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CHAPTER 1

Motivation and Literature Review

1.1 Change–Point Estimation

The problem of estimating the location of a jump discontinuity (change-point)

in an otherwise smooth curve has been extensively studied in the nonparametric re-

gression and survival analysis literature; see for example Dempfle and Stute (2002),

Gijbels et al. (1999), Gregoire and Hamrouni (2002), Hall and Molchanov (2003),

Kosorok and Song (2007), Loader (1996), Müller (1992), Müller and Song (1997),

Pons (2003), Ritov (1990) and references therein. In the classical setting, measure-

ments on all n covariate-response pairs are available in advance, and the main issue

is to estimate as accurately as possible the location of the change-point. However,

there are applications where it is possible to sample the response at any covariate

value of the experimenter’s choice. The only hard constraint is that the total budget

of measurements to be obtained is fixed a priori.

For example, consider the following example from system engineering. There

is a stochastic flow of jobs/customers of various types arriving to the system with

random service requests. Jobs waiting to be served are placed in queues of infinite

capacity. The system’s resources are allocated to the various job classes (queues)

according to some service policy. This system serves as a canonical queueing model

for many applications, including network switches, flexible manufacturing systems,

wireless communications, etc. (Hung and Michailidis (2007)). A quantity of great

1
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interest to the system’s operator is the average delay of the customers, which is a

key performance metric of the quality of service offered by the system.

The average delay of the customers in a two class system as a function of its load-

ing, for a resource allocation policy introduced and discussed in Hung and Michailidis

(2007), is shown in Figure 1.1. Specifically, the system was simulated under 134 load-

ing settings and fed by input/service request processes obtained from real network

traces and the average delay of 500,000 customers recorded. It can be seen that for

loading around 0.8 there is a marked discontinuity in the response, which indicates

that under the specified resource allocation policy the service provided to the cus-

tomers deteriorates. It is of interest to locate the ’threshold’ where such a change

in the quality of service occurs. It should be pointed out that this threshold would

occur at different system loadings for different allocation policies.
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Figure 1.1: Average delay as a function of system loading for a two-class parallel processing system.

A few comments on the setting implied by this example are in order. First, the

experimenter can select covariate values (in this case the system’s loading) and subse-
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quently obtain their corresponding sample responses. Second, the sampled responses

are expensive to obtain; for example, the average delay is obtained by running a fairly

large scale discrete event simulation of the system under consideration, involving half

a million customers. For systems, comprised of a large number of customer classes,

more computationally intensive simulations that can last days must be undertaken.

Third, in many situations there is an a priori fixed budget of resources; for this exam-

ple, it may correspond to CPU time, in other engineering applications to emulation

time, while in other scientific contexts to real money.
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Figure 1.2: Protein expression over time in a bacterium

Another motivating example comes from biology. Three different protein expres-

sion levels in a bacterium as shown in Figure 1.2 are examined. Research scientists

need to understand more about how protein expression changes over time, which is

accomplished by designing appropriate experiments. Initially, the selection of time

points is random and the results of the experiment are obtained and recorded. The

goal is to identify when significant jump of protein expression level would happen
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from the collected experiment data. At each time point, the experiment to observe

the protein expression level will take a long time, which means that it is impossible

to collect large data sets due to budget constraints. Let us look the protein expres-

sion in green (the lightest one) in the picture. Since no prior knowledge about the

magnitude of the jump was available, the experiment was conducted every half hour.

From the experiment results, it can be seen that the true jump may occur between

6th and 6.5th hours. It informs them that smaller time interval should be to selected.

However, they do not have additional budget to do those experiments again. With

the same amount of budget, if they selected the time data adaptively, the estimate of

change-point over time at which significant jump may occur would be more accurate.

Given the potentially limited budget of points that can be sampled and lack of a

priori knowledge about the location of the change-point the following strategy looks

promising. A certain portion of the budget is used to obtain an initial estimate of

the change-point based on a least squares criterion. Subsequently, a neighborhood

around this initial estimate is specified and the remaining portion of the available

points are sampled from it, together with their responses, that yield a new estimate

of the change-point. Intuition suggests that if the first stage estimate is fairly ac-

curate, the more intensive sampling in its neighborhood ought to produce a more

accurate estimate than the one that would have been obtained by laying out the

entire budget of points in a uniform fashion. Obviously, the procedure with its

‘zoom-in’ characteristics can be extended beyond two stages.

The goal of Chapter 3 is to formally introduce such multistage adaptive proce-

dures for change-point estimation and examine their properties. In particular, the

following important issues are studied and resolved: (i) the selection of the size of the

neighborhoods, (ii) the rate of convergence of the multi-stage least squares estimate,

together with its asymptotic distribution and (iii) allocation of the available budget

at each stage.
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The proposed procedure should be contrasted with the well studied sequential

techniques for change-point detection, since the underlying setting exhibits marked

differences. In its simplest form, the sequential change-point detection problem can

be formulated as follows: there is a process that generates a sequence of independent

observations X1, X2, · · · from some distribution F0. At some unknown point in time

τ , the distribution changes and hence observations Xτ , Xτ+1, · · · are generated from

F1. The objective is to raise an alarm as soon as the data generating mechanism

switches to new distribution. This problem originally arose in statistical quality

control and over the years has found important applications in other fields. Being

a canonical problem in sequential analysis, many detection procedures have been

proposed in the literature over the years in discrete and continuous time, under

various assumptions on the distribution of τ and the data generating mechanism.

The literature on this subject is truly enormous; a comprehensive treatment of the

problem can be found in the book by Basseville and Nikiforov (1993), while some

recent developments and new challenges are discussed in the review paper by Lai

(2001). An important difference in our setting is the control that the experimenter

exercises over the data generation process and also the absence of physical time, a

crucial element in the sequential change-point problem.

Since parametric regression models with discontinuities are considered, we are

usually interested in improving the performance of the entire regression functions ,

which leads us in developing adaptive strategies for estimating the regression function

in Chapter 4. Two criterions are defined and corresponding optimal problems are

studied and solved. The first criterion is related to the optimal allocation of samples,

while the second one is used to select the optimal allocation of the available budget

at the first stage.
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1.2 Jump Boundary Curve Detection

In Section 1.1, we discussed jump discontinuities in an otherwise smooth function.

We briefly review the extension to 2-dimensional surfaces and their jump boundary

curves (as shown in Figure 1.3)
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Figure 1.3: Jump Boundary Curve

Surface fitting is a fundamental problem in many applications. For example, me-

teorologists are interested in fitting the equi-temperature surfaces in high sky or deep

ocean. Geologists often need to recover the mine surfaces from mineral samples. In

some situations, the related surface is discontinuous and the locations of disconti-

nuity are curves in the design space, called jump boundary curves. Of particular

interest is the 3-dimensional problem defined as follows due to its applications in

geology (Qiu(2002)) :

y = f1(x1, x2)I{x2≥g(x1)} + f2(x1, x2)I{x2<g(x1)} + ε

where y is the response surface defined by 2-dimensional step functions, f1(x1, xw)

and f2(x1, x2), respectively, with g(·) being the jump boundary curve we are inter-

ested in identifying and estimating and ε a mean zero, homoskedastic error term.

We are interested in developing computationally efficient methodology that de-

tects and fits the underlying boundary curve, which usually has a complex shape.
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The goal is to start with a small initial design, which is subsequently refined, as more

information about the boundary curve is obtained. The methodology is illustrated

on a number of simulated data sets.

The identification of a jump boundary curve has attracted some attention over

the last few years and we provide next a review of some of the approaches proposed

in the literature. It should be noted that the edge detection problem in image

processing has a similar flavor to the one under study and hence some approaches

prove relevant. Chu et al. (1998) looked at edge detection problems and their

approach is based on M-estimation techniques. Qiu (2002) looks at identifying the

jump boundary curve through local smoothing techniques, while Hall and Molchanov

(2003) propose a sequential method for the same problem. Some other works include

spline smoothing procedures and wavelet transformation method (see Qiu(2005)).

We give a more detailed summary of these approaches in Chapter 5.



CHAPTER 2

Preliminaries and The Classical Procedure

2.1 The Classical Problem

In this study, we focus on parametric models for the regression function of the

type:

Yi = µ(Xi) + εi, i = 1, 2, . . . , n

where

(2.1) µ(x) = ψl(βl, x)1(x ≤ d0) + ψu(βu, x)1(x > d0)

with ψl(βl, x) and ψu(βu, x) both (at least) twice continuously differentiable in β and

infinitely differentiable in x and ψl(βl, d
0) 6= ψu(βu, d

0), so that d0 is the unique point

of discontinuity – a change point – of the regression function.

The εi’s are assumed to be i.i.d. symmetric mean 0 errors with common (unknown)

error variance σ2 and are independent of the Xi’s which are i.i.d. and are distributed

on [0, 1] according to some common density fX(·). The simplest possible parametric

candidate for µ(x), which we will focus on largely to illustrate the key ideas in the

thesis, is the simple step function: µ(x) = α0 1(x ≤ d0) + β0 1(x > d0).

Estimating d0 based on the above data is coined as the “classical problem”. A

standard way to estimate the parameters (βl, βu, d
0) is to solve a least squares prob-

lem. We start by introducing some necessary notation. Let Pn denote the empirical

distribution of the data vector {Xi, Yi}n
i=1 and P the true distribution of (X1, Y1).

8
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For a function f defined on the space [0, 1]×R (in which the vector (X1, Y1) assumes

values) and a measure Q defined on the Borel σ–field on [0, 1]×R, we denote
∫

f dQ

as Qf . We now turn our attention to the least squares problem.

The objective is to minimize Pn [(y−ψl(α, x))2 1(x ≤ d)+(y−ψu(βu, x))2 1(x > d)]

over all (α, β, d), with 0 ≤ d ≤ 1. Let (β̃l,n, β̃u,n, d̃n) denote a vector of minimizers.

Note that we refer to “a vector” of minimizers, since there will be, in general, multiple

tri–vectors that minimize the criterion function. The asymptotic properties of such

a vector can be studied by invoking either the methods of Pons (2003) or those (in

Chapter 14) of Kosorok (2006) and Kosorok and Song (2006). We do not provide the

details, but state the results that are essential to the multistage learning procedures

that we formulate in the next chapter. We clarify next the meaning of a minimizer

of a right–continuous real–valued function with left limits (say f) defined on an

interval I. Specifically, any point z ∈ I that satisfies f(z) ∧ f(z−) = minw∈If(w) is

defined to be a minimizer of f . Also, in order to discuss the results for the classical

procedure and those for the proposed multistage procedures, we need to define a

family of compound Poisson processes that arise in the description of the asymptotic

properties of the estimators of the change point.

A family of compound Poisson processes: For a positive constant Λ, let ν+(·) be

a Poisson process on [0,∞) with right continuous sample paths, with ν+(s) ∼ Poi(Λs)

for s > 0. Let ν̃+(·) be another independent Poisson process on [0,∞) with left–

continuous sample paths, with ν̃+(s) ∼ Poi(Λs) and define a (right–continuous)

Poisson process on (−∞, 0] by {ν−(s) = −ν̃+(−s) : s ∈ (−∞, 0]}. Let {ηi}∞i=1 and

{η−i}∞i=1 be two independent sequences of i.i.d. random variables where each ηj (j

assumes both positive and negative values) is distributed like η, η being a symmetric

random variable with finite variance ρ2. Given a positive constant A, define families

of random variables {V +
i }∞i=1 and {V −

i }∞i=1 where, for each i ≥ 1, V +
i = A/2+ ηi and

V −
i = −A/2 + η−i. Set V +

0 = V −
0 ≡ 0. Next, define compound Poisson processes
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M1 and M2 on (−∞,∞) as follows: M1(s) = (
∑

0≤i≤ν+(s) V +
i ) 1(s ≥ 0) and M2(s) =

(
∑

0≤i≤ν−(s) V −
i ) 1(s ≤ 0). Finally, define the two–sided compound Poisson process

MA,η,Λ(s) = M1(s) − M2(s). It is not difficult to see that M, almost surely, has

a minimizer (in which case it has multiple minimizers, since the sample paths are

piecewise constant). Let dl(A, η, Λ) denote the smallest minimizer of MA,η,Λ and

du(A, η, Λ) its largest one, which are, almost surely, well defined. Then, the following

relation holds:

(dl(A, η, Λ), du(A, η, Λ)) ≡d

(
dl

(
A

ρ
,
η

ρ
, Λ

)
, du

(
A

ρ
,
η

ρ
, Λ

))
(2.2)

≡d
1

Λ

(
dl

(
A

ρ
,
η

ρ
, 1

)
, du

(
A

ρ
,
η

ρ
, 1

))
.(2.3)

For the“classical problem”, the following proposition holds.

Proposition 2.1. Consider the model described at the beginning of Chapter 2. Sup-

pose that X has a positive bounded density on [0, 1] and that d0 is known to lie in

the interval [ε0, 1 − ε0] for some small ε0 > 0. Let (β̂l,n, β̂u,n, d̂n) denote that min-

imizing tri–vector (β̃l,n, β̃u,n, d̃n), for which the third component is minimal. Then,

(
√

n(β̂l,n − βl),
√

n(β̂u,n − βu), n(d̂n − d0)) is Op(1). Furthermore, the first two com-

ponents of this vector are asymptotically independent of the third and

n(d̂n − d0) →d dl(| µ(d0+)− µ(d0) |, ε1, fX(d0))

≡d
1

fX(d0)
dl

( | µ(d0+)− µ(d0) |
σ

,
ε1

σ
, 1

)
.

Heteroscedastic errors: The proposition can be generalized readily to cover the

case of heteroscedastic errors. A generalization of the classical model to the het-

eroscedastic case is as follows: We observe n i.i.d. observations from the model

Y = µ(X) + σ(X) ε̃ where µ(x) is as defined in (2.1), ε̃ and X are independent, ε̃

is symmetric about 0 with unit variance and σ2(x) is a variance function (assumed

continuous). As in the homoscedastic case, an unweighted least squares procedure is

used to estimate the parameters (βl, βu, d
0). As before, letting (β̂l,n, β̂u,n, d̂n) denote
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that minimizing tri–vector (β̃l,n, β̃u,n, d̃n), for which the third component is minimal,

we have:

n(d̂n − d0) →d dl(| µ(d0+)− µ(d0) |, σ(d0) ε̃, fX(d0))

≡d
1

fX(d0)
dl

( | µ(d0+)− µ(d0) |
σ(d0)

, ε̃, 1

)
.

2.2 Weak Convergence of the Estimates from the Classical Procedure.

As described in Proposition 2.1, the weak convergence of the estimates from the

classical procedure can be established. Since this proposition can be extended to the

estimate from our proposed two-stage procedure, we leave those (similar) details for

the next chapter. In this section, we outline some of the features of weak convergence

in the classical model.

We start with the simple step function model:

µ(x) = α0I(x ≤ d0) + β0I(x > d0).

Our goal is to minimize

Pn [(y − α)2 1(x ≤ d) + (y − β)2 1(x > d)]

over all (α, β, d), with 0 ≤ d ≤ 1). Let (α̂n, β̂n, d̂n) denote a vector of minimizers.

We consider d̂n as the minimal minimizer for all discussions in this section.

2.2.1 α0 and β0 are known

WLOG, we suppose β0 > α0 for all discussions in this thesis. If α0 and β0 are

known, the estimate of d0 is obtained by,

d̂n = argmin Pn[(y − α0)
2I(x ≤ d) + (y − β0)

2I(x > d)]

= argmin Pn[{(y − α0)
2 − (y − β0)

2}I(x ≤ d)]

= argmin Pn

[
2

(
y − α0 + β0

2

)
(β0 − α0)I(x ≤ d)

]
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Proposition 2.2. We have:

n(d̂n − d0) →d dl(| µ(d0+)− µ(d0) |, ε1, fX(d0)) ≡ dl(| α0 − β0 |, ε1, fX(d0)).

Kosorok (2006) verified that

n(d̂n − do) = Op(1)

The intuition for the rate is as follows: Suppose there is an interval [0,1] and we

distribute n points on an evenly spaced grid. The resolution of the resulting grid is

1/n and this determines the rate of convergence of the estimate.

0 1

d01/n

Figure 2.1: Rate of convergence of the estimate from classical procedure

Introduce the local variable s ≡ n(d− d0) and consider the normalized process:

Mn(s) ,
n∑

i=1

(
yi − α0 + β0

2

) (
I

(
xi ≤ do +

s

n

)
− I(xi ≤ do)

)

= M+
n (s)−M−

n (s)

where

M+
n (s) = Mn(s)1(s ≥ 0) and M−

n (s) = −Mn(s)1(s ≤ 0).

For this simple model, we use the same notation as in Section 2.1. Set A =

| β0−α0 |, Λ = fX(d0), and let η have the same distribution as ε1, so that V ar(η) =

σ2. Consider the compound Poisson processM(A, η, Λ). It is easy to see that V +
1 and

V −1
1 have characteristic functions L+(t) = E[eit(Y−β0+α0

2 ) | X = d0+
] and L−(t) =

E[eit(Y−β0+α0
2 ) | X = d0] respectively. It can be shown that on every compact interval,

the process Mn converges weakly to MA,η,Λ in the Skorokhod topology; to this end,
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one needs to establish the weak convergence of the finite dimensional distributions

of Mn to those of (MA,η,Λ, J) and also the tightness of Mn (restricted to the compact

interval) as a process. Since n(d̂n−d0) = Op(1), one would like to invoke a continuous

mapping argument and conclude that ĥ3 ≡ n(d̂n−d0), the smallest minimizer of Mn

converges to the smallest minimizer of (MA,η,Λ, J). However, the convergence of Mn

in the Skorohod topology is not sufficient to guarantee the convergence of the argmin,

since the limit process does not have a unique minimizer. Distributional convergence

of Mn needs to be established in a stronger sense, one that involves convergence of

the pure jump process corresponding to Mn to that corresponding to M. Since the

details of this type of an argument are provided in connection with the two–stage

procedure in the next section, we not harp on the details here. We only show the

proof of one-dimensional weak convergence of Mn and skip the remainder.

Suppose s ∈ [0, K], we define

Qn(t) = E[eitM+
n (s)]

= E
[
eit(Y−α0+β0

2 )(I(X≤d0+ s
n)−I(X≤do))

]n

Consider:

E

[
exp

(
it

[(
Y − α0 + β0

2

) (
I

(
X ≤ d0 +

s

n

)
− I(X ≤ d0)

)])]

=

∫ d0+ s
n

d0

E

[
exp

(
it

(
Y − α0 + β0

2

)) ∣∣∣X = x

]
pX(x)dx +

∫

(0,d0]
S

(d0+ s
n

,1)

pX(x)dx

= 1−
∫ d0+ s

n

d0

pX(x)dx + u
(
d0 +

s

n

)
− u(d0)

= 1−
(
FX

(
d0 +

s

n

)
− FX(d0)

)
+

(
u

(
d0 +

s

n

)
− u(d0)

)

where

u(w) =

∫ w

0

E

[
exp

(
it

(
Y − α0 + β0

2

)) ∣∣∣X = x

]
pX(x)dx

So

Qn(t) =
[
1−

(
FX

(
d0 +

s

n

)
− FX(d0)

)
+

(
u

(
d0 +

s

n

)
− u(d0)

)]n
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FX

(
d0 +

s

n

)
− FX(d0) = fX(d0)

s

n
+ O

(
1

n2

)
fX ≡ pX

u
(
d0 +

s

n

)
− u(d0) =

s

n
u′(d0) + O

(
1

n2

)

u′(d0) = fX(d0)E[eit(Y−α0+β0
2 )|X = d0] = fX(d0)L+(t).

So:

Qn(t) =

[
1− fX(d0)

s

n
+

s

n
fX(d0)L(t) + O

(
1

n2

)]n

=

[
1− s

n
fx(d

0)(1− L+(t)) + O

(
1

n2

)]n

−→ exp[−sfX(d0)(1− L+(t))] = E[eitM1(s)]

since:

E[eitM1(s)] = E[eit
P

0≤k≤ν+(s) Vk ]

=
∞∑

l=0

E[eit(V1+...+Vl)]
e−sfX(d0)(sfX(d0))l

l!

=
∞∑

l=0

(L+(t))l(sfX(d0))l

l!
e−sfX(d0)

= e−sfX(d0)eL+(t)sfX (d0)

= e−sfX(d0)(1−L+(t))

Similarly, when s ∈ [−K, 0], we can obtain that

E
[
eitM−n (s)

]
→ E

[
eitM2(s)

]
.

Thus, one-dimensional weak convergence is established.

2.2.2 α0 and β0 are unknown

The estimate of (α0, β0, d
0) can be obtained as:

(α̂n, β̂n, d̂n) = argmin Pn[(y − α)2I(x ≤ d) + (y − β)2I(x > d)]

= argmin nPn[(y − α)2I(x ≤ d) + (y − β)2I(x > d)]

, argmin M̃n(α, β, d)
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Check that

argmin M̃n(α, β, d)

= argmin
{
nPn[((y − α)2 − (y − α0)

2)I(x ≤ d)]

+nPn[((y − β)2 − (y − β0)
2)I(x > d)]

+nPn[(y − α0)
2(I(x ≤ d)− I(x ≤ d0)) + (y − β0)

2(I(x > d)− I(x > d0))]
}

= argmin
{
nPn[((y − α)2 − (y − α0)

2)I(x ≤ d)]

+nPn[((y − β)2 − (y − β0)
2)I(x > d)]

+nPn[((y − α0)
2 − (y − β0)

2)(I(x ≤ d)− I(x ≤ d0))]
}

, argmin {In,1 + In,2 + In,3} .

Also, note that

(α0, β0, d
0) = argmin P [(y − α)2I(x ≤ d) + (y − β)2I(x > d)]

= argmin
{
nP [((y − α)2 − (y − α0)

2)I(x ≤ d)]

+nP [((y − β)2 − (y − β0)
2)I(x > d)]

+nP [((y − α0)
2 − (y − β0)

2)(I(x ≤ d)− I(x ≤ d0))]
}

From Chapter 14 of Kosorok (2006), we know that n(d̂n−d0) = Op(1),
√

n(α̂n−α0) =

Op(1) and
√

n(β̂n−β0) = Op(1). As before, introduce local variables (h1, h2, h3) such

that (α, β, d) = (α0 +h1/
√

n, β0 +h2/
√

n, d0 +h3/n). Consider M̃n now as a function

of (h1, h2, h3), i.e. consider M̃n(α0 + h1/
√

n, β0 + h2/
√

n, d0 + h3/n). Then

(ĥ1, ĥ2, ĥ3) ≡ (
√

n(α̂n − α0),
√

n(β̂n − β0), n(d̂n − d0)),

which minimizes M̃n is Op(1). On every compact rectangle [−K, K] × [−K, K] ×

[−K, K], the process M̃n is asymptotically equivalent to the process M?
n in an ap-
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propriate metric, where

M?
n = −2Pn

√
nh1(y − α0)I(x ≤ do) + h2

1FX(d0)

−2Pn

√
nh2(y − β0)I

(
x > d0 +

h3

n

)
+ h2

2(1− FX(d0))

+nPn

[
2(β0 − α0)

(
y − α0 + β0

2

)
(I(x ≤ d0 + h3/n)− I(x ≤ d0))

]
.

We sketch below a semi–heuristic argument. Consider,

In,1(h1, h2, h3) = nPn[((y − α)2 − (y − α0)
2)I(x ≤ d)]

= nPn[(2y − α− α0)(α0 − α)I(x ≤ d)]

=
n∑

i=1

(
2yi − α0 − h1√

n
− α0

)(
− h1√

n

)
I

(
xi ≤ do +

h3

n

)

= − 1√
n

h1

n∑
i=1

(
2yi − 2α0 − h1√

n

)
I

(
xi ≤ do +

h3

n

)

= −2
√

nh1 · 1

n

n∑
i=1

(yi − α0)I

(
xi ≤ do +

h3

n

)

+h2
1

1

n

n∑
i=1

I

(
xi ≤ do +

h3

n

)

Now,

P
√

n

[(
y − α0)(I

(
x ≤ do +

h3

n

)
− I(x ≤ do)

)]

=
√

n

∫ d0+
h3
n

d0

(β0 − α0) pX(x)dx

=
√

n(β0 − α0)

[
F

(
do +

h3

n

)
− F (do)

]

=
√

n(β0 − α0)

(
h3

n
fX(do) + O

(
1

n2

))
−→ 0,
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and hence

In,1(h1, h2, h3) = −2
√

nh1Pn(y − α0)I(x ≤ d0) + h2
1

1

n

n∑
i=1

I

(
xi ≤ d0 +

h3

n

)

+2
√

nh1Pn(y − α0)

[
I

(
x ≤ d0 +

h3

n

)
− I(x ≤ d0)

]

= −2Pn

√
nh1(y − α0)I(x ≤ d0) + h2

1

1

n

n∑
i=1

I

(
xi ≤ d0 +

h3

n

)

+2P
√

nh1(y − α0)

[
I

(
x ≤ d0 +

h3

n

)
− I(x ≤ d0)

]

+2(Pn − P )
√

nh1(y − α0)

[
I

(
x ≤ d0 +

h3

n

)
− I(x ≤ d0)

]

= −2Pn

√
nh1(y − α0)I(x ≤ d0) + h2

1FX(d0) + oK
P (1).

Similarly,

In,2(h1, h2, h3) = nPn[((y − β)2 − (y − β0)
2)I(x > d)]

= −2Pn

√
nh2(y − β0)I

(
x > d0 +

h3

n

)
+ h2

2

1

n

n∑
i=1

I

(
xi > d0 +

h3

n

)

= −2Pn

√
nh2(y − β0)I

(
x > d0 +

h3

n

)
+ h2

2(1− FX(d0)) + oK
P (1)

and

In,3(h1, h2, h3) = nPn[((y − α0)
2 − (y − β0)

2)(I(x ≤ d)− I(x ≤ d0))]

= nPn

[
2(β0 − α0)

(
y − α0 + β0

2

)
(I(x ≤ d0 + h3/n)− I(x ≤ d0))

]
.

It can then be deduced that on every [−K, K] × [−K, K] × [−K, K] M?
n →d Q ≡

−2h1Z1 + h2
1FX(d0)− 2h2Z2 + h2

2(1− FX(d0)) + MA,η,Λ(h3) as a process, where Z1,

Z2 and MA,η,Λ are all independent, MA,η,Λ is a compound Poisson process with

A =| β0 − α0 |, Λ = fX(d0), and V ar(η) = σ2. Z1 and Z2 are mean zero Gaus-

sian with respective variances σ2FX(d0) and σ2(1 − FX(d0)). So the process M̃n

restricted to [−K, K]× [−K, K]× [−K, K] has the same distributional limit. Con-

tinuous mapping arguments then yield that (ĥ1, ĥ2, ĥ3) →d (hlim
1 , hlim

2 , hlim
3 ) where

(hlim
1 , hlim

2 ) = argminh1,h2
[−2h1Z1 +h2

1FX(d0)−2h2Z2 +h2
2(1−FX(d0))] while hlim

3 =

dl(A, η, Λ).
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The independence of Z1, Z2 and MA,η,Λ is a consequence of the asymptotic inde-

pendence of the processes:

An(h1) =
n∑

i=1

h1√
n

(yi − α0)I(xi ≤ d0)

Bn(h2) =
n∑

i=1

h2√
n

(yi − β0)I

(
xi > d0 +

h3

n

)

Cn(h3) =
n∑

i=1

(
yi − α0 + β0

2

)[
I

(
xi ≤ d0 +

h3

n

)
− I(xi ≤ d0)

]

We conclude this section by sketching how asymptotic independence is established.

