribution of the spatial heterogeneities than the

accurate electron density. Niemierko and Goitein [86] studied the error in calculated

isodose lines caused by using different dose grid sizes, and recommended a dose grid

90
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size 2.5 times larger than the acceptable maximum position error. Their work was

augmented by Smith, Morrey and Gray in a letter to the editor [110], in which the

authors proposed a maximum 2 mm dose grid size in a heterogeneous site such as

the head and neck. In a recent work [29], Corbett et al. reported that a dose grid of

1 mm was sufficient to achieve accurate DVHs within ±5% up to 200% of the target

dose in a prostate 125I seed implant dose calculation. More recently, the dose grid

size effect was investigated by Dempsey et al. [35] using a Fourier analysis, and was

illustrated in a head and neck IMRT treatment planning. A 2.5 mm isotropic dose

grid was concluded to be sufficient to prevent dose errors greater than 1%, and a

2-4-6 mm adaptive dose grid model was suggested for targets, structures and tissue,

respectively.

However, the works cited above on the dose grid size effect emphasize the dose

point sampling resolution based on a fixed uniform geometrical grid. To our knowl-

edge, only a limited number of studies have investigated the effect of various geomet-

rical resolutions on dose calculations. One study [32], involving electron beams and

the Monte Carlo method, demonstrated that in the vicinity of the interface between

an air cavity and water, a 1.9 mm geometrical voxel had better agreement with the

measurement than a 3.9 mm voxel size, where the largest disagreement exceeded 5%.

In another study by Chung et al. [26], the point dose differences between various res-

olutions from 1.5 mm to 6 mm were shown to be up to 5.6%. The authors concluded

that although 3 mm and 4 mm grid sizes were considered acceptable to most IMRT

plans, a 2 mm grid size was required to achieve accurate dose distribution in hetero-

geneous regions. Meanwhile, they found that these point differences did not lead to

noticeable differences in the dose volume histogram because the regions with high

dose differences occupy only a very small portion of the whole region of interest.
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To take a step further, De Smedt et al. [34] investigated the combined effect of the

resolutions of both the CT voxels and the dose scoring grid on the dose calculated

for IMRT treatment planning for head and neck and lung cases. They confirmed

that for the lung cases, the scoring grid resolution was less important than the CT

resolution, and they recommended a geometrical resolution of 2× 2 × 5 mm3 over a

reference 1 × 1 × 5 mm3 resolution to save calculation time while not compromising

accuracy.

In the previous chapter, we developed a random lung model and compared the

dose distributions between the detailed lung model with explicit structures inside

and its atomic mix counterpart. We indicated that one possible application is that

we can use this detailed, highly heterogeneous lung model to investigate how the

geometrical resolution (the CT resolution) affects the dose calculations. However,

contrary to the one-beam calculations in Chapter IV, we use in this chapter a three-

beam setup on a more realistic lung phantom with different sizes of tumor embedded

inside the lung.

The remainder of this chapter is arranged as follows: in Section 5.2, we describe

the detailed treatment setup of the lung phantom, the Monte Carlo simulations, and

the metrics employed for evaluating dose distributions for different CT resolutions.

In Section 5.3 we present the results and discussion. Section 5.4 gives our conclusions.

5.2 A Three-beam Treatment Planning Using the Random Lung Model

5.2.1 The Lung Phantom

The phantom set up for the three-beam treatment planning is sketched in Fig. 5.1.

The posterior-anterior (PA) direction is in the +x-direction, the superior-inferior (SI)

direction is in the −z-direction and the right-left direction is in the +y-direction. The

phantom is a box-like uniform water (outer clear box) tank of 24× 30× 36 cm3 with
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Figure 5.1: The lung phantom (the outer clear box) for three-beam (one right lateral (RL) beam
and two opposing AP-PA beams) treatment planning. The phantom is 24 × 30 × 36 cm3 with two
lungs (light gray box, right and left) of the same size of 16×8×28 cm3 embedded inside. The water
layers surrounding the lung have uniform thickness of 4 cm while the lateral distance between the
two lungs is 3 cm. The cubical tumor (dark gray) of various sizes resides in the middle of the right
lung.

two box-like lung regions (light gray boxes) of the same size of 16 × 8 × 28 cm3

embedded inside. The water layers surrounding the lung have uniform thickness

of 4 cm, while the lateral distance between the two lungs is 3 cm. The phantom

dimensions are similar to those in an actual patient’s geometry. A cubical tumor

(dark gray box) of various sizes is located in the middle of the right lung, and

its center is the iso-center for the treatment planning. The random lung model is

generated (see Chapter IV) and applied to the right lung with the lung structure’s

cylindrical axis parallel to the z-direction, while the left lung is a homogenized atomic

mix model with no explicit structures because no incident beams pass through the

left lung before they strike the right lung. Therefore, the dose to the right lung from

photons and electrons back-scattered from the left lung can be neglected. Fig. 5.2

shows the top view (x-y plane) of the phantom setup with a typical realization of
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Figure 5.2: Top view of the lung phantom (Fig. 5.1) with a realization of the random lung model
in the right lung across the isocenter. Three beams (RL, AP and PA) are indicated. A tumor is
represented by the black square in the middle of the right lung.

the random lung model in the right lung across the isocenter plane.

We use the method described in Chapter IV to generate a series of random lung

models and fit in the right lung region. Based on the fact that for large field sizes,

the difference between a random lung model and the atomic mix lung model becomes

very small due to charged particle equilibrium (CPE) (Chapter IV), we choose to

examine the CT resolution effect for small field sizes. Therefore two tumor sizes

of 1 × 1 × 1 cm3 and 4 × 4 × 4 cm3 are picked as two representative dimensions

in our treatment planning. For each tumor size, we generate (i) a large realization

with large structures close to the tumor and (ii) a small realization with no large

structures. For each realization, three CT resolutions on the x-y plane (considering

the lung model is 21
2
-D, we use 2 mm in z-direction for all the three CT resolutions)

are applied: 1×1 mm2, 2×2 mm2 and 4×4 mm2. Figs. 5.3 through 5.6 show all the
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realizations that are used in the simulations. For simplicity, these figures only show

the lung region. For the simulations with a tumor size of 1 × 1 × 1 cm3 (Figs. 5.3

and 5.4), Figs. 5.3a through 5.3c depict the large realization at a CT resolution of

1 × 1 mm2 (T1L01), 2 × 2 mm2 (T1L02), 4 × 4 mm2 (T1L04), respectively, while

Figs. 5.4a through 5.4c are for the small realization at the same three different CT

resolutions (T1S04, T1S04 and T1S04). A similar description applies to Figs. 5.5

and 5.6 for the simulations with a tumor size of 4× 4 cm3: (a) through (c) represent

T4L01, T4L02 and T4L04, and (a) through (c) represent T4S01, T4S02 and T4S04,

respectively.

For convenience, we may denote the 1× 1 mm2 CT resolution as CT01, the 2× 2

mm2 CT resolution as CT02, and the 4 × 4 mm2 CT resolution as CT04.

5.2.2 Photon Beams

All three beams, a RL beam normally incident in the +y-direction and two oppos-

ing AP and PA beams, are open field from a point source at a source-to-axis distance

(SAD) = 100 cm, and with uniform photon fluences upon entering the surface of the

phantom across the field. The field size at the isocenter plane is specified as follows:

a 0.5 cm margin is added onto the edge of the tumor (since we do not consider any

organ/tumor movement and microscopic extension of the tumor, the tumor is both

a GTV and a PTV). Therefore, the field size at the isocenter plane is 2× 2 cm2 for a

tumor size of 1×1×1 cm3 and 5×5 cm2 for a tumor size of 4×4×4 cm3. We use an

energy spectrum of 6 MV [109] for all three beams because this energy is commonly

used for lung treatment in practice.
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Figure 5.3: Large realizations for
simulations with a tumor size of
1 × 1 × 1 cm3: (a), T1L01, at a
CT resolution of 1 × 1 mm2; (b),
T1L02, at 2 × 2 mm2; (c), T1L04,
at 4 × 4 mm2.
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Figure 5.4: Small realizations for
simulations with a tumor size of
1 × 1 × 1 cm3: (a), T1S01, at a
CT resolution of 1 × 1 mm2; (b),
T1S02, at 2 × 2 mm2; (c), T1S04,
at 4 × 4 mm2.
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Figure 5.5: Large realizations for
simulations with a tumor size of
4 × 4 × 4 cm3: (a), T4L01, at a
CT resolution of 1 × 1 mm2; (b),
T4L02, at 2 × 2 mm2; (c), T4L04,
at 4 × 4 mm2.
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Figure 5.6: Small realizations for
simulations with a tumor size of
4 × 4 × 4 cm3: (a), T4S01, at a
CT resolution of 1 × 1 mm2; (b),
T4S02, at 2 × 2 mm2; (c), T4S04,
at 4 × 4 mm2.
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5.2.3 Monte Carlo Simulations

Because the random lung model is highly heterogeneous and consists of many of

material boundaries, we mostly used PENELOPE [104] in Chapter IV. However,

since the current PENELOPE code is body-based and cannot perform MC simula-

tions in a voxelized way, for our purpose to compare the dose distributions between

various CT resolutions, we used the voxel-based MC code, DPM [108]. Both DPM

and PENELOPE are well-documented MC codes and show good agreement in the

testing situations [108]. The parameters applied in all the MC simulations are the

same as described in Section 4.3: cutoff energies of 100 keV for electrons/positions

(Ecut) and 20 keV for photons (Pcut) are used. A dose scoring grid of 1× 1× 2 mm3

is applied throughout. The dose is normalized to Diso of the correspondent cases at

CT01. For cases with a tumor size of 1 × 1 × 1 cm3, the 1σ statistical deviation at

Diso (σiso) is < 0.2%. The average 1σ over the region with dose greater than 50% of

Diso (σ50) is < 0.3%. For cases with a tumor size of 4 × 4 × 4 cm3, σiso and σ50 are

less than 0.4% and 0.5%, respectively.

5.2.4 Treatment Plan Evaluation Metrics

We use both qualitative and quantitative methods to compare the dose distribu-

tions from different random lung model realizations at various CT resolutions.

Isodose lines are basically a qualitative graphical tool for visually inspecting the

dose distribution within the regions of interest. We use isodose lines to show the

differences in the dose distributions for the tumor and inside the lung when the CT

resolution changes.

The mean lung dose (MLD) is a crude yet useful indicator for lung complications

and is often used for treatment plan evaluation [69, 101, 102, 107]. We calculate the
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MLDs for different cases by dividing the total energy deposited in the right lung

(excluding the tumor) by its total mass. Also for comparison, we provide the mean

tumor dose (MTD, calculated by dividing the total energy deposited in the tumor

by the mass of the tumor) along with the MLDs.

The dose volume histogram (DVH) [36, 73] is another widely-used quantitative

method to evaluate rival treatment plans, which can indicate the uniformity of the

dose coverage in the target and show any hot spot present for the normal tissue.

The most widely-used DVH is in a cumulative form, which plots, for a specific region

of interest, the fraction of volume receiving a dose exceeding a given value. The

cumulative DVH is essentially a cumulative distribution function (CDF), which is

expressed by Eq. (5.1):

DVH(D) =

∫ Dmax

D

PDF (D′)dD′ , (5.1)

where DVH(D) is the cumulative DVH as a function of dose D; PDF (D′) is the

probability that a dose D′ would fall into the range of [D′, D′ + dD′] and satisfies∫ ∞
0
PDF (D′)dD′ = 1. In this chapter, we calculate the cumulative DVH (for sim-

plicity, we call it DVH in the remaining part) by binning the dose of each voxel into

dose bins with equal space of 1% and ranging from 0 to Dmax.

To quantify the differences between different DVHs, the absolute differential dose

(ADD) described by Kawrakow [59] is adopted. We calculate the relative ADD

(ADDrel) by Eq. (5.2) [34]:

ADDrel =
ADD∫ Dmax

0
DVHref

=

∑Nbin

i |href
i − hcomp

i |
di∑Nbin

i href
i 
di

, (5.2)

where h
ref/comp
i is the value of the reference/comparison DVH for bin i, and 
di is

the width of bin i.
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5.2.5 Reference CT Resolution for the Lung Phantom

A reference CT resolution (the finest one to compare with) is determined by: (i)

generating a three-beam treatment plan for the lung phantom depicted in Fig. 5.3a

with a small tumor size of 1 × 1 × 1 cm3 (hence a small field size which imposes a

severe situation lacking CPE) using the detailed lung model (not voxelized) and the

PENELOPE code; and (ii) voxelizing this lung phantom at a uniform fine geometrical

(CT) grid and using the DPM code to do the calculations with the same three-beam

setup. If the fine resolution shows no significant differences between the results from

the detailed PENELOPE plan and the voxelized DPM plan, this resolution will be

used as the reference. Consistent with previous publications, we choose the reference

resolution at 1 × 1 mm2 on x-y plane. Because the speed of MC simulations in the

detailed lung model with the PENELOPE code is much slower than that of the DPM

simulations (see Chapter IV), the σiso and σ50 are less than 0.5% and 0.7% (larger

than those with the DPM cases) for the PENELOPE cases.

5.3 Results and Discussion

5.3.1 Reference CT Resolution for the Lung Phantom

Fig. 5.7 shows the CAX depth doses in the three-beam calculations for both

the detailed lung model performed by the PENELOPE and the voxelized version

by the DPM. Fig. 5.7a is the CAX depth dose along the x-direction. Fig. 5.7b is

the CAX depth dose along the y-direction. In both figures, the solid lines are for

the detailed lung model, while the dotted lines are for the voxelized lung model at

the selected CT resolution of 1 × 1 mm2. The dose is expressed in absolute value.

It is clear that at this resolution, the voxelized lung model agrees well with the

detailed lung model. The CAX along the x-direction passes through some large and
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Figure 5.7: CAX depth dose curves along (a): x-direction and (b): y-direction, of a three-beam
simulation in a phantom depicted in Fig. 5.3a. The dotted lines are calculated with DPM while the
solid lines are calculated with PENELOPE.
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small structures, while the CAX along the y-direction passes mostly through the

background region. Except for the two air regions (one is the lumen, about 1 cm

in diameter, of a large airway around x = 10 cm, and one is the lumen, about 2

mm in diameter, of a small airway at around x = 18.6 cm), the relative differences

([DPENELOPE(x)−DDPM(x)/DPENELOPE(x)]) at most points are within − 0.5% to

+ 1.5%, which are comparable to the statistical errors. The significant discrepancy

in the air regions may be caused by different mechanisms of dealing with regions

with extremely low density employed in both codes. It is worth noting that the 1σ

in the air region is as large as 5%. Therefore we use the CT resolution of 1× 1 mm2

(CT01) as the reference resolution.

5.3.2 Isodose lines

Figs. 5.8 and 5.9 show the isodose lines at x-y plane across the isocenter for

simulations for the large and small realizations with a tumor size of 1 × 1 cm3 at

various CT resolutions (Large realization: 5.8a, T1L01, at CT01; 5.8b, T1L02, at

CT02; 5.8c, T1L04, at CT04. Small realization: 5.9a, T1S01, at CT01; 5.9b, T1S02,

at CT02; 5.9c, T1S04, at CT04.) A similar arrangement in Figs. 5.10 and 5.11 is for

the cases with a tumor size of 4×4 cm3, where the large realizations are: 5.10a, T4L01,

at CT01; 5.10b, T4L02, at CT02; 5.10c, T4L04, at CT04. The small realizations

are: 5.11a, T4S01, at CT01; 5.11b, T4S02, at CT02; 5.11c, T4S04, at CT04. Only

the lung region is shown, which corresponds to Figs. 5.3 through 5.6. The tumor is

indicated by the gray shaded square in the lung center. The isodose levels are 20,

50, 70, 90, 95 and 100% of the dose at the isocenter (Diso) of the realizations at at

the reference CT resolution of CT01.

As the CT resolution decreases (the geometrical grid size becomes larger), the

fine details revealed in the high resolution are smoothed, especially when the large
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Figure 5.8: Isodose lines at x-y
plane across the isocenter for sim-
ulations for the large realizations
with a tumor size of 1 × 1 cm3 at
various CT resolutions. Only the
lung region is shown. The tumor
is indicated by the shaded gray
square in the lung center. The iso-
dose levels are 20, 50, 70, 90, 95
and 100% of the dose at the isocen-
ter (Diso) for the realizations at
the reference CT resolution of 1×1
mm2. Realizations: (a), T1L01, at
a CT resolution of 1× 1 mm2; (b),
T1L02, at 2 × 2 mm2; (c), T1L04,
at 4 × 4 mm2.
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Figure 5.9: Isodose lines at x-y
plane across the isocenter for sim-
ulations for the small realizations
with a tumor size of 1 × 1 cm3 at
various CT resolutions. Only the
lung region is shown. The tumor
is indicated by the shaded gray
square in the lung center. The iso-
dose levels are 20, 50, 70, 90, 95
and 100% of the dose at the isocen-
ter (Diso) for the realizations at
the reference CT resolution of 1×1
mm2. Realizations: (a), T1S01, at
a CT resolution of 1× 1 mm2; (b),
T1S02, at 2 × 2 mm2; (c), T1S04,
at 4 × 4 mm2.
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Figure 5.10: Isodose lines at x-y
plane across the isocenter for sim-
ulations for the large realizations
with a tumor size of 4×4×4 cm3 at
various CT resolutions. Only the
lung region is shown. The tumor
is indicated by the shaded gray
square in the lung center. The iso-
dose levels are 20, 50, 70, 90, 95
and 100% of the dose at the isocen-
ter (Diso) for the realizations at
the reference CT resolution of 1×1
mm2. Realizations: (a), T4L01, at
a CT resolution of 1× 1 mm2; (b),
T4L02, at 2 × 2 mm2; (c), T4L04,
at 4 × 4 mm2.
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Figure 5.11: Isodose lines at x-y
plane across the isocenter for sim-
ulations for the small realizations
with a tumor size of 4×4×4 cm3 at
various CT resolutions. Only the
lung region is shown. The tumor
is indicated by the shaded gray
square in the lung center. The iso-
dose levels are 20, 50, 70, 90, 95
and 100% of the dose at the isocen-
ter (Diso) for the realizations at
the reference CT resolution of 1×1
mm2. Realizations: (a), T4S01, at
a CT resolution of 1× 1 mm2; (b),
T4S02, at 2 × 2 mm2; (c), T4S04,
at 4 × 4 mm2.
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voxels cross the edge of a heterogeneity and regions of high dose gradient. Therefore,

the dose distribution across the structures of various sizes is smoothed accordingly.

This kind of difference can be viewed as a systematic error. This trend can be

seen clearly in Fig. 5.8 through Fig. 5.11, where the artificial smoothing effect is

more apparent with “large” realizations, which contain large structures, than with

“small” realizations, which contain only small structures. The smoothing effect is

also more apparent with a small tumor with a small field size. Here lack of CPE

causes a more sensitive change in the dose distribution by local structures than in

large field sizes.

The combinations between the different realizations and different tumor sizes

(hence different field sizes) make the change of the isodose lines from the reference

CT01 to CT04 different: while T4S04 is almost identical to T4S01, T1L04 shows

some noticeable changes compared to T1L01, as is indicated by the 90% percent

lines surrounding the tumor and the 50% percent lines surrounding the two large

airway lumens. In all realizations, the differences between the CT02 and the CT01

resolutions are not significant.

In Chapter IV, we saw that the dose differences between different random lung

realizations and the atomic mix model in the water region far behind the lung are

due mainly to the attenuation of the primary photons. Therefore, the voxelization of

a specific realization of the heterogeneous lung into different geometrical resolutions

may not cause significant different in this far region. However, Fig. 4.15 (Page 88)

shows that for a specific realization, different geometrical resolutions can result in

significant changes in both the builddown and the buildup regions for a small field

size. This indicates a potential dose coverage change due to different voxelizations in

a treatment involving small field sizes. Figs. 5.12 and 5.13 show a close view of the
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Figure 5.12: Isodose lines near the tu-
mor at the x-y plane across the isocenter
for simulations for the large realizations
with a tumor size of 1×1×1 cm3 at var-
ious CT resolutions. The tumor is indi-
cated by the shaded gray square in the
lung center. The isodose levels are ex-
pressed as the percentage of the dose at
the isocenter (Diso) for the realizations
at the reference 1 × 1 mm2 CT resolu-
tion. Realizations: (a), T1L01, at a CT
resolution of 1× 1 mm2; (b), T1L02, at
2 × 2 mm2; (c), T1L04, at 4 × 4 mm2.
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Figure 5.13: Isodose lines near the tu-
mor at the x-y plane across the isocenter
for simulations for the small realizations
with a tumor size of 1×1×1 cm3 at var-
ious CT resolutions. The tumor is indi-
cated by the shaded gray square in the
lung center. The isodose levels are ex-
pressed as the percentage of the dose at
the isocenter (Diso) for the realizations
at the reference 1 × 1 mm2 CT resolu-
tion. Realizations: (a), T1S01, at a CT
resolution of 1× 1 mm2; (b), T1S02, at
2 × 2 mm2; (c), T1S04, at 4 × 4 mm2.
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isodose lines near the tumor for the cases with a small tumor (and a small field size).

In both figures, although the dose contours change little from CT01 to CT02, the

differences between CT04 and CT01 are significant for both the large and the small

realizations. In Fig. 5.12c, the 85% isodose line fully covers the tumor. When the

CT resolution increases to CT02: the 85% line (i) just barely covers the tumor’s two

lower (orientation on the paper) corners, which shows the impact of the difference in

the buildup region due to different voxelizations, and (ii) shows a more asymmetric

shape, which indicates a combined effect of two factors: a) the impact of the difference

in the builddown region due to different voxelizations, and b) the influence from near

structures resolved by the higher CT02 (alternatively, hidden by the coarser CT04.

See the structures close to the upper left corner of the tumor in Fig. 5.3). When the

CT resolution increases to CT01, the 85% line misses the two lower corners by a small

amount and shows a slightly more asymmetric shape than CT02. A same trend, with

a less amplitude, occurs in the small realizations with the small tumor in Fig. 5.13.

The difference in the buildup region due to different voxelizations results in a tighter

dose coverage for the tumor when the CT resolution changes from CT04 to CT01.

However, for the cases with a large tumor with large field sizes, the changes in the

dose distribution in the tumor are not significant between different CT resolutions

because the buildup effect becomes small due to increased CPE.

Fig. 5.14 shows 1-D dose distributions along the x- and y-directions on the x-y

isocenter plane, respectively, for all realizations and CT resolutions. Fig. 5.14a and

5.14b are for the large and small realizations with a tumor size of 1 × 1 × 1 cm3,

at y = 7.7 and 8.0 cm, respectively; while Fig. 5.14c and 5.14d are for the large

and small realizations with a tumor size of 4 × 4 × 4 cm3, at y = 7.5 and 8.0 cm,

respectively. In all figures, the solid lines are for CT01, the dashed lines for CT02
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Figure 5.14: Percent depth dose curves along the x-direction at different y-values on the x-y isocenter
plane. (a) and (b): large and small realizations with a tumor size of 1 × 1 × 1 cm3, at y = 7.7 and
8.0 cm, respectively; (c) and (d): large and small realizations with a tumor size of 4 × 4 × 4 cm3,
at y = 7.5 and 8.0 cm, respectively. In all figures, the solid lines are for a CT resolution of 1 × 1
mm2, the dashed lines 2 × 2 mm2 and the dotted lines 4 × 4 mm2
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and the dotted lines for CT04. The locations of the depth dose curves for the large

realizations are intentionally chosen so that the lines pass through as many structures

as possible, while for the small realizations, we simply choose the CAX. As expected,

the resolution CT04 agrees well with CT01 for all small realizations because the

finer geometrical grid is comparable to the small structure sizes and therefore does

not resolve more structures than the coarser grid. However, in large realizations,

the large structure sizes are much greater in size than the fine grid. Thus, enlarging

the CT voxels results in a loss of spatial resolution and an artificially smoother lung

model, which in turn results in a smoother dose distribution, as can be seen from

the two air regions near x = 10 and 14 cm in Fig. 5.14a and the two air regions near

x = 6.5 and 9.5 cm in Fig. 5.14c. In the most significant cases in Fig. 5.14a, the

differences in the non-air region between T1L01 and T1L04 are up to 2.1% of Diso,

while those between T1L01 and T1L02 are up to only 0.5%, which is comparable to

statistical errors.

5.3.3 DVHs

Fig. 5.15 presents DVHs for the tumor and the right lung for all simulations.

The dose on the abscissa is expressed as a percentage of Diso of the cases at the

reference CT resolution of 1 × 1 mm2. Fig. 5.15a and 5.15b are for the large and

small realizations with a tumor size of 1 × 1 × 1 cm3, respectively; while Fig. 5.15c

and 5.15d are for the large and small realizations with a tumor size of 4 × 4 × 4

cm3, respectively. In all figures, the solid lines are for CT01, the dashed lines are for

CT02 and the dotted lines are for CT04.

The differences in DVHs for the cases with a tumor size of 4 × 4 × 4 cm3 at all

three CT resolutions are almost visually indiscernible for both the tumor and the

right lung. While in the cases with a tumor size of 1 × 1 × 1 cm3, the DVHs for the
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Figure 5.15: DVHs for the tumor and the right lung for all simulations. The dose is expressed as
a percentage of Diso of the cases at a CT resolution of 1 × 1 mm2. (a) and (b): large and small
realizations with a tumor size of 1×1×1 cm3, respectively; (c) and (d): large and small realizations
with a tumor size of 4×4×4 cm3, respectively. In all figures, the solid lines are for a CT resolution
of 1 × 1 mm2, the dashed lines are for 2 × 2 mm2 and the dotted lines are for 4 × 4 mm2. The
differences between the lines for different resolutions are small so that most of them overlap each
other.
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Table 5.1: Relative absolute differential dose (ADDrel) between larger CT resolutions and the
reference 1 × 1 mm2 CT resolution for simulations with tumor size of 1 × 1 × 1 cm3. The relative
absolute differential dose is defined by Eq. 5.2, and is expressed as a percentage.

CT resolution Tumor Right lung
(mm2) (%) (%)

large realizations
2 × 2 0.181 0.125
4 × 4 0.132 0.678

small realizations
2 × 2 0.155 0.046
4 × 4 1.017 0.147

right lung are again on top of each other, we can see visible differences in the DVHs

for the tumor when the CT resolution changes from CT01 to CT04. The largest

difference occurs with the small realization T1S04, where its DVH shifts from that

of T1S01 to the left by about 1%. This is difficult to understand initially. However,

when we carefully examine the voxelization for T1S04, where the side length of the

tumor is 1 cm while the CT voxel size is 4 mm, we see that the tumor cannot

contain a whole number of CT voxels. The result is that the edges of the tumor

are homogenized with the surrounding background tissues at a much lower density.

For a small field size, where no CPE exists inside the beam, less density results in

less dose. Therefore, a less dose coverage is shown for this case. The same situation

could occur to the small realizations for T4S04. However, no visible difference exists

for that case. By examining the voxelization for T4S04, we can see that the under

the voxelization we use in our simulations, the 4× 4× 4 cm3 tumor happens to cover

a whole number of CT voxels. Therefore, no edge effect occurs. Should we displace

the geometrical grid by one half voxel, a reduced dose coverage will occur.

The quantitative differences in terms of ADDrel defined by Eq. (5.2) are shown

in Tables. 5.1 and 5.2. All cases except T1S04 discussed above show insignificant

differences when the CT resolution changes from CT01 to CT04, most of which
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Table 5.2: Relative absolute differential dose (ADDrel) between larger CT resolutions and the
reference 1 × 1 mm2 CT resolution for simulations with tumor size of 4 × 4 × 4 cm3. The relative
absolute differential dose is defined by Eq. 5.2, and is expressed as a percentage.

CT resolution Tumor Right lung
(mm2) (%) (%)

large realizations
2 × 2 0.041 0.022
4 × 4 0.104 0.032

small realizations
2 × 2 0.009 0.015
4 × 4 0.039 0.013

are comparable to the statistical fluctuations. The reason is: for the cases with a

tumor size of 1 × 1 × 1 cm3, although we see local differences inside the beam, the

volume with significant dose differences occupies only a small portion of the whole

volume of the tumor or the lung. Therefore, the relative difference is small. This is a

disadvantage of DVH: it lacks the positional information of the dose distribution due

to its integral form [36]. Also, for the cases with a tumor size of 4 × 4 × 4 cm3, the

volume with significant dose differences now occupies a larger portion, but a larger

field size provides more CPE, and thus the difference between different resolutions is

smaller.

It is notable that the ADDrel’s we obtain are smaller than the reported ones (see

Table 4 in [34]) for a lung treatment plan. The reason is partly due to the fact

that, in our lung model, we use only one material, water (see Chapter IV). Thus,

the microscopic cross sections are not changed when the density changes due to

voxelization. However, the reported values in [34] are from a lung treatment plan

with a real patient’s CT data, where the voxelization at various resolutions may not

only change the density, but it may also alter the composition of the material inside

the voxel thus the microscopic cross sections.
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Table 5.3: Mean lung dose (MLD) and mean tumor dose (MTD) for simulations with tumor size
of 1 × 1 × 1 cm3. Also included are the absolute dose at the isocenter Diso. The MLD and MTD
are expressed as a percentage of Diso of the cases at a CT resolution of 1 × 1 mm2

CT resolution Diso MLD MTD
(mm2) (×10−3 MeV/g)

large realizations
1 × 1 7.504 1.899 93.18
2 × 2 7.506 1.910 93.78
4 × 4 7.494 1.934 93.95

small realizations
1 × 1 7.615 1.625 91.67
2 × 2 7.605 1.639 92.11
4 × 4 7.600 1.648 91.74

Table 5.4: Mean lung dose (MLD) and mean tumor dose (MTD) for simulations with tumor size
of 4 × 4 × 4 cm3. Also included are the absolute dose at the isocenter Diso. The MLD and MTD
are expressed as a percentage of Diso

CT resolution Diso MLD MTD
(mm2) (×10−3 MeV/g)

large realizations
1 × 1 1.303 8.314 96.71
2 × 2 1.303 8.310 96.75
4 × 4 1.301 8.308 96.81

small realizations
1 × 1 1.321 7.729 96.17
2 × 2 1.318 7.731 96.18
4 × 4 1.323 7.737 96.21

5.3.4 Mean Lung Dose

Tables 5.3 and 5.4 give the mean lung dose (MLD) and mean tumor dose (MTD)

for simulations with tumor sizes of 1 × 1 × 1 cm3, 4 × 4 × 4 cm3, respectively.

Also included are the absolute dose at the isocenter Diso. The MLD and MTD are

expressed as a percentage ofDiso. The same trend can be seen: overall, the differences

between CT01 and CT02 are minimal. Even for the cases at CT04 with a small field

size, the largest difference of MLD is less than 2%. For most cases, the differences

are well below 1% compared with the reference CT resolution. This indicates that

in terms of this crude quantity, a CT resolution of 4 × 4 mm2 is acceptable.
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5.4 Conclusion

We have devised a realistic lung phantom and filled the right lung with large

and small realizations of the random lung model, which is developed in Chapter IV,

and applied on it a three-beam (one right lateral and two opposing AP-PA beams)

treatment planning for two tumor sizes (1 × 1 × 1 cm3 and 4 × 4 × 4 cm3) and

three CT resolutions (the reference 1 × 1 mm2, and two larger 2 × 2 mm2 and 4 × 4

mm2), using the code DPM. The reference CT resolution was selected based on the

excellent agreement between the dose distributions calculated by PENELOPE, for

a “large” realization of the detailed lung model with a tumor of 1 × 1 × 1 cm3, and

by DPM, for a voxelized version of this realization at the reference CT resolution,

respectively. Alternatively, the detailed random lung model is very well-represented

by its voxelized version at a 1 × 1 mm2 CT resolution.

The isodose lines and the CAX depth dose curves for all cases show an increasing

smoothing effect when the CT resolution changes from the reference 1 × 1 mm2 to

4×4 mm2. The dose distributions between the cases at 1×1 mm2 and 2×2 mm2 are

almost identical, especially for the cases with a larger tumor of 4×4×4 cm3. However,

for the large realization with a small tumor of 1 × 1 × 1 cm3, noticeable differences

occur in the 90% and 50% isodose lines between the reference CT resolution and the

4× 4 mm2 resolution. Also, differences of up to 2.1% of Diso can be observed in the

non-air regions along the CAX. The difference in the buildup region in the tumor

due to different geometrical resolutions causes less dose coverage for small tumors

when the CT resolution decreases from 4× 4 mm2 to 1× 1 mm2. This may result in

cold spots if the treatment planning for the lung with small tumors are based on a

patient’s geometry using large CT voxels.
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The DVHs and the mean doses for both the tumor and the lung show little

differences between the reference and the 2 × 2 mm2 CT resolutions for all cases.

This is almost the case for the differences between the reference and the 4 × 4 mm2

CT resolutions. However, the visible shift (corresponding to a slightly > 1% relative

difference in DVH) in the DVH for a small realization with a small tumor size reveals

a potential error caused by the homogenization of the edge of a heterogeneity by a

large voxel, such as the interface between the tumor and the surrounding tissue. This

may be especially problematic for small tumors.

These results suggest that accurate dose calculations may be obtained for the lung

in a multi-beam setup by using a CT resolution of 2×2 mm2, which is consistent with

the resolutions suggested to obtain good accuracy published previously [26, 32, 34].

Using a finer geometrical grid may not gain extra accuracy, while costing extensive

memory storage and calculation time. Our results show that for most cases, the 4×4

mm2 CT resolution does not introduce significant deviations from the reference 1×1

mm2 resolution, but one should be cautious about possible situations where large

geometrical voxels could lead to significant systematic errors.

Also, we notice the possible artifact caused by the square box-like shape of the

tumor, which, in particular with large tumor sizes, can happen to be aligned exactly

even with large geometrical voxels. This will result in “artificially” weakened differ-

ences between various CT resolutions at the interface between the tumor and the

tissue, and hence introduce bias into our conclusions.



CHAPTER VI

Conclusions

The goal of this thesis is to to assess the impact of the detailed, highly heteroge-

neous structures of the human lung on dose calculations, by building and utilizing a

realistic “random” lung model suitable for computer simulations. Here we summarize

the major results of our work, and we propose some potential future work.

To achieve our goal, we proceeded in this thesis as follows:

1. Chapter I provided the motivation and detailed background of our work and

outlined the strategy of our research;

2. Chapter II provided the quantitative description of the lung’s anatomy and

several relevant parameters used to construct the lung model.

3. We developed in Chapter III a new “atomic mix” theory for particles with a

strongly forward-peaked scattering differential cross section. In this new theory,

the length scale for homogenizing a heterogeneous medium is raised from the

mean free path (MFP) to the transport MFP of the particle, which for electrons

is orders of magnitude larger than the MFP.

4. In Chapter IV we developed a new 2 1
2
-D “random” lung model, based on the

lung’s anatomical data and the new “atomic mix” theory, and we compared the
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dose distributions within different realizations of our “random” lung model to

the dose distributions for an “atomic mix” lung model in a one-beam phantom

setup using the Monte Carlo method.

5. In Chapter V, we applied the random lung model in a more realistic lung phan-

tom, with a treatment planning-like multiple beam setup, in order to provide

an optimal CT resolution for the Monte Carlo lung dose calculations.

The new “atomic mix” theory for charged particles with highly forward-peaked

scattering, was discussed in Chapter III.

We started with a simplified one-dimensional, energy-independent Boltzmann

transport equation for the angular flux Ψ(x, μ). We separated the differential scatter-

ing cross section Σs(x) into (i) a “hard” component Σh(x), which physically accounts

for the less-frequent “catastrophic” inelastic collisions, in which the energy and the

direction of flight of the charged particles have an O(1) change in a single colli-

sion; and (ii) a “soft” component Σr(x), which physically accounts for the much

more-frequent elastic interactions through the Coulomb force, in which the charged

particles have small changes in energy and the direction of flight in a single collision.

We made the first assumption that the soft collision operator Lr has a forward-peaked

differential scattering kernel Σr(x, μ, μ
′) around μ′ ≈ μ. The approach of Pomraning

was then applied to approximate Lr by its Fokker-Planck limit Lr,FP , which contains

the key parameter Σr,tr, the transport differential cross section, or alternatively, the

reciprocal of the transport MFP. The more forward-peaked the differential scattering

kernel is, the better Lr,FP approximates Lr. In this way, we obtained the well-known

Boltzmann-Fokker-Planck (BFP) equation.

Then we made a different assumption concerning the properties of the spatially

heterogeneous medium consisting of “chunks” of two materials: λh

λr,tr
= O(1) and
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λch

λr,tr
≡ ε	 1. Here λh = typical value of 1

Σh(x)
, the MFP between consecutive hard

collisions; λr,tr = typical value of 1
Σr,tr(x)

, the transport MFP for soft collisions, over

which the electron’s direction of flight can vary an O(1) amount; and λch = typical

width of a chunk in such a heterogeneous medium. This assumption states that

the MFP of the fewer hard collisions is comparable to the transport MFP of the

dominant soft collisions, while the chunk sizes of the medium is small compared to

this transport MFP. By introducing two dimensionless spatial variables: (i) y ≡ x
λch

,

which is used to express the “fast” component of Ψ which varies an O(1) amount over

a typical chunk size λch; and (ii) z ≡ x
λr,tr

, which is used to express the “slow” com-

ponent of Ψ which varies an O(1) amount over a typical transport MFP λr,tr, Ψ(x, μ)

was mathematically expressed in terms of y and z as ψ(y, z, μ). We then applied a

formal asymptotic analysis to the BFP equation, which is now expressed in terms of

ψ(y, z, μ), and obtained its atomic mix approximation, in which the cross sections are

volume-averaged over the whole heterogeneous medium. The solution of the BFP

equation, Ψ(x, μ), and the solution of its atomic mix approximation, Ψ̂(x, μ) (the

leading order term, in terms of x, of the asymptotic expansion of ψ(y, z, μ)), satisfy:

Ψ(x, μ) = Ψ̂(x, μ) +O(ε). Therefore, we theoretically demonstrated that for charged

particle transport in a heterogeneous medium, if the collisions between the charged

particles and the background medium are dominated by forward-peaked scattering,

and the chunk sizes of the medium are small compared to the transport MFP of the

charged particles, the atomic mix approximation will accurately predict the behavior

of a charged particles in a heterogeneous medium.

