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CHAPTER I

INTRODUCTION

The identification of a specific brain region with a specific function is a central

problem in cognitive neuroscience. With the development of functional magnetic

resonance imaging (fMRI), we are now able to follow the brain changes functionally

during specific task performance.

It has been observed that activated areas of the human brain show localized

increases in blood flow. These increases ensure an adequate supply of oxygen to

regions working hard. Changes in the oxygenation level of the blood therefore occur

as a consequence of neuronal activity. fMRI makes indirect use of this local need for

energy and images the brain activity by visualizing regional changes in blood flow,

blood volume and blood oxygenation. The most common fMRI technique utilizes

blood oxygenation level dependent (BOLD) contrast, which is based on the differing

magnetic properties of oxygenated and deoxygenated blood.

In a typical fMRI experiment, participants are given a fixed set of controlled

stimuli and perform a task repeatedly. In many cases the stimulus is presented in

a so-called boxcar design of alternating activation and rest periods. For example, a

subject may view a picture for 30 seconds and rest for another 30 seconds, and so

on for five cycles. During the experiment, a series of scans of the brain are taken
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over time. Due to the delay of hemodynamic response, the BOLD signal increases

gradually and typically reaches a peak 4-6 seconds after the onset of the task. Figure

1.1 shows a boxcar stimulus and the delayed version of the stimulus together with MR

signal time series at voxels which are strongly, weakly and not activated. After the

experiment has finished, the raw images require a series of spatial transformations to

correct for distortions and reduce the effect of movement or shape differences among

scans. Statistical methods are then used to measure activity at voxels through the

amount of association between the stimulus and fMRI time series.

0                  10                 20                  30    40                                0                10                   20                    30                40

(c) (d)

0                  10                  20                  30   40                             0                  10                  20                   30                   40

(a) (b)

Figure 1.1: (a) the visual stimulus in red and the delayed stimulus in blue. (b), (c) and (d) the MR
signals that are strongly, weekly and not activated

Our work is motivated by an event-related fMRI study (Park et al., 2003) in

which the role of frontal and hippocampal structures in a working memory task

was investigated. Twenty one adults participants were presented with two types of

tasks. In the visual condition (top row of Figure 1.2), subjects viewed a scene for

6 seconds, followed by a picture fragment probe (4-second interval). They were to
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press a key to indicate whether or not the probe fragment was part of the picture

that they had just studied. Each trial was followed by a 12-second baseline period.

In the maintenance condition (bottom row of Figure 1.2), subjects viewed a scene for

2 seconds, followed by a 4-second rehearsal interval during which they stored their

memory of the pictures they had just seen. They then did a probe match (4-second

interval), followed by a 12-second baseline. Subjects preformed 48 trials of each type

presented in random order. Of particular interest was the 4-second interval where,

in the maintenance condition, subjects were maintaining the stimulus but in the

extended visual condition, they passively viewed the picture until the probe appeared.

Comparison of performance relative to baseline in these conditions permitted them

to determine what neural structures were used to perform each task.

0      2       4  6  8 10         12   14  16  18 20  22   Time (sec)

Visual 

Conditions

Maintenance 

Conditions

Picture Probe                             Baseline   

Picture     Rehearsal        Probe Baseline 

Figure 1.2: Working memory tasks for the visual and maintenance conditions

The spatial and temporal structure of the massive 4-D fMRI data imposes chal-

lenging problems in statistical modeling. There are two general approaches, classical

and Bayesian. Classical analyses are typically two-stage (Friston et al., 1995). The
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first stage is to fit a univariate time series model independently at each voxel and

obtain a single image of some parameter estimates and test statistics such as t-values

or z-scores. These statistics indicate evidence against the null hypothesis of no effect

at each voxel. Let yt be the observed signal intensity acquired at one voxel at time

t and let Y be a vector of these observations. The most commonly used models are

general linear models (GLM) of the following form: (Friston et al. 1995)

(1.1) Y = Xβ + E

A very simple example is

yt = α+ βxt + et

where α is the baseline (rest) value and β is the effect parameter to be estimated.

The regressors xt is the delayed stimulus function which models the hemodynamic

effects. A common choice for xt is a convolution of a gamma or poisson density

h(t) with a delta function δ(t). δ(t) takes value of 1 or 0 indicating the presence

or absence of the stimulus. The use of convolution allows the model to capture a

range of different BOLD response shapes. The error term {et} is often assumed to

be normally distributed with mean 0 and variance σ2. In multiple subject problems

subject is treated as random effect so that inference can extend to the entire popu-

lation. Analysis of the random effects is accomplished using what is referred to as

the Summary Statistic Method. This involves first fitting a GLM of form (1.1) for

each subject and then submitting the image of cβ̂ to a second-level analysis.

cβ̂ = Xgβg + Eg

The final t-images is based on the test statistics t = cgβ̂g

sd(cgβ̂g)
, where c and cg are the

contrasts of interest.
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The second stage is to threshold the t-values or z-scores to define regions of signif-

icant activation. One useful method is to perform a test at each voxel using a single

threshold and look for voxels above the threshold. Various methods on how to choose

the threshold have been proposed (Genovese, Lazar, and Nichols, 2002; Nichols and

Hayasaka, 2003). As fMRI data contains thousands of voxels a large number of vox-

els will be significantly active simply by chance. This is the multiple comparisons

problem. If tests are independent the overall type I error can be controlled using the

Bonferroni correction. However, because of the spatial correlation inherent in fMRI

data, the Bonferroni approach is often too conservative. Another method known

as the Gaussian Random Field (GRF) Method has been developed recently to deal

with the effect of spatial correlation. GRF method gives the threshold based on the

expected number of significantly activated clusters. This method requires the image

be sufficiently smooth to fulfill the assumption of a continuous random field.

While the classical method is a computationally efficient method, it has several

limitations. The approach does not account for the spatial nature of the image data

and does not utilize the prior knowledge that spatially contiguous patterns of activa-

tion are expected to have. Spatial dependence is either ignored or simply accounted

for in the choice of threshold. Multisubject analyses are particularly problematic

since, even after registration of the subjects’ brain to a common atlas, there is resid-

ual variation in the anatomical landmarks; further, it has been shown that even if

sulci and gyri are aligned there is variation in the functional landmarks (Morosan et.

al., 2001). A mass-univariate model cannot account for any mismatch in activation

location and will only detect voxels with consistent change in activation.

A lot of effort has been made on how to use the spatial information in the data

to enhance signal detection. Some methods find a threshold that accounts for cor-
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relation in the null hypothesis statistic images (Worsley et al., 1996; Friston et al.,

1993). The most general approach is to spatially smooth the data with a fixed-

width Gaussian kernel in a preprocessing step. However the Gaussian filter tends to

blur and change the shape of the activation. Descombes, Kruggel, and von Cramon

(1998) proposed an alternative to Gaussian filtering by restoring the signal using

a spatiotemporal Markov Random Field (MRF). The MRF is used to define the

prior knowledge of the underlying signal. This priori property is modeled by interac-

tions between neighboring pixels and is incorporated in the procedure in a Bayesian

framework. Polzehl and Spokoiny(2001) proposed a structural adaptive smoothing

procedure, specifically the propagation-separation (PS) approach for time-series of

images. Tabelow et al. (2006) provided a complete procedure for fMRI analysis

using the PS approach and showed significant improvement on the information of

the spatial extent and the shape of the activation region.

Many others proposed Bayesian methods to integrate the spatial modeling of the

data in the statistical analysis. Hartvig et al. (2000) use a spatial mixture model

and achieve computational feasibility by formulating the model through the marginal

distribution on a small grid of voxels. Instead of using p(ωi|y) they suggest to use

p(ωi|yci) and calculate it by summing over the neighboring states:

(1.2) p(ωi|yci) ∝
1∑

ω1
i=0

· · ·
1∑

ωmi =0

f(yci|ωci)p(ωci)

where ci is voxel i together with the m neighbors and ωci = (ωi, ω
1
i , . . . , ω

m
i ) is the

vector of all activation indicators in ci. Hartvig’s paper discusses three models for

p(ωci) which models clustered activation based on s, the number of 1’s in ωci , and

showes that the posterior probability is robust to the choice of models. The simplest

one is:
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p(ωci) =


q0 if s = 0,

q1 if s > 0.

The main contribution of their method is that by carefully choosing prior distribu-

tions of ωci they are able to calculate the posterior distribution (1.2) analytically.

This provides inference that is much faster than simulation based methods. In an-

other paper Hartvig (2002) proposed a regression based spatial model using the idea

of “activation centers”. The model has the form of a GLM:

yit = βixt + εit

where βi ∼ n(Ai(θ), τ
2) and xt is the temporal variation caused by the BOLD effect.

The activation surface Ai(θ) is modeled as a sum of Gaussian functions: Ai(θ) =
K∑
k=1

h(i, θk), with parameters θk = (µk, αk, rk, φk) describing the location, magnitude

and shape of the kth activation center. They design a reversible jump algorithm

to insert, delete and change an activation center given the variance parameters are

known. They estimate the variance parameters separately in a different procedure

using the distribution of sufficient statistics. Cosman, Fisher, and Wells (2004) used

an Ising MRF as the prior for neural activity. Woolrich et al. (2005)develop a spatial

mixture model using a discrete Markov random field (MRF) priors on a spatial map

of classification labels. For each observation yi at voxel i, there is a binary latent

class variable ωi = 0 or 1 denoting whether voxel i is active or inactive. Within this

framework one can calculate the posterior probability of a voxel being activated:

(1.3) p(ω, θ|y) ∝ {
∏
i

f(yi|ωi, θωi)}p(ω)p(θ)

where θ is the parameter in distribution f . The spatial regularization is controlled

by a parameter φ in the discrete MRF which penalizes neighboring voxels of different
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classes:

(1.4) p(ω|φ) = f(φ) exp{−φ
∑
i∼j

I(ωi 6= ωj)}

where i ∼ j implies i is a neighbourhood of j. I(ωi 6= ωj) is an indicator function:

I(ωi 6= ωj) = 1 if ωi 6= ωj and zero otherwise. The problem with the discrete

labels model is that the computational evaluation of the normalizing constant f(φ)

is difficult. The spatial regularization parameter is typically assumed to be known.

However, results can be highly dependent on this parameter. Hence, Woolrich et al.

(2005) cleverly approximate the discrete MRF prior with a continuous MRF prior

whose normalizing constant is easily calculated. They replaced the discrete labels

with continuous weights π:

(1.5) p(π, θ|y) ∝ {
∏
i

∑
k

πikf(yi|ωi = k, θk)}p(π)p(θ), k = 0 or 1

and define π using logistic transformation:

(1.6) πik =
exp(π̃ik/γ)∑
k exp(π̃ik/γ)

The prior of π̃ is now a continuous version of the MRF in (1.4):

(1.7) p(π̃|φ) = f(φ) exp{−φ
∑
i∼j

(π̃ik − π̃jk)
2}, i = 1, ..., N

Because π̃ik is a continuous variable the normalizing constant f(φ) can be calculated

easily: f(φ) ∝ 1
φN

. Penny, Trujillo-Barreto, and Friston (2005) proposed a Gaussian

MRF prior on the regression coefficient of a general linear model and approximate the

posterior using Variational Bayes method. In a related paper Penny, Flandin, and

Trujillo-Barreto (2007) show how the model evidence can be approximated using a

Bayesian model comparison framework which allows the implementation of Analysis

of Variance and Cluster of Interest analysis. Flandin and Penny (2007) replaced the
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Gaussian MRF prior with s Sparse Spatial Basis Function prior which makes the use

of a mixture model.

While these other methods model spatial dependence in the signal, they focus

solely on single subject analyses. We are aware of only one method for multi-subject

data. Miglioretti, McCulloch, and Zeger (2002) develop a multi-subject model for

surface electrode data. Their model is developed for binary observations that is not

applicable in the current setting.

In this work we propose a spatial model for multi-subject fMRI data in a hier-

archical Bayesian framework. Our model improves the standard methods in several

ways. First, we pose an explicit spatial model for activations at the subject level, un-

like the mass-univariate method that fits each voxel independently of its neighbors.

Second, our method is for multi-subject data and accounts for intersubject hetero-

geneity in activation location about a population location. Lastly, we use a fully

Bayesian framework where all sources of uncertainty are considered and quantified.

Throughout the paper we consider the effect magnitude image as our observations

(or the data), one per subject, which may be interpreted roughly as map of percent

change in blood flow, an indirect measure of neuronal activity. Although our model

can be easily extended to analyze 3D data, in this paper we will only focus on one

slice of the 3D image. To see an example, Figure 1.3 displays 5 of the 21 subjects

from the working memory data set together with an anatomic reference image.

The dissertation is organized as follows. In Chapter II, we introduce a spatial

mixture model in a full Bayesian framework. In Chapter III, we extend the prior

class to nonparametric Dirichlet process. In Chapter IV, we conduct simulation

studies and sensitivity analyses for both models. In Chapter V, we conclude the

manuscript with a discussion and ideas for future work.
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Figure 1.3: Contrast images (color) for subject 1 to 5 and an anatomic reference image in gray
scale.



CHAPTER II

BAYESIAN SPATIAL MODELING OF FMRI DATA

2.1 Methods

We begin with an overview of the model and notation (with all subscripts initially

suppressed), after which we present the distribution of the data and priors in detail.