To keep things simple, we just consider one dimensional marginals (a full proof would

require consideration of finite dimensional marginals of all possible orders). Consider

F̂n(t) = E[exp{it(aAn + bBn + cCn)}]

=

[
E

[
exp

{
it

[
ah1√

n
(Y − α0)I(X ≤ do) +

bh2√
n

(Y − β0)I

(
X > do +

h3

n

)

+ c

(
Y − α0 + β0

2

)(
I

(
X ≤ do +

h3

n

)
− I(X ≤ do)

)]}]]n

≡ Jn

where

J =

∫
E

[
exp

{
it

[
ah1√

n
(Y − α0)I(X ≤ d0) +

bh2√
n

(Y − β0)I

(
X > d0 +

h3

n

)

+c

(
Y − α0 + β0

2

)(
I

(
X ≤ d0 +

h3

n

)
− I(X ≤ d0)

)]} ∣∣∣X = x

]
pXdx

=

∫ d0

0

E[e
it
“

ah1√
n

(Y−α0)
”
|X = x]pXdx

+

∫ do+
h3
n

d0

E[eit(c(Y−α0+β0
2 ))|X = x]pXdx

+

∫ 1

d0+
h3
n

E[e
it(

bh2√
n

(Y−β0))|X = x]pXdx

, J1 + J2 + J3
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where

J1 =

∫ d0

0

[
1− 1

2

(
ah1t√

n

)2

σ2 + O

(
t2

n

)]
pXdx

=

[
1− a2h1

2σ2t2

2n
+ O

(
t2

n

)]
FX(d0)

J3 =

∫ 1

d0+
h3
n

[
1− 1

2

(
bh2t√

n

)2

σ2 + O

(
t2

n

)]
pXdx

=

[
1− b2h2

2σ2t2

2n
+ O

(
t2

n

)][
1− FX

(
d0 +

h3

n

)]

For J2,

J2 =

∫ d0+h3

n

0

E[eitc(Y−α0+β0
2 )|X = x]pXdx−

∫ d0

0

E[eitc(Y−α0+β0
2 )|X = x]pXdx

= u

(
d0 +

h3

n

)
− u(d0) where u(w) =

∫ w

0

E(eitc(Y−α0+β0
2 )|X = x)pXdx

=
h3

n
u′(d0) + O

(
1

n2

)

=
h3

n
fX(d0)E(eitc(Y−α0−β0

2 )|X = d0) + O

(
1

n2

)

=
h3

n
fX(d0)L+(ct) + O

(
1

n2

)

Then

F̂n(t) =

[(
1− a2h1

2σ2t2

2n

)
FX(d0) +

(
1− b2h2

2σ2t2

2n

)(
1− FX

(
d0 +

h3

n

))

+
h3

n
fX(d0)L(t) + O

(
1

n

)]n

=

[
1−

[
a2h1

2σ2t2

2n
FX(d0) +

b2h2
2σ2t2

2n

(
1− FX

(
d0 +

h3

n

))

+

(
FX

(
d0 +

h3

n

)
− FX(d0)

)
− h3

n
fX(d0)L(t)

]
+ O

(
1

n

)]n

=

[
1−

[
a2h1

2σ2t2

2n
FX(d0) +

b2h2
2σ2t2

2n

(
1− FX

(
d0 +

h3

n

))

+
h3

n
fX(d0)− h3

n
fX(d0)L+(t)

]
+ O

(
1

n

)]n

=

[
1−

[
a2h1

2σ2t2

2n
FX(d0) +

b2h2
2σ2t2

2n

(
1− FX

(
d0 +

h3

n

))

+
h3

n
fX(d0)(1− L+(t))

]
+ O

(
1

n

)]n

−→ e−
a2h1

2σ2t2

2
FX(d0) · e− b2h2

2σ2t2

2
(1−FX(d0)) · e−h3fX(d0)(1−L+(ct))
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Note that

E[eit(aAn)] =

[
E[e

it
“

ah1√
n

(y−α0)I(x≤d0)
”
]

]n

=

[∫ d0

0

E[e
it
“

ah1√
n

(y−α0)
”
|X = x]pXdx +

∫ 1

d0

pXdx

]n

=

[[
1− 1

2

(
ah1t√

n

)2

σ2 + O

(
t2

n

)]
FX(d0) + 1− FX(d0)

]n

=

[
1− a2h1

2σ2t2

2n
FX(d0) + O

(
1

n

)]n

−→ exp{−a2h1
2σ2t2

2
FX(d0)}

E[eit(bBn)] =

[
E[e

it
“

bh2√
n

(y−β0)I(x>d0+
h3
n )
”
]

]n

=

[∫ 1

d0+
h3
n

E[e
it
“

bh2√
n

(y−β0)
”
|X = x]pXdx +

∫ d0+
h3
n

0

pXdx

]n

=

[(
1− FX

(
d0 +

h3

n

))(
1− b2h2

2σ2t2

2n
+ O

(
t2

n

))

+FX

(
d0 +

h3

n

)]n

=

[
1− b2h2

2σ2t2

2n

(
1− FX

(
d0 +

h3

n

))
+ O

(
1

n

)]n

−→ exp{−b2h2
2σ2t2

2
(1− FX(d0))}

and

E[eit(cCn)] −→ e−h3fX(d0)(1−L+(ct))

as shown in the case that α0 and β0 are known. Now, the asymptotic independence

follows from the fact that the joint characteristic function, in the limit, splits as the

product of the limiting marginal characteristic functions.

Remark: These ideas can be readily extended to general (smooth) parametric mod-

els on either side of the change point and, in particular, higher order polynomials.

We omit a discussion.
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2.3 Confidence Intervals

We compare the performance of exact confidence intervals based on the asymp-

totic properties of the estimate from the classical procedure to those proposed in

Ferger(2004).

For these comparisons, simulations were run for a stump model with α0 = 0.5,

β0 = 1.5, d0 = 0.5 and sample sizes n = 50, 100, 500, 1000 with 2000 replicates for

each n. Confidence intervals for d0 based on the minimal minimizer d̂n,l, the maximal

minimizer d̂n,u, and the average minimizer d̂n,av = (d̂n,l + d̂n,u)/2 were constructed.

The confidence level was set at 1− q = .95 and the percentage of replicates for which

the true change-point was included in the corresponding intervals, as well as the

average length of each interval, were recorded.

In what follows, the symbols dl(|β0 − α0|, ε1, fX(d0)) and du(|β0 − α0|, ε1, fX(d0))

have the same connotations as in Proposition 1.

2.3.1 Conservative Confidence Intervals.

Ferger (2004) proposed an asymptotic confidence interval for d at level 1− q:

În(q) := (d̂n − b/θn, d̂n − a/θn)

where a < b are any solution of the inequality

Prob (du(|β0 − α0|, ε1, fX(d0)) < b)− Prob (dl(|β0 − α0|, ε1, fX(d0)) ≤ a) ≥ 1− q

Using the results of Ferger (2004), we construct asymptotically conservative confi-

dence interval for d0 at level 1− q:

În,l(α) = (d̂n,l − b/n, d̂n,l − a/n),

În,u(α) = (d̂n,u − b/n, d̂n,u − a/n),

and

În,av(α) = (d̂n,av − b/n, d̂n,av − a/n)
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n=50 n=100 n=500 n=1000
97.70% 97.70% 97.70% 97.10%

În,s (.1211) (.0606) (.0121) (.0061)
97.60% 97.70% 97.30% 97.10%

În,l (.1211) (.0606) (.0121) (.0061)
99.75% 99.50% 99.70% 99.60%

În,a (.1211) (.0606) (.0121) (.0061)

Table 2.1: Conservative Confidence Intervals for different sample sizes, classical procedure

where a is the q/2th quantile of dl(|β0 − α0|, ε1, fX(d0)) and b is the (1 − q/2)th

quantile of du(|β0 − α0|, ε1, fX(d0)). These quantiles do not seem to be analytically

determinable but can certainly be simulated to a reasonable degree of approximation.

In Table 2.1, the coverage probabilities together with the length of the confidence

intervals are shown for a number of sample sizes. It can be seen that the recorded

coverage exceeds the nominal level of 95% and almost approaching perfect (100%)

coverage for the average minimizer.

2.3.2 Exact Confidence Intervals.

On the other hand, since Proposition 1 provides us with the asymptotic distribu-

tions of the sample minimizers, we can construct asymptotically exact (level 1 − q

confidence intervals) as follows:

Ĩn,l = (d̂n,l − bl/n, d̂n,l − al/n),

Ĩn,u = (d̂n,u − bu/n, d̂n,u − au/n),

Ĩn,av = (d̂n,av − bav/n, d̂n,av − aav/n)

where al, bl, au, bu, aav and bav are the exact quantiles (al, au and aav correspond to

q/2th quantiles and bl, bu and bav correspond to (1− q/2)th quantiles) of

dl(|β0−α0|, ε1, fX(d0)), du(|β0−α0|, ε1, fX(d0)) and (dl(|β0−α0|, ε1, fX(d0))+du(|β0−

α0|, ε1, fX(d0)))/2, respectively.

In Table 2.2, the coverage probabilities together with the length of the confidence

intervals are shown for a number of sample sizes. It can be seen that the coverage
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n=50 n=100 n=500 n=1000
94.85% 95.20% 94.95% 94.75%

Ĩn,s (.0607) (.0303) (.0061) (.0030)
94.80% 95.20% 94.35% 94.10%

Ĩn,l (.0604) (.0302) (.0060) (.0030)
95.55% 94.85% 95.20% 94.40%

Ĩn,a (.0616) (.0308) (.0062) (.0031)

Table 2.2: Exact Confidence Intervals for different sample sizes, classical procedure

probabilities are fairly close to their nominal values. Further, their length is almost

half of those obtained by Ferger’s (2004) method.



CHAPTER 3

Multi-Stage Procedure for Change–Point Estimation

3.1 The Two-stage Procedure and the Asymptotic Properties of the
Estimate.

We first describe a two–stage procedure for estimating the (unique) change–point.

In what follows, we consider a regression scenario where the response Yx generated at

covariate level x can be written as Yx = µ(x)+ε, where ε is a symmetric error variable

with finite variance and µ is the regression function. The errors corresponding to

different covariate levels are i.i.d. We first focus on the simple regression function

µ(x) = α0 1(x ≤ d0) + β0 1(x > d0) and discuss generalizations to more complex

parametric models later. We are allowed to sample n covariate–response pairs at

most and are free to sample a response from any covariate level that we like.

• Step 1: At stage one, λn covariate values are sampled uniformly from [0, 1] and

responses are obtained. Denote the observed data by {Xi, Yi}n1
i=1, n1 = λn and

the corresponding estimated location of the change point by d̂n1 .

• Step 2: Sample the remaining n2 = (1−λ)n covariate–response pairs {Ui,Wi}n2
i=1,

where:

Wi = µ(Ui) + εi, Ui ∼ Unif [ân1 , b̂n1 ]

and [ân1 , b̂n1 ] = [d̂n1 −Kn−γ
1 , d̂n1 + Kn−γ

1 ], 0 < γ < 1 and K is some constant.

Obtain an updated estimate of the change point based on the n2 covariate–

response pairs from stage 2, which is denoted by d̂n2 .

24
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We discuss the basic procedure in some more detail. Let (α̂n1 , β̂n1 , d̂n1) denote the

parameter estimates obtained from stage one. Let Pn2 denote the empirical measure

of the data points {Ui,Wi}n2
i=1. The updated estimates are computed by minimizing

Pn2 [{(w − α̂n1)
2 I(u ≤ d) + (w − β̂n1)

2 I(u > d)]

which, as is readily seen, is equivalent to minimizing the process

M̃n2(d) ≡ Pn2 [{(w − α̂n1)
2 − (w − β̂n1)

2}(I(u ≤ d)− I(u ≤ d0))] .

The process M̃n2 is a piecewise constant right continuous function with left limits.

We let d̂n2,l and d̂n2,u denote its minimal and maximal minimizers, respectively. Our

goal is to determine the joint limit distribution of normalized versions of (d̂n2,l, d̂n2,u).

This is described in the theorems that follow.

Theorem 3.1. Assume that the error variable ε in the regression model has a fi-

nite moment generating function in a neighborhood of 0. Then, the random vector

n1+γ(d̂n2,l − d0, d̂n2,u − d0) is Op(1).

Remark: The proof of this theorem is fairly technical and particularly long and

thus deferred to Section 3.1.3. However, a few words regarding the intuition behind

the accelerated rate of convergence are in order. For simplicity, consider sampling

procedures where instead of sampling from a uniform distribution on the interval of

interest, sampling takes place on a uniform grid on the interval. The interval from

which sampling takes place at the second stage has length 2K n−γ
1 . Since the n2

covariate values are equispaced over this interval, the resolution of the resulting grid

at which responses are measured is O(n−γ
1 /n2) = O(n−(1+γ)) and this determines the

rate of convergence of the two stage estimator (just as the rate of convergence in

the classical procedure where n covariates are equispaced over [0, 1] is given by the

resolution of the resulting grid in that situation, which is simply (n−1)).

We next describe the limit distributions of the normalized estimates considered

in Theorem 3.1.
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2Kn
1
−γ

0 1

2Kn
1
−γ/n

2
d0

Figure 3.1: Rate of the convergence of the estimate from two-stage procedure

Theorem 3.2. Set C(K, λ, γ) = (2K)−1 (λ/(1−λ))γ. The random vector n1+γ
2 (d̂n2,l−

d0, d̂n2,u − d0) converges in distribution to

(dl(| α0 − β0 |, ε, C(K, λ, γ)), du(| α0 − β0 |, ε, C(K, λ, γ))) .

Remark: The asymptotic distributions of the ‘zoom-in’ estimators are given by

the minimizers of a compound Poisson process. The underlying Poisson process is

basically the limiting version of the count process {Pn(s) : s ∈ R}, where Pn(s)

counts the number of Ui’s in the interval (d0, d0 + s/n1+γ
2 ] ∪ (d0 + s/n1+γ

2 , d0]. It

can be readily checked that marginally, Pn(s), converges in distribution to a Poisson

random variable with mean C(K, λ, γ)s, using the Poisson approximation to the

Binomial distribution. On the other hand, the size of the jumps of the compound

Poisson process is basically determined by |α0 − β0|/σ, the signal-to-noise ratio in

the model.

We draw a QQ plot (as shown in Figure 3.2) to illustrate the quality of the approx-

imation for the estimate. We use the average minimizer of the minimal minimizer

and the maximal minimizer here. The horizontal axis corresponds to the quantiles

of the average minimizer of the limit process and the vertical axis corresponds to

the quantiles of the estimates from the simulated two-stage procedure with 1000

replicates. The estimates match the straight line perfectly.

From the simulation results, we compare the histograms (Figure 3.3) of the esti-

mates from classical procedure and the estimates from a two-stage procedure. The
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Figure 3.2: Quality of the Approximation, α0 = .5, β0 = 1.5, d0 = .5, σ = .2, n=1000, K = 1,
λ = .5
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variation of our two-stage estimates is much smaller.

General parametric models: These results admit ready extensions to the case

where the function µ(x) is as defined in (2.1). As in the case of a piecewise constant

µ, n1 ≡ λn points are initially used to obtain least squares estimates of (βl, βu, d
0),

which we denote by (β̂l,n1 , β̂u,n1 , d̂n1). Step 2 of the two–stage procedure is identical

and the updated estimate d̂n2 is computed by minimizing the criterion function

Pn2 [{(w − ψl(β̂l,n1 , u)2 I(u ≤ d) + (w − ψu(β̂u,n1 , u)2 I(u > d)]

which is equivalent to minimizing

M̃n2(d) = Pn2 [{(w − ψl(β̂l,n1 , u))2 − (w − ψu(β̂u,n1 , u))2}(I(u ≤ d)− I(u ≤ d0))] .

Letting d̂n2,l and d̂n2,u denote the smallest and largest argmins of M̃n2 respectively

(as in the piecewise constant function case), we have the following Proposition.

Proposition 3.1. The random vector n1+γ
2 (d̂n2,l− d0, d̂n2,u− d0) converges in distri-

bution to

(dl(| ψl(βl, d
0)−ψu(βu, d

0) |, ε, C(K, λ, γ)), du(| ψl(βl, d
0)−ψu(βu, d

0) |, ε, C(K, λ, γ))) .

The heteroscedastic case: Similar results continue to hold for a heteroscedastic

regression model. We formulate the heteroscedastic setting as follows. At any given

covariate level x, the observed response Yx = µ(x) + σ(x) ε̃ with µ(x) as defined in

(2.1), σ2(x) is a (continuous) variance function and ε̃ is a symmetric error variable

with unit variance. The errors corresponding to different covariate values are in-

dependent. Using the same two stage procedure as described above, the following

proposition obtains.

Proposition 3.2. We have

n1+γ
2 (d̂n2,l − d0, d̂n2,u − d0) →d

(
dl(| ψl(βl, d

0)− ψu(βu, d
0) |, σ(d0) ε̃, C(K, λ, γ)),

du(| ψl(βl, d
0)− ψu(βu, d

0) |, σ(d0) ε̃, C(K, λ, γ))
)

.
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Remark: With choice of a constant variance function, σ2(x) ≡ σ2, the heteroscedas-

tic model reduces to the homoscedastic one. We, nevertheless, present results for

these two situations separately. We also subsequently derive our results for the ho-

moscedastic case, the derivations extending almost trivially to the heteroscedastic

case.

3.1.1 Some Generalizations

We briefly discuss some generalizations of the two–stage procedure. The first of

these considers more general neighborhoods of the initial estimate of the change–

point and the second generalizes the two–stage procedure to multiple stages.

More general neighborhoods: Instead of considering a polynomially decaying

neighborhood of the initial estimate in Step 2, one could consider a more general

neighborhood of the form [d̂n1−kn n−1, d̂n1 +kn n−1] where kn = o(n−1) and kn →∞.

In this case (d̂n2,1 − d0, d̂n2,u − d0) is Op(kn/n
2), so that, in theory, rates logarithmi-

cally close to n2 can be achieved (set kn = log n). The procedure discussed at the

beginning of Section 3 is a special case of this scenario with kn = K λ−γ n1−γ. For

the heteroscedastic model described above,

n2

kn

(
d̂n2,1 − d0, d̂n2,u − d0

)
→d

(
dl(| ψl(βl, d

0)− ψu(βu, d
0) |, σ(d0) ε̃, (1− λ)/2),

du(| ψl(βl, d
0)− ψu(βu, d

0) |, σ(d0) ε̃, (1− λ)/2)
)

.

Multi–stage procedures: Consider a generalization of the two stage procedure to k

stages in the setting of the heteroscedastic model with a general parametric regression

function µ. Let λ1, λ2, . . . , λk be the proportions of points used at each stage (where

λ1 +λ2 + . . .+λk = 1) and let ni = λi n. Also, fix sequences of numbers 0 < γ(k−1) <

. . . < γ(1) < 1 and K1, K2, . . . , Kk−1 (with Ki > 0). Having used n1 points to

construct the initial estimate d̂n1 , in the qth (2 ≤ q ≤ k) stage, define the sampling

neighborhood as [d̂nq−1 − Kq−1n
−((q−2)+γq−1)
q−1 , d̂nq−1 + Kq−1n

−((q−2)+γq−1)
q−1 ], sample nq

covariate–response pairs {wi, ui}nq

i=1 from this neighborhood: Wi = µ(Ui) + εi and
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update the estimate of the change–point to d̂nq . Let (d̂nk,l, d̂nk,u) denote the smallest

and largest estimates at stage k. It can be shown that n
(k−1)+γ(k−1)

k ((d̂nk,l−d0), (d̂nk,u−

d0)) is Op(1) and converges in distribution to (dl, du), where (dl, du) is the vector of

the smallest and the largest argmins of the process M(| ψl(βl, d
0) − ψu(βu, d

0) |

, σ(d0) ε̃, Ck), with Ck = (1/2Kk−1)(λk−1/λk)
((k−2)+γ(k−1)) .

3.1.2 Proof of Theorem 3.2

For the proof of this theorem (and the proof of Lemma 3.2 in Section 3.1.3)

we denote the process M|α0−β0|,ε,C(K,λ,γ) simply by M and its smallest and largest

minimizers simply by (dl, du). Our proof of this theorem will rely on continuous

mapping for the argmin functional. For the sake of concreteness, in what follows,

we assume that α0 < β0. Under this assumption, with probability increasing to 1

as n (and consequently n1) goes to infinity, α̂n1 < β̂n1 and d0 belongs to the set

[d̂n1 −K n−γ
1 , d̂n1 + K n−γ

1 ]. On this set (d̂n2,l, d̂n2,u) can be obtained by minimizing

(the equivalent) criterion function:

Pn2

[(
w − α̂n1 + β̂n1

2

)
(I(u ≤ d)− I(u ≤ d0))

]

and d0 is characterized as:

d0 = argmin P

[(
w − α̂n1 + β̂n1

2

)
(I(u ≤ d)− I(u ≤ d0))

]

where P is the distribution of (W,U). Therefore, in what follows, we take:

M̃n2(d) = Pn2

[(
w − α̂n1 + β̂n1

2

)
(I(u ≤ d)− I(u ≤ d0))

]
,

and d̂n2,l and d̂n2,u to be the smallest and largest argmins of this stochastic process.

Set (ξn,l, ξn,u) = n1+γ
2 (d̂n2,l − d0, d̂n2,u − d0). Then (ξn,l, ξn,u) is the vector of smallest

and largest argmins of the stochastic process:

Mn2(s) =

n2∑
i=1

[(
wi − α̂n1 + β̂n1

2

)(
I

(
ui ≤ d0 +

s

n1+γ
2

)
− I

(
ui ≤ d0

))
]

= M+
n2

(s)−M−
n2

(s)
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where

M+
n2

(s) = Mn2(s) 1(s ≥ 0) and M−
n2

(s) = −Mn2(s) 1(s ≤ 0) .

We now introduce some notation that is crucial to the subsequent development. Let

S denote the class of piecewise constant right continuous functions with left limits

(from R to R) that are continuous at every integer point, assume the value 0 at 0

and possess finitely many jumps in every compact interval [−C, C] where C > 0 is

an integer. Let f̃ denote the pure jump process (of jump size 1) corresponding to

the function f ; i.e. f̃ is the piecewise constant right continuous function with left

limits, such that for any s > 0, f̃(s) counts the number of jumps of the function f in

the interval [0, s], while for s < 0, f̃(s) counts the number of jumps in the set (s, 0).

For any positive integer C > 0, let D[−C, C] denote the class of all right contin-

uous functions with left limits with domain [−C, C] equipped with the Skorokhod

topology and let D[−C, C]×D[−C, C] denote the corresponding product space. Fi-

nally, let D0
C denote the (metric) subspace of D([−C, C])×D([−C, C]) that comprises

all function pairs of the form (f |[−C,C], f̃ |[−C,C]) for f ∈ S. We have the following

Lemma which is proved in Section 3.1.3.

Lemma 3.1. Let {fn} and f0 be functions in S, such that for every positive integer

C, (fn |[−C,C], f̃n |[−C,C]) converges to (f0 |[−C,C], f̃0 |[−C,C]) in DC
0 where f0 satisfies

the property that no two flat stretches of f0 have the same height. Let ln,C and un,C

denote the smallest and the largest minimizers of fn on [−C, C], and l0,C and u0,C

denote the corresponding functionals for f0. Then (ln,C , un,C) → (l0,C , u0,C).

Consider the sequence of stochastic processes Mn2(s) and let Jn2(s) denote the

corresponding jump processes. We have:

Jn2(s) = sign(s)

n2∑
i=1

[(
I

(
Ui ≤ d0 +

s

n1+γ
2

)
− I

(
Ui ≤ d0

))]

= J+
n2

(s) + J−n2
(s)
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where

J+
n2

(s) = Jn2(s) 1(s ≥ 0) and J−n2
(s) = Jn2(s) 1(s ≤ 0) .

The jump process corresponding toM(s) is denoted by J(s) and is given by ν+(s)1(h ≥

0)+ν−(s)1(h ≤ 0). For each n,{Mn2(s) : s ∈ R} lives in S with probability one. Also,

with probability 1, {M(s) : s ∈ R} lives in S. Also, on a set of probability one (which

does not depend on C), for every positive integer C, ((Mn2(s), Jn2(s)) : s ∈ [−C, C])

belongs to DC
0 and so does ((M(s), J(s)) : s ∈ [−C, C]). Let (ξn,C,l, ξn,C,u) denote the

smallest and largest argmin of Mn2 restricted to [−C, C] and let (dC,l, dC,u) denote

the corresponding functionals forM restricted to [−C, C]. We prove in the Appendix:

Lemma 3.2. For every C > 0, ((Mn2(s), Jn2(s)) : s ∈ [−C, C]) converges in distri-

bution to ((M(s), J(s)) : s ∈ [−C, C]) in the space D0
C.

Consider the function h that maps an element (a pair of functions) of DC
0 to

the two dimensional vector given by the smallest argmin and the largest argmin

of the first component of the element. Using the fact that almost surely no two

flat stretches of M have the same height, it follows by Lemma 3.1 that the process

((M(s), J(s)) : s ∈ [−C, C]) belongs, almost surely, to the continuity set of the

function h. This, coupled with the distributional convergence established in Lemma

3.2 leads to the conclusion that

(3.1) (ξ̂n,C,l, ξ̂n,C,u) →d (dC,l, dC,u) .

We will show that (ξn,l, ξn,u) → (dl, du). To this end, we use the following lemma

from Prakasa Rao (1969).

Lemma 3.3. Suppose that {Wnε}, {Wn} and {Wε} are three sets of random vectors

such that

(i) limε→0 lim supn→∞ P [Wnε 6= Wn] = 0 , (ii) limε→0 P [Wε 6= W ] = 0 and (iii)

For every ε > 0 , Wnε →d Wε as n →∞ .

Then Wn →d W , as n →∞.
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Before applying the lemma, we first note the following facts: (a) The sequence

of (smallest and largest minimizers) (ξn,l, ξn,u) is Op(1), and (b) The minimizers

(dl, du) are Op(1). Now, in the above lemma, set ε = 1/C, Wnε = (ξn,C,l, ξn,C,u),

Wε = (dC,l, dC,u), Wn = (ξn,l, ξn,u) and W = (dl, du). Condition (iii) is established

in (3.1). From (a) and (b) it follows that Conditions (i) and (ii) of the lemma are

satisfied. We conclude that (ξn,l, ξn,u) →d (dl, du). ¤

Remark: It is instructive to compare the obtained result on the convergence of the

(non–unique) argmin functional to that considered in Ferger (2004). Ferger deals

with the convergence of the argmax functional under the Skorokhod topology in

Theorems 2 and 3 of his paper. Since the argmax functional is not continuous un-

der the Skorokhod topology, an exact result on distributional convergence cannot be

achieved. Instead, asymptotic upper and lower bounds are obtained on the distri-

bution function of the argmax in terms of the smallest maximizer and the largest

maximizer of the limit process (page 88 of Ferger (2004)). The result we obtain here

is, admittedly, in a more specialized set–up than the one considered in his paper, but

it is stronger since we are able to show exact distributional convergence of argmins.

This is achieved at the cost of some extra effort: establishing the joint convergence

of the original processes, whose argmins are of interest, and their jump processes,

and subsequently invoking continuous mapping. Under this stronger mode of conver-

gence, the argmin functional indeed turns out to be continuous, as Lemma 3.1 shows

(the arguments employed are similar in spirit to those in section 14.5.1 of Kosorok

(2006)). This result allows us to construct asymptotic confidence intervals that have

exact coverage at any given level, as opposed to the conservative intervals proposed

in Ferger (2004). That the exact confidence intervals buy us significant precision

over the conservative ones is evident from the reported simulation results discussed

in Section 3.3.
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3.1.3 Proof of Theorem 3.1

Proof of Lemma 3.1: Let fn(t) =
∑∞

i=1 vn,i 1(t ∈ [an,i, an,i+1)) +
∑∞

i=1 vn,−i 1(t ∈

[an,−(i+1), an,−i)) where 0 < an,1 < an,2 < . . . and 0 > an,−1 > an,−2 > . . ., and let

f0(t) =
∑∞

i=1 vi 1(t ∈ [ai, ai+1))+
∑∞

i=1 v−i 1(t ∈ [a−(i+1), a−i)). On [−C, C], the limit

function f0 has finitely many jump points, say, mr to the right of 0 and ml to the

left of 0. The function f̃n assumes the value 0 on [an,−1, an,1) and the value i on

[an,i, an,i+1) and [an,−(i+1), an,−i), for all i ≥ 1. The function f̃0 assumes the value 0

on [a−1, a1) and the value i on [ai, ai+1) and [a−(i+1), a−i), for all i ≥ 1.