The transport of electrons in materials encountered in radiotherapy is dominated

by soft collisions, which are highly forward-peaked. To numerically verify our new

atomic mix theory, we constructed a “droplet” model, which consists of “chunks” of
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two materials, air and water, with random locations and various sizes. We then used

the Monte Carlo code PENELOPE to transport electrons and photons in different

realizations of the droplet model, with different sizes of “droplets”, and compared

the dose distributions to the atomic mix approximation of this droplet model. The

beams are monodirectional, and monoenergetic (2 MeV for electrons and 3.4 MeV for

photons), with a small field size (radius = 1 cm), and in both beams charged particle

equilibrium (CPE) does not exist. Our results show that as the chunk size of the

droplet model decreases, the dose distributions limit to that of the atomic mix model.

When the chunk size is small compared to the transport MFP of the electrons, the

differences between different realizations of the heterogeneous droplet model and the

corresponding atomic mix case are insignificant. This shows an excellent agreement

with the new atomic mix theory.

Thus, the new atomic mix theory raises the length scale of homogenizing a het-

erogeneous medium by orders of magnitude, from the MFP to the transport MFP.

This suggested a practical way to build a realistic model for the highly heterogeneous

lung, which, according to traditional transport theory, is practically impossible due

to the huge number of structures greater in size than a MFP.

In Chapter IV, we developed a new random heterogeneous 2 1
2
-D lung model.

This model has some unique features:

1. It is “mixed”. Structures smaller than a chosen (guided by our theory and the

lung’s anatomical characteristics) threshold size of 0.05 cm, are homogenized

into an atomic mix background, with an adjusted density, while structures larger

than the threshold size are explicitly modeled.

2. The explicitly modeled structures are not in 3-D form. Instead, they are modeled

as 2-D cylinders in order to make this model realistic yet simple.
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3. The mean density of the random lung model is preserved.

We then used PENELOPE to perform Monte Carlo dose calculations in a lung

phantom, for a single photon beam of two energies (6 and 18 MV), and four different

field sizes (1 × 1, 5 × 5, 10 × 10 and 20 × 20 cm2). The lung region of the phantom

was filled with different realizations (two “large” and two “small”) of the random

lung model, which represent different scenarios that might be encountered in a lung.

We found that the dose perturbations (compared to the atomic mix lung) caused by

the random structures of the lung depend on various factors, including the beam’s

energy, the field size, and the locations of the structures relative to the beam’s

pathway. A significant local perturbation exceeding 30% of the Dmax was observed

with an 18 MV beam of 1×1 cm2 field size, at a local large blood vessel. As the field

size increases, the perturbations at the same location decrease, due to the gradual

recovery of CPE. However, the dose reduction in the downstream tissue layers (the

“shadow” region behind the lung) is mainly determined by the attenuation of the

primary photons along the beam’s pathway, which in turn is determined by the

density concentration along the beam’s pathway and thus, by the locations and sizes

of the random structures of the lung. This dose reduction is not fully compensated

by the increased in-scattering as the field size increases, so the shadow regions also

occurrs with large field size. A dose reduction as high as 7% of Dmax was found.

Since the modern treatment planning is mostly CT-based, we also compared the

CAX depth dose between a large realization of the detailed lung model and its

voxelized version at various CT resolutions. A 5% of Dmax maximum difference was

found in the non-air region at a 4 mm CT resolution. This indicates a need to

investigate the effect of various CT resolutions on the dose calculations in the lung,

and this was done in Chapter V.
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In Chapter V, we devised a realistic lung phantom with a tumor of two sizes

embedded inside the lung, for a treatment-like multiple-beam dose calculations, us-

ing the Monte Carlo code DPM. The lung region with the tumor was filled with

representative realizations of our random lung model and then voxelized to various

geometrical resolutions. A reference CT resolution of 1 × 1 mm2 was determined to

be sufficiently fine to represent the heterogeneous lung model, based on the excellent

agreement between the dose distributions calculated for a detailed realization of the

random lung model and its voxelized version at this selected reference resolution.

The Monte Carlo dose calculations were then performed for two realizations (a

large and a small one) of the random lung model, with two tumor sizes (1×1×1 cm3

and 4×4×4 cm3) and three CT resolutions (1×1 mm2, 2×2 mm2, and 4×4 mm2).

Various dose evaluation tools, including the CAX depth doses, the isodose lines, the

DVHs, and the mean doses, were used to assess the dose distributions among the

different combinations of realization, tumor size, and CT resolution.

In all combinations, the differences in dose distributions between the CT resolu-

tions of the 2×2 mm2 and the reference 1×1 mm2 were insignificant. This was almost

the case for the differences between the CT resolutions of the 4 × 4 mm2 and the

reference 1× 1 mm2. However, in some situations, noticeable differences were found.

The 90% and 50% isodose lines showed a significant difference for the large realiza-

tion with a small tumor of 1 × 1 × 1 cm3. Also, in the CAX depth dose, differences

up to 2.1% of Diso were observed in the same case. For small tumor sizes, the dose

differences in the tumor buildup region, resulting from different voxelizations, caused

a tighter dose coverage as the CT resolution decreases. Thus, treatment planning for

small tumors based on large CT voxels may overestimate the dose coverage for the

tumor and hence lead to possible cold spots. The slightly > 1% relative difference in
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DVH between the 4× 4 mm2 and the reference 1× 1 mm2 CT resolution for a small

realization with a small tumor indicated a possible error introduced by the inexact

delineation of the tumor boundaries by box-like geometrical voxels, which becomes

more severe with increasing CT voxel sizes. Also, the unrealistic box-like shape of

the tumor used in our calculations may result in “artificially” less difference between

different CT resolutions, due to the possible exact alignment of the boundary of the

CT voxels with the tumor.

Therefore, based on our random lung model, the results from Chapter V suggest

that for the lung treatment planning, a 2 × 2 mm2 CT resolution could be optimal:

(i) it generates no significant differences from the reference 1 × 1 mm2 resolution,

compared to the larger 4 × 4 mm2 one, where significant differences were found in

certain situations, while (ii) it is more cost effective than the 1 × 1 mm2 resolution

in terms of the calculation time and the memory consumption.

Our realistic 2 1
2
-D random lung model, developed based on the lung’s anatomy

and our new atomic mix theory, has been used in this thesis as a tool to evaluate

the impact of the highly heterogeneous lung’s structures on dose calculations in

the lung. However, the current lung model is a static, rigid-body model. In the

future, our model could be improved by incorporating breathing-related motions and

deformations, and/or evolving it into a real 3-D form, with the structures modeled

as their spatially correlated 3-D “tree” shapes.

Our dose calculations were exclusively performed with the Monte Carlo method,

which is the most accurate dose calculation method for electron/photon transport.

As stated in Chapter I, however, for practical reasons, the most widely used dose

calculation algorithm in treatment planning is convolution/superposition (CV/SP),

while the pencil beam methods, e.g., the ETAR method, are still used in many
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treatment planning systems. It is likely that these commonly-used algorithms can-

not accurately deal with the lung’s detailed spatial heterogeneities resolved by a

fine CT grid. Therefore, possible additional systematic errors caused by the less

sophisticated heterogeneity correction methods in these algorithms can be foreseen.

A natural future extension of our work would be to investigate the effect of different

approximate dose calculation methods on the dose distributions in the heterogeneous

lung, using our random lung model. There has been some previously-published work

investigating aspects of these questions [64,120].

Also, our simulations used only uniform open fields. We observed that for the

heterogeneous lung, the largest dose perturbations are associated with small field

sizes, in which lateral CPE is not present. As the intensity modulated radiation

therapy (IMRT), in which the beam’s intensity varies across the field, and hence

dose calculations are usually conducted beamlet by beamlet, gains more popularity in

treatment planning, it will be valuable to study the effect of the lung’s heterogeneity

on the IMRT lung treatment planning, using our realistic random lung model.

We have seen that when the geometrical grid became finer, and thus more struc-

tures are resolved, the dose coverage for the tumor became tighter, and cold spots

could occur. This indicates that a possible remedy for the effect of unresolved de-

tailed structures at a certain CT resolution could be to add an extra margin to the

target (alternatively, increase the conformal field size) to account for this effect. This

is another possible application of our lung model that needs to be investigated in the

future.

In this thesis, all our estimates of dose were obtained from calculations using the

Monte Carlo method. No measurements were involved. Although the Monte Carlo

codes that we used have been benchmarked against measurement for a wide range of
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situations and have shown very good agreement, it would strengthen our conclusions

if dosimetric measurements could be performed to validate them. However, accurate

experiments for physical phantoms containing small and numerous random hetero-

geneities are extraordinarily difficult. Because the Monte Carlo codes PENELOPE

and DPM are based on the first-principle physics of photon and electron transport,

we are confident that the results obtained by these codes accurately represent the

results that would be seen in measurements if it were feasible to perform them.



APPENDICES

130



131

APPENDIX A

Computer Codes Used in This Thesis

The computer codes used in this thesis, which are listed below, can be obtained

from the author (lliang@umich.edu) upon request.

A.1 Fortran 90 codes to generate the geometry of the “droplet” model
in Chapter III

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! !

! Generate cylindrical "droplet" geometry for NewPencyl. !

! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

program Main

use InpGen_Globals

implicit none

character (len=1) :: yn1

!!!

! -- Title

write(*,100)

100 format(/,72(’-’))

write(*,’(a)’) ’The title for this job ( <= 128 characters )’

write(*,’(a,$)’) ’-> ’

read(*,’(a128)’) title_input

! -- Front buildup layer

write(*,100)

write(*,’(a,$)’) ’Want a front water layer? (y/n) ’

read(*,*) yesno

if(yesno==’y’.or.yesno==’Y’) then

front = .true.

1 write(*,’(/,2x,a)’) ’ZF: depth of the front water layer’

write(*,’(4x,a,f6.2,a)’) ’The default ZF is’,ZF,’ cm’

write(*,’(6x,a,$)’) ’Want to change? (y/n) ’

read(*,*) yn1

select case(yn1)

case (’y’, ’Y’)

write(*,’(4x,a,$)’) ’Then input ZF (cm) -> ’

read(*,*) ZF

if(ZF<=0d0) then
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write(*,’(a)’) ’>>> ZF should greater than 0!’

go to 1

end if

end select

2 write(*,’(/,2x,a)’) ’Choose a matter (C1, C2 defined in PENELOPE)’

write(*,’(4x,a)’) ’1: water (C1=C2=0.05)’

write(*,’(4x,a)’) ’2: water (C1=C2=0.1)’

write(*,’(4x,a,$)’) ’-> ’

read(*,*) AorW

if(AorW==1) then

mfrontlyr = water

else if(AorW==2) then

mfrontlyr = water_max

else

write(*,’(a)’) ’>>> Input 1 or 2, please’

go to 2

end if

end if

! -- Rear backscatter layer

write(*,100)

write(*,’(a,$)’) ’Want a rear water layer? (y/n) ’

read(*,*) yesno

if(yesno==’y’.or.yesno==’Y’) then

rear = .true.

3 write(*,’(/,2x,a)’) ’ZR: depth of the rear water layer’

write(*,’(4x,a,f6.2,a)’) ’The default ZR is’,ZR,’ cm)’

write(*,’(6x,a,$)’) ’Want to change? (y/n) ’

read(*,*) yn1

select case(yn1)

case (’y’, ’Y’)

write(*,’(4x,a,$)’) ’Then input ZR (cm) -> ’

read(*,*) ZR

if(ZR<=0d0) then

write(*,’(a)’) ’>>> ZR should greater than 0!’

go to 3

end if

end select

4 write(*,’(/,2x,a)’) ’Choose a matter (C1, C2 defined in PENELOPE)’

write(*,’(4x,a)’) ’1: water (C1=C2=0.05)’

write(*,’(4x,a)’) ’2: water (C1=C2=0.1)’

write(*,’(4x,a,$)’) ’-> ’

read(*,*) AorW

if(AorW==1) then

mrearlyr = water

else if(AorW==2) then

mrearlyr = water_max

else

write(*,’(a)’) ’>>> Input 1 or 2, please’

go to 4

end if

end if

! -- Middle layer

write(*,100)

write(*,’(a)’) ’The middle layer: [central tube] + [lung] + [surrounding matter]’

! -- length of the lung (i.e. middle layer)

write(*,’(/,2x,a,f6.2,a3)’) ’The default length of the lung is: ’,Z, ’ cm’

write(*,’(4x,a,$)’) ’Want to change? (y/n) ’

read(*,*) yesno

if(yesno==’y’.or.yesno==’Y’) then

write(*,’(4x,a,$)’) ’-> ’

read(*,*) Z

end if

! -- radius of the whole phantom

write(*,’(2x,a,f6.2,a3)’) ’The default radius of the whole phantom is: ’,R, ’ cm’
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write(*,’(4x,a,$)’) ’Want to change? (y/n) ’

read(*,*) yesno

if(yesno==’y’.or.yesno==’Y’) then

write(*,’(4x,a,$)’) ’-> ’

read(*,*) R

end if

! -- radius of the lung

write(*,’(2x,a,f6.2,a3)’) ’The default radius of the lung is: ’,RB, ’ cm’

write(*,’(4x,a,$)’) ’Want to change? (y/n) ’

read(*,*) yesno

if(yesno==’y’.or.yesno==’Y’) then

49 write(*,’(2x,a,f6.2,a,$)’) ’New value (cm; <=’,R,’) -> ’

read(*,*) RB

if(RB>R) then

write(*,’(a,1x,g12.6,a5)’) ’>>> RB not allowed to >’, R, ’cm’

go to 49

end if

end if

if(RB<=0d0) then

RB = 0d0

dr = 0d0

print_RB = 0

else if(RB==R) then

print_RB = 1

else

print_RB = 2

end if

! -- lung composition

5 write(*,’(/,2x,a)’) ’The random part is made of’

write(*,’(4x,a)’) ’1: water+air’

write(*,’(4x,a)’) ’2: water+void’

write(*,’(4x,a,$)’) ’-> ’

read(*,*) AorV

if(AorV==2) then

air = void

air_max = void

else if(AorV>2) then

write(*,’(a)’) ’>>> Input 1 or 2, please’

go to 5

end if

! -- lung density

51 write(*,’(/,2x,a)’) ’The mass density of the lung (g/cm^3)’

read(*,*) rho(am)

rho(am_max) = rho(am)

fw = (rho(am)-rho(air))/(rho(water)-rho(air))

! -- Surrounding scatter matter

6 write(*,’(/,2x,a)’) ’The matter surrounding the random part?’

write(*,’(4x,a)’) ’1: water (C1=C2=0.05)’

write(*,’(4x,a)’) ’2: water (C1=C2=0.1)’

write(*,’(4x,a,$)’) ’-> ’

read(*,*) AorW

if(AorW==1) then

mouterring = water

else if(AorW==2) then

mouterring = water_max

else

write(*,’(a)’) ’>>> Input 1 or 2, please’

go to 6

end if

call ZR_Layers

end program Main
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!**********************************************************************

! 2-D layers along both longitudinal and radial direction

!**********************************************************************

subroutine ZR_Layers

use InpGen_Globals

implicit none

integer :: i, j, k

! z direction

real (8) :: ztmp, zstart

integer :: nz, nend

! r direction

real (8) :: r1, r2, rtmp, rstart

!

logical :: iksi=.false., ksi_again=.false.

real (8) :: ksi

!

integer :: i3_10th, i7_10th, Cell_count

real (8) :: v_lung, v_tissue, v_air, v_count

!

integer :: NB, nzstart, nzend, nrstart, nrend

!

character (len=64) :: buffer

integer (1) :: ibuffer

!!!

100 format(/,74(’-’))

29 continue

19 write(*,’(/,2x,a,$)’) ’The cell depth (cm): -> ’

read(*,*) zl

if(RB<=0d0) go to 69

59 write(*,100)

write(*,’(a,$)’) ’dr of each binary cell (cm) -> ’

read(*,*) dr

if(dr>RB) then

write(*,’(a,1x,g12.6,a5)’) ’>>> dr not allowed to >’, RB, ’cm’

go to 59

else if(RB>0.and.dr<=0) then

write(*,’(a)’) ’>>> dr should > 0 cm when RB > 0’

go to 59

end if

69 write(*,100)

write(*,’(/,a,$)’) ’ZR- realization #-> ’

read(*,*) rlzn_zr

! -- determine the layers’ z-coordinates

nk = ceiling(Z/zl)

allocate(ZC(0:nk))

ZC(0) = 0d0

do i=1, nk-1

ZC(i) = i*zl

end do

ZC(nk) = Z

! -- determine the rings within each layer

nr = ceiling(RB/max(dr,1d-35))
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if(print_RB==1) then

allocate(RC(nk,1:nr+1))

RC(:,1) = 0; RC(:,nr+1) = R

else if(print_RB==2) then

allocate(RC(nk,1:nr+2))

RC(:,1) = 0; RC(:,nr+1) = RB; RC(:,nr+2) = R

end if

if(print_RB==1) then

allocate(RC(nk,0:nr+1))

RC(:,0) = 0; RC(:,1) = 0; RC(:,nr+1) = R

else if(print_RB==2) then

allocate(RC(nk,0:nr+2))

RC(:,0) = 0; RC(:,1) = 0; RC(:,nr+1) = RB; RC(:,nr+2) = R

end if

do i=2, nr

RC(:,i) = (i-1)*dr

end do

! -- fill the phantom

allocate(matter(nk,nr))

v_lung = Z*(RB)**2

v_tissue = v_lung*fw

v_air = v_lung - v_tissue

call InpGen_Droplet(water, air, v_air, rlzn_zr, v_count)

write(*,999) ’The extra air is ’, (v_count-v_air)/v_air*100, &

’% of the specified volume’

write(*,999) ’The lung density of this case is ’, &

(v_count*rho(air)+(v_lung-v_count)*rho(water))/v_lung/rho(am)*100, &

’% of the specified one’

999 format(/,a, f8.5, a)

call Output

write(*,’(/,a,$)’) ’Another realization? (y/n) ’

read(*,*) yesno

if(yesno==’y’.or.yesno==’Y’) go to 69

end subroutine ZR_Layers

!*************************************************

! Subroutine for filling the matter with droplets

!*************************************************

subroutine InpGen_Droplet(Mbase, Mfill, VFill, Rlztn, VCount)

use InpGen_Globals

implicit none

integer (1), intent(in) :: MBase, MFill

real (8), intent(in) :: VFill

integer (8), intent(in) :: Rlztn

real (8), intent(out) :: VCount

integer :: i, j

!!! instructions

matter = Mbase

Vcount = 0d0

do while (VCount < VFill)
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i = ceiling(nk*rang())

j = ceiling(nr*rang())

if(i==0.or.j==0) cycle

if(matter(i,j)==Mbase) then

matter(i,j) = Mfill

VCount = VCount + (ZC(i)-ZC(i-1))*(RC(i,j+1)**2-RC(i,j)**2)

end if

end do

end subroutine InpGen_Droplet

subroutine Output

use InpGen_Globals

implicit none

integer :: i, j, k

integer, allocatable :: jm(:), nwater_z(:), nwater_r(:)

integer :: jmax, jmin, jtmp

!!!

100 format(/,72(’-’))

write(*,100)

! -- allocate the actural radial grid

allocate(RCM(nk,jmax+1), matterM(nk,jmax))

! -- merge the identical neighbors

RCM(:,1) = RC(:,1)

do i=1, nk

jtmp = 2

matterM(i,1) = matter(i,1)

do j=2, nr

if(matter(i,j)/=matter(i,j-1)) then

RCM(i,jtmp) = RC(i,j)

matterM(i,jtmp) = matter(i,j)

jtmp = jtmp + 1

end if

end do

RCM(i,jm(i)+1) = RC(i,nr+1)

end do

open(unit=10, file=’merged.txt’, action=’WRITE’, status=’REPLACE’)

write(10,’(a6,1x,a128)’) title, title_input

write(10,’(a6)’) gstart

if(front) then

write(10,’(a6,6x,2g21.13,2x,i5)’) layer, ZC(0)-ZF, ZC(0), 0

write(10,’(a6,6x,2g21.3)’ ) center, 0d0, 0d0

write(10,’(a6,3x,i1,2x,2g21.13)’) cylind, mfrontlyr, 0d0, R

end if

do k=1, nk

write(10,’(a6,6x,2g21.13,2x,i5)’) layer, ZC(k-1), ZC(k), k

write(10,’(a6,6x,2g21.3)’ ) center, 0d0, 0d0

do j=1, jm(k)

write(10,’(a6,3x,i1,2x,2g21.13)’) cylind, matterM(k,j), RCM(k,j), RCM(k,j+1)

end do

if(print_RB==2) then

write(10,’(a6,3x,i1,2x,2g21.13)’) cylind, mouterring, RC(k,nr+1), RC(k,nr+2)

end if

end do

if(rear) then
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write(10,’(a6,6x,2g21.13,2x,i5)’) layer, ZC(nk), ZC(nk)+ZR, nk+1

write(10,’(a6,6x,2g21.3)’ ) center, 0d0, 0d0

write(10,’(a6,3x,i1,2x,2g21.13)’) cylind, mrearlyr, 0d0, R

end if

write(10,’(a6)’) gend

close(10)

deallocate(ZC, RC, RCM, matter, matterM, jm, nwater_z, nwater_r)

end subroutine Output

!

! global variables

!

module InpGen_Globals

use InpGen_Pars

character*128 :: title_input

real (8) :: ZF=ZF_default, ZR=ZR_default, &

Z=10d0, Z0, &

R=R1510, RB=RL510, RB0, &

fw ! fw (volume fraction of water)

integer (8) :: realization, rlzn_zr

integer :: AorV, AorW

integer (1) :: void=0, water=1, air=2, am=3, water_max=4, air_max=5, am_max=6

real (8) :: Rho(0:6), DMean

data Rho/0d0, 1d0, 1.20479d-3, 0.201388d0, 1d0, 1.20479d-3, 0.201388d0/

integer (1) :: mfrontlyr, mrearlyr, mouterring

character (len=1) :: yesno, yesno2

logical :: front=.false., rear=.false., wfilled=.true.

integer (1), allocatable :: matter(:,:), matterM(:,:)

! binary geometry

integer :: nk, nk0, nr, nr0, nbuff

real (8) :: dz, dr, dr0, delZ, delR

real (8) :: zl

real (8), allocatable :: RC0(:), RC(:,:), RCM(:,:), RMap(:)

real (8), allocatable :: ZC(:), ZMap(:)

! flags

integer :: print_RB=0

end module InpGen_Globals

module InpGen_Pars

implicit none

! i/o unit numbers:

integer,parameter :: io_i = 31 != I/O unit for the problem setup(input) file.

integer,parameter :: io_o = 33 != I/O unit for the output file.

!

real(8), parameter :: ONE = 1d0

real(8), parameter :: ZERO = 0d0

real(8), parameter :: huge = 1.0d+36 != A very large number.

real(8), parameter :: PI = 3.1415926535897932d+0

!

character*6, parameter :: title=’TITLE’, gstart=’GSTART’, gend=’GEND’, &

layer=’LAYER ’, center=’CENTRE’, cylind=’CYLIND’

!

real (8), parameter :: ZF_default=3d0

real (8), parameter :: ZR_default=5d0
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real (8), parameter :: R1510=15.1d0, RL510= 5.1d0

end module InpGen_Pars

The random number generator (RNG) “rang()” in the codes should be supplied

by the users.

A.2 Fortran 77 PENELOPE main program, based on “Pencyl” from the
PENELOPE distribution, and modified by Liang for the “droplet”
geometry in this thesis

C *********************************************************************

C MAIN PROGRAM

C modified by L. Liang based on Pencyl C

C *********************************************************************

implicit DOUBLE precision (A-H,O-Z), integer*4 (I-N)

C -- command line arguments relevant

integer narg

character*32 argi, argo, argsfx

logical exists

integer len_sfx

C

character*2 LIT

character*32 PFILE,PFILED,PFILER

character*128 BUFFER

character*6 KWORD,

1 KWTITL,KWKPAR,KWSENE,KWSPEC, KWSEXT,KWSHEI,KWSRAD,KWSPOS,

2 KWSDIR,KWSAPE,KWNMAT,KWSIMP, KWPFNA,KWNBE ,KWNBTH,KWNBPH,

3 KWNBZ ,KWNBR ,KWABSE,KWNBTL, KWDO2D,KWIFOR,KWRESU,KWDUMP,

4 KWNSIM,KWTIME,KWRSEE,KWCOMM,

C -- ADDED KEYWORDS BY LIANG

1 KWFOUT, KWNITR, KWDZDO, KWDRDO

parameter(

1 KWTITL=’TITLE ’,KWKPAR=’SKPAR ’,KWSENE=’SENERG’,KWSPEC=’SPECTR’,

2 KWSEXT=’SEXTND’,KWSHEI=’STHICK’,KWSRAD=’SRADII’,KWSPOS=’SPOSIT’,

3 KWSDIR=’SDIREC’,KWSAPE=’SAPERT’,KWNMAT=’NMAT ’,KWSIMP=’SIMPAR’,

4 KWPFNA=’PFNAME’,KWNBE =’NBE ’,KWNBTH=’NBTH ’,KWNBPH=’NBPH ’,

5 KWNBZ =’NBZ ’,KWNBR =’NBR ’,KWNBTL=’NBTL ’,KWABSE=’ABSEN ’,

6 KWDO2D=’DOSE2D’,KWIFOR=’IFORCE’,KWRESU=’RESUME’,KWDUMP=’DUMPTO’,

7 KWNSIM=’NSIMSH’,KWTIME=’TIME ’,KWRSEE=’RSEED ’,KWCOMM=’ ’)

C -- ADDED KEYWORDS’ PARAMETERS BY LIANG

parameter (KWFOUT=’FULOUT’) ! full output control

parameter (KWNITR=’NINTER’) ! timing output interval

parameter (KWDZDO=’DZDOSE’) ! dz for dose grid

parameter (KWDRDO=’DRDOSE’) ! dr for dose grid

C

parameter (REV=5.10998902D5) ! Electron rest energy (eV)

parameter (TREV=REV+REV)

parameter (PI=3.1415926535897932D0, TWOPI=2.0D0*PI,

1 RA2DE=180.0D0/PI, DE2RA=PI/180.0D0)

C -- Main-PENELOPE commons.

parameter (MAXMAT=10)

common/CSIMPA/EABS(3,MAXMAT),C1(MAXMAT),C2(MAXMAT),WCC(MAXMAT),

1 WCR(MAXMAT)

common/TRACK/E,X,Y,Z,U,V,W,WGHT,KPAR,IBODY,MAT,ILB(5)

common/RSEED/ISEED1,ISEED2

C -- Composition data.
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common/COMPOS/STF(MAXMAT,30),ZT(MAXMAT),AT(MAXMAT),RHO(MAXMAT),

1 VMOL(MAXMAT),IZ(MAXMAT,30),NELEM(MAXMAT)

dimension RHOI(MAXMAT)

C -- Cylindrical geometry.

parameter (NLAM=2003,NCYM=1023,NBDM=NLAM*NCYM)

common/CYLGEO/XG(NLAM),YG(NLAM),ZG(NLAM),RG(NLAM,NCYM),

1 RG2(NLAM,NCYM),RMAX,RMAX2,IBOD(NLAM,NCYM),MATER(NLAM,NCYM),

2 ILAY(NBDM),ICYL(NBDM),NLAY,NCYL(NLAM),NBOD

common/CYLAUX/INOUT,KLAY,KCYL

dimension DSMAX(NBDM)

C -- Source.

C -- Source energy spectrum.

parameter (NSEBM=100)

dimension ES(NSEBM),PTS(NSEBM),IAS(NSEBM),FS(NSEBM),NPRIM(NSEBM)

data NPRIM/NSEBM*0/

C -- Continuous distributions (selected by the user).

dimension kzlay(4000), dzlay(4000)

parameter (NDZM=200, NDRM=150)

parameter (NDZRT=NDZM*NDRM, NDMTT=4*NDZM*NDRM)

common/dosegrid/

1 ZDose(NDZM+1), ZDLim(NDZM+1), dzDose(NDZM),

2 RDose(NDRM+1), RDLim(NDRM+1), drDose(NDRM),

3 NDZ(NDZM), NDR(NDRM), NDZT, NDRT

dimension DRMass(NDZM, NDRM)

data DRMass/NDZRT*0.0d0/

dimension DAV(NDRM), DErr(NDRM), DRel(NDRM)

dimension Dose(NDZM,NDRM), Dose2(NDZM,NDRM),

1 DoseP(NDZM,NDRM),LDose(NDZM,NDRM)

data Dose,Dose2,DoseP,LDose/NDMTT*0.0D0/

dimension DosePr(NDZM,NDRM), DosePr2(NDZM,NDRM),

1 DosePrP(NDZM,NDRM),LDosePr(NDZM,NDRM)

data DosePr,DosePr2,DosePrP,LDosePr/NDMTT*0.0D0/

C

external RAND

C =============================================================================

C Instructions

C =============================================================================

C -- Time counter initialization.

call TIME0

C -- Read in input file.

narg = iargc()

if(narg.gt.0) then

if(narg.ne.3) then

write(*,*) ’** Exactly 3 input arguments: input & output’//

1 ’ files and output suffix, please **’

stop

else

call getarg(1, argi)

call getarg(2, argo)

call getarg(3, argsfx)

end if

else

argi = ’newpencyl.in’

argo = ’newpencyl.out’

argsfx = ’dft’
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end if

inquire(FILE = argi, EXIST = exists)

if(.not. exists) then

write(*,’(2A/)’) ’ >> Cannot find file ’, argi

stop

end if

len_sfx = len_trim(argsfx)

C len_sfx = lnblnk(argsfx)

open(5,FILE=argi)

open(6,FILE=argo)

write(6,1100)

1100 format(//3X,43(’*’),/3X,’** PROGRAM PENCYL. Input data file. ’,

1 ’ **’,/3X,43(’*’))

C -- Title.

read(5,’(A6,1X,A128)’) KWORD,BUFFER

write(6,’(/3X,A128)’) BUFFER

C -- Geometry definition and initialization of tracking routines.

call GEOINC(NMATG,5,6)

do KL=1,NLAY

do KC=1,NCYL(KL)

KB=IBOD(KL,KC)

DSMAX(KB)=min(ZG(KL+1)-ZG(KL),RG(KL,KC+1)-RG(KL,KC))/5.0D0

DSMAX(KB)=max(DSMAX(KB),1.0D-8)

end do

end do

C -- Source description.

write(6,1200)

1200 format(//3X,70(’-’),/3X,’>>>>>> Source description.’)

21 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 21

C -- primary particle type.

if(KWORD.EQ.KWKPAR) then

read(BUFFER,*) KPARP

22 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 22

else

KPARP=1

end if

if(KPARP.LT.1.OR.KPARP.GT.3) KPARP=1

if(KPARP.EQ.1) write(6,1210)

1210 format(3X,’Primary particles: electrons’)

if(KPARP.EQ.2) write(6,1211)

1211 format(3X,’Primary particles: photons’)

if(KPARP.EQ.3) write(6,1212)

1212 format(3X,’Primary particles: positrons’)

C -- Initial energy of primary particles.

ISPEC=0

if(KWORD.EQ.KWSENE) then

NSEB=1

read(BUFFER,*) E0

write(6,1220) E0

1220 format(3X,’Initial energy = ’,1P,E13.6,’ eV’)

23 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 23

else if(KWORD.EQ.KWSPEC) then

ISPEC=1
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NSEB=0

24 continue

NSEB=NSEB+1

read(BUFFER,*) ES(NSEB),PTS(NSEB)

25 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 25

if(KWORD.EQ.KWSPEC) go to 24

else

E0=1.0D6

write(6,1220) E0

end if

if(ISPEC.EQ.1) then

if(NSEB.GT.NSEBM) then

write(6,*) ’NSEBM is too small.’

stop ’NSEBM is too small.’

else if(NSEB.le.1) then

write(6,*) ’The source energy spectrum is not defined.’

stop ’The source energy spectrum is not defined.’

else

call SORT2(ES,PTS,NSEB)

write(6,1221)

1221 format(/3X,’Spectrum:’,7X,’I’,4X,’E_low(eV)’,4x,’E_high(eV)’,

1 5X,’P_sum(E)’,/16X,45(’-’))

do I=1,NSEB-1

write(6,’(16X,I4,1P,5E14.6)’) I,ES(I),ES(I+1),PTS(I)

end do

E0=ES(NSEB)

NSEB=NSEB-1

call IRND0(PTS,FS,IAS,NSEB)

end if

end if

if(E0.LT.100.0D0) then

write(6,*) ’The initial energy E0 is too small.’

stop ’The initial energy E0 is too small.’

end if

EPMAX=E0

C -- Positrons eventually give annihilation gamma-rays. The maximum

C energy of annihilation photons is .lt. 1.21*(E0+me*c**2).

if(KPARP.EQ.3) EPMAX=1.21D0*(E0+5.12D5)

KSOURC=1

C -- External (cylindrical) source body.

if(KWORD.EQ.KWSHEI) then

if(KSOURC.EQ.2) then

write(6,*) ’An extended source has already been defined.’

stop ’An extended source has already been defined.’

end if

read(BUFFER,*) STHICK

26 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 26

else

STHICK=0.0D0

end if

if(KSOURC.EQ.1) write(6,1230) STHICK

1230 format(/3X,’Active volume: height =’,1P,E13.6,’ cm’)

if(STHICK.LT.-1.0D-16) then

write(6,*) ’Negative thickness.’

stop ’Negative thickness.’

end if

C

if(KWORD.EQ.KWSRAD) then

if(KSOURC.EQ.2) then

write(6,*) ’An extended source has already been defined.’

stop ’An extended source has already been defined.’

end if



142

read(BUFFER,*) SRIN,SROUT

KSOURC=1

27 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 27

else

SRIN=0.0D0

SROUT=0.0D0

end if

if(KSOURC.EQ.1) write(6,1231) SRIN,SROUT

1231 format(21X,’inner radius =’,1P,E13.6,’ cm’,/

1 21X,’outer radius =’,E13.6,’ cm’ )

SRIN2=SRIN**2

SROI2=SROUT**2-SRIN**2

if(SROI2.LT.-1.0D-35) then

write(6,*) ’The source radii are inconsistent.’

stop ’The source radii are inconsistent.’

end if

C

if(KWORD.EQ.KWSPOS) then

if(KSOURC.EQ.2) then

write(6,*) ’An extended source has already been defined.’

stop ’An extended source has already been defined.’

end if

read(BUFFER,*) SX0,SY0,SZ0

28 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 28

else

SX0=0.0D0

SY0=0.0D0

SZ0=-1.0D15

end if

if(KSOURC.EQ.1) write(6,1232) SX0,SY0,SZ0

1232 format(3X,’Coordinates of centre: SX0 =’,1P,E13.6,

1 ’ cm’,/30X,’SY0 =’,E13.6,’ cm’,/30X,’SZ0 =’,E13.6,’ cm’)

C

if(KWORD.EQ.KWSDIR) then

read(BUFFER,*) STHETA,SPHI

29 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 29

else

STHETA=0.0D0

SPHI=0.0D0

end if

write(6,1233) STHETA,SPHI

1233 format(3X,’Beam direction angles: THETA =’,1P,E13.6,’ deg’,/

1 30X,’PHI =’,E13.6,’ deg’)

C

if(KWORD.EQ.KWSAPE) then

read(BUFFER,*) SALPHA

30 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 30

else

SALPHA=0.0D0

end if

write(6,1234) SALPHA

1234 format(3X,’Beam aperture:’,11X,’ALPHA =’,1P,E13.6,’ deg’)

call GCONE0(STHETA*DE2RA,SPHI*DE2RA,SALPHA*DE2RA)

C -- Material data and simulation parameters.

write(6,1300)

1300 format(//3X,70(’-’),/

1 3X,’>>>>>> Material data and simulation parameters.’)

if(KWORD.EQ.KWNMAT) then
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read(BUFFER,*) NMAT

31 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 31

else

write(6,*) ’You have to specify the number of materials.’

stop ’You have to specify the number of materials.’

end if

write(6,1310) NMAT

1310 format(3X,’Number of different materials = ’,I2)

if(NMAT.LT.1.OR.NMAT.GT.MAXMAT) then

write(6,*) ’Wrong number of materials.’

stop ’Wrong number of materials.’

end if

C -- Simulation parameters.

do M=1,NMAT

EABS(1,M)=0.010D0*EPMAX

EABS(2,M)=0.001D0*EPMAX

EABS(3,M)=0.010D0*EPMAX

C1(M)=0.10D0

C2(M)=0.10D0

WCC(M)=EABS(1,M)

WCR(M)=EABS(2,M)

end do

C

if(KWORD.EQ.KWSIMP) then

read(BUFFER,*) M

if(M.LT.1.OR.M.GT.NMAT) then

write(6,’(A6,1X,A65)’) KWORD,BUFFER

write(6,*) ’Incorrect material number.’

stop ’Incorrect material number.’

end if

read(BUFFER,*) M,EABS(1,M),EABS(2,M),EABS(3,M),C1(M),C2(M),

1 WCC(M),WCR(M)

32 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 32

if(KWORD.EQ.KWSIMP) then

read(BUFFER,*) M

if(M.LT.1.OR.M.GT.NMAT) then

write(6,’(A6,1X,A65)’) KWORD,BUFFER

write(6,*) ’Incorrect material number.’

stop ’Incorrect material number.’

end if

read(BUFFER,*) M,EABS(1,M),EABS(2,M),EABS(3,M),C1(M),C2(M),

1 WCC(M),WCR(M)

go to 32

end if

end if

C

do M=1,NMAT

if(M.EQ.1) LIT=’st’

if(M.EQ.2) LIT=’nd’

if(M.EQ.3) LIT=’rd’

if(M.GT.3) LIT=’th’

write(6,1320) M,LIT

1320 format(/3X,’**** ’,I2,A2,’ material’)

if(EABS(1,M).LT.1.0D2) EABS(1,M)=1.0D2

if(EABS(2,M).LT.1.0D2) EABS(2,M)=1.0D2

if(EABS(3,M).LT.1.0D2) EABS(3,M)=1.0D2

write(6,1321) EABS(1,M)

1321 format(3X,’Electron absorption energy = ’,1P,E13.6,’ eV’)

write(6,1322) EABS(2,M)

1322 format(3X,’ Photon absorption energy = ’,1P,E13.6,’ eV’)

write(6,1323) EABS(3,M)

1323 format(3X,’Positron absorption energy = ’,1P,E13.6,’ eV’)

write(6,1324) C1(M),C2(M),WCC(M),WCR(M)
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1324 format(3X,’Electron-positron simulation parameters:’,

1 /4X,’C1 =’,1P,E13.6,’, C2 =’,E13.6,/3X,’Wcc =’,E13.6,

2 ’ eV, Wcr =’,E13.6,’ eV’)

end do

C -- Initialization of PENELOPE.

if(KWORD.EQ.KWPFNA) then

read(BUFFER,’(A32)’) PFILE

write(6,1330) PFILE

1330 format(/3X,’PENELOPE’’s material definition file: ’,A18)

33 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 33

else

write(6,*) ’You have to specify a material file.’

stop ’You have to specify a material file.’

end if

C

open(15,FILE=PFILE)

open(16,FILE=’material.’//argsfx(1:len_sfx)//’.dat’)

INFO=5

call PEINIT(EPMAX,NMAT,15,16,INFO)

CLOSE(UNIT=15)

CLOSE(UNIT=16)

if(NMATG.LT.1.OR.NMATG.GT.NMAT) then

write(6,*) ’Conflicting material numbers.’

stop ’Conflicting material numbers.’

end if

C -- Inverse densities are used to score the local dose.

do M=1,NMAT

RHOI(M)=1.0D0/RHO(M)

end do

C -- Tallied distributions (selected by the user).

if(KWORD.EQ.KWDZDO.OR.KWORD.EQ.KWDRDO) then

write(6,1500)

1500 format(//3X,70(’-’),/

1 3X,’>>>>>> User distributions to be tallied.’)

end if

C -- set up the dose grid.