Our model is specified hierarchically, as illustrated in Figure 2.1. At the first level

we have an unknown number of “population centers”, µ, that follow a homogenous

spatial Poisson process defined over the confines of the brain. At the second level, an

unknown number of “individual component” means, η, are distributed as isotropic

Gaussian mixtures whose mixture component means are the population centers with

variances τ 2. We assume that each subject has been fit with an intrasubject fMRI

signal model, producing scalar images of the fMRI blood oxygenation level dependent

(BOLD) effect magnitude; we refer to these intrasubject summary measures as “the

data”. At the third level, we assume the data, y, for each subject are distributed as a

Gaussian mixture with an unknown number of mixing components whose means are

θ with variances σ2. The mixing weights for the datum at pixel v are proportional to

the density at v of a normal distribution with mean η and variance r2. There is one

special component representing the constant background intensity for each subject.

We now present the details of our model.

11



12

Subject 1 Subject 1

● Population Center

● Center of Individual
Component

●

●

●

0 10 20 30 40

0
10

20
30

40

10

20

30

10 20 30

Subject 2 Subject 2

●

●

●

0 10 20 30 40

0
10

20
30

40

10

20

30

10 20 30

Subject 3 Subject 3

●

●

●

0 10 20 30 40

0
10

20
30

40

●

●

●

0 10 20 30 40

0
10

20
30

40

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

0 10 20 30 40

0
10

20
30

40

10

20

30

10 20 30

1st level ——– 2nd level ——– 3rd level
(a) (b) (c)

Figure 2.1: Hierarchical structure of the spatial Bayesian model. (a) At the first level an unknown
number of “population centers”, µ, that follow a homogenous spatial Poisson process
defined over the confines of the brain. (b) At the second level, an unknown number of
“individual component” means, η, are distributed as isotropic Gaussian mixtures whose
mixture component means are the population centers with variances τ2. (c) At the final
level, we assume the data, y, for each subject are distributed as a Gaussian mixture
with an unknown number of mixing components whose means are θ with variances σ2.

2.1.1 Data distribution

We begin with the third level of the hierarchy. Let yjv be the observed effect

magnitude at pixel v, v = 1, . . . , V , for subject j, j = 1, . . . , J . We use a single

index v to reference a 2D pixel, xv = (x1v, x2v). We assume that observations are

distributed as a mixture of Gaussian components:

(2.1) f(yjv | pjvl, θjl, σ2
jl, cj) = pjv0 φ(yjv; θ0, σ

2
0) +

cj∑
l=1

pjvl φ(yjv; θjl, σ
2
jl).

Here, cj is the number of mixture components for subject j (not including the back-

ground component) and φ(a; b, c2) is the density at a of a normal distribution with

mean b and variance c2. θ0 and σ2
0 represent the mean and variance of the back-
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ground component. By introducing a latent variable ωjv with Pr(ωjv = l) = pjvl, the

likelihood can be written conditionally as

f(yjv | θ0, σ
2
0, ωjv = 0) = φ(yjv; θ0, σ

2
0) for background,

f(yjv | θjl, σ2
jl, ωjv = l) = φ(yjv; θjl, σ

2
jl) otherwise.

The latent variable ωjv can be interpreted as an allocation variable in the sense that

observation yjv is assigned to one of the mixture components with probability pjvl.

A pixel is considered active if that pixel belongs to a component with index l > 0

and is inactive if that pixel belongs to the background component (l = 0).

Let φ2(·; a,B) denote the density of a bivariate normal distribution with mean a

and covariance matrix B. The mixing weights, pjvl, take the form

(2.2) pjvl ∝

 m l = 0

φ2(xv; ηjl,Rjl) l = 1, . . . , cj

with
∑cj

l=0 pjvl = 1. Here xv is the spatial location of pixel v and ηT
jl = (η1jl, η2jl)

is the mean of individual component l, l = 1, ..., cj (we refer to the mean of the

individual component as the “component center”). Rjl = r2
jlI2 where I2 is the 2× 2

identity matrix. The spatial dependence of the data is captured by the weights, pjvl.

Given m, the weights largely depend on the distance from the pixel to each of the

component centers. This implies that observations that are spatially close to one

another are more likely to have similar weights. Hence, spatially close observations

will be more correlated than distant observations. Note that an observation distant

from all components centers, a priori, will have probability near 1 that it belongs to

the background center. Furthermore, if a pixel and component center are coincident,

then the a priori probability that this pixel belongs to the background is approxi-

mately m/(r−2
jl /2π + m). fMRI experiments are usually designed such that only a
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small percentage of the brain (roughly 1%–5%) actually shows any activity. Thus,

a priori, we set m = 19 and E(r−2
jl ) = (2π). This gives m/(E(r−2

jl )/2π +m) = 0.95,

reflecting this a priori belief.

The number of mixing components, cj, for each subject is not known and we

estimate it along with all other parameters. A priori we assume cj is a Poisson

random variate with mean 5, for j = 1, . . . , J .

Now we move on to the second and first levels of the hierarchy.

2.1.2 Priors

The priors of the component means make up the second level of the hierarchy.

The prior of each component mean, ηjl, l = 1, . . . , cj for subject j, is taken to be a

mixture of cp bivariate normals. Each component mean is associated with a particular

population center, µi, i = 1, . . . , cp:

(2.3) π(ηjl | ψi,µi, τ
2
i , cp) =

cp∑
i=1

ψi φ2(ηjl; µi, τ
2
i I2).

Here, the ψi are mixing weights. We also introduce a latent variable, zjl, such that

Pr(zjl = i) = ψi. Thus, conditional on zjl = i, ηjl is bivariate normal with mean

µi and covariance matrix τ 2
i I2. A natural choice for the prior on ψi is a symmetric

Dirichlet distribution: ψi | cp ∼ D(1, 1, . . . , 1) where the parameter dimension is

cp − 1. The number of population centers, cp, is a priori unspecified and is to be

estimated along with all other model parameters.

At the first level of the hierarchy, the parameter µT
i = (µ1i, µ2i) is the location of

population activation center i, i = 1, ..., cp. Let Aj denote the cross-sectional area of

the given MRI slice of the brain of subject j, j = 1, . . . , J . Set A = ∪Jj=1Aj. (We note

here that, although all subject’s data have been mapped onto a common brain atlas,

due to motion artifacts and field inhomogeneities, there are missing data. Typically,
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fMRI analyses are performed on the intersection of the Aj. By taking the union, we

allow for the possibility that a population center is in a region where some subjects

may have missing data.) A priori, we assume these population activation centers

follow a homogenous spatial Poisson process with rate λp defined over A. Thus, we

can write

cp ∼ P (λpA) and π(µ1, . . . ,µcp | cp) = A−cp .

We take λp = 5A−1 reflecting our belief that the number of population centers should

be small. Note that although the prior distribution of the population centers is a

homogenous point process, it’s posterior is not necessarily. The posterior will depend,

in large part, on the posterior distribution of the ηjl.

We place inverse gamma (parameterized such that if x ∼ IG(α, β), E(x) =

β/(α− 1)) priors on all variance parameters for mathematical convenience:

r2
jl ∼ IG(2π, βr), τ

2
i ∼ IG(3, βτ ), σ

2
jl ∼ IG(3, βσ), σ

2
0 ∼ IG(.001, .001).

Hyperprior distributions are then placed on βr, βτ and βσ: βσ ∼ Ga(.01, .01), βτ ∼

Ga(.01, .01), βr ∼ Ga(2, 1) whereGa(κ, λ) = λκ

Γ(κ)
xκ−1e−λx is the gamma distribution.

We place rather vague hyperprior distributions on the scale parameters βτ and βσ to

reduce the influence of the prior on the posterior estimates of τ 2
i and σ2

jl.

It remains to specify the priors of the intensity parameters, θjl, in the likelihood

specified in equation (2.1). Recall that θjl, l > 0, are the mean intensity levels of the

individual mixture components for active pixels and θ0 is the mean intensity level of

inactivated pixels. We choose the following priors:

θ0 ∼ N(0, 1) and θjl ∼ trunc(0,∞)N(λθ, σ
2
θ),

where

λθ ∼ N(35, 1× 108) and σ2
θ ∼ IG(.01, .01).
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Furthermore, trunc(0,∞)N(λθ, σ
2
θ) denotes the normal distribution with mean λθ and

variance σ2
θ truncated to (0,∞).

Results from simulation and sensitivity analyses are given in Chapter V.
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2.1.3 Posterior Distribution

By combining the data distribution and the prior distributions the posterior dis-

tribution is

π
(
{θjl}, {ηjl}, {µi}, {ψi}, {σ2

jl}, {r2
jl}, {τ 2

i }, {cj}, cp, βr, βτ , βσ, λθ, σ2
θ | y

)
∝ f

(
y | {θjl}, {ηjl}, {σ2

jl}, {r2
jl}, {cj}

)
π ({θjl} | {cj})

π
(
{ηjl} | {ψi}, {µi}, {τ 2

i }, {cj}
)
×

π ({ψi} | λψ, cp) π ({µi} | cp) π
(
{σ2

jl} | βσ, {cj}
)
π
(
σ2

0 | βσ0

)
π
(
{τ 2
i } | βτ , cp

)
×

π
(
{r2

jl} | αr, βr, cp
)
π ({cj}) π (cp) π (βr)π (βτ ) π (βσ) π (λθ) π

(
σ2
θ

)
=

n∏
j=1

V∏
v=1

(
pjv0(2πσ

2
0)
−1/2 exp

[
−0.5(yjv − θ0)

2/σ2
0

]
+

cj∑
l=1

pjvl(2πσ
2
jl)

−1/2 exp
[
−0.5(yjv − θjl)

2/σ2
jl

])
×

(2π)−1/2 exp
(
−0.5θ2

0

) n∏
j=1

cj∏
l=1

(2πσ2
θ)
−1/2 exp

[
−0.5(θjl − λθ)

2/σ2
θ

]
I(θjl > 0)×

n∏
j=1

cj∏
l=1

cp∑
i=1

ψi(2πτ
2
i )
−1 exp

[
−0.5(ηjl − µi)

T (ηjl − µi)/τ
2
i

]
×

Γ(cpλψ)

Γ(λψ)cp

cp∏
i=1

ψ
λψ−1
i

cp∏
i=1

[
β3
τ

Γ(3)
(τ 2
i )
−3−1 exp

(
−βτ/τ 2

i

)]
×

n∏
j=1

cj∏
l=1

[
β2π
r

Γ(2π)
(r2
jl)

−2π−1 exp
(
−βr/r2

jl

) β3
σ

Γ(3)
(σ2

jl)
−3−1 exp

(
−βσ/σ2

jl

)]
×

0.0010.001

Γ(10−3)
(σ2

0)
−10−3−1 exp

(
−10−3/σ2

0

) 1

Γ(2)
β2−1
r exp (−βr)×

0.010.01

Γ(10−2)
β10−2−1
τ exp

(
−10−2βτ

) 0.010.01

Γ(10−2)
β10−2−1
σ exp

(
−10−2βσ

)
×

(2π108)−1/2 exp
(
−0.5(λθ − 35)2/108

) 0.010.01

Γ(10−2)
(σ2

θ)
−10−2−1 exp

(
−10−2/σ2

θ

)
×

[5cp exp(−5)/cp!]

cp∏
i=1

I(µi ∈ ∪nj=1Aj)
n∏
j=1

[5cj exp(−5cj)/cj!] .
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2.2 Posterior estimation

The full posterior distribution does not have an analytic solution. Thus, the pos-

terior distribution is simulated via Markov chain Monte Carlo (MCMC) techniques,

and, in particular reversible jump MCMC (RJMCMC). RJMCMC was first intro-

duced by Green (1995) and can be viewed as a Metropolis-Hastings (MH) (Hastings,

1970) algorithm adapted to varying dimensional parameter spaces. In our example

this corresponds to the addition and deletion of a population center or an individual

component.

Briefly, we propose to add a new population center or an individual component,

each with probability 0.5 and propose to delete a population center or individual

component, each with probability 0.5 at each iteration of the algorithm. We over-

sample the RJMCMC moves three times per iteration which results in better mixing.

When we propose to add an individual component, the parameters defining the new

component are drawn from their prior distributions. The use of the prior distributions

in proposing new values leads to a simplification of the acceptance probability. When

we propose to add a population center, a new location µ∗ and variance τ 2
∗ are drawn

from their respective priors. A new mixing weight ψ∗ is drawn from Beta(1, cp) and

its kernel cancels the Jacobian of the transformation. We re-scale the old weights

ψ′s according to ψ′ = ψ(1 − ψ∗) such that all weights sum up to 1. The deletion

move is the inverse of this construction. Conditional on the number of population

centers and individual components other parameters are updated using a Gibbs or a

random walk MH step. The variances in the proposal distribution for the MH steps

were chosen to obtain acceptance rates of approximately 35%. Following Fernandez

and Green (2002) we use the marginal expression for the likelihood and for the priors
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of the ηjl, as specified in equations (2.1) and (3.3) to obtain better mixing. Details

are given in the Appendix A.

2.3 Summarizing posterior inference

Simultaneous visualization of the joint posterior distribution of all parameters is

infeasible. Instead we view the distributions of certain univariate parameters and

create images summarizing the posteriors of the various spatial parameters. In this

section we review the approaches we have used to understand our posterior and assess

model fit.