For any ε > 0, consider, for 1 ≤ i ≤ mr, the points ai − ε, ai + ε. Since these are

continuity points of f0, f̃n must converge to f̃0 at these finitely many points. Since f̃n

and f̃0 only assume integer values, for all sufficiently large n, f̃n(ai−ε) = f̃0(ai−ε) =

i − 1 and f̃n(ai + ε) = f̃0(ai + ε) = i for all 1 ≤ i ≤ mr and f̃0(C) = f̃n(C) = mr.

It follows that the function f̃n has exactly mr jump discontinuities on [0, C] for all

sufficiently large n; furthermore, since f̃n jumps between ai−ε and ai+ε for all i, an,i,

the i’th largest jump location to the right of 0 satisfies | an,i− ai |≤ ε for 1 ≤ i ≤ mr

for n large enough. A similar phenomenon happens to the left of 0, with the number

of jumps of f̃n in [−C, 0] being exactly ml for all sufficiently large n, and the jump

locations {an,−i}ml
i=1 converging to the jump locations {a−i}ml

i=1 of f̃0 on [−C, 0].

Let [aj, a(j+1)) (with j > 0) denote the unique stretch on which the restriction of

f̃0 to [−C, C] is minimized (that the minimizing stretch is unique is guaranteed by

our assumptions). The value on this stretch is vj. Now, consider the points {(am +

am+1)/2 : −ml ≤ m ≤ mr} ∪ {(−C + a−ml
)/2, (amr + C)/2}. These are continuity

points of f0 (and f̃0) and by what has been shown in the previous paragraph, for

all sufficiently large n, these are continuity points of f̃n with (am + am+1)/2 lying

in the stretch with an,m and an,m+1 as extremities. Since fn converges to f0 in the

Skorokhod metric on [−C, C] it follows that fn((am +am+1)/2) → f0((am +am+1)/2),
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for all m. Also fn((−C+a−ml
)/2 and fn((amr +C)/2) converge to f0((−C+a−ml

)/2)

and f0((amr +C)/2) respectively. Since vj is the smallest value of f on [−C, C] and is

separated from the remaining possible levels of f0 on [−C, C] and vn,j, the constant

value of fn on the stretch [an,j, an,(j+1)), converges to vj, while the constant value of

fn on any other stretch converges to the constant value of f0 on the corresponding

stretch for the limit function, it follows that for all sufficiently large n, vn
j is separated

from the other possible values of fn and is the smallest value of fn on [−C, C]. It

follows that ln,C = an,j and un,C = an,j+1 and these converge to aj and aj+1 which are

simply l0,C and lu,C . A similar argument works if the stretch on which the minimum

of f0 on [−C, C] is attained lies to the left of 0. ¤

Proof of Lemma 3.2: We first note that D0
C (which we view as a metric subspace of

D[−C, C]×D[−C, C]) is a measurable subset of D[−C, C]×D[−C, C]. To establish

convergence in distribution in the space D0
C , it therefore suffices to establish conver-

gence in distribution in the larger space D[−C, C]×D[−C, C] (see the discussion in

Example 3.1 of Billingsley (1999)). This can be achieved by (a) Establishing finite di-

mensional convergence: showing that {Mn2(hi), Jn2(hi)}l
i=1 → {M(hi), J(hi)}l

i=1 for

all h1, h2, . . . , hl in [−C, C]. (b) Verifying tightness of the processes (Mn2(h), Jn2(h))

under the product topology. But this boils down to verifying marginal tightness.

Let

L+(t) = E[eit(w−α0+β0
2 ) | U = d0+

] ≡ lim
d→d0+

E[eit(w−α0+β0
2 ) | U = d]

and L−(t) = E[eit(w−α0+β0
2 ) | U = d0]. It is not difficult to see that L+ is the

characteristic function of the V +
i ’s while L− is the characteristic function of the

V −
i ’s. In order to establish finite–dimensional convergence, we first show that for

a fixed s, Mn2(s) converges in distribution to M(s). We do this via characteristic
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functions. Consider φs(t), the characteristic function ofM(s) (with s > 0). We have:

E[eitM1(s)] = E[eit
P

0≤k≤ν+(s) V +
k ]

=
∞∑

l=0

E[eit(V +
1 ...+V +

l )]
e−

s
2K

( λ
1−λ

)γ (
s

2K
( λ

1−λ
)γ

)l

l!

=
∞∑

l=0

(L+(t))l
(

s
2K

( λ
1−λ

)γ
)l

l!
e−

s
2K

( λ
1−λ

)γ

= e−
s

2K
( λ
1−λ

)γ

eL(t) s
2K

( λ
1−λ

)γ

= e−
s

2K
( λ
1−λ

)γ(1−L(t))

We show that Qn2,s(t) ≡ E[eitMn2 (s)] converges to φs(t). Let ξn1 = n1(d̂n1−d0), ηn1,1 =

√
n1(α̂n1 − α0), ηn1,2 =

√
n1(β̂n1 − β0). We have:

Qn2,s(t) =

∫
Q?

n2,s(t, η1, η2, ξ) dZn1(η1, η2, ξ) ,

where Zn1 is the joint distribution of (ηn1,1, ηn1,2, ξn1) and

Q?
n2,s(t, η1, η2, ξ) = E[eitM+

n2
(s)|ηn1,1 = η1, ηn1,2 = η2, ξn1 = ξ]

= E

[
e

it

„
W1− α̂n1+β̂n1

2

«„
I

„
U1≤d0+ s

n
1+γ
2

«
−I(U1≤d0)

«∣∣∣ηn1,1 = η1, ηn1,2 = η2, ξn1 = ξ

]n2

.

Let ε > 0 be pre–assigned. By Proposition 1, we can find L > 0 such that for

all sufficiently large n, Zn1([−L,L]3) ≥ 1 − ε/3. Using the fact that characteristic

functions are bounded by 1, it follows immediately that for all n ≥ N0 (for some

N0),

| Qn2,s(t)− φs(t) | ≤
∫

[−L,L]3
| Q?

n2,s(t, η1, η2, ξ)− φs(t) | dZn1(η1, η2, ξ) + 2 ε/3

≤ sup(η1,η2,ξ)∈[−L,L]3 | Q?
n2,s(t, η1, η2, ξ)− φs(t) | +2 ε/3 .

For this fixed L, we now show that for all sufficiently large n

Dn ≡ sup(η1,η2,ξ)∈[−L,L]3 | Q?
n2,s(t, η1, η2, ξ)− φs(t) |≤ ε/3 ,

whence it follows that eventually | Qn2,s(t) − φs(t) |≤ ε. To show the uniform con-

vergence of Q?
n2,s(t, η1, η2, ξ) to φs(t) over the compact rectangle [−L,L]3 we proceed

as follows.
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For given L and C, it is the case that for all sufficiently large n, for any ξ ∈ [−L,L]

and any 0 < s < C,

d0 + ξ/n1 −K n−γ
1 < d0 < d0 + s/n1+γ

2 < d0 + ξ/n1 + K n−γ
1 .

Let Pn2,d(s) ≡ Pr(d0 ≤ U1 ≤ d0 + s/n1+γ
2 | d̂n1 = d). Consider the conditional

characteristic function Q?
n2,s(t, η1, η2, ξ), for (η1, η2, ξ) ∈ [−L,L]3. It follows from the

above display that for all sufficiently large n (depending only on L and C),

Q?
n2

(t, η1, η2, ξ)

=

[
[1− Pn2,d0+ ξ

n1

(s)] +

∫ d0+ s

n
1+γ
2

d0

E

[
e

it

„
W1− α̂n1+β̂n1

2

«∣∣∣U1 = u

]
pU1(u)du

]n2

(
where α̂n1 = α0 +

η1√
n1

, β̂n1 = β0 +
η2√
n1

)

=

[
[1− Pn2,d0+ ξ

n1

(s)] +
nγ

1

2K

∫ d0+ s

n
1+γ
2

d0

E

[
e

it

„
W1− α̂n1+β̂n1

2

«∣∣∣U1 = u

]
du

]n2

=

[
1− 1

n2

s

2K

(
λ

1− λ

)γ

+
nγ

1

2K

∫ d0+ s

n
1+γ
2

d0

E

[
e

it

„
W1− α̂n1+β̂n1

2

«∣∣∣U1 = u

]
du

]n2

=

[
1− 1

n2

s

2K

(
λ

1− λ

)γ

+
nγ

1

2K

×
∫ s

0

E

[
exp

{
it

(
W1 −

α0 + η1√
n1

+ β0 + η2√
n1

2

)}∣∣∣U1 = d0 +
v

n1+γ
2

]
1

n1+γ
2

dv

]n2

=

[
1− 1

n2

s

2K
(

λ

1− λ
)γ

+
1

2Kn2

(
λ

1− λ

)γ

e
− it(η1+η2)

2
√

n1

∫ s

0

E

[
eit(W1−α0+β0

2 )
∣∣∣U = d0 +

v

n1+γ
2

]
dv

]n2

=

[
1− 1

n2

s

2K

(
λ

1− λ

)γ

(1−Bn1,n2,η1,η2(s))

]n2

where

Bn1,n2,η1,η2(s) =
1

s
e
− it(η1+η2)

2
√

n1

∫ s

0

E

[
eit(W1−α0+β0

2 )
∣∣∣U1 = d0 +

v

n1+γ
2

]
dv

and

Dn = sup(η1,η2)∈[−L,L]2

∣∣∣∣
[
1− 1

n2

s

2K

(
λ

1− λ

)γ

(1−Bn1,n2,η1,η2(s))

]n2

− φs(t)

∣∣∣∣ .
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Let:

zn(η1, η2) = − s

2K
(

λ

1− λ
)γ (1−Bn1,n2,η1,η2(s)) .

It is easy to see that:

D̃n ≡ sup(η1,η2)∈[−L,L]2 | zn(η1, η2)− z0 |→ 0 ,

where z0 = −(s/2K)(λ/(1− λ))γ(1− L+(t)). Consider now:

Dn = sup(η1,η2)∈[−L,L]2

∣∣∣∣
(

1 +
1

n2

zn(η1, η2)

)n2

− ez0

∣∣∣∣ .

This is dominated by In + IIn where:

In =

∣∣∣∣
(

1 +
1

n2

z0

)n2

− ez0

∣∣∣∣ → 0 ,

and

IIn = sup(η1,η2)∈[−L,L]2

∣∣∣∣
(

1 +
1

n2

zn(η1, η2)

)n2

−
(

1 +
1

n2

z0

)n2
∣∣∣∣ .

Since D̃n goes to 0, for all sufficiently large n, | z0 | ∨(supη1,η2)∈[−L,L]2 | zn(η1, η2) |) is

bounded by a constant, say M . Straightforward algebra shows that for all sufficiently

large n,

IIn ≤ (sup(η1,η2)∈[−L,L]2 | zn(η1, η2)− z0 |)
(

n2∑
j=1

(
n2

j

)
j M j−1

nj
2

)

= (sup(η1,η2)∈[−L,L]2 | zn(η1, η2)− z0 |)
(

1 +
M

n2

)n2−1

→ 0 .

Thus Dn → 0 and the uniform convergence of Q∗
n2

(t, η1, η2, ξ) to φs(t) = ez0 on

[−L,L]3 is established.

We now establish the weak convergence of the finite dimensional distributions of

(Mn2 , Jn2) to those of (M, J). For convenience, we restrict ourselves only to the set

[0, C]. Let J be a positive integer and consider 0 = s0 < s1 < s2 < . . . < sJ ≤ C.

Let c1, c2, . . . , cJ and d1, d2, . . . , dJ be constants. We show that:

An ≡ E
(
eit
P

j≤J (cj(M+
n2

(sj)−M+
n2

(sj−1))+dj(J+n2
(sj)−J+n2

(sj−1)))
)

→ A ≡ E
(
eit
P

j≤J (cj(M(sj)−M(sj−1))+dj(J(sj)−J(sj−1)))
)
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for any vector of constants (c1, c2, . . . , cj, d1, d2, . . . , dj). By the Cramer–Wold device

it follows that:

({Mn2(si)−Mn2(si−1)}J
i=1, {Jn2(si)− Jn2(si−1)}J

i=1

)

→d

({M(si)−M(si−1)}J
i=1, {J(si)− J(si−1)}J

i=1

)
,

establishing the claim. As before:

An =

∫
K?

n2
(t, η1, η2, ξ) dZn1(η1, η2, ξ)

where

K?
n2

(t, η1, η2, ξ)

= E[eit
P

j≤J (cj(M+
n2

(sj)−M+
n2

(sj−1))+dj(J+n2
(sj)−J+n2

(sj−1)))
∣∣ηn1,1 = η1, ηn1,2 = η2, ξn1 = ξ] .

Proceeding as before, the convergence of An to A follows if we establish the uniform

convergence of K?
n2

(t, η1, η2, ξ) to A on a compact rectangle of the form [−L,L]3. We

have:

K?
n2

(t, η1, η2, ξ)

= E(eit
P

j≤J (cj(M+
n2

(sj)−M+
n2

(sj−1))+dj(J+n2
(sj)−J+n2

(sj−1)))
∣∣∣ηn1,1 = η1, ηn1,2 = η2, ξn1 = ξ)

= E

[
exp

{
it

∑
j≤J

(
n2∑
i=1

(
cj

(
Wi − α̂n1 + β̂n1

2

)
+ dj

)(
I

(
Ui ≤ d0 +

sj

n1+γ
2

)

−I
(
Ui ≤ d0

))−
n2∑
i=1

(
cj

(
Wi − α̂n1 + β̂n1

2

)
+ dj

)(
I

(
Ui ≤ d0 +

sj−1

n1+γ
2

)

−I(Ui ≤ d0)
))} ∣∣∣ηn1,1 = η1, ηn1,2 = η2, ξn1 = ξ

]

=

∫
E

[
exp

{
it

∑
j≤J

(
n2∑
i=1

(
cj

(
Wi − α̂n1 + β̂n1

2

)
+ dj

)(
I

(
Ui ≤ d0 +

sj

n1+γ
2

)

−I

(
Ui ≤ d0 +

sj−1

n1+γ
2

)))} ∣∣∣ηn1,1 = η1, ηn1,2 = η2, ξn1 = ξ

]
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=

∫
E

[
exp

{
it

n2∑
i=1

(∑
j≤J

(
cj

(
Wi − α̂n1 + β̂n1

2

)
+ dj

)(
I

(
Ui ≤ d0 +

sj

n1+γ
2

)

−I

(
Ui ≤ d0 +

sj−1

n1+γ
2

)))} ∣∣∣ηn1,1 = η1, ηn1,2 = η2, ξn1 = ξ

]

=

∫
E

[
exp

{
it

(∑
j≤J

(
cj

(
W1 − α̂n1 + β̂n1

2

)
+ dj

)(
I

(
U1 ≤ d0 +

sj

n1+γ
2

)

−I

(
U1 ≤ d0 +

sj−1

n1+γ
2

)))} ∣∣∣ηn1,1 = η1, ηn1,2 = η2, ξn1 = ξ

]n2

.

As previously, for all sufficiently large n (depending possibly only on C and L), for

all ξ ∈ [−L,L],

K?
n2

(t, η1, η2, ξ)

=

[∫

[d0,d0+sJ/n1+γ
2 ]C

pU1(u) du

+
∑
j≤J

∫ d0+
sj

n
1+γ
2

d0+
sj−1

n
1+γ
2

E

[
e

it
“
cj

“
W1−α0+η1/

√
n1+β0+η2/

√
n2

2

”
+dj

”∣∣∣U1 = u

]
pU1(u)du




n2

=

[
1− sJ − s0

n1+γ
2

nγ
1

2K

+
∑
j≤J

∫ d0+
sj

n
1+γ
2

d0+
sj−1

n
1+γ
2

E

[
e

it
“
cj

“
W1−α0+η1/

√
n1+β0+η2/

√
n2

2

”
+dj

”∣∣∣U1 = u

]
pU1(u)du




n2

=

[
1 +

∑
j≤J

[
−sj − sj−1

2K n2

(
λ

1− λ

)γ

+
nγ

1

2K
· 1

n1+γ
2

×
∫ sj

sj−1

E

[
exp

{
it

(
cj

(
W1 −

α0 + η1√
n1

+ β0 + η2√
n1

2

)
+ dj

)}

∣∣∣U1 = d0 +
v

1 + n1+γ
2

]
dv

]]n2

=

[
1 +

∑
j≤J

[
−(sj − sj−1)

2Kn2

(
λ

1− λ

)γ

+
1

2Kn2

(
λ

1− λ

)γ

(sj − sj−1)B
∗
n1,n2,η1,η2

(sj, sj−1)

]]n2

=

[
1 +

∑
j≤J

[
−(sj − sj−1)

2Kn2

(
λ

1− λ

)γ

(1−B∗
n1,n2,η1,η2

(sj, sj−1))

]]n2
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where

B∗
n1,n2,η1,η2

(sj, sj−1)

= e
−it

η1+η2
2
√

n1

∫ sj

sj−1

1

sj − sj−1

E

[
eit(cj(W1−α0+β0

2 )+dj)
∣∣∣U1 = d0 +

v

n1+γ
2

]
dv

and

sup(η1,η2,ξ)∈[−L,L]3 | K?
n2

(t, η1, η2, ξ)− A |= sup(η1,η2)∈[−L,L]2 | K?
n2

(t, η1, η2, ξ)− A | .

Setting

zn(η1, η2) =

[
−

∑
j≤J

(sj − sj−1)

2K

(
λ

1− λ

)γ

(1−B∗
n1,n2,η1,η2

(sj, sj−1))

]

we see that:

sup(η1,η2)∈[−L,L]2 | zn(η1, η2)− z0 |→ 0 ,

where

z0 = exp

[
− 1

2K

(
λ

1− λ

)γ ∑
j≤J

(sj − sj−1)(1− eitdjL+(cjt))

]
,

since for each 1 ≤ j ≤ J ,

B∗
n1,n2,η1,η2

(sj, sj−1) −→ eitdjE
[
eitcj(w−α0+β0

2 )
∣∣∣U = d0+

]
= eitdjL+(cjt)

uniformly over (η1, η2) ∈ [−L,L]2. It follows that

sup(η1,η2)∈[−L,L]2

∣∣K?
n2

(t, η1, η2, ξ)− ez0
∣∣

= sup(η1,η2)∈[−L,L]2

∣∣∣∣
(

1 +
1

n2

zn(η1, η2)

)n2

− ez0

∣∣∣∣ → 0 .

But ez0 = A, as can be verified by direct computation. By the property of indepen-
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dent increments of compound Poisson processes, we have:

E
[
eit
P

j≤J (cj(M(sj)−M(sj−1))+dj(J(sj)−J(sj−1)))
]

=
∏
j≤J

E
[
eit(cj(M(sj)−M(sj−1))+dj(J(sj)−J(sj−1)))

]

=
∏
j≤J

∞∑

l=0

l∑
m=0

E
[
eit[

P
0≤k≤l(cj V +

k +dj)−
P

0≤k≤m(cj V +
k +dj)]

]
· P (ν+(sj) = l, ν+(sj−1) = m)

=
∏
j≤J

∞∑

l=0

l∑
m=0

E
[
eit(cj V +

m+1+...+cj V +
l +(l−m)dj)

]

×P (ν+(sj)− ν+(sj−1) = l −m) · P (ν+(sj−1) = m)

=
∏
j≤J

∞∑

l=0

l∑
m=0

[eitdjL+(cjt)]
l−m · e

−
“

sj−sj−1
2K

”
( λ

1−λ)
γ

(l −m)!

[(
sj − sj−1

2K

)(
λ

1− λ

)γ]l−m

×e−(
sj−1
2K )( λ

1−λ)
γ

m!

[(sj−1

2K

) (
λ

1− λ

)γ]m

(set l = m + l′)

=
∏
j≤J

∞∑
m=0

e−(
sj−1
2K )( λ

1−λ)
γ

m!

[(sj−1

2K

) (
λ

1− λ

)γ]m ∞∑

l′=0

(
[eitdjL(cjt)]

l′

×e
−
“

sj−sj−1
2K

”
( λ

1−λ)
γ

l′!

[(
sj − sj−1

2K

)(
λ

1− λ

)γ]l′



=
∏
j≤J

e
−
“

sj−sj−1
2K

”
( λ

1−λ)
γ
(1−eitdj L+(cjt))

= e−
P

j≤J

sj−sj−1
2K ( λ

1−λ)
γ
(1−eitdj L+(cjt))

≡ A

This finishes the proof of finite dimensional convergence. This derivation can be

extended readily to allow for sj’s that can also assume negative values; we avoid

this here since the derivation involves no new ideas but becomes somewhat more

cumbersome.

We finally show that the processMn2 restricted to [−C, C] is tight. We know that

(α̂n1 , β̂n1 , d̂n1) −→p (α0, β0, d
0) and n1(d̂n1 − d0) = Op(1). Let

Ωn =


|α̂n1 − α0| ≤ ∆, |β̂n1 − β0| ≤ ∆, d̂n1 −

K

nγ
1

< d0 − C

n1+γ
2

< d0 +
C

n1+γ
2

< dn1 +
K

nγ
1

ff
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Clearly, P (Ωn) −→ 1. The event Ωn can be written as (α̂n1 , β̂n1 , d̂n1) ∈ Rn, where

Hn(Rn) −→ 1, Hn being the joint distribution of (α̂n1 , β̂n1 , d̂n1). Note thatMn21(Ωn)

is also a process in D(R). We verify tightness of Mn21(Ωn) restricted to [−C, C]. To

this end, we verify (the analogue of) Condition (13.14) on Page 143 of Billingsley

(1999), with β = 1/2 and α = 1. Once again, let 0 ≤ s1 ≤ s ≤ s2 ≤ C,

E[|M+
n2(s)−M+

n2(s1)| · |M+
n2(s2)−M+

n2(s)|1(Ωn)]

=

Z

Rn

E[|M+
n2(s)−M+

n2(s1)| · |M+
n2(s2)−M+

n2(s)|
˛̨
(α̂n1 , β̂n1 , d̂n1) = (α, β, d)]dHn(α, β, d)

where

E[|M+
n2(s)−M+

n2(s1)| · |M+
n2(s2)−M+

n2(s)|
˛̨
˛(α̂n1 , β̂n1 , d̂n1) = (α, β, d)]

= Eα,β,d

"˛̨
˛̨
˛

n2X
i=1

„
Wi − α + β

2

«„
I

„
Ui ≤ d0 +

s

n1+γ
2

«
− I

„
Ui ≤ d0 +

s1

n1+γ
2

««˛̨
˛̨
˛

×
˛̨
˛̨
˛

n2X
i=1

„
Wi − α + β

2

«„
I

„
Ui ≤ d0 +

s2

n1+γ
2

«
− I

„
Ui ≤ d0 +

s

n1+γ
2

««˛̨
˛̨
˛

#

= Eα,β,d

2
4
˛̨
˛̨
˛̨
X

i6=j

I

„
d0 +

s1

n1+γ
2

≤ Ui < d0 +
s

n1+γ
2

«
I

„
d0 +

s

n1+γ
2

≤ Uj < d0 +
s2

n1+γ
2

«

„
Wi − α + β

2

«„
Wj − α + β

2

«˛̨
˛̨
–

≤
X

i6=j

Eα,β,d

»˛̨
˛̨I
„

d0 +
s1

n1+γ
2

≤ Ui < d0 +
s

n1+γ
2

«
I

„
d0 +

s

n1+γ
2

≤ Uj < d0 +
s2

n1+γ
2

«

„
Wi − α + β

2

«„
Wj − α + β

2

«˛̨
˛̨
–

=
X

i6=j

sup
t∈[d0+s1 n

−(1+γ)
2 ,d0+s n

−(1+γ)
2 ]

Eα,β,d

»˛̨
˛̨Wi − α + β

2

˛̨
˛̨ | Ui = t

–
nγ

1

2K

s− s1

n1+γ
2

×sup
t∈[d0+s n

−(1+γ)
2 ,d0+s2 n

−(1+γ)
2 ]

Eα,β,d

»˛̨
˛̨Wj − α + β

2

˛̨
˛̨ | Uj = t

–
nγ

1

2K

s2 − s

n1+γ
2

≤
X

i6=j

K1

„
s− s1

2Kn2

„
λ

1− λ

«γ«
K2

„
s2 − s

2Kn2

„
λ

1− λ

«γ«
for any(α, β, d) ∈ Rn

= K1K2

X

i6=j

(s− s1)(s2 − s)

n2
24k2

„
λ

1− λ

«2γ

≤ c∗(s2 − s1)
2 .

It follows that

E[|M+
n2

(s)−M+
n2

(s1)| · |M+
n2

(s2)−M+
n2

(s)|1(Ωn)] ≤ Hn(Rn)c∗(s2− s1)
2 ≤ c∗(s2− s1)

2

which establishes tightness of Mn21(Ωn).
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Then, given any ε > 0, ∀n > N1,

Prob[ω : Mn21(Ωn)(ω) ∈ K] ≥ 1− ε

where K is a compact set. But Prob[ω : ω ∈ Ωn] ≥ 1 − ε eventually. Therefore,

eventually

Prob[ω ∈ Ωn and Mn21(Ωn) ∈ K] ≥ 1− 2ε

and consequently Prob[Mn2 ∈ K] ≥ 1 − 2ε. This establishes the tightness of Mn2

in the space of right continuous left limits endowed functions on [−C, C]. Similarly,

the tightness of Jn2 can be established. This completes the verification of marginal

tightness and therefore joint tightness. ¤

Before embarking on the proof of Theorem 3.1, we need some auxiliary lemmas.

We first state these below.

Lemma 3.4. Let Ũ1, Ũ2, . . . , Ũn be i.i.d. Uniform (0,1) random variables. Then, for

all λ > 0 and for all 0 < α < β ≤ 1, we have:

Pr

(
sup

α≤s≤β

| √n(Pn − P )(1(ũ ≤ s)) |
s

≥ λ

)
≤ (α−1 − β−1)λ−2 ,

where Pn denotes the empirical measure of the data and P the distribution of Ũ1.

This lemma is due to Ferger (2005).

Lemma 3.5. Suppose that X1, X2, . . . , Xn are i.i.d. random elements assuming val-

ues in a space X . Let F be a class of functions with domain X and range in [0, 1] with

finite VC dimension V (F) and set V = 2(V (F)− 1). Denoting by Pn the empirical

measure corresponding to the sample and by P the distribution of X1, we have:

Pr? (‖√n(Pn − P )‖F ≥ λ) ≤
(

Dλ√
V

)V

exp(−2 λ2) .

This lemma is adapted from Talagrand (1994).

Lemma 3.6. Let Ũ1, Ũ2, . . . , Ũn be i.i.d. random variables following the uniform

distribution on (0, 1). Let ε̃1, ε̃2, . . . , ε̃n be i.i.d. mean 0 random variables with finite
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variance σ2 that are independent of the Ũi’s. Let βn(s) =
∑n

i=1 ε̃i 1(Ũi ≤ s). Then

for any 0 < α < β < 1, we have:

Pr

(
sup

α≤s≤β

| βn(s) |
s

≥ λ

)
≤ (α−1 − β−1)λ−2σ2 .

The proof of this lemma follows the proof of Theorem 3.1.

Lemma 3.7. (Hajek–Renyi inequality) Consider independent random variables

X1, X2, . . . , and define Sn =
∑n

i=1 Xi. Further assume that E(Xk) = 0 and E(X2
k) <

∞ for each k. Let {ck} be a decreasing sequence of positive numbers. Then, for any

ε > 0 and n,m > 0 with n ≤ m, we have:

P (maxn≤k≤m |Sk|ck ≥ ε) ≤ 1

ε2

[
c2
n

n∑
i=1

E(X2
k) +

m∑

k=n+1

c2
k E(X2

k)

]
.

Proof of Theorem 3.1: For simplicity and ease of exposition, in what follows, we

assume that n points are used at the first stage to compute estimates α̂n, β̂n, d̂n1

of the three parameters of interest. At the second stage n i.i.d. Ui’s are sampled

from the uniform distribution on D̃n ≡ [d̂n1 −Kn−γ, d̂n1 + Kn−γ] and the updated

estimate of d0 is computed as

d̂n2 = argminu∈D̃n

1

n

n∑
i=1

[Wi − α̂n1(Ui ≤ u)− β̂n1(Ui > u)]2 ≡ argminu∈D̃n
SS(u) .