NZDLim = 0

NDZT = 0

if(KWORD.EQ.KWDZDO) then

341 NZDLim = NZDLim + 1

read(BUFFER,*) dzDose(NZDLim), ZLim1, ZLim2

if(ZLim1.ge.ZLim2) then

write(6,’(a)’) ’Dose grid z-bounds should be increasing.’

stop ’Dose grid z-bounds should be increasing.’

end if

if(NZDLim.gt.1.AND.ZLim1.lt.ZDLim(NZDLim)) then

write(6,’(a)’) ’The adjacent dose grid z-bounds overlapped.’

stop ’The adjacent dose grid z-bounds overlapped.’

end if

ZDLim(NZDLim) = ZLim1

ZDLim(NZDLim+1) = ZLim2

NDZ(NZDLim) = nint(

1 (ZDLim(NZDLim+1)-ZDLim(NZDLim))/dzDose(NZDLim))

NDZT = NDZT + NDZ(NZDLim)

34 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWDZDO) go to 341

if(KWORD.EQ.KWCOMM) go to 34

else

NZDLim = 1

dzDose(NZDLim) = 0.2

ZDLim(NZDLim) = ZG(1)

ZDLim(NZDLim+1) = ZG(NLay+1)
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NDZ(NZDLim) = nint(

1 (ZDLim(NZDLim+1)-ZDLim(NZDLim))/dzDose(NZDLim))

NDZT = NDZ(NZDLim)

end if

write(6,1450) dzDose(1), ZDLim(1), ZDLim(2)

do i=2, NZDLim

write(6,1451) dzDose(i), ZDLim(i), ZDLim(i+1)

end do

1450 format(3x,’dz:’,4x,f8.3,2x,’in [’,f8.3,’,’,f8.3,’]’)

1451 format( 10x,f8.3,2x,’in [’,f8.3,’,’,f8.3,’]’)

if (NDZT.GT.NDZM) then

write(6,’(a)’) ’NDZM is not big enough.’

stop ’NDZM is not big enough.’

end if

do i=1, NZDLim

if(dzDose(i).LT.0.0) then

write(6,’(a,i3,a)’) ’dzDose(’,i,’) could not be negative.’

write(6,’(a,i3,a)’) ’dzDose(’,i,’) could not be negative.’

stop

else if (ZDLim(NZDLim+1)-ZDLim(1).GT.ZG(NLay+1)-ZG(1)) then

write(6,’(a)’)

1 ’Dose grid depth is larger than the phantom thickness’

stop ’Dose grid depth is larger than the phantom thickness’

end if

end do

k = 0

do i=1, NZDLim

do j=1, NDZ(i)

k = k + 1

ZDose(k) = ZDLim(i) + dzDose(i)*(j-1)

end do

end do

ZDose(NDZT+1) = ZDLim(NZDLim+1)

NRDLim = 0

NDRT = 0

if(KWORD.EQ.KWDRDO) then

351 NRDLim = NRDLim + 1

read(BUFFER,*) drDose(NRDLim), RLim1, RLim2

if(RLim1.ge.RLim2) then

write(6,’(a)’) ’Dose grid r-bounds should be increasing.’

stop ’Dose grid r-bounds should be increasing.’

end if

if(NRDLim.gt.1.AND.RLim1.lt.RDLim(NRDLim)) then

write(6,’(a)’) ’The adjacent dose grid r-bounds overlapped.’

stop ’The adjacent dose grid r-bounds overlapped.’

end if

RDLim(NRDLim) = RLim1

RDLim(NRDLim+1) = RLim2

NDR(NRDLim) = nint(

1 (RDLim(NRDLim+1)-RDLim(NRDLim))/drDose(NRDLim))

NDRT = NDRT + NDR(NRDLim)

35 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWDRDO) go to 351

if(KWORD.EQ.KWCOMM) go to 35

else

drDose(1) = 0.2

RDLim(1) = RG(1,1)

RDLim(2) = RG(1,NCyl(1)+1)

NDR(1) = nint((RDLim(2)-RDLim(1))/drDose(1))

NDRT = 1

end if

write(6,1452) drDose(1), RDLim(1), RDLim(2)

do i=2, NRDLim

write(6,1451) drDose(i), RDLim(i), RDLim(i+1)

end do

1452 format(3x,’dr:’,4x,f8.3,2x,’in [’,f8.3,’,’,f8.3,’]’)



146

if(NDRT.LT.1) then

write(6,*) ’Wrong number of profile dose rings’

stop ’Wrong number of profile dose rings.’

else if (NDRT.GT.NDRM) then

write(6,*) ’NDRM is not big enough.’

stop ’NDRM is not big enough.’

end if

do i=1, NRDLim

if(drDose(i).lt.0.0) then

write(6,’(a,i3,a)’) ’drDose(’,i,’) could not be negative.’

write(*, ’(a,i3,a)’) ’drDose(’,i,’) could not be negative.’

stop

else if

1 (RDLim(NRDLim+1)-RDLim(1).GT.RG(1,NCyl(1)+1)-RG(1,1)) then

write(6,’(a)’)

1 ’Dose grid depth is larger than the phantom thickness’

stop ’Dose grid depth is larger than the phantom thickness’

end if

end do

k = 0

do i=1, NRDLim

do j=1, NDR(i)

k = k + 1

RDose(k) = RDLim(i) + drDose(i)*(j-1)

end do

end do

RDose(NDRT+1) = RDLim(NRDLim+1)

C -- Calculate the mass for the dose grid

kzd= 0

lzlay = 1 ! index of current layer

do i=1, NZDLim

do k=1, NDZ(i)

kzm = 1 ! kzm: # of layers current dose grid contains

kzd = kzd + 1 ! kzd: index of current ZDose element

zDose1 = ZDose(kzd) ! lower z bound of current dose voxel

zDose2 = ZDose(kzd+1) ! upper z bound of current dose voxel

zzmass = zDose1 ! temporary reference point

1454 continue

dzg = ZG(lzlay+1) - zDose2 ! distance from current dose grid’s upper bound

! to that of current layer

if(abs(dzg).lt.1d-10) then ! they coincide with each other

kzlay(kzm) = lzlay ! remember what layer is inside

dzlay(kzm) = zDose2 - zzmass ! remember how much is inside

lzlay = lzlay + 1 ! advance to next layer

if(lzlay.gt.Nlay) lzlay = Nlay ! meet the end

else if(dzg.lt.0d0) then ! haven’t crossed current dose voxel’s upper bound

kzlay(kzm) = lzlay ! remember what layer is inside

dzlay(kzm) = ZG(lzlay+1) - zzmass ! remember how much is inside

zzmass = ZG(lzlay+1) ! advance to current layer’s upper bound

lzlay = lzlay + 1 ! advance to next layer

kzm = kzm + 1 ! increase the # of layers inside

go to 1454 ! go until meet/cross current dose voxel’s upper bound

else if(dzg.gt.0d0) then ! crossed current dose voxel’s upper bound

kzlay(kzm) = lzlay ! remember what layer is inside

dzlay(kzm) = zDose2 - zzmass ! remember how much is inside

end if

do j=1, kzm ! now do it radially in current dose grid’s layer

rmass = rg(kzlay(j),1) ! temporary reference point

lrlay = findRingNum(kzlay(j),RDose(1)) ! index of current ring

ldos = 1 ! index of current dose voxel

1455 continue

drg = rg(kzlay(j),lrlay+1) - rmass ! distance from the reference point to

! current ring’s upper bound

drd = RDose(ldos+1) - rmass ! distance from the reference point to

!current dose voxel’s upper bound

if(Mater(kzlay(j),lrlay).eq.0) then
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RhoRho = 0d0

else

RhoRho = Rho(mater(kzlay(j),lrlay))

end if

if(abs(drg-drd).lt.1d-10) then ! they coincide with each other

DRMass(kzd,ldos) = DRMass(kzd,ldos) + RhoRho*PI*

1 (rg(kzlay(j),lrlay+1)**2-rmass**2)*dzlay(j)

lrlay = lrlay + 1 ! advance to next ring

ldos = ldos + 1 ! advance to next dose voxel

rmass = rg(kzlay(j),lrlay) ! advance to next reference point

else if(drg.lt.drd) then ! haven’t crossed current dose voxel’s

! upper bound

DRMass(kzd,ldos) = DRMass(kzd,ldos) + RhoRho*PI*

1 (rg(kzlay(j),lrlay+1)**2-rmass**2)*dzlay(j)

lrlay = lrlay + 1 ! advance to next ring

rmass = rg(kzlay(j),lrlay) ! advance to next reference point:

!next ring’s lower bound

else ! crossed current dose voxel’s upper bound

DRMass(kzd,ldos) = DRMass(kzd,ldos) + RhoRho*PI*

1 (RDose(ldos+1)**2-rmass**2)*dzlay(j)

ldos = ldos + 1 ! advance to next dose voxel

rmass = RDose(ldos) ! advance to next reference point: next

! dose voxel’s lower bound

end if

if(abs(rmass - RDose(NDRT+1)).gt.1d-10) then

go to 1455

end if

end do

end do ! within a z- dose grid region

end do ! i: loop over dose grid regions in z-direction

C -- Job characteristics.

write(6,1700)

1700 format(//3X,70(’-’),/

1 3X,’>>>>>> Job characteristics.’)

C

IRESUM=0

if(KWORD.EQ.KWRESU) then

read(BUFFER,’(A32)’) PFILER

write(6,1710) PFILER

1710 format(3X,’Resume simulation from previous dump file: ’,A32)

IRESUM=1

71 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 71

end if

C

IDUMP=0

if(KWORD.EQ.KWDUMP) then

read(BUFFER,’(A32)’) PFILED

write(6,1720) PFILED

1720 format(3X,’Write final counter values on the dump file: ’,A32)

IDUMP=1

72 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 72

end if

C

if(KWORD.EQ.KWFOUT) then

read(BUFFER,*) IFullOutp

75 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 75

else

IFullOutp = 0

end if

C
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if(KWORD.EQ.KWNSIM) then

read(BUFFER,*) NTOT

if(NTOT.LT.1) NTOT=2147483647

73 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 73

else

NTOT=2147483647

end if

write(6,1730) NTOT

1730 format(3X,’Number of showers to be simulated = ’,I11)

C

if(KWORD.EQ.KWNITR) then

read(BUFFER,*) NINTER

if(NINTER.LT.1) NINTER = 100000

99 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 99

else

NINTER = 100000

end if

write(6,1735) NINTER

1735 format(3X,’Number of showers to be output per interval = ’,I11)

C

if(KWORD.EQ.KWRSEE) then

read(BUFFER,*) ISEED1,ISEED2

74 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 74

else

ISEED1=12345

ISEED2=54321

end if

if(IRESUM.EQ.0) write(6,1740) ISEED1,ISEED2

1740 format(3X,’Random number generator seeds = ’,I10,’, ’,I10)

C

if(KWORD.EQ.KWTIME) then

read(BUFFER,*) ITIME

else

ITIME=100

end if

write(6,1750) ITIME

1750 format(3X,’Computation time available = ’,I12,’ sec’)

if(ITIME.LT.1) ITIME=100

C

call TIMER(TSEC)

TSECIN=TSEC

TSECA=ITIME+TSEC

write(6,1760)

1760 format(/3X,70(’-’))

C -- If ’RESUME’ is active, read previously generated counters...

NA=0

TIMEA=0.0D0

if(IRESUM.EQ.1) then

open(9,FILE=PFILER)

read (9,*,ERR=1800,END=1800) NAA,TIMEAA

NA=NAA

TIMEA=TIMEAA

read (9,*) ISEED1,ISEED2

read (9,*) NDZTt, NDRTt

if(NDZTt.ne.NDZT.or.NDRTt.ne.NDRT) then

write(6,*) ’>>Dose grid not consistent with the resume file.’

stop ’>>Dose grid not consistent with the resume file.’

end if

read(9,999) (( Dose(Kz,Kr), Kz=1,NDZT),

1 Kr=1,NDRT),

2 (( Dose2(Kz,Kr), Kz=1,NDZT),
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3 Kr=1,NDRT)

read(9,999) (( DosePr(Kz,Kr), Kz=1,NDZT),

1 Kr=1,NDRT),

2 (( DosePr2(Kz,Kr), Kz=1,NDZT),

3 Kr=1,NDRT)

close(9)

go to 1802

1800 continue

write(6,1801)

1801 format(/3X,’WARNING: Could not resume from dump file...’,/)

end if

1802 continue

C -- Initialize constants.

WGHT0=1.0D0 ! Primary particle weight.

N=NA ! Shower counter, including the dump file.

if(NTOT.LT.0) then

write(6,*) ’ WARNING: NTOT is too large. INTEGER*4 overflow.’

if(NTOT.LT.1) NTOT=2147483647

end if

if(N.GE.NTOT) go to 106

C ================================================================================

C Shower simulation starts here.

C ================================================================================

101 continue ! The simulation loop starts here.

C -- Set the initial state of the primary particle.

N=N+1

KPAR=KPARP

WGHT=WGHT0

C ---- Initial position ...

if(KSOURC.EQ.1) then

Z=SZ0+(RAND(1.0D0)-0.5D0)*STHICK

SR=SQRT(SRIN2+RAND(2.0D0)*SROI2)

PHIR=RAND(3.0D0)*TWOPI

X=SX0+SR*COS(PHIR)

Y=SY0+SR*SIN(PHIR)

end if

C ---- Initial direction ...

call GCONE(U,V,W)

C ---- initial energy ...

if(ISPEC.EQ.0) then

E=E0 ! Monoenergetic source.

NPRIM(1)=NPRIM(1)+1

else ! Continuous spectrum. E sampled by Walker’s method.

RN=RAND(4.0D0)*NSEB+1

K=INT(RN)

RNF=RN-K

if(RNF.GT.FS(K)) then

KE=IAS(K)

else

KE=K

end if

E=ES(KE)+RAND(5.0D0)*(ES(KE+1)-ES(KE))

NPRIM(KE)=NPRIM(KE)+1

end if

C -- Check if the trajectory intersects the material system.

call LOCATC

if(MAT.EQ.0) then

call STEPC(1.0D30,DSEF,NCROSS)

if(MAT.EQ.0) then

go to 105 ! The particle does not enter the system.

end if

end if
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C -- Initialization of primary particle counters.

ILB(1)=1 ! Identifies primary particles.

ILB(2)=0

ILB(3)=0

ILB(4)=0

ILB(5)=0

C ---------------------------------------------------------------------

C -- Track simulation begins here.

call CLEANS ! Cleans secondary stack.

102 continue

call START ! Starts simulation in current medium.

103 continue

call JUMP(DSMAX(IBODY),DS) ! Analogue simulation.

call STEPC(DS,DSEF,NCROSS) ! Determines step end position.

C -- Check whether the particle is outside the enclosure.

if(MAT.EQ.0) then

if(Z.GE.ZG(NLAY+1)) then

if(W.LT.0) stop ’Transmitted with negative W?’

go to 104

else if(Z.LE.ZG(1)) then

if(W.GT.0) stop ’Backscattered with positive W?’

go to 104

end if

end if

C -- If the particle has crossed an interface, restart the track in the new material.

if(NCROSS.GT.0) go to 102

C -- Simulate the interaction event

call KNOCK(DE,ICOL) ! Analogue simulation.

C -- Dose distributions

C -- Tally it if DE>0 and inside the dose grid

if(DE.gt.1e-35) then

KLAY=ILAY(IBODY)

rD = sqrt((x-XG(KLAY))**2+(y-YG(KLAY))**2)

if(RDose(1).le.rD.AND.rD.le.RDose(NDRT+1)) then

if(ZDose(1).le.z.AND.z.le.ZDose(NDZT+1)) then

Kz = Get_Idx(’z’,z) ! depth channel

Kr = Get_Idx(’r’,rD) ! radial channel

C -- total dose

if(N.ne.LDose(Kz,Kr)) then

Dose(Kz,Kr) = Dose(Kz,Kr) + DoseP(Kz,Kr)

Dose2(Kz,Kr) = Dose2(Kz,Kr) + DoseP(Kz,Kr)**2

DoseP(Kz,Kr) = DE*WGHT

LDose(Kz,Kr) = N

else

DoseP(Kz,Kr) = DoseP(Kz,Kr) + DE*WGHT

end if

if(

1 (ILB(1).eq.1) .OR.

1 (ILB(1).eq.2.and.kpar.eq.2.and.icol.eq.2) .OR.

2 (ILB(1).eq.2.and.ILB(2).eq.2.and.

2 kpar.eq.1.and.(icol.eq.1.or.icol.eq.3)) .OR.

2 (ILB(1).eq.2.and.ILB(2).eq.2.and.

2 kpar.eq.3.and.

2 (icol.eq.1.or.icol.eq.3.or.icol.eq.6)) .OR.

3 (ILB(1).eq.3.and.ILB(2).ne.2.and.ILB(3).eq.3

3 .and.kpar.eq.1.and.icol.eq.1)

4 ) then

if(N.ne.LDosePr(Kz,Kr)) then

DosePr(Kz,Kr) = DosePr(Kz,Kr) + DosePrP(Kz,Kr)

DosePr2(Kz,Kr) = DosePr2(Kz,Kr) + DosePrP(Kz,Kr)**2

DosePrP(Kz,Kr) = DE*WGHT
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LDosePr(Kz,Kr) = N

else

DosePrP(Kz,Kr) = DosePrP(Kz,Kr) + DE*WGHT

end if

end if

end if ! z

end if ! r

end if ! DE

C -- Check if the particle has been absorbed .

if(E.GT.EABS(KPAR,MAT)) go to 103

C -- The simulation of the track ends here.

C ---------------------------------------------------------------------

104 continue

C -- Any secondary left?

call SECPAR(LEFT)

if(LEFT.GT.0) then

INOUT=1

KLAY=ILAY(IBODY)

KCYL=ICYL(IBODY)

C -- Subtract E and charge from the tallied distributions to avoid double-counting.

rD = sqrt((x-XG(KLAY))**2+(y-YG(KLAY))**2)

if(RDose(1).le.rD.AND.rD.le.RDose(NDRT+1)) then

if(ZDose(1).le.z.AND.z.le.ZDose(NDZT+1)) then

Kz = Get_Idx(’z’,z) ! depth channel

Kr = Get_Idx(’r’,rD) ! radial channel

C -- total dose

if(N.NE.LDOSE(Kz,Kr)) then

Dose(Kz,Kr) = Dose(Kz,Kr) + DoseP(Kz,Kr)

Dose2(Kz,Kr) = Dose2(Kz,Kr) + DoseP(Kz,Kr)**2

DoseP(Kz,Kr) = -E*WGHT

LDose(Kz,Kr) = N

else

DoseP(Kz,Kr) = DoseP(Kz,Kr) - E*WGHT

end if

if(

1 (ILB(1).eq.2.and.ILB(2).eq.2.and.kpar.ne.2) .OR.

2 (ILB(1).eq.3.and.ILB(2).eq.3.and.ILB(3).eq.6.and.kpar.eq.2).OR.

3 (ILB(1).eq.3.and.ILB(2).ne.2.and.ILB(3).eq.3.and.kpar.eq.1)

3 ) then

if(N.ne.LDosePr(Kz,Kr)) then

DosePr(Kz,Kr) = DosePr(Kz,Kr) + DosePrP(Kz,Kr)

DosePr2(Kz,Kr) = DosePr2(Kz,Kr) + DosePrP(Kz,Kr)**2

DosePrP(Kz,Kr) = -E*WGHT

LDosePr(Kz,Kr) = N

else

DosePrP(Kz,Kr) = DosePrP(Kz,Kr) - E*WGHT

end if

end if

end if ! z

end if ! rD

go to 102

end if ! left

C -- The simulation of the shower ends here.

C -----------------------------------------------------------------

105 continue

call TIMER(TSEC)

if(N.LT.NTOT.AND.mod(N, NINTER).eq.0) then

Dt1 = Tsec-Tsecin

IHours = INT(Dt1/3600)

IMinutes = INT((Dt1-IHours*3600)/60)

Seconds = Dt1 - IHours*3600 - IMinutes*60
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write(6,9999) ’N =’, N, ’Elapsed’, Dt1, "(s)",

1 "-->", IHours, ":", IMinutes, ":", Seconds

write(*,9999) ’N =’, N, ’Elapsed’, Dt1, "(s)",

1 "-->", IHours, ":", IMinutes, ":", Seconds

9999 format(1x,A3,1x,I10,3x,A7,2x,f15.2,2x,A3,3X,A3,I6,A1,I6,A1,F6.2)

C -- dump intermediate results in case that the job could not be finished as scheduled

TSIM=MAX(1.0D0,Dt1)+TIMEA

if(IDUMP.EQ.1) then

open(9,FILE=PFILED)

write(9,*) N,TSIM

write(9,*) ISEED1,ISEED2

write(9,*) NDZT, NDRT

write(9,999) (( (Dose(Kz,Kr)+DoseP(Kz,Kr)),

1 Kz=1,NDZT),Kr=1,NDRT),

2 (( (Dose2(Kz,Kr)+DoseP(Kz,Kr)**2),

3 Kz=1,NDZT),Kr=1,NDRT)

write(9,999) (( (DosePr(Kz,Kr)+DosePrP(Kz,Kr)),

1 Kz=1,NDZT),Kr=1,NDRT),

2 (( (DosePr2(Kz,Kr)+DosePrP(Kz,Kr)**2),

3 Kz=1,NDZT),Kr=1,NDRT)

close(9)

end if

end if

999 format(g25.16)

C -- end of intermediate dump

C ---------------------------

if(TSEC.LT.TSECA.AND.N.LT.NTOT) go to 101

C ================================================================================

C End the simulation after the alloted time or after completing NTOT showers.

C ================================================================================

C -- Transfer contents of partial counters of the last one shower to global counters.

do Kz=1,NDZT

do Kr=1,NDRT

Dose(Kz,Kr) = Dose(Kz,Kr) + DoseP(Kz,Kr)

Dose2(Kz,Kr) = Dose2(Kz,Kr) + DoseP(Kz,Kr)**2

DosePr(Kz,Kr) = DosePr(Kz,Kr) + DosePrP(Kz,Kr)

DosePr2(Kz,Kr) = DosePr2(Kz,Kr) + DosePrP(Kz,Kr)**2

end do

end do

C

TSIM=MAX(1.0D0,TSEC-TSECIN)+TIMEA

C -- If ’DUMPTO’ is active, write counters to a dump file.

if(IDUMP.EQ.1) then

open(9,FILE=PFILED)

write(9,*) N,TSIM

write(9,*) ISEED1,ISEED2

write(9,*) NDZT, NDRT

write(9,999) (( Dose(Kz,Kr), Kz=1,NDZT),

1 Kr=1,NDRT),

2 (( Dose2(Kz,Kr), Kz=1,NDZT),

3 Kr=1,NDRT)

write(9,999) (( DosePr(Kz,Kr), Kz=1,NDZT),

1 Kr=1,NDRT),

2 (( DosePr2(Kz,Kr), Kz=1,NDZT),

3 Kr=1,NDRT)

close(9)

end if

C -- Print simulation results.

106 continue

TOTN=N

write(6,3000)

3000 format(///3X,34(’*’)/3X,’** Program NewPENCYL. Results. **’,

1 /3X,34(’*’))
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IFNT = N - NA

TSIM=MAX(1.0D0,TSEC-TSECIN)

write(6,3001) TSIM

3001 format(/3X,’Simulation time ......................... ’,

1 1P,E13.6,’ sec’)

TAVS=IFNT/TSIM

write(6,3002) TAVS

3002 format(3X,’Simulation speed ........................ ’,

1 1P,E13.6,’ showers/sec’)

write(6,3003) IFNT

3003 format(//3X,

1 ’Simulated primary particles this time ............. ’,1P,I13)

write(6,3004) N

3004 format(//3X,

1 ’Total simulated primary particles ................. ’,1P,I13)

write(6,3099) ISEED1,ISEED2

3099 format(/3X,’Random seeds = ’,I10,’ , ’,I10)

write(6,’(//3X,’’*** END ***’’)’)

close(6)

C -- Print tallied distributions.

if(IFullOutp.gt.0) then ! output control

open(9,FILE=’Dose.’//argsfx(1:len_sfx)//’.dat’)

DF=1.0D0/TOTN

C

write(9,’(A,//)’) ’Dose.’//argsfx(1:len_sfx)//’.dat’

write(9,’(A,I8)’) ’Num_Dose_Grid_Z=’, NDZT

write(9,’(A,I8)’) ’Num_Dose_Grid_R=’, NDRT

write(9,’(/,A)’) ’ZDose(...)’

write(9,’(1000f8.3)’) (ZDose(i), i=1,NDZT+1)

write(9,’(/,A)’) ’RDose(...)’

write(9,’(1000f8.3)’) (RDose(i), i=1,NDRT+1)

C

write(9,’(//,1x,A)’) ’Dose (MeV/g)’

call Write_zr_header(9)

do Kz=1, NDZT

xx = (ZDose(kz) + ZDose(kz+1))/2

do Kr=1,NDRT

DAV(Kr) = Dose(Kz,Kr)*DF/1d6/max(1.0d-35,DRMass(Kz,Kr))

end do

write(9,’(f8.3,1000g18.8)’) xx,(DAV(i),i=1,NDRT)

end do

C

write(9,’(//,1x,A)’) ’RelErr’

call Write_zr_header(9)

do Kz=1, NDZT

xx = (ZDose(kz) + ZDose(kz+1))/2

do Kr=1,NDRT

DErr(Kr) = sqrt(abs(Dose2(Kz,Kr)-Dose(Kz,Kr)**2*DF))

DAV(Kr) = abs(Dose(Kz,Kr))

DRel(Kr) = DErr(Kr)/max(1.0d-35,DAv(Kr))

end do

write(9,’(f8.3,1000f18.8)’) xx,(DRel(i),i=1,NDRT)

end do

C

write(9,’(//, 1x,A)’) ’Err of Dose (MeV/g)’

call Write_zr_header(9)

do Kz=1, NDZT

xx = (ZDose(kz) + ZDose(kz+1))/2

do Kr=1,NDRT

DErr(Kr) = sqrt(abs(Dose2(Kz,Kr)-Dose(Kz,Kr)**2*DF))

DErr(Kr) = DErr(Kr)*DF/1d6/max(1.0d-35,DRMass(Kz,Kr))

end do

write(9,’(f8.3,1000g18.8)’) xx,(DErr(i),i=1,NDRT)
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end do

C

write(9,’(//, 1x,A)’) ’mass (g) ’

call Write_zr_header(9)

do Kz=1, NDZT

xx = (ZDose(kz) + ZDose(kz+1))/2

write(9,’(f8.3,1000g18.8)’) xx,(DRMass(Kz,Kr), Kr=1,NDRT)

end do

close(9)

end if ! full output control

stop

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C End of main program C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

function findRingNum(kLay,r)

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)

PARAMETER (NLAM=2003,NCYM=1023,NBDM=NLAM*NCYM)

COMMON/CYLGEO/XG(NLAM),YG(NLAM),ZG(NLAM),RG(NLAM,NCYM),

1 RG2(NLAM,NCYM),RMAX,RMAX2,IBOD(NLAM,NCYM),MATER(NLAM,NCYM),

2 ILAY(NBDM),ICYL(NBDM),NLAY,NCYL(NLAM),NBOD

do i=1, NCyl(kLay)

if((RG(kLay,i).le.r).AND.(r.lt.RG(kLay,i+1))) then

findRingNum = i

return

end if

end do

end

C*************************************************

C function for finding the index of ZDose/RDose,

C given z/r.

C input:

C value --> value;

C c --> ’z’ or ’r’

C*************************************************

function Get_Idx(c, value)

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)

character*1 c

parameter (NDZM=200, NDRM=150)

common/dosegrid/

1 ZDose(NDZM+1), ZDLim(NDZM+1), dzDose(NDZM),

2 RDose(NDRM+1), RDLim(NDRM+1), drDose(NDRM),

3 NDZ(NDZM), NDR(NDRM), NDZT, NDRT

!!!

if(c.eq.’z’) then

n1 = 1

n2 = NDZT

do while (n1.ne.n2)

nm = (n2+n1)/2

if(value.le.ZDose(nm+1)) then

n2 = nm

else

n1 = nm + 1

end if

end do
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else if(c.eq.’r’) then

n1 = 1

n2 = NDRT

do while (n1.ne.n2)

nm = (n2+n1)/2

if(value.le.RDose(nm+1)) then

n2 = nm

else

n1 = nm + 1

end if

end do

end if

Get_Idx = n1

end

C*************************************************

C Subroutine for writing the common header

C given file unit id.

C input:

C fid --> file id;

C*************************************************

subroutine Write_zr_header(fid)

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)

integer fid

parameter (NDZM=200, NDRM=150)

common/dosegrid/

1 ZDose(NDZM+1), ZDLim(NDZM+1), dzDose(NDZM),

2 RDose(NDRM+1), RDLim(NDRM+1), drDose(NDRM),

3 NDZ(NDZM), NDR(NDRM), NDZT, NDRT

if(RDose(1).lt.1d-35) then

write(fid,’(3x,a5,1000g18.5)’)

1 ’z--r’, 0, ((RDose(i)+RDose(i+1))/2, i=2,NDRT)

else

write(fid,’(3x,a5,1000g18.5)’)

1 ’z--r’, ((RDose(i)+RDose(i+1))/2, i=1,NDRT)

end if

end

A.3 Fortran 90 codes to generate the 2 1
2
-D random lung model in Chap-

ter IV

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! !

! Generate box + airway/vessel geometry for newpendoses. !

! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

program main

use GeoGen_CreatAVC

use GeoGen_Output

implicit none

integer (i8) :: Rlztn

character (i1) :: flag_yn

logical :: another_cut

real (r8) :: rv

!!!

write(*,’(/a)’) ’Cutoff level relative to the terminal bronchiole)’

write(*,’(2x,a)’) ’*note* -- negative for less orders and positive for more orders’
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write(*,’(4x,a,i3,a1,i2,a1)’) ’The range of input is: [’, -NAVGroup_TB+1,’:’,11,’]’

write(*,’(4x,a,i2)’) ’The default is: ’, 0

write(*,’(4x,a,$)’) ’Want to change? (y/n) ’

read(*,’(a)’) flag_yn

select case(flag_yn)

case (’y’,’Y’)

write(*,’(6x,a,$)’) ’delta orders --> ’

read(*,*) del_NAVG_TB

case default

del_NAVG_TB = 0

end select

NAVG = NAVGroup_TB + del_NAVG_TB

write(*,’(/a)’) ’Size of the lung (cm)’

write(*,’(2x,a)’) ’*note* -- symmetric about x- & z-axes’

write(*,’(/2x,a, 3f8.3)’) ’The default LX, LY, LZ are: ’,LXdft, LYdft, LZdft

write(*,’(4x,a,$)’) ’Want to change? (y/n) ’

read(*,’(a)’) flag_yn

select case(flag_yn)

case (’y’,’Y’)

write(*,’(6x,a,$)’) ’LX, LY, LZ --> ’

read(*,*) LX, LY, LZ

case default

LX = LXdft

LY = LYdft

LZ = LZdft

end select

write(*,’(/a)’) ’Size of the phantom (cm)’

write(*,’(2x,a)’) ’*note* -- symmetric about x- & z-axes’

write(*,’(/2x,a, 5f8.3)’) ’The default PX, PZ, PYpre, PYpos are: ’,PXdft, PZdft, PYpredft, PYposdft

write(*,’(4x,a,$)’) ’Want to change? (y/n) ’

read(*,’(a)’) flag_yn

select case(flag_yn)

case (’y’,’Y’)

write(*,’(6x,a,$)’) ’PX, PZ, PYpre, PYpos --> ’

read(*,*) PX, PZ, PYpre, PYpos

case default

PX = PXdft

PZ = PZdft

PYpre = PYpredft

PYpos = PYposdft

end select

PY = PYpre + LY + PYpos

TofL = 0

do while (TofL<1.or.TofL>4)

write(*,’(/a)’) ’Types of lung construction:’

write(*,’(2x,a)’) ’(1) Atomic mix;’

write(*,’(2x,a)’) ’(2) Arbitrary cylinders input manually + background atomic mix;’

write(*,’(2x,a)’) ’(3) Actual lung: airway/vessel bundles + background atomic mix;’

write(*,’(2x,a)’) ’(4) Arbitrary cylinders input manually + background (water straws + air);’

write(*,’(2x,a,$)’) ’--> ’

read(*,*) TofL

write(*,’(2x,a,$)’) ’realization --> ’

read(*,*) Rlztn

!

if(TofL>4) then

write(*,’(a)’) ’>>> No such choice. Choose it again.’

end if

end do

20 write(*,’(/a,$)’) ’The suffix to all output file (<64 characters) --> ’

read(*,’(a)’) suffix

len_sfx = len_trim(suffix)

! -- initialize the basic planes and bodies

call Init_bPlnBod
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! -- initialize the tumor if present

write(*,’(/a,$)’) ’Need a tumor? (y/n)’

read(*,’(a)’) flag_yn

select case(flag_yn)

case (’y’, ’Y’)

flag_tumor = .true.

30 write(*,’(2x,a)’) ’Shape of the tumor:’

write(*,’(4x,a)’) ’(1) box;’

write(*,’(4x,a)’) ’(2) sphere’

write(*,’(4x,a)’) ’--> ’

read(*,’(i)’) SofT

select case(SofT)

case (1)

write(*,’(4x,a)’) ’The tumor box size and location (cm):’

write(*,’(6x,a20,2(f5.1,a4),f5.1,a1)’) ’*note* -- within [0,’, LX, ’; 0,’, LY, ’; 0,’, LZ, ’]’

write(*,’(6x,a,$)’) ’xtmr, ytmr, ztmr, dxtmr, dytmr, dztmr --> ’

read(*,*) BTumor%x, BTumor%y, BTumor%z, BTumor%dx, BTumor%dy, BTumor%dz

case (2)

write(*,’(4x,a)’) ’The tumor sphere size and location (cm):’

write(*,’(6x,a20,2(f5.1,a4),f5.1,a1)’) ’*note* -- within [0,’, LX, ’; 0,’, LY, ’; 0,’, LZ, ’]’

write(*,’(6x,a,$)’) ’xtmr, ytmr, ztmr, rtmr (cm) --> ’

read(*,*) STumor%x, STumor%y, STumor%z, STumor%r

case default

write(*,’(a)’) ’No such choice. Choose it again.’

go to 30

end select

case default

end select

select case(TofL)

case (2)

call CreatAVCircle_Manually(NBdle)

case (3)

call CreatAVCircle(Rlztn)

!

write(*,’(/A)’) ’Cut out to (2,2,2)’

write(*,’(2x,A,f8.3,A)’) ’note: LXB = ’, LXB, ’ cm’

write(*,’(2x,A,f8.3,A)’) ’ LYB = ’, LYB, ’ cm’

write(*,’(2x,A,f8.3,A)’) ’ LX = ’, LX, ’ cm’

write(*,’(2x,A,f8.3,A)’) ’ LY = ’, LY, ’ cm’

write(*,’(2x,A,f8.3,A)’) ’ LZ = ’, LZ, ’ cm’

write(*,’(/2x,a)’) ’Origin of the cut-out region (cm)’

write(*,’(4x,a,$)’) ’Lox, Loy --> ’

read(*,*) Lox, Loy

case (4)

call CreatAVCircle_Manually(NBdle)

write(*,’(/A,$)’) ’Radius for the veins (cm) --> ’

read(*,*) rv

allocate(Straw(ceiling(LX*LY/(PI*rv**2))))

call CreatWaterStraws(Rlztn,NBdle,rv)

case default

end select

!

another_cut = .false.