We create a “Posterior Probability of Activation” image for each subject, the

pixel-wise posterior probability that a pixel is activated. Precisely, we estimate the

marginal posterior probability that subject j has pixel v activated, Pr(ωjv > 0 | y).

The Bayesian estimate of this quantity is the marginal posterior mean of I(ωjv>0),

where I(ωjv>0) = 0 if ωjv = 0 and 1 otherwise.

We create an image of the average “Individual Component Posterior”, a pixeliza-

tion of the (2D) posterior predictive density of the location of a new individual com-

ponent for a new subject. Precisely, we seek to estimate the posterior distribution

of η̃, the location of a single individual component for a randomly selected subject.

At each sweep we compute the marginal distribution (over population centers and

subjects) of the individual component locations,
∑cp

i=1 ψi φ2(xv; µi, τ
2
i I2) for each v.

Averaging this over sweeps creates an estimate of the density of η̃ | y.

The Individual Component Posterior shows the most probable locations of indi-

vidual components η and is most valuable for visualizing the spread of individual

component centers about the population centers, as parameterized by τ 2
i . Care must

be taken not to over-interpret the relative height of this image, however. As can be
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seen by the prior for η (equation (3.3)), the mode height in the Individual Compo-

nent Posterior are affected by three things. First, all things equal, a smaller τ 2
i means

a more concentrated density which will result in a higher mode. Second, a mode’s

height will grow as more subjects have components associated with that population

center; e.g. if component l is associated with center i, then as
∑

j I(zjl=i) grows so

will ψi, the mixing weight for center i. And lastly, a subject that requires more

components to fit their profile of activation ({yjv}v) associated with center i will also

raise ψi.

We also create four images to characterize the population centers. The “Popu-

lation Center Location” image is a pixelization of the (2D) posterior rate function

(counts per pixel) for µ. We estimate this by computing the 2D histogram of {µi}

for each iteration and then average this over iterations. Note that this image does

not sum to one, but rather sums to the posterior mean number of population centers,

E(cp | y).

The “Population Center Scale” image shows the standard deviation of individual

component locations about population centers. Exactly, this the posterior average of

τ conditional on a population center being in pixel v. Note here we have intentionally

suppressed the population center index i, as we marginalize over population center.

The “Population Center Prevalence” image shows the fraction of subjects that

possess a population center. To precisely define this quantity, let eij =
∑

l I(zjl=i)

be the count of individual components that subject j has for population center i.

The count of subjects with center i is then ei =
∑J

j=1 I(eij>0), and the population

prevalence is ei/J . Conditional on a population center being in pixel v, this image is

the posterior average of ei/J after marginalizing over population centers i = 1, ..., cp.

The “Population Center Average Area” image shows the average number of ac-
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tivated pixels for a population center. Let Di be the set of individual components

that associated with population center i. For each individual component jl in Di the

number of activated pixels labeled with that component is
∑

v I(ωjv=l). Conditional

on a population center being in pixel v, this image at v is the posterior average

of
∑

jl∈Di

∑
v I(ωjv=l)/ei, where ei is the count of subjects with population center i

defined in the previous paragraph.

For comparison with other methods we create two other images. A “Classical

t-image” is the one-sample t-test on the BOLD effect magnitudes (yv = {yjv}j)

at each voxel. To make inference on this result, we compute an image of − log10P-

values for a one-sided, one sample t-test. The − log10 transformation makes for easier

visualization, creating an image that should be “bright” in pixels with evidence for

an non-null effect magnitude.

2.4 Real Data Results

We now summarize results of our model on the working memory data. We run

the algorithm for 10,000 iterations with a burn-in of 5,000, saving every 5th iteration

to summarize results. The algorithm takes approximately 105 minutes to run on

a Mac 2.7 GHz PowerPC G5 processor. The algorithm was written in C++. The

acceptance rate for the population level birth/death RJMCMC is about 5% and

about 10% for the individual level . The number of population centers, cp, converges

at about 4000 iterations. The number of individual component centers, cj, converges

at about 1000 iterations. Trace plots and the posterior distribution of cp and cj

for all 21 subjects are included in Appendix C. Figure 2.2 shows source data (y),

the Posterior Probability of Activation and the location of individual component

centers at iteration 6000 for a representative sample of subjects (1, 3, 9 and 20).
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The Posterior Probability of Activation images demonstrate our model capturing

the focal signals in subjects 1, 3 and 9, but appropriately finding no signal in subject

20. Even though subject 20 doesn’t appear to have any activated pixels, Figure 2.2

(bottom row) still show four individual component centers for subject 20 at iteration

6000. This is due to the randomness of the RJMCMC step. Individual component

centers can be proposed and accepted in a birth step for inactivated areas. However,

these centers will die soon after. Only consistently activated pixels will be kept and

shown on the Posterior Probability images. At some activation areas, our model fits

several individual component centers instead of one, e.g. the upper right activation

area for subject 2. This issue will be discussed in Chapter IV, the Future Work and

Discussion. Results for all 21 subjects can be found in Appendix C.

The main focus of our work is the population level, as shown in Figure 2.3(a,b,c,d,e).

Figure 2.3(a) displays the Population Center Location posterior; this image shows

evidence of 5 to 7 population centers, localized to a a few pixels. Figure 2.3(b) shows

the Population Center Prevalence image; of the 5 to 7 centers, 4 are present in more

than 50% of the subjects: The bottom left and right bilateral pair of activations are in

the dorsal occipital lobe, an area involved in visual processing; the upper left activa-

tion is in the dorsolateral prefrontal cortex (DLPFC), an area important maintaining

“on-line”, short-term representations of information. Figure 2.3(c) shows the Popu-

lation Center Scale image, which quantifies the spread of individual components in

terms of τ . The dispersal of individual components is mostly homogeneous (τ ≈ 2),

with only the relatively rare right frontal center having larger spread. Figure 2.3(d)

shows the Individual Component Posterior and gives similar information about the

location of the 3 population centers as does Figure 2.3(a). However, note that the

variability of the population locations is much smaller than the variability across
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subjects. While Figure 2.3(a) gives more precise information about the population

center location, Figure 2.3(d) qualitatively depicts the spread of individual compo-

nents about population centers. Figure 2.3(e) shows the Population Activation Area

image, which gives the average number of activated pixels for a population center.

Most of the population activation areas consist of 6-10 pixels.

Figure 2.3 (f,g) display the classical t-image and the − log10(p) image. While these

images similarly illustrate the spread of activation between subjects, they cannot

quantify the spatial precision of the results as our method does.

Our result is both more informative and less noisy. First, our method separately

provides inference on (1) location of population activations, (2) the consistency with

which subjects express such activations, and (3) the intrasubject spread of activations

about the population centers. The classical method can only assess consistency of

signal change at each voxel. With no spatial model, it cannot effect the smoothing

of our model, nor can it account for intersubject variability in activation location.

The main contributions of this work are as follows. A traditional voxel-based

approach can only detect activated voxels for which the average signal is significant

across subjects. However, subjects sometimes don’t have, or only a small percentage

of the total subjects have, overlapped activated voxels even though these activated

voxels are close to each other and represent the same anatomical/functional area.

Our models fit individual component centers for subject level activation areas and

find population activation centers based on these individual component centers. We

explicitly model the location of the population activation center with a separate pa-

rameter describing the variability of the individual component centers. Unlike the

voxel-based approach our methods allow for variation in both signal intensity and

activation location at the individual level. The location of the population activa-
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tion centers are summarized using the posterior rate function. This provides better

precision in the estimation of the population center location than the standard mass-

univariate method.
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Figure 2.2: Top row: The intensity data from slice 21 for 4 subjects. Middle row: The marginal
posterior probability of activation: Pr(ωjv > 0 | y). Bottom row: The center location
of individual components at iteration 6000.
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Figure 2.3: (a) 2D posterior rate function of population center locations; (b) proportion of subjects
containing evidence for a population center; (c) standard deviation of individual com-
ponents about population centers; (d) posterior-predictive density of individual center
locations p(η̃ | y); (e) the average number of activated pixels for a population center
(f) classical t-image; (g) minus log base 10 p-values from the t-image (− log10(p)).



CHAPTER III

NONPARAMETRIC BAYESIAN MODEL USING
DIRICHLET PROCESS PRIOR

3.1 Introduction

In Chapter II we introduce a spatial mixture mode (the “finite mixture” model).

We assume each individual component center ηjl is from a mixture of cp bivariate

normals with mean µi and covariance

 τ 2
i 0

0 τ 2
i

 for i = 1, . . . , cp. We interpret

the normal mean µi as the population center and estimate cp using reversible jump

MCMC. In this chapter, we extend the finite mixture model in two ways. First

we extend the finite mixture model to an infinite mixture model. It can be shown

that the infinite mixture model is equivalent to a nonparametric model assuming a

Dirichlet process prior on the mean and covariance of the normal mixtures (Neal,

2002). In this setting the number of population centers cp will be determined through

the Dirichlet process. Second, we use a general variance-covariance matrix Σi for the

bivariate normals. This helps capture different shapes of activations.

We first give a brief review of the Dirichlet process prior. We then describe in

detail how the Dirichlet process prior is used to model the population and individual

activations and how it is incorporated in the Bayesian hierarchical structure.

26
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3.2 Review of Dirichlet Process Prior

In a fundamental paper on Bayesian nonparametric approaches, Ferguson (1973)

defined the Dirichlet process as a random probability measure and derived many im-

portant properties of this process. Let A1, ..., Ak be a partition of the sample space

S. We say a random probability measure G is a Dirichlet process if G(A1), ..., G(Ak)

follows a Dirichlet distribution with parameter α(A1), ..., α(Ak). In most applica-

tions the nonnegative measure α is expressed as α(A) = α0G0(A) where G0(A) is a

probability measure and α0 is a positive scalar. In a Bayesian framework G0 is the

best prior guess of G and is the mean distribution of the Dirichlet process, α0 is a

precision parameter measuring the strength in the belief that G is G0. Let yi be the

data and θi be the parameters. The basic Bayesian model using Dirichlet processes

(DP) prior is often in the following form:

(3.1) yi ∼ f(yi|θi), θi ∼ G, G ∼ DP (α0G0)

The next important issue is to be able to simulate from the posterior distribution.

Antoniak (1974) showed that the posterior distribution of the parameter θ given

the data y is a mixture of Dirichlet processes. In practice a mixture of Dirichlet

processes is difficult to use. Recently many authors have been working on solving

the computational difficulties. Escobar (1994) develops a Gibbs sampler algorithm

for f being the normal distribution with mean θi and variance 1. The conditional

distribution of θi given all other θ′js, (j 6= i) and the data y can be sampled according

to the following rule:

(3.2) θi|θj, j 6= i, y


= θj with probability ∝ f(yi|θj),

∼ h(θi|yi) with probability ∝ A(yi).
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where A(yi) = α0

∫
f(yi|θi)G0(dθi) and h(θi|yi) = α0

A(yi)
f(yi|θi)g0(θi), g0 is the den-

sity corresponding to G0. Escobar and West (1995) extended the computational

method to a more general likelihood y|θ ∼ N(µ, V ) with a conjugate normal/inverse

gamma prior for G0(µ, V ). Muller, Erkanli, and West (1996) applied the Dirichlet

process prior to density estimation problems and also extended the model to multi-

dimensional versions. Their sampling method is based on updating ϑ and s, where

ϑ = {ϑ1, ..., ϑk} is the set of distinct θ′is and si is a latent class variable associated

with observation yi such that yi ∼ f(yi|ϑsi). This algorithm involves inserting a new

component and deleting an empty component of φ. Both of these papers are based

on conjugate priors and require an approximate draw from p(θ|y) by approximating

A(y). Later a new method is proposed by MacEachern and Muller (1998) which

not only extend the model to non-conjugate situations but also avoid the difficult

evaluation of A(y) and gives an exact sampling method. They called it “no gaps”

algorithm because the key idea is to put the constraint that there is no gap in the

value of si. Using similar ideas, Neal (2002) extended Gibbs sampling for s′is by using

a set of auxiliary parameters. Neal’s method increases the efficiency in setting a new

value of si. For a good review of current nonparametric Bayesian models includ-

ing Dirichlet process in density estimation, regression, survival analysis, hierarchical

models and model validation, we refer to Muller and Quintana (2004). For a good

review of Markov chain methods for sampling from the posterior distribution of a

Dirichlet process mixture model, we refer to Neal (2002).

3.3 Methods

3.3.1 Individual and population activation map

Suppose there are cj number of individual activation centers for subject j, j =

1, . . . , J . Let ηT
jl = (η1jl, η2jl) be the lth (l = 1, ..., cj) activation center for subject j.



29

We assume that each ηjl is normally distributed with mean µ̃jl
T = (µ̃1jl, µ̃2jl) and

variance-covariance matrix Σ̃jl =

 σ11 σ12

σ21 σ22


jl

, that is:

(3.3) π(ηjl | µ̃jl, Σ̃jl) = φ2(ηjl; µ̃jl, Σ̃jl).

where φ2(·; a,B) denotes the density of a bivariate normal distribution with mean a

and covariance matrix B. The normal parameters {µ̃jl, Σ̃jl} have a Dirichlet process

prior of the following form:

(3.4) {µ̃jl, Σ̃jl} ∼ G, G ∼ DP (α0G0)

In this setting, {µ̃jl, Σ̃jl} are not directly from G0 but from a random probability

distribution G, generated by a Dirichlet process with mean distribution G0. A key

feature of the Dirichlet process is that by marginalizing over G, we can write the

prior distribution of the {µ̃jl, Σ̃jl} in terms of successive conditional distributions.