In the above display Wi = f(Ui) + εi where εi’s are i.i.d. error variables. Working

under this more restrictive setting (of equal allocation of points at each stage) does

not compromise the complexity of the arguments involved. Finally, recall that by

our assumption, E[eC |ε1|] is finite, for some C > 0.

Before proceeding further, a word about the definition of argmin in the above

display. The function SS is a right–continuous function endowed with left lim-

its. For this derivation, we take the argmin to be the smallest u in D̃n for which

min(SS(u), SS(u−) = infx∈D̃n
SS(x).



46

Denote by Gn the distribution of (α̂n, β̂n, d̂n1). Now, given ε > 0, find L so large

that for all sufficiently large n, say n ≥ N0,

(α̂n, β̂n, d̂n,1) ∈ [α0−L/
√

n, α0+L/
√

n]×[β0−L/
√

n, β0+L/
√

n]×[d0−L/n, d0+L/n]

with probability greater than 1− ε. Denote the region on the right side of the above

display by Rn. Then, for all n ≥ N0,

Pr(n1+γ | d̂n2 − d0 |> a)

≤
∫

Rn

Pr(n1+γ | d̂n2 − d0 |> a | α̂n = α, β̂n = β, d̂n1 = t) dGn(α, β, t) + ε

which is dominated by

sup(α,β,t)∈Rn
Prt,α,β(n1+γ | d̂n2 − d0 |> a) + ε .

By making a large, we will show that for all sufficiently large n (say n > N1 > N0),

the supremum is bounded by ε. This will complete the proof.

First note that since N0 is chosen to be sufficiently large, whenever n ≥ N0 and

t ∈ [d0−L/n, d0+L/n], it is the case that t−Kn−γ < d0−Kn−γ/2 < d0+Kn−γ/2 <

t + Kn−γ]. It is not difficult to see that

d̂n2 = argmind∈[t−Kn−γ ,t+Kn−γ ] P̃n [(w − (α + β)/2)(1(u ≤ d)− 1(u ≤ d0))]

≡ argmind∈[t−Kn−γ ,t+Kn−γ ]M̃n(d)

and

d0 = argmind∈[t−Kn−γ ,t+Kn−γ ] P̃n [(w − (α + β)/2)(1(u ≤ d)− 1(u ≤ d0))]

≡ argmind∈[t−Kn−γ ,t+Kn−γ ]M̃n(d) ,

where P̃n is the distribution of the pair (W1, U1) generated at stage two under first

stage parameters (α, β, t) and P̃n is the empirical measure corresponding to n i.i.d.

observations from P̃n. Note that
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M̃n(d) = {| β0 − (α + β)/2 || d− d0 | 1(d ≥ d0)+ | α0 − (α + β)/2 || d− d0 | 1(d < d0)} (nγ/2K) .

Now, for 0 < r ≤ K/2, set a(r) = min {M̃n(d) :| d−d0 |≥ r n−γ}. Then a(r) = min(|

β0−(α+β)/2) |, | α0−(α+β)/2) |)r/2K and let b(r) = (a(r)−M̃n(d0))/3 = a(r)/3.

Now, for all n ≥ N0, for α, β in the region under consideration, b(r) is readily

seen to be uniformly bounded below by κ r for some constant κ depending only on

α0, β0, K,N0. We then have:

(3.2) supd∈[t−Kn−γ ,t+Kn−γ ] | M̃n(d)− M̃n(d) | ≤ b(r) ⇒| d̂n2 − d0 | ≤ r n−γ .

To prove this, assume that the inequality on the left side of the above display holds

and consider d ∈ [t−Kn−γ, t + Kn−γ] with |d− do| > rn−γ. Then,

M̃n(d) ≥ M̃n(d)− b(r) ≥ a(r)− b(r)

and

M̃n(do) ≤ M̃n(d0) + b(r)

⇒ M̃n(d)− M̃n(do) ≥ a(r)− b(r)− M̃n(d0)− b(r) = b(r) > 0

Hence

M̃n(d) > M̃n(d0).

Now, since d̂n2 is the smallest d ∈ D̃n for which M̃n(d) ∧ M̃n(d−) = infx∈D̃n
M̃n(x)

and M̃n is a (right continuous left limits endowed) piecewise constant function with

finitely many flat stretches, it is easy to see that M̃n(d̂n2) = infx∈D̃n
M̃n(x). Therefore,

M̃n(d̂n2) ≤ M̃n(d0), showing that | d̂n2−d0 |≤ r n−γ in view of the last display above.

Now, consider

Prα,β,t(| d̂n2 − d0 |> r n−γ)

≤ Prα,β,t(rn
−γ <| d̂n2 − d0 |≤ δ n−γ) + Prα,β,t(| d̂n2 − d0 |> δ n−γ)(3.3)

≡ Pn(α, β, t) + Qn(α, β, t) ,(3.4)
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where δ (is sufficiently small, say less than K/3) does not depend on t, α, β. We deal

with Qn(α, β, t) later. We first consider Pn(α, β, t) ≡ Prα,β,t(rn
−γ <| d̂n2 − d0 |≤

δ n−γ). Since,

{rn−γ < |d̂n2 − do| ≤ δn−γ} ⊆
[
∪d0+rn−γ<d≤d0+δn−γ{M̃n(d) ≤ M̃n(d0)}

]

∪
[
∪d0−δn−γ≤d<d0−rn−γ{M̃n(d) ≤ M̃n(d0)}

]
,

we conclude that

Pn(α, β, t) ≤ Pn,1(α, β, t) + Pn,2(α, β, t)

≡ Prα,β,t(∪d0+rn−γ<d≤d0+δn−γ{M̃n(d0)− M̃n(d) ≥ 0})

+Prα,β,t(∪d0−δn−γ≤d<d0−rn−γ{M̃n(d0)− M̃n(d) ≥ 0}) .

We first construct an upper bound on sup(α,β,t)∈Rn
Pn,1(α, β, t). For any d ∈ (d0 +

rn−γ, d0 + δn−γ] we have:

M̃n(d0)− M̃n(d) = (M̃n(d0)− M̃n(d0))− (M̃n(d)− M̃n(d))− (M̃n(d)− M̃n(d0))

= −(M̃n(d)− M̃n(d))−
∣∣∣∣β0 − α + β

2

∣∣∣∣
nγ

2K
| d− d0 | .

Hence:

0 ≤ M̃n(d0)− M̃n(d) ⇒ (2K)−1

∣∣∣∣β0 − α + β

2

∣∣∣∣ ≤
−(M̃n(d)− M̃n(d))

nγ | d− d0 | .

Now, for all (α, β, t) ∈ Rn (with n ≥ N0),
∣∣β0 − α+β

2

∣∣ is bounded below by some

constant B, whence it follows that:

0 ≤ M̃n(d0)− M̃n(d) ⇒ | M̃n(d)− M̃n(d) |
nγ | d− d0 | ≥ B

2K
.

Thus,

∪d0−δn−γ<d≤d0−rn−γ{M̃n(d0)− M̃n(d) ≥ 0}

⊂ {supd0+rn−γ<d≤d0+δn−γ

| M̃n(d)− M̃n(d) |
nγ | d− d0 | ≥ B̃} ,
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where B̃ = B/2K. We thus have:

Pn,1(α, β, t) ≤ Prα,β,t

[
supd0+rn−γ<d≤d0+δn−γ

| M̃n(d)− M̃n(d) |
nγ | d− d0 | ≥ B̃

]

= Prα,β,t

(
supd0+rn−γ<d≤d0+δn−γ

| √n(P̃n − P̃n)fd,α,β(u,w) |
| d− d0 | nγ

≥ √
n B̃

)
,

where

fd,α,β(u,w) = (w − (α + β)/2)(1(u ≤ d)− 1(u ≤ d0)) .

Using the fact that for d > d0, (Wj − (α + β)/2)(1(Uj ≤ d) − 1(Uj ≤ d0)) =

(β0 − (α + β)/2) (1(Uj ≤ d)− 1(Uj ≤ d0)) + εj (1(Uj ≤ d)− 1(Uj ≤ d0)), this upper

bound on Pn,1(α, β, t) is easily seen to be dominated by In + IIn where

In

= Prα,β,t

(| β0 − (α + β)/2 | supr<s≤δ
|√n(P̃n−P̃n)(1(u≤d0+sn−γ)−1(u≤d0))|

s
≥ √

n B̃/2
)

which in turn is dominated by

I ′n = Prα,β,t

(
supr<s≤δ

| √n(P̃n − P̃n)(1(u ≤ d0 + sn−γ)− 1(u ≤ d0)) |
s

≥
√

n B̃

2B′

)

where, for n ≥ N0 and (α, β, t) ∈ Rn, B′ is an upper bound on | β0 − (α + β)/2 |,

while

IIn = Prt

(
supr<s≤δ

|(1/√n)
∑n

i=1 εi(1(Ui ≤ d0 + s n−γ)− 1(Ui ≤ d0))|
s

≥ √
nB̃/2

)
.

Since the Ui’s are i.i.d. Uniform on [t−Kn−γ, t + Kn−γ], it is easy to see that I ′n is

simply

Pr

(
supr<s≤δ

| √n(Qn −Q)(1(w̃ ≤ s)) |
s

≥
√

n B̃

2B′

)

where W̃1, W̃2, . . . , W̃n are i.i.d. Unif[0, 2K], Qn is the empirical measure of the W̃is

and Q is the distribution of W̃1. In terms of Ũ1, Ũ2, . . . , Ũn, which are i.i.d. Unif[0, 1],

this expression is simply:

Pr

(
supr/2K<s≤δ/2K

| √n(Pn − P )(1(ũ ≤ s)) |
s

≥
√

n 2KB̃

2B′

)
.
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By Lemma 3.4, this is bounded above by a constant (that depends only on α0, β0, K,N0)

times 1/rn. Now, in terms of Ũ1, · · · , Ũn and ε̃1, · · · , ε̃n (where the ε̃i’s are defined

on the same probability space as the Ũi’s, but independently of them, and are dis-

tributed like the εi’s) IIn is simply:

Pr

(
supr/2K<s≤δ/2K

| (1/√n)
∑n

i=1 ε̃i(1(Ũi ≤ s)) |
s

≥
√

n 2KB̃

2

)

and this, by Lemma 3.6 , is dominated up to a constant (that only depends on

α0, β0, σ,K,N0) by (1/rn). It follows that for some constant C0, for all n ≥ N0,

sup(α,β,t)∈Rn
Pn1(α, β, t) ≤ C0

rn
.

A similar (uniform) bound works Pn2(α, β, t). It follows that

sup(α,β,t)∈Rn
Pn(α, β, t) ≤ C0

rn

at the expense of a larger constant C0. Thus, from (3.4), we have:

sup(α,β,t)∈Rn
Prα,β,t(| d̂n2 − d0 |> r n−γ) ≤ C0 (rn)−1 + sup(α,β,t)∈Rn

Qn(α, β, t) .

To find a uniform upper bound on Qn(α, β, t) note that, from (3.2), we have, for all

n > N0

Prα,β,t(| d̂n2 − d0 |> δn−γ) ≤ Prα,β,t(supd∈[t−Kn−γ ,t+Kn−γ ] | M̃n(d)− M̃n(d) |> b(δ))

≤ Prα,β,t(supd∈[t−Kn−γ ,t+Kn−γ ] | M̃n(d)− M̃n(d) |> κ δ)

and it suffices to find a uniform upper bound for this last expression. But this is

bounded by

Prα,β,t[supd∈[t−Kn−γ ,t+Kn−γ ] |
√

n(P̃n− P̃n)(µ(u)− (α + β)/2)(1(u ≤ d)− 1(u ≤ d0)) |

>
√

nκδ/2]

+ Prα,β,t[supd∈[t−Kn−γ ,t+Kn−γ ] | n−1

n∑
i=1

εi(1(Ui ≤ d)−1(Ui ≤ d0)) |> κ δ/2] .
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To tackle the first term, we invoke Lemma 3.5. For (α, β, t) ∈ Rn, the class [(µ(u)−

(α + β)/2)(1(u ≤ d) − 1(u ≤ d0)) : d ∈ [t − Kn−γ, t + Kn−γ]] is a bounded VC

class of functions (with the bound not depending on α, β, t) and with finite VC

dimension, say V (which does not depend on α, β, t). Hence, we can apply Lemma

3.5 to conclude that:

Prα,β,t[supd∈[t−Kn−γ ,t+Kn−γ ] |
√

n(P̃n− P̃n)(µ(u)− (α + β)/2)(1(u ≤ d)− 1(u ≤ d0)) |

>
√

nκδ/2]

≤ C̃1 × (
√

nκ δ)2(V−1)exp(−C̃2nκ2δ2) ,

where the constants C̃1 and C̃2 depend solely on the VC dimension and the upper

bound on the functions. For all sufficiently large n, the right side of the above display

is less than ε/3. To deal with the second term, we use the results on Pages 132–133

of Van de Geer (2000). We write the second term as:

∫
Prα,β,t(supd∈[t−Kn−γ , t+Kn−γ ] | n−1

n∑
i=1

εi(1(ui ≤ d)− 1(ui ≤ d0)) |> κ δ/2)

dHn(u1, u2, . . . , un)

where Hn is the joint distribution of (U1, U2, . . . , Un). For each fixed (u1, u2, . . . , un),

Corollary 8.8 of Van de Geer (2000) can be used to show that for δ sufficiently small

and n sufficiently large (where the thresholds do not depend on the ui’s or α, β, t),

Prα,β,t(supd∈[t−Kn−γ , t+Kn−γ ] | n−1

n∑
i=1

εi(1(ui ≤ d)− 1(ui ≤ d0)) |> κ δ/2)

≤ C̃ exp(−C̃ ′ n δ2) ,

for some constants C̃ and C̃ ′ that do not depend on α, β, t or the points (u1, u2, . . . , un).

This implies that the second term can be made less than ε/3 by choosing n suffi-

ciently large. It follows, that for all sufficiently large n (say n > N1 > N0) and an

appropriate choice of δ, we have:

sup(α,β,t)∈Rn
Prα,β,t(| d̂n2 − d0 |> r n−γ) ≤ C0 (rn)−1 + 2ε/3 ;
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the first term on the right side can be made less than ε/3 by choosing r = A/n

where A is large enough, showing that for all sufficiently large n, we can find A large

enough so that:

sup(α,β,t)∈Rn
Prα,β,t(n

1+γ | d̂n2 − d0 |> A) < ε .

It remains to say a few words about the application of Corollary 8.8 of Van de

Geer (2000). The Wis in that lemma are our εis and we can, without loss, take

G = {gd(u) = 1(u ≤ d)− 1(u ≤ d0) : d ∈ [0, 1]}. The zi’s are our ui’s. The moment

generating function condition on our errors implies that Condition (8.23) is satisfied

for some σ2
0; with Qn ≡

∑n
i=1 δui

/n, it is easy to see that the first condition of the

corollary: supd∈[0,1]‖gd‖Qn ≤ R is satisfied with R = 1. Condition (8.24) is satisfied

with K2 = 1. If δ is chosen to satisfy conditions (8.26) and (8.27), it is easy to see

that Condition (8.28) will be automatically satisfied for sufficiently large n. This is

based on the fact that HB(v,G, Qn) ≤ log(n+1) for v > 1/
√

n. To see this, construct

brackets {[1(u ≤ ui) − 1(u ≤ d0), 1(u ≤ ui+1) − 1(u ≤ d0)]}n
i=0, where u0 ≡ 0 and

un+1 ≡ 1; any gd lies in some bracket and the size of each of these brackets with

respect to the Qn norm is no larger than 1/
√

n. Given a choice of δ, consider the

right side of display (8.28) in Van de Geer (2000). This is given by

C0

∫ √
2Rσ0

δ/26

H
1/2
B (u/

√
2σ0,G, Qn) du

and for all sufficiently large n, is readily seen to be dominated by

√
2 σ0 C0

∫ R

1/
√

n

H
1/2
B (v,G, Qn) dv

which in turn is no larger than

√
2 σ0 C0 (R− 1/

√
n)

√
log(n + 1) .

But this quantity is certainly dominated by
√

n δ for large enough n. ¤
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Proof of Lemma 3.6: Let βn(s) = 1√
n

∑n
i=1 ε̃i1(xi ≤ s). Let {sk = α+(β−α) 2−m :

0 ≤ k ≤ 2m}, m ∈ N be a dyadic partition of [α, β]. Consider:

P (α, β, λ) = P

(
sup

α≤s≤β

|βn(s)|
s

≥ λ

)

= lim
m→∞

P

(
max

1≤k≤2m

|βn(sk)|
sk

≥ λ

)

= lim
m→∞

∫

(x1,...,xn)∈(0,1)n

P


 max

1≤k<2m

∣∣∣ 1√
n

∑n
i=1 ε̃i1(xi ≤ sk)

∣∣∣
sk

≥ λ




dx1dx2 · · · dxn

For fixed (x1, x2, . . . , xn) ∈ (0, 1)n, set

Mk =
1√
n

n∑
i=1

ε̃i1(xi ≤ sk) , 0 ≤ k ≤ 2m .

Define Xk = Mk−Mk−1 for k ≥ 1. Then the Xk’s are independent random variables,

each with mean 0 and finite variance and Mk = X1 + X2 + . . . + Xk. Since 1/sk is a

decreasing sequence of constants, we can apply the Hajek-Renyi inequality (Lemma

3.7) to conclude that:

P

(
max

1≤k≤2m

|Mk|
sk

≥ λ

)
≤ 1

λ2

∑

1≤k≤2m

s−2
k E(Mk −Mk−1)

2

=
1

λ2

∑

1≤k≤2m

s−2
k (EM2

k − EM2
k−1)

Now,

EM2
k = E[(

1√
n

n∑
i=1

ε̃i1(xi ≤ sk))
2]

= Var[
1√
n

n∑
i=1

ε̃i1(xi ≤ sk)]
2

=
1

n
σ2

n∑
i=1

1(xi ≤ sk) .

It follows that

EM2
k − EM2

k−1 =
σ2

n

n∑
i=1

1(sk−1 < xi ≤ sk) .
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Therefore

P (α, β, λ) ≤ lim
m→∞

∫

(x1,...,xn)∈(0,1)n

{
1

λ2

∑

1≤k<2m

s−2
k

σ2

n

n∑
i=1

1(sk−1 < xi ≤ sk)

}

dx1dx2 · · · dxn

= lim
m→∞

1

λ2

∑

1≤k<2m

s−2
k

σ2

n

n∑
i=1

∫
1(sk−1 < xi ≤ sk)dxi

= lim
m→∞

1

λ2
σ2

∑

1≤k<2m

s−2
k (sk − sk−1)

=
σ2

λ2

∫ β

α

1

s2
ds

= (α−1 − β−1)
σ2

λ2
¤

3.2 Strategies for Parameter Allocation in Finite Samples

In this section, we describe strategies for selecting the tuning parameters K, γ

and λ used in the procedure. We do this in the setting of the simple regression

model µ(x) = α0 1(x ≤ d0) + β0 1(x > d0) and homoscedastic normal errors, obvious

analogues holding in more general settings.

Recall that (d̂n2,l, d̂n2,u) are the minimal and maximal minimizers at Step 2. Set:

d̂2,av = (d̂n2,l + d̂n2,u)/2. In what follows we use this as our second stage estimate of

the change–point. Using notation from Theorem 3.2, we have:

n1+γ
2 (d̂2,av − d0) →d

dl + du

2
.

It is also not difficult to see that this limit distribution is symmetric about 0.

Henceforth, the notation Argmin will denote the simple average of the minimal

and maximal minimizers of a compound Poisson process. The quantity | α0 − β0 |

/σ will be denoted as SNR (signal-to-noise ratio). The higher the SNR, the more

advantageous the estimation of the change point at any given sample size would be.

By (2.2) and (2.3), we have:

M ≡M|α0−β0|,ε,C(K,λ,γ) ≡d
1

C(K, λ, γ)
MSNR,Z,1

,
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where Z is standard normal random variable. This is a consequence of the fact that

ε/σ ∼ N(0, 1). From Theorem 3.2 and the above display, we have:

n1+γ(d̂2,av − d0) →d
1

(1− λ)1+γ
2K

(
1− λ

λ

)γ

ArgminMSNR,Z,1

≡d
2K

(1− λ) λγ
ArgminMSNR,Z,1

.

For a fixed K and γ this immediately provides an optimal allocation for λ. We should

choose λ so as to maximize γ log λ + log(1 − λ) which occurs at λopt = γ/(1 + γ).

It can be seen that the approximate standard deviation of d̂2,av is then given by

n−(1+γ)(2 K τ/Ψ(γ)) where Ψ(γ) = γγ/(1 + γ)1+γ. This is actually decreasing in γ.

Consider now a one–stage procedure with the covariates sampled from a density

fX , with the estimate of the change–point once again chosen to be the simple average

of the minimal and maximal minimizers; call this d̂av. In this case, the standard

change–point asymptotics in conjunction with (2.2) and (2.3) give:

n (d̂av − d0) →d
1

fX(d0)
ArgminMSNR,Z,1

.

This immediately provides an expression of the asymptotic efficiency of the two–stage

procedure with respect to the one–stage (in terms of ratios of approximate standard

deviations) given by:

ARE2,1(n) =
nγ Ψ(γ)

2 K fX(d0)
.

In finite samples, how do we choose our K and γ? For any γ, note that the interval

from which sampling at Stage 2 takes place is of the form [d̂n1−K n−γ
1 , d̂n1 +K n−γ

1 ].

The requirement that this interval contains d0 with probability increasing to 1 (with

increasing n) translates to choosing K ≡ K(n) in such a way that K(n) n−γ
1 ≈ Cζ/n1

where Cζ is the upper ζ’th quantile of the distribution of ArgminMSNR,Z,1
(which

can be shown to be symmetric about 0). Here ζ is a very small fraction, say, .0005. In

other words, we want to “zoom in” but not “zoom in” so much that we systematically

start missing d0 in our sampling interval.



56

Now, setting K ≡ K(n) = Cζ/n
1−γ
1 , writing n1 = n γ/(1 + γ) and using the form

of the function Ψ , we get an approximate formula for the ARE:

ARE2,1(n) ≈ n

2 Cζ fX(d0)

γ

(1 + γ)2
.

The latter is maximized at γ = 1, which corresponds to an allocation of 50% points

at Stage 1 (and the remainder at Stage 2) and gives the approximate ARE as:

(3.5) ARE2,1(n) ≈ n

8 Cζ fX(d0)
.

It is not difficult to see that the same approximate formula for the ARE holds for

some other measures of dispersion, besides the standard deviation. Let

ARE
2,1,MAD(n) ≡ E | d̂av − d0 |

E | d̂2,av − d0 |

and

ARE
2,1,IQR(n) ≡ IQR(d̂av)

IQR(d̂2,av)
,

where both first and second stage estimates are based on samples of size n, and

IQR(X) denotes the inter–quartile range of the distribution of a random variable

X. Then, following similar steps to those involved in calculating the ARE based on

standard deviations, we conclude that:

ARE
2,1,MAD(n) ≈ ARE

2,1,IQR(n) ≈ n

8 Cζ fX(d0)
.

The accuracy of the above approximation is confirmed empirically through a simu-

lation study. The setting involves a change-point model given by

(3.6) yi = 0.5I(x ≤ 0.5) + 1.5I(x > d0) + εi, xi ∈ (0, 1).

The variance σ2 was chosen so that the SNR defined as (β0 − α0)/σ = 1, 2, 5 and 8

and the sample size varies in increments of 50 from 50 to 1500. The results based

on an interval corresponding to α = .0025 are shown in Figure 3.4. It can be seen

that there is great agreement between the theoretical formula for the ARE and the
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Figure 3.4: Top panels: ARE for standard deviation, IQR and MAD measures for SNR=1 (left)
and 2 (right). Bottom panels: Corresponding ARE for SNR=5 (left) and 8 (right).

empirical ARE, especially for the IQR at all SNR levels and to a large extent for the

MAD measure. On the other hand, the presence of ‘outliers’ amongst the first stage

estimates introduces too much variability, which in turn leads to inaccuracies for the

proposed formula with the standard deviation as a measure of efficiency.

Remark: The formula for the ARE in (3.5) says that the “agnostic” two stage proce-

dure (“agnostic” since the covariates are sampled uniformly at each stage) will even-

tually, i.e. with increasing n, surpass any one stage procedure, no matter the amount

of background information incorporated about the location of the change–point in

the one stage process, so long as there is uncertainty about the exact location. One

can think of an “oracle–type” one stage procedure where the experimenter samples

the covariates from a density that peaks in a neighborhood of d0 relative to the uni-
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form density (corresponding to high values of fX(d0)). The faster convergence rate

of the two stage procedure relative to this one stage procedure guarantees that with

increasing n, the ARE will always go to infinity. Further, expression (3.5) provides

an approximation to the minimal sample size required for the two-stage procedure

to outperform the “classical” one, a result verified through simulations (not shown

here).

Remark: A uniform density has been considered up to this point for sampling

second stage covariate-response pairs. We examine next the case of using an arbi-

trary sampling density gU(·) supported on the interval [d̂n1−Kn−γ
1 , d̂n1 +Kn−γ

1 ] and

symmetric around d̂n1 . A natural choice for such a density is

gU(d0) = h

(
d0 − d̂n1

n−γ
1 K

)
nγ

1

K
,

for a density h(·) supported on [−1, 1] and symmetric about 0. Analogous argu-

ments to those used in the proof of Theorem 3.2 establish that the random vector

n1+γ
2 (d̂n2,l − d0, d̂n2,u − d0) converges in distribution to

(dl(| α0 − β0 |, ε, C(K, λ, γ, h)), du(| α0 − β0 |, ε, C(K, λ, γ, h))) ,

where

C(K, λ, γ, h) =

(
λ

1− λ

γ) h(0)

K
.

With the error term normally distributed, as assumed in this Section, we get

n1+γ(d̂2,av − d0) →d
K

h(0)(1− λ) λγ
ArgminMSNR,Z,1

,

and it can be readily checked that the approximate ARE formula reduces to

(3.7) ARE2,1(n) ≈ nh(0)

4CζfX(d0)
.

It can be seen that the more ”peaked” the sampling density gU (equivalently h) is the

greater the efficiency gains. However, one needs to be careful, since the above formula
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is obtained through asymptotic considerations. In finite samples, a very peaked

density around d̂n1 may not perform well, since bias issues (involving (d0 − d̂n1))

must also be taken into account.

3.2.1 Uniform Sampling Designs

Simulation results indicate that in the presence of a small budget of available

points (n = 20 or 50), the efficiency of the two-stage estimator can be improved by

employing a uniform (equispaced) design in the first stage, as the results in Table 3.1

attest. The results show that with an appropriate choice of the tuning parameters

the gains in efficiency become very large, since the ratio of the MSE of the two-stage

estimators to the one-stage estimators can take values up to 30. A uniform design

renders the two-stage estimator competitive even for SNR=2 as the results in Table

3.2 show. The reason is that such a design reduces the sampling variability of the

covariate x, which leads to improved localization of the change point. However, the

approximate formula for the ARE discussed above is no longer valid when we use a

uniform design at the first stage, since the asymptotics of the one stage estimator

are then no longer described by the minimizer of a compound Poisson process. We

elaborate on this point below.

Suppose that a uniform design on [0, 1] is used in the first stage. The covariate

x is then sampled at the points xi = i/(n1 + 1), i = 1, · · · , n1. Consider the case

where d0 = 1/2, since this is taken up later on in the simulation study. From the

results established thus far and the remark following Theorem 3.2, it is clear that

the asymptotic distribution of the 1st stage estimator will be determined by the

limiting behavior of the count process Pn(s), where Pn(s) is once again the number

of covariate values in the interval (d0, d0 + s/n1] ∪ (d0 + s/n1, d
0]. However, in the

presence of a uniform sampling design, this becomes a deterministic process and is
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given by

b1
2
(n1 + 1) + (1 +

1

n
)sc − b1

2
(n1 + 1)d0c , Wn1(s).