40 if(another_cut) then

write(*,’(/a,$)’) ’The suffix to all output file (<64 characters) --> ’

read(*,’(a)’) suffix

len_sfx = len_trim(suffix)

call Init_bPlnBod

write(*,’(/A)’) ’Cut out to (2,2,2)’

write(*,’(2x,A,f8.3,A)’) ’note: LXB = ’, LXB, ’ cm’

write(*,’(2x,A,f8.3,A)’) ’ LYB = ’, LYB, ’ cm’

write(*,’(2x,A,f8.3,A)’) ’ LX = ’, LX, ’ cm’

write(*,’(2x,A,f8.3,A)’) ’ LY = ’, LY, ’ cm’

write(*,’(2x,A,f8.3,A)’) ’ LZ = ’, LZ, ’ cm’

write(*,’(/2x,a)’) ’Origin of the cut-out region (cm)’

write(*,’(4x,a,$)’) ’Lox, Loy --> ’
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read(*,*) Lox, Loy

end if

call Output

!

write(*,’(/A$)’) ’Another cut? (y/n)’

read(*,*) flag_yn

if(flag_yn==’y’.or.flag_yn==’Y’) then

another_cut = .true.

else

another_cut = .false.

end if

if(another_cut) goto 40

end program main

module GeoGen_surfaceGen

use GeoGen_Type

implicit none

contains

!***********************************************************************

!

! create planes perpendicular to one axis

! input:

! axis -- the axis;

! offset -- the coordinate of the intersection of the plane and the axis

! ouput:

! nPln -- the plane object;

!***********************************************************************

type (Reduced_Surface) function normalPln(axis, offset) result(nPln)

use GeoGen_Global, only: rPln

character (len=*), intent(in) :: axis

real (r8), intent(in) :: offset

!!!

nPln = rPln

select case(axis)

case (’x’, ’X’)

nPln%typ = ’reduced x-plane’

nPln%tht = 9.0d1

nPln%xshft = offset

case (’y’, ’Y’)

nPln%typ = ’reduced y-plane’

nPln%tht = 9.0d1

nPln%phi = 9.0d1

nPln%yshft = offset

case (’z’, ’Z’)

nPln%typ = ’reduced z-plane’

nPln%zshft = offset

case default

write(*,*) ’normalPln|no such axis: ’//axis

stop

end select

end function normalPln

!***********************************************************************

! create a sperical plane

! input:
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! Sph -- the sphere object;

! ouput:

! SSph -- the descrition of the surface of the input Sph

!***********************************************************************

type (Reduced_Surface) function sphereSurGen(Sph) result(SSph)

use GeoGen_Global, only: rSph

type (Sphere), intent(in) :: Sph

!!!

SSph = rSph

SSph%xscl = Sph%r

SSph%yscl = Sph%r

SSph%zscl = Sph%r

SSph%xshft = Sph%x

SSph%yshft = Sph%y

SSph%zshft = Sph%z

end function sphereSurGen

!***********************************************************************

! create a box’s 6 planes

! input:

! Bx -- the box object;

! ouput:

! SBx -- the descrition of the surface of the input Bx

!***********************************************************************

subroutine boxSurGen(Bx, SBx)

use GeoGen_Global, only: rPln

type (Box), intent(in) :: Bx

type (Reduced_Surface), intent(out) :: SBx(6)

integer (i4) :: i

!!!

SBx = rPln

do i=1, 6

end do

end subroutine boxSurGen

end module GeoGen_surfaceGen

!*************************************************

! Subroutine

! Initialize the basic defining planes and bodies

!*************************************************

subroutine Init_bPlnBod

use GeoGen_Global

use GeoGen_surfaceGen

implicit none

integer (i4) :: i, j, k

character (i1) :: flag_yn

integer (i4) :: choice

integer (i1) :: am_lung

!!!
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! used as input to view the whole setup in matlab

open(unit=io_v, file=’view.’//suffix(1:len_sfx)//’.geo’, action=’WRITE’, status=’REPLACE’)

10 format(a1,2x,g23.16)

write(io_v,’(A/)’) ’[Basic planes]’

! -- x-planes

bPln(1) = normalPln(’x’, -PX/2)

write(io_v,10) ’x’, -PX/2

bPln(2) = normalPln(’x’, -LX/2)

write(io_v,10) ’x’, -LX/2

bPln(3) = normalPln(’x’, LX/2)

write(io_v,10) ’x’, LX/2

bPln(4) = normalPln(’x’, PX/2)

write(io_v,10) ’x’, PX/2

! -- y-planes

bPln(5) = normalPln(’y’, -PYpre)

write(io_v,10) ’y’, -PYpre

bPln(6) = normalPln(’y’, ZERO)

write(io_v,10) ’y’, ZERO

bPln(7) = normalPln(’y’, LY)

write(io_v,10) ’y’, LY

bPln(8) = normalPln(’y’, LY+PYpos)

write(io_v,10) ’y’, LY+PYpos

! -- z-planes

bPln(9) = normalPln(’z’, -PZ/2)

write(io_v,10) ’z’, -PZ/2

bPln(10) = normalPln(’z’, -LZ/2)

write(io_v,10) ’z’, -LZ/2

bPln(11) = normalPln(’z’, LZ/2)

write(io_v,10) ’z’, LZ/2

bPln(12) = normalPln(’z’, PZ/2)

write(io_v,10) ’z’, PZ/2

do i=1, 12

bPln(i)%num = i

end do

! -- bodies

bBod%mat = water_max

do k=1, 3

do j=1, 3

do i=1, 3

bBod(i,j,k)%num = i + (j-1)*3 + (k-1)*9

bBod(i,j,k)%id = ’basic body’

!

allocate(bBod(i,j,k)%sur(6), bBod(i,j,k)%sid(6), bBod(i,j,k)%bod(0))

! -- limiting surfaces

bBod(i,j,k)%sur(1) = i

bBod(i,j,k)%sur(2) = i + 1

bBod(i,j,k)%sur(3) = j + 4

bBod(i,j,k)%sur(4) = j + 4 + 1

bBod(i,j,k)%sur(5) = k + 8

bBod(i,j,k)%sur(6) = k + 8 + 1

! -- side pointers of limiting surfaces

bBod(i,j,k)%sid(1) = 1

bBod(i,j,k)%sid(2) = -1

bBod(i,j,k)%sid(3) = 1

bBod(i,j,k)%sid(4) = -1

bBod(i,j,k)%sid(5) = 1

bBod(i,j,k)%sid(6) = -1

end do

end do

end do
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! -- adjusting matter in bodies

write(*,’(/a,$)’) ’Surounding material to be atomic mix lung? (y/n) ’

read(*,*) flag_yn

select case(flag_yn)

case (’y’, ’Y’)

do k=1, 3

do i=1, 3

bBod(i,2,k)%mat = aml_max

end do

end do

case default

end select

choice = 0

do while (choice<1.or.choice>2)

write(*,’(/A)’) ’Density of lung parenchyma? (g/cm^3)’

write(*,’(2x,A)’) ’(1) 0.26;’

write(*,’(2x,A)’) ’(2) 0.201388;’

write(*,’(2x,a,$)’) ’--> ’

read(*,*) choice

select case(choice)

case (1)

select case (TofL)

case(1,2)

am_lung = aml_max

case (3)

am_lung = aml

case (4)

am_lung = air

Rho4 = Rho(aml)

end select

case (2)

select case (TofL)

case(1,2)

am_lung = amlp_max

case (3)

am_lung = amlp

case (4)

am_lung = air

Rho4 = Rho(amlp)

end select

case default

write(*,*) ’>>> No such choice. Choose it again’

end select

end do

bBod(2,2,2)%mat = am_lung ! lung parenchyma

end subroutine Init_bPlnBod

module GeoGen_CreatAVC

use GeoGen_Global

implicit none

!!!

contains

!*********************************************************************

! -- create airway/vessel bundles in the lung region (circles) manually

!*********************************************************************

subroutine CreatAVCircle_Manually(NBB)
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integer (i4), intent(out) :: NBB

integer (i4) :: i, j

real (r8) :: theta

!!!

write(*,’(/a,$)’) ’How many bundles? --> ’

read(*,*) NBB

allocate(Away(NBB), Vein(NBB))

do i=1, NBB

write(*,’(4x,a,$)’) ’xi, yi, ri, ro --> ’

read(*,*) Away(i)%ci%x, Away(i)%ci%y, Away(i)%ci%r, Away(i)%co%r

Away(i)%co%x = Away(i)%ci%x

Away(i)%co%y = Away(i)%ci%y

!

write(*,’(4x,a,$)’) ’theta(degree, relative to +x), ra --> ’

read(*,*) theta, Away(i)%ca%r

theta = 2*PI*theta/360.0

Away(i)%ca%x = Away(i)%ci%x + (Away(i)%co%r+Away(i)%ca%r)*cos(theta)

Away(i)%ca%y = Away(i)%ci%y + (Away(i)%co%r+Away(i)%ca%r)*sin(theta)

!

write(*,’(4x,a,$)’) ’xv, yv, rv --> ’

read(*,*) Vein(i)%x, Vein(i)%y, Vein(i)%r

end do

end subroutine CreatAVCircle_Manually

!*********************************************************************

! -- fill the lung region with just veins (water pipes)

!*********************************************************************

subroutine CreatWaterStraws(Rlztn,NBB,rv)

integer (i8), intent(in) :: Rlztn

integer (i4), intent(in) :: NBB

real (r8), intent(in) :: rv

integer (i4) :: i, ib, iv

real (r8) :: Srest, Mrest, Mtmp, xv, yv, ds, sr

!!!

Srest = ZERO

do i=1, NBB

Srest = Srest + PI*( (Away(i)%co%r)**2 + (Away(i)%ca%r)**2 + (Vein(i)%r)**2 )

end do

Srest = LX*LY - Srest ! the lung area less the bundles’

Mrest = Rho4*Srest

Mtmp = Rho(bBod(2,2,2)%mat)*Srest

iv = 0

do while(Mtmp<Mrest)

ck: do

xv = rang()*LX

yv = rang()*LY

! should be inside the lung

if( xv-rv>=ZERO.and.xv+rv<=LX.and.&

yv-rv>=ZERO.and.yv+rv<=LY ) then

! -- check the bundles/veins

do ib=1, NBB

! distance between (xv,yv) and the airway origin

ds = sqrt((xv-Away(ib)%co%x)**2 + (yv-Away(ib)%co%y)**2)

! sum of rv and the airway radius

sr = rv + Away(ib)%co%r

if(ds<sr) cycle ck

! distance between (xv,yv) and the artery origin
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ds = sqrt((xv-Away(ib)%ca%x)**2 + (yv-Away(ib)%ca%y)**2)

! sum of rv and the artery radius

sr = rv + Away(ib)%ca%r

if(ds<sr) cycle ck

! distance between (xv,yv) and the vein origin

ds = sqrt((xv-Vein(ib)%x)**2 + (yv-Vein(ib)%y)**2)

! sum of rv and the vein radius

sr = rv + Vein(ib)%r

if(ds<sr) cycle ck

end do

! -- check the previous straws

if(iv>0) then

do i=1, iv

! distance between (xv,yv) and the vein origin

ds = sqrt((xv-Straw(i)%x)**2 + (yv-Straw(i)%y)**2)

! sum of rv and the vein radius

sr = rv + Straw(i)%r

if(ds<sr) cycle ck

end do

end if

iv = iv + 1

Straw(iv)%x = xv

Straw(iv)%y = yv

Straw(iv)%r = rv

Mtmp = Mtmp + (Rho(water)-Rho(bBod(2,2,2)%mat))*PI*(Straw(iv)%r)**2

exit ck

end if

end do ck

end do

NStraw = iv

write(*,’(/A,g16.7,A,g16.7)’) &

’The ratio of the parenchyma density of this realization to the prescribed:’,&

Rho4,’g/cm^3 is --> ’, Mtmp/Mrest

end subroutine CreatWaterStraws

!*********************************************************************

! -- create all airway/vessel bundles in the lung region (circles)

!*********************************************************************

subroutine CreatAVCircle(Rlztn)

integer (i8), intent(in) :: Rlztn

integer :: i, j

!!!

! -- do the 3D to 2D mapping for all orders down to respiratory ducts

call Determine_NBundle_Num

! -- Get the bundle numbers according to input

! -- NB is the largest number of bundles down to the smallest order

NB = Get_nbd(NAVG,NBundle(NAVG))

! -- NB_TB is always the bundle number at the terminal brochiole order

NB_TB = Get_nbd(NAVGroup_TB,NBundle(NAVGroup_TB))

write(*,*) ’NB = ’, NB, ’ NB_TB = ’, NB_TB

if(NAVG>=NAVGroup_TB) then

allocate(Away(NB_TB), Vein(NB_TB), AAci(NB-NB_TB))

else

allocate(Away(NB), Vein(NB), AAci(0))

end if

do i=1, min(NAVG,NAVGroup_TB)

do j=1, NBundle(i)

call CreatAVC(i,j)

end do
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end do

do i=NAVGroup_TB+1, NAVG

do j=1, NBundle(i)

call CreatAci(i,j)

write(*,*) ’Group ’,i,’, bundle --> ’, j, ’ of ’, NBundle(i)

end do

end do

end subroutine CreatAVCircle

!*********************************************************************

!

! determine the particular # of bundles of each group

!

! m = (L*W/V_lung)*(n*l)

! where

! m = # of bundles of each group after adjustment

! V_lung = typical volume of both lungs (6000 mL)

! L*W = length*width of the 2D model

! n = # of bronchi of each group

! l = length of bronchi of each group

!

!*********************************************************************

subroutine Determine_NBundle_Num

integer (i4) :: i, imin

real (r8) :: lmin, smax, residual

character (i1) :: yesno1, yesno2

!!!

lmin = NLumen(1)*LLumen(1)

imin = 1

do i=2, NAVGroup

smax = NLumen(i)*LLumen(i)

if(smax<lmin) then

lmin = smax

imin = i

end if

end do

smax = VLung/lmin

10 write(*,’(/A,/2x,g23.16,A)’) ’The minimal area required to construct a 2D rectangle is: ’,&

smax, ’ cm^2’

LXB = sqrt(smax)

LYB = LXB

write(*,’(A,/2x,g23.16,A)’) ’The width of the default square is: ’, LXB, ’ cm’

write(*,’(A,$)’) ’Input the length (LXB) (so that the width (LYB)) manually? (y/n) ’

read(*,*) yesno1

select case(yesno1)

case (’y’, ’Y’)

write(*,’(/2x,A,$)’) ’LXB --> ’

read(*,*) LXB

LYB = smax/LXB

write(*,’(/2x,A,/2x,g23.16,a1,g23.16,a5)’) ’The buffer region is: ’, LXB, ’*’, LYB, ’ cm^2’

write(*,’(2x,A,$)’) ’Satisfied? (y/n) ’

read(*,*) yesno2

select case(yesno2)

case (’y’, ’Y’)

case default

go to 10

end select

case default

end select
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do i=1, NAVGroup

residual = 1/lmin*NLumen(i)*LLumen(i)

NBundle(i) = int(residual)

residual = residual - dble(NBundle(i))

if(rang()<residual) NBundle(i) = NBundle(i) + 1

end do

NBundle(imin) = 1

end subroutine Determine_NBundle_Num

!*************************************************

! function for getting the absolute index of the

! nc-th bundle of group ng

!*************************************************

integer (i4) function Get_nbd(ng,nc) result(nbb)

integer (i4), intent(in) :: ng, nc

integer (i4) :: ig, ic

!!!

nbb = 0

do ig=1, ng-1

nbb = nbb + NBundle(ig)

end do

nbb = nbb + nc

end function Get_nbd

!*********************************************************************

! create an airway/vessel bundle in the buffered lung region

! (i.e., generate the according (r,x0,y0) for each single circle in

! the buffered lung)

!

! ng -- this group #

! nc -- this bundle # in this group

!*********************************************************************

subroutine CreatAVC(ng, nc)

integer (i4), intent(in) :: ng, nc

integer (i4) :: i, j, nbd

real (r8) :: x, y, ri, ro, rv, rbd, rv2b

real (r8) :: xbd, ybd, x1, y1, x2, y2, uu, vv, alpha, theta

!!!

ri = DLumen(ng)/2

ro = ri*(1+PShell)

rv = ri*PVssl

rbd = ro + rv

nbd = Get_nbd(ng,nc)

bd: do

xbd = rang()*LXB

ybd = rang()*LYB

if(AVCheck(xbd,ybd,rbd,nbd,’bundle’)) then

! bundle

Away(nbd)%cbd%x = xbd

Away(nbd)%cbd%y = ybd

Away(nbd)%cbd%r = rbd

!

alpha = 2*PI*rang() ! angle between vector (r1-r0) and x-axis
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! artery

uu = dcos(alpha)

vv = dsin(alpha)

x1 = xbd + ro*uu

y1 = ybd + ro*vv

!

Away(nbd)%ca%x = x1

Away(nbd)%ca%y = y1

Away(nbd)%ca%r = rv

! airway

uu = -dcos(alpha)

vv = -dsin(alpha)

x = xbd + rv*uu

y = ybd + rv*vv

!

Away(nbd)%ci%x = x

Away(nbd)%ci%y = y

Away(nbd)%co%x = Away(nbd)%ci%x

Away(nbd)%co%y = Away(nbd)%ci%y

Away(nbd)%ci%r = ri

Away(nbd)%co%r = ro

!

if(ng>CVn2Bdl) then

exit bd

else

rv2b = Away(nbd)%cbd%r*(1 + PVn2Bdl) + rv

alpha = 2*PI*rang()

uu = dcos(alpha)

vv = dsin(alpha)

x2 = Away(nbd)%cbd%x + rv2b*uu

y2 = Away(nbd)%cbd%y + rv2b*vv

if(AVCheck(x2,y2,rv,nbd,’vein’)) then

! vein

Vein(nbd)%x = x2

Vein(nbd)%y = y2

Vein(nbd)%r = rv

!

return

end if

end if

end if

end do bd

vn: do

x2 = rang()*LXB

y2 = rang()*LYB

if(AVCheck(x2,y2,rv,nbd,’vein’)) then

! vein

Vein(nbd)%x = x2

Vein(nbd)%y = y2

Vein(nbd)%r = rv

!

exit vn

end if

end do vn

end subroutine CreatAVC

!*********************************************************************

! create a pure airway in the buffered lung region for the acinus part

! (i.e., generate the according (r,x0,y0) for each single circle in

! the buffered lung)

!

! ng -- this group #

! nc -- this bundle # in this group

!*********************************************************************

subroutine CreatAci(ng, nc)
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integer (i4), intent(in) :: ng, nc

integer (i4) :: i, j, nbd

real (r8) :: x, y, rv

real (r8) :: x2, y2

!!!

rv = DLumen(ng)/2

nbd = Get_nbd(ng,nc) - NB_TB

ac: do

x2 = rang()*LXB

y2 = rang()*LYB

if(AVCheck(x2,y2,rv,nbd,’acinus’)) then

! vein

AAci(nbd)%x = x2

AAci(nbd)%y = y2

AAci(nbd)%r = rv

!

exit ac

end if

end do ac

end subroutine CreatAci

!********************************************************************

! function for checking the validity of a circle

!*********************************************************************

logical function AVCheck(x,y,r,nbd,cha) result(flag)

real(8), intent(in) :: x, y, r

integer, intent(in) :: nbd

character (len=*), intent(in) :: cha

integer :: ib

real (8) :: ds, sr

!!!

flag = .false.

if( x-r>=ZERO.and.x+r<=LXB.and.&

y-r>=ZERO.and.y+r<=LYB ) then

if(cha==’acinus’) then

do ib=1, NB_TB

! distance between (x,y) and the airway origin

ds = sqrt((x-Away(ib)%co%x)**2 + (y-Away(ib)%co%y)**2)

! sum of r and the airway radius

sr = r + Away(ib)%co%r

if(ds<sr) return

! distance between (x,y) and the artery origin

ds = sqrt((x-Away(ib)%ca%x)**2 + (y-Away(ib)%ca%y)**2)

! sum of r and the artery radius

sr = r + Away(ib)%ca%r

if(ds<sr) return

! distance between (x,y) and the vein origin

ds = sqrt((x-Vein(ib)%x)**2 + (y-Vein(ib)%y)**2)

! sum of r and the vein radius

sr = r + Vein(ib)%r

if(ds<sr) return

end do

do ib=NB_TB+1, nbd-1

! distance between (x,y) and the airway origin

ds = sqrt((x-AAci(ib)%x)**2 + (y-AAci(ib)%y)**2)
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! sum of r and the airway radius

sr = r + AAci(ib)%r

if(ds<sr) return

end do

else

! -- check the lower rank bundles/veins

do ib=1, nbd-1

! distance between (x,y) and the airway origin

ds = sqrt((x-Away(ib)%co%x)**2 + (y-Away(ib)%co%y)**2)

! sum of r and the airway radius

sr = r + Away(ib)%co%r

if(ds<sr) return

! distance between (x,y) and the artery origin

ds = sqrt((x-Away(ib)%ca%x)**2 + (y-Away(ib)%ca%y)**2)

! sum of r and the artery radius

sr = r + Away(ib)%ca%r

if(ds<sr) return

! distance between (x,y) and the vein origin

ds = sqrt((x-Vein(ib)%x)**2 + (y-Vein(ib)%y)**2)

! sum of r and the vein radius

sr = r + Vein(ib)%r

if(ds<sr) return

end do

! -- check the same bundle of the same rank, if vein

if(cha==’vein’) then

ib = nbd

! distance between (x,y) and the airway origin

ds = sqrt((x-Away(ib)%co%x)**2 + (y-Away(ib)%co%y)**2)

! sum of r and the airway radius

sr = r + Away(ib)%co%r

if(ds<sr) return

! distance between (x,y) and the artery origin

ds = sqrt((x-Away(ib)%ca%x)**2 + (y-Away(ib)%ca%y)**2)

! sum of r and the artery radius

sr = r + Away(ib)%ca%r

if(ds<sr) return

end if

end if

!

flag = .true.

end if

end function AVCheck

!********************************************************************

! function for checking the validity of a circle

!*********************************************************************

logical function XSphereCheck(Cir,Sph) result(flag)

type (Circle), intent(in) :: Cir

type (Sphere), intent(in) :: Sph

real (r8) :: RT, O1O2

!!!

flag = .false.

RT = Cir%r + Sph%r

O1O2 = sqrt((Cir%x - Sph%x)**2 + (Cir%y - Sph%y)**2)

if(O1O2<RT) flag = .true.

end function XSphereCheck

end module GeoGen_CreatAVC
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!***********************************************************************

!

! output the geometry file

!

!***********************************************************************

module GeoGen_Output

use GeoGen_CreatAVC

use GeoGen_surfaceGen

implicit none

integer (i4) :: i, j, k, ii

real (r8) :: xcut(2), ycut(2), dxct(2), dyct(2), dcnr(4)

contains

!***********************************************************************

!

! subroutine Output -- main output

!

!***********************************************************************

subroutine Output

integer (i4) :: ichange=0

integer (i4) :: nbd, sNum, bmNum, bNum, mNum, &

nci, nco, nca, ncv, ncs, &

ncim, ncom, ncam, ncvm, ncsm

integer (i4) :: ib, im, &

ici, ico, ica, icv, ics, &

icim, icom, icam, icvm, icsm

logical :: flag(6), flag_ci_in

integer (i4), allocatable :: iModule(:), iBody(:)

type (Circle), allocatable :: ci(:), co(:), ca(:), cv(:), cs(:), &

cim(:), com(:), cam(:), cvm(:), csm(:)

!!!

! used as penelope input geo file

open(unit=io_o, file=’geo.’//suffix(1:len_sfx)//’.geo’, action=’WRITE’, status=’REPLACE’)

! used as PenDosesMass input to calculate mass for dose grid

open(unit=io_m, file=’mass.’//suffix(1:len_sfx)//’.geo’, action=’WRITE’, status=’REPLACE’)

! -- begin

write(io_o,10)

! -- the basic planes

do i=1, 12

j = len_trim(bPln(i)%typ)

! -- surface #

write(io_o,20) LSUR, bPln(i)%num, bPln(i)%typ(1:j)

! -- 5 indices

write(io_o,30) LIND, (bPln(i)%idx(j), j=1,5)

! -- xscale

if(bPln(i)%xscl/=rPln%xscl) then

write(io_o,40) LXSC, bPln(i)%xscl, ichange, LOPEN

end if

! -- yscale

if(bPln(i)%yscl/=rPln%yscl) then

write(io_o,40) LYSC, bPln(i)%yscl, ichange, LOPEN

end if

! -- zscale

if(bPln(i)%zscl/=rPln%zscl) then

write(io_o,40) LZSC, bPln(i)%zscl, ichange, LOPEN

end if

! -- omega

if(bPln(i)%omg/=rPln%omg) then



170

write(io_o,40) LOME, bPln(i)%omg, ichange, LDEG

end if

! -- theta

if(bPln(i)%tht/=rPln%tht) then

write(io_o,40) LTHE, bPln(i)%tht, ichange, LDEG

end if

! -- phi

if(bPln(i)%phi/=rPln%phi) then

write(io_o,40) LPHI, bPln(i)%phi, ichange, LDEG

end if

! -- xshift

if(bPln(i)%xshft/=rPln%xshft) then

write(io_o,40) LXSH, bPln(i)%xshft, ichange, LOPEN

end if

! -- yshift

if(bPln(i)%yshft/=rPln%yshft) then

write(io_o,40) LYSH, bPln(i)%yshft, ichange, LOPEN

end if

! -- zshift

if(bPln(i)%zshft/=rPln%zshft) then

write(io_o,40) LZSH, bPln(i)%zshft, ichange, LOPEN

end if

write(io_o,10)

end do

10 format(64(’0’)) ! format label 2001 in pengeom.f

20 format(A8,’(’,I4,’) ’,A) ! format label 1001, 2002 in pengeom.f

30 format(A8,’(’,4(I2,’,’),I2,’)’) ! format label 2003 in pengeom.f

40 format(A8,’(’,1P,E22.15,’,’,I3,A8) ! format label 2004 in pengeom.f

50 format(A8,’(’,I4,’)’) ! format label 1004, 2005, 2007 in pengeom.f

60 format(A8,’(’,I4,’), SIDE POINTER=(’,I2,’)’) ! format label 1005, 2006 in pengeom.f

! -- The basic bodies

do k=1, 3

do j=1, 3

do i=1, 3

if(i==2.and.j==2.and.k==2) then

if(flag_tumor.or.TofL/=1) cycle

end if

write(io_o,20) LBOD, bBod(i,j,k)%num, bBod(i,j,k)%id

write(io_o,50) LMAT, bBod(i,j,k)%mat

do ii=1, size(bBod(i,j,k)%sur)

write(io_o,60) LSUR, bBod(i,j,k)%sur(ii), bBod(i,j,k)%sid(ii)

end do

do ii=1, size(bBod(i,j,k)%bod)

write(io_o,50) LBOD, bBod(i,j,k)%bod(ii)

end do

write(io_o,10)

end do ! i

end do ! j

end do ! k

! -- Tumor

if(flag_tumor) then

select case(SofT)

case (2,4)

STumor%x = STumor%x - LX/2

STumor%z = STumor%z - LZ/2

SurTumor = sphereSurGen(STumor)

SurTumor%num = 13 ! follow the previous 12 basic planes

BodyTumor%num = 28 ! follow the previous 27 basic bodies

!

BodyTumor%id = ’SphericalTumor’

BodyTumor%mat = water

allocate(BodyTumor%sur(1),BodyTumor%sid(1),BodyTumor%bod(0))

BodyTumor%sur(1) = SurTumor%num

BodyTumor%sid(1) = -1

write(io_o,20) LSUR, SurTumor%num, ’tumor sphere’
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write(io_o,30) LIND, (SurTumor%idx(k), k=1,5)

! -- xscale

if(SurTumor%xscl/=rSph%xscl) then

write(io_o,40) LXSC, SurTumor%xscl, ichange, LOPEN

end if

! -- yscale

if(SurTumor%yscl/=rSph%yscl) then

write(io_o,40) LYSC, SurTumor%yscl, ichange, LOPEN

end if

! -- zscale

if(SurTumor%zscl/=rSph%zscl) then

write(io_o,40) LZSC, SurTumor%zscl, ichange, LOPEN

end if

! -- xshift

if(SurTumor%xshft/=rSph%xshft) then

write(io_o,40) LXSH, SurTumor%xshft, ichange, LOPEN

end if

! -- yshift

if(SurTumor%yshft/=rSph%yshft) then

write(io_o,40) LYSH, SurTumor%yshft, ichange, LOPEN

end if

! -- zshift

if(SurTumor%zshft/=rSph%zshft) then

write(io_o,40) LZSH, SurTumor%zshft, ichange, LOPEN

end if

write(io_o,10)

!

write(io_o,20) LBOD, BodyTumor%num, BodyTumor%id

write(io_o,50) LMAT, BodyTumor%mat

do ii=1, size(BodyTumor%sur)

write(io_o,60) LSUR, BodyTumor%sur(ii), BodyTumor%sid(ii)

end do

do ii=1, size(BodyTumor%bod)

write(io_o,50) LBOD, BodyTumor%bod(ii)

end do

write(io_o,10)

case default

end select

end if

! -- various types of explicit random structure

select case(TofL)

case (1) ! -- Atomic mix, just the parenchyma

! -- lung’s parenchyma

if(flag_tumor) then

write(io_o,20) LBOD, bBod(2,2,2)%num, ’lung’’s parenchyma’

write(io_o,50) LMAT, bBod(2,2,2)%mat

write(io_o,60) LSUR, 2, +1

write(io_o,60) LSUR, 3, -1

write(io_o,60) LSUR, 6, +1

write(io_o,60) LSUR, 7, -1

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

write(io_o,60) LSUR, SurTumor%num, +1

write(io_o,10)

end if

!

write(io_m,*) ’For atomic mix, don’’t need mass.geo and use PenDosesMass directly!’

write(*,*) ’For atomic mix, don’’t need mass.geo and use PenDosesMass directly!’

case (2) ! -- Arbitrary cylinders input manually + background atomic mix

case (3) ! -- Actual lung: airway/vessel bundles + background atomic mix

xcut(1) = Lox

xcut(2) = Lox + LX

ycut(1) = Loy

ycut(2) = Loy + LY

write(io_v,’(2/A/)’) ’[Cut-out region limits in the lung]’

70 format(a2,2x,g23.16)
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write(io_v,70) ’x1’, xcut(1)

write(io_v,70) ’x2’, xcut(2)

write(io_v,70) ’y1’, ycut(1)

write(io_v,70) ’y2’, ycut(2)

sNum = 13 ! surface #

bmNum = 28 ! body/module #

bNum = 0 ! body #

mNum = 0 ! module #

nci = 0 ! for view (in the whole buffer)

nco = 0

nca = 0

ncv = 0

ncs = 0

ncim = 0 ! for mass (in the lung)

ncom = 0

ncam = 0

ncvm = 0

ncsm = 0

! -- the airway+artery+vein bundles down to terminal bronchiole

do i=1, min(NAVG, NAVGroup_TB)

do j=1, NBundle(i)

nbd = Get_nbd(i,j)

flag_ci_in = .false.

! -- lumen

call Location_2_Cutout(AWay(nbd)%ci,flag)

nci = nci +1

if(.not.flag(2)) then

flag_ci_in = .true.

ncim = ncim +1

end if

! -- wall

call Location_2_Cutout(AWay(nbd)%co,flag)

nco = nco +1

if(.not.flag(2)) then

if(flag_ci_in) then

mNum = mNum + 1

else

bNum = bNum + 1

end if

ncom = ncom +1

end if

! -- artery

call Location_2_Cutout(AWay(nbd)%ca,flag)

nca = nca +1

if(.not.flag(2)) then

bNum = bNum + 1

ncam = ncam +1

end if

! -- vein

call Location_2_Cutout(Vein(nbd),flag)

ncv = ncv +1

if(.not.flag(2)) then

bNum = bNum + 1

ncvm = ncvm +1

end if

end do ! j

end do ! i

! -- the airways in the acini

do i=NAVGroup_TB+1, NAVG

do j=1, NBundle(i)

nbd = Get_nbd(i,j) - NB_TB

! -- acinus airway lumen

call Location_2_Cutout(AAci(nbd),flag)

ncs = ncs +1

if(.not.flag(2)) then

bNum = bNum + 1



173

ncsm = ncsm +1

end if

end do

end do

if(bNum>0) allocate(iBody(bNum))

if(mNum>0) allocate(iModule(mNum))

!

if(nci>0) allocate(ci(nci))

if(nco>0) allocate(co(nco))

if(nca>0) allocate(ca(nca))

if(ncv>0) allocate(cv(ncv))

if(ncs>0) allocate(cs(ncs))

!

if(ncim>0) allocate(cim(ncim))

if(ncom>0) allocate(com(ncom))

if(ncam>0) allocate(cam(ncam))

if(ncvm>0) allocate(cvm(ncvm))

if(ncsm>0) allocate(csm(ncsm))

! -- now do it again for output based on the above calculation

ib = 0 ! body # used to define the parenchyma module so the airway lumen not counted

im = 0 ! module # (the airway) used to define the parenchyma module

nci = 0

nco = 0

nca = 0

ncv = 0

ncs = 0

ncim = 0

ncom = 0

ncam = 0

ncvm = 0

ncsm = 0

! -- the airway+artery+vein bundles down to terminal bronchiole

do i=1, min(NAVG, NAVGroup_TB)

do j=1, NBundle(i)

nbd = Get_nbd(i,j)

flag_ci_in = .false.

! -- lumen

call Location_2_Cutout(AWay(nbd)%ci,flag)

nci = nci + 1

ci(nci)%x = AWay(nbd)%ci%x-(xcut(1)+xcut(2))/2

ci(nci)%y = AWay(nbd)%ci%y- ycut(1)

ci(nci)%r = AWay(nbd)%ci%r

if(.not.flag(2)) then

flag_ci_in = .true.