To write the distribution in a convenient way we order {µ̃jl, Σ̃jl} such that

{µ̃, Σ̃} = {(µ̃11, Σ̃11), . . . , (µ̃1c1 , Σ̃1c1), . . . , (µ̃J1, Σ̃J1), . . . , (µ̃JcJ
, Σ̃JcJ )}, and rela-

bel it using a single index h, {µ̃, Σ̃} =
{(

µ̃1, Σ̃1

)
, . . . ,

(
µ̃h, Σ̃h

)
, . . . ,

(
µ̃H , Σ̃H

)}
.

Mathematically, h =
∑j−1

k=1 ck + l and H =
∑J

j=1 cj. With the new notation, the suc-

cessive conditional distributions are of the following form (Blackwell and MacQueen,

1973):

(µ̃1, Σ̃1) ∼ G0

(3.5)

(µ̃H , Σ̃H) | (µ̃1, Σ̃1), . . . , (µ̃H−1, Σ̃H−1)


= (µ̃h, Σ̃h) with probability 1

α0+H−1

∼ G0 with probability α0

α0+H−1
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Due to the discreteness of G, some of the {µ̃h, Σ̃h} are identical and the H val-

ues reduce to some cp < H distinct values. Write the set of cp distinct values as

{µi,Σi} = {(µ1,Σ1), . . . , (µcp ,Σcp)}. These cp distinct values {µi} have the interpre-

tation of being the location of the population activation centers where cp corresponds

to the number of population activation centers. Note that cp is not fixed but will be

determined by the data through the Dirichlet process. We introduce a class variable

zjl for each individual activation center, where zjl = i if (µ̃jl, Σ̃jl) = (µi,Σi). Now

each ηjl is associated with a particular population center, µi, i = 1, . . . , cp. Given

the population activation map {µi,Σi} and conditional on zjl = i, ηjl is bivariate

normal with mean µi and covariance matrix Σi. Use of the class parameter zjl greatly

increases the computational efficiency of the posterior sampling. We now specify G0

and α0 to complete the Dirichlet process prior. Let Aj denote the cross-sectional

area of the given MRI slice of the brain of subject j, j = 1, . . . , J . Set A = ∪Jj=1Aj,

the union of individual brain areas. As a best guess of G, G0(µ) is assumed to follow

a uniform distribution over A and G0(Σ) takes a conjugate inverse Wishart distri-

bution with 5 degrees of freedom: Σi ∼ IW5(S
−1). The precision parameter α0 of

the Dirichlet process has an impact on the posterior distribution of cp. For a larger

α0, the model puts more weights on G0 and favors a larger cp. Following Escobar

and West (1995), we give a gamma prior of α0: α0 ∼ G(1, 1) and update α0 through

the MCMC sampling scheme. In the next section we will describe the distribution

of the intensity data given the individual and population activation maps.

3.3.2 Data distribution

Let yjv be the observed effect magnitude at pixel v, v = 1, . . . , V , for subject

j, j = 1, . . . , J . We use a single index v to reference a 2D pixel, xv = (x1v, x2v). Given

the individual activation centers {ηjl}, we assume that observations are distributed
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as a mixture of Gaussian components:

(3.6) f(yjv | pjvl, θjl, σ2
jl, cj) = pjv0 φ(yjv; θ0, σ

2
0) +

cj∑
l=1

pjvl φ(yjv; θjl, σ
2
jl).

Here, cj is the number of mixture components for subject j (not including the back-

ground component) and φ(a; b, c2) is the density at a of a normal distribution with

mean b and variance c2. θ0 and σ2
0 represent the mean and variance of the back-

ground component. By introducing a latent variable ωjv with Pr(ωjv = l) = pjvl, the

likelihood can be written conditionally as

f(yjv | θ0, σ
2
0, ωjv = 0) = φ(yjv; θ0, σ

2
0) for background,

f(yjv | θjl, σ2
jl, ωjv = l) = φ(yjv; θjl, σ

2
jl) otherwise.

The latent variable ωjv can be interpreted as an allocation variable in the sense that

observation yjv is assigned to one of the mixture components with probability pjvl.

A pixel is considered active if that pixel belongs to a component with index l > 0

and is inactive if that pixel belongs to the background component (l = 0).

The mixing weights, pjvl, take the form

pjvl ∝

 m l = 0

φ2(xv; ηjl,Rjl) l = 1, . . . , cj

with
∑cj

l=0 pjvl = 1. Here xv is the spatial location of pixel v and Rjl = r2
jlI2 where

I2 is the 2 × 2 identity matrix. The spatial dependence of the data is captured by

the weights, pjvl. Given m, the weights largely depend on the distance from the

pixel to each of the component centers. This implies that observations that are spa-

tially close to one another are more likely to have similar weights. Hence, spatially

close observations will be more correlated than distant observations. Note that an

observation distant from all components centers, a priori, will have probability that
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it belong to the background center close to 1. Furthermore, if a pixel and compo-

nent center are coincident, then the a priori probability that this pixel belongs to

the background is approximately m/(r−2
jl /2π + m). fMRI experiments are usually

designed such that only a small percentage of the brain (roughly 1%–5%) actually

shows any activity. Thus, a priori, we set m = 19 and E(r−2
jl ) = (2π). This gives

m/(E(r−2
jl )/2π +m) = 0.95, reflecting this a priori belief.

The number of mixing components, cj, for each subject is not known and we

estimate it along with all other parameters. A priori we assume cj is a Poisson

random variate with mean 5, for j = 1, . . . , J .

3.3.3 Priors

For mathematical convenience we place inverse gamma (parameterized such that

if x ∼ IG(α, β), E(x) = β/(α − 1)) priors on r2, σ2, σ2
0 and a Wishart distribution

on S:

r2
jl ∼ IG(2π, βr), σ

2
jl ∼ IG(3, βσ), σ

2
0 ∼ IG(.001, .001), S ∼ W5(

 12 0

0 16

)

Hyperprior distributions are then placed on βr and βσ:

βr ∼ Ga(2, 1), βσ ∼ Ga(0.01, 0.01)

where Ga(κ, λ) = λκ

Γ(κ)
xκ−1e−λx is the gamma distribution. We place rather vague

hyperprior distribution on the scale parameters βσ to reduce the influence of the

prior on the posterior estimates of σ2
jl. The Wishart distribution of S gives E(Σ) = 30 0

0 40

. This implies that, a priori, the spread of the individual component

centers in the x direction is about 5.5(=
√

30) in the x direction and about 6.3(=
√

40)

in the y direction. Given the brain dimension of 53 × 63, the spread is about 1/10

of the range.
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It remains to specify the priors of the intensity parameters, θjl, in the likelihood

specified in equation (2.1). Recall that θjl, l > 0, are the mean intensity levels of the

individual mixture components for active pixels and θ0 is the mean intensity level of

inactivated pixels. We choose the following priors:

θ0 ∼ N(0, 1) and θjl ∼ trunc(0,∞)N(λθ, σ
2
θ),

where

λθ ∼ N(35, 1× 108) and σ2
θ ∼ IG(.01, .01).

Furthermore, trunc(0,∞)N(λθ, σ
2
θ) denotes the normal distribution with mean λθ and

variance σ2
θ truncated to (0,∞).

3.4 Posterior estimation

To sample from the posterior distribution we propose the following Markov chain

Monte Carlo (MCMC) steps: (1) add or remove an individual component (2) update

the class variable z for each individual component (3) change (η, r2, θ, σ2) for an indi-

vidual component (4) change (µ, Σ) for a population center (5) update the class vari-

able ω for each observation, and (6) update hyperparameters (βr, βσ, λθ, σ
2
θ ,S, α0).

We will briefly describe each step in this section. Details of the algorithm are included

in the Appendix. In Step (1) we propose to add a new individual component with

probability 0.5 and propose to delete an individual component with probability 0.5

at each iteration. When we propose to add an individual component the parameters

defining the new component are drawn from their prior distributions. This involves

drawing (µ̃, Σ̃) from expression (3.5). The use of the prior distributions in proposing

new values leads to a simplification of the acceptance probability. In Step (2) we

use Algorithm 8 proposed by Neal (2002). The class variable z is sampled using a

Gibbs type sampler. Note that both step (1) and step (2) can change the number of
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population centers if either a new value of (µ̃, Σ̃) is created or an existing population

center becomes empty. Step (3)-(6) do not involve any change in the dimension of

the parameter space. Conditional on the number of population centers and indi-

vidual components we update (η, r2,µ) using a random walk Metropolis-Hastings

(MH) step. The variances in the proposal distribution for the MH steps were chosen

to obtain acceptance rates of approximately 35%. (θ,Σ, σ2, βr, βσ, λθ, σ
2
θ ,S, α0) is

sampled using a Gibbs step. According to Escobar and West (1995) the Gibbs step

for sampling α0 has two parts. First sample a beta variable β0 given current value

of α0 and then sample a new α0 from a mixture of two gamma densities. Following

Fernandez and Green (2002) we use the marginal expression for the likelihood as

specified in equations (2.1) to obtain better mixing.

3.5 Results

We apply the infinite mixture model to the working memory data described at

the beginning of the thesis. Figure 3.1 and 3.2 show the results. The posterior

probability of activation obtained from this model is very similar to that obtained

from the finite mixture model. Signals are found for subject 1, 3, and 9 but not found

for subject 20. However, the infinite mixture model fits less individual component

centers for each activation area. For the population level results, the 2D posterior

rate image of the population center location (Figure 3.2 (a)) shows 6 population

centers. Each center contains 2 to 3 pixels. The Population Center Prevalence image

in Figure 3.2 (b) shows that 3 of these 6 population centers are present in more

than 50% of the subjects. The other 3 population centers are present in 20-30%

of the subjects. Based on the Population Center Area image (Figure 3.2 (h)), the

middle and the upper 2 population centers have larger average areas, which is about
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10-15 pixels. The bottom three population centers have smaller average areas, which

contain about 5 pixels. The infinite mixture model finds similar population center

locations as does the finite mixture model. But the Individual Component Posterior

image is different. The infinite mixture model shows that individual component

centers are more spread in the y direction. The Population Center x-Scale and

the Population Center y-Scale images show the spread of the individual component

center in the x and the y direction. For most pixels, the spread in x direction (σ11) is

1-2 and is 2-3 in the y direction (σ22). The trace plots of the number of population

centers show that the infinite mixture model converges faster and mix better than

the finite mixture model. Results for all 21 subjects are given in Appendix D.

The main contributions of this work are as follows. A traditional voxel-based

approach can only detect activated voxels for which the average signal is significant

across subjects. However, subjects sometimes don’t have, or only a small percentage

of the total subjects have, overlapped activated voxels even though these activated

voxels are close to each other and represent the same anatomical/functional area.

Our models fit individual component centers for subject level activation areas and

find population activation centers based on these individual component centers. We

explicitly model the location of the population activation center with a separate pa-

rameter describing the variability of the individual component centers. Unlike the

voxel-based approach our methods allow for variation in both signal intensity and

activation location at the individual level. The location of the population activa-

tion centers are summarized using the posterior rate function. This provides better

precision in the estimation of the population center location than the standard mass-

univariate method.
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Figure 3.1: Top row: The intensity data from slice 21 for 4 subjects. Middle row: The marginal
posterior probability of activation: Pr(ωjv > 0 | y). Bottom row: The center location
of individual components at iteration 6000.
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Figure 3.2: (a) 2D posterior rate function of population center locations; (b) proportion of subjects
containing evidence for a population center; (c) posterior-predictive density of individ-
ual center locations p(η̃ | y); (d) standard deviation of individual components about
population centers on the x direction; (e) standard deviation of individual components
about population centers on the y direction; (f) the average number of activated pixels
for a population center; (g) trace plot of the number of population centers for the infinite
mixture model (black) and the finite mixture model (red), starting from 1 center.



CHAPTER IV

SIMULATION STUDIES AND SENSITIVITY ANALYSIS

In the previous two chapters we introduce two Bayesian models. Both are RJM-

CMC Bayesian hierarchical models (In Chapter II the finite mixture model and in

Chapter III the infinite mixture model with the Dirichlet process prior). To investi-

gate the performance of our Bayesian models we perform several simulation studies.

For each simulated data set we apply both models and compare the results. We also

carry out sensitivity analyses to investigate how hyperparameter values influence the

posterior distributions. We present simulation results in Section 4.1, while results

from the sensitivity analysis are given in Section 4.2.

4.1 Simulation Studies

4.1.1 Noise data

In this section, we simulate a data set which consists of 10 simulated images with

no signal, each under the following three conditions:

(a) all images contain independent N(0,1) noise.

(b) smooth the independent image with a symmetric Gaussian kernel with standard

deviation 0.5.