From the last expression, it can easily be seen that the limit of Wn1(s) will be different

along even and odd subsequences of n1 for d0 = 1/2 under consideration. As a side

remark, notice that for irrational d0 the limit may not even exist.

Consider n1 → ∞ along an even subsequence, so that Wn1(s) → b1/2 + |s|c.

Then, the form of the limit process whose minimizer determines the asymptotic

distribution of the least squares estimator is given by O(s) = O1(s) − O2(s), with

O1(s) = (
∑

0≤i≤b1/2+|s|c V
+
i )1(s ≥ 0) and O2(s) = (

∑
0≤i≤b1/2+|s|c V

−
i )1(s ≤ 0), with

the V ±
i defined as before. The main difference is that the number of events up to

to time s are deterministic and occur at regular intervals, and hence exhibit less

variability than a Poisson process with the same number of events up to time s.

Therefore, the asymptotics of d̂n1 in this special case are described by the minimizer

of a compound process, driven by a deterministic one.

3.2.2 Comparison with the One-stage estimator Subject to Prior Knowledge

We examine next the performance of the proposed procedure in the following

setting. Suppose that one has some prior knowledge about the location of the change-

point; this knowledge is represented by a sampling distribution for the covariate x

which is more concentrated around d0. We would like to study the performance

of the two-stage procedure in the absence of such knowledge, which implies that a

uniform sampling distribution is going to be employed at both stages. Notice that

this setting favors the one-stage procedure. However, (3.5) indicates that the two-

stage procedure more than compensates for the availability of prior knowledge. But

in finite samples, the adaptive choices of design parameters may not perform well,

since (3.5) is obtained through asymptotic considerations and the minimal sample

sizes are required. Therefore, with small sample sizes, we select different design
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N=50
γ λ k=.5 k=1 k=1.5 k=2 k=3

.2 *1.9352 0.6884 0.6594 0.6274 0.6261

.4 *1.7263 0.5231 0.3361 0.3924 0.3862
1/4 .5 *1.3221 0.3707 0.2178 0.2452 0.2326

.6 0.9636 0.2476 0.1730 0.1805 0.1741

.8 0.3121 0.0847 0.0544 0.0507 0.0531

.2 *2.7848 0.7998 0.6594 0.6274 0.6261

.4 *2.8495 0.8647 0.3361 0.3924 0.3862
1/3 .5 *2.1412 0.6665 0.2286 0.2452 0.2326

.6 *1.7003 0.4369 0.1845 0.1805 0.1741

.8 0.5758 0.1575 0.0699 0.0507 0.0531

.2 *6.2367 *1.7092 0.7342 0.6274 0.6261

.4 *7.5633 *2.3393 0.7530 0.4858 0.3862
1/2 .5 *6.1912 *1.7833 0.6641 0.4081 0.2326

.6 *5.3154 *1.3570 0.5733 0.3427 0.1740

.8 *1.9669 0.5390 0.2364 0.1260 0.0588

.2 *13.4249 *3.6592 *1.5467 0.8254 0.6261

.4 *21.0001 *6.4081 *2.0211 *1.3194 0.5788
2/3 .5 *18.7035 *4.9289 *2.1087 *1.3687 0.4843

.6 *16.0174 *4.2101 *1.7890 *1.0597 0.4473

.8 *6.7680 *1.8204 0.8253 0.4294 0.2010

.2 *13.7728 *5.4489 *2.3051 *1.2230 0.6215

.4 *31.3548 *10.4603 *3.3751 *2.1788 0.9623
3/4 .5 *21.4054 *8.8094 *3.6705 *2.3977 0.8453

.6 *25.5204 *7.2652 *3.1655 *1.8754 0.7934

.8 *12.1963 *3.3559 *1.5242 0.7999 0.3717

Table 3.1: Sampling via uniform design in the first stage, N=50, SNR=5

N=50
γ λ k=.5 k=1 k=1.5 k=2 k=3

.2 0.1552 0.1059 0.0957 0.1184 0.1116

.4 0.6007 0.2351 0.2196 0.2166 0.1852
1/4 .5 0.8389 0.2817 0.1910 0.2198 0.2399

.6 0.6519 0.2220 0.1770 0.1705 0.1768

.8 0.4559 0.1203 0.0790 0.0749 0.0800

.2 0.1569 0.1160 0.0973 0.1184 0.1116

.4 0.5982 0.3153 0.2150 0.2137 0.1852
1/3 .5 0.9995 0.4211 0.2005 0.2162 0.2399

.6 0.9337 0.3756 0.1992 0.1715 0.1768

.8 0.7523 0.2124 0.1026 0.0747 0.0800

.2 0.1508 0.1387 0.1076 0.1154 0.1116

.4 0.5079 0.4473 0.3715 0.2427 0.1911
1/2 .5 0.9101 0.7932 0.5004 0.3357 0.2424

.6 *1.1269 0.8649 0.5109 0.2982 0.1793

.8 *1.3147 0.6075 0.3158 0.1849 0.0878

.2 0.1385 0.1428 0.1222 0.1326 0.1099

.4 0.4004 0.4580 0.5397 0.4606 0.2794
2/3 .5 0.6985 0.8433 0.8556 0.6612 0.4669

.6 *1.0275 *1.1844 *1.0386 0.7122 0.4231

.8 *1.3845 *1.1224 0.7658 0.5589 0.2777

.2 0.1325 0.1428 0.1330 0.1493 0.1158

.4 0.3637 0.4346 0.5421 0.5354 0.3884
3/4 .5 0.6138 0.7652 0.9327 0.8624 0.6554

.6 0.9454 *1.1844 *1.1636 0.9491 0.6542

.8 *1.3008 *1.2972 *1.0317 0.8718 0.4782

Table 3.2: Sampling via uniform design in the first stage, N=50, SNR=2
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N=50
γ λ k=.5 k=1 k=1.5 k=2 k=3

.2 0.2707 0.4548 0.1900 0.1642 0.1636

.4 0.8135 0.5812 0.2419 0.1560 0.1171
1/2 .5 *1.3408 0.4116 0.1928 0.1146 0.0722

.6 *1.3442 0.3673 0.1556 0.0952 0.0474

.8 0.4864 0.1547 0.0635 0.0358 0.0161

.2 0.1147 0.4438 0.4286 0.2351 0.1647

.4 0.3273 0.9655 0.6890 0.4098 0.1840
2/3 .5 0.7004 *1.0401 0.5894 0.3198 0.1335

.6 0.9889 *1.0264 0.4644 0.3124 0.1281

.8 0.9944 0.5137 0.2155 0.1275 0.0548

Table 3.3: N=50, SNR=5, Prior 1

parameters to see how the two-stage procedure works without prior knowledge.

We study this issue for the model given in (3.6) for SNR=5, N = 50, 100, γ =

1/2, 2/3 and λ,K as above. The following two choices for fX(x) were used: (i) a

triangular density on (0, 1) centered at d0 = 0.5 denoted as Prior 1 and (ii) a step

function distribution denoted as Prior 2. The densities of these distributions are

shown in Figure 3.5 and the results are summarized in the following Tables (Table

3.3 - Table 3.6).
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Figure 3.5: Two prior densities

N=100
γ λ k=.5 k=1 k=1.5 k=2 k=3

.2 0.3664 0.6819 0.3572 0.2077 0.1587

.4 *2.7986 *1.0409 0.4252 0.2294 0.1040
1/2 .5 *3.1284 0.7923 0.3627 0.1829 0.0881

.6 *2.9556 0.7184 0.3110 0.1863 0.0775

.8 *1.0112 0.2985 0.1113 0.0631 0.0268

.2 0.1438 0.5454 0.7504 0.5408 0.2553

.4 0.8752 *2.9140 *1.4720 0.8098 0.4004
2/3 .5 *2.8514 *2.7296 *1.2498 0.7028 0.3324

.6 *2.4060 *2.5967 *1.3568 0.7241 0.3000

.8 *2.1849 *1.2403 0.4653 0.2481 0.1104

Table 3.4: N=100, SNR=5, Prior 1
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N=50
γ λ k=.5 k=1 k=1.5 k=2 k=3

.2 0.4414 0.7416 0.3099 0.2677 0.2668

.4 *1.3206 0.9434 0.3926 0.2532 0.1900
1/2 .5 *2.2034 0.6765 0.3169 0.1883 0.1187

.6 *2.1956 0.5999 0.2542 0.1556 0.0774

.8 0.8001 0.2544 0.1044 0.0589 0.0265

.2 0.1870 0.7237 0.6989 0.3834 0.2686

.4 0.5313 *1.5673 *1.1184 0.6653 0.2986
2/3 .5 *1.1510 *1.7093 0.9687 0.5255 0.2194

.6 *1.6153 *1.6766 0.7586 0.5103 0.2093

.8 *1.6359 0.8451 0.3545 0.2098 0.0902

Table 3.5: N=50, SNR=5, Prior 2

N=100
γ λ k=.5 k=1 k=1.5 k=2 k=3

.2 0.6278 *1.1683 0.6120 0.3558 0.2720

.4 *4.7805 *1.7781 0.7263 0.3919 0.1777
1/2 .5 *5.3403 *1.3525 0.6191 0.3122 0.1504

.6 *5.0359 *1.2240 0.5299 0.3174 0.1321

.8 *1.7230 0.5086 0.1896 0.1074 0.0457

.2 0.2464 0.9343 *1.2856 0.9265 0.4373

.4 *1.4950 *4.9776 *2.5144 *1.3832 0.6839
2/3 .5 *4.8675 *4.6596 *2.1335 *1.1998 0.5674

.6 *4.0996 *4.4245 *2.3119 *1.2338 0.5111

.8 *3.7228 *2.1133 0.7929 0.4227 0.1881

Table 3.6: N=100, SNR=5, Prior 2

It can be seen that even for the first prior distribution which is fairly concentrated

around the change point, and for a small total budget of points (N = 50) with an

appropriate selection of the tuning parameters the two-stage procedure outperforms

the classical one; further, it proves competitive (the ratio of MSE of two-stage esti-

mators to the one-stage estimators with prior knowledge is close to 1) for a number

of other configurations. It should be noted that a small value for K, λ about 0.5 and

γ ≥ 1/2 are the values of the tuning parameters achieving this result. For N = 100,

it outperforms for a larger number of configurations (in particular for K = 1) of the

tuning parameters, while the gains in efficiency become more substantial (the ratio

of MSE of two-stage estimators to the one-stage estimators with prior knowledge

reaches the value 3). For the second flatter prior distribution, the results are more

favorable for the two-stage procedure, since for a large number of configurations it

outperforms the one-stage procedure and in the case of N = 100 by a fairly wide



64

margin in certain instances (the ratio of MSE of two-stage estimators to the one-stage

estimators with prior knowledge exceeds 4 for several configurations). Obviously, the

results become even more advantageous for larger budgets of points and less advan-

tageous for more concentrated distributions around d0 in the presence of moderate

sample sizes.

3.3 Confidence Intervals for the Change-Point

We compare next the performance of exact confidence intervals based on the result

established in Theorem 3.2, to those proposed in Ferger (2004). Moreover, confidence

intervals for finite samples will be constructed following the discussion in Section 3.2.

For all these comparisons, simulations were run for a stump model with α0 =

0.5, β0 = 1.5, d0 = 0.5 and sample sizes n = 50, 100, 200, 500, 1000 with N = 2000

replicates for each n. Confidence intervals for d0 based on the minimal minimizer

d̂n2,l, the maximal minimizer d̂n2,u, and the average minimizer d̂n2,av = (d̂n2,l+d̂n2,u)/2

were constructed. Two values of γ = 1/2 and 2/3 and two values of K = 1 and 2

were used together with the optimal allocation λ ≡ γ/(1+γ) as discussed in Section

3.2. The confidence level was set at 1− q = .95 and the percentage of replicates for

which the true change-point was included in the corresponding intervals, as well as

the average length of each interval, were recorded. In what follows, the symbols dl

and du have the same connotations as in the proof of Theorem 3.2.

3.3.1 Conservative Intervals

Using the results of Ferger (2004), based on any two–stage estimator d̂n2 , we

propose an asymptotically conservative confidence interval for d0 at level 1− q:

In(q) := (d̂n − b/n1+γ
2 , d̂n − a/n1+γ

2 )

where a < b are any solutions of the inequality

Prob(du < b)− Prob(dl ≤ a) ≥ 1− q .
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Based on the smallest, largest and average minimizers at Stage 2, we therefore obtain

intervals

In2,l(q) = (d̂n2,l − b/n1+γ
2 , d̂n2,l − a/n1+γ

2 ),

In2,u(q) = (d̂n2,u − b/n1+γ
2 , d̂n2,u − a/n1+γ

2 ),

and

In2,av(q) = (d̂n2,av − b/n1+γ
2 , d̂n2,av − a/n1+γ

2 )

where a is the q/2th quantile of dl and b is the (1 − q/2)th quantile of du. These

quantiles do not seem to be analytically determinable but can certainly be simulated

to a reasonable degree of approximation.

In Table 3.7the coverage probabilities together with the length of the confidence

intervals are shown for a number of combinations of sample sizes and tuning param-

eters and with the SNR set equal to 5. It can be seen that the recorded coverage

n=50 n=100 n=200 n=500 n=1000
γ = 1

2
K=1 K=2 K=1 K=2 K=1 K=2 K=1 K=2 K=1 K=2

97.40% 97.55% 97.40% 98.20% 97.65% 98.00% 96.55% 97.05% 97.15% 97.75%

În2,l (.0580) (.1208) (.0205) (.0427) (.0072) (.0151) (.0018) (.0038) (.0006) (.0014)

97.05% 98.60% 97.65% 97.05% 97.65% 97.85% 97.40% 97.90% 97.80% 98.00%

În2,u (.0580) (.1208) (.0205) (.0427) (.0072) (.0151) (.0018) (.0038) (.0006) (.0014)

99.80% 99.95% 99.80% 99.95% 100% 100% 99.80% 100% 99.70% 99.95%

În2,av (.0580) (.1208) (.0205) (.0427) (.0072) (.0151) (.0018) (.0038) (.0006) (.0014)

γ = 2
3

n=50 n=100 n=200 n=500 n=1000

98.15% 97.70% 97.65% 98.30% 97.90% 97.70% 97.65% 97.30% 97.75% 97.70%

În2,l (.0299) (.0581) (.0094) (.0183) (.0030) (.0058) (.0006) (.0013) (.0002) (.0004)

98.00% 98.20% 97.85% 98.55% 97.90% 98.10% 98.30% 97.75% 97.60% 98.50%

În2,u (.0299) (.0581) (.0094) (.0183) (.0030) (.0058) (.0006) (.0013) (.0002) (.0004)

99.60% 99.95% 99.60% 99.90% 99.85% 99.95% 99.85% 99.90% 99.85% 99.95%

În2,av (.0299) (.0581) (.0094) (.0183) (.0030) (.0058) (.0006) (.0013) (.0002) (.0004)

Table 3.7: 95% Conservative Confidence Intervals for a combination of sample sizes and the tuning
parameters γ, K and for SNR=5

exceeds the nominal level of 95% and almost approaching perfect (100%) coverage

for the average minimizer.

3.3.2 Exact Confidence Intervals

On the other hand, since Theorem 3.2 provides us with the exact asymptotic

distributions of the sample minimizers, we can construct asymptotically exact (level
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1− q confidence intervals) as follows:

Ĩn2,l(q) = (d̂n2,l − bl/n
1+γ
2 , d̂n2,l − al/n

1+γ
2 ),

Ĩn2,u(q) = (d̂n2,u − bu/n
1+γ
2 , d̂n2,u − au/n

1+γ
2 ),

Ĩn2,av(q) = (d̂n2,av − bav/n
1+γ
2 , d̂n2,av − aav/n

1+γ
2 )

where al, bl, au, bu, aav and bav are the exact quantiles (al, au and aav correspond to

q/2th quantiles and bl, bu and bav correspond to (1 − q/2)th quantiles) of dl, du and

(dl + du)/2, respectively.

In Table 3.8, the coverage probabilities together with the length of the confidence

intervals are shown for a number of combinations of sample sizes and tuning param-

eters and with the SNR set equal to 5. It can be see that the coverage probabilities

n=50 n=100 n=200 n=500 n=1000
γ = 1

2
K=1 K=2 K=1 K=2 K=1 K=2 K=1 K=2 K=1 K=2

95.00% 94.20% 93.80% 95.25% 95.25% 94.10% 93.40% 94.50% 95.05% 94.90%

Ĩn2,l (.0283) (.0599) (.0100) (.0212) (.0035) (.0075) (.0009) (.0019) (.0003) (.0007)

94.20% 96.50% 94.80% 94.95% 94.45% 95.85% 94.85% 95.90% 95.50% 95.85%

Ĩn2,u (.0294) (.0602) (.0104) (.0213) (.0037) (.0075) (.0009) (.0019) (.0003) (.0007)

94.30% 95.25% 94.35% 94.05% 94.40% 95.45% 93.20% 94.85% 94.55% 95.30%

Ĩn2,av (.0236) (.0487) (.0083) (.0172) (.0029) (.0061) (.0007) (.0015) (.0003) (.0005)

γ = 2
3

n=50 n=100 n=200 n=500 n=1000

95.65% 95.40% 95.05% 96.05% 95.35% 95.45% 95.30% 95.30% 95.05% 95.90%

Ĩn2,l (.0148) (.0277) (.0047) (.0087) (.0015) (.0027) (.0003) (.0006) (.0001) (.0002)

95.40% 96.00% 95.65% 96.60% 95.80% 96.15% 96.20% 96.60% 95.15% 96.85%

Ĩn2,u (.0149) (.0302) (.0047) (.0095) (.0015) (.0030) (.0003) (.0006) (.0001) (.0002)

95.15% 96.45% 95.20% 96.95% 94.75% 96.10% 95.30% 96.15% 94.05% 96.10%

Ĩn2,av (.0120) (.0253) (.0038) (.0080) (.0012) (.0025) (.0003) (.0005) (.0001) (.0002)

Table 3.8: 95% Exact Confidence Intervals for a combination of sample sizes and tuning parameters
γ, K for SNR=5

are fairly close to their nominal values, especially for γ = 2/3. Further, their length

is almost half of those obtained according to Ferger’s (2004) method. Finally, it

should be noted that analogous results were obtained for SNR=2 and 8 (not shown

due to space considerations).
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3.3.3 Construction of Confidence Intervals Based on Adaptive Choices of Design
Parameters

Confidence intervals in finite samples can also be based on the adaptive parameter

allocation strategies discussed in Section 3.2. We briefly discuss this below, adopting

notation from that Section.

With tuning parameters K and γ and the optimal allocation of λ ≡ γ/(1 + γ), a

level 1− q confidence interval for d0 is given by

[
d̂2,av − n−(1+γ) Cq/2

2K

Ψ(γ)
, d̂2,av + n−(1+γ) Cq/2

2K

Ψ(γ)

]
.

With the adaptive choices, K ≡ K(n) = Cζ n
−(1−γ)
1 , where q/2 >> ζ and n1 =

n γ/(1 + γ), the above confidence interval reduces to:

[
d̂2,av −

2 Cζ Cq/2

n2

(1 + γ)2

γ
, d̂2,av +

2 Cζ Cq/2

n2

(1 + γ)2

γ

]
.

To minimize the length, we let γ tend to 1, to obtain an approximate level 1 − q

confidence interval as follows:

[
d̂2,av −

8 Cζ Cq/2

n2
, d̂2,av +

8 Cζ Cq/2

n2

]
.

Simulations were run for the above stump model for four different sample sizes:

50, 100, 200, and 500 with 5000 replicates for each sample size and for 3 different

values of SNR=2, 5, 8. Confidence intervals as defined above were constructed (with

q = 0.05). The percentage of intervals containing the true change-point together

with their length were recorded and shown in Table 3.9.

SNR=2 SNR=5 SNR=8
N Coverage Length Coverage Length Coverage Length
50 93.24% 0.2780 95.48% 0.0383 95.68% 0.0329
100 94.08% 0.0695 95.24% 0.0096 95.54% 0.0082
200 94.48% 0.0174 94.78% 0.0024 95.16% 0.0021
500 94.82% 0.0028 95.08% 0.00038 94.94% 0.00033

Table 3.9: 95% Confidence Intervals constructed using the adaptive parameter allocation strategy
for different sample sizes and SNR with ζ = 0.0005



68

We examine next the performance of confidence intervals in finite samples, but

where a uniform (equispaced) design is used in the first stage (results shown in Table

3.10) and in both stages (results shown in Table 3.11). The setting is identical to

that used in Table 3.9. As the discussion in Section 3.2.1 indicates, it is not obvious

how the tuning parameters Cζ should be chosen in this case; therefore, the same

Cζ value as the one used in Table 3.9 was employed. It can be seen that a uniform

design used in the 1st stage does not improve performance in terms of coverage or

length. However, using a uniform design in both stages and setting Cζ and Cq to

the same values as in Table 3.9 leads to rather conservative confidence intervals,

especially for larger sample sizes and higher values of SNR. Notice that the lengths

of the confidence intervals are identical to those in Table 3.9 due to the choice of the

tuning parameters Cζ and Cq. Nevertheless, experience shows that a uniform design

used in the 1st stage gives better mean squared errors in small samples, or when d0

is closer to the boundary of the covariate’s support.

SNR=2 SNR=5 SNR=8
N Coverage Length Coverage Length Coverage Length
50 93.72% 0.2780 95.14% 0.0383 95.56% 0.0329
100 93.88% 0.0695 95.12% 0.0096 95.20% 0.0082
200 94.62% 0.0174 95.52% 0.0024 95.52% 0.0021
500 94.72% 0.0028 94.96% 0.00038 95.12% 0.00033

Table 3.10: 95% Confidence Interval constructed using the adaptive parameter allocation strategy
for different sample sizes and SNR with ζ = 0.0005 using a uniform design in the 1st
Stage

SNR=2 SNR=5 SNR=8
N Coverage Length Coverage Length Coverage Length
50 95.06% 0.2780 100.00% 0.0383 100.00% 0.0329
100 96.66% 0.0695 99.98% 0.0096 100.00% 0.0082
200 96.94% 0.0174 100.00% 0.0024 100.00% 0.0021
500 97.32% 0.0028 99.96% 0.00038 100.00% 0.00033

Table 3.11: 95% Confidence Interval constructed using the adaptive parameter allocation strategy
for different sample sizes and SNR with ζ = 0.0005 using a uniform design in both
stages
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3.3.4 Data application

We revisit the motivating application and estimate the change-point using both

the “classical” and the developed two-stage procedures. The total budget was set

to n = 70 and the model fitted to the natural logarithm of the delays comprised

two linear segments with a discontinuity. Given that the data (134 system loadings

and their corresponding average delays) have been collected in advance, a sampling

mechanism close in spirit to selecting covariate values from a uniform distribution

was employed for both procedures. Specifically, the necessary number of points was

drawn from a uniform distribution in the [0, 1] interval and amongst the available

134 loadings the ones closest to the sampled points were selected, together with

their corresponding responses. An analogous strategy was used when a uniform

design was employed in the 1st stage of the adaptive procedure. For the two-stage

procedure, we set λ = 1/2 and the remaining tuning parameters to those values

provided by the adaptive strategy discussed in Section 4, with ζ = .0005. The

results of the ”classical” procedure, the two-stage adaptive procedure with sampling

from a uniform distribution in both stages and from a uniform design in the 1st stage

and the uniform distribution in the 2nd stage are depicted in the left, center and right

panels of Figure 3.6, respectively. The depicted fitted regression models are based

on the first stage estimates for the two-stage procedure. Further, the sampled points

from the two stages are shown as solid (1st stage) and open (2nd stage) circles. It

can be seen that the heavier sampling in the neighborhood of the 1st stage estimate

of the change-point improves the estimate given the available evidence from all 134

points shown in Figure 1.1.

The estimated change-point from the “classical” procedure is d̂n = .737 with a 95%

confidence interval (.682, .793). Using a uniform distribution in both stages gave an

estimate d̂n2 = .796 with a 95% confidence interval (.781, .811). On the other hand, a
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combination of a uniform design in the 1st stage with that of a uniform distribution

in the 2nd stage yielded an estimate d̂n2 = .802 with a 95% confidence interval

(.787, .817). As shown in this case and validated through other data examples, the

use of uniform design in the first stage proves advantageous in practice, especially for

small samples or in situations where the discontinuity lies fairly close to the boundary

of the design region.
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Figure 3.6: Sampled points (from 1st stage solid circles and from 2nd stage open circles) together
with the fitted parametric models and estimated change point, based on a total budget
of n = 70 points, obtained from the “classical” procedure (left panel), the two-stage
adaptive procedure with sampling from a uniform distribution in both stages (center
panel) and from a uniform design in the 1st stage and the uniform distribution in the
2nd stage (right panel).

3.4 Extension to A Three–stage Procedure.

As we discussed before, the two-stage procedure can be generalized to multi-

stage procedures. The number of stages depends on the budget. We tried some

simulation examples for a three-stage procedure and compared its performance with

the classical procedure as well as the two-stage procedure using the ratio of MSE.

Recall that n2+γ2

3 ((d̂n3,l − d0), (d̂n3,u − d0)) is Op(1) and converges in distribution to

(dl, du), where (dl, du) is the vector of the smallest and the largest argmins of the
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process M(| ψl(βl, d
0) − ψu(βu, d

0) |, ε, C3), with C3 = (2K2)
−1(λ2/λ3)

(1+γ2). For

the three stage procedure, we take λ1 = λ2 = λ3 = 1/3, γ1 = 3/5 and γ2 = 2/5.

In the two stage procedure, we select two values for γ: 2/3 and 3/4. To compare

these three procedures, the selections of K1, K2 and K guarantee that the sampling

neighborhood in each stage has 99% coverage of the true change-point. In this

example, K1 = 1.5, K2 = 8, K = 1 (when γ = 2/3) and K = 2 (when γ = 3/4) . We

select different total sample sizes n = 90, 150, 300 and n = 900 as shown in Table

3.12, where

R1 = MSE(one-stage)/MSE(three-stage)

R2 = MSE(two-stage with γ = 2/3, K = 1)/MSE(three-stage)

R3 = MSE(two-stage with γ = 3/4, K = 2)/MSE(three-stage)

We run simulations with 1000 replicates for each setting. The estimates from the

three-stage procedure are the best ones regarding the ratios of MSE and the ad-

vantage becomes more obvious as n increases. When the sample size is small, the

three-stage procedure is comparable with the two-stage procedure under some set-

ting of design parameters. For example, we select γ = 3/4 and K = 2 for a two-stage

procedure, and the ratio of MSE is 1.47 with n = 90.

n R1 R2 R3

90 2.4711 2.1939 1.4736
150 6.4581 3.2832 2.0779
300 29.245 12.902 7.7130
900 400.10 20.128 7.6691

Table 3.12: Performance of Three-stage Procedure



CHAPTER 4

Adaptive Strategies for Estimating the Regression Function

As briefly introduced in Chapter 1, we will focus on developing adaptive strategies

for estimating the entire regression function in this chapter.

4.1 Optimal Allocation of Samples

Consider, for example, the general parametric model,

Yi = µ(Xi) + εi, i = 1, 2, . . . , n

where µ(x) = ψl(βl, x)I(x ≤ d0) + ψu(βu, x)I(x > d0), which has the same definition

as in (2.1). Xi’s are i.i.d. and are distributed on according to some density fX(x)

on [0, 1]. Recall that for the multi-stage procedures of Chapter 3, we select covariate

values via uniform distribution or a uniform design on [0, 1]. To improve the entire

regression function, we use an initial fraction of the budget to estimate the param-

eters of the underlying model. Subsequently, the design region is partitioned into

three segments, with the middle segment defined as a fixed neighborhood around

the estimated change-point. A mixture of uniform densities is selected as the design

density on these segments. We use λ2, λ1 and λ3 to denote the uniform density on

the left segment, the middle segment and the right segment, respectively.

fX(x) =





λ1 x ∈ left segment

λ2 x ∈ middle segment

λ3 x ∈ right segment

.
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The objective then becomes to allocate the available samples to these three seg-

ments so as to minimize an asymptotic expected L2 error that depends on model

parameters. The estimates from the initial fraction act as surrogates. Therefore, the

way of allocating the samples is related to the design density. We start with a toy

problem by the piecewise-constant model, for which we assume the change point d0

is known.

d0+τ

λ
1

λ
2

λ
3

0 1

middle intervalleft interval right interval

d0d0−τ

Figure 4.1: Mixture Uniform Density for Sampling

We define an appropriate interval [d0 − τ, d0 + τ ]around the true change point.