! -- airway inner cylinder

sNum = sNum + 1

write(io_o,20) LSUR, sNum, ’Airway inner cylinder x^2 + y^2 = ri^2’

write(io_o,30) LIND, (rCyl%idx(k), k=1,5)

write(io_o,40) LXSC, AWay(nbd)%ci%r, ichange, LOPEN

write(io_o,40) LYSC, AWay(nbd)%ci%r, ichange, LOPEN

write(io_o,40) LXSH, AWay(nbd)%ci%x-(xcut(1)+xcut(2))/2, ichange, LOPEN

write(io_o,40) LYSH, AWay(nbd)%ci%y- ycut(1), ichange, LOPEN

write(io_o,10)

ncim = ncim + 1

cim(ncim)%x = AWay(nbd)%ci%x-(xcut(1)+xcut(2))/2

cim(ncim)%y = AWay(nbd)%ci%y- ycut(1)

cim(ncim)%r = AWay(nbd)%ci%r

!

bmNum = bmNum + 1

write(io_o,20) LBOD, bmNum, ’airway lumen’

write(io_o,50) LMAT, air

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

write(io_o,60) LSUR, sNum, -1

if(flag_tumor.and.XSphereCheck(cim(ncim),STumor)) then
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write(io_o,60) LSUR, SurTumor%num, +1

end if

if(flag(3)) write(io_o,60) LSUR, 2, +1

if(flag(4)) write(io_o,60) LSUR, 3, -1

if(flag(5)) write(io_o,60) LSUR, 6, +1

if(flag(6)) write(io_o,60) LSUR, 7, -1

write(io_o,10)

end if ! flag(2)

! -- wall

call Location_2_Cutout(AWay(nbd)%co,flag)

nco = nco + 1

co(nco)%x = AWay(nbd)%co%x-(xcut(1)+xcut(2))/2

co(nco)%y = AWay(nbd)%co%y- ycut(1)

co(nco)%r = AWay(nbd)%co%r

if(.not.flag(2)) then

! -- airway outer cylinder= ro^2

sNum = sNum + 1

write(io_o,20) LSUR, sNum, ’Airway outer cylinder x^2 + y^2 = ro^2’

write(io_o,30) LIND, (rCyl%idx(k), k=1,5)

write(io_o,40) LXSC, AWay(nbd)%co%r, ichange, LOPEN

write(io_o,40) LYSC, AWay(nbd)%co%r, ichange, LOPEN

write(io_o,40) LXSH, AWay(nbd)%co%x-(xcut(1)+xcut(2))/2, ichange, LOPEN

write(io_o,40) LYSH, AWay(nbd)%co%y- ycut(1), ichange, LOPEN

write(io_o,10)

ncom = ncom + 1

com(ncom)%x = AWay(nbd)%co%x-(xcut(1)+xcut(2))/2

com(ncom)%y = AWay(nbd)%co%y- ycut(1)

com(ncom)%r = AWay(nbd)%co%r

!

bmNum = bmNum + 1

if(flag_ci_in) then

write(io_o,20) LMOD, bmNum, ’airway wall’

im = im + 1

iModule(im) = bmNum

else

write(io_o,20) LBOD, bmNum, ’airway wall’

ib = ib + 1

iBody(ib) = bmNum

end if

write(io_o,20) LMAT, water

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

write(io_o,60) LSUR, sNum, -1

if(flag_tumor.and.XSphereCheck(com(ncom),STumor)) then

write(io_o,60) LSUR, SurTumor%num, +1

end if

if(flag(3)) write(io_o,60) LSUR, 2, +1

if(flag(4)) write(io_o,60) LSUR, 3, -1

if(flag(5)) write(io_o,60) LSUR, 6, +1

if(flag(6)) write(io_o,60) LSUR, 7, -1

if(flag_ci_in) write(io_o,50) LBOD, bmNum-1

write(io_o,10)

end if ! flag(2)

! -- artery

call Location_2_Cutout(AWay(nbd)%ca,flag)

nca = nca + 1

ca(nca)%x = AWay(nbd)%ca%x-(xcut(1)+xcut(2))/2

ca(nca)%y = AWay(nbd)%ca%y- ycut(1)

ca(nca)%r = AWay(nbd)%ca%r

if(.not.flag(2)) then

! -- airway’s accompanying artery

sNum = sNum + 1

write(io_o,20) LSUR, sNum, ’artery cylinder x^2 + y^2 = ra^2’

write(io_o,30) LIND, (rCyl%idx(k), k=1,5)

write(io_o,40) LXSC, AWay(nbd)%ca%r, ichange, LOPEN

write(io_o,40) LYSC, AWay(nbd)%ca%r, ichange, LOPEN

write(io_o,40) LXSH, AWay(nbd)%ca%x-(xcut(1)+xcut(2))/2, ichange, LOPEN

write(io_o,40) LYSH, AWay(nbd)%ca%y- ycut(1), ichange, LOPEN
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write(io_o,10)

ncam = ncam + 1

cam(ncam)%x = AWay(nbd)%ca%x-(xcut(1)+xcut(2))/2

cam(ncam)%y = AWay(nbd)%ca%y- ycut(1)

cam(ncam)%r = AWay(nbd)%ca%r

!

bmNum = bmNum + 1

ib = ib + 1

iBody(ib) = bmNum

write(io_o,20) LBOD, bmNum, ’artery’

write(io_o,50) LMAT, water

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

write(io_o,60) LSUR, sNum, -1

if(flag_tumor.and.XSphereCheck(cam(ncam),STumor)) then

write(io_o,60) LSUR, SurTumor%num, +1

end if

if(flag(3)) write(io_o,60) LSUR, 2, +1

if(flag(4)) write(io_o,60) LSUR, 3, -1

if(flag(5)) write(io_o,60) LSUR, 6, +1

if(flag(6)) write(io_o,60) LSUR, 7, -1

write(io_o,10)

end if ! flag(2)

! -- vein

call Location_2_Cutout(Vein(nbd),flag)

ncv = ncv + 1

cv(ncv)%x = Vein(nbd)%x-(xcut(1)+xcut(2))/2

cv(ncv)%y = Vein(nbd)%y- ycut(1)

cv(ncv)%r = Vein(nbd)%r

if(.not.flag(2)) then

! -- Vein

sNum = sNum + 1

write(io_o,20) LSUR, sNum, ’vein cylinder x^2 + y^2 = rv^2’

write(io_o,30) LIND, (rCyl%idx(k), k=1,5)

write(io_o,40) LXSC, Vein(nbd)%r, ichange, LOPEN

write(io_o,40) LYSC, Vein(nbd)%r, ichange, LOPEN

write(io_o,40) LXSH, Vein(nbd)%x-(xcut(1)+xcut(2))/2, ichange, LOPEN

write(io_o,40) LYSH, Vein(nbd)%y- ycut(1), ichange, LOPEN

write(io_o,10)

ncvm = ncvm + 1

cvm(ncvm)%x = Vein(nbd)%x-(xcut(1)+xcut(2))/2

cvm(ncvm)%y = Vein(nbd)%y- ycut(1)

cvm(ncvm)%r = Vein(nbd)%r

!

bmNum = bmNum + 1

ib = ib + 1

iBody(ib) = bmNum

write(io_o,20) LBOD, bmNum, ’vein’

write(io_o,50) LMAT, water

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

write(io_o,60) LSUR, sNum, -1

if(flag_tumor.and.XSphereCheck(cvm(ncvm),STumor)) then

write(io_o,60) LSUR, SurTumor%num, +1

end if

if(flag(3)) write(io_o,60) LSUR, 2, +1

if(flag(4)) write(io_o,60) LSUR, 3, -1

if(flag(5)) write(io_o,60) LSUR, 6, +1

if(flag(6)) write(io_o,60) LSUR, 7, -1

write(io_o,10)

end if

end do ! NBundle(i)

end do ! NAVGroup

! -- the airways in the acini

do i=NAVGroup_TB+1, NAVG

do j=1, NBundle(i)

nbd = Get_nbd(i,j) - NB_TB
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! -- acinus airway lumen

call Location_2_Cutout(AAci(nbd),flag)

ncs = ncs + 1

cs(ncs)%x = AAci(nbd)%x-(xcut(1)+xcut(2))/2

cs(ncs)%y = AAci(nbd)%y- ycut(1)

cs(ncs)%r = AAci(nbd)%r

if(.not.flag(2)) then

! -- AAci

sNum = sNum + 1

write(io_o,20) LSUR, sNum, ’AALumen cylinder x^2 + y^2 = rv^2’

write(io_o,30) LIND, (rCyl%idx(k), k=1,5)

write(io_o,40) LXSC, AAci(nbd)%r, ichange, LOPEN

write(io_o,40) LYSC, AAci(nbd)%r, ichange, LOPEN

write(io_o,40) LXSH, AAci(nbd)%x-(xcut(1)+xcut(2))/2, ichange, LOPEN

write(io_o,40) LYSH, AAci(nbd)%y- ycut(1), ichange, LOPEN

write(io_o,10)

ncsm = ncsm + 1

csm(ncsm)%x = AAci(nbd)%x-(xcut(1)+xcut(2))/2

csm(ncsm)%y = AAci(nbd)%y- ycut(1)

csm(ncsm)%r = AAci(nbd)%r

!

bmNum = bmNum + 1

ib = ib + 1

iBody(ib) = bmNum

write(io_o,20) LBOD, bmNum, ’AALumen’

write(io_o,50) LMAT, air

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

write(io_o,60) LSUR, sNum, -1

if(flag_tumor.and.XSphereCheck(csm(ncsm),STumor)) then

write(io_o,60) LSUR, SurTumor%num, +1

end if

if(flag(3)) write(io_o,60) LSUR, 2, +1

if(flag(4)) write(io_o,60) LSUR, 3, -1

if(flag(5)) write(io_o,60) LSUR, 6, +1

if(flag(6)) write(io_o,60) LSUR, 7, -1

write(io_o,10)

end if

end do ! NBundle(i)

end do ! NAVGroup

case (4)

write(io_v,’(2/A/)’) ’[Cut-out region limits in the lung]’

write(io_v,70) ’x1’, 0

write(io_v,70) ’x2’, LX

write(io_v,70) ’y1’, 0

write(io_v,70) ’y2’, LY

sNum = 13 ! surface #

bmNum = 28 ! body/module #

bNum = 0 ! body #

mNum = 0 ! module #

im = 0

ib = 0

nci = 0 ! for view (in the whole buffer)

nco = 0

nca = 0

ncv = 0

ncim = 0 ! for view (in the whole buffer)

ncom = 0

ncam = 0

ncvm = 0

allocate(ci(NBdle), co(NBdle), ca(NBdle), cv(NBdle+NStraw), &

cim(NBdle),com(NBdle),cam(NBdle),cvm(NBdle+NStraw), &

iBody(3*NBdle+NStraw),iModule(NBdle))

do i=1, NBdle

! -- lumen
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nci = nci + 1

ci(nci)%x = AWay(i)%ci%x-LX/2

ci(nci)%y = AWay(i)%ci%y

ci(nci)%r = AWay(i)%ci%r

! -- airway inner cylinder

sNum = sNum + 1

write(io_o,20) LSUR, sNum, ’Airway inner cylinder x^2 + y^2 = ri^2’

write(io_o,30) LIND, (rCyl%idx(k), k=1,5)

write(io_o,40) LXSC, ci(nci)%r, ichange, LOPEN

write(io_o,40) LYSC, ci(nci)%r, ichange, LOPEN

write(io_o,40) LXSH, ci(nci)%x, ichange, LOPEN

write(io_o,40) LYSH, ci(nci)%y, ichange, LOPEN

write(io_o,10)

ncim = ncim + 1

cim(ncim) = ci(nci)

!

bmNum = bmNum + 1

write(io_o,20) LBOD, bmNum, ’airway lumen’

write(io_o,50) LMAT, air

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

write(io_o,60) LSUR, sNum, -1

if(flag_tumor.and.XSphereCheck(cim(ncim),STumor)) then

write(io_o,60) LSUR, SurTumor%num, +1

end if

write(io_o,10)

! -- wall

nco = nco + 1

co(nco)%x = AWay(i)%co%x-LX/2

co(nco)%y = AWay(i)%co%y

co(nco)%r = AWay(i)%co%r

! -- airway outer cylinder= ro^2

sNum = sNum + 1

write(io_o,20) LSUR, sNum, ’Airway outer cylinder x^2 + y^2 = ro^2’

write(io_o,30) LIND, (rCyl%idx(k), k=1,5)

write(io_o,40) LXSC, co(nco)%r, ichange, LOPEN

write(io_o,40) LYSC, co(nco)%r, ichange, LOPEN

write(io_o,40) LXSH, co(nco)%x, ichange, LOPEN

write(io_o,40) LYSH, co(nco)%y, ichange, LOPEN

write(io_o,10)

ncom = ncom + 1

com(ncom) = co(nco)

!

bmNum = bmNum + 1

write(io_o,20) LMOD, bmNum, ’airway wall’

im = im + 1

iModule(im) = bmNum

write(io_o,20) LMAT, water

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

write(io_o,60) LSUR, sNum, -1

if(flag_tumor.and.XSphereCheck(com(ncom),STumor)) then

write(io_o,60) LSUR, SurTumor%num, +1

end if

write(io_o,50) LBOD, bmNum-1

write(io_o,10)

! -- artery

nca = nca + 1

ca(nca)%x = AWay(i)%ca%x-LX/2

ca(nca)%y = AWay(i)%ca%y

ca(nca)%r = AWay(i)%ca%r

! -- airway’s accompanying artery

sNum = sNum + 1

write(io_o,20) LSUR, sNum, ’artery cylinder x^2 + y^2 = ra^2’

write(io_o,30) LIND, (rCyl%idx(k), k=1,5)

write(io_o,40) LXSC, ca(nca)%r, ichange, LOPEN

write(io_o,40) LYSC, ca(nca)%r, ichange, LOPEN

write(io_o,40) LXSH, ca(nca)%x, ichange, LOPEN
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write(io_o,40) LYSH, ca(nca)%y, ichange, LOPEN

write(io_o,10)

ncam = ncam + 1

cam(ncam) = ca(nca)

!

bmNum = bmNum + 1

ib = ib + 1

iBody(ib) = bmNum

write(io_o,20) LBOD, bmNum, ’artery’

write(io_o,50) LMAT, water

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

write(io_o,60) LSUR, sNum, -1

if(flag_tumor.and.XSphereCheck(cam(ncam),STumor)) then

write(io_o,60) LSUR, SurTumor%num, +1

end if

write(io_o,10)

! -- vein

ncv = ncv + 1

cv(ncv)%x = Vein(i)%x-LX/2

cv(ncv)%y = Vein(i)%y

cv(ncv)%r = Vein(i)%r

!

sNum = sNum + 1

write(io_o,20) LSUR, sNum, ’vein cylinder x^2 + y^2 = rv^2’

write(io_o,30) LIND, (rCyl%idx(k), k=1,5)

write(io_o,40) LXSC, cv(ncv)%r, ichange, LOPEN

write(io_o,40) LYSC, cv(ncv)%r, ichange, LOPEN

write(io_o,40) LXSH, cv(ncv)%x, ichange, LOPEN

write(io_o,40) LYSH, cv(ncv)%y, ichange, LOPEN

write(io_o,10)

ncvm = ncvm + 1

cvm(ncvm) = cv(ncv)

!

bmNum = bmNum + 1

ib = ib + 1

iBody(ib) = bmNum

write(io_o,20) LBOD, bmNum, ’vein’

write(io_o,50) LMAT, water

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

write(io_o,60) LSUR, sNum, -1

if(flag_tumor.and.XSphereCheck(cvm(ncvm),STumor)) then

write(io_o,60) LSUR, SurTumor%num, +1

end if

write(io_o,10)

end do ! NBdle

do i=1, NStraw

ncv = ncv + 1

cv(ncv)%x = Straw(i)%x-LX/2

cv(ncv)%y = Straw(i)%y

cv(ncv)%r = Straw(i)%r

!

sNum = sNum + 1

write(io_o,20) LSUR, sNum, ’Straw cylinder x^2 + y^2 = rv^2’

write(io_o,30) LIND, (rCyl%idx(k), k=1,5)

write(io_o,40) LXSC, cv(ncv)%r, ichange, LOPEN

write(io_o,40) LYSC, cv(ncv)%r, ichange, LOPEN

write(io_o,40) LXSH, cv(ncv)%x, ichange, LOPEN

write(io_o,40) LYSH, cv(ncv)%y, ichange, LOPEN

write(io_o,10)

ncvm = ncvm + 1

cvm(ncvm) = cv(ncv)

!

bmNum = bmNum + 1

ib = ib + 1

iBody(ib) = bmNum

write(io_o,20) LBOD, bmNum, ’Straw’



179

write(io_o,50) LMAT, water

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

write(io_o,60) LSUR, sNum, -1

if(flag_tumor.and.XSphereCheck(cvm(ncvm),STumor)) then

write(io_o,60) LSUR, SurTumor%num, +1

end if

write(io_o,10)

end do

bNum = ib

mNum = im

case default

end select

! -- end the input geo file by including the lung parenchyma module and

! write geo files for viewing and mass calculation

select case(TofL)

case(3,4)

! -- lung’s parenchyma

write(io_o,20) LMOD, bBod(2,2,2)%num, ’lung’’s parenchyma’

write(io_o,50) LMAT, bBod(2,2,2)%mat

write(io_o,60) LSUR, 2, +1

write(io_o,60) LSUR, 3, -1

write(io_o,60) LSUR, 6, +1

write(io_o,60) LSUR, 7, -1

write(io_o,60) LSUR, 10, +1

write(io_o,60) LSUR, 11, -1

if(flag_tumor) then

write(io_o,60) LSUR, SurTumor%num, +1

end if

do ib=1, bNum

write(io_o,50) LBOD, iBody(ib)

end do

do im=1, mNum

write(io_o,50) LMOD, iModule(im)

end do

write(io_o,10)

! -- geo file for viewing in matlab

write(io_v,’(2/A/)’) ’[Circles within the Lung buffer]’

if(nci>0) then

write(io_v,97) KWLumen, nci

write(io_v,98) ’xi’, ’yi’, ’ri’

do i=1, nci

write(io_v,99) ci(i)%x, ci(i)%y, ci(i)%r

end do

end if

!

if(nco>0) then

write(io_v,’(/)’)

write(io_v,97) KWWall, nco

write(io_v,98) ’xo’, ’yo’, ’ro’

do i=1, nco

write(io_v,99) co(i)%x, co(i)%y, co(i)%r

end do

end if

!

if(nca>0) then

write(io_v,’(/)’)

write(io_v,97) KWArtery, nca

write(io_v,98) ’xa’, ’ya’, ’ra’

do i=1, nca

write(io_v,99) ca(i)%x, ca(i)%y, ca(i)%r

end do

end if

!

if(ncv>0) then

write(io_v,’(/)’)
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write(io_v,97) KWVein, ncv

write(io_v,98) ’xv’, ’yv’, ’rv’

do i=1, ncv

write(io_v,99) cv(i)%x, cv(i)%y, cv(i)%r

end do

end if

!

if(ncs>0) then

write(io_v,’(/)’)

write(io_v,97) KWAALmn, ncs

write(io_v,98) ’xs’, ’ys’, ’rs’

do i=1, ncs

write(io_v,99) cs(i)%x, cs(i)%y, cs(i)%r

end do

end if

97 format(a6,1x,i8/)

971 format(a6,1x,i8)

98 format(3(13x,A2,11x))

99 format(3g26.16)

! -- geo file for calculating the mass grid by PenDosesMass

write(io_m,’(A/)’) ’[Circles within the Lung]’

if(ncim>0) then

write(io_m,971) KWLumen, ncim

write(io_m,*) KWLine

write(io_m,98) ’xi’, ’yi’, ’ri’

do i=1, ncim

write(io_m,99) cim(i)%x, cim(i)%y, cim(i)%r

end do

end if

!

if(ncom>0) then

write(io_m,’(/)’)

write(io_m,971) KWWall, ncom

write(io_m,*) KWLine

write(io_m,98) ’xo’, ’yo’, ’ro’

do i=1, ncom

write(io_m,99) com(i)%x, com(i)%y, com(i)%r

end do

end if

!

if(ncam>0) then

write(io_m,’(/)’)

write(io_m,971) KWArtery, ncam

write(io_m,*) KWLine

write(io_m,98) ’xa’, ’ya’, ’ra’

do i=1, ncam

write(io_m,99) cam(i)%x, cam(i)%y, cam(i)%r

end do

end if

!

if(ncvm>0) then

write(io_m,’(/)’)

write(io_m,971) KWVein, ncvm

write(io_m,*) KWLine

write(io_m,98) ’xv’, ’yv’, ’rv’

do i=1, ncvm

write(io_m,99) cvm(i)%x, cvm(i)%y, cvm(i)%r

end do

end if

!

if(ncsm>0) then

write(io_m,’(/)’)

write(io_m,971) KWAALmn, ncsm

write(io_m,*) KWLine

write(io_m,98) ’xs’, ’ys’, ’rs’

do i=1, ncsm

write(io_m,99) csm(i)%x, csm(i)%y, csm(i)%r
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end do

end if

!

if(flag_tumor) then

write(io_m,’(/A)’) ’[Tumor within the Lung]’

write(io_m,’(/)’)

write(io_m,971) ’Tumor’, 1

write(io_m,*) KWLine

write(io_m,’(4(13x,A2,11x))’) ’xt’, ’yt’, ’zt’, ’rt’

do i=1, 1

write(io_m,’(4g26.16)’) STumor%x, STumor%y, STumor%z, STumor%r

end do

end if

if(bNum>0) deallocate(iBody)

if(mNum>0) deallocate(iModule)

if(nci>0) deallocate(ci)

if(nco>0) deallocate(co)

if(nca>0) deallocate(ca)

if(ncv>0) deallocate(cv)

if(ncim>0) deallocate(cim)

if(ncom>0) deallocate(com)

if(ncam>0) deallocate(cam)

if(ncvm>0) deallocate(cvm)

! deallocate(Away, Vein, AAci)

do k=1, 3

do j=1, 3

do i=1, 3

deallocate(bBod(i,j,k)%sur, bBod(i,j,k)%sid, bBod(i,j,k)%bod)

end do

end do

end do

if(flag_tumor) deallocate(BodyTumor%sur, BodyTumor%sid)

case default

end select

! -- end

write(io_o,2009) LEND

2009 format(A8,1X,55(’0’))

close(io_o)

close(io_v)

close(io_m)

end subroutine Output

!***********************************************************************

!

! subroutine Location_2_Cutout:

! Check if a given circle is inside the cutout region defined by

! xcut and ycut or not.

!

! input:

! Cir --> a circle type object

! output:

! flag(1) --> .true. if fully inside

! flag(2) --> .true. if fully outside

! flag(3) --> .true. if crossing xcut(1)

! flag(4) --> .true. if crossing xcut(2)

! flag(5) --> .true. if crossing ycut(1)

! flag(6) --> .true. if crossing ycut(2)

!

!***********************************************************************

subroutine Location_2_Cutout(Cir, flag)
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type (Circle), intent(in) :: Cir

logical, intent(out) :: flag(6)

real (r8) :: root(2)

integer (i4) :: nrt

!!!

flag = .false.

if(xcut(1)<Cir%x.and.Cir%x<xcut(2).and. &

ycut(1)<Cir%y.and.Cir%y<ycut(2)) then

! -- origin inside

call get_roots(Cir,’x’,xcut(1),nrt,root) ! flag(3)

if(nrt==2) flag(3) = .true.

call get_roots(Cir,’x’,xcut(2),nrt,root) ! flag(4)

if(nrt==2) flag(4) = .true.

call get_roots(Cir,’y’,ycut(1),nrt,root) ! flag(5)

if(nrt==2) flag(5) = .true.

call get_roots(Cir,’y’,ycut(2),nrt,root) ! flag(6)

if(nrt==2) flag(6) = .true.

if(flag(3).or.flag(4).or.flag(5).or.flag(6)) then ! flag(1)

else

flag(1) = .true.

end if

else

! -- origin outside

call get_roots(Cir,’x’,xcut(1),nrt,root) ! flag(3)

if(nrt==2) then

if((ycut(1)<root(1).and.root(1)<ycut(2)).or. &

(ycut(1)<root(2).and.root(2)<ycut(2))) flag(3) = .true.

end if

call get_roots(Cir,’x’,xcut(2),nrt,root) ! flag(4)

if(nrt==2) then

if((ycut(1)<root(1).and.root(1)<ycut(2)).or. &

(ycut(1)<root(2).and.root(2)<ycut(2))) flag(4) = .true.

end if

call get_roots(Cir,’y’,ycut(1),nrt,root) ! flag(5)

if(nrt==2) then

if((xcut(1)<root(1).and.root(1)<xcut(2)).or. &

(xcut(1)<root(2).and.root(2)<xcut(2))) flag(5) = .true.

end if

call get_roots(Cir,’y’,ycut(2),nrt,root) ! flag(6)

if(nrt==2) then

if((xcut(1)<root(1).and.root(1)<xcut(2)).or. &

(xcut(1)<root(2).and.root(2)<xcut(2))) flag(6) = .true.

end if

if(flag(3).or.flag(4).or.flag(5).or.flag(6)) then ! flag(2)

else

flag(2) = .true.

end if

end if

end subroutine Location_2_Cutout

!***********************************************************************

!

! subroutine get_roots(Cir,sgn,Val,nrt,root):

! Get the distances to the 4 sides and 4 corners of the cutout region.

!

! input:

! Cir --> a circle type object

! sgn --> ’x’ or ’y’

! val --> value of the coordinate of sgn

! output:

! nrt --> # of distinct roots

! root(2) --> 2 roots, root(1)<=root(2)
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!***********************************************************************

subroutine get_roots(Cir,sgn,Val,nrt,root)

type (Circle), intent(in) :: Cir

character (len=1), intent(in) :: sgn

real (r8), intent(in) :: Val

integer (i4), intent(out) :: nrt

real (r8), intent(out) :: root(2)

real (r8) :: dist, rtt

!!!

nrt = 0

select case(sgn)

case (’x’, ’X’)

dist = abs(Cir%x - Val)

if(Cir%r>dist) then

nrt = 2

rtt = sqrt(Cir%r**2 - (Val-Cir%x)**2)

root(1) = Cir%y - rtt

root(2) = Cir%y + rtt

end if

case (’y’, ’Y’)

dist = abs(Cir%y - Val)

if(Cir%r>=dist) then

nrt = 2

rtt = sqrt(Cir%r**2 - (Val-Cir%y)**2)

root(1) = Cir%x - rtt

root(2) = Cir%x + rtt

end if

case default

write(*,’(/A)’) ’get_roots | ’’’//sgn//’’’ is NOT a correct axis!’

stop

end select

end subroutine get_roots

end module GeoGen_Output

!

! global variables

!

module GeoGen_Global

use GeoGen_Par

use GeoGen_Type

implicit none

!!!

integer (i1) :: am

character (len=64) :: suffix

integer (i4) :: len_sfx

!

! -- predefined reduced surfaces’ indices

!

type (Reduced_Surface), parameter :: &

rPln = Reduced_Surface( 0,&

’Plane’,&

(/0, 0, 0, 1, 0/),&

ONE, ONE, ONE,&

ZERO, ZERO, ZERO,&

ZERO, ZERO, ZERO),&

rSph = Reduced_Surface( 0,&
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’Sphere’,&

(/1, 1, 1, 0, -1/),&

ONE, ONE, ONE,&

ZERO, ZERO, ZERO,&

ZERO, ZERO, ZERO),&

rCyl = Reduced_Surface( 0,&

’Cylinder’,&

(/1, 1, 0, 0, -1/),&

ONE, ONE, ONE,&

ZERO, ZERO, ZERO,&

ZERO, ZERO, ZERO)

!

! -- geometry of the lung and the enclosure phantom

!

integer (i1) :: TofL ! type of lung construction

real (r8) :: LX, LY, LZ ! side length of the box lung

real (r8) :: PX, PY, PZ, PYpre, PYpos ! side length of the box phantom

type (Reduced_Surface) :: bPln(12) ! basic planes defining the lung and the phantom

type (MyBody) :: bBod(3,3,3) ! basic bodies for the whole phantom, bBod(2,2,2) is the lung

real (r8) :: LXB, LYB ! side length of the buffered box lung (for creating AVC)

real (r8) :: Lox, Loy ! origin of the cut-out region from [0:LXB,0:LYB]

logical :: flag_full_view=.false. ! output full view of the whole buffered lung

!

! -- densities

!

real (8) :: Rho(0:8), Rho4 ! Rho4 for TofL=4

data Rho/0d0, 1d0, 1.20479d-3, 0.26d0, 1d0, 1.20479d-3, 0.26d0, 0.201388d0, 0.201388d0/

!

! -- airway + vessel

!

integer (i4) :: del_NAVG_TB, NAVG

integer (i4) :: NB, NB_TB

type (Airway), allocatable :: Away(:)

type (Circle), allocatable :: Vein(:), AAci(:), StrawP(:), Straw(:)

real (r8) :: DLumen(NAVGroup), LLumen(NAVGroup)

integer (i4) :: NLumen(NAVGroup), NBundle(NAVGroup)

!

! -- tumor

!

integer (i4) :: SofT

type (Sphere) :: STumor

type (Box) :: BTumor

type (MyBody) :: BodyTumor

type (Reduced_Surface) :: SurTumor

logical :: flag_tumor

!

! -- independent "straws"

!

integer (i4) :: NStraw, NBdle

!---------------------------------------------------------------------------!

! Data source:

! (1) Horsfield, et al. Morphology of the bronchial tree in man. Journal of !

! Applied Physiology: Vol. 24, No. 3, March 1968, 373-383. And !

! (2) Horsfield. The structure of the tracheobronchial tree. In !

! Scientific Foundations of Respiratory Medicine, edited by J.G.Scadding!

! and Gordon Cumming. 1981 !

! (3) Scientific foundations of respiratory medicine, P58 talble 3.

!---------------------------------- in cm ----------------------------------!

data DLumen/ 10.3d-1, 8.9d-1, 7.7d-1, &

6.6d-1, 5.7d-1, 4.9d-1, 4.2d-1, 3.5d-1, &

3.3d-1, 3.1d-1, 2.9d-1, 2.8d-1, 2.6d-1, &

2.4d-1, 2.3d-1, 2.2d-1, 2.0d-1, 1.78d-1, &

1.51d-1, 1.29d-1, 1.1d-1, 0.93d-1, 0.79d-1, &
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0.64d-1, 0.56d-1, 0.51d-1, 0.47d-1, 0.47d-1, &

0.49d-1, 0.50d-1, 0.49d-1, 0.51d-1, 0.40d-1, &

0.38d-1, 0.30d-1, 0.27d-1, 0.24d-1/

data LLumen/ 26.0d-1, 18.0d-1, 14.0d-1, &

11.0d-1, 10.0d-1, 10.0d-1, 10.0d-1, 10.0d-1, &

9.6d-1, 9.1d-1, 8.6d-1, 8.2d-1, 7.8d-1, &

7.4d-1, 7.0d-1, 6.7d-1, 6.3d-1, 5.7d-1, &

5.0d-1, 4.4d-1, 3.9d-1, 3.5d-1, 3.1d-1, &

1.1d-1, 1.3d-1, 1.1d-1, 0.97d-1, 0.97d-1, &

0.88d-1, 0.66d-1, 0.51d-1, 0.58d-1, 0.43d-1, &

0.41d-1, 0.30d-1, 0.28d-1, 0.22d-1/

data NLumen/ 2, 2, 2, &

3, 6, 8, 12, 14, &

20, 30, 37, 46, 64, &

85, 114, 158, 221, 341, &

499, 760, 1104, 1675, 2843, &

5651, 11300, 25000, 50000, 100000, &

200000, 475000, 1125000, 2700000, 6350000, &

9350000, 9150000, 3650000, 1450000/

end module GeoGen_Global

module GeoGen_Par

implicit none

! Kind parameters:

integer,parameter :: i1 = selected_int_kind( 2) != 1-byte integer kind

integer,parameter :: i2 = selected_int_kind( 4) != 2-byte integer kind

integer,parameter :: i4 = selected_int_kind( 9) != 4-byte integer kind

integer,parameter :: i8 = selected_int_kind(18) != 8-byte integer kind

integer,parameter :: r4 = selected_real_kind( 6, 37) != 4-byte real kind

integer,parameter :: r8 = selected_real_kind(15,307) != 8-byte real kind

! i/o unit numbers:

integer,parameter :: io_i = 31 != I/O unit of the problem setup(input) file.

integer,parameter :: io_o = 32 != I/O unit of the output file.

integer,parameter :: io_v = 33 != I/O unit of the output geometry grid for viewing in matlab.

integer,parameter :: io_m = 34 != I/O unit of the output circles for setting up mass grid.

!

real (r8), parameter :: ONE = 1d0

real (r8), parameter :: ZERO = 0d0

real (r8), parameter :: HUGE = 1.0d+36 != A very large number.

real (r8), parameter :: PI = 3.141592653589793238462643383279502884197d+0

! keywords used by PENELOPE geometric file

character (len=8), parameter :: &

LNUL = ’00000000’, &

LSUR = ’SURFACE ’, &

LIND = ’INDICES=’, &

LBOD = ’BODY ’, &

LMAT = ’MATERIAL’, &

LMOD = ’MODULE ’, &

LOPEN = ’) ’, &

LEND = ’END ’, &

LONE = ’11111111’, &

LXSC = ’X-SCALE=’, &

LYSC = ’Y-SCALE=’, &

LZSC = ’Z-SCALE=’, &

LTHE = ’ THETA=’, &

LPHI = ’ PHI=’, &

LOME = ’ OMEGA=’, &

LXSH = ’X-SHIFT=’, &

LYSH = ’Y-SHIFT=’, &
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LZSH = ’Z-SHIFT=’, &

LAXX = ’ AXX=’, &

LAXY = ’ AXY=’, &

LAXZ = ’ AXZ=’, &

LAYY = ’ AYY=’, &

LAYZ = ’ AYZ=’, &

LAZZ = ’ AZZ=’, &

LAX = ’ AX=’, &

LAY = ’ AY=’, &

LAZ = ’ AZ=’, &

LA0 = ’ A0=’, &

LDEG = ’) DEG ’, &

LRAD = ’) RAD ’, &

LINC = ’INCLUDE ’, &

LFIL=’FILE= ’

integer (i1), parameter :: void=0, &

water=1, water_max=4,&

air=2, air_max=5, &

aml=3, aml_max=6, &

amlp=7, amlp_max=8

! default lung and phantom sizes

real (r8), parameter :: LXdft = 10.2d0, &

LYdft = 10.0d0, &

LZdft = 10.2d0 ! side length of the box lung

real (r8) :: PXdft = 30.0d0, &

PZdft = 30.0d0, &

PYpredft = 5.0d0, &

PYposdft = 5.0d0 ! side length of the box phantom

! lung airway/artery/vein parameters:

integer, parameter :: NAVGroup_TB=26, NAVGroup=NAVGroup_TB + 11;

real (r8), parameter :: VLung=6000 ! 6000 mL for both lungs

real (r8), parameter :: pVssl=1.43884892086331d0 ! Bronchoarterial Ratio = 0.695 [1]

real (r8), parameter :: PShell=0.666666666666667d0 ! T/D = 0.2 [1]

integer, parameter :: CVn2Bdl=6 ! # of top generations with vein correlated with

real (r8), parameter :: pVn2Bdl=1d0 ! correlation range as the ratio of the bundle radius

character (len=6), parameter :: &

KWLumen = ’Lumen ’, &

KWWall = ’Wall ’, &

KWArtery = ’Artery’, &

KWVein = ’Vein ’, &

KWAALmn = ’AALumn’

character (len=25), parameter :: KWLine = ’-- must have this line --’

end module GeoGen_Par

!------------------------------------------------------------------------------------

! references:

! [1] S. Matsuoka, et al. Bronchoarterial ratio and bronchial wall thickness

! on high resolution CT in asymptomatic subjects: correlation with age and smoking.

! AJR 2003;180: 513-518

!-------------------------------------------------------------------------------------

!

! type definitions

!

module GeoGen_Type

use GeoGen_Par

type :: Reduced_Surface

integer (i4) :: num

character (len=64) :: typ

integer (i1) :: idx(5)

real (r8) :: xscl, yscl, zscl,&

omg, tht, phi,&

xshft, yshft, zshft
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end type reduced_surface

type :: MyBody

integer (i4) :: num

character (len=64) :: id

integer (i1) :: mat

integer (i4), allocatable :: sur(:)

integer (i1), allocatable :: sid(:)

integer (i4), allocatable :: bod(:)

end type MyBody

type :: Circle

real (r8) :: x

real (r8) :: y

real (r8) :: r

end type Circle

type :: Sphere

real (r8) :: x, &

y, &

z, &

r

end type Sphere

type :: Box

real (r8) :: x, &

y, &

z

real (r8) :: dx, &

dy, &

dz

end type Box

type :: Airway

type (Circle) :: ci, &

co, &

ca, &

cbd

end type Airway

end module GeoGen_Type

A.4 Fortran 90 codes to generate the mass for the dose grid used for the
lung phantom the 2 1

2
-D random lung model in Chapter V

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! |

! |

! |

! |

! ----------------------------> y

! |(0,0)

! |

! |

! \/

! x

!!!!!!!!!!

!a d!

! !

!b c!

!!!!!!!!!!

program main
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use NPDM_Get_Partial_Mass

use NPDM_GetIndex

use NPDM_SetGrid

implicit none

real (r8) :: x, y, z, dz

real (r8) :: ntmp, dxext, dzext

real (r8) :: PA

real (r8) :: rw

real (r8) :: AFy, ADy ! cross section perpendicular to y-axis

integer (i4) :: MBndX(2), MBndY(2) ! mass bounds for caculating partial mass contribution

integer (i4) :: i, j, k, ii, jj, kk, il, iw, ia, iv, iaa, im, jm, km

integer (i4) :: ic(2), kc(2)

integer (i4) :: lorlp

integer (i4) :: amaw

integer (i4) :: len_fmass

character (len=6) :: KWWord

character (len=128) :: buffer

real (r8) :: DxLim1, DxLim2, DyLim1, DyLim2, DzLim1, DzLim2

type (Box) :: btmp, btmp2

integer (i4) :: region

real (r8) :: SubV

real (r8) :: RhoTmp

real (r8) :: msum

logical :: exists, exists2

integer (i4) :: ismat

type (Index) :: ihead, itail

character (i1) :: yesno

!!!

do

! -- read in dose grid info

write(*,’(/a)’) ’This is an auxiliary program to generate a mass file for’

write(*,’(a)’) ’the PENELOPE used to simulate the lung model.’

write(*,’(/a)’) ’*Note* -- prepare first the dose grid file from the dose grid section of ’

write(*,’(a)’) ’ the corresponding PENELOPE input file. Usually, Copy & Past’

write(*,’(a)’) ’ would do the job.’

write(*,’(/a$)’) ’dose grid file name --> ’

read(*,*) FDGrid

! -- inquire about file’s existence:

inquire(file=FDGrid, exist=exists)

if(exists) then

else

write(*,’(2a)’) ’ >> Cannot find file ’, FDGrid

end if

end do

! -- prepare the output mass file

do

write(*,’(/a$)’) ’Output mass file name --> ’

read(*,*) FMass

! -- inquire about file’s existence:

inquire(file=FMass, exist=exists)

if(exists) then

write(*,’(2x,2a)’) ’File ’//trim(FMass)//’ already exists’

write(*,’(2x,a$)’) ’Replace it? (y/n) ’

read(*,’(a)’) yesno

select case(yesno)

case (’y’, ’Y’)

open(io_m,FILE=FMass,action=’WRITE’,status=’OLD’)

write(*,’(2x,2a)’) ’Replaced file ’, trim(FMass)

exit
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case default

end select

else

open(io_m,FILE=FMass,action=’WRITE’,status=’NEW’)

write(*,’(2a)’) ’Created file ’, trim(FMass)

exit

end if

end do

open(unit=io_d, file=FDGrid, action=’READ’, status=’OLD’)

NDxRgn = 0; NDyRgn = 0; NDzRgn = 0

NxDT = 0; NyDT = 0; NzDT = 0

do while(.not.eof(io_d))

read(io_d,30) KWWord,buffer

select case(KWWord)

case (KWDXDO)

call ReadGrid(’x’,buffer,NxD,NDxRgn,NxDT,DBnDX,dxD)

case (KWDYDO)

call ReadGrid(’y’,buffer,NyD,NDyRgn,NyDT,DBnDY,dyD)

case (KWDZDO)

call ReadGrid(’z’,buffer,NzD,NDzRgn,NzDT,DBnDZ,dzD)

case default

end select

end do

close(io_d)

allocate(XDose(NxDT+1), YDose(NyDT+1), ZDose(NzDT+1))

call SetGrid(’x’,NxD,NDxRgn,NxDT,DBnDX,dxD,XDose)

call SetGrid(’y’,NyD,NDyRgn,NyDT,DBnDY,dyD,YDose)

call SetGrid(’z’,NzD,NDzRgn,NzDT,DBnDZ,dzD,ZDose)

write(*,’(/a)’) ’Current dose grid boundries:’

write(*,10) ’X1 = ’, DBndX(1), ’X2 = ’, DBndX(NDxRgn+1)

write(*,10) ’Y1 = ’, DBndY(1), ’Y2 = ’, DBndY(NDyRgn+1)

write(*,10) ’Z1 = ’, DBndZ(1), ’Z2 = ’, DBndZ(NDzRgn+1)

10 format(2x,2(a5,g13.5))

amaw = 0

do while(amaw<1.or.amaw>3)

write(*,’(/a)’) ’(1) Atomic Mix;’

write(*,’(a)’ ) ’(2) Airway in parenchyma;’

write(*,’(a)’ ) ’(3) Airway in air;’

write(*,’(a$)’) ’--> ’

read(*,*) amaw

if(amaw<1.or.amaw>3) write(*,’(a)’) ’>>> No such choice. Choose it again.’

end do

if(amaw/=1) then

do

! -- read in dose grid info

write(*,’(/a$)’) ’Mass-geo file name --> ’

read(*,*) FMassGeo

! -- inquire about file’s existence:

inquire(file=FMassGeo, exist=exists)

if(exists) then

exit

else

write(*,’(2a)’) ’ >> Cannot find file ’, FMassGeo

end if

end do

end if

if(amaw==1) then

lorlp = 0

do while(lorlp<1.or.lorlp>4)
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write(*,’(/2x,a)’) ’(1) Lung (0.26 g/cm^3);’

write(*,’(2x,a)’ ) ’(2) Lung Parenchyma (0.201388 g/cm^3);’

write(*,’(2x,a)’ ) ’(3) Air (1.20479e-3 g/cm^3);’

write(*,’(2x,a)’ ) ’(4) Other (your input g/cm^3);’

write(*,’(2x,a$)’) ’--> ’

read(*,*) lorlp

select case(lorlp)

case (1,2,3,4)

case default

write(*,*) ’no such choice’

end select

end do

end if

write(*,’(/a)’) ’Current lung boundries:’

!

write(*,10) ’X1 = ’, LBndX(1), ’X2 = ’, LBndX(2)

write(*,20) ’Want to change? (y/n) ’

yesno = ’n’

read(*,*) yesno

select case(yesno)

case (’y’, ’Y’)

write(*,20) ’new X1, X2? ’

read(*,*) LBndX(1), LBndX(2)

case default

end select

!

write(*,10) ’Y1 = ’, LBndY(1), ’Y2 = ’, LBndY(2)

write(*,20) ’Want to change? (y/n) ’

yesno = ’n’

read(*,*) yesno

select case(yesno)

case (’y’, ’Y’)

write(*,20) ’new Y1, Y2? ’

read(*,*) LBndY(1), LBndY(2)

case default

end select

!

write(*,10) ’Z1 = ’, LBndZ(1), ’Z2 = ’, LBndZ(2)

write(*,20) ’Want to change? (y/n) ’

yesno = ’n’

read(*,*) yesno

select case(yesno)

case (’y’, ’Y’)

write(*,20) ’new Z1, Z2? ’

read(*,*) LBndZ(1), LBndZ(2)

case default

end select

11 format(2x,3(a9,g11.3))

20 format(4x,a,$)

! -- prescribed mass (atomic mix case) for the whole dose grid

allocate(Mass(NxDT,NyDT,NzDT))

if(amaw==1) then

if(lorlp==1) then

RhoTmp = rho(aml)

else if(lorlp==2) then

RhoTmp = rho(amlp)

else if(lorlp==3) then

RhoTmp = rho(air)

else if(lorlp==4) then

write(*,’(/A$)’) ’The density for the lung part --> ’

read(*,*) RhoTmp

end if
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else if(amaw==2) then

write(*,’(2x, a,f11.8,a)’) &

’Current density of parenchyma: ’,rho(amlp), ’g/cm^3, want to change? (y/n) ’

read(*,*) yesno

select case(yesno)

case (’y’, ’Y’)

write(*,’(4x,a$)’) ’New density (g/cm^3) --> ’

read(*,*) rho(amlp)

case default

end select

RhoTmp = rho(amlp)

else if(amaw==3) then

RhoTmp = rho(air)

end if

! Fill the phantom with water outside and atomic mix inside the lung

do k=1, NzDT

do j=1, NyDT

do i=1, NxDT

btmp%head%x = XDose(i); btmp%head%y = YDose(j); btmp%head%z = ZDose(k);

btmp%tail%x = XDose(i+1); btmp%tail%y = YDose(j+1); btmp%tail%z = ZDose(k+1);

btmp2%head%x = LBndX(1); btmp2%head%y = LBndY(1); btmp2%head%z = LBndZ(1);

btmp2%tail%x = LBndX(2); btmp2%tail%y = LBndY(2); btmp2%tail%z = LBndZ(2);

call FracVol(btmp, btmp2, SubV) ! outer water or the lung

Mass(i,j,k) = (VBox(btmp) - SubV)*rho(water) + SubV*RhoTmp

end do

end do

end do

NDLx(1) = getidx(LBndX(1)+TINY,XDose)

NDLx(2) = getidx(LBndX(2)-TINY,XDose)

NDLy(1) = getidx(LBndY(1)+TINY,YDose)

NDLy(2) = getidx(LBndY(2)-TINY,YDose)

NDLz(1) = getidx(LBndZ(1)+TINY,ZDose)

NDLz(2) = getidx(LBndZ(2)-TINY,ZDose)

if(amaw==1) go to 3 ! if homogenized, detour!