(c) smooth the independent image with a symmetric Gaussian kernel with standard

deviation 1.5.
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Condition (b) and (c) create images with correlated intensities. As an example,

Figure 4.1 (top row) shows one image under each condition. We run both the finite

mixture model and the infinite mixture model for each of 20 simulated data sets

(each data set consists of 10 images). Figure 4.1 (bottom row) shows the mean

image of all 20 data sets. We summarize results by taking the average over all 20

data sets. We find no activation at either the individual level or the population

level. The posterior w is zero for most subjects and close to zero for the rest. The

number of population and the number of individual component centers are not zero.

But the addition and deletion of the centers follow a random pattern over the entire

image. This can be seen from Figure 4.2 which displays the posterior distribution

of the location of the population centers and the posterior predictive density of the

location of the individual component center.

4.1.2 Simulated multiple activation centers with spherical Gaussian for η

Each simulated data set consists of 10 images, each with multiple activation cen-

ters added to the same three conditions as in last section:

(a) all images contain independent intensities.

(b) smooth the independent image with a symmetric Gaussian kernel with standard

deviation 0.5.

(c) smooth the independent image with a symmetric Gaussian kernel with standard

deviation 1.5.

The parameters in the simulation include different numbers of individual activation

components and include centers with different mean intensity levels and different

sizes. There are three population activation centers located roughly in the upper

left, upper right and lower center portion of the image. For each of the population
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Figure 4.1: Simulated Noise Data under three conditions: (a) independent noise; (b) smoothed with
Gaussian standard deviation = 0.5; (c) smoothed with Gaussian standard deviation
= 1.5. First row: The simulated data for one instance. Second row: Mean image
averaging over all 20 runs.

centers, we randomly put 10, 5 and 1 individual component centers associated with

the upper left, upper right and the lower center population centers, respectively. The

location of the individual component center η is drawn from a spherical Gaussian,

i.e. ηj | zj = i,µi, τ
2
i ∼ N(µi, τ

2
i I2). Inactivate pixels are drawn from a N(0, 1)

distribution. Parameter values are listed in Table 4.1. Figure 4.3 (top row) shows an

image under each condition. We run both the finite mixture model and the infinite

mixture model for each data set and repeat the simulation 20 times. Figure 4.3

(bottom row) shows the mean image of the simulated data after averaging over all

20 data sets. We summarize results in Figure 4.4 by taking an average over all 20

simulations. Results are similar for both the finite mixture model and the infinite



41

i 1 2 3

µi

(
10
30

) (
32
25

) (
15
10

)
τ2
i 4 4 1

zjl 1 2 3
θjl 5 10 10
r2
jl 1.5 1 0.5

σ2
jl 1 4 4

Table 4.1: Parameters used to simulate the multiple activation data set.

mixture model. In the Individual Component Posterior image, the locations of the

three major modes are close to the true population values. Note that there are 3

modes, one for each population center. The largest mode occurs in the upper left

where there are 10 individual component centers. The Population Center Location

image gives similar information about the location of the 3 population centers as

does the Individual Component Posterior image. However, note that the variability

of the population locations is much smaller than the variability across subjects. In

fact, the population level information is quite precise.

To compare our methods with the classical method, we take the Population Center

Location image and calculate the root mean square error (RMSE) for each popula-

tion activation center. The RMSE is defined as the distance from the estimated

population center location to the true population center location averaging over all

20 data sets. Let µi, i = 1, 2, 3 be the true location of the three population centers.

In this simulation, µi = (15, 10), the bottom center, µ2 = (32, 25), the upper right

center, and µ3 = (10, 30) the upper left center. The estimated population center

location µ̂i, i = 1, 2, 3 is derived by taking the spatial location of the local maximum

of each of the three activation areas using the Population Center Location images.
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Population Center Location
Bottom Upper right Upper left

Classical t-image unsmoothed 9.39 10.91 4.27
smoothed with SD=0.5 7.98 10.66 3.11
smoothed with SD=1.5 9.88 9.23 1.96

Finite mixture model unsmoothed 4.17 4.47 3.63
smoothed with SD=0.5 2.55 1.55 1.32
smoothed with SD=1.5 1.92 1.55 1.30

Infinite mixture model unsmoothed 2.61 1.50 1.43
smoothed with SD=0.5 1.96 1.72 1.40
smoothed with SD=1.5 1.84 1.55 1.23

Table 4.2: The root mean square error (RMSE) from the classical t-image, the finite mixture model
and the infinite mixture model.

The RMSEi, i = 1, 2, 3 is of the following form:

(4.1) RMSEi =

√√√√ 20∑
k=1

(µ̂ik − µik)
T (µ̂ik − µik)/20

We compare the RMSE for the finite mixture and the infinite mixture model using

the Population Center Location images with the RMSE using the classical t-image.

Results are summarized in Table 4.2. For both unsmoothed and smoothed data sets

the finite mixture model and the infinite mixture model perform dramatically better

than the classical t-image in terms of the precision of the estimated population center

locations for all three activation areas. The t-image gives a reasonably small RMSE

only for the upper left population center and under the condition when the data sets

are smoothed with Gaussian deviation of 1.5. The upper left population center is

the center that has the most individual components. So the upper left center has the

most support. The smoothness makes the activation even stronger. In fact within

each model the RMSE is the smallest for this category. Another finding is that for

the unsmoothed data sets, the infinite mixture model still gives good estimation of

the population center location, better than the finite mixture model.
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4.1.3 Simulated multiple activation centers with non-spherical Gaussian for η

In this section we compare the performance of the finite mixture model with the

infinite mixture model on a simulated data set with a non-spherical Gaussian for the

location of the individual component centers. We simulate data set which consists 16

images with multiple activation centers. The top row of Figure 4.5 shows four of the

simulated data sets. There are three population activation centers. images 1 through

9 possess activations corresponding to all three centers. images 10 through 12 possess

activations corresponding to only two of the three population level centers. images

13 through 15 possess only one activation region each. image 16 has no activation.

The actual locations of the population centers and the individual components are

summarized in Figure 4.7(a). The mean intensities of these three population level

centers are 15, 20 and 25. The variance of the relative intensity for activated pixels

are, respectively, 1, 4 and 9. We set Σi =

 8 5

5 4

,

 4 0

0 4

 and

 1 −0.5

−0.5 1


for i = 1, 2, 3 to obtain different spreads of the individual component centers. Σ1

gives a population center with positively correlated (ρ ≈ 0.884) individual component

centers. The spread in the x-direction is larger than the spread in the y-direction.

Σ2 gives a population center with independent individual component centers with

equal spread in the x and y directions. Σ3 gives a population center with negatively

correlated (ρ = −0.5) individual component centers with equal spread in the x and

y direction. The variance of the background is 4. We set r2
jl = 1.5, 1 and 0.5 for

all j for the three different individual activation components l = 1, 2, 3 to obtain

different sizes for each individual component. We run the chain for 10,000 iterations

and discard the first 5,000 as burn-in. We save every 5th iteration for the results.

To assess convergence we start at different initial values. There are no significant
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differences in the results.

Figure 4.5 and 4.6 display the individual level results for the finite mixture and

the infinite mixture model. In both Figures, the second row shows the Posterior

Probability of Activation images. The third row shows the posterior distributions of

the number of individual component centers. The bottom two rows show the cen-

ter location of individual components at iteration 7000 and at iteration 7250. Both

models give similar results at the individual level. Activated pixels are correctly clas-

sified. Both models fit several component centers for one activation area. However,

the finite mixture model fits more individual components than the infinite mixture

model. By comparing the center location of individual components at iteration 7000

to those at iteration 7250, we can see that individual component centers stay consis-

tently around activated area, but move randomly in background areas. Results for

all 16 images can be found in Appendix E and Appendix F.

Figure 4.7 displays the population level results for both models. For compar-

ison we display in Figure 4.7(a2) the classical t-image and in Figure 4.7(a3) the

− log10P-value image. Figure 4.7 (b1)(c1) show the 2D posterior rate function of the

population center locations. The infinite mixture model gives three major peaks for

the location of the population centers, which are about at the true values. The finite

mixture model gives similar results for the location of the bottom and the upper

right population center, but fits two more population centers for the upper left area.

This is due to the positively correlated individual component centers around the pop-

ulation center. The finite mixture model which assumes an independent structure

on the covariance of the normal mixture for η has to fit more population centers

to capture the elliptical shape of that area. Figure 4.7 (b3)(c3) give an example

of where the population centers and where the individual component centers are
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actually located for each model. Figure 4.7 (b2)(c2) show the posterior predictive

density of the individual component center, which give information about how these

two models capture the different spread of the individual component centers about

the population center. Similar to the real data analysis, the infinite mixture model

results in cp mixing better and converging faster for the simulated data (see Figure

4.7 (b4)(c4) for the trace plots).

4.2 Sensitivity Analysis

4.2.1 Results of sensitivity analysis for the finite mixture model

We study the sensitivity of our approach to the choice of hyperprior specifications.

Our main interest is in how the population level results are related to various prior

specifications. We study the sensitivity of the posterior to the five following scenarios:

(a) m = 19, cj ∼ P (5), j = 1, . . . , J , λp = 5A−1, ατ = ασ = 3, λθ ∼ N(35, 108), the

default setting.

(b) same as (a) but with different random seeds (different initial values).

(c) same as (a) but with m = 52
3
, which corresponds to an a priori probability that

a pixel belongs to the background center of approximately 0.85.

(d) same as (a) but with λp = 10A−1 and cj ∼ P (10), j = 1, . . . , J .

(e) same as (a) but with ατ = ασ = 2, λθ ∼ N(70, 108).

Overall we find no appreciable differences in the population level results (i.e. Figures

4.8 (a) through (e)), under all five scenarios. As expected, scenarios (a) and (b)

give almost identical results for both the individual and the population level. For

scenario (c), as m decreases the probability that a pixel belongs to the background

decreases. This encourages more individual components at low intensity areas. Also,

the posterior distribution of the population centers is slightly influenced. We observe
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a shift in the posterior distribution of the number of individual components, cj, j =

1, . . . , J , and in the distribution of the number of population centers cp. The increase

of k in scenario (d) brings the same effect to the posterior distribution of cp and cj.

This influence of the Poisson mean on the posterior distribution of the number of

components is expected, see, e.g., Green (1995).

4.2.2 Results of sensitivity analysis for the infinite mixture model

In the infinite mixture model, we no longer specify a Poisson prior for the number

of population centers, cp. Instead, the prior believe of cp is controlled by one of the

Dirichlet process parameters, α0. We make corresponding changes in the sensitivity

analysis. We remove the settings of λp and add one more scenario for α0. We also

add two more scenarios for S, the covariance matrix controlling the spread of the

individual component centers. This gives the following eight scenarios:

(a) m = 19, cj ∼ P (5), j = 1, . . . , J , ατ = ασ = 3, λθ ∼ N(35, 108), α0 ∼ Ga(1, 1),

S ∼ W5(

 12 0

0 13

) the default setting.

(b) same as (a) but with different random seeds (different initial values).

(c) same as (a) but withS ∼ W5(

 24 0

0 24

).

(d) same as (a) but with S ∼ W5(

 18 0

0 6

).

(e) same as (a) but with m = 52
3
, which corresponds to an a priori probability that

a pixel belongs to the background center of approximately 0.85.

(f) same as (a) but with cj ∼ P (10), j = 1, . . . , J .

(g) same as (a) but with ατ = ασ = 2, λθ ∼ N(70, 108).
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(h) same as (a) but with α0 ∼ Ga(4, 2).

The results (displayed in Figures 4.9 (a) through (d) and Figures 4.10 (e) through

(h)) are similar to these for the finite mixture model. The posterior distribution

of the location of the population activations are almost the same under all eight

scenarios. The posterior distribution of the number of population and the individual

component centers are slightly different under different scenarios. For scenario (e),

as m decreases the posterior distribution of the number of individual components,

cj, j = 1, . . . , J , and the number of population centers cp shift slightly to a higher

value. For scenario (h) the mean of α0 increases from 1 to 2. This favors the addition

of a new population center. However, we do not observe an increase in the number

of population centers in the posterior distribution.
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Figure 4.2: Simulation results for the noise data under three conditions: (a) independent noise;
(b) smoothed with Gaussian standard deviation = 0.5; (c) smoothed with Gaussian
standard deviation = 1.5. First two rows: results from the finite mixture model. The
posterior predictive density of η and the posterior distribution of µ. Bottom two rows:
results from the infinite mixture model.
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Figure 4.3: Simulated signal data sets with Spherical Gaussian under three conditions: (a) inde-
pendent signals; (b) smoothed with Gaussian standard deviation = 0.5; (c) smoothed
with Gaussian standard deviation = 1.5. First row: The simulated data for image 1.
Second row: Mean image averaging over all 20 data sets.
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Figure 4.4: Simulation results for the signal data with Spherical Gaussian under three conditions:
(a) independent noise; (b) smoothed with Gaussian standard deviation = 0.5; (c)
smoothed with Gaussian standard deviation = 1.5. First two rows: results for finite
mixture model. The posterior predictive density of η and the posterior distribution of
µ. Bottom two rows: results for infinite mixture model.
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Figure 4.5: Simulation results for the infinite mixture model (using the signal data with non-
spherical Gaussian). First row: The intensity data for subject 1, 10, 15 and 16. Second
row: The marginal posterior probability of activation: Pr(ωjv > 0 | y). Third row:
the posterior distributions of the number of individual component center. Bottom two
rows: The center location of individual components at iteration 7000 and at iteration
7250.
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Figure 4.6: Simulation results for the finite mixture model (using the signal data with non-spherical
Gaussian). First row: The intensity data for subject 1, 10, 15 and 16. Second row: The
marginal posterior probability of activation: Pr(ωjv > 0 | y). Third row: the posterior
distributions of the number of individual component center. Bottom two rows: The
center location of individual components at iteration 7000 and at iteration 7250.
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(a1) True Locations (a2) Classical t-image (a3) -log10(p) image
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Figure 4.7: Simulation results for the signal data with non-spherical Gaussian: (a1) True locations
of population and individual centers for simulation; (a2) Classical one-sample t-test.
(a3) minus log base 10 p-values from the t-image; (b1)(c1) 2D posterior rate function
of population center locations; (b2)(c2) posterior-predictive density of individual center
locations p(η̃ | y); (b3)(c3) posterior location of population and individual centers at
iteration 7000; (b4)(c4) trace plot of the number of population centers cp