What we want is to decide how to allocate samples in the left, middle and the right

intervals as shown in Figure 4.1. The height corresponds to the density in each

interval, say λ2, λ1, and λ3.

We adhere to the average minimizer and homoscedastic normal errors for all dis-

cussions in this chapter. By (2.2) and (2.3), we have dav(SNR, Z, 1) = (dl(SNR, Z, 1)+

du(SNR, Z, 1))/2, where Z is a standard normal random variable and the quantity

| ψl(βl, d
0)−ψu(βu, d

0) | /σ is denoted as SNR (signal-to-noise ratio). We define the

random variable V =| dav(SNR, Z, 1) |.
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4.1.1 Piecewise–Constant Model

In this simple step function model, ψl(βl, x) = α0, and ψu(βu, x) = β0. Let the

total sample size be n and consider a L2 error as

L2

=

∫
[[α̂I{x ≤ d̂n}+ β̂I{x > d̂n} − α0I{x ≤ d0} − β0I{x > d0}]2]dx

=

∫
[I{d̂n < d0}[(α̂− α0)

2d̂n + (β̂ − β0)
2(1− d0) + (β̂ − α0)

2(d0 − d̂n)]

+I{d̂n > d0}[(α̂− α0)
2d0 + (β̂ − β0)

2(1− d̂n) + (β̂ − α0)
2(d̂n − d0)]]dx

=
σ2

n

[
I{d̂n < d0}

[
n(α̂− α0)

2

σ2
d̂n +

n(β̂ − β0)
2

σ2
(1− d0) + (

β̂ − α0

σ
)2n(d0 − d̂n)

]

+I{d̂n > d0}
[

n(α̂− α0)
2

σ2
d0 +

n(β̂ − β0)
2

σ2
(1− d̂n) + (

β0 − α̂

σ
)2n(d̂n − d0)

]]

=
σ2

n

[
I{d̂n < d0}

[
n(α̂− α0)

2

σ2
d0 +

n(β̂ − β0)
2

σ2
(1− d0) + (

β̂ − α0

σ
)2n(d0 − d̂n)

+
n(α̂− α0)

2

σ2
(d̂n − d0)

]

+I{d̂n > d0}
[

n(α̂− α0)
2

σ2
d0 +

n(β̂ − β0)
2

σ2
(1− d0) + (

β0 − α̂

σ
)2n(d̂n − d0)

+
n(β̂ − β0)

2

σ2
(d0 − d̂n)

]]

From the discussions in Chapter 2, we know that α̂, β̂ and d̂n are asymptotically

independent,
√

n(α̂ − α0) and
√

n(β̂ − β0) are mean zero Gaussian with respective

variances σ2/FX(d0) and σ2/(1 − FX(d0)), and n(d̂n − d0) converges weakly to the

average minimizer ofM|α0−β0|,ε1,fX(d0). Therefore, n(α̂−α0)2

σ2 (d̂n−d0), n(β̂−β0)2

σ2 (d0− d̂n),

( β̂−α0

σ
)2n(d0 − d̂n) and (β0−α̂

σ
)2n(d̂n − d0) in the expression above have the rate of

convergence 1/n, then we define the asymptotic expected L2 error as

EL2 , σ2

n
E

[
n(α̂− α0)

2

σ2
d0 +

n(β̂ − β0)
2

σ2
(1− d0) + (

β0 − α0

σ
)2n|d̂n − d0|

]

=
σ2

n

[
d0

FX(d0)
+

1− d0

1− FX(d0)
+ (SNR)2 1

fX(d0)
E(V )

]
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where the last component is obtained by the scaling relationship between the mini-

mizer of M|α0−β0|,ε1,fX(d0) and the minimizer of MSNR,Z,1.

Set L = d0 − τ , U = d0 + τ . We use a mixture of uniform densities as a design

density for X on [0, 1]:

fX(x) =





λ1 x ∈ [0, L)

λ2 x ∈ [L,U ]

λ3 x ∈ (U, 1)

.

However, in practice, we do not know d0. We use a fraction,say 1/2, of the sample size

to obtain an estimate of the change point , d̂1 and an estimate of SNR. We substitute

d̂1 for d0 and take τ = Cζ/n , cn (Cζ is the upper ζth quantile of the ArgminMSNR,Z,1

for a very small fraction ζ) to obtain the following surrogate expression:

EL2 =
σ2

n

[
d̂1

FX(d̂1)
+

1− d̂1

1− FX(d̂1)
+

B̂

λ1

]

=
σ2

n

[
d̂1

λ2Ln + λ1cn

+
1− d̂1

1− (λ2Ln + λ1cn)
+

B̂

λ1

]

where Ln = d̂1 − cn and B̂ = ̂(SNR)
2

Ê(V ).

Our objective is to minimize EL2 above under the following constraints:

2λ1cn + λ2Ln + λ3(1− Un) = 1, λ1 > 0, λ2 ≥ 0, λ3 ≥ 0

where Un = d̂1 + cn.

To simplify notation, we define λ∗ = λ1cn and D = λ1cn + λ2Ln. We seek to

minimize

(4.1) g(D,λ∗) =
d̂1

D
+

1− d̂1

1−D
+

B̂cn

λ∗

such that

λ∗ > 0, D ≥ λ∗, D + λ∗ ≤ 1.

The optimal solution is lies the shaded part in Figure 4.2.



76

D+λ*=1

D=λ*

0

D

λ

1

1

0.5

IF D > 1/2

IF D< 1/2

Figure 4.2: Optimal problem for the piecewise-constant model.

Theorem 4.1. Define

g̃1(D) =
d̂1

D
+

1− d̂1

1−D
+

B̂cn

D

g̃2(D) =
d̂1

D
+

1− d̂1

1−D
+

B̂cn

1−D

D∗
1 =

√
d̂1+B̂cn

1−d̂1

1 +
√

d̂1+B̂cn

1−d̂1

D∗
2 =

√
d̂1

1−d̂1+B̂cn

1 +
√

d̂1

1−d̂1+B̂cn

.

The optimal solutions to (4.1) are:

1. When d̂
(1)
n ≤ 1−Bcn

2
,

If g̃1(D
∗
1) < g̃2(1/2), then D∗

opt = D∗
1 and λ∗opt = D∗

1; otherwise, D∗
opt = 1/2 and

λ∗opt = 1/2.

2. When d̂
(1)
n ≥ 1+Bcn

2
,

If g̃2(D
∗
2) < g̃1(1/2), then D∗

opt = D∗
2 and λ∗opt = 1−D∗

2; otherwise, D∗
opt = 1/2

and λ∗opt = 1/2.

3. When 1−Bcn

2
< d̂

(1)
n < 1+Bcn

2
,

D∗
opt = 1/2 and λ∗opt = 1/2.
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Proof of Theorem 4.1: For a fixed D ∈ [0, 1], define gD(λ∗) = d̂1

D
+ 1−d̂1

1−D
+ B̂cn

λ∗ and

find the optimal value of λ∗, denoted as λ∗D, s.t.

λ∗D =





D D ≤ 1/2

1−D D ≥ 1/2

Then,

minD,λ∗ g(D,λ∗) = minDminλ∗ gD(λ∗)

If D ≤ 1/2,

minλ∗ g(D,λ∗) =
d̂1

D
+

1− d̂1

1−D
+

B̂cn

D

4
= g̃1(D)

and if D ≥ 1/2,

minλ∗ g(D,λ∗) =
d̂1

D
+

1− d̂1

1−D
+

B̂cn

1−D

4
= g̃2(D).

We seek to minimize g̃1(D) on [0, 1/2] and minimize g̃2(D) on [1/2, 1] separately,

then find the global optimal solution. Check that

g̃′1(D) = − d̂1 + B̂cn

D2
+

1− d̂1

(1−D)2
.

The solution to g̃′1(D) = 0 in (0, 1) is

D∗
1 =

√
d̂1+B̂cn

1−d̂1

1 +
√

d̂1+B̂cn

1−d̂1

Since

g′′1(D) = 2(d̂1 + B̂cn)D−3 + 2(1− d̂1)(1−D)−3 > 0,

then D∗
1 is the minimizer of g̃1(D). If d̂1 ≤ 1−Bcn

2
, which means that D∗

1 ≤ 1/2,

then the optimal solution on [0, 1/2] is D∗
opt,1 = D∗

1 and λ∗opt,1 = D∗
1; otherwise,

D∗
opt,1 = 1/2 and λ∗opt,1 = 1/2.

Similarly,

g̃′2(D) = − d̂1

D2
+

1− d̂1 + B̂cn

(1−D)2
.
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The solution to g̃′2(D) = 0 in [0, 1] is

D∗
2 =

√
d̂1

1−d̂1+B̂cn

1 +
√

d̂1

1−d̂1+B̂cn

which is the minimizer of g̃2(D) since

g′′2(D) = 2d̂1D
−3 + 2(1− d̂1 + B̂cn)(1−D)−3 > 0.

Again, if d̂1 ≥ 1+B̂cn

2
, which means that D∗

2 ≥ 1/2, then the optimal solution on [1/2,

1] is D∗
opt,2 = D∗

2 and λ∗opt,2 = 1−D∗
2; otherwise, D∗

opt,2 = 1/2 and λ∗opt,2 = 1/2.

Hence, to obtain the global optimal solution, there are three cases.

• Case I: When d̂1 ≤ 1−B̂cn

2
(see Figure 4.3),

D∗
2 is the optimal solution when D ∈ [0, 1/2] and 1/2 is the optimal solution

when D ∈ [1/2, 1]. If g̃1(D
∗
1) < g̃2(1/2), then the global optimal solutions are

D∗
opt = D∗

1 and λ∗opt = D∗
1; otherwise, D∗

opt = 1/2 and λ∗opt = 1/2.
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Figure 4.3: Optimal solution for the piecewise-constant model, when d̂1 ≤ 1−B̂cn

2 .

• Case II: When d̂1 ≥ 1+B̂cn

2
(see Figure 4.4),

1/2 is the optimal solution when D ∈ [0, 1/2] and D∗
1 is the optimal solution
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Figure 4.4: Optimal solution for the piecewise-constant model, d̂1 ≥ 1+B̂cn

2 .

when D ∈ [1/2, 1]. If g̃2(D
∗
2) < g̃1(1/2), then D∗

opt = D∗
2 and λ∗opt = 1 − D∗

2;

otherwise, D∗
opt = 1/2 and λ∗opt = 1/2.

• Case III: When 1−B̂cn

2
< d̂1 < 1+B̂cn

2
(see Figure 4.5),

Note that, 1/2 is the optimal solution when D ∈ [0, 1/2] as well as when D ∈

[1/2, 1], so D∗
opt = 1/2 and λ∗opt = 1/2.
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Figure 4.5: Optimal solution for the piecewise-constant model,1−B̂cn

2 < d̂1 < 1+B̂cn

2 .
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Therefore, the optimal selections of the design density are λ1,opt = λ∗opt/cn, λ2,opt =

(D∗
opt − λ∗opt)/Ln, and λ3,opt = (1−D∗

opt − λ∗opt)/Un.

4.1.2 General Parametric Model.

We are more interested in general parametric model, where

µ(x) = ψl(β
0
l , x)I(x ≤ d0) + ψu(β

0
u, x)I(x > d0).

The definition of L2 error becomes

L2par,n =

∫
[ψl(β̂l, x)I{x ≤ d̂n}+ ψu(β̂u, x)I{x > d̂n}

−ψl(β
0
l , x)I{x ≤ d0} − ψu(β

0
u, x)I{x > d0}]2dx

=

[
I{d̂n < d0}

[∫ d̂n

0

(ψl(β̂l, x)− ψl(β
0
l , x))2dx

+

∫ 1

d0

(ψu(β̂u, x)− ψu(β
0
u, x))2dx

+

∫ d0

d̂n

(ψu(β̂u, x)− ψl(β
0
l , x))2dx

]

+I{d̂n ≥ d0}
[∫ d0

0

(ψl(β̂l, x)− ψl(β
0
l , x))2dx

+

∫ 1

d̂n

(ψu(β̂u, x)− ψu(β
0
u, x))2dx

+

∫ d̂n

d0

(ψu(β
0
u, x)− ψl(β̂l, x))2dx

]]

If d̂n < d0, by Taylor expansion, we derive the expression as

∫ d̂n

0

(ψl(β̂l, x)− ψl(β
0
l , x))2dx

=

∫ d̂n

0

[
p∑

k=1

(β̂l,k − β0
l,k)

∂

∂βl,k

ψl(β
0
l , x) + ψl(β

0
l , x)− ψl(β

0
l , x)

+
1

2

∑
i,j

(β̂l,i − β0
l,i)(β̂l,j − β0

l,j)
∂2ψl(β

∗
l , x)

∂βl,i∂βl,j

]2

dx

=

∫ d̂n

0

[
p∑

k=1

(β̂l,k − β0
l,k)

∂

∂βl,k

ψl(β
0
l , x)

+
1

2

∑
i,j

(β̂l,i − β0
l,i)(β̂l,j − β0

l,j)
∂2ψl(β

∗
l , x)

∂βl,i∂βl,j

]2

dx
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Define

Ψl
i,j(d) =

∫ d

0

∂

∂βl,i

ψl(β
0
l , x)

∂

∂βl,j

ψl(β
0
l , x)dx

and

R∗
n =

1

2

∑
i,j

(β̂l,i − β0
l,i)(β̂l,j − β0

l,j)
∂2ψl(β

∗
l , x)

∂βl,i∂βl,j

Then

∫ d̂n

0

(ψl(β̂l, x)− ψl(β
0
l , x))2dx

=

p∑

k=1

[(β̂l,k − β0
l,k)

2Ψl
k,k(d̂n)] + 2

∑
i<j

[(β̂l,i − β0
l,i)(β̂l,j − β0

l,j)Ψ
l
i,j(d̂n)]

+

∫ d̂n

0

[
2

p∑

k=1

(β̂l,k − β0
l,k)

∂

∂βl,k

ψl(β
0
l , x)R∗

n + R∗
n
2

]
dx

=

p∑

k=1

[(β̂l,k − β0
l,k)

2Ψl
k,k(d

0)] + 2
∑
i<j

[(β̂l,i − β0
l,i)(β̂l,j − β0

l,j)Ψ
l
i,j(d

0)]

+

p∑

k=1

[(β̂l,k − β0
l,k)

2(Ψl
k,k(d̂n)−Ψl

k,k(d
0))]

+2
∑
i<j

[(β̂l,i − β0
l,i)(β̂l,j − β0

l,j)(Ψ
l
i,j(d̂n)−Ψl

i,j(d
0))]

+

∫ d̂n

0

[
2

p∑

k=1

(β̂l,k − β0
l,k)

∂

∂βl,k

ψl(β
0
l , x)R∗

n + R∗
n
2

]
dx

Since
∫ d̂n

0

[
2
∑p

k=1(β̂l,k − β0
l,k)

∂
∂βl,k

ψl(β
0
l , x)R∗

n + R∗
n
2
]
dx,

∑p
k=1[(β̂l,k−β0

l,k)
2(Ψl

k,k(d̂n)−

Ψl
k,k(d

0))] and
∑

i<j[(β̂l,i−β0
l,i)(β̂l,j−β0

l,j)(Ψ
l
i,j(d̂n)−Ψl

i,j(d
0))] have faster rate of con-

vergence than 1/n, we can write

∫ d̂n

0

(ψl(β̂l, x)− ψl(β
0
l , x))2dx

=
σ2

n

[
p∑

k=1

n(β̂l,k − β0
l,k)

2

σ2
Ψl

k,k(d
0)

+2
∑
i<j

√
n(β̂l,i − β0

l,i)
√

n(β̂l,j − β0
l,j)

σ2
Ψl

i,j(d
0)

]
+ op(1/n)
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In the same way of derivation, by defining Ψu
i,j(d) =

∫ 1

d
∂

∂βu,i
ψu(β

0
u, x) ∂

∂βu,j
ψu(β

0
u, x)dx,

we can obtain that

∫ 1

d0

(ψu(β̂u, x)− ψu(β
0
u, x))2dx

=
σ2

n

[
q∑

k=1

n(β̂u,k − β0
u,k)

σ2
Ψu

k,k(d
0)

+2
∑
i<j

√
n(β̂u,i − β0

u,i)
√

n(β̂u,j − βu,j)

σ2
Ψu

i,j(d
0)

]
+ op(1/n)

∫ d0

d̂n
(ψu(β̂u, x)− ψl(β

0
l , x))2dx can be expressed as

∫ d0

d̂n

(ψu(β̂l, x)− ψl(β
0
l , x))2dx

=
σ2

n
n

∫ d0

d̂n

(
q∑

k=1

(β̂u,k − β0
u,k)

∂ψu(β
0
u, x)

∂βu,k

+ ψ(β0
u, x)− ψl(β

0
l , x)

+
1

2

∑
i,j

(β̂u,i − β0
u,i)(β̂u,j − β0

u,j)
∂2ψu(β

∗
u, x)

∂βu,i∂βu,j

)2

dx/σ2

=
σ2

n
(n(d0 − d̂n))(ψ(β0

u, d
0)− ψl(β

0
l , d

0))2/σ2 + op(1/n)

=
σ2

n
(n(d0 − d̂n))(SNR)2 + op(1/n)

If d̂n > d0, the similar expressions can be derived:

∫ d0

0

(ψl(β̂l, x)− ψl(β
0
l , x))2dx

=
σ2

n

[
p∑

k=1

n(β̂l,k − β0
l,k)

2

σ2
Ψu

k,k(d
0)

+2
∑
i<j

√
n(β̂l,i − β0

l,i)
√

n(β̂l,j − β0
l,j)

σ2
Ψl

i,j(d
0)

]
+ op(1/n)

∫ 1

d̂n

(ψu(β̂u, x)− ψu(β
0
u, x))2dx

=
σ2

n

[
q∑

k=1

n(β̂u,k − β0
u,k)

σ2
Ψu

k,k(d
0)

+2
∑
i<j

√
n(β̂u,i − β0

u,i)
√

n(β̂u,j − β0
u,j)

σ2
Ψu

i,j(d
0)

]
+ op(1/n)

∫ d̂n

d0

(ψu(β
0
u, x)− ψl(β̂l, x))2dx

=
σ2

n
(n(d̂n − d0))(SNR)2 + op(1/n)
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Since asymptotic normalities of βl and βu are the same as with d0 known,

√
n(β̂l − β0

l ) → N(0, Σl)

√
n(β̂u − β0

u) → N(0, Σu)

where Σl and Σu are the corresponding dispersion matrices of asymptotic normal

distributions and we will specify them later. Therefore, we have the asymptotic

expected L2 error:

EL2par,n =
σ2

n

[
p∑

k=1

V ar(
√

n(β̂l,k − β0
l,k))

σ2
Ψl

k,k(d
0)

+2
∑
i<j

Cov(
√

n(β̂l,i − β0
l,i),

√
n(β̂l,j − β0

l,j))

σ2
Ψl

i,j(d
0)

+

q∑

k=1

V ar(
√

n(β̂u,k − β0
u,k))

σ2
Ψu

k,k(d
0)

+2
∑
i<j

Cov(
√

n(β̂u,i − β0
u,i),

√
n(β̂u,j − β0

u,j))

σ2
Ψu

i,j(d
0)

+E(n|d̂− d0|)SNR2
]

=
σ2

n

[
p∑

k=1

V ar(
√

n(β̂l,k − β0
l,k))

σ2
Ψl

k,k(d
0)

+2
∑
i<j

Cov(
√

n(β̂l,i − β0
l,i),

√
n(β̂l,j − β0

l,j))

σ2
Ψl

i,j(d
0)

+

q∑

k=1

V ar(
√

n(β̂u,k − β0
u,k))

σ2
Ψu

k,k(d
0)

+2
∑
i<j

Cov(
√

n(β̂u,i − β0
u,i),

√
n(β̂u,j − β0

u,j))

σ2
Ψu

i,j(d
0)

+E(V )(SNR)2/fX(d0)
]

The asymptotic dispersion matrices for
√

n(β̂l − βl) and
√

n(β̂u− βu) depend on the

density of X , which leads to complexities of optimal solution arguments. According

to the asymptotic property of Z-estimator, we know that

V ar(
√

n(β̂l − β0
l )/σ) → V −1

βl
≡ Σl/σ

2

V ar(
√

n(β̂u − β0
u)/σ) → V −1

βu
≡ Σu/σ

2
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where

Vβl
=

∫ d0

0

∇ψl(βl, x) · (∇ψl(βl, x))T fX(x)dx

Vβu =

∫ 1

d0

∇ψu(βu, x) · (∇ψu(βu, x))T fX(x)dx

where ∇ψl(βl, x) and ∇ψu(βu, x) are the gradients in βl and βu, respectively. Now,

the optimization problem is defined as following:

(λ∗1, λ
∗
2, λ

∗
3) = Argmin h̃(λ1, λ2, λ3, SNR, d0, n)

such that

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, 2λ1τ + λ2L ≤ 1

where

h̃(·) =

p∑

k=1

(V −1
βl

)kkΨ
l
k,k(d

0) + 2
∑
i<j

(V −1
βl

)ijΨ
l
i,j(d

0)

+

q∑

k=1

(V −1
βu

)kkΨ
u
k,k(d

0) + 2
∑
i<j

(V −1
βu

)ijΨ
u
i,j(d

0)

+E(V )(SNR)2/λ1

Again, in practice, we do not know d0 and SNR. We need substitute d0 by d̂1 from

initial samples and take τ = Cζ/n , cn, Ln = d̂1− cn, where Cζ is upper ζth quantile

of Argmin M ˆSNR,Z,1. Hence the surrogate expression is

h(·) =

p∑

k=1

(V −1
βl

)kkΨ
l
k,k(d̂1) + 2

∑
i<j

(V −1
βl

)ijΨ
l
i,j(d̂1)

+

q∑

k=1

(V −1
βu

)kkΨ
u
k,k(d̂1) + 2

∑
i<j

(V −1
βu

)ijΨ
u
i,j(d̂1)

+Ê(V ) ̂(SNR)
2

/λ1

The optimal solutions to h(·) will provide suggest on how to allocate samples in [0, 1].

4.1.3 Linear–Linear Model

Since we can obtain the general optimal formula for parametric models, the poly-

nomial model is one specific case. For a linear-linear model, we can define the
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expected L2 error as

EL2ll,n = E

∫
[(α̂1 + α̂2x)I{x ≤ d̂(1)

n }+ (β̂1 + β̂2x)I{x > d̂(1)
n }

−(α0
1 + α0

2x)I{x ≤ d0} − (β0
1 + β0

2x)I{x > d0}]2dx

Using the results from Section 4.1.2, we seek to minimize:

h̃(·) =

p∑

k=1

(V −1
βl

)kkΨ
l
k,k(d

0) + 2
∑
i<j

(V −1
βl

)ijΨ
l
i,j(d

0)

+

q∑

k=1

(V −1
βu

)kkΨ
u
k,k(d

0) + 2
∑
i<j

(V −1
βu

)ijΨ
u
i,j(d

0)

+E(V )(SNR)2/λ1

We derive the exact forms of V −1
βl

and V −1
βu

for this specific model next.

Define α̂ = (α̂1, α̂2)
′ and β̂ = (β̂1, β̂2)

′, to derive the asymptotic dispersion matri-

ces of
√

n(α̂− α0)/σ and
√

n(β̂ − β0)/σ, suppose
∑

I(xi ≤ d0) = m.

V ar(α̂/σ|X) = (X ′X)−1 =




m
∑

Xi

∑
Xi

∑
X2

i




−1

=
1

m
∑

X2
i − (

∑
Xi)2




∑
X2

i −∑
Xi

−∑
Xi m




where

1

m
∑

X2
i − (

∑
Xi)2

=
1

m2
· 1

1/m
∑

X2
i − (1/m

∑
Xi)2

1/m
∑

X2
i − (1/m

∑
Xi)

2 =
PnX

2I(X ≤ d0)

PnI(X ≤ d0)
−

(
PnXI(X ≤ d0)

PnI(X ≤ d0)

)2

−→
∫ d0

0
x2fX(x)dx

FX(d0)
−

(∫ d0

0
xfX(x)dx

FX(d0)

)2

, δ1
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Then

V ar(
√

n(α̂− α0)/σ|X) =
n

m
V ar(

√
m(α̂− α0)|X)

=
n

m
· 1

m2δ1




m
∑

X2
i −m

∑
Xi

−m
∑

Xi m2




=
n

m
· 1

δ1




1/m
∑

X2
i −1/m

∑
Xi

−1/m
∑

Xi 1




V ar(
√

n(α̂− α0)/σ) → 1

F 2
X(d0)δ1




∫ d0

0
x2fX(x)dx − ∫ d0

0
xfX(x)dx

− ∫ d0

0
xfX(x)dx F (d0)




Similarly, we can obtain

V ar(
√

n(β̂ − β0)/σ) → 1

(1− FX(d0))2δ2




∫ 1

d0 x2fX(x)dx − ∫ 1

d0 xfX(x)dx

− ∫ 1

d0 xfX(x)dx 1− F (d0)




where

δ2 =

∫ 1

d0 x2fX(x)dx

1− FX(d0)
−

(∫ 1

d0 xfX(x)dx

1− FX(d0)

)2

For simplicity, we define

H1(d) =
∫ d

0
xfX(x)dx H2 =

∫ d

0
x2fX(x)dx

G1(d) =
∫ 1

d
xfX(x)dx G2 =

∫ 1

d
x2fX(x)dx

then

V ar(
√

n(α̂− α0)/σ) → 1

H2(d0)FX(d0)−H2
1 (d0)

»
H2(d

0) −H1(d
0)

−H1(d
0) FX(d0)

–
(4.2)

V ar(
√

n(β̂ − β0)/σ) → 1

G2(d0)(1− FX(d0))−G2
1(d

0)

»
G2(d

0) −G1(d
0)

−G1(d
0) 1− FX(d0)

–
(4.3)

Using the results from the discussion on general parametric models in Section 4.1.2,

we have

Vβl
≡ Vα =




FX(d0) H1(d
0)

H1(d
0) H2(d

0)


(4.4)

Vβu ≡ Vα =




1− FX(d0) G1(d
0)

G1(d
0) G2(d

0)


(4.5)
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Then

V ar(
√

n(α̂− α0)/σ) →




FX(d0) H1(d
0)

H1(d
0) H2(d

0)




−1

=
1

H2(d0)FX(d0)−H2
1 (d0)




H2(d
0) −H1(d

0)

−H1(d
0) FX(d0)




V ar(
√

n(β̂ − β0)/σ) →




1− FX(d0) G1(d
0)

G1(d
0) G2(d

0)




−1

=
1

G2(d0)(1− FX(d0))−G2
1(d

0)




G2(d
0) −G1(d

0)

−G1(d
0) FX(d0)


σ2

which are exactly the same as in (4.2) and (4.3), respectively. It is not hard to

verify that Ψl
1,1(d

0) = d0, Ψl
2,2(d

0) = d03
/3, Ψl

1,2(d
0) = d02

/2, Ψu
1,1(d

0) = 1 − d0,

Ψu
2,2(d

0) = (1− d03
)/3 and Ψl

1,2(d
0) = (1− d02

)/2.