! -- get all the airway/vein bundles’ locations

open(unit=io_mg, file=FMassGeo, action=’READ’, status=’OLD’)

do while(.not.eof(io_mg))

read(io_mg,30) KWWord,buffer

select case(KWWord)

case (KWLumen)

read(buffer,*) NLumen

allocate(Lumen(NLumen))

read(io_mg,’(a)’) buffer

read(io_mg,’(a)’) buffer

do i=1, NLumen

read(io_mg,*) Lumen(i)%x, Lumen(i)%y, Lumen(i)%r

end do

case (KWWall)

read(buffer,*) NWall

allocate(Wall(NWall))

read(io_mg,’(a)’) buffer

read(io_mg,’(a)’) buffer

do i=1, NWall

read(io_mg,*) Wall(i)%x, Wall(i)%y, Wall(i)%r

end do

case (KWArtery)

read(buffer,*) NArtery

allocate(Artery(NArtery))

read(io_mg,’(a)’) buffer

read(io_mg,’(a)’) buffer

do i=1, NArtery

read(io_mg,*) Artery(i)%x, Artery(i)%y, Artery(i)%r

end do

case (KWVein)
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read(buffer,*) NVein

allocate(Vein(NVein))

read(io_mg,’(a)’) buffer

read(io_mg,’(a)’) buffer

do i=1, NVein

read(io_mg,*) Vein(i)%x, Vein(i)%y, Vein(i)%r

end do

case default

end select

end do

close(io_mg)

30 format(a6,1x,a128)

! -- the correct density to replace

select case(amaw)

case (2)

RhoTmp = Rho(amlp)

case (3)

RhoTmp = Rho(air)

case default

end select

! -- artery

if(NArtery>0) then

a: do ia=1, NArtery

! -- get the enclosure boundary MBndX and MBndY

call GetMassBoundary(Artery(ia), MBndX, MBndY)

MBndX(1) = max(MBndX(1),NDLx(1))

MBndX(2) = min(MBndX(2),NDLx(2))

MBndY(1) = max(MBndY(1),NDLy(1))

MBndY(2) = min(MBndY(2),NDLy(2))

! -- get the partial mass for each swept voxel

do im=MBndX(1), MBndX(2)

do jm=MBndY(1), MBndY(2)

call Get_abcd(im,jm)

PA = Partial_Area(Artery(ia), xyVox)

do k=NDLz(1), NDLz(2)

dz = min(ZDose(k+1), LBndZ(2)) - max(ZDose(k),LBndZ(1))

Mass(im,jm,k) = Mass(im,jm,k) + dz*PA*(Rho(water)-RhoTmp)

end do

end do

end do

end do a

end if

! -- vein

if(NVein>0) then

v: do iv=1, NVein

! -- get the enclosure boundary MBndX and MBndY

call GetMassBoundary(Vein(iv), MBndX, MBndY)

MBndX(1) = max(MBndX(1),NDLx(1))

MBndX(2) = min(MBndX(2),NDLx(2))

MBndY(1) = max(MBndY(1),NDLy(1))

MBndY(2) = min(MBndY(2),NDLy(2))

! -- get the partial mass for each swept voxel

do im=MBndX(1), MBndX(2)

do jm=MBndY(1), MBndY(2)

call Get_abcd(im,jm)

PA = Partial_Area(Vein(iv), xyVox)

do k=NDLz(1), NDLz(2)

dz = min(ZDose(k+1), LBndZ(2)) - max(ZDose(k),LBndZ(1))

Mass(im,jm,k) = Mass(im,jm,k) + dz*PA*(Rho(water)-RhoTmp)

end do

end do

end do

end do v

end if
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! -- Wall

if(NWall>0) then

w: do iw=1, NWall

! -- get the enclosure boundary MBndX and MBndY

call GetMassBoundary(Wall(iw), MBndX, MBndY)

MBndX(1) = max(MBndX(1),NDLx(1))

MBndX(2) = min(MBndX(2),NDLx(2))

MBndY(1) = max(MBndY(1),NDLy(1))

MBndY(2) = min(MBndY(2),NDLy(2))

! -- get the partial mass for each swept voxel

do im=MBndX(1), MBndX(2)

do jm=MBndY(1), MBndY(2)

call Get_abcd(im,jm)

PA = Partial_Area(Wall(iw), xyVox)

do k=NDLz(1), NDLz(2)

dz = min(ZDose(k+1), LBndZ(2)) - max(ZDose(k),LBndZ(1))

Mass(im,jm,k) = Mass(im,jm,k) + dz*PA*(Rho(water)-RhoTmp)

end do

end do

end do

end do w

end if

! -- Lumen

if(NLumen>0) then

l: do il=1, NLumen

! -- get the enclosure boundary MBndX and MBndY

call GetMassBoundary(Lumen(il), MBndX, MBndY)

MBndX(1) = max(MBndX(1),NDLx(1))

MBndX(2) = min(MBndX(2),NDLx(2))

MBndY(1) = max(MBndY(1),NDLy(1))

MBndY(2) = min(MBndY(2),NDLy(2))

! -- get the partial mass for each swept voxel

do im=MBndX(1), MBndX(2)

do jm=MBndY(1), MBndY(2)

call Get_abcd(im,jm)

PA = Partial_Area(Lumen(il), xyVox)

do k=NDLz(1), NDLz(2)

dz = min(ZDose(k+1), LBndZ(2)) - max(ZDose(k),LBndZ(1))

Mass(im,jm,k) = Mass(im,jm,k) + dz*PA*(Rho(air)-Rho(water))

end do

end do

end do

end do l

end if

3 continue

! -- output mass file

write(io_m,’(3I8)’) NxDT, NyDT, NzDT

write(io_m,’(A,I8)’) ’Num_Dose_Grid_X=’, NxDT

write(io_m,’(A,I8)’) ’Num_Dose_Grid_Y=’, NyDT

write(io_m,’(A,I8)’) ’Num_Dose_Grid_Z=’, NzDT

write(io_m,’(/,A)’) ’XDose(...)’

write(io_m,’(1000f8.3)’) (XDose(i), i=1,NxDT+1)

write(io_m,’(/,A)’) ’YDose(...)’

write(io_m,’(1000f8.3)’) (YDose(i), i=1,NyDT+1)

write(io_m,’(/,A)’) ’ZDose(...)’

write(io_m,’(1000f8.3)’) (ZDose(i), i=1,NzDT+1)

write(io_m,’(/a)’) ’Mass...’

write(io_m,*) ((( Mass(i,j,k),i=1,NxDT),j=1,NyDT),k=1,NzDT)

write(io_m,’(/,a,g25.16)’) ’Total mass =’, sum(Mass)

close(io_m)

write(*,*) ’ end’

end program main
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Module NPDM_GetIndex

use NPDM_Globals

implicit none

contains

!--------------------------------------------------------------------

! function GetIdx(x,XA)

! given a value x, give the region index in the bound array XA

! comments:

! for x < XA(1), ix = 1

! x > XA(size(XA)), ix = size(XA) - 1

! so x always in XA in output, which is only true for here

!--------------------------------------------------------------------

integer (i4) function GetIdx(x,XA) result(ix)

real (r8), intent(in) :: x, XA(:)

integer (i4) :: n1, n2, nm

!!!

n1 = 1 ! first region

n2 = size(XA) - 1 ! last region

do while(n1/=n2)

nm = (n1 + n2)/2 ! a middle region

if(x<=XA(nm+1)) then

n2 = nm

else

n1 = nm + 1

end if

end do

ix = n1

end function GetIdx

!--------------------------------------------------------------------

! subroutine GetMassBoundary(Cir, BX, BY)

! given a circle, give the dose(mass) grid bounds enclosing it.

!--------------------------------------------------------------------

subroutine GetMassBoundary(Cir, Bx, By)

type (Circle), intent(in) :: Cir

integer (i4), intent(inout) :: Bx(2), By(2)

!!!

Bx(1) = GetIdx(Cir%x - Cir%r, XDose)

Bx(2) = GetIdx(Cir%x + Cir%r, XDose)

By(1) = GetIdx(Cir%y - Cir%r, YDose)

By(2) = GetIdx(Cir%y + Cir%r, YDose)

end subroutine GetMassBoundary

!--------------------------------------------------------------------

! subroutine GetVoxBoundary(bx)

! given a circle, give the dose(mass) grid bounds enclosing it.

!--------------------------------------------------------------------

subroutine GetVoxBoundary(bx, ihead, itail)

type (Box), intent(in) :: bx

type (Index), intent(inout) :: ihead, itail
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!!!

ihead%i = GetIdx(bx%head%x, XDose)

ihead%j = GetIdx(bx%head%y, YDose)

ihead%k = GetIdx(bx%head%z, ZDose)

itail%i = GetIdx(bx%tail%x, XDose)

itail%j = GetIdx(bx%tail%y, YDose)

itail%k = GetIdx(bx%tail%z, ZDose)

end subroutine GetVoxBoundary

end module NPDM_GetIndex

module NPDM_Globals

use NPDM_Types

integer (i1) :: void=0,&

water=1, water_max=4,&

air=2, air_max=5,&

aml=3, aml_max=6,&

amlp=7, amlp_max=8

real (r8) :: rho(0:8)

data Rho/0.0d0, &

1.0d0, 1.20479d-3, 0.26d0, &

1.0d0, 1.20479d-3, 0.26d0, &

0.201388d0, 0.201388d0/

real (r8) :: PhBndX(2), PhBndY(2), PhBndZ(2) ! fantom boundaries

data PhBndX/-15.0d0, 15.0d0/, PhBndY/-5.0d0, 15.0d0/, PhBndZ/-15.0d0, 15.0d0/

real (r8) :: LBndX(2), LBndY(2), LBndZ(2) ! lung boundaries

data LBndX/-5.1d0, 5.1d0/, LBndY/0d0, 1.0d1/, LBndZ/-5.1d0, 5.1d0/

real (r8) :: DBndX(NDRgnM+1), DBndY(NDRgnM+1), DBndZ(NDRgnM+1) , &

dxD(NDRgnM), dyD(NDRgnM), dzD(NDRgnM)

real (r8), allocatable :: XDose(:), YDose(:), ZDose(:), &

XDose2(:), YDose2(:), ZDose2(:)

integer (i4) :: NxD(NDRgnM), NyD(NDRgnM), NzD(NDRgnM), &

NDxRgn, NDyRgn, NDzRgn, &

NxDT, NyDT, NzDT, &

NxDT2, NyDT2, NzDT2

integer :: NDLx(2), NDLy(2), NDLz(2), iDLy(2)

integer :: NLumen=0, NWall=0, NArtery=0, NVein=0, NAALm=0

type (Circle), allocatable :: Lumen(:), Wall(:), Artery(:), Vein(:)

type (Rectangle) :: xyVox

real (r8), allocatable :: Mass(:,:,:), Mass2(:,:,:)

character (len=64) :: FDGrid, FDGrid2, FMass, FMassGeo

end module NPDM_Globals

module NPDM_Parameters

! Kind parameters:

integer,parameter :: i1 = selected_int_kind( 2) != 1-byte integer kind

integer,parameter :: i2 = selected_int_kind( 4) != 2-byte integer kind

integer,parameter :: i4 = selected_int_kind( 9) != 4-byte integer kind

integer,parameter :: i8 = selected_int_kind(18) != 8-byte integer kind

integer,parameter :: r4 = selected_real_kind( 6, 37) != 4-byte real kind

integer,parameter :: r8 = selected_real_kind(15,307) != 8-byte real kind
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! i/o unit numbers:

integer,parameter :: io_d = 33 != I/O unit of the input dose grid info.

integer,parameter :: io_mg = 34 != I/O unit of the output circles for setting up mass grid.

integer,parameter :: io_m = 35 != I/O unit of the output mass file.

!

real (r8), parameter :: ONE = 1d0

real (r8), parameter :: ZERO = 0d0

real (r8), parameter :: TINY = 1.0d-10 ! A very small number

real (r8), parameter :: HUGE = 1.0d+36 ! A very large number.

real (r8), parameter :: PI = 3.141592653589793238462643383279502884197d+0

character (len=6), parameter :: &

KWLumen = ’Lumen ’, &

KWWall = ’Wall ’, &

KWArtery = ’Artery’, &

KWVein = ’Vein ’, &

KWAALm = ’AALumn’, &

KWNull = ’ ’, &

KWDXDO = ’DXDOSE’, &

KWDYDO = ’DYDOSE’, &

KWDZDO = ’DZDOSE’

integer (i4), parameter :: NDRgnM=20, &

NDXM=10000, NDYM=10000, NDZM=10000

integer (i4), parameter :: NRegion=2 ! 2 main regions (surrounding water and lung)

end module NPDM_Parameters

Module NPDM_Get_Partial_Mass

use NPDM_Globals

implicit none

character (len=2) :: cname(4), sname(4)

data cname/’a ’, ’b ’, ’c ’, ’d ’/, &

sname/’ab’, ’bc’, ’cd’, ’da’/

contains

real (r8) function Partial_Area(Cir0, Vox) result(PArea)

!**********************************************************************

! get the partial area that’s the interception of the circle and the

! rectangle.

!**********************************************************************

type (Circle), intent(in) :: Cir0

type (Rectangle), intent(in) :: Vox

real (r8) :: ACir, AVox

type (Point) :: VC

type (Index) :: Idx

type (Circle) :: Cir, Cir22

type (Circle2Voxel) :: CV

type (Point) :: T1, T2, T3, T4, T5, T6, T7, T8

integer :: iab, ibc, icd, ida

!!!

ACir = PI*Cir0%r**2

AVox = abs((Vox%a%x - Vox%c%x)*(Vox%a%y - Vox%c%y))

VC%x = (Vox%a%x + Vox%c%x)/2

VC%y = (Vox%a%y + Vox%c%y)/2

VC%z = (Vox%a%z + Vox%c%z)/2

! -- get the relative location of the origin of the circle to this voxel

Idx = Get_Index(Cir0,Vox)
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! -- take advantage of the symmetry and do reflection accordingly

!

! ------------------------->y

! ***************************

! * * *

! \/ * *

! **> (1,1) | (1,2) <** | (1,3) *

! * -----|---------*-|------- *

! * *****|***********|**** *

! * * | * | * *

! * \/ | * | * *

! * (2,1) | (2,2) * | (2,3) *

! * ------|---------*-|------- *

! *** (3,1) | (3,2) *** | (3,3) ***

!

! \/

! x

!**********************************************************************

Cir = Cir0

select case(Idx%i)

case (1)

select case(Idx%j)

case (1,2)

case (3) ! -- (1,3) --> (1,1)

Cir%x = Cir0%x

Cir%y = 2*VC%y - Cir0%y

Idx = Index(1,1,0)

case default

stop ’Partial_Mass|wrong index in the 1st row.’

end select

case (2)

select case(Idx%j)

case (1,2)

case (3) ! -- (2,3) --> (2,1)

Cir%x = Cir0%x

Cir%y = 2*VC%y - Cir0%y

Idx = Index(2,1,0)

case default

stop ’Partial_Mass|wrong index in the 2nd row.’

end select

case (3)

select case(Idx%j)

case (1) ! -- (3,1) --> (1,1)

Cir%x = 2*VC%x - Cir0%x

Cir%y = Cir0%y

Idx = Index(1,1,0)

case (2) ! -- (3,2) --> (1,2)

Cir%x = 2*VC%x - Cir0%x

Cir%y = Cir0%y

Idx = Index(1,2,0)

case (3) ! -- (3,3) --> (1,1)

Cir%x = 2*VC%x - Cir0%x

Cir%y = 2*VC%y - Cir0%y

Idx = Index(1,1,0)

case default

stop ’Partial_Mass|wrong index in the 3rd row.’

end select

case default

stop ’Partial_Mass|No such Index’

end select

! -- get the distances to the 4 corners and 4 sides

CV = C2V(Cir,Vox)

regn: select case(idx%i)

! (1,:)

case (1)

row1: select case(idx%j)
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! - (1,1)

case (1)

if(Cir%r <= CV%dcnr(1)) then ! all outside the circle

PArea = 0d0

else if(Cir%r < CV%dcnr(2)) then ! the closest corner inside

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T2 = LineCir(Cir,Vox,’da’,’y+’)

T3 = Vox%a

T4 = T2

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

else if(Cir%r < CV%dcnr(3)) then ! 2 corners inside

select case(CV%cnr(2))

case (’b ’) ! corner b inside

T1 = LineCir(Cir,Vox,’bc’,’y+’)

T2 = LineCir(Cir,Vox,’da’,’y+’)

T3 = Vox%b

T4 = Vox%a

PArea = PArea1(Cir,T1,T2,T3,T4,’y’)

case (’d ’) ! corner d inside

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T2 = LineCir(Cir,Vox,’cd’,’x+’)

T3 = Vox%a

T4 = Vox%d

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

case default

write(*,*) ’PDM_Partial_Mass|(1,1)|2 corners|wrong corner: ’//CV%cnr(2)

stop

end select

else if(Cir%r < CV%dcnr(4)) then ! 3 corners inside

T1 = LineCir(Cir,Vox,’bc’,’y+’)

T2 = LineCir(Cir,Vox,’cd’,’x+’)

T4 = Vox%d

T3%x = T4%x

T3%y = T1%y

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

PArea = PArea + abs((T3%x-Vox%b%x)*(T3%y-Vox%b%y))

else ! all inside the circle

PArea = AVox

end if

! - (1,2)

case (2)

ida = get_side_i(CV,’da’)

if(Cir%r <= CV%dsid(ida)) then ! all outside

PArea = 0d0

else if(Cir%r <= CV%dcnr(1)) then ! some but no corners inside

T1 = LineCir(Cir,Vox,’da’,’y-’)

T2 = LineCir(Cir,Vox,’da’,’y+’)

PArea = Moon(Cir,T1,T2)

ibc = Get_Side_i(CV,’bc’)

if(Cir%r > CV%dsid(ibc)) then ! beyond the far side

T3 = LineCir(Cir,Vox,’bc’,’y-’)

T4 = LineCir(Cir,Vox,’bc’,’y+’)

PArea = PArea - Moon(Cir,T3,T4)

end if

else if(Cir%r < CV%dcnr(2)) then ! one corner inside

ibc = Get_Side_i(CV,’bc’)

select case(CV%cnr(1))

case (’a ’)

if(Cir%r > CV%dsid(ibc)) then ! beyond the far side

T2 = LineCir(Cir,Vox,’da’,’y+’)

T3 = LineCir(Cir,Vox,’ab’,’x+’)

T4 = Vox%a

T1%x = T3%x

T1%y = TCross(T1%x,’y+’,Cir)

T5 = LineCir(Cir,Vox,’bc’,’y-’)

T6 = LineCir(Cir,Vox,’bc’,’y+’)

PArea = PArea1(Cir,T1,T2,T3,T4,’y’)

PArea = PArea + Moon(Cir,T1,T3) - Moon(Cir,T5,T6)
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else

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T2 = LineCir(Cir,Vox,’da’,’y+’)

T3 = Vox%a

T4 = T2

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

end if

case (’d ’)

if(Cir%r > CV%dsid(ibc)) then ! beyond the far side

T1 = LineCir(Cir,Vox,’da’,’y-’)

T3 = Vox%d

T4 = LineCir(Cir,Vox,’cd’,’x+’)

T2%x = T4%x

T2%y = TCross(T2%x,’y-’,Cir)

T5 = LineCir(Cir,Vox,’bc’,’y-’)

T6 = LineCir(Cir,Vox,’bc’,’y+’)

PArea = PArea1(Cir,T1,T2,T3,T4,’y’)

PArea = PArea + Moon(Cir,T2,T4) - Moon(Cir,T5,T6)

else

T1 = LineCir(Cir,Vox,’da’,’y-’)

T2 = LineCir(Cir,Vox,’cd’,’x+’)

T3 = T1

T4 = Vox%d

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

end if

case default

write(*,*) ’PDM_Partial_Mass|(1,2)|1 corner|wrong corner: ’//CV%cnr(1)

stop

end select

else if(Cir%r < CV%dcnr(3)) then ! two corners inside

select case(CV%cnr(1)//CV%cnr(2))

case (’a d ’, ’d a ’)

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T2 = LineCir(Cir,Vox,’cd’,’x+’)

T3 = Vox%a

T4 = Vox%d

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

ibc = Get_Side_i(CV,’bc’)

if(Cir%r > CV%dsid(ibc)) then ! beyond the far side

T5 = LineCir(Cir,Vox,’bc’,’y-’)

T6 = LineCir(Cir,Vox,’bc’,’y+’)

PArea = PArea - Moon(Cir,T5,T6)

end if

case (’a b ’)

T1 = LineCir(Cir,Vox,’bc’,’y+’)

T2 = LineCir(Cir,Vox,’da’,’y+’)

T3 = Vox%b

T4 = Vox%a

PArea = PArea1(Cir,T1,T2,T3,T4,’y’)

case (’c d ’)

T1 = LineCir(Cir,Vox,’da’,’y-’)

T2 = LineCir(Cir,Vox,’bc’,’y-’)

T3 = Vox%d

T4 = Vox%c

PArea = PArea1(Cir,T1,T2,T3,T4,’y’)

case default

write(*,*) ’PDM_Partial_Mass|(1,2)|2 corners|wrong combination: ’//CV%cnr(1)//CV%cnr(2)

stop

end select

else if(Cir%r < CV%dcnr(4)) then ! three corners inside

select case(CV%cnr(4))

case (’b ’)

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T2 = LineCir(Cir,Vox,’bc’,’y-’)

T3 = Vox%a

T4%x = T3%x

T4%y = T2%y

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)
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PArea = PArea + abs((T4%x-Vox%c%x)*(T4%y-Vox%c%y))

case (’c ’)

T1 = LineCir(Cir,Vox,’bc’,’y+’)

T2 = LineCir(Cir,Vox,’cd’,’x+’)

T4 = Vox%d

T3%x = T4%x

T3%y = T1%y

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

PArea = PArea + abs((T3%x-Vox%b%x)*(T3%y-Vox%b%y))

case default

write(*,*) ’PDM_Partial_Mass|(1,2)|3 corners|no such corner: ’//CV%cnr(4)

stop

end select

else ! all inside

PArea = AVox

end if

case default

stop ’Partial_Mass|Wrong mapped index into 1st row’

end select row1

! (2,:)

case (2)

row2: select case(idx%j)

! - (2,1)

case (1)

iab = get_side_i(CV,’ab’)

if(Cir%r <= CV%dsid(iab)) then ! all outside

PArea = 0d0

else if(Cir%r <= CV%dcnr(1)) then ! some but no corners inside

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T2 = LineCir(Cir,Vox,’ab’,’x-’)

PArea = Moon(Cir,T1,T2)

icd = Get_Side_i(CV,’cd’)

if(Cir%r > CV%dsid(icd)) then ! beyond the far side

T3 = LineCir(Cir,Vox,’cd’,’x+’)

T4 = LineCir(Cir,Vox,’cd’,’x-’)

PArea = PArea - Moon(Cir,T3,T4)

end if

else if(Cir%r < CV%dcnr(2)) then ! one corner inside

select case(CV%cnr(1))

case (’a ’)

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T2 = LineCir(Cir,Vox,’da’,’y+’)

T3 = Vox%a

T4 = T2

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

case (’b ’)

T1 = LineCir(Cir,Vox,’bc’,’y+’)

T2 = LineCir(Cir,Vox,’ab’,’x-’)

T3 = T1

T4 = Vox%b

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

case default

write(*,*) ’PDM_Partial_Mass|(1,2)|1 corner|wrong corner: ’//CV%cnr(1)

stop

end select

else if(Cir%r < CV%dcnr(2)) then ! one corner inside

icd = Get_Side_i(CV,’cd’)

select case(CV%cnr(1))

case (’a ’)

if(Cir%r > CV%dsid(icd)) then ! beyond the far side

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T3 = Vox%a

T4 = LineCir(Cir,Vox,’da’,’y+’)

T2%y = T4%y

T2%x = TCross(T2%y,’x+’,Cir)

T5 = LineCir(Cir,Vox,’cd’,’x+’)

T6 = LineCir(Cir,Vox,’cd’,’x-’)

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)
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PArea = PArea + Moon(Cir,T2,T4) - Moon(Cir,T5,T6)

else

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T2 = LineCir(Cir,Vox,’da’,’y+’)

T3 = Vox%a

T4 = T2

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

end if

case (’b ’)

if(Cir%r > CV%dsid(icd)) then ! beyond the far side

T2 = LineCir(Cir,Vox,’ab’,’x-’)

T3 = LineCir(Cir,Vox,’bc’,’y+’)

T4 = Vox%b

T1%y = T3%y

T1%x = TCross(T1%y,’x-’,Cir)

T5 = LineCir(Cir,Vox,’cd’,’x+’)

T6 = LineCir(Cir,Vox,’cd’,’x-’)

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

PArea = PArea + Moon(Cir,T2,T4) - Moon(Cir,T5,T6)

else

T1 = LineCir(Cir,Vox,’bc’,’y+’)

T2 = LineCir(Cir,Vox,’ab’,’x-’)

T3 = T1

T4 = Vox%b

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

end if

case default

write(*,*) ’PDM_Partial_Mass|(2,1)|1 corner|wrong corner: ’//CV%cnr(1)

stop

end select

else if(Cir%r < CV%dcnr(3)) then ! two corners inside

select case(CV%cnr(1)//CV%cnr(2))

case (’a b ’, ’b a ’)

T1 = LineCir(Cir,Vox,’bc’,’y+’)

T2 = LineCir(Cir,Vox,’da’,’y+’)

T3 = Vox%b

T4 = Vox%a

PArea = PArea1(Cir,T1,T2,T3,T4,’y’)

icd = Get_Side_i(CV,’cd’)

if(Cir%r > CV%dsid(icd)) then ! beyond the far side

T5 = LineCir(Cir,Vox,’cd’,’x+’)

T6 = LineCir(Cir,Vox,’cd’,’x-’)

PArea = PArea - Moon(Cir,T5,T6)

end if

case (’b c ’)

T1 = LineCir(Cir,Vox,’cd’,’x-’)

T2 = LineCir(Cir,Vox,’ab’,’x-’)

T3 = Vox%c

T4 = Vox%b

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

case (’a d ’)

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T2 = LineCir(Cir,Vox,’cd’,’x+’)

T3 = Vox%a

T4 = Vox%d

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

case default

write(*,*) ’PDM_Partial_Mass|(2,1)|2 corners|wrong combination: ’//CV%cnr(1)//CV%cnr(2)

stop

end select

else if(Cir%r < CV%dcnr(4)) then ! three corners inside

select case(CV%cnr(4))

case (’c ’)

T1 = LineCir(Cir,Vox,’bc’,’y+’)

T2 = LineCir(Cir,Vox,’cd’,’x+’)

T4 = Vox%d

T3%x = T4%x

T3%y = T1%y
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PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

PArea = PArea + abs((T1%x-Vox%a%x)*(T1%y-Vox%a%y))

case (’d ’)

T1 = LineCir(Cir,Vox,’cd’,’x-’)

T2 = LineCir(Cir,Vox,’da’,’y+’)

T3 = Vox%c

T4%x = T3%x

T4%y = T2%y

PArea = PArea1(Cir,T1,T2,T3,T4,’x’)

PArea = PArea + abs((T2%x-Vox%b%x)*(T2%y-Vox%b%y))

case default

write(*,*) ’PDM_Partial_Mass|(2,1)|3 corners|no such corner: ’//CV%cnr(4)

stop

end select

else ! all inside

PArea = AVox

end if

! - (2,2)

case (2)

cnr: if(Cir%r <= CV%dcnr(1)) then ! no corner inside

sid1: if(Cir%r <= CV%dsid(1)) then ! all inside

PArea = ACir

else if(Cir%r <= CV%dsid(2)) then ! cross 1 side

select case(CV%sid(1))

case (’ab’)

T1 = LineCir(Cir,Vox,’ab’,’x-’)

T2 = LineCir(Cir,Vox,’ab’,’x+’)

case (’bc’)

T1 = LineCir(Cir,Vox,’bc’,’y-’)

T2 = LineCir(Cir,Vox,’bc’,’y+’)

case (’cd’)

T1 = LineCir(Cir,Vox,’cd’,’x+’)

T2 = LineCir(Cir,Vox,’cd’,’x-’)

case (’da’)

T1 = LineCir(Cir,Vox,’da’,’y+’)

T2 = LineCir(Cir,Vox,’da’,’y-’)

case default

write(*,*) ’Partial_Mass|(2,2)|cross 1 side|no this side: ’//CV%sid(1)

stop

end select

PArea = ACir - Moon(Cir,T1,T2)

else if(Cir%r <= CV%dsid(3)) then ! cross 2 sides

select case(CV%sid(1)//CV%sid(2))

case (’abcd’, ’cdab’)

T1 = LineCir(Cir,Vox,’ab’,’x-’)

T2 = LineCir(Cir,Vox,’ab’,’x+’)

T3 = LineCir(Cir,Vox,’cd’,’x+’)

T4 = LineCir(Cir,Vox,’cd’,’x-’)

case (’abbc’, ’bcab’)

T1 = LineCir(Cir,Vox,’ab’,’x-’)

T2 = LineCir(Cir,Vox,’ab’,’x+’)

T3 = LineCir(Cir,Vox,’bc’,’y-’)

T4 = LineCir(Cir,Vox,’bc’,’y+’)

case (’bccd’, ’cdbc’)

T1 = LineCir(Cir,Vox,’bc’,’y-’)

T2 = LineCir(Cir,Vox,’bc’,’y+’)

T3 = LineCir(Cir,Vox,’cd’,’x+’)

T4 = LineCir(Cir,Vox,’cd’,’x-’)

case (’cdda’, ’dacd’)

T1 = LineCir(Cir,Vox,’cd’,’x+’)

T2 = LineCir(Cir,Vox,’cd’,’x-’)

T3 = LineCir(Cir,Vox,’da’,’y+’)

T4 = LineCir(Cir,Vox,’da’,’y-’)

case (’daab’, ’abda’)

T1 = LineCir(Cir,Vox,’da’,’y+’)

T2 = LineCir(Cir,Vox,’da’,’y-’)

T3 = LineCir(Cir,Vox,’ab’,’x-’)

T4 = LineCir(Cir,Vox,’ab’,’x+’)
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case (’bcda’, ’dabc’)

T1 = LineCir(Cir,Vox,’bc’,’y-’)

T2 = LineCir(Cir,Vox,’bc’,’y+’)

T3 = LineCir(Cir,Vox,’da’,’y+’)

T4 = LineCir(Cir,Vox,’da’,’y-’)

case default

write(*,*) ’Partial_Mass|(2,2)|cross 2 sides|no such side combination: ’//CV%sid(1)//CV%sid(2)

stop

end select

PArea = ACir - Moon(Cir,T1,T2) - Moon(Cir,T3,T4)

else if(Cir%r <= CV%dsid(4)) then ! cross 3 sides

select case(CV%sid(4))

case (’ab’)

T1 = LineCir(Cir,Vox,’bc’,’y-’)

T2 = LineCir(Cir,Vox,’bc’,’y+’)

T3 = LineCir(Cir,Vox,’cd’,’x+’)

T4 = LineCir(Cir,Vox,’cd’,’x-’)

T5 = LineCir(Cir,Vox,’da’,’y+’)

T6 = LineCir(Cir,Vox,’da’,’y-’)

case (’bc’)

T1 = LineCir(Cir,Vox,’cd’,’x+’)

T2 = LineCir(Cir,Vox,’cd’,’x-’)

T3 = LineCir(Cir,Vox,’da’,’y+’)

T4 = LineCir(Cir,Vox,’da’,’y-’)

T5 = LineCir(Cir,Vox,’ab’,’x-’)

T6 = LineCir(Cir,Vox,’ab’,’x+’)

case (’cd’)

T1 = LineCir(Cir,Vox,’da’,’y+’)

T2 = LineCir(Cir,Vox,’da’,’y-’)

T3 = LineCir(Cir,Vox,’ab’,’x-’)

T4 = LineCir(Cir,Vox,’ab’,’x+’)

T5 = LineCir(Cir,Vox,’bc’,’y-’)

T6 = LineCir(Cir,Vox,’bc’,’y+’)

case (’da’)

T1 = LineCir(Cir,Vox,’ab’,’x-’)

T2 = LineCir(Cir,Vox,’ab’,’x+’)

T3 = LineCir(Cir,Vox,’bc’,’y-’)

T4 = LineCir(Cir,Vox,’bc’,’y+’)

T5 = LineCir(Cir,Vox,’cd’,’x+’)

T6 = LineCir(Cir,Vox,’cd’,’x-’)

case default

write(*,*) ’Partial_Mass|(2,2)|cross 3 sides|no such side left: ’//CV%sid(4)

stop

end select

PArea = ACir - Moon(Cir,T1,T2) - Moon(Cir,T3,T4)- Moon(Cir,T5,T6)

else ! cross all 4 sides

T1 = LineCir(Cir,Vox,’ab’,’x-’)

T2 = LineCir(Cir,Vox,’ab’,’x+’)

T3 = LineCir(Cir,Vox,’bc’,’y-’)

T4 = LineCir(Cir,Vox,’bc’,’y+’)

T5 = LineCir(Cir,Vox,’cd’,’x+’)

T6 = LineCir(Cir,Vox,’cd’,’x-’)

T7 = LineCir(Cir,Vox,’da’,’y+’)

T8 = LineCir(Cir,Vox,’da’,’y-’)

PArea = ACir - Moon(Cir,T1,T2) - Moon(Cir,T3,T4)- Moon(Cir,T5,T6) - Moon(Cir,T7,T8)

end if sid1

else if(Cir%r <= CV%dcnr(2)) then ! 1 corner inside

select case(CV%cnr(1))

case (’a ’)

PArea = PA22OneCorner(Cir, Vox)

case (’b ’)

Cir22 = Cir

Cir22%x = 2*VC%x - Cir%x

PArea = PA22OneCorner(Cir22, Vox)

case (’c ’)

Cir22 = Cir

Cir22%x = 2*VC%x - Cir%x

Cir22%y = 2*VC%y - Cir%y
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PArea = PA22OneCorner(Cir22, Vox)

case (’d ’)

Cir22 = Cir

Cir22%y = 2*VC%y - Cir%y

PArea = PA22OneCorner(Cir22, Vox)

case default

write(*,*) ’PDM_Partial_Mass|(2,2)|1 corner|no such corner: ’//CV%cnr(1)

stop

end select

else if(Cir%r <= CV%dcnr(3)) then ! 2 corners inside

select case(CV%cnr(1)//CV%cnr(2))

case (’a b ’, ’b a ’)

PArea = PA22TwoCorner(Cir, Vox, ’ab’)

case (’a d ’, ’d a ’)

PArea = PA22TwoCorner(Cir, Vox, ’da’)

case (’c d ’, ’d c ’)

Cir22 = Cir

Cir22%y = 2*VC%y - Cir%y

PArea = PA22TwoCorner(Cir22, Vox, ’ab’)

case (’b c ’, ’c b ’)

Cir22 = Cir

Cir22%x = 2*VC%x - Cir%x

PArea = PA22TwoCorner(Cir22, Vox, ’da’)

case default

write(*,*) ’PDM_Partial_Mass|(2,2)|2 corners|no such corner combination: ’//CV%cnr(1)//CV%cnr(2)

stop

end select

else if(Cir%r <= CV%dcnr(4)) then ! 3 corners inside

select case(CV%cnr(4))

case (’a ’)

PArea = PA22ThreeCorner(Cir, Vox)

case (’b ’)

Cir22 = Cir

Cir22%x = 2*VC%x - Cir%x

PArea = PA22ThreeCorner(Cir22, Vox)

case (’c ’)

Cir22 = Cir

Cir22%x = 2*VC%x - Cir%x

Cir22%y = 2*VC%y - Cir%y

PArea = PA22ThreeCorner(Cir22, Vox)

case (’d ’)

Cir22 = Cir

Cir22%y = 2*VC%y - Cir%y

PArea = PA22ThreeCorner(Cir22, Vox)

case default

write(*,*) ’PDM_Partial_Mass|(2,2)|3 corners|no such corner left: ’//CV%cnr(4)

stop

end select

else ! 4 corners inside

PArea = AVox

end if cnr

case default

stop ’Partial_Mass|Wrong mapped index into 2nd row’

end select row2

case default

stop ’Partial_Mass|no such mapped index’

end select regn

end function Partial_Area

integer function get_side_i(CV, sgn) result(isgn)

!**********************************************************************

! See what’s the index i for side name sn.