54

(a) (b) (c) (d) (e)

10

20

30

40

50

60

10 20 30 40 50

10

20

30

40

50

60

10 20 30 40 50

10

20

30

40

50

60

10 20 30 40 50

10

20

30

40

50

60

10 20 30 40 50

10

20

30

40

50

60

10 20 30 40 50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10

20

30

40

50

60

10 20 30 40 50

10

20

30

40

50

60

10 20 30 40 50

10

20

30

40

50

60

10 20 30 40 50

10

20

30

40

50

60

10 20 30 40 50

10

20

30

40

50

60

10 20 30 40 50

0.000

0.002

0.004

0.006

0.008

0.010

Population

6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Population

6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Population

6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Population

6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Population

6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Subject 1

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Subject 1

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Subject 1

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Subject 1

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Subject 1

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 4.8: Sensitivity analysis results for the finite mixture model under five scenarios. (a)(b)
k = kp = 5,m = 19, ατ = ασ = 3, λθ ∼ N(35, 108); (c) m = 5 2

3 (d) k = kp = 10;
(e) ατ = ασ = 2, λθ ∼ N(70, 108). First row: 2D posterior rate function of population
center locations; Second row: Posterior-predictive density of individual center locations
p(η̃ | y); Bottom two rows: Posterior distributions of the number of population centers
and the center of individual components for subject 1
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Figure 4.9: Sensitivity analysis results for the infinite mixture model under eight scenarios (to be
continued on the next page). (a)(b) k = 5,m = 19, ατ = ασ = 3, λθ ∼ N(35, 108), α0 ∼
Ga(1, 1), S ∼ W5(diag(12, 13))); (c) S ∼ W5(diag(24, 24)); (d)S ∼ W5(diag(18, 6)).
First row: 2D posterior rate function of population center locations; Second row:
Posterior-predictive density of individual center locations p(η̃ | y); Bottom two rows:
Posterior distributions of the number of population centers and the center of individual
components for subject 1
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Figure 4.10: Sensitivity analysis results for the infinite mixture model under eight scenarios (contin-
ued from the previous page). (e) m = 5 2

3 (f) k = 10; (g) ατ = ασ = 2, λθ ∼ N(70, 108);
(h) α0 ∼ Ga(4, 2). First row: 2D posterior rate function of population center loca-
tions; Second row: Posterior-predictive density of individual center locations p(η̃ | y);
Bottom two rows: Posterior distributions of the number of population centers and the
center of individual components for subject 1



CHAPTER V

FUTURE WORK AND DISCUSSION: SPATIAL
CLUSTER MODELLING BASED ON COX PROCESSES

5.1 Introduction

We have described two Bayesian mixture models for fMRI data analysis: the

“finite mixture model” and the “infinite mixture model”. Both methods consider

the spatial structure of the signal, which is often ignored in frequentist approaches.

Moreover this method extends the current fMRI Bayesian spatial modeling literature

in two key ways. First, we consider multi-subject data, explicitly model population

centers and the dispersion of individual’s response about those centers. Second, in-

stead of assuming a normal shape model for activation magnitude, we assume a nor-

mal shape model for probability of activation and assume homogeneous magnitude

with component. We argue that this leads to a more flexible yet still interpretable

parameterization.

One of the limitations of our work is that we assume spherical Gaussian in our

spatial mixture models. For future work, we can use elliptical shape activations us-

ing general variance-covariance structures. Another limitation is the computational

intensity. The present method took about 105 minutes on a MAC 2.7 GHz Pow-

erPC G5. Although this is not excessive, with larger 3D images the compute time

may be excessive. One avenue to explore would be to parallels the code. With the
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proliferation of compute clusters, it would be a simple matter to schedule individu-

als to separate nodes. All population parameters would then be processed at each

iteration after the scheduler returns results from the individuals. Another possible

avenue would be a Variational Bayes approach (Attias, 2000), which would provide

approximate posterior means and variances.

The flexibility of our model does make for some interpretive limitations. While

most users of fMRI conceive of activation “loci” (x,y,z locations), in our model the

population centers are random variables µ whose distribution can’t easily be summa-

rized. We visualize this distribution with the Population Center Location posterior

rate function image, inspecting for modes and assessing the spread about modes.

At the subject level, the interpretation about individual activation centers is even

more difficult. Both the “finite mixture model” and the “infinite mixture model” fit

several individual component centers for one activation area. For example, in Figure

2.2 we plot the location of individual component centers at iteration 6000 for a rep-

resentative sample of subjects (1, 3, 9 and 20) using the finite mixture Jump model.

For subject 3, the model fits seven individual component centers for the right upper

activation area. This improves performance in mixing and model fitting. However,

the interpretation of the result as having as many as 11 individual activation centers

may not be proper.

In future work we would like to address these shortcomings. In this Chapter

we discuss possible solutions for the interpretation of individual activation centers in

more details. When several activation centers are close together it is more reasonable

to consider them as components of a single source of activation. The basic idea is to

cluster these components centers and consider the cluster centers as the individual

activation centers. This will add an additional level in the hierarchy of the Bayesian
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model. We will focus on spatial cluster analysis based on Cox processes.

5.2 The Cox process

In this section we introduce the Cox process and discuss some of the Cox models

that are related to our problem. The Cox process was studied by Cox (1955) under

the name doubly stochastic Poisson process. For a point process X in Rd and a

random measure M, X is said to be a Cox process driven by M if X given M follows

a Poisson process with intensity measure M. In many applications M is specified by

a nonnegative random intensity surface {Z(x) : x ∈ Rd} so that

M(A) =

∫
A

Z(x)dx, for a bounded region A ∈ Rd

Among the many approaches related to the Cox process, one of particular interest is

the Neyman-Scott process (Neyman and Scott, 1958). In a Neyman-Scott process,

the intensity surface is defined as a function of a set of cluster centers C = {c1, c2, ...}.

That is, the clusters X1, X2, ... are assumed to be independent Poisson processes with

random intensity surface

Z(x) =
∑
i

αf(x− ci)

where the cluster centers C follows a homogeneous Poisson process. Although the

cluster centers C is modelled explicitly, in many applications C is not of interest and

the estimation is based on the likelihood marginalized over C. The center location

was first studied in Baddeley and van Lieshout (1993) and by Lawson (1993a). They

used a modified Thomas function, which is given by

(5.1) f(x | c) =
β

2πσ2
e−(x−c)2/2σ2

According to (4.1), the cluster components x follow a normal distribution with center

c. There are several ways to modify the Neyman-Scott process. For example, we
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can choose an arbitrary distribution for the cluster centers C. Sometimes cluster

components may not have a center. For example a point represents noise or an

outlier. This situation was considered in Dasgupta and Raftery (1998), van Lieshout

(1995) and van Lieshout and Baddeley (1995). In their models a separate parameter

ε was added to the intensity surface

Z(x) = ε+
∑
i

αf(x− ci)

and the noise or the outlier is modelled by a Poisson process of constant intensity ε.

In the next section we will propose a Bayesian model based on these two extensions.

5.3 Methods

We start with the Bayesian model in Chapter II and add an additional level in the

hierarchy by introducing a new parameter η̃ = {η̃jh}, h = 1, . . . , c̃j. In this section

we will focus on the prior distribution of ηjl, η̃jh and c̃j. To simplify the notation we

drop the subject index j and work only with ηl, η̃h, and c̃. We assume that given η̃h,

ηl follows a Poisson process with intensity surface

Z(ηl) = ε+
∑
h

αη
2πβ2

η

e−(ηl−η̃h)2/2β2
η

This is the intensity surface Nyema-Scott processes with a modified Thomas function

and extended to include a background intensity ε. We interpret the cluster center

η̃h as the individual activation center and interpret c̃ as the number of individual

activation centers. Write M(A) =
∫
A
Z(x)dx where A is the brain area. It follows

that the number of cluster components c follows a Poisson distribution with mean

M(A) and given c the location ηl are independently distributed with probability

density p(ηl) = Z(ηl)/M(A). We get the following priors:

p(η | η̃, αη, βη, c, c̃)p(c | η̃, c̃) =
e−M(A)M(A)c

c!

c∏
l=1

Z(ηl | η̃)/M(A)
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We further assume that the individual center location η̃h is from a normal mixture

with each component associated with a particular population center µi.

f(η̃h | φi, µi, τ 2
i , cp) =

cp∑
i=1

φi(2πτ
2
i )
−1exp {−(η̃h − µi)

T (η̃h − µi)

2τ 2
i

}

This is the same prior used in chapter II for η.

With the new level, an additional reversible jump step for adding and deleting the

individual activation center η̃ is required for posterior simulation. This will greatly

increase the computational time. Future efforts can be made on looking for efficient

ways of evaluating the integral in M(A).

5.4 Conclusion

The main contributions of this work are as follows. A traditional voxel-based

approach can only detect activated voxels for which the average signal is significant

across subjects. However, subjects sometimes don’t have, or only a small percentage

of the total subjects have, overlapped activated voxels even though these activated

voxels are close to each other and represent the same anatomical/functional area.

Our models fit individual component centers for subject level activation areas and

find population activation centers based on these individual component centers. We

explicitly model the location of the population activation center with a separate pa-

rameter describing the variability of the individual component centers. Unlike the

voxel-based approach our methods allow for variation in both signal intensity and

activation location at the individual level. The location of the population activa-

tion centers are summarized using the posterior rate function. This provides better

precision in the estimation of the population center location than the standard mass-

univariate method.



APPENDICES

62



63

APPENDIX A

Details of the MCMC algorithm for the finite mixture
model in Chapter II

In this Appendix we give the detailed MCMC simulation steps for the finite mixture

model introduced in Chapter II. Current parameter values will be referred to by name

and proposed parameters will be referred to by name superscripted with a prime (′).

Each proposal is classified as a reversible jump proposal (RJ), a Metropolis-Hastings

proposal (MH) or a Gibbs (Gibbs) proposal.

1. Birth of a population center: RJ.

A population center birth is proposed with probability 0.5. Suppose there are

cp centers. Generate µ′
cp+1, and τ 2′

cp+1 from their prior distributions:

µ′
cp+1 ∼ uniform on ∪Jj=1 Aj and τ 2′

cp+1 ∼ IG(3, βτ )

Draw ψ′cp+1 ∼ Beta(1, cp) and re-scale the existing weights using ψ′i = ψi(1 −

ψ′cp+1) for i = 1, . . . , cp. Set µ′
i = µi and τ 2′

i = τ 2
i for i = 1, . . . , cp. Accept the

new population center with probability

min

{
1,

5

(cp + 1)2

J∏
j=1

cj∏
l=1

∑cp+1
i=1 ψ′i φ2(ηjl; µ

′
i, τ

2′
i I2)∑cp

i=1 ψi φ2(ηjl; µi, τ
2
i I2)

}
.

2. Death of a population center: RJ.

The death of a population center is proposed with probability 0.5. Randomly
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choose a center from the set {1,...,cp}. Suppose it is j. Set ψ′i = ψi/(1−ψj) for

all i ∈ {1, . . . , cp} \ {j} and relabel the indices 1, . . . , cp − 1. Set µ′
i = µi and

τ 2′
i = τ 2

i for i = 1, . . . , cp − 1. Accept the death of this population center with

probability

min

{
1,
cp

2

5

J∏
j=1

cj∏
l=1

∑cp−1
i=1 ψ′iφ2(ηjl; µ

′
i, τ

2′
i I2)∑cp

i=1 ψiφ2(ηjl; µi, τ
2
i I2)

}
.

3. Birth of an individual component: RJ.

For each subject j, a birth of a component is proposed with probability 0.5.

Suppose there are cj components for subject j. Proposed parameters are drawn

from their prior distributions:

r2′

j, cj+1 ∼ IG(2π, βr), σ2′

j, cj+1 ∼ IG(3, βσ)

Pr(z′j, cj+1 = i) = ψi, i = 1, . . . , cp[
η′j, cj+1 | z′j, cj+1 = i

]
∼ N(µi, τ

2
i ), θ′j, cj+1 ∼ trunc(0,∞)N(λθ, σ

2
θ).

Calculate p′jvl according to equation 2.2 for all v, l and j = 1, . . . , cj + 1. The

acceptance probability is

min
{
1, 5(cj + 1)−2(likelihood ratio)

}
.

where the likelihood function is given in equation 2.1.

4. Death of an individual component: RJ.

For each subject j, a death of a component is proposed with probability 0.5.