Therefore, we can obtain the surrogate expression of our objective function as

following by substituting d0 by d̂1 from initial samples, taking τ = cn = Cζ/n,

Ln = d̂1 − cn and Un = d̂1 + cn and using the estimated SNR.

h(·) =
d̂1

F 2
X(d̂1)δ1

∫ d̂1

0

x2fX(x)dx +
d̂3

1

3FX(d̂1)δ1

− d̂2
1

F 2
X(d̂1)δ1

∫ d̂1

0

xfX(x)dx

+
(1− d̂1)

(1− FX(d̂1))2δ2

∫ 1

d̂1

x2fX(x)dx +
(1− d̂3

1)

3(1− FX(d̂1))δ2

− (1− d̂2
1)

(1− FX(d̂1))2δ2

∫ 1

d̂1

xfX(x)dx

+ ̂(SNR)
2 1

fX(d̂1)
ÊV

such that

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, 2λ1cn + λ2Ln ≤ 1

where
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fX(d̂1) = λ1

FX(d̂1) = λ2Ln + λ1cn

1− Fx(d̂1) = 1− (λ2Ln + λ1cn)

H1(d̂1) = 1/2(λ2L
2
n + λ1(d̂

2
1 − L2

n))

H2(d̂1) = 1/3(λ2L
3
n + λ1(d̂

3
1 − L3

n))

G1(d̂1) = 1/2(λ1(U
2
n − d̂2

1) + λ3(1− U2
n))

= 1/2(λ1(U
2
n − d̂2

1) + (1− λ2Ln − 2λ1cn)(1 + Un))

G2(d̂1) = 1/3(λ1(U
3
n − d̂3

1) + λ3(1− U3
n))

= 1/3(λ1(U
3
n − d̂3

1) + (1− λ2Ln − 2λ1cn)(1 + Un + U2
n))

1

δ1
=

(λ2Ln + λ1cn)2

1/3(λ2L3
n + λ1(d̂3

1 − L3
n))(λ2Ln + λ1cn)− 1/4(λ2L2

n + λ1(d̂2
1 − L2

n))2

1

δ2
=

1− (λ2Ln + λ1cn)2

B1 −B2

B1 = 1/3(λ1(U
3
n − d̂3

1) + (1− λ2Ln − 2λ1cn)(1 + Un + U2
n))(1− λ2Ln + λ1cn)

B2 = 1/4(λ1(U
2
n − d̂2

1) + (1− λ2Ln − 2λ1cn)(1 + Un))2

It is not easy to derive the optimal solutions from the defined optimization problem

directly (see Figure 4.6). We use the optimization function “fmincon” in Matlab

to search for the optimal solutions and obtain Table 4.1. We list some optimal
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Figure 4.6: h(λ1, λ2) function, linear-linear model

allocations for SNR=2 and SNR=5 by using five true values of change point. There

are symmetric patterns as we expected. For example, when SNR=5, d0 = 0.2, the
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optimal allocation is (.2188, .3126, .4686), while when d0 = 0.8, the optimal allocation

is (.4686, .3126, .2188). These results are reasonable, since those change points are

very close to the covariate’s boundary, we should not put much allocation in those

small areas.

SNR=5 SNR=2
d0 left middle right left middle right
0.2 .2188 .3126 .4686 .2079 .3295 .4626
0.4 .3080 .3072 .3848 .3003 .3216 .3781
0.5 .3467 .3067 .3466 .3395 .3210 .3396
0.6 .3848 .3072 .3080 .3781 .3216 .3003
0.8 .4686 .3126 .2188 .4632 .3287 .2081

Table 4.1: Optimal allocation of samples in the second stage when using d0, n1 = n2 = 500, linear-
linear model

Define

h1 =
d̂1

F 2
X(d̂1)δ1

∫ d̂1

0

x2fX(x)dx +
d̂3

1

3FX(d̂1)δ1

− d̂2
1

F 2
X(d̂1)δ1

∫ d̂1

0

xfX(x)dx

h2 = +
(1− d̂1)

(1− FX(d̂1))2δ2

∫ 1

d̂1

x2fX(x)dx +
(1− d̂3

1)

3(1− FX(d̂1))δ2

− (1− d̂2
1)

(1− FX(d̂1))2δ2

∫ 1

d̂1

xfX(x)dx

h3 = ̂(SNR)
2 1

fX(d̂1)
ÊV

To understand how h1, h2, and h3 affect the value of h(·), we draw two plots as shown

in Figure 4.7. The upper one is log(h1 +h2) vs. the allocation in the middle interval.

And the lower one is log(h3) vs. the allocation in the middle interval. From these

pictures, the optimal allocation is around 0.3, which is consistent with the numerical

results.

4.1.4 Quadratic–Quadratic Model

In real world we may be more interested in considering a higher degree polynomial

regression function. For example, a quadratic-quadratic model, the definition of EL2

becomes
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Figure 4.7: Optimal allocation in the middle interval, linear-linear model

EL2qq,n = E

Z
[(α̂1 + α̂2x + α̂3x

2)I{x ≤ d̂n}+ (β̂1 + β̂2x + β̂3x
2)I{x > d̂n}

Again, we can obtain the following expression for EL2qq,n by using the similar

manner as in Section 4.1.2:

h̃(·) =

p∑

k=1

(V −1
βl

)kkΨ
l
k,k(d

0) + 2
∑
i<j

(V −1
βl

)ijΨ
l
i,j(d

0)

+

q∑

k=1

(V −1
βu

)kkΨ
u
k,k(d

0) + 2
∑
i<j

(V −1
βu

)ijΨ
u
i,j(d

0)

+E(V )(SNR)2/λ1

To specify the dispersion matrices of
√

n(α̂ − α0)/σ and
√

n(β̂ − β0)/σ, we can

derive them as following or by using the results directly from the discussion of general

parametric model. For α̂ = (α̂1, α̂2, α̂3)
′, suppose

∑
I(xi ≤ d0) = m,

V ar(α̂|X) = (X ′X)−1σ2

=
1

∆l

2
4

P
X2

i

P
X4

i − (
P

X3
i )2

P
X2

i

P
X3

i −
P

Xi

P
X4

i

P
Xi

P
X3

i − (
P

X2
i )2P

X2
i

P
X3

i −
P

Xi

P
X4

i −(
P

X2
i )2 + m

P
X4

i

P
Xi

P
X2

i −m
P

X3
iP

Xi

P
X3

i − (
P

X2
i )2

P
Xi

P
X2

i −m
P

X3
i m

P
X2

i − (
P

Xi)
2

3
5σ2

V ar(
√

n(α̂− α0)|X)

=
1

FX(d0)∆l
·m

×
2
4

P
X2

i

P
X4

i − (
P

X3
i )2

P
X2

i

P
X3

i −
P

Xi

P
X4

i

P
Xi

P
X3

i − (
P

X2
i )2P

X2
i

P
X3

i −
P

Xi

P
X4

i −(
P

X2
i )2 + m

P
X4

i

P
Xi

P
X2

i −m
P

X3
iP

Xi

P
X3

i − (
P

X2
i )2

P
Xi

P
X2

i −m
P

X3
i m

P
X2

i − (
P

Xi)
2

3
5σ2

where

∆l = −(
X

X2
i )3 + 2

X
Xi

X
X2

i

X
X3

i − (
X

Xi)
2
X

X4
i −m(

X
X3

i )2 + m
X

X2
i

X
X4

i
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Define

H1(d) =

∫ d

0

xfX(x)dx, H2(d) =

∫ d

0

x2fX(x)dx,

H3(d) =

∫ d

0

x3fX(x)dx, H4(d) =

∫ d

0

x4fX(x)dx

We would obtain
1

m3
∆l

−→ −H3
2 (d0)

FX(d0)3
+

2H1(d
0)H2(d

0)H3(d
0)

FX(d0)3
− H2

1 (d0)H4(d
0)

FX(d0)3
− H2

3 (d0)

FX(d0)2
+

H2(d
0)H4(d

0)

FX(d0)2

, δql(d
0)

Then

V ar(
√

n(α̂− α0)) =
1

FX(d0)3δql(d0)
W (d0)σ2

The elements of W (d0) are:

w11 = H2(d
0)H4(d

0)−H2
3 (d0) w12 = w21 = H2(d

0)H3(d
0)−H1(d

0)H4(d
0)

w22 = −H2
2 (d0) + H4(d

0)FX(d0) w13 = w31 = H1(d
0)H3(d

0)−H2
2 (d0)

w33 = H2(d
0)FX(d0)−H2

1 (d0) w23 = w32 = H1(d
0)H2(d

0)−H3(d
0)FX(d0)

For β̂ = (β̂1, β̂2, β̂3)
′, suppose

∑
I(xi > d0) = n−m,

V ar(β̂|X) = (X ′X)−1σ2

=
σ2

∆r

2
4

P
X2

i

P
X4

i − (
P

X3
i )2

P
X2

i

P
X3

i −
P

Xi

P
X4

i

P
Xi

P
X3

i − (
P

X2
i )2P

X2
i

P
X3

i −
P

Xi

P
X4

i −(
P

X2
i )2 + (n−m)

P
X4

i

P
Xi

P
X2

i − (n−m)
P

X3
iP

Xi

P
X3

i − (
P

X2
i )2

P
Xi

P
X2

i − (n−m)
P

X3
i (n−m)

P
X2

i − (
P

Xi)
2

3
5

V ar(
√

n(β̂ − β0)|X)

=
σ2

(1− FX(d0))∆r
· (n−m)

×
2
4

P
X2

i

P
X4

i − (
P

X3
i )2

P
X2

i

P
X3

i −
P

Xi

P
X4

i

P
Xi

P
X3

i − (
P

X2
i )2P

X2
i

P
X3

i −
P

Xi

P
X4

i −(
P

X2
i )2 + (n−m)

P
X4

i

P
Xi

P
X2

i − (n−m)
P

X3
iP

Xi

P
X3

i − (
P

X2
i )2

P
Xi

P
X2

i − (n−m)
P

X3
i (n−m)

P
X2

i − (
P

Xi)
2

3
5

where

∆r = −(
X

X2
i )3 + 2

X
Xi

X
X2

i

X
X3

i − (
X

Xi)
2
X

X4
i − (n−m)(

X
X3

i )2 + (n−m)
X

X2
i

X
X4

i

Define

G1(d) =

∫ 1

d

xfX(x)dx, G2(d) =

∫ 1

d

x2fX(x)dx,

G3(d) =

∫ 1

d

x3fX(x)dx, G4(d) =

∫ 1

d

x4fX(x)dx
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and

1

(n−m)3
∆r

−→ −G3
2(d

0)

(1− FX(d0))3
+

2G1(d
0)G2(d

0)G3(d
0)

(1− FX(d0))3
− G2

1(d
0)G4(d

0)

(1− FX(d0))3
− G2

3(d
0)

(1− FX(d0))2
+

G2(d
0)G4(d

0)

(1− FX(d0))2

, δqr(d
0)

Then

V ar(
√

n(β̂ − β0)) =
1

(1− FX(d0))3δqr(d0)
V (d0)σ2

The elements of V (d0) are:

v11 = G2(d
0)G4(d

0)−G2
3(d

0)

v22 = −G2
2(d

0) + G4(d
0)(1− FX(d0))

v33 = G2(d
0)(1− FX(d0))−G2

1(d
0)

v12 = v21 = G2(d
0)G3(d

0)−G1(d
0)G4(d

0)

v13 = v31 = G1(d
0)G3(d

0)−G2
2(d

0)

v23 = v32 = G1(d
0)G2(d

0)−G3(d
0)(1− FX(d0))

Then

h(·) =
1

FX(d0)δql(d0)

[
w11(d

0)d0 + w12(d
0)d02

+1/3(w22(d
0) + 2w13(d

0))d03
+ 1/2w23(d

0)d04
+ 1/5w33(d

0)d05
]

+
1

(1− FX(d0))δqr(d0)

[
v11(d

0)(1− d0) + v12(d
0)(1− d02

)

+1/3(v22(d
0) + 2v13(d

0))(1− d03
) + 1/2v23(d

0)(1− d04
)

+1/5v33(d
0)(1− d05

)
]

+(SNR)2 1

fX(d0)
EV

where wij(d
0) and vij(d

0) are the (i, j)th element in W (d0) and V (d0), respectively.

By substituting d0 for d̂1 from the initial samples, we have
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H1(d̂1) = 1/2(λ2L
2
n + λ1(d̂

2
1 − L2

n))

H2(d̂1) = 1/3(λ2L
3
n + λ1(d̂

3
1 − L3

n))

H3(d̂1) = 1/4(λ2L
4
n + λ1(d̂

4
1 − L4

n))

H4(d̂1) = 1/5(λ2L
5
n + λ1(d̂

5
1 − L5

n))

G1(d̂1) = 1/2(λ1(U
2
n − d̂2

1) + (1− λ2Ln − 2λ1cn)(1 + Un))

G2(d̂1) = 1/3(λ1(U
3
n − d̂3

1) + (1− λ2Ln − 2λ1cn)(1 + Un + U2
n))

G3(d̂1) = 1/4(λ1(U
4
n − d̂4

1) + (1− λ2Ln − 2λ1cn)(1 + Un + U2
n + U3

n))

G4(d̂1) = 1/5(λ1(U
5
n − d̂5

1) + (1− λ2Ln − 2λ1cn)(1 + Un + U2
n + U3

n + U4
n))

We seek to minimize the surrogate expression

hqq(·) =
1

FX(d̂1)δql(d̂1)

[
w11(d̂1)d̂1 + w12(d̂1)d̂

2
1

+1/3(w22(d̂1) + 2w13(d̂1))d̂
3
1 + 1/2w23(d̂1)d̂

4
1 + 1/5w33(d̂1)d̂

5
1

]

+
1

(1− FX(d̂1))δqr(d̂1)

[
v11(d̂1)(1− d̂1) + v12(d̂1)(1− d̂2

1)

+1/3(v22(d̂1) + 2v13(d̂1))(1− d̂3
1) + 1/2v23(d̂1)(1− d̂4

1)

+1/5v33(d̂1)(1− d̂5
1)

]

+ ̂(SNR)
2 1

fX(d̂1)
ÊV

4.1.5 Other Models

In some practical problems, we need to consider models with polynomials of dif-

ferent degrees on either side of the change point. The corresponding optimization

problems follow as special cases of the general parametric model. In this section, we

provide expressions for the objective functions corresponding to the following mod-

els: constant-linear, linear-constant, linear-quadratic, and quadratic-linear. vij’s and

wij’s have the same connotations as before.

1. Constant–Linear Model

hcl(·) =
d̂1

FX(d̂1)
+

(1− d̂1)

(1− FX(d̂1))2δ2

G2(d̂1) +
(1− d̂3

1)

3(1− FX(d̂1))δ2

− (1− d̂2
1)

(1− FX(d̂1))2δ2

G1(d̂1) + ̂(SNR)
2 1

fX(d̂1)
dEV
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2. Constant–Quadratic Model

hcq(·) =
d̂1

FX(d̂1)

+
1

(1− FX(d̂1))δ1(d̂1)

h
v11(d̂1)(1− d̂1) + v12(d̂1)(1− d̂2

1)

+1/3(v22(d̂1) + 2v13(d̂1))(1− d̂3
1) + 1/2v23(d̂1)(1− d̂4

1) + 1/5v33(d̂1)(1− d̂5
1)
i

+ ̂(SNR)
2 1

fX(d̂1)
dEV

3. Linear–Quadratic Model

hlq(·) =
d̂1

F 2
X(d̂1)δ1

H2(d̂1) +
d̂3
1

3FX(d̂1)δ1

− d̂2
1

FX(d̂1)2δ1

H1(d̂1)

+
1

(1− FX(d̂1))δqr(d̂1)

h
v11(d̂1)(1− d̂1) + v12(d̂1)(1− d̂2

1)

+1/3(v22(d̂1) + 2v13(d̂1))(1− d̂3
1) + 1/2v23(d̂1)(1− d̂4

1) + 1/5v33(d̂1)(1− d̂5
1)
i

+ ̂(SNR)
2 1

fX(d̂1)
dEV

4. Quadratic–Linear Model

hql(·) =
1

FX(d̂1)δql(d̂1)

h
w11(d̂1)d̂1 + w12(d̂1)d̂

2
1

+1/3(w22(d̂1) + 2w13(d̂1))d̂
3
1 + 1/2w23(d̂1)d̂

4
1 + 1/5w33(d̂1)d̂

5
1

i

+
(1− d̂1)

(1− FX(d̂1))2δ2

G2(d̂1) +
(1− d̂3

1)

3(1− FX(d̂1))δ2

− (1− d̂2
1)

(1− FX(d̂1))2δ2

G1(d̂1)

+ ̂(SNR)
2 1

fX(d̂1)
dEV

4.1.6 Numerical Results of Optimal Allocations

In Table 4.2-4.3, we provide optimal allocations in the left and middle parts for five

models, five locations of the change point and four values of SNR with n1 = n2 = 500

and n1 = n2 = 100. The allocation is not monotonically increasing or decreasing with

SNR. If we fix SNR and the location of the change point, the allocation in the middle

part is decreasing as the complexity of the model increases. It is reasonable, since

we expect to have more samples from the outside of the neighborhood to improve

the performance of the regression function.
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C-C C-L L-L L-Q Q-Q
SNR d0 left mid. left mid. left mid. left mid. left mid.

0.2 0 .7725 0 .4934 .2079 .3295 .0739 .2599 .2342 .2551
0.4 0 .9628 .1010 .4740 .3003 .3216 .1159 .2610 .3363 .2440

2 0.5 0 1 .1471 .4660 .3395 .3210 .1372 .2664 .3785 .2429
0.6 .0372 .9628 .1918 .4613 .3781 .3216 .1612 .2755 .4198 .2440
0.8 .2274 .7726 .2884 .4638 .4632 .3287 .2323 .3265 .5096 .2567
0.2 0 .7685 .0001 .4868 .2188 .3126 .0770 .2468 .2490 .2351
0.4 0 .9602 .1093 .4581 .3080 .3072 .1168 .2478 .3452 .2281

5 0.5 0 1 .1556 .4496 .3467 .3067 .1373 .2523 .3863 .2274
0.6 .0398 .9602 .2008 .4436 .3848 .3072 .1603 .2598 .4268 .2281
0.8 .2315 .7685 .2984 .4410 .4686 .3126 .2216 .3310 .5167 .2341
0.2 0 .8560 0 .5285 .1991 .3808 .0800 .3203 .2304 .2957
0.4 0 1 .0274 .5761 .2796 .3727 .1210 .3231 .3194 .2866

8 0.5 0 1 .0697 .5686 .3141 .3718 .1415 .3287 .3572 .2857
0.6 0 1 .1099 .5648 .3478 .3727 .1642 .3376 .3940 .2865
0.8 .1440 .8560 .1924 .5700 .4201 .3808 .2246 .3378 .4844 .2861
0.2 0 1 0 .6284 .1583 .5137 .0759 .4615 .1893 .4233
0.4 0 1 0 .6788 .2222 .5031 .1137 .4663 .2638 .4114

15 0.5 0 1 0 .7058 .2492 .5015 .1318 .4732 .2949 .4102
0.6 0 1 0 .7351 .2750 .5026 .1509 .4833 .3248 .4114
0.8 0 1 0 .8077 .3281 .5136 .1994 .5182 .3877 .4217

Table 4.2: Optimal allocations, n1 = n2 = 500.

4.2 Optimal λ for Estimating Regression Function

Recall the adaptive two-stage procedure we introduced in Chapter 3. The updated

estimate of the change–point is computed by minimizing

Pn2 [{(w − ψl(β̂l,n1 , u))2 I(u ≤ d) + (w − ψu(β̂u,n1 , u))2 I(u > d)]

We are interested in selecting the allocation parameter λ to improve the model’s

performance as a whole. We naturally want to focus attention on the quality of

the estimated regression parameters from the first stage as well as the change point

estimator from the second stage. Therefore, another optimal selection criterion is

defined. Moreover, optimization problems are derived to the piecewise–constant

model, the linear–linear model and the linear–quadratic model and are extended to

the general parametric model.
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C-C C-L L-L L-Q Q-Q
SNR d0 left mid. left mid. left mid. left mid. left mid.

0.2 0 .9951 0 .6220 .0852 .5676 .0237 .4982 .0952 .5036
0.4 0 1 0 .6868 .2010 .5253 .0988 .4894 .2190 .4698

2 0.5 0 1 0 .7231 .2390 .5219 .1260 .5017 .2672 .4656
0.6 0 1 0 .7653 .2738 .5253 .1542 .5231 .3110 .4700
0.8 .0049 .9951 0 .9089 .3471 .5677 .2262 .6187 .4012 .5036
0.2 0 .9864 0 .5966 .1567 .4838 .0697 .4248 .1757 .4045
0.4 0 1 0 .6571 .2347 .4691 .1145 .4279 .2724 .3833

5 0.5 0 1 0 .6889 .2662 .4677 .1354 .4356 .3093 .3813
0.6 0 1 0 .7234 .2962 .4691 .1578 .4478 .3443 .3833
0.8 .0136 .9864 .0500 .7622 .3595 .4838 .2204 .4957 .4168 .3991
0.2 0 1 0 .6663 .1328 .5686 .0653 .5171 .1512 .4889
0.4 0 1 0 .7116 .1979 .5537 .1055 .5209 .2355 .4674

8 0.5 0 1 0 .7367 .2239 .5523 .1237 .5289 .2673 .4654
0.6 0 1 0 .7647 .2484 .5537 .1426 .5409 .2971 .4674
0.8 0 1 0 .8390 .2986 .5686 .1931 .5835 .3601 .4884
0.2 0 1 0 .7777 .0901 .7056 .0497 .6659 .1026 .6390
0.4 0 1 0 .8062 .1369 .6915 .0812 .6694 .1685 .6171

15 0.5 0 1 0 .8226 .1549 .6901 .0943 .6767 .1925 .6150
0.6 0 1 0 .8414 .1716 .6915 .1074 .6878 .2145 .6170
0.8 0 1 0 .8934 .2043 .7056 .1387 .7282 .2578 .6385

Table 4.3: Optimal allocations, n1 = n2 = 100.

4.2.1 Piecewise–Constant Model

We start with a simple step regression model and define the expected L2 error

˜EL2 as

E

∫
[[α̂n1I{x ≤ d̂n2}+ β̂n1I{x > d̂n2} − α0I{x ≤ d0} − β0I{x > d0}]2]dx

= E

∫
[I{d̂n2 ≤ d0}[(α̂n1 − α0)

2d̂n2 + (β̂n1 − β0)
2(1− d0) + (β̂n1 − α0)

2(d0 − d̂n2)]

+I{d̂n2 > d0}[(α̂n1 − α0)
2d0 + (β̂n1 − β0)

2(1− d̂n2) + (β0 − α̂n1)
2(d̂n2 − d0)]]dx

=
σ2

n1+γ
E

[
I{d̂n2 ≤ d0}

[
n(α̂n1 − α0)

2

σ2
nγ d̂n2 +

n(β̂n1 − β0)
2

σ2
nγ(1− d0)

+(
β̂n1 − α0

σ
)2n1+γ(d0 − d̂n2)

]

+I{d̂n2 ≤ d0}
[

n(α̂n1 − α0)
2

σ2
nγd0 +

n(β̂n1 − β0)
2

σ2
nγ(1− d̂n2)

+(
β0 − α̂n1

σ
)2n1+γ(d̂n2 − d0)

]]

Note that (α̂n1 − α0)
2(d̂n2 − d0), (β̂n1 − α0)

2(d̂n2 − d0), (β̂n1 − α0)
2(d̂n2 − d0) and

(β0 − α̂n1)
2(d̂n2 − d0) have faster rate of convergence than 1/n2, since the estimate
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from the second stage has an accelerated rate of convergence compared with the

classical procedure, which is one of our main results in Chapter 3. Then

˜EL2 =
σ2

n1+γ
E

[
n(α̂− α0)

2

σ2
nγd0 +

n(β̂ − β0)
2

σ2
nγ(1− d0)

+(
β0 − α0

σ
)2n1+γ|d̂n2 − d0|

]
+ o(1/n1+γ)

Again, by asymptotic normalities of
√

n(α̂−α0)/σ and
√

n(β̂−β0)/σ, we obtain the

asymptotic expression of the expected L2 error as following:

˜EL2 =
σ2

n1+γ

[
1

λ

(
nγd0

FX(d0)
+

nγ(1− d0)

1− FX(d0)

)
+ (SNR)2(

1− λ

λ
)γ2K

1

(1− λ)1+γ
E(V )

]

+o(1/n1+γ)

=
σ2

n1+γ

[
1

λ

(
nγd0

FX(d0)
+

nγ(1− d0)

1− FX(d0)

)
+ (SNR)2 2K

λγ(1− λ)
E(V )

]
+ o(1/n1+γ)

Recalling the adaptive strategies we developed in Section 3.2, take K = Cζn
−(1−γ)
1 ,

where Cζ is the ζth upper quantile of MSNR,Z,1. We usually select very small Cζ

to make the ‘zoom-in’ neighborhood contain d0 with probability close to 1 with

increasing n. Then, we have

˜EL2 =
σ2

n1+γ

[
1

λ

(
nγd0

FX(d0)
+

nγ(1− d0)

1− FX(d0)

)
+ (SNR)2 2Cζn

−(1−γ)
1

λγ(1− λ)
E(V )

]
+ o(1/n1+γ)

=
σ2

n1+γ

[
1

λ

(
nγd0

FX(d0)
+

nγ(1− d0)

1− FX(d0)

)
+ (SNR)2 2Cζn

γ

λ(1− λ)n
E(V )

]
+ o(1/n1+γ)

=
σ2

n

[
1

λ

(
d0

FX(d0)
+

(1− d0)

1− FX(d0)

)
+ (SNR)2 2Cζ

λ(1− λ)n
E(V )

]
+ o(1/n1+γ)

=
σ2

n

[
2

λ
+ (SNR)2 2Cζ

λ(1− λ)n
E(V )

]
+ o(1/n1+γ), (since FX(d0) = d0)

where V follows the same definition as at the beginning of this chapter. What we

want is to minimize [
2

λ
+ (SNR)2 2Cζ

λ(1− λ)n
E(V )

]

under constraint:

0 < λ < 1

Note that the optimization problem above only depends on SNR and sample size n.

It is not related to the location of change point.
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SNR n=500 n=250 n=100
2 .7555 .6967 .6221
5 .7594 .7007 .6257
15 .5944 .5565 .5258

Table 4.4: Optimal selection for allocation parameter λ, piecewise-constant model

4.2.2 Linear-Linear Model

Define

˜EL2ll,n = E

∫
[(α̂n1,1 + α̂n1,2x)I{x ≤ d̂n2}+ (β̂n1,1 + β̂n1,2x)I{x > d̂n2}

−(α0
1 + α0

2x)I{x ≤ d0} − (β0
1 + β0

2x)I{x > d0}]2dx

By the similar derivation as in Section 4.2.1 and the asymptotic normalities of re-

gression parameters, we have the asymptotic expression of the expected L2 error as

following

˜EL2ll,n =

[
p∑

k=1

(V −1
βl

)kkΨ
l
k,k(d

0) + 2
∑
i<j

(V −1
βl

)ijΨ
l
i,j(d

0)

+

q∑

k=1

(V −1
βu

)kkΨ
u
k,k(d

0) + 2
∑
i<j

(V −1
βu

)kkΨ
u
i,j(d

0)

]

+
σ2

n
(SNR)2 2Cζ

λ(1− λ)n
E(V )

where Vβl
and Vβu are equal to (4.4) and (4.5), respectively. And Ψl

ij(d
0) and Ψu

ij(d
0)

are the same as in Section 4.1.3. Therefore, we have

˜EL2ll,n ≡ M?
ll,n,1 + M?

ll,n,2 + M?
ll,n,3 + o(1/n1+γ)

where

M?
ll,n,1 =

σ2

n1+γ

1

λ

[
nγd0

FX(d0)2δ1

∫ d0

0

x2fX(x)dx +
nγd03

3FX(d0)δ1

− nγd02

FX(d0)2δ1

∫ d0

0

xfX(x)dx

]
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M?
ll,n,2 =

σ2

n1+γ

1

λ

[
nγ(1− d0)

(1− FX(d0))2δ2

∫ 1

d0

x2fX(x)dx +
nγ(1− d03

)

3(1− FX(d0))2δ2

− nγ(1− d02
)

(1− FX(d0))2δ2

∫ 1

d0

xfX(x)dx

]

M?
ll,n,3 =

σ2

n1+γ
(SNR)2 2K

λγ(1− λ)
E(V )

Then we have

˜EL2ll,n =
σ2

n1+γ

1

λ

[
nγd0

FX(d0)2δ1

H2(d
0) +

nγd03

3δ1FX(d0)
− nγd02

FX(d0)2δ1

H1(d
0)

]

+
σ2

n1+γ

1

λ

[
nγ(1− d0)

(1− FX(d0))2δ2

G2(d
0) +

nγ(1− d03
)

3δ2(1− FX(d0))

− nγ(1− d02
)

(1− FX(d0))2δ2

G1(d
0)

]

+
σ2

n1+γ
(SNR)2 2K

λγ(1− λ)
E(V )

Since we know that

FX(d0) = d0,

according to our two-stage procedure in which we select covariate values uniformly,

we can obtain

˜EL2ll,n

=
σ2

n1+γ

1

λ

[
nγd02

6δ1

+
nγ(1− d0)2

6δ2

]
+

σ2

n1+γ
(SNR)2 2K

λγ(1− λ)
E(V ) + o(

1

n1+γ
)

Plugging in K = 2Cζn
−(1−γ)
1 and FX(d0) = d0, this expected L2 error simplifies to

σ2

n

[
4

λ
+ (SNR)2 2Cζ

λ(1− λ)n
E(V )

]
, h?(λ).