!**********************************************************************

type (Circle2Voxel), intent(in) :: CV

character (len=2), intent(in) :: sgn

integer :: i
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!!!

do i=1, 4

if(CV%sid(i)==sgn) then

isgn = i

exit

end if

end do

end function get_side_i

type (Point) function LineCir(Cir,Vox,Side,sgn) result(T)

!**********************************************************************

! Calculate the interception point T of Cir and Side

!**********************************************************************

type (Circle), intent(in) :: Cir

type (Rectangle), intent(in) :: Vox

character (len=2), intent(in) :: Side, sgn

!!!

select case (Side)

case (’ab’)

T%y = Vox%a%y

T%x = TCross(T%y,sgn,Cir)

case (’bc’)

T%x = Vox%b%x

T%y = TCross(T%x,sgn,Cir)

case (’cd’)

T%y = Vox%c%y

T%x = TCross(T%y,sgn,Cir)

case (’da’)

T%x = Vox%d%x

T%y = TCross(T%x,sgn,Cir)

case default

write(*,*) ’LineCir: no such side: ’//Side

stop

end select

end function LineCir

real(8) function TCross(v1, sgn, Cir) result(v2)

!**********************************************************************

! Solve for the other coordinate v2, given v1

!**********************************************************************

real(8), intent(in) :: v1

character (len=2), intent(in) :: sgn

type (Circle), intent(in) :: Cir

!!!

if(sgn==’x-’) then

v2 = Cir%x - sqrt(Cir%r**2 - (v1-Cir%y)**2)

else if(sgn==’x+’) then

v2 = Cir%x + sqrt(Cir%r**2 - (v1-Cir%y)**2)

else if(sgn==’y-’) then

v2 = Cir%y - sqrt(Cir%r**2 - (v1-Cir%x)**2)

else if(sgn==’y+’) then

v2 = Cir%y + sqrt(Cir%r**2 - (v1-Cir%x)**2)

else

write(*,*) ’TCross: no such sign: ’//sgn

stop

end if

end function TCross
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real(8) function Moon(Cir,T1,T2) result(AA)

!**********************************************************************

! Calculate the area between segment T1T2 and small arc T1T2

!**********************************************************************

type (Circle), intent(in) :: Cir

type (Point), intent(in) :: T1, T2

real(8) :: LStrg ! half of the segment T1T2

real(8) :: Theta ! half of the angle extended by segment T1T2

real(8) :: Height

!!!

LStrg = 0.5*sqrt((T1%x - T2%x)**2 + (T1%y - T2%y)**2)

Theta = dasin(Lstrg/Cir%r)

Height = sqrt(Cir%r**2 - LStrg**2)

AA = Theta*Cir%r**2 - LStrg*Height

end function Moon

real(8) function PArea1(Cir, T1, T2, T3, T4, sgn) result(AA)

!**********************************************************************

! Calculate the intercepted area S = 1/2*(a+b)*h + moon(Cir,T1,T2).

! Note: T1T3 // T2T4, T3T4 perpendicular to T2T4 or T1T3;

! a = abs(T1 - T3); b = abs(T2 - T4); h = abs(T3 - T4)

!**********************************************************************

type (Circle), intent(in) :: Cir

type (Point), intent(in) :: T1, T2, T3, T4

character (len=1), intent(in) :: sgn ! direction in which parallel sides are

real(8) :: ds1, ds2, dh

real(8) :: LStrg ! half of the segment T1T2

real(8) :: Theta ! half of the angle extended by segment T1T2

real(8) :: Height

!!!

select case(sgn)

case(’x’)

ds1 = abs(T1%x - T3%x)

ds2 = abs(T2%x - T4%x)

dh = abs(T3%y - T4%y)

case(’y’)

ds1 = abs(T1%y - T3%y)

ds2 = abs(T2%y - T4%y)

dh = abs(T3%x - T4%x)

end select

AA = 0.5*(ds1 + ds2)*dh

AA = AA + Moon(Cir,T1,T2)

end function PArea1

real(8) function PA22OneCorner(Cir, Vox) result(AA)

!**********************************************************************

! Calculate the intercepted area given the circle is in region (2,2) and

! only corner a is inside.

! * ’ab’ and ’da’ already crosssed so only need to check

! crossing ’bc’ and ’cd’ or not

!**********************************************************************

type (Circle), intent(in) :: Cir

type (Rectangle), intent(in) :: Vox

type (Circle2Voxel) :: CV

type (Point) :: T1, T2, T3, T4, T5, T6

integer (i4) :: isid
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!!!

CV = C2V(Cir,Vox)

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T2 = LineCir(Cir,Vox,’da’,’y+’)

T3 = Vox%a

T4 = T2

AA = PArea1(Cir,T1,T2,T3,T4,’x’)

! -- side ’bc’

isid = get_side_i(CV, ’bc’)

if(CV%dsid(isid)<Cir%r) then

T5 = LineCir(Cir,Vox,’bc’,’y-’)

T6 = LineCir(Cir,Vox,’bc’,’y+’)

AA = AA - Moon(Cir,T5,T6)

end if

! -- side ’cd’

isid = get_side_i(CV, ’cd’)

if(CV%dsid(isid)<Cir%r) then

T5 = LineCir(Cir,Vox,’cd’,’x+’)

T6 = LineCir(Cir,Vox,’cd’,’x-’)

AA = AA - Moon(Cir,T5,T6)

end if

end function PA22OneCorner

real (r8) function PA22TwoCorner(Cir, Vox, sgn) result(AA)

!**********************************************************************

! Calculate the intercepted area given the circle is in region (2,2) and

! 2 corners are inside

!**********************************************************************

type (Circle), intent(in) :: Cir

type (Rectangle), intent(in) :: Vox

character (len=2), intent(in) :: sgn

type (Circle2Voxel) :: CV

type (Point) :: T1, T2, T3, T4, T5, T6

integer :: icd, ibc

!!!

CV = C2V(Cir,Vox)

select case(sgn)

case (’ab’)

T1 = LineCir(Cir,Vox,’bc’,’y+’)

T2 = LineCir(Cir,Vox,’da’,’y+’)

T3 = Vox%b

T4 = Vox%a

AA = PArea1(Cir,T1,T2,T3,T4,’y’)

icd = get_side_i(CV,’cd’)

if(Cir%r > CV%dsid(icd)) then

T5 = LineCir(Cir,Vox,’cd’,’x+’)

T6 = LineCir(Cir,Vox,’cd’,’x-’)

AA = AA - Moon(Cir,T5,T6)

end if

case (’da’)

T1 = LineCir(Cir,Vox,’ab’,’x+’)

T2 = LineCir(Cir,Vox,’cd’,’x+’)

T3 = Vox%a

T4 = Vox%d

AA = PArea1(Cir,T1,T2,T3,T4,’x’)

ibc = get_side_i(CV,’bc’)

if(Cir%r > CV%dsid(ibc)) then

T5 = LineCir(Cir,Vox,’bc’,’y-’)

T6 = LineCir(Cir,Vox,’bc’,’y+’)
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AA = AA - Moon(Cir,T5,T6)

end if

case default

write(*,*) ’PA22TwoCorner|2 corners|no such corner combination: ’//sgn

end select

end function PA22TwoCorner

real(8) function PA22ThreeCorner(Cir, Vox) result(AA)

!**********************************************************************

! Calculate the intercepted area given the circle is in region (2,2) and

! only corner a is outside

!**********************************************************************

type (Circle), intent(in) :: Cir

type (Rectangle), intent(in) :: Vox

type (Circle2Voxel) :: CV

type (Point) :: T1, T2, T3, T4

!!!

CV = C2V(Cir,Vox)

T1 = LineCir(Cir,Vox,’da’,’y-’)

T2 = LineCir(Cir,Vox,’ab’,’x-’)

T4 = Vox%b

T3%x = T4%x

T3%y = T1%y

AA = PArea1(Cir,T1,T2,T3,T4,’x’)

AA = AA + abs((T1%x-Vox%c%x)*(T1%y-Vox%c%y))

end function PA22ThreeCorner

type (Index) function Get_Index(Cir,Vox) result(Idx)

!**********************************************************************

! get the relative location of the circle’s origin to the rectangle.

!

! ------------------------->y

! | (1,1) | (1,2) | (1,3) |

! --------a-------d--------

! | (2,1) | (2,2) | (2,3) |

! --------b-------c--------

! | (3,1) | (3,2) | (3,3) |

! -------------------------

! \/

! x

!**********************************************************************

type (Circle), intent(in) :: Cir

type (Rectangle), intent(in) :: Vox

!!!

Idx%k = 0

if(Cir%x <= Vox%a%x) then

if(Cir%y <= Vox%a%y) then ! - (1,1)

Idx%i = 1

Idx%j = 1

else if(Cir%y >= Vox%c%y) then ! - (1,3)

Idx%i = 1

Idx%j = 3

else ! - (1,2)

Idx%i = 1

Idx%j = 2

end if

else if(Cir%x >= Vox%c%x) then
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if(Cir%y <= Vox%a%y) then ! - (3,1)

Idx%i = 3

Idx%j = 1

else if(Cir%y >= Vox%c%y) then ! - (3,3)

Idx%i = 3

Idx%j = 3

else ! - (3,2)

Idx%i = 3

Idx%j = 2

end if

else

if(Cir%y <= Vox%a%y) then ! - (2,1)

Idx%i = 2

Idx%j = 1

else if(Cir%y >= Vox%c%y) then ! - (2,3)

Idx%i = 2

Idx%j = 3

else ! - (2,2)

Idx%i = 2

Idx%j = 2

end if

end if

end function Get_Index

type (Circle2Voxel) function C2V(Cir,Vox) result(CV)

!**********************************************************************

! get the distance of the circle’s origin to 4 corners: a,b,c and d of

! a voxel(im,jm)

!**********************************************************************

type (Circle), intent(in) :: Cir

type (Rectangle), intent(in) :: Vox

real(8) :: dp(4), dsd(4)

integer :: i, j

!!!

dp(1) = sqrt((Cir%x - Vox%a%x)**2 + (Cir%y - Vox%a%y)**2)

dp(2) = sqrt((Cir%x - Vox%b%x)**2 + (Cir%y - Vox%b%y)**2)

dp(3) = sqrt((Cir%x - Vox%c%x)**2 + (Cir%y - Vox%c%y)**2)

dp(4) = sqrt((Cir%x - Vox%d%x)**2 + (Cir%y - Vox%d%y)**2)

dsd(1) = abs(Cir%y - Vox%a%y)

dsd(2) = abs(Cir%x - Vox%c%x)

dsd(3) = abs(Cir%y - Vox%c%y)

dsd(4) = abs(Cir%x - Vox%a%x)

! -- sort the distances to the corner while remembering their correspondances

CV%dcnr = dp

CV%cnr = cname

call sort(CV%dcnr,CV%cnr)

! -- sort the distances to the side while remembering their correspondances

CV%dsid = dsd

CV%sid = sname

call sort(CV%dsid,CV%sid)

end function C2V

SUBROUTINE sort(arr,carr)

!**********************************************************************

! Insertion sort

!**********************************************************************

real(r8), intent(inout) :: arr(:)

character (len=2), intent(inout) :: carr(:)
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REAL(r8) :: a

character (len=2) :: ca

INTEGER(i4) :: n, i, j

n = size(arr)

do j=2, n

a = arr(j)

ca = carr(j)

do i=j-1, 1, -1

if (arr(i) <= a) exit

arr(i+1) = arr(i)

carr(i+1) = carr(i)

end do

arr(i+1) = a

carr(i+1) = ca

end do

end subroutine sort

subroutine Get_abcd(im,jm)

!**********************************************************************

! get the corners -- a,b,c and d’s coordinates of voxel(im,jm)

!

! comments:

! this is used in part to calculate the partial area by

! airway/artery/vein in lung. so limit to lung’s boundaries

!**********************************************************************

integer, intent(in) :: im, jm

!!!

! -- a

xyVox%a%x = max(XDose(im), LBndX(1))

xyVox%a%y = max(YDose(jm), LBndY(1))

! -- c

xyVox%c%x = min(XDose(im+1), LBndX(2))

xyVox%c%y = min(YDose(jm+1), LBndY(2))

! -- b

xyVox%b%x = xyVox%c%x

xyVox%b%y = xyVox%a%y

! -- d

xyVox%d%x = xyVox%a%x

xyVox%d%y = xyVox%c%y

end subroutine Get_abcd

subroutine FracVol(bx1, bx2, vol)

!**********************************************************************

! get the volume of intersection of box1 and box2

! region: 1 --> surrounding water; 2 -- lung; 3 -- mix

!**********************************************************************

type (Box), intent(in) :: bx1, bx2

real (r8), intent(out) :: vol

real (r8) :: a(2), b(2), ds

!!!

vol = 1.d0

! -- x direction

a(1) = bx1%head%x

a(2) = bx1%tail%x

b(1) = bx2%head%x
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b(2) = bx2%tail%x

call Overlap(a, b, ds)

vol = vol*ds

! -- y direction

a(1) = bx1%head%y

a(2) = bx1%tail%y

b(1) = bx2%head%y

b(2) = bx2%tail%y

call Overlap(a, b, ds)

vol = vol*ds

! -- z direction

a(1) = bx1%head%z

a(2) = bx1%tail%z

b(1) = bx2%head%z

b(2) = bx2%tail%z

call Overlap(a, b, ds)

vol = vol*ds

if(vol<ZERO) then

write(*,*) "Error in FracVol(), check it"

stop

end if

end subroutine FracVol

subroutine Switch(x,y)

!------------------------------------------

! switch x and y

!------------------------------------------

real (8), intent(inout) :: x, y

real (8) :: tmp

tmp = x; x = y; y = tmp

end subroutine Switch

subroutine Overlap(a, b, ds)

!------------------------------------------

! given two 1D segments, determine the overlap

!------------------------------------------

real (r8), intent(inout) :: a(2), b(2)

real (r8), intent(out) :: ds

real (r8) :: La, Lb

!!!

! -- always let La <= Lb

La = a(2) - a(1)

Lb = b(2) - b(1)

if(La>Lb) then

call Switch(La, Lb)

call Switch(a(1), b(1))

call Switch(a(2), b(2))

end if
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if(a(2)<=b(1)) then ! (1) a1____a2 b1_______b2

ds = ZERO

else if(a(2)<b(2)) then

if(a(1)<b(1)) then ! (2) a1___b1_a2______b2

ds = a(2) - b(1)

else ! (3) b1__a1____a2_____b2

ds = La

end if

else

if(a(1)<b(2)) then ! (4) b1_____a1__b2__a2

ds = b(2) - a(1)

else ! (5) b1_______b2 a1____a2

ds = ZERO

end if

end if

end subroutine Overlap

real (r8) function VBox(bx) result(vol)

!**********************************************************************

! get its volume given a box

!**********************************************************************

type (Box), intent(in) :: bx

!!!

vol = abs((bx%tail%x - bx%head%x)* &

(bx%tail%y - bx%head%y)* &

(bx%tail%z - bx%head%z))

end function VBox

end Module NPDM_Get_Partial_Mass

module NPDM_SetGrid

use NPDM_Parameters

implicit none

contains

subroutine ReadGrid(axis,buffer,ND,NDRgn,NDT,DBnD,dD)

character (len=1), intent(in) :: axis

character (len=128), intent(in) :: buffer

integer (i4), intent(inout) :: ND(:), NDRgn, NDT

real (r8), intent(inout) :: DBnd(:), dD(:)

real (r8) :: DLim1, DLim2

integer (i4) :: i, j, k

!!!

NDRgn = NDRgn + 1

read(buffer,*) dD(NDRgn), DLim1, DLim2

if(DLim1>=DLim2) then

write(*,’(a)’) ’Dose grid ’//axis//’-bounds should be increasing.’

stop

end if

if(NDRgn.gt.1.AND.DLim1.lt.DBnd(NDRgn)) then

write(6,’(a)’) ’The adjacent dose grid ’//axis//’-bounds overlapped.’

stop

end if

DBnd(NDRgn) = DLim1

DBnd(NDRgn+1) = DLim2

ND(NDRgn) = nint((DBnd(NDRgn+1)-DBnd(NDRgn))/dD(NDRgn))
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NDT = NDT + ND(NDRgn)

end subroutine ReadGrid

subroutine SetGrid(axis,ND,NDRgn,NDT,DBnD,dD,Dose)

character (len=1), intent(in) :: axis

integer (i4), intent(in) :: ND(:), NDRgn, NDT

real (r8), intent(in) :: DBnd(:), dD(:)

real (r8), intent(inout) :: Dose(:)

integer (i4) :: i, j, k

!!!

k = 0

do i=1, NDRgn

if(dD(i).LT.0.0) then

write(*,’(a,i3,a)’) ’d’//axis//’D(’,i,’) could not be negative.’

stop

end if

do j=1, ND(i)

k = k + 1

Dose(k) = DBnd(i) + dD(i)*(j-1)

end do

end do

Dose(NDT+1) = DBnd(NDRgn+1)

end subroutine SetGrid

end module NPDM_SetGrid

!

! type definitions

!

module NPDM_Types

use NPDM_Parameters

type :: Point

real (r8) :: x, &

y, &

z

end type Point

type :: Circle

real (r8) :: x, &

y, &

r

end type Circle

type :: Airway

type (Circle) :: ci, &

co, &

ca, &

cbd

end type Airway

type :: Rectangle

type (Point) :: a, b, c, d

!!!!!!!!!!y+

!a d!

! !

!b c!

!!!!!!!!!!

!x+

end type Rectangle
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type :: Box

type (Point) :: head, tail

end type Box

type :: Circle2Voxel

real (r8) :: dcnr(4), &

dsid(4)

character (len=2) :: cnr(4), &

sid(4)

end type Circle2Voxel

type :: Index

integer (i4) :: i, &

j, &

k

end type Index

end module NPDM_Types

A.5 Fortran 77 PENELOPE main program, based on “Pendoses” from
the PENELOPE distribution, and modified by Liang for the 2 1

2
-D

random lung model

C *********************************************************************

C main program

C modified by L. Liang

C *********************************************************************

implicit DOUBLE precision (A-H,O-Z), integer*4 (I-N)

C

parameter (PI=3.1415926535897932D0, TWOPI=2.0D0*PI,

1 RA2DE=180.0D0/PI, DE2RA=PI/180.0D0)

C -- command line argument relative

integer narg

character*32 argi, argo, argsfx

logical exists

integer len_sfx

C

character*2 LIT

character*128 BUFFER, MBuffer

character*32 PFILE,GFILE, MFILE, DUMPF,RESUMEF

C

character*6 KWORD,

1 KWTITL,KWKPAR,KWSENE,KWSPEC, KWSEXT,KWSHEI,KWSRAD,KWSPOS,

2 KWSDIR,KWSAPE,KWNMAT,KWSIMP, KWPFNA,KWNBE ,KWNBTH,KWNBPH,

3 KWNBZ ,KWNBR ,KWABSE,KWNBTL, KWDO2D,KWIFOR,KWRESU,KWDUMP,

4 KWNSIM,KWTIME,KWRSEE,KWCOMM,

C -- ADDED KEYWORDS BY LIANG

5 KWSCIR, KWSSQU, KWGFNM, KWMFNM, KWFOUT, KWNITR,

6 KWDXDO, KWDYDO, KWDZDO

parameter(

1 KWTITL=’TITLE ’,KWKPAR=’SKPAR ’,KWSENE=’SENERG’,KWSPEC=’SPECTR’,

2 KWSEXT=’SEXTND’,KWSHEI=’STHICK’,KWSRAD=’SRADII’,KWSPOS=’SPOSIT’,

3 KWSDIR=’SDIREC’,KWSAPE=’SAPERT’,KWNMAT=’NMAT ’,KWSIMP=’SIMPAR’,

4 KWPFNA=’PFNAME’,KWNBE =’NBE ’,KWNBTH=’NBTH ’,KWNBPH=’NBPH ’,

5 KWNBZ =’NBZ ’,KWNBR =’NBR ’,KWNBTL=’NBTL ’,KWABSE=’ABSEN ’,

6 KWDO2D=’DOSE2D’,KWIFOR=’IFORCE’,KWRESU=’RESUME’,KWDUMP=’DUMPTO’,

7 KWNSIM=’NSIMSH’,KWTIME=’TIME ’,KWRSEE=’RSEED ’,KWCOMM=’ ’)

C -- ADDED KEYWORDS BY LIANG

parameter (KWSCIR=’SCIRCU’) ! circular field

parameter (KWSSQU=’SSQURE’) ! square field

parameter (KWGFNM=’GFNAME’) ! geometry file name

parameter (KWMFNM=’MFNAME’) ! mass file name

parameter (KWFOUT=’FULOUT’) ! full output control
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parameter (KWNITR=’NINTER’) ! timing output interval

parameter (KWDXDO=’DXDOSE’) !

parameter (KWDYDO=’DYDOSE’) !

parameter (KWDZDO=’DZDOSE’) !

C -- Main-PENELOPE commons.

parameter (MAXMAT=10)

common/CSIMPA/EABS(3,MAXMAT),C1(MAXMAT),C2(MAXMAT),WCC(MAXMAT),

1 WCR(MAXMAT)

common/TRACK/E,X,Y,Z,U,V,W,WGHT,KPAR,IBODY,MAT,ILB(5)

common/RSEED/ISEED1,ISEED2

C -- Geometry.

dimension PARINP(20)

dimension DSMAX(MAXMAT)

C -- Source.

C -- Source energy spectrum.

parameter (NSEBM=100)

dimension ES(NSEBM),PTS(NSEBM),IAS(NSEBM),FS(NSEBM)

C -- Dose grid and tallies.

parameter (NDXM=240,NDYM=300,NDZM=140)

parameter (NDRgnM=20)

parameter (NDM1=NDXM*NDYM*NDZM, NDM3=3*NDXM*NDYM*NDZM)

dimension DBndX(NDRgnM+1), DBndY(NDRgnM+1), DBndZ(NDRgnM+1)

dimension dxD(NDRgnM+1), dyD(NDRgnM+1), dzD(NDRgnM+1)

dimension NxD(NDRgnM+1), NyD(NDRgnM+1), NzD(NDRgnM+1)

dimension Dose(NDXM,NDYM,NDZM),

1 VDose(NDXM,NDYM,NDZM),

1 DoseP(NDXM,NDYM,NDZM),

3 Mass(NDXM,NDYM,NDZM),

1 LDose(NDXM,NDYM,NDZM)

double precision Mass

data Dose, VDose, DoseP/NDM3*0d0/

data LDose/NDM1*0/

Common/DoseGrid/YDose(NDYM+1),XDose(NDXM+1),ZDose(NDZM+1),

1 NyDT,NxDT,NzDT

dimension DAV(NDXM), DErr(NDXM), DRel(NDXM)

C

external RAND

C =============================================================================

C Instructions

C =============================================================================

do M=1,MAXMAT

C1(M)=0.0D0

C2(M)=0.0D0

WCC(M)=0.0D0

WCR(M)=0.0D0

EABS(1,M)=0.0D0

EABS(2,M)=0.0D0

EABS(3,M)=0.0D0

DSMAX(M)=1.0E20

end do

C -- Time counter initiation.

call TIME0

C -- Read in the input file.

narg = iargc()

if(narg.gt.0) then

if(narg.ne.3) then

write(*,*) ’** Exactly 3 input arguments: input & output’//

1 ’ files and output suffix, please **’

stop

else



216

call getarg(1, argi)

call getarg(2, argo)

call getarg(3, argsfx)

end if

else

argi = ’newpendoses.in’

argo = ’newpendoses.out’

argsfx = ’dft’

end if

inquire(FILE = argi, EXIST = exists)

if(.not. exists) then

write(*,’(2A/)’) ’ >> Cannot find file ’, argi

stop

end if

len_sfx = len_trim(argsfx)

C len_sfx = lnblnk(argsfx)

open(5,FILE=argi)

open(6,FILE=argo)

write(6,1000)

1000 format(//3X,48(’*’),/3X,’** Program NEWPENDOSES. ’,

1 ’Source and geometry. **’/3X,48(’*’))

C -- Title.

20 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 20

if(KWORD.NE.KWTITL) then

write(6,*) ’The title line does not exist.’

stop ’The title line does not exist.’

end if

write(6,1010) BUFFER

1010 format(/2X,A128)

C -- Source data.

C -- Source description.

write(6,1200)

1200 format(//3X,70(’-’),/3X,’>>>>>> Source description.’)

21 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 21

C -- primary particle type.

if(KWORD.EQ.KWKPAR) then

read(BUFFER,*) KPARP

22 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 22

else

KPARP=1

end if

if(KPARP.LT.1.OR.KPARP.GT.3) KPARP=1

if(KPARP.EQ.1) write(6,1021)

1021 format(/3X,’Primary particles: electrons’)

if(KPARP.EQ.2) write(6,1022)

1022 format(/3X,’Primary particles: photons’)

if(KPARP.EQ.3) write(6,1023)

1023 format(/3X,’Primary particles: positrons’)

C -- Initial energy of primary particles.

ISPEC=0

if(KWORD.EQ.KWSENE) then

NSEB=1

read(BUFFER,*) E0

write(6,1030) E0
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1030 format(3X,’Initial energy = ’,1P,E13.6,’ eV’)

23 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 23

else if(KWORD.EQ.KWSPEC) then

ISPEC=1

NSEB=0

24 continue

NSEB=NSEB+1

read(BUFFER,*) ES(NSEB),PTS(NSEB)

25 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 25

if(KWORD.EQ.KWSPEC) go to 24

else

E0=1.0D6

write(6,1030) E0

end if

if(ISPEC.EQ.1) THEN

if(NSEB.GT.NSEBM) THEN

write(6,*) ’NSEBM is too small.’

stop ’NSEBM is too small.’

else if(NSEB.le.1) then

write(6,*) ’The source energy spectrum is not defined.’

stop ’The source energy spectrum is not defined.’

ELSE

call SORT2(ES,PTS,NSEB)

write(6,1031)

1031 format(/3X,’Spectrum:’,7X,’I’,4X,’E_low(eV)’,4x,’E_high(eV)’,

1 5X,’P_sum(E)’,/16X,45(’-’))

do I=1,NSEB-1

write(6,’(16X,I4,1P,5E14.6)’) I,ES(I),ES(I+1),PTS(I)

end do

E0=ES(NSEB)

NSEB=NSEB-1

call IRND0(PTS,FS,IAS,NSEB)

ENDIF

ENDIF

if(E0.LT.100.0D0) then

write(6,*) ’The initial energy E0 is too small.’

stop ’The initial energy E0 is too small.’

end if

EPMAX=E0

C -- Positrons eventually give annihilation gamma-rays. The maximum

C energy of annihilation photons is .lt. 1.21*(E0+me*c**2).

if(KPARP.EQ.3) EPMAX=1.21D0*(E0+5.12D5)

C -- Source position.

if(KWORD.EQ.KWSPOS) then

read(BUFFER,*) X0,Y0,Z0

241 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 241

else

X0 = 0.0D0

Y0 = -1.0D15

Z0 = 0.0D0

end if

write(6,1040) X0,Y0,Z0

1040 format(3X,’Coordinates of centre: X0 =’,1P,E13.6,

1 ’ cm’,/30X,’Y0 =’,E13.6,’ cm’,/30X,’Z0 =’,E13.6,’ cm’)

C -- Beam direction.

if(KWORD.EQ.KWSDIR) then

read(BUFFER,*) BTHETA,BPHI

252 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER
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if(KWORD.EQ.KWCOMM) go to 252

else

BTHETA = 90.0D0

BPHI = 90.0D0

end if

write(6,1050) BTHETA,BPHI

1050 format(3X,’Beam direction angles: THETA =’,1P,E13.6,’ deg’,/

1 30X,’PHI =’,E13.6,’ deg’)

C -- Beam’s shape

if(KWORD.EQ.KWSAPE) then ! ’SAPERT’: circular field defined by aperture

ISShp = 0 ! circular field

read(BUFFER,*) BALPHA

30 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 30

write(6,1060) BALPHA

else if(KWORD.EQ.KWSCIR) then ! ’SCIRCU’: circular field defined by diameter at ssd

ISShp = 0 ! circular field

read(BUFFER,*) dlS, ssd

253 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 253

if(dlS.gt.1d-35) then

BALPHA = atan((dlS/2)/ssd)*RA2DE

write(6,1060) BALPHA

write(6,1041) dlS, ssd

else

BALPHA = 0.0d0

write(6,1060) BALPHA

end if

else if(KWORD.EQ.KWSSQU) then ! ’SSQURE’: square field defined by side length at ssd

ISShp = 1 ! square field

read(BUFFER,*) dlS, ssd

251 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 251

if(dlS.gt.1d-35) then

BALPHA = atan(sqrt(2d0)*(dlS/2)/ssd)*RA2DE

write(6,1042) dlS, ssd

else

ISShp = 0 ! pencil beam (circular of course)

BALPHA = 0.0d0

write(6,1060) BALPHA

end if

else ! pencil beam by default

ISShp = 0

BALPHA=0.0D0

write(6,1060) BALPHA

end if

1060 format(3X,’Beam aperture:’,11X,’ALPHA =’,1P,E13.6,’ deg’)

1041 format(3X,’diameter of the circle: d = ’,

1 1P,E13.6,’ cm at distance = ’,1P,E13.6,’ cm’)

1042 format(3X,’side length of the square: dl = ’,

1 1P,E13.6,’ cm at distance = ’,1P,E13.6,’ cm’)

call GCONE0(BTHETA*DE2RA,BPHI*DE2RA,BALPHA*DE2RA)

C -- Material data and Simulation parameters.

write(6,1300)

1300 format(//3X,70(’-’),/

1 3X,’>>>>>> Material data and simulation parameters.’)

C

if(KWORD.EQ.KWNMAT) then

read(BUFFER,*) NMAT

31 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER
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if(KWORD.EQ.KWCOMM) go to 31

else

write(6,*) ’You have to specify the number of materials.’

stop ’You have to specify the number of materials.’

end if

write(6,1070) NMAT

1070 format(3X,’Number of different materials = ’,I2)

if(NMAT.LT.1.OR.NMAT.GT.MAXMAT) then

write(6,*) ’Wrong number of materials.’

stop ’Wrong number of materials.’

end if

C

do M=1,NMAT

EABS(1,M) = 0.010D0*EPMAX

EABS(2,M) = 0.001D0*EPMAX

EABS(3,M) = 0.010D0*EPMAX

C1(M) = 0.10D0

C2(M) = 0.10D0

WCC(M) = EABS(1,M)

WCR(M) = EABS(2,M)

DSMAX(M) = 1.0D20

end do

C

if(KWORD.EQ.KWSIMP) then

read(BUFFER,*) M

if(M.LT.1.OR.M.GT.NMAT) then

write(6,’(A6,1X,A128)’) KWORD,BUFFER

write(6,*) ’Incorrect material number.’

stop ’Incorrect material number.’

end if

read(BUFFER,*) M,EABS(1,M),EABS(2,M),EABS(3,M),C1(M),C2(M),

1 WCC(M),WCR(M),DSMAX(M)

32 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 32

if(KWORD.EQ.KWSIMP) then

read(BUFFER,*) M

if(M.LT.1.OR.M.GT.NMAT) then

write(6,’(A6,1X,A128)’) KWORD,BUFFER

write(6,*) ’Incorrect material number.’

stop ’Incorrect material number.’

end if

read(BUFFER,*) M,EABS(1,M),EABS(2,M),EABS(3,M),C1(M),C2(M),

1 WCC(M),WCR(M),DSMAX(M)

go to 32

end if

end if

C

do M=1,NMAT

if(M.EQ.1) LIT=’st’

if(M.EQ.2) LIT=’nd’

if(M.EQ.3) LIT=’rd’

if(M.GT.3) LIT=’th’

write(6,1080) M,LIT

1080 format(/3X,’**** ’,I2,A2,’ Material’)

if(EABS(1,M).LT.1.0D2) EABS(1,M)=1.0D2

if(EABS(2,M).LT.1.0D2) EABS(2,M)=1.0D2

if(EABS(3,M).LT.1.0D2) EABS(3,M)=1.0D2

write(6,1081) EABS(1,M)

1081 format(3X,’Electron absorption energy = ’,1P,E13.6,’ eV’)

write(6,1082) EABS(2,M)

1082 format(3X,’ Photon absorption energy = ’,1P,E13.6,’ eV’)

write(6,1083) EABS(3,M)

1083 format(3X,’Positron absorption energy = ’,1P,E13.6,’ eV’)

write(6,1084) C1(M),C2(M),WCC(M),WCR(M)

1084 format(3X,’Electron-positron transport parameters:’,

1 /4X,’C1 =’,1P,E13.6,’, C2 =’,E13.6,/3X,’Wcc =’,E13.6,

2 ’ eV, Wcr =’,E13.6,’ eV’)



220

if(DSMAX(M).LT.1.0D-7) DSMAX(M)=1.0D20

write(6,1085) DSMAX(M)

1085 format(3X,’Maximum allowed step length =’,1P,E13.6,’ cm’/)

end do

C -- Initialization of PENELOPE.

C -- Material file

if(KWORD.EQ.KWPFNA) then

read(BUFFER,’(A32)’) PFILE

write(6,1090) PFILE

1090 format(/3X,’PENELOPE’’s material definition file: ’,A32)

33 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 33

else

write(6,*) ’You have to specify a material file.’

stop ’You have to specify a material file.’

end if

inquire(FILE = PFILE, EXIST = exists)

if(.not. exists) then

write(6,’(2A/)’) ’ >> Cannot find file ’, PFILE

write(*,’(2A/)’) ’ >> Cannot find file ’, PFILE

stop

end if

open(15,FILE=PFILE)

open(16,FILE=’material.’//argsfx(1:len_sfx)//’.dat’)

INFO=0

call PEINIT(EPMAX,NMAT,15,16,INFO)

CLOSE(UNIT=15)

CLOSE(UNIT=16)

C -- Geometry definition.

C

C Define here the geometry parameters that are to be altered, if any.

C PARINP(1)=

C PARINP(2)= ...

NPINP=0

C -- Geometry file

if(KWORD.EQ.KWGFNM) then

read(BUFFER,’(A32)’) GFILE

write(6,1100) GFILE

1100 format(/3X,’PENGEOM’’s geometry definition file: ’,A32,/)

26 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 26

inquire(FILE = GFILE, EXIST = exists)

if(.not. exists) then

write(6,’(2A/)’) ’ >> Cannot find file ’, GFILE

write(*,’(2A/)’) ’ >> Cannot find file ’, GFILE

stop

end if

open(15,FILE=GFILE)

call GEOMIN(PARINP,NPINP,NMATG,NBOD,15,6)

close(UNIT=15)

if(NMATG.GT.NMAT) THEN

write(6,1101)

1101 format(/6X,’Too many different materials.’)

stop ’Too many different materials.’