Suppose there are cj components for subject j. Randomly choose a component,

j, from the set {1, ..., cj}. Calculate p′jvl according to equation 2.2 for all v, l

and j = 1, . . . , cj − 1 and relabel the components 1, . . . , cj − 1. The acceptance

probability is

min
{
1, cj

25−1(likelihood ratio)
}
.
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where the likelihood function is given in equation 2.1.

5. Update µi for all i = 1, . . . , cp: MH.

Propose µ′
i from N(µi, σ

2
µI2). Set µ′

j = µj for all j 6= i. Accept with probability

min

{
1,
I(µ′

i ∈ ∪Jj=1Aj)

I(µi ∈ ∪Jj=1Aj)

J∏
j=1

cj∏
l=1

∑cp
i=1 ψiφ2(ηjl; µ

′
i, τ

2
i I2)∑cp

i=1 ψiφ2(ηjl; µi, τ
2
i I2)

}
.

6. Update ηjl for all j = 1, . . . , J and l = 1, . . . , cj: MH.

For subject j, component l, propose η′jl ∼ N(ηjl, ση
2I2). Calculate p′jvl accord-

ing to equation 2.2. Set η′kl = ηkl for all k 6= j and all l = 1, . . . , cj. Accept

with probability

min

{
1, (likelihood ratio)×

∑cp
i=1 ψiφ2(η

′
jl; µi, τ

2
i I2)∑cp

i=1 ψiφ2(ηjl; µi, τ
2
i I2)

}
.

where the likelihood function is given in equation 2.1.

7. Update τ 2
i for all i = 1, . . . , cp: Gibbs.

Let Di be the set of individual components with zjl = i and let NDi be the

number of individual components in Di.

Draw τ 2
i ∼ IG(NDi + 3, 0.5

∑
jl∈Di(ηjl − µi)

T (ηjl − µi) + βτ ).

8. Update r2
jl for all j = 1, . . . , J and l = 1, . . . , cj: MH.

For subject j, component l, propose log r2′
jl ∼ N(log r2

jl, σ
2
r). Calculate p′jvl

according to equation 2.2 for all v. Accept with probability

min
{

1, (r2
jl/r

2′

jl)
2π exp[βr(r

−2
jl − r−2′

jl )](likelihood ratio)
}
.

where the likelihood function is given in equation 2.1.

9. Update ψ1, . . . , ψcp : Gibbs.

Draw (ψ1, ψ2, ... ,ψcp) from D(1 +ND1 , ..., 1 +NDcp ).
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10. Update zjl for all j = 1, . . . , J and l = 1, . . . , cj: Gibbs.

Draw zjl according to Pr(zjl = i | .) ∝ ψiφ2(ηjl; µi, τ
2
i I2).

11. Update ωjv for all j = 1, . . . , J and all pixels v: Gibbs.

Draw ωjv from Pr(ωjv = l | .) ∝ pjvlφ(yjv; θjl, σ
2
jl).

12. Update σ2
jl for all j = 1, . . . , J and l = 1, . . . , cj: Gibbs.

Let Gjl denote the set of pixels with ωjv = l for subject j. Let NGjl be the

number of voxels in Gjl. Draw σ2
jl ∼ IG(0.5NGjl +3, 0.5

∑
v∈Gjl(yjv−θjl)

2 +βσ).

13. Update σ2
0: Gibbs.

Let G0 denote the set of pixels with ωjv = 0 for subject j.

Draw σ2
0 ∼ IG

(
0.5
∑J

j=1NGj0 + 10−3, 0.5
∑J

j=1

∑
v∈Gj0(yjv − θ0)

2 + 10−3
)
.

14. Update θjl for all j = 1, . . . , J and l = 1, . . . , cj: Gibbs.

Draw θjl ∼ N (mv, v) , where

m = σ−2
θ λθ + σ−2

jl

∑
v∈Gjl

yjv and v =
(
σ−2
jl NGjl + σ−2

θ

)−1
.

Accept if θ′jl > 0.

15. Update θ0: Gibbs.

Draw θ0 ∼ N (mv, v) , where

m = σ−2
0

J∑
j=1

∑
v∈Gj0

yjv and v =

(
σ−2

0

J∑
j=1

NGj0 + 1

)−1

.

16. Update βσ: Gibbs.

Draw βσ ∼ Ga(3
∑J

j=1 cj + 0.01,
∑J

j=1

∑cj
l=1 σ

−2
jl + 0.01). where Ga(κ, λ) =

λκ

Γ(κ)
xκ−1e−λx is the gamma distribution

17. Update βτ : Gibbs.

Draw βτ ∼ Ga(3cp + 0.01,
∑cp

i=1 τ
−2
i + 0.01).
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18. Update βr: Gibbs.

Draw βr ∼ Ga(2π
∑J

j=1 cj + 0.01,
∑J

j=1

∑cj
l=1 r

−2
jl + 0.01).

19. Update λθ: Gibbs.

Draw λθ ∼ N(mv, v), where

m = σ−2
θ

J∑
j=1

cj∑
l=1

θjl + (35)1e−8 and v = (σ−2
θ

J∑
j=1

cj + 1e−8)−1.

20. Update σ2
θ : Gibbs.

Draw σ2
θ ∼ IG(0.5

∑J
j=1 cj + 0.01, 0.5

∑J
j=1

∑cj
l=1(θjl − λθ)

2 + 0.01).
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APPENDIX B

Details of the MCMC algorithm for the infinite mixture
model in Chapter III

In this Appendix we give the detailed MCMC simulation steps for the infinite mixture

model introduced in Chapter III. Current parameter values will be referred to by

name and proposed parameters will be referred to by name superscripted with a

prime (′).

1. Birth of an individual component:

For each subject j, a birth of a component is proposed with probability 0.5.

Suppose there are cp population centers and there are cj components for subject

j. Let Di be the set of individual components with zjl = i and let NDi be the

number of individual components in Di. Draw z′j, cj+1 according to the following

probabilities:

P (z′j, cj+1 = i | zj1, ..., zj,cj) =


NDi/(α0 +

J∑
j=1

cj) for 1 ≤ i ≤ cp,

α0/(α0 +
J∑
j=1

cj) for i = cp + 1.

If z′j, cj+1 = cp+1, draw (µcp+1,Σcp+1) from G0. Propose other parameters from

their prior distributions:

r2′

j, cj+1 ∼ IG(2π, βr), σ2′

j, cj+1 ∼ IG(3, βσ)
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[
η′j, cj+1 | zj, cj+1 = i

]
∼ N(µi,Σi), θ′j, cj+1 ∼ trunc(0,∞)N(λθ, σ

2
θ).

Calculate p′jvl according to equation 2.2 for all v, l and j = 1, . . . , cj + 1. The

acceptance probability is

min
{
1, 5(cj + 1)−2(likelihood ratio)

}
.

where the likelihood function is given in equation 2.1. If this birth is accepted

when z′j, cj+1 = cp + 1, the new population center with parameter (µcp+1,Σcp+1)

should be inserted and the number of population centers increases from cp to

cp + 1.

2. Death of an individual component:

For each subject j, a death of a component is proposed with probability 0.5.

Suppose there are cp population centers and there are cj components for subject

j. Randomly choose a component, j, from the set {1, ..., cj}. Calculate p′jvl

according to equation 2.2 for all v, l and j = 1, . . . , cj − 1 and relabel the

components 1, . . . , cj − 1. The acceptance probability is

min
{
1, cj

25−1(likelihood ratio)
}
.

where the likelihood function is given in equation 2.1. If this proposal is accepted

when NDjl = 1, the empty population center with parameter (µzjl
,Σzjl) should

be removed and the number of population centers reduces to cp − 1.

3. Update zjl for all j = 1, . . . , J and l = 1, . . . , cj:

Let Di be the set of individual components with zjl = i and let NDi be the

number of individual components in Di. If NDzjl
> 1, draw (µi,Σi) from G0 for

which cp < i ≤ cp +m, where m is the number of auxiliary components. Draw
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a new z′jl using the following probabilities:

P (z′jl = i | z−jl,ηjl,µ, Σ) ∝


NDiφ2(ηjl; µi,Σi) for 1 ≤ i ≤ cp,

α0/Mφ2(ηjl; µi,Σi) for cp < i ≤ cp +m.

If z′jl = i for cp < i ≤ cp + m, add a new population center (µcp+1,Σcp+1)=

(µi,Σi). If NDzjl
= 1, draw (µi,Σi) from G0 for which cp < i ≤ cp +m. Draw

a new z′jl using the following probabilities:

P (z′jl = i | z−jl,ηjl,µ, Σ) ∝


NDiφ2(ηjl; µi,Σi) for 1 ≤ i ≤ cp and i 6= zjl,

α0/Mφ2(ηjl; µi,Σi) for i = zjl or cp < i ≤ cp +m.

If z′jl 6= zjl remove population center zjl and the number of population center

reduces to cp − 1. If z′jl = i for cp < i ≤ cp + m, add a new population center

with parameters (µcp ,Σcp)= (µi,Σi).

4. Update µi for all i = 1, . . . , cp:

Let Di be the set of individual components with zjl = i. Propose µ′
i from

N(µi, σ
2
µI2). Set µ′

j = µj for all j 6= i. Accept with probability

min

{
1,
I(µ′

i ∈ ∪Jj=1Aj)

I(µi ∈ ∪Jj=1Aj)

∏
jl∈Di

φ2(ηjl; µ
′
i,Σi)

φ2(ηjl; µi,Σi)

}
.

5. Update Σi for all i = 1, . . . , cp:

Let Di be the set of individual components with zjl = i and let NDi be the

number of individual components in Di.

Draw Σi ∼ IWNDi+ν

(S +
∑
jl∈Di

(
ηjl − µi

) (
ηjl − µi

)T)−1


6. Update ηjl for all j = 1, . . . , J and l = 1, . . . , cj:

For subject j, component l, propose η′jl ∼ N(ηjl, ση
2I2). Calculate p′jvl. Set
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η′kl = ηkl for all k 6= j and all l = 1, . . . , cj. Accept with probability

min

{
1, (likelihood ratio)×

φ2(η
′
jl; µzjl

,Σzjl)

φ2(ηjl; µzjl
,Σzjl)

}
.

7. Update r2
jl for all j = 1, . . . , J and l = 1, . . . , cj:

For subject j, component l, propose log r2′
jl ∼ N(log r2

jl, σ
2
r). Calculate p′jvl for

all v. Accept with probability

min
{

1, (r2
jl/r

2′

jl)
2π exp[βr(r

−2
jl − r−2′

jl )](likelihood ratio)
}
.

8. Update ωjv for all j = 1, . . . , J and all pixels v:

Draw ωjv from Pr(ωjv = l | .) ∝ pjvlφ(yjv; θjl, σ
2
jl).

9. Update σ2
jl for all j = 1, . . . , J and l = 1, . . . , cj:

Let Bjl denote the set of pixels with ωjv = l for subject j. Let NBjl be the

number of voxels in Bjl. Draw σ2
jl ∼ IG(0.5NBjl +3, 0.5

∑
v∈Bjl(yjv−θjl)

2 +βσ).

10. Update σ2
0 Let B0 denote the set of pixels with ωjv = 0 and let NB0 be the

number of voxels in B0.

Draw σ2
0 ∼ IG

(
0.5
∑J

j=1NB0 + 10−3, 0.5
∑J

j=1

∑
v∈B0

(yjv − θ0)
2 + 10−3

)
.

11. Update θjl for all j = 1, . . . , J and l = 1, . . . , cj:

Draw θjl ∼ N (mv, v) , where m = σ−2
θ λθ + σ−2

jl

∑
v∈Gjl

yjv

and v =
(
σ−2
jl NGjl + σ−2

θ

)−1
. Accept if θ′jl > 0.

12. Update θ0. Draw θ0 ∼ N (mv, v) , where

m = σ−2
0

J∑
j=1

∑
v∈B0

yjv and v =

(
σ−2

0

J∑
j=1

NB0 + 1

)−1

.

13. Update βσ. Draw βσ ∼ Ga(3
∑J

j=1 cj + 0.01,
∑J

j=1

∑cj
l=1 σ

−2
jl + 0.01)., where

Ga(κ, λ) = λκ

Γ(κ)
xκ−1e−λx is the gamma distribution.
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14. Update S. Draw S ∼ Wνcp+f

((
T−1 +

∑cp
i=1 Σ−1

i

)−1
)
.

15. Update βr. Draw βr ∼ Ga(2π
∑J

j=1 cj + 0.01,
∑J

j=1

∑cj
l=1 r

−2
jl + 0.01).

16. Update λθ. Draw λθ ∼ N(mv, v), where

m = σ−2
θ

J∑
j=1

cj∑
l=1

θjl + (35)1e−8 and v = (σ−2
θ

J∑
j=1

cj + 1e−8)−1.

17. Update σ2
θ . Draw σ2

θ ∼ IG(0.5
∑J

j=1 cj + 0.01, 0.5
∑J

j=1

∑cj
l=1(θjl − λθ)

2 + 0.01).

18. Update α0.

This update is based on the method proposed by Escobar and West 1995[10].