ENDIF

else

write(6,*) ’You have to specify a geometry file.’

stop ’You have to specify a geometry file.’

end if

C -- Mass file correspondent to the geo file above

if(KWORD.EQ.KWMFNM) then

read(BUFFER,’(A32)’) MFILE
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write(6,1102) MFILE

1102 format(/3X,’PENGEOM’’s mass file: ’,A32/)

34 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 34

else

write(6,*) ’You have to specify a mass file name although

1 it may not exist.’

stop ’You have to specify a mass file name although

1 it may not exist.’

end if

C -- Output control

if(KWORD.EQ.KWFOUT) then

read(BUFFER,*) IFullOutp

35 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 35

else

IFullOutp = 0

end if

C -- Dose grid setup.

if(KWORD.eq.KWDXDO.OR.KWORD.eq.KWDYDO.OR.KWORD.eq.KWDZDO) then

write(6,1500)

1500 format(//3X,70(’-’),/

1 3X,’>>>>>> User distributions to be tallied.’)

else

write(6,*) ’Dose grid missing.’

stop ’Dose grid missing.’

end if

C -- x- dose grid

NDxRgn = 0

NxDT = 0

if(KWORD.EQ.KWDXDO) then

271 NDxRgn = NDxRgn + 1

read(buffer,*) dxD(NDxRgn), DxLim1, DxLim2

if(DxLim1.ge.DxLim2) then

write(6,’(a)’) ’Dose grid x-bounds should be increasing.’

stop ’Dose grid x-bounds should be increasing.’

end if

if(NDxRgn.gt.1.AND.DxLim1.lt.DBndX(NDxRgn)) then

write(6,’(a)’) ’The adjacent dose grid x-bounds overlapped.’

stop ’The adjacent dose grid x-bounds overlapped.’

end if

DBndX(NDxRgn) = DxLim1

DBndX(NDxRgn+1) = DxLim2

NxD(NDxRgn) = nint(

1 (DBndX(NDxRgn+1)-DBndX(NDxRgn))/dxD(NDxRgn))

NxDT = NxDT + NxD(NDxRgn)

27 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 27

if(KWORD.EQ.KWDXDO) go to 271

if(NxDT.gt.NDXM) then

write(6,’(a)’) ’NDXM is too small.’

stop ’NDXM is too small..’

end if

else

write(6,*) ’Dose grid info in x-direction missing.’

stop ’Dose grid info in x-direction missing.’

end if

write(6,1451) dxD(1), DBndX(1), DBndX(2)

do i=2, NDxRgn

write(6,1450) dxD(i), DBndX(i), DBndX(i+1)

end do

k = 0

do i=1, NDxRgn



222

if(dxD(i).LT.0.0) then

write(6,’(a,i3,a)’) ’dxD(’,i,’) could not be negative.’

write(6,’(a,i3,a)’) ’dxD(’,i,’) could not be negative.’

stop

end if

do j=1, NxD(i)

k = k + 1

XDose(k) = DBndX(i) + dxD(i)*(j-1)

end do

end do

XDose(NxDT+1) = DBndX(NDxRgn+1)

C -- y- dose grid

NDyRgn = 0

NyDT = 0

if(KWORD.EQ.KWDYDO) then

281 NDyRgn = NDyRgn + 1

read(buffer,*) dyD(NDyRgn), DyLim1, DyLim2

if(DyLim1.ge.DyLim2) then

write(6,’(a)’) ’Dose grid y-bounds should be increasing.’

stop ’Dose grid y-bounds should be increasing.’

end if

if(NDyRgn.gt.1.AND.DyLim1.lt.DBndY(NDyRgn)) then

write(6,’(a)’) ’The adjacent dose grid y-bounds overlapped.’

stop ’The adjacent dose grid y-bounds overlapped.’

end if

DBndY(NDyRgn) = DyLim1

DBndY(NDyRgn+1) = DyLim2

NyD(NDyRgn) = nint(

1 (DBndY(NDyRgn+1)-DBndY(NDyRgn))/dyD(NDyRgn))

NyDT = NyDT + NyD(NDyRgn)

28 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 28

if(KWORD.EQ.KWDYDO) go to 281

if(NyDT.gt.NDYM) then

write(6,’(a)’) ’NDYM is too small.’

stop ’NDYM is too small..’

end if

else

write(6,*) ’Dose grid info in y-direction missing.’

stop ’Dose grid info in y-direction missing.’

end if

write(6,1452) dyD(1), DBndY(1), DBndY(2)

do i=2, NDyRgn

write(6,1450) dyD(i), DBndY(i), DBndY(i+1)

end do

k = 0

do i=1, NDyRgn

if(dyD(i).LT.0.0) then

write(6,’(a,i3,a)’) ’dyD(’,i,’) could not be negative.’

write(6,’(a,i3,a)’) ’dyD(’,i,’) could not be negative.’

stop

end if

do j=1, NyD(i)

k = k + 1

YDose(k) = DBndY(i) + dyD(i)*(j-1)

end do

end do

YDose(NyDT+1) = DBndY(NDyRgn+1)

C -- z- dose grid

NDzRgn = 0

NzDT = 0

if(KWORD.EQ.KWDZDO) then

291 NDzRgn = NDzRgn + 1

read(buffer,*) dzD(NDzRgn), DzLim1, DzLim2
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if(DzLim1.ge.DzLim2) then

write(6,’(a)’) ’Dose grid z-bounds should be increasing.’

stop ’Dose grid z-bounds should be increasing.’

end if

if(NDzRgn.gt.1.AND.DzLim1.lt.DBndZ(NDzRgn)) then

write(6,’(a)’) ’The adjacent dose grid z-bounds overlapped.’

stop ’The adjacent dose grid z-bounds overlapped.’

end if

DBndZ(NDzRgn) = DzLim1

DBndZ(NDzRgn+1) = DzLim2

NzD(NDzRgn) = nint(

1 (DBndZ(NDzRgn+1)-DBndZ(NDzRgn))/dzD(NDzRgn))

NzDT = NzDT + NzD(NDzRgn)

29 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 29

if(KWORD.EQ.KWDZDO) go to 291

if(NzDT.gt.NDZM) then

write(6,’(a)’) ’NDZM is too small.’

stop ’NDZM is too small..’

end if

else

write(6,*) ’Dose grid info in z-direction missing.’

stop ’Dose grid info in z-direction missing.’

end if

write(6,1453) dzD(1), DBndZ(1), DBndZ(2)

do i=2, NDzRgn

write(6,1450) dzD(i), DBndZ(i), DBndZ(i+1)

end do

k = 0

do i=1, NDzRgn

if(dzD(i).LT.0.0) then

write(6,’(a,i3,a)’) ’dzD(’,i,’) could not be negative.’

write(6,’(a,i3,a)’) ’dzD(’,i,’) could not be negative.’

stop

end if

do j=1, NzD(i)

k = k + 1

ZDose(k) = DBndZ(i) + dzD(i)*(j-1)

end do

end do

ZDose(NzDT+1) = DBndZ(NDzRgn+1)

1450 format( 10x,f8.3,2x,’in [’,f8.3,’,’,f8.3,’]’)

1451 format(3x,’dx:’,4x,f8.3,2x,’in [’,f8.3,’,’,f8.3,’]’)

1452 format(3x,’dy:’,4x,f8.3,2x,’in [’,f8.3,’,’,f8.3,’]’)

1453 format(3x,’dz:’,4x,f8.3,2x,’in [’,f8.3,’,’,f8.3,’]’)

if(IFullOutp.gt.0) then

inquire(FILE = MFILE, EXIST = exists)

if(.not. exists) then

write(6,’(2A/)’) ’ >> Cannot find file ’, MFILE

write(*,’(2A/)’) ’ >> Cannot find file ’, MFILE

stop

end if

open(15,FILE=MFILE)

read(15,*) NDX, NDY, NDZ

if(NDX.ne.NxDT.or.NDY.lt.NyDT.or.NDZ.ne.NzDT) then

write(6,*) ’The mass grid is not consistent with

1 the dose grid.’

stop ’The mass grid is not consistent with

1 the dose grid.’

end if

read(15,*) Mbuffer

do while(trim(Mbuffer).ne.’Mass...’)

read(15,*) Mbuffer

end do

read(15,*) ((( Mass(i,j,k),i=1,NDX),j=1,NDY),k=1,NDZ)
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close(15)

end if

C -- Job characteristics.

write(6,1700)

1700 format(//3X,70(’-’),/

1 3X,’>>>>>> Job characteristics.’)

C -- resume file

IRESUM=0

if(KWORD.EQ.KWRESU) then

read(BUFFER,’(A32)’) RESUMEF

write(6,1710) RESUMEF

1710 format(3X,’Resume simulation from previous dump file: ’,A32)

IRESUM=1

71 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 71

end if

C -- dump file

IDUMP=0

if(KWORD.EQ.KWDUMP) then

read(BUFFER,’(A32)’) DUMPF

write(6,1720) DUMPF

1720 format(3X,’Write final counter values on the dump file: ’,A32)

IDUMP=1

72 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 72

end if

C -- simulation shower number

if(KWORD.EQ.KWNSIM) then

read(BUFFER,*) NTOT

if(NTOT.LT.1) NTOT=2147483647

73 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 73

else

NTOT=2147483647

end if

write(6,1730) NTOT

1730 format(3X,’Number of showers to be simulated = ’,I11)

C -- dump interval

if(KWORD.EQ.KWNITR) then

read(BUFFER,*) NINTER

if(NINTER.LT.1) NINTER = 100000

99 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 99

else

NINTER = 100000

end if

write(6,1735) NINTER

1735 format(3X,’Number of showers to be output per interval = ’,I11)

C -- random seeds

if(KWORD.EQ.KWRSEE) then

read(BUFFER,*) ISEED1,ISEED2

74 continue

read(5,’(A6,1X,A128)’) KWORD,BUFFER

if(KWORD.EQ.KWCOMM) go to 74

else

ISEED1 = 12345

ISEED2 = 54321

end if

if(IRESUM.EQ.0) write(6,1740) ISEED1,ISEED2

1740 format(3X,’Random number generator seeds = ’,I10,’, ’,I10)

C -- simulation time

if(KWORD.EQ.KWTIME) then
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read(BUFFER,*) ITIME

else

ITIME = 100

end if

write(6,1750) ITIME

1750 format(3X,’Computation time available = ’,I12,’ sec’)

if(ITIME.LT.1) ITIME=100

C

call TIMER(TSEC)

TSECIN = TSEC

TSECA = TSEC + ITIME

write(6,1760)

1760 format(/3X,70(’-’))

C -- If ’RESUME’ is active, read previously generated counters...

NA=0

TIMEA=0.0D0

if(IRESUM.EQ.1) then

open(9,FILE=RESUMEF)

read (9,*,ERR=1800,END=1800) NAA,TIMEAA

NA=NAA

TIMEA=TIMEAA

read(9,*) ISEED1,ISEED2

read(9,*) NxDTt, NyDTt, NzDTt

if(NxDTt.ne.NxDT.or.NyDTt.ne.NyDT.or.NzDTt.ne.NzDT) then

write(6,*) ’>>Dose grid not consistent with the resume file.’

stop ’>>Dose grid not consistent with the resume file.’

end if

read(9,999) ((( Dose(i,j,k),

1 i=1,NxDT),j=1,NyDT),k=1,NzDT),

2 (((VDose(i,j,k),

3 i=1,NxDT),j=1,NyDT),k=1,NzDT)

close(9)

go to 1802

1800 continue

write(6,1801)

1801 format(/3X,’WARNING: No resume file...’,/)

end if

1802 continue

WGHT=1.0D0

C

N=NA ! Shower counter.

if(NTOT.LT.0) then

write(6,*) ’ WARNING: NTOT is too large. INTEGER*4 overflow.’

if(NTOT.LT.1) NTOT=2147483647

end if

if(N.GE.NTOT) go to 106

C ================================================================================

C Shower simulation starts here.

C ================================================================================

101 continue

N = N + 1

C -- Set the initial state of the primary particle.

KPAR = KPARP

C -- initial position ...

X = X0

Y = Y0

Z = Z0

C -- initial direction.

if(ISShp.eq.0) then ! circular field

call GCONE(U,V,W)

else if(ISShp.eq.1) then ! square field

call GCONES(U,V,W,dlS,ssd)

end if

C -- initial energy ...



226

if(ISPEC.EQ.0) then ! Monoenergetic source.

E=E0

ELSE ! Continuous spectrum. E sampled by Walker’s method.

RN=RAND(4.0D0)*NSEB+1

K=INT(RN)

RNF=RN-K

if(RNF.GT.FS(K)) THEN

KE=IAS(K)

ELSE

KE=K

ENDIF

E=ES(KE)+RAND(5.0D0)*(ES(KE+1)-ES(KE))

ENDIF

C -- Check if the trajectory intersects the material system.

call LOCATE

if(MAT.EQ.0) THEN

call STEP(1.0D30,DSEF,NCROSS)

if(MAT.EQ.0) THEN ! The particle does not enter the system.

go to 105

ENDIF

ENDIF

C -- Initialization of primary particle counters.

ILB(1)=1 ! Identifies primary particles.

ILB(2)=0

ILB(3)=0

ILB(4)=0

ILB(5)=0

C ---------------------------------------------------------------------

C -- Track simulation begins here.

C

call CLEANS ! Cleans the secondary stack.

102 continue

call START ! Starts simulation in current medium.

103 continue

call JUMP(DSMAX(MAT),DS) ! Determines segment length.

call STEP(DS,DSEF,NCROSS) ! Moves particle to end of step.

C -- Check whether the particle is outside the enclosure.

if(MAT.EQ.0) THEN

go to 104

ENDIF

C -- If the particle has crossed an interface, restart the track in the new material.

if(NCROSS.GT.0) go to 102

C -- Simulate the interaction event

call KNOCK(DE,ICOL)

C -- Dose distributions

C -- Tally it if DE>0 and inside the dose grid

if(DE.gt.1e-35) then

if(XDose(1).lt.x.AND.x.lt.XDose(NxDT+1).AND.

1 YDose(1).lt.y.AND.y.lt.YDose(NyDT+1).AND.

2 ZDose(1).lt.z.AND.z.lt.ZDose(NzDT+1)) then

call get_dose_index(x,y,z,i,j,k)

C -- total dose

if(N.NE.LDose(i,j,k)) then

Dose(i,j,k) = Dose(i,j,k) + DoseP(i,j,k)

VDose(i,j,k) = VDose(i,j,k) + DoseP(i,j,k)**2

DoseP(i,j,k) = DE*WGHT

LDose(i,j,k) = N

else

DoseP(i,j,k) = DoseP(i,j,k) + DE*WGHT

end if
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end if ! (i,j,k)

end if ! DE

C -- Check if the particle has been absorbed .

if(E.gt.EABS(KPAR,MAT)) go to 103

C -- The simulation of the track ends here.

C ---------------------------------------------------------------------

104 continue

C -- Any secondary left?

call SECPAR(LEFT)

if(LEFT.GT.0) THEN

C -- Subtract E and charge from the tallied distributions to avoid double-counting.

if(XDose(1).lt.x.AND.x.lt.XDose(NxDT+1).AND.

1 YDose(1).lt.y.AND.y.lt.YDose(NyDT+1).AND.

2 ZDose(1).lt.z.AND.z.lt.ZDose(NzDT+1)) then

call get_dose_index(x,y,z,i,j,k)

C -- total dose

if(N.NE.LDOSE(i,j,k)) then

Dose(i,j,k) = Dose(i,j,k) + DoseP(i,j,k)

VDose(i,j,k) = VDose(i,j,k) + DoseP(i,j,k)**2

DoseP(i,j,k) = -E*WGHT

LDose(i,j,k) = N

else

DoseP(i,j,k) = DoseP(i,j,k) - E*WGHT

end if

end if

go to 102

ENDIF

C -- The simulation of the shower ends here.

C -----------------------------------------------------------------

105 continue

call TIMER(TSEC)

if(N.LT.NTOT.AND.mod(N, NINTER).eq.0) then

Dt1 = Tsec-Tsecin

IHours = INT(Dt1/3600)

IMinutes = INT((Dt1-IHours*3600)/60)

Seconds = Dt1 - IHours*3600 - IMinutes*60

write(6,9999) ’N =’, N,

1 ’Elapsed’, Dt1, "(s)", "-->", IHours, ":",

2 IMinutes, ":", Seconds

write(*,9999) ’N =’, N,

1 ’Elapsed’, Dt1, "(s)", "-->", IHours, ":",

2 IMinutes, ":", Seconds

9999 format(1x,A3,1x,I10,3x,A7,2x,f15.2,2x,A3,3X,A3,I6,A1,I6,A1,F6.2)

C -- dump intermediate results in case that the job could not be finished as scheduled

if(IDUMP.EQ.1) then

TSIM=MAX(1.0D0,Dt1)+TIMEA

open(9,FILE=DUMPF)

write(9,*) N,TSIM

write(9,*) ISEED1,ISEED2

write(9,*) NxDT, NyDT, NzDT

write(9,999) ((( (Dose(i,j,k)+DoseP(i,j,k)),

1 i=1,NxDT),j=1,NyDT),k=1,NzDT),

2 ((( (VDose(i,j,k)+DoseP(i,j,k)**2),

3 i=1,NxDT),j=1,NyDT),k=1,NzDT)

close(9)

end if

end if

999 format(g25.16)

C -- end of intermediate dump

C ---------------------------
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if(TSEC.LT.TSECA.AND.N.LT.NTOT) go to 101

C ================================================================================

C End the simulation after the alloted time or after completing NTOT showers.

C ================================================================================

C -- Transfer contents of partial counters of the last one shower to global counters.

do k=1, NzDT

do j=1, NyDT

do i=1, NxDT

Dose(i,j,k) = Dose(i,j,k) + DoseP(i,j,k)

VDose(i,j,k) = VDose(i,j,k) + DoseP(i,j,k)**2

end do

end do

end do

C

TSIM=MAX(1.0D0,TSEC-TSECIN)+TIMEA

C -- If ’DUMPTO’ is active, write counters to a dump file.

if(IDUMP.EQ.1) then

open(9,FILE=DUMPF)

write(9,*) N,TSIM

write(9,*) ISEED1,ISEED2

write(9,*) NxDT, NyDT, NzDT

write(9,999) ((( Dose(i,j,k),

1 i=1,NxDT),j=1,NyDT),k=1,NzDT),

2 (((VDose(i,j,k),

3 i=1,NxDT),j=1,NyDT),k=1,NzDT)

close(9)

end if

C -- Print simulation results.

106 continue

TOTN=N

write(6,3000)

3000 format(///3X,36(’*’)/3X,’** Program NewPENDOSES. Results. **’,

1 /3X,36(’*’))

IFNT = N - NA

TSIM=MAX(1.0D0,TSEC-TSECIN)

write(6,3010) TSIM

3010 format(/3X,’Calculation time ................... ’,

1 1P,E13.6,’ sec’)

TAVS=IFNT/TSIM

write(6,3011) TAVS

3011 format(3X,’Simulation speed ................... ’,

1 1P,E13.6,’ showers/sec’)

write(6,3012) IFNT

3012 format(//3X,

1 ’Simulated primary particles this time ............. ’,1P,I13)

write(6,3013) N

3013 format(//3X,

1 ’Total simulated primary particles ................. ’,1P,I13)

write(6,3099) ISEED1,ISEED2

3099 format(/3X,’Random seeds = ’,I10,’ , ’,I10)

write(6,’(//3X,’’*** END ***’’)’)

close(6)

C -- Print tallied distributions.

IF(IFullOutp.gt.0) THEN ! output control

C -- Total dose

open(9,FILE=’Dose.’//argsfx(1:len_sfx)//’.dat’)

DF=1.0D0/TOTN

write(9,’(A,//)’) ’Dose.’//argsfx(1:len_sfx)//’.dat’

write(9,’(A,I8)’) ’Num_Dose_Grid_X=’, NxDT
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write(9,’(A,I8)’) ’Num_Dose_Grid_Y=’, NyDT

write(9,’(A,I8)’) ’Num_Dose_Grid_Z=’, NzDT

write(9,’(/,A)’) ’XDose(...)’

write(9,’(1000f8.3)’) (XDose(i), i=1,NxDT+1)

write(9,’(/,A)’) ’YDose(...)’

write(9,’(1000f8.3)’) (YDose(i), i=1,NyDT+1)

write(9,’(/,A)’) ’ZDose(...)’

write(9,’(1000f8.3)’) (ZDose(i), i=1,NzDT+1)

do j=1, NyDT

write(9,’(//a2,1x,f8.3,1x,a2)’)

1 ’y=’, (YDose(j)+YDose(j+1))/2, ’cm’

C -- value

write(9,’(/1x,A)’) ’Dose(MeV/g)’

call Write_zx_header(9)

do k=1, NzDT

xx = (ZDose(k)+ZDose(k+1))/2

do i=1, NxDT

DAV(i) = Dose(i,j,k)*DF/1d6/max(1d-35,Mass(i,j,k))

end do

write(9,’(f8.3,500(1pg18.8))’) xx,

1 (DAV(i), i=1,NxDT)

end do

C -- relative 1 sigma

write(9,’(/1x,A)’) ’1-Sigma’

call Write_zx_header(9)

do k=1, NzDT

xx = (ZDose(k)+ZDose(k+1))/2

do i=1, NxDT

DAV(i) = abs(Dose(i,j,k))

DErr(i) = sqrt(abs(VDose(i,j,k)-Dose(i,j,k)**2*DF))

DRel(i) = DErr(i)/max(1.0d-35,DAv(i))

end do

write(9,’(f8.3,500(1pg18.8))’) xx,

1 (DRel(i), i=1,NxDT)

end do

end do

END IF ! output control

stop

END

C *********************************************************************

C SUBROUTINE get_dose_index

C subroutine for finding out the indexes of (x,y,z) in the dose grid

C input:

C xx, yy, zz --> the coordinates;

C output:

C i, j, k --> the indexes in the dose grid

C *********************************************************************

SUBROUTINE get_dose_index(xx,yy,zz,i,j,k)

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)

parameter (NDXM=240,NDYM=300,NDZM=140)

Common/DoseGrid/YDose(NDYM+1),XDose(NDXM+1),ZDose(NDZM+1),

1 NyDT,NxDT,NzDT

C -- i

n1 = 1

n2 = NxDT

do while (n1.ne.n2)

nm = (n2+n1)/2

if(xx.le.XDose(nm+1)) then

n2 = nm

else

n1 = nm + 1

end if
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end do

i = n1

C -- j

n1 = 1

n2 = NyDT

do while (n1.ne.n2)

nm = (n2+n1)/2

if(yy.le.YDose(nm+1)) then

n2 = nm

else

n1 = nm + 1

end if

end do

j = n1

C -- k

n1 = 1

n2 = NzDT

do while (n1.ne.n2)

nm = (n2+n1)/2

if(zz.le.ZDose(nm+1)) then

n2 = nm

else

n1 = nm + 1

end if

end do

k = n1

end

C*************************************************

C Subroutine for writing the common header

C given file unit id.

C input:

C fid --> file id;

C*************************************************

subroutine Write_zx_header(fid)

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)

integer fid

parameter (NDXM=240,NDYM=300,NDZM=140)

Common/DoseGrid/YDose(NDYM+1),XDose(NDXM+1),ZDose(NDZM+1),

1 NyDT,NxDT,NzDT

write(fid,’(3x,a5,500(1pg18.4))’)

1 ’z-x’, ((XDose(i)+XDose(i+1))/2, i=1,NxDT)

end



BIBLIOGRAPHY

231



232

BIBLIOGRAPHY

[1] Vmc++, electron and photon monte carlo calculations optimized for radiation treatment plan-
ning. In A. Kling, F. Barao, M. Nakagawa, L. Tavora, and P. Vaz, editors, Advanced Monte
Carlo for Radiation Physics, Particle Transport Simulation and Applications: Proceedings of
the Monte Carlo Meeting, Lisbon, Berlin. Springer.

[2] Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat On-
col Biol Phys, 51(4):880–914, 2001. Intensity Modulated Radiation Therapy Collaborative
Working Group Consensus Development Conference Consensus Development Conference, NIH
Journal Article Review United States.

[3] Milton Abramowitz and Irene A. Stegun. Handbook of mathematical functions, with formu-
las, graphs, and mathematical tables. Dover Publications, New York,, [9th dover printing with
corrections] edition, 1973. edited by Milton Abramowitz and Irene A. Stegun. ill. ; 27 cm.
”This ninth Dover printing conforms to the tenth (December 1972) printing by the Govern-
ment Printing Office, except that additional corrections have been made on pages 18, 79, 80,
82, 408, 450, 786, 825 and 934.” Includes bibliographical references and index.

[4] A. Ahnesjo, P. Andreo, and A. Brahme. Calculation and application of point spread functions
for treatment planning with high energy photon beams. Acta Oncol, 26(1):49–56, 1987.
Journal Article Research Support, Non-U.S. Gov’t Sweden.

[5] A. Ahnesjo and M. M. Aspradakis. Dose calculations for external photon beams in radiother-
apy. Phys Med Biol, 44(11):R99–155, 1999. Journal Article Review England.

[6] Frank H. Attix. Introduction to radiological physics and radiation dosimetry. Wiley, New
York, 1986. Frank Herbert Attix. ill. ; 24 cm. ”A Wiley-Interscience publication.” Includes
index.

[7] J. M. Balter and M. L. Kessler. Imaging and alignment for image-guided radiation therapy.
J Clin Oncol, 25(8):931–7, 2007. Journal Article Review United States official journal of the
American Society of Clinical Oncology.

[8] H. F. Batho. Lung corrections in cobalt 60 beam therapy. J Can Assoc Radiol, 15:79–83,
1964. Journal Article Canada.

[9] B. Bauer-Kirpes, W. Schlegel, R. Boesecke, and W. J. Lorenz. Display of organs and isodoses
as shaded 3-d objects for 3-d therapy planning. Int J Radiat Oncol Biol Phys, 13(1):135–40,
1987. Journal Article United states.

[10] George I. Bell and Samuel Glasstone. Nuclear reactor theory. R. E. Krieger Pub. Co., Hunt-
ington, N.Y., 1979. 78022102 George I. Bell, Samuel Glasstone. ill. ; 24 cm. Reprint of the
ed. published under auspices of the Division of Technical Information, United States Atomic
Energy Commission, by Van Nostrand Reinhold Co., New York. Includes bibliographical ref-
erences and indexes.

[11] M. J. Berger. Monte Carlo calculation of the penetration and diffusion of fast charged parti-
cles, volume 1, pages 135–215. Academic Press, New York, 1963.



233

[12] M. Blomquist and M. Karlsson. Measured lung dose correction factors for 50 mv photons.
Phys Med Biol, 43(11):3225–3234, 1998.

[13] A. Boyer and E. Mok. A photon dose distribution model employing convolution calculations.
Med Phys, 12(2):169–77, 1985. Journal Article United states.

[14] M. J. Brugmans, A. van der Horst, J. V. Lebesque, and B. J. Mijnheer. Beam intensity
modulation to reduce the field sizes for conformal irradiation of lung tumors: a dosimetric
study. Int J Radiat Oncol Biol Phys, 43(4):893–904, 1999.

[15] M. Caro and J. Ligou. Treatment of scattering anisotropy of neutrons through the boltzmann-
fokker-planck equation. Nucl Sci Eng, 83:242–250, 1983.

[16] P. Carrasco, N. Jornet, M. A. Duch, L. Weber, M. Ginjaume, T. Eudaldo, D. Jurado, A. Ruiz,
and M. Ribas. Comparison of dose calculation algorithms in phantoms with lung equivalent
heterogeneities under conditions of lateral electronic disequilibrium. Med Phys, 31(10):2899–
2911, 2004.

[17] S. Chandrasekhar. Stochastic problems in physics and astronomy. Rev Mod Phys, 15:1, 1943.

[18] S. Chandrasekhar. Radiative transfer. Dover Publications, New York, 1960. 60003117 /L/r85
illus. 22 cm. ”Unabridged and slightly revised version of the work first published in 1950.”.

[19] H. K. Chang and Manuel Paiva. Respiratory physiology : an analytical approach. Lung
biology in health and disease ; v. 40. Dekker, New York, 1989. 88033432 edited by H.K.
Chang, Manuel Paiva. ill. ; 24 cm. Includes bibliographies and indexes.

[20] I. J. Chetty, P. M. Charland, N. Tyagi, D. L. McShan, B. A. Fraass, and A. F. Bielajew. Pho-
ton beam relative dose validation of the dpm monte carlo code in lung-equivalent media. Med
Phys, 30(4):563–73, 2003. 0094-2405 (Print) Evaluation Studies Journal Article Validation
Studies.

[21] I. J. Chetty, J. M. Moran, D. L. McShan, B. A. Fraass, S. J. Wilderman, and A. F. Bielajew.
Benchmarking of the dose planning method (dpm) monte carlo code using electron beams from
a racetrack microtron. Med Phys, 29(6):1035–41, 2002. 0094-2405 (Print) Journal Article.

[22] I. J. Chetty, J. M. Moran, T. S. Nurushev, D. L. McShan, B. A. Fraass, S. J. Wilderman,
and A. F. Bielajew. Experimental validation of the dpm monte carlo code using minimally
scattered electron beams in heterogeneous media. Phys Med Biol, 47(11):1837–51, 2002.
0031-9155 (Print) Journal Article.

[23] I. J. Chetty, M. Rosu, D. L. McShan, B. A. Fraass, J. M. Balter, and R. K. Ten Haken.
Accounting for center-of-mass target motion using convolution methods in monte carlo-based
dose calculations of the lung. Med Phys, 31(4):925–32, 2004. P01-ca59827/ca/nci Clinical
Trial Comparative Study Journal Article Research Support, Non-U.S. Gov’t Research Sup-
port, U.S. Gov’t, P.H.S. Validation Studies United States.

[24] I. J. Chetty, M. Rosu, D. L. McShan, B. A. Fraass, and R. K. Ten Haken. The influence
of beam model differences in the comparison of dose calculation algorithms for lung cancer
treatment planning. Phys Med Biol, 50(5):801–815, 2005.

[25] J. C. Chu, B. Ni, R. Kriz, and V. Amod Saxena. Applications of simulator computed tomogra-
phy number for photon dose calculations during radiotherapy treatment planning. Radiother
Oncol, 55(1):65–73, 2000.

[26] H. Chung, H. Jin, J. Palta, T. S. Suh, and S. Kim. Dose variations with varying calculation
grid size in head and neck imrt. Phys Med Biol, 51(19):4841–56, 2006.

[27] AAPM Task Group #65 Radiation Therapy Committee. Tissue inhomogeneity corrections
for megavoltage photon beams. Technical Report 85, July 2004.



234

[28] C. Constantinou, J. C. Harrington, and L. A. DeWerd. An electron density calibration
phantom for ct-based treatment planning computers. Med Phys, 19(2):325–7, 1992. Journal
Article United states.

[29] J. F. Corbett, J. Jezioranski, J. Crook, and I. Yeung. The effect of voxel size on the accuracy
of dose-volume histograms of prostate 125i seed implants. Med Phys, 29(6):1003–6, 2002.
Journal Article United States.

[30] M. M. Coselmon, J. M. Balter, D. L. McShan, and M. L. Kessler. Mutual information based
ct registration of the lung at exhale and inhale breathing states using thin-plate splines. Med
Phys, 31(11):2942–8, 2004. P01-ca59827/ca/nci Clinical Trial Comparative Study Journal
Article Research Support, U.S. Gov’t, P.H.S. United States.

[31] J. E. Cotes and G. L. Leathart. Lung function: assessment and application in medicine.
Blackwell Scientific Publications, Oxford, 5th edition, 1993. J.E. Cotes with the editorial
collaboration of G.L. Leathart. ill. ; 25 cm.

[32] J. E. Cygler, G. M. Daskalov, G. H. Chan, and G. X. Ding. Evaluation of the first commer-
cial monte carlo dose calculation engine for electron beam treatment planning. Med Phys,
31(1):142–53, 2004. Journal Article Research Support, Non-U.S. Gov’t United States.

[33] R. K. Das, R. Patel, H. Shah, H. Odau, and R. R. Kuske. 3d ct-based high-dose-rate breast
brachytherapy implants: treatment planning and quality assurance. Int J Radiat Oncol Biol
Phys, 59(4):1224–8, 2004.

[34] B. De Smedt, B. Vanderstraeten, N. Reynaert, W. De Neve, and H. Thierens. Investigation
of geometrical and scoring grid resolution for monte carlo dose calculations for imrt. Phys
Med Biol, 50(17):4005–4019, 2005.

[35] J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta. A fourier analysis
of the dose grid resolution required for accurate imrt fluence map optimization. Med Phys,
32(2):380–8, 2005.

[36] R. E. Drzymala, R. Mohan, L. Brewster, J. Chu, M. Goitein, W. Harms, and M. Urie. Dose-
volume histograms. Int J Radiat Oncol Biol Phys, 21(1):71–8, 1991. N01 cm-47316/cm/nci
N01 cm-47695/cm/nci N01 cm-47696/cm/nci etc. Journal Article Research Support, U.S.
Gov’t, P.H.S. United states.

[37] F. C. du Plessis, C. A. Willemse, M. G. Lotter, and L. Goedhals. Comparison of the
batho, etar and monte carlo dose calculation methods in ct based patient models. Med
Phys, 28(4):582–9, 2001.

[38] L. Dumas and F. Golse. Homogenization of transport equations. Siam Journal on Applied
Mathematics, 60(4):1447–1470, 2000.

[39] E. El-Khatib and J. J. Battista. Improved lung dose calculation using tissue-maximum ratios
in the batho correction. Med Phys, 11(3):279–86, 1984. Journal Article Research Support,
Non-U.S. Gov’t United states.

[40] M. Engelsman, E. M. Damen, P. W. Koken, A. A. van ’t Veld, K. M. van Ingen, and B. J.
Mijnheer. Impact of simple tissue inhomogeneity correction algorithms on conformal radio-
therapy of lung tumours. Radiother Oncol, 60(3):299–309, 2001.

[41] M. Fippel. Fast monte carlo dose calculation for photon beams based on the vmc electron
algorithm. Med Phys, 26(8):1466–75, 1999. Comparative Study Journal Article Research
Support, Non-U.S. Gov’t United states.

[42] B. A. Fraass. The development of conformal radiation therapy. Med Phys, 22(11 Pt 2):1911–
21, 1995. Nci-p01-ca59827/ca/nci Historical Article Journal Article Research Support, U.S.
Gov’t, P.H.S. United states.



235

[43] S. J. Frank, K. M. Forster, C. W. Stevens, J. D. Cox, R. Komaki, Z. Liao, S. Tucker, X. Wang,
R. E. Steadham, C. Brooks, and G. Starkschall. Treatment planning for lung cancer: tra-
ditional homogeneous point-dose prescription compared with heterogeneity-corrected dose-
volume prescription. Int J Radiat Oncol Biol Phys, 56(5):1308–1318, 2003.

[44] R. A. Geise and E. C. McCullough. The use of ct scanners in megavoltage photon-beam
therapy planning. Radiology, 124(1):133–41, 1977.

[45] M. Goitein and M. Abrams. Multi-dimensional treatment planning: I. delineation of anatomy.
Int J Radiat Oncol Biol Phys, 9(6):777–87, 1983. Ca-00251/ca/nci Ca-21239/ca/nci Journal
Article Research Support, U.S. Gov’t, P.H.S. United states.

[46] M. Goitein, M. Abrams, D. Rowell, H. Pollari, and J. Wiles. Multi-dimensional treatment
planning: Ii. beam’s eye-view, back projection, and projection through ct sections. Int J
Radiat Oncol Biol Phys, 9(6):789–97, 1983. Ca-00251/ca/nci Ca-21239/ca/nci Journal Article
Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. United states.

[47] H. Gono, K. Fujimoto, S. Kawakami, and K. Kubo. Evaluation of airway wall thickness and
air trapping by hrct in asymptomatic asthma. Eur Respir J, 22(6):965–71, 2003. 0903-1936
(Print) Journal Article.

[48] M. Goosens, S. Giani, and S. Ravndal. Geant: detector description and simulation tool.
Technical report, Geneva, Switzerland, 1993. CERN Program Library, long writeup W5013
CERN, Geneva, Switzerland.

[49] Henry Gray, Peter L. Williams, and Lawrence H. Bannister. Gray’s anatomy : the anatomical
basis of medicine and surgery. Churchill Livingstone, New York, 38th edition, 1995. 95005806
Anatomy chairman of the editorial board, Peter L. Williams ; editorial board, Lawrence H.
Bannister ... [et al.]. ill. (some col.) ; 31 cm. Includes bibliographical references (p. 1937-2044)
and index.

[50] H. Guan, F. F. Yin, and J. H. Kim. Accuracy of inhomogeneity correction in photon radio-
therapy from ct scans with different settings. Phys Med Biol, 47(17):N223–31, 2002.

[51] B. Haefeli-Bleuer and E. R. Weibel. Morphometry of the human pulmonary acinus. Anat
Rec, 220(4):401–414, 1988.

[52] C. L. Hartmann Siantar, R. S. Walling, T. P. Daly, B. Faddegon, N. Albright, P. Bergstrom,
A. F. Bielajew, C. Chuang, D. Garrett, R. K. House, D. Knapp, D. J. Wieczorek, and L. J.
Verhey. Description and dosimetric verification of the peregrine monte carlo dose calculation
system for photon beams incident on a water phantom. Med Phys, 28(7):1322–37, 2001.
Journal Article Research Support, U.S. Gov’t, Non-P.H.S. United States.

[53] K. Horsfield and G. Cumming. Morphology of the bronchial tree in man. J Appl Physiol,
24(3):373–383, 1968.

[54] K. Horsfield, G. Dart, D. E. Olson, G. F. Filley, and G. Cumming. Models of the human
bronchial tree. J Appl Physiol, 31(2):207–217, 1971.

[55] W. Huang, R. T. Yen, M. McLaurine, and G. Bledsoe. Morphometry of the human pulmonary
vasculature. J Appl Physiol, 81(5):2123–2133, 1996.

[56] Theodore M. Jenkins, Walter R. Nelson, and Alessandro Rindi. Monte Carlo transport of
electrons and photons. Ettore Majorana international science series. Physical sciences ; v.
38. Plenum Press, New York, 1989. 88031147 International School of Radiation Damage and
Protection (8th : 1987 : Erice, Italy) edited by Theodore M. Jenkins, Walter R. Nelson,
and Alessandro Rindi. ill. ; 26 cm. ”Proceedings of the International School of Radiation
Damage and Protection, eighth course ... held September 24-October 3, 1987, in Erice, Sicily,
Italy”–T.p. verso. Includes bibliographies and index.



236

[57] H. Jiang, J. Seco, and H. Paganetti. Effects of hounsfield number conversion on ct based
proton monte carlo dose calculations. Med Phys, 34(4):1439–49, 2007.

[58] I. Kawrakow. Accurate condensed history monte carlo simulation of electron transport. i.
egsnrc, the new egs4 version. Med Phys, 27(3):485–98, 2000. Journal Article Research Sup-
port, Non-U.S. Gov’t United states.

[59] I. Kawrakow. On the de-noising of monte carlo calculated dose distributions. Phys Med Biol,
47(17):3087–103, 2002.

[60] M. L. Kessler, S. Pitluck, P. Petti, and J. R. Castro. Integration of multimodality imaging
data for radiotherapy treatment planning. Int J Radiat Oncol Biol Phys, 21(6):1653–67, 1991.

[61] W. Kilby, J. Sage, and V. Rabett. Tolerance levels for quality assurance of electron density
values generated from ct in radiotherapy treatment planning. Phys Med Biol, 47(9):1485–92,
2002.

[62] E. E. Klein, A. Morrison, J. A. Purdy, M. V. Graham, and J. Matthews. A volumetric study
of measurements and calculations of lung density corrections for 6 and 18 mv photons. Int J
Radiat Oncol Biol Phys, 37(5):1163–1170, 1997.
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