Draw α0 ∼


Ga(cp + 1, 1− ln(β0)) with Prob. ∝ cp,

Ga(cp, 1− ln(β0)) with Prob. ∝ (1− ln(β0))
∑J

j=1 cj + cp.

where β0 is from Beta(α0 + 1,
∑J

j=1 cj)
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APPENDIX C

Real data results of all 21 subjects for the finite mixture
model in Chapter II

In this Appendix we show the real data results for the finite mixture model in-

troduced in Chapter II. Figures C.1 to C.7 show the source data, the marginal

posterior probability of activation: Pr(ωjv > 0 | y) and the center location of indi-

vidual components at iteration 6000. Figure C.8 shows the trace plots of the number

of population centers and the center of individual components. Figure C.9 shows

the posterior distributions of the number of population centers and the center of

individual components.
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Figure C.1: Top row: The intensity data for subject 1-3. Middle row: The marginal posterior prob-
ability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of individual
components at iteration 6000.
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Figure C.2: Top row: The intensity data for subject 4-6. Middle row: The marginal posterior prob-
ability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of individual
components at iteration 6000.
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Figure C.3: Top row: The intensity data for subject 7-9. Middle row: The marginal posterior prob-
ability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of individual
components at iteration 6000.
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Figure C.4: Top row: The intensity data for subject 10-12. Middle row: The marginal poste-
rior probability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of
individual components at iteration 6000.
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Figure C.5: Top row: The intensity data for subject 13-15. Middle row: The marginal poste-
rior probability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of
individual components at iteration 6000.
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Figure C.6: Top row: The intensity data for subject 16-18. Middle row: The marginal poste-
rior probability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of
individual components at iteration 6000.
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Figure C.7: Top row: The intensity data for subject 19-21. Middle row: The marginal poste-
rior probability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of
individual components at iteration 6000.
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Figure C.8: Trace plot of the number of population centers and the center of individual components
including the 5000 burn-in iterations
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Figure C.9: Posterior distributions of the number of population centers and the center of individual
components
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APPENDIX D

Real data results of all 21 subjects for the infinite mixture
model in Chapter III

In this Appendix we show the real data results for the infinite mixture model in-

troduced in Chapter III. Figures D.1 to D.7 show the source data, the marginal

posterior probability of activation: Pr(ωjv > 0 | y) and the center location of indi-

vidual components at iteration 6000. Figure D.8 shows the trace plots of the number

of population centers and the center of individual components. Figure D.9 shows

the posterior distributions of the number of population centers and the center of

individual components.
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Figure D.1: Top row: The intensity data for subject 1-3. Middle row: The marginal posterior prob-
ability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of individual
components at iteration 6000.
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Figure D.2: Top row: The intensity data for subject 4-6. Middle row: The marginal posterior prob-
ability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of individual
components at iteration 6000.
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Figure D.3: Top row: The intensity data for subject 7-9. Middle row: The marginal posterior prob-
ability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of individual
components at iteration 6000.
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Figure D.4: Top row: The intensity data for subject 10-12. Middle row: The marginal poste-
rior probability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of
individual components at iteration 6000.
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Figure D.5: Top row: The intensity data for subject 13-15. Middle row: The marginal poste-
rior probability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of
individual components at iteration 6000.
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Figure D.6: Top row: The intensity data for subject 16-18. Middle row: The marginal poste-
rior probability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of
individual components at iteration 6000.
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Figure D.7: Top row: The intensity data for subject 19-21. Middle row: The marginal poste-
rior probability of activation: Pr(ωjv > 0 | y). Bottom row: The center location of
individual components at iteration 6000.
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Figure D.8: Trace plot of the number of population centers and the center of individual components
including the 5000 burn-in iterations
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Figure D.9: Posterior distributions of the number of population centers and the center of individual
components
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APPENDIX E

Simulation results of all 16 subjects for the finite mixture
model in Chapter II

In this Appendix we show the simulation results for the finite mixture model intro-

duced in Chapter II. Figures E.1 to E.4 show the source data, the marginal posterior

probability of activation: Pr(ωjv > 0 | y) and the center location of individual com-

ponents at iteration 7000 and iteration 7250. Figure E.5 shows the trace plots of the

number of population centers and the center of individual components. Figure E.6

shows the posterior distributions of the number of population centers and the center

of individual components.
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Figure E.1: First row: The intensity data for subject 1-4. Second row: The marginal posterior
probability of activation: Pr(ωjv > 0 | y). Bottom two rows: The center location of
individual components at iteration 7000 and at iteration 7250.
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Figure E.2: First row: The intensity data for subject 5-8. Second row: The marginal posterior
probability of activation: Pr(ωjv > 0 | y). Bottom two rows: The center location of
individual components at iteration 7000 and at iteration 7250.
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Figure E.3: First row: The intensity data for subject 9-12. Second row: The marginal posterior
probability of activation: Pr(ωjv > 0 | y). Bottom two rows: The center location of
individual components at iteration 7000 and at iteration 7250.
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Figure E.4: First row: The intensity data for subject 13-16. Second row: The marginal posterior
probability of activation: Pr(ωjv > 0 | y). Bottom two rows: The center location of
individual components at iteration 7000 and at iteration 7250.
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components
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APPENDIX F

Simulation results of all 16 subjects for the infinite mixture
model in Chapter III

In this Appendix we show the simulation results for the infinite mixture model in-

troduced in Chapter III. Figures F.1 to F.4 show the source data, the marginal

posterior probability of activation: Pr(ωjv > 0 | y) and the center location of indi-

vidual components at iteration 7000 and iteration 7250. Figure F.5 shows the trace

plots of the number of population centers and the center of individual components.

Figure F.6 shows the posterior distributions of the number of population centers and

the center of individual components.
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Figure F.1: First row: The intensity data for subject 1-4. Second row: The marginal posterior
probability of activation: Pr(ωjv > 0 | y). Bottom two rows: The center location of
individual components at iteration 7000 and at iteration 7250.
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Figure F.2: First row: The intensity data for subject 5-8. Second row: The marginal posterior
probability of activation: Pr(ωjv > 0 | y). Bottom two rows: The center location of
individual components at iteration 7000 and at iteration 7250.
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Figure F.3: First row: The intensity data for subject 9-12. Second row: The marginal posterior
probability of activation: Pr(ωjv > 0 | y). Bottom two rows: The center location of
individual components at iteration 7000 and at iteration 7250.
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Figure F.4: First row: The intensity data for subject 13-16. Second row: The marginal posterior
probability of activation: Pr(ωjv > 0 | y). Bottom two rows: The center location of
individual components at iteration 7000 and at iteration 7250.
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Figure F.5: Trace plot of the number of population centers and the center of individual components
including the 5000 burn-in iterations
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Figure F.6: Posterior distributions of the number of population centers and the center of individual
components



BIBLIOGRAPHY

107



108

BIBLIOGRAPHY

[1] C. E. Antoniak. Mixtures of dirichlet processes with applications to non-parametric problems.
Annals of Statistics, 2:1152–1174, 1974.

[2] H Attias. A variational Bayesian framework for graphical models. Advances in Neural Infor-
mation Processing Systems. MIT Press, Cambridge, MA, 2000.

[3] A. J. Baddeley and M. N. M. van Lieshout. Stochastic geometry models in high-level vision.
Statistics and Images, Advances in Applied Statistics, a supplement to the Journal of Applied
Statistics, 20:231–256, 1993.

[4] D. Blackwell and J. B. MacQueen. Ferguson distribution via polya urn schemes. The Annals
of Statistics, 1:353–355, 1973.

[5] E. R. Cosman, J. W. Fisher, and W. M. Wells. Exact map activity detection in fmri using a
glm with an ising spatial prior. In Proc. MICCAI’04, 2:703–710, 2004.

[6] D.R. Cox. Some statistical models related with series of events. Journal of the Royal Statistical
Society. B, 17:129–164, 1955.

[7] A. Dasgupta and A. E. Raftery. Detecting features in spatial point processes with clutter via
model-based clustering. Journal of the American Statistical Association, 93:294–302, 1998.

[8] X. Descombes, F. Kruggel, and D. von Cramon. Spatio-temporal fmri analysis using markov
random fields. IEEE transactions on medical imaging, 17:1028–1039, 1998.

[9] M. D. Escobar. Estimating normaal means with a dirichlet process prior. Journal of the
American Statistical Association, 89:268–277, 1994.

[10] M. D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal
of the American Statistical Association, 90:577–588, 1995.

[11] T. S. Ferguson. A bayesian analysis of some nonparametric problems. Annals of Statistics,
1:209–230, 1973.

[12] C. Fernandez and P. Green. Modelling spatially correlated data via mixtures:a bayesian ap-
proach. Journal of the Royal Statistical Society. B, 64:805–826, 2002.

[13] G. Flandin and W. D. Penny. Bayesian fmri data analysis with sparse spatial basis function
priors. NeuroImage, 34:1108–1125, 2007.

[14] K. J. Friston, A. P. Holmes, J. B. Poline, P. J. Grasby, S. C. R. Williams, R. S. J. Frackowiak,
and R. Turner. Analysis of fmri time-series revisited. NeuroImage, 2:45–53, 1995.

[15] K. J. Friston, K. J. Worsley, R. S. J. Frackowlak, J. C. Mazziotta, and A. C. Evens. Assessing
the significance of focal activations using their spatial extent. Human Brain Mapping, 1:210–
220, 1993.



109

[16] C.R. Genovese, N. Lazar, and T.E. Nichols. Thresholding of statistical maps in functional
neuroimaging using the false discovery rate. NeuroImage, 15:870–878, 2002.

[17] P. J. Green. Reversible jump markov chain monte carlo computation and bayesian model
determination. Biometrika, 82:711–732, 1995.

[18] N. V. Hartvig. A stochastic geometry model for functional magnetic resonance images. Board
of the Foundation of the Scandinavian Journal of Statistics, 29:333–353, 2002.

[19] N. V. Hartvig and J. L. Jensen. Spatial mixture mixture modelling of fmri data. Human Brain
Mapping, 11:233–248, 2000.

[20] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57:97–109, 1970.

[21] A. B. Lawson. Discussion contribution. Journal of the Royal Statistical Society. B, 55:61–62,
1993.

[22] S. N. MacEachern and P. Muller. Estimating mixture of dirichlet process models. Journal of
Computational and Graphical Statistics, 7:223–238, 1998.

[23] D. L. Miglioretti, C. McCulloch, and S. L. Zeger. Combining images across multiple subjects: a
study of direct cortical electrical interference. Journal of the American Statistical Association,
97:125–135, 2002.

[24] P. Morosan, J. Rademacher, A. Schleicher, K. Amunts, T. Schormann, and K. Zilles. Human
primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference
system. NeuroImage, 13:684–701, 2001.

[25] P. Muller, A. Erkanli, and M. West. Bayesian curve fitting using multivariate normal mixtures.
Biometrika, 83:67–80, 1996.

[26] P. Muller and F. A. Quintana. Nonparametric bayesian data analysis. Statistical Science,
19:95–110, 2004.

[27] R.M. Neal. Markov chain sampling methods for dirichlet process mixture models. Journal of
Computational and Graphical Statistics, 9:249–265, 2002.

[28] J. Neyman and E. L. Scott. Statistical approach to problems of cosmology. Journal of the
Royal Statistical Society. B, 20:1–43, 1958.

[29] T.E. Nichols and Hayasaka. Controlling the familywise error rate in functional neuroimaging:
A comparative review. Statistical Methods in Medical Research, 12:419–446, 2003.

[30] D. C. Park, R. C. Welsh, C. Marshuetz, A. H. Gutchess, J. Mikels, T. Polk, D. C. Noll, and
S. F. Taylor. Working memory for complex scenes: Age differences in frontal and hippocampal
activations. Journal of Cognitive Neuroscience, 15:1122–1134, 2003.

[31] W. D. Penny, G. Flandin, and N. J. Trujillo-Barreto. Bayesian comparison of spatially regu-
larized general linear models. Human Brain Mapping, 28:275–293, 2007.

[32] W. D. Penny, N. J. Trujillo-Barreto, and K. J. Friston. Bayesian fmri time series analysis with
spatial priors. NeuroImage, 24:350–362, 2005.

[33] J. Polzehl and V. Spokoiny. Functional and dynamic magnetic resonance imaging using vector
adaptive weights smoothing. Applied Statistics, 50:485–501, 2001.

[34] K. Tabelow, J. Polzehl, U. Voss, H, and V. Spokoiny. Analyzing fmri experiments with struc-
tural adaptive smoothing procedures. NeuroImage, 33:55–62, 2006.



110

[35] M. N. M. van Lieshout. Stochastic geometry models in image analysis and spatial statistics.
Technical report, CWI tract 108, Amsterdam, 1995.

[36] M. N. M. van Lieshout and A. J. Baddeley. Markov chain monte carlo methods for clustering
of image features. Proceedings of the 5th IEE international Conference on Image Processing
and Its Applications, IEE Press:241–245, 1995.

[37] M. W. Woolrich, T. E. J. Behrens, C. F. Beckmann, and S. M. Smith. Mixture models
with adaptive spatial regularisation for segmentation with an application to fmri data. IEEE
transactions on medical imaging, 24:1–11, 2005.

[38] K.J. Worsley, S. Marrett, P. Neelin, A.C. Vandal, K.J. Friston, and A.C. Evans. A unified
statistical approach for determining significant signals in images of cerebral activation. Human
Brain Mapping, 4:58–73, 1996.