From this expression, note that it only depends on SNR and sample size n, as shown

through the results of our simulated studies (in Tabel 4.5). We draw a picture of

the objective function for n = 250 and SNR=5 (Figure 4.8), the optimal solution is

around .76, which is consistent with the result is Table 4.5.
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SNR n=500 n=250 n=100
2 .8097 .7555 .6777
5 .8131 .7594 .6817
15 .6448 .5944 .5471

Table 4.5: Optimal selection for allocation parameter λ, linear-linear model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3
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5

5.5

6

6.5

λ

Figure 4.8: Linear-linear model, log(h?) ∼ λ, SNR=5, n=250

4.2.3 Linear-Quadratic Model.

In a special case, consider, for example, a linear-quadratic model,

˜EL2
?

lq,n =

∫
[(α̂n1,1 + α̂n2,2x)I{x ≤ d̂n2}+ (β̂n1,1 + β̂n1,2x + β̂n1,3x

2)I{x > d̂n2}

−(α0
1 + α0

2x)I{x ≤ d0} − (β0
1 + β0

2x + β0
3x

2)I{x > d0}]2dx

= h?(λ, n, d0, SNR) + o(1/n1+γ)

where

h?(λ, n, d0, SNR) = M?
lq,n,1 + M?

lq,n,2 + M?
lq,n,3

with
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M?
lq,n,1 = Mll,1 =

σ2

n1+γ

1

λ

"
nγd02

6δ1

#
=

σ2

n

2

λ

M?
lq,n,2 =

σ2

n1+γ
· nγ

(1− FX(d0))δqr(d0)λ

h
v11(d

0)(1− d0) + v12(d
0)(1− d02

)

+1/3(v22(d
0) + 2v13(d

0))(1− d03
) + 1/2v23(d

0)(1− d04
) + 1/5v33(d

0)(1− d05
)
i

=
σ2

n
· 1

(1− FX(d0))δqr(d0)λ

h
v11(d

0)(1− d0) + v12(d
0)(1− d02

)

+1/3(v22(d
0) + 2v13(d

0))(1− d03
) + 1/2v23(d

0)(1− d04
) + 1/5v33(d

0)(1− d05
)
i

Mlq,n,3? =
σ2

n1+γ
(SNR)2

2K

λγ(1− λ)
E(V )

=
σ2

n
(SNR)2

2Cζ

λ(1− λ)n
E(V )

where vij(d
0) is the (i, j)th element in V (d0) from Section 4.1. The optimal selections

for the allocation parameter λ are shown in the following tables (Table 4.6 and Table

4.7). The optimal solutions are depending on SNR, sample size n and the location

of change point.

SNR d0 = .2 d0 = .4 d0 = .5 d0 = .6 d0 = .8
2 .8060 .8197 .8255 .8307 .8399
5 .8094 .8230 .8287 .8339 .8429
8 .7464 .7622 .7690 .7752 .7861

100 .5061 .5074 .5080 .5086 .5098

Table 4.6: Optimal selection of allocation parameter λ, n=500, linear-quadratic model

SNR d0 = .2 d0 = .4 d0 = .5 d0 = .6 d0 = .8
2 .6734 .6896 .6967 .7033 .7151
5 .6773 .6936 .7007 .7073 .7192
8 .6141 .6282 .6346 .6406 .6517

100 .5013 .5015 .5016 .5018 .5020

Table 4.7: Optimal selection of allocation parameter λ, n=100, linear-quadratic model

Tables 4.5- 4.7 show that the optimal λ’s are usually bigger than half, which is

reasonable, since we put more attention on estimating the regression function from

the first stage. Therefore, we would like to put a relatively bigger amount of budget

in the first stage.
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4.2.4 General Parametric Model.

Now, let us think about extending to the general parametric model. Using the

notation in Section 4.1.2, we seek to minimize

h?
par =

σ2

nλ

[
p∑

k=1

(V −1
βl

)kkΨ
l
k,k(d

0) + 2
∑
i<j

(V −1
βl

)ijΨ
l
i,j(d

0)

+

q∑

k=1

(V −1
βu

)kkΨ
u
k,k(d

0) + 2
∑
i<j

(V −1
βu

)kkΨ
u
i,j(d

0)

]

+
σ2

n
(SNR)2 2Cζ

λ(1− λ)n
E(V )

Note that our objective functions usually depend on d0 and SNR, however, in

practice, both of them are unknown. Therefore, we need use partial budget to

conduct a one-stage procedure to obtain the estimate of change point as well as the

estimate of SNR before searching for the optimal λ for estimating regression function.

4.3 Comparing the Two Allocation Strategies

To compare these two criterions, we select same total sample sizes n = 100 and n =

500 on the piecewise constant model, the linear-linear model, the linear-quadratic

model and the quadratic-quadratic model. We use true d0 and SNR in all simulation

studies for comparison. In the first criterion, n/2 samples are used in each stage. We

calculate those scaled expected L2 errors of optimal selections from two versions as

shown in Table 4.8-4.15. In general, the first criterion is better than the second one.

But the second one is connected with our proposed two-stage procedure in Chapter

3, which gives us insight on how to allocate samples in each stage for estimating the

regression function.

Remark: We observe that the optimal λ does not depends on the location of d0

when the polynomial on either side of the change point has the same degree. It is not

hard to obtain this conclusion on the piecewise-constant model and the linear-linear

model as we derived above. Our simulations suggest that the quadratic-quadratic
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model displays the same feature, but it does not seem easy to verify it algebraically.

SNR n
σ2 EL2 of 1st criterion n

σ2 EL2 of 2nd criterion
2 4.3385 8.1885
5 4.2311 7.9596
8 6.9606 13.6276
15 19.4233 38.7434
100 758.1298 1516.3

Table 4.8: Comparison of optimal selections, n = 100, piecewise-constant.

SNR d0 n
σ2 EL2 of 1st criterion n

σ2 EL2 of 2nd criterion
.2 2.4121
.4 2.4677

2 .5 2.4677 3.9132
.6 2.4677
.8 2.4121
.2 2.3867
.4 2.4462

5 .5 2.4462 3.8547
.6 2.4462
.8 2.3867
.2 2.9885
.4 2.9921

8 .5 2.9921 5.2176
.6 2.9921
.8 2.9885
.2 5.4847
.4 5.4847

15 .5 5.4847 10.5917
.6 5.4847
.8 5.4847
.2 153.2260
.4 153.2260

100 .5 153.2260 306.4389
.6 153.2260
.8 153.2260

Table 4.9: Comparison of optimal selections, n = 500, piecewise-constant.

4.4 Data Application

Both criterions are used on the motivating application. The total budget was still

set to n = 70. For the first criterion, we set λ = .5. In the first stage, 35 samples

were obtained from a uniform distribution. SNR is estimated from the first stage,

ˆSNR = 5.23. Using “fmincon” in Matlab, we found that the optimal allocation

of samples for the second stage is (.2032, .4946, .3022). The estimated change-point
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SNR d0 n
σ2 EL2 of 1st criterion n

σ2 EL2 of 2nd criterion
.2 6.7473
.4 7.6728

2 .5 7.7772 11.2555
.6 7.6728
.8 6.7473
.2 8.0664
.4 8.6654

5 .5 8.7257 711.0087
.6 8.6654
.8 8.0664
.2 12.4800
.4 13.2222

8 .5 13.2957 16.9786
.6 13.2222
.8 12.4800
.2 29.1884
.4 30.4860

15 .5 30.6068 42.4699
.6 30.4860
.8 29.1884
.2 809.8291
.4 824.1190

100 .5 825.3000 1520.25
.6 824.1190
.8 809.8291

Table 4.10: Comparison of optimal selections, n = 100, linear-linear.

from the second stage is d̂n2 = .796 with a 95% confidence interval (.7889, .8027)(see

left panel of Figure 4.9 ). The depicted fitted regression models are based on the

second stage estimates.

For the second criterion, we use the estimated SNR from the first criterion and set

ζ = .0005. The optimal allocation for λ is .6219. Therefore, 43 samples are obtained

from a uniform distribution in the first stage. The remaining 27 samples from a

uniform distribution on the “zoom-in” neighborhood gave an estimate d̂n2 = .796

with a 95% confidence interval (.7890, .8037) (see right panel of Figure 4.9). The

depicted fitted regression models are based on the first stage estimates.
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SNR d0 n
σ2 EL2 of 1st criterion n

σ2 EL2 of 2nd criterion
.2 4.8328
.4 5.2182

2 .5 5.2599 3.9132
.6 5.2182
.8 4.8328
.2 4.9020
.4 5.2461

5 .5 5.2844 3.8547
.6 5.2461
.8 4.9020
.2 6.2137
.4 6.5873

8 .5 6.6286 5.2176
.6 6.5873
.8 6.2137
.2 10.8609
.4 11.3384

15 .5 11.3908 10.5917
.6 11.3384
.8 10.8609
.2 185.7516
.4 187.7338

100 .5 187.9448 306.4389
.6 187.7338
.8 187.7516

Table 4.11: Comparison of optimal selections, n = 500, linear-linear.
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Figure 4.9: Sampled points (from 1st stage solid circles and from 2nd stage open circles) together
with the fitted parametric models and estimated change point, based on a total budget
of n = 70 points, obtained from the two-stage adaptive procedure with sampling from a
non-uniform distribution in the second stages (left panel) and from optimal allocation
for λ (right panel).
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SNR d0 n
σ2 EL2 of 1st criterion n

σ2 EL2 of 2nd criterion
.2 8.0919 10.9594
.4 8.8326 12.1330

2 .5 8.8035 12.7101
.6 8.5686 13.2815
.8 7.3047 14.4093
.2 9.8618 10.7144
.4 10.2252 11.8811

5 .5 10.1099 12.4549
.6 9.8301 13.0230
.8 8.6572 14.1444
.2 14.7650 16.6541
.4 15.1831 17.9417

8 .5 15.0232 18.5752
.6 14.6583 19.2026
.8 13.1672 20.4405
.2 32.6919 42.1037
.4 33.3915 43.5609

15 .5 33.0948 44.2821
.6 32.4626 44.9986
.8 30.1652 46.4185
.2 824.9265 1519.9
.4 834.7703 1521.4

100 .5 833.8909 1522.2
.6 831.5467 1523.0
.8 829.7139 1524.6

Table 4.12: Comparison of optimal selections, n = 100, linear-quadratic.
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SNR d0 n
σ2 EL2 of 1st criterion n

σ2 EL2 of 2nd criterion
.2 6.1935 6.2102
.4 6.4377 7.1941

2 .5 6.3727 7.0803
.6 6.1994 8.1633
.8 5.4374 9.1209
.2 6.2815 6.1410
.4 6.4910 7.1209

5 .5 6.4299 7.6052
.6 6.2714 8.0863
.8 5.6030 9.0404
.2 7.8225 7.7118
.4 8.0313 8.7720

8 .5 7.9560 9.2944
.6 7.7748 9.8125
.8 7.0225 10.8372
.2 13.0989 13.4997
.4 13.3248 14.7331

15 .5 13.2102 15.3396
.6 12.9612 15.9400
.8 11.9539 17.1246
.2 195.5964 310.01
.4 196.2392 311.58

100 .5 195.6492 312.37
.6 194.5099 313.16
.8 189.9790 314.73

Table 4.13: Comparison of optimal selections, n = 500, linear-quadratic.
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SNR d0 n
σ2 EL2 of 1st criterion n

σ2 EL2 of 2nd criterion
.2 9.0405
.4 9.7763

2 .5 9.8758 14.1291
.6 9.7763
.8 9.0405
.2 10.5164
.4 11.4877

5 .5 11.5959 13.8658
.6 11.4877
.8 10.5164
.2 15.5094
.4 16.7195

8 .5 16.8560 20.1330
.6 16.7195
.8 15.5094
.2 33.7251
.4 35.4574

15 .5 35.6783 46.0651
.6 35.4574
.8 33.7251
.2 838.9074
.4 842.2476

100 .5 842.5248 1524.2
.6 842.2476
.8 838.9149

Table 4.14: Comparison of optimal selections, n = 100, quadratic-quadratic.
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SNR d0 n
σ2 EL2 of 1st criterion n

σ2 EL2 of 2nd criterion
.2 6.8773
.4 7.5212

2 .5 7.5900 8.8825
.6 7.5212
.8 6.8773
.2 7.0656
.4 7.6207

5 .5 7.6819 8.8028
.6 7.6207
.8 7.0664
.2 8.7246
.4 9.3332

8 .5 9.4000 10.5823
.6 9.3332
.8 8.7271
.2 14.2936
.4 15.0776

15 .5 15.1625 16.8303
.6 15.0776
.8 14.2947
.2 199.7810
.4 203.1658

100 .5 203.5084 314.3374
.6 203.1658
.8 199.7828

Table 4.15: Comparison of optimal selections, n = 500, quadratic-quadratic.



CHAPTER 5

Application to Jump Boundary Curve Detection

5.1 Jump Boundary Curve Detection Problem Formulation and Litera-
ture Review

In this chapter, we turn our focus on estimating boundaries in high dimensional

data. Specially, the underlying response surface arises from data (yi, x1i, x2i), with y

being the response variable. The model is given by

yi = f1(x1i, x2i)Ix2i≥g(x1i) + f2(x1i, x2i)Ix2i<g(x1i) + εi

where y is the response surface defined by 2-dimensional step functions, f1(x1, x2)

and f2(x1, x2), respectively, with g(·) the jump boundary curve we are interested in

identifying and estimating and ε a mean zero, homoscedastic error term. The main

motivation of the proposed approach is to identify and model the jump boundary

curve in an as computationally efficient manner as possible.
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Figure 5.1: Three-dimension plot of Example 1
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Budget constraints dictate that a total of N = n1 × n2 samples can be obtained,

where n1 is the number of points to be allocated along the X1 direction and n2 along

the X2 direction for each selected value of X1. We start by examining the case where

all the budget is used by adopting appropriately the multi-stage procedures to the

present setting. We then briefly discuss a strategy that economizes on points to be

allocated.

5.1.1 Literature Review

Qiu (2002) presented a jump detection procedure based on local smoothing tech-

niques. We will review more about it later when comparing it with our methodology.

Chu et al. (1998) discuss an approach to a problem called “sigma filter” and pro-

posed an improvement based on running M estimation. It is about edge-preserving

smoothers problem in image processing. Classical smoothing is inappropriate when

the image has jumps or edges between regions, because smoothing tends to blur the

edge. Therefore, an M estimator is defined and is used to recover the target curve.

The idea is developed in the context of one-dimensional nonparametric regression

with jumps. Consider data of the form

Yi = m(xi) + εi, i = 1, . . . , n

where m(x) is the target curve which is smooth except for some jump continuities, xi

are assumed equally spaced on the unit interval, and εi are independent, identically

distributed random variables with mean zero. To get an edge-preserving smoother,

Chu et al. (1998) defined m̂M(xi) to be the local minimizer of the M function S(θ).

The similarity of this problem to the boundary jump detection one allows one to use

this methodology for the latter problem as well.

Hall and Molchanov (2003) study the problem under consideration and propose

a methodology based on “sequential refinement with reassessment”; the main idea

is that at every step of the procedure there is an assesment of the correctness of
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each sequential result, together with a reappraisal of previous results in case the

proposed test statistic comes up significant. They focus on a univariate problem,

but also discuss how the 2-dimensional case can be handled through a combination

of univariate results. Specifically, they assume that the function f is defined on

an interval l, and has a jump discountinuity at a point γ in the interior of l. For

differentiable functions f1 and f2 we have that

y = f(x) = f(x|γ) = f1(x) + f2(x)I{x>γ},

where f can be observed at points x = xi ∈ l, subject to error: yi = f(xi)+εi, where

the design points xi are open to sequential choice and the errors εi are independent

and identically distributed with zero mean. A recursive method for estimating γ was

introduced in this paper.

In practice this technique would be applied only after a “pilot” estimator, γ̃, had

been constructed using a portion of the permitted sample size, n. This would lead

to a preliminary interval l1, a strict subset of l, in which the first estimator in the

recursion would be constructed, using m design points x1 < . . . < xm equally spaced

on l1. l1 is the first of a sequence of confidence sets for the true value of γ. At

the kth stage of the algorithm lk shall be determined. Assume n = lm, where l,m

are positive integers. Each sequential sample will be of size m, and there will be

l stages in the algorithm. In the first stage, distribute m equally spaced points on

the first interval l1 and sample f at those spaces. Under the temporary assumption

that the data are Normally distributed with known variance, compute the statistic

T (γ) associated with a likelihood ratio test of the null hypothesis that f is constant

on l1, against the alternative that f takes different but constant values on either

side of γ. Take γ̂1 to be that value of γ, chosen from among the m design points,

that gives an extremum for the test. For the univariate problem, the splitting point

(γ) corresponds to the the jump boundary. In the spatial case, they strike an arc
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of some radius (related to the property of the jump boundary curve)and centered

at the current point, across the tangent approximation to the curve in the direction

of travel. Then the next estimate was found by applying the sequential refinement

with reassessment (SRR) method to the one-dimensional problem on the arc. From

the first two estimates of points on the curve one may obtain an approximation to

the tangent. Each subsequential estimate was computed by striking an arc across

the most recent tangent estimate and solving the one-dimensional splitting-point

problem on the arc, using SRR method.

5.2 Description of Multi-stage Procedure

It is assumed that due to prior information the boundary curve can be parame-

terized as a function of x1, i.e. the boundary is given by x2 = g(x1) + µ, where µ

is a homoscedastic error term. It is further assume that g(·) is a smooth function of

x1. The proposed procedure is summarized next. (i) Select (x1,1, x1,2, · · · , x1,n1) via

uniform design on X1 direction. (ii) For each fixed x1,i, we estimate the change point

via our two-stage procedure on X2 direction with respect to the surface response

values, and denote it as bi. (iii) A non-parametric model (or spline) ĝ(x1) will be

fitted by use those (x1,i, bi). Pointwise confidence intervals can be constructed as in

Section 3.3.

Given the results established so far following holds

Proposition 5.1. ĝ(x1,i) converges pointwisely to g(x1) as n1 →∞ and n2 →∞.

We illustrate next the performance of the procedure through a number of exam-

ples.

• Example 1:

g(x1) = 0.1 + 0.5e10(14x1−7.2)2 + 0.5e−4(14x1−9.4)2
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• Example 2:

g(x1) =





0.05 + 1.2x1 if x1 ∈ [0, 0.25)

4.1− 15x1 if x1 ∈ [0.25, 0.26)

−0.73 + 3.6x1 if x1 ∈ [0.26, 0.4)

0.9− 0.5x1 if x1 ∈ [0.4, 0.6)

0.075 + 0.87x1 if x1 ∈ [0/6, 1]

• Example 3:

g(x1) = 0.25 sin(10πx1) + 0.5

• Example 4 (same as in Qiu (2002)):

g(x1) = 0.6 sin(πx1) + 0.2
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Figure 5.2: Jump boundary detection from One-stage procedure, Example 1

The results including estimated boundary locations and pointwise confidence inter-

vals are given in Figure 5.2-5.5.Suppose we can obtain 100 × 100 samples for each

example. When we estimate the location of change point on X2 direction, we use
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uniform design to obtain the first stage samples. The reason is: when the sample

size is small, sampling from uniform distribution may not guarantee that there exist

samples on both sides of the true change point. Otherwise, it would lead to a big

bias for estimation. In example 1 as shown in Figure 5.2, for this single simulation,

1
100

∑100
i=1(g(x1,i)− ĝ(x1,i))

2 = .00064
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Figure 5.3: Jump boundary detection from One-stage procedure, Example 2

5.3 Adaptive Procedure for X1

The assumed smoothness of the boundary curve g(·) suggests that one could save

points in the budget by reducing the sampling density along the X1 axis. We discuss

next a qualitative methodology for selection of x1 values. The adaptive procedure

will be illustrated by using the first simulation example discussed in Section 5.1.
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Figure 5.4: Jump boundary detection from One-stage procedure, Example 3
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Figure 5.5: Jump boundary detection from One-stage procedure, Model from Qiu (2002)

1. Start by allocating 20 samples (x1,1, x1,2, · · · , x1,20) via a uniform design on [0,

1].

2. For each x1,i, estimate the change point via the proposed two-stage procedure

along the X2 direction with respect to the surface response and denote it as bi.
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3. Check for possible outliers by adding more samples on selected locations along

the X1 direction. The new points are selected at locations that deviate from

the remaining ones.

4. Use all (x1,i, bi) we have so far to fit a structural change model b(x1) and calculate

its MSE. Note that we only have small number of estimated boundary points.

In general, a simple polynomial model does not work well for g(z), due to the

potential complicated nature of the boundary curve. Hence, structural change

models are considered here which can provide a better approximation of the

form

||g(z)−
k∑

i=1

hi(z)I{z∈Si}|| < ε

where {hi(z)} are polynomials defined on subregions {Si} of the design space

as follows {Si : z ∈ (γi−1, γi]}.

5. Augment new locations on X1 direction;

6. For each new x1,i, estimate the change point on X2 direction with respect to

the surface response.

7. Repeat Step 4, 5 and 6, till the change in the MSE is small enough.

5.3.1 Simulation Examples

1. Example 1

In this example, we find three peaks (see Figure 5.6) after selecting the initial

20 sample along the X1 direction via a uniform design on [0, 1] and estimating

the change point along the X2 direction. . To check if some of them are outliers,

along X1 direction, we select the location around the middle of peak and valley,

add six more samples and estimate corresponding change points. As shown in

Figure 5.7, we doubt that the left one is an outlier. Go on to add two more
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Figure 5.6: Initial 20 samples and change-point estimates, Example 1

new samples on X1 direction and estimate those change–points on X2 direction.

From the Figure 5.8, we decide to treat the left one as an outlier.

We are more interested in the middle part of the boundary,since other parts

are both so flat that we do not want to waste budge on them. A linear–linear–

linear–linear model is selected as our first fitting model for the middle part of

the jump boundary and the MSE is .0016 (as shown in Figure 5.9). The MSE of

the new fitted linear–linear–linear–linear model is .0022 (see Figure 5.10) after

adding four new points.

Eventually, 35 points are used along the X1 direction. A quadratic–quadratic–

quadratic model is fitted with MSE = .0009 (as shown in Figure 5.11). Again,

since it is a simulated example, we know the true boundary curve, we can calcu-

late the MSE of our fitted boundary curve: 1
100

∑100
i=1(g(x1,i)−ĝ∗(x1,i))

2 = .00056.

Compared with the result by using up all budget, our estimated boundary curve

achieves the same performance but only one third of budget is used.

2. Example 2
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Figure 5.7: Add six more samples on X1 direction and obtain estimated boundary locations, Ex-
ample 1

As shown in Figure 5.12 and Figure 5.3, the angle (around .26 on X1 direction)

between the second and the third linear sub-models are so narrow. It is hard

to obtain samples nearby that area if we only spread limited samples uniformly

on the whole data range. We need adaptive sampling strategy to obtain good

samples. We start with 20 samples on X1 direction and estimate the location

of change-point on X2 direction, for each x1,i. Follow our proposed adaptive

procedure, we finally obtain perfectly fitted jump boundary curve by using less

than one-third budget, as shown in Figure 5.13-5.19.

3. Example 3

It is not difficult to detect those type of jump boundary curves as in Figure 5.20.

Look at Figure 5.21, we find that there exists obvious period, which informs us

to add nine new samples each of which is located between a peak and a valley

(see Figure 5.22). Then we have enough boundary points to fit a smooth curve

by cubic-splines (Figure 5.23).
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Figure 5.8: Add two more samples on X1 direction and obtain estimated boundary locations to
check outliers, Example 1
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Figure 5.9: First fitted linear-linear-linear-linear model with MSE=.0016, Example 1
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Figure 5.10: Add four new points and updated linear-linear-linear-linear model with MSE=.0022,
Example 1
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Figure 5.11: Add five more points and fit quadratic-quadratic-quadratic model with MSE=.0009,
Example 1
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Figure 5.12: Three-dimension plot of Example 2
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Figure 5.13: Initial 20 samples, Example 2
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Figure 5.14: Four points are added, Example 2

5.3.2 Comparison with Kernel Smoothing Techniques

Qiu (2002) presented a procedure which simplifies the computation of some exist-

ing kernel-type methods in the statistical literature and adopts more flexible modeling
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Figure 5.15: First fitted model, MSE=0.000028, Example 2
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Figure 5.16: Two more points are added, Example 2
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Figure 5.17: Updated model, MSE=0.000030, Example 2

assumptions.

The underlying regression model is given by

yi = f(x1i, x2i) + εi, i = 1, 2, . . . , n,

where {yi} are observations, {(x1i, x2i)} are design points in design space Ω which
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Figure 5.18: One new point is added, Example 2
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Figure 5.19: Final fitted model, MSE=0.0000029, Example 2

is a connected region in R2, f(x1, x2) is a bivariate regression function which is

continuous in Ω except at the jump locations, and {εi} are iid errors with mean 0

and variance σ2.

For each (x1, x2) ∈ Ω\O(∂Ω, bn), where ∂Ω denotes the boundary point set of

Ω, O(∂Ω, bn) is the border region of Ω, a difference of two weighted averages of the

observations in the upper and lower sided neighborhoods of (x1, x2) is defined as

M
(1)
n (x1, x2). To detect jumps that are perpendicular to the x1-axis, Qiu(1997) de-

fined another quantity RMn(θ, x1, x2) as a difference of two weighted averages of the

observations located in two neighborhood on two different sides of the point (x1, x2)

along the direction of (cos(θ), sin(θ)). To simplify its computation, a difference of

two weighted average of the observations in the left and right sided neighborhoods
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Figure 5.20: Three dimension plot of Example 3
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Figure 5.21: Initial 20 samples, Example 3

of (x1, x2) is defined as M
(2)
n (x1, x2). Then, the following quantity is defined

Mn(x1, x2) = max{|M (1)
n (x1, x2)|, |M (2)

n (x1, x2)|}

as a jump detection criterion; large values of Mn(x1, x2) indicate a possible jump at

(x1, x2). The point set

D̂n := {(x1i, x2i) : Mn(x1i, x2i) ≥ un}

corresponds to the estimate of the true underlying jump locations D := {(x1, x2) :

(x1, x2) is a point on the jump boundaries}, where un is a positive threshold value.

The jump detection procedure searched the x1-axis and x2-axis directions only at

each design point for a possible jump. The computation complexity is increasing

when the number of design points is larger. This idea can be generalized by search-
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Figure 5.22: Nine new points are added, Example 3
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Figure 5.23: Cubic-spline fitting, Example 3

ing more than two directions as follows. Let 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θm < π be m

directions in [0, π), where m ≥ 2 is an integer. At point (x1, x2), Mn(x1, x2) :=

max{|RMn(θi, x1, x2)|, i = 1, 2, . . . , m}. Jump detection improves as more direc-

tions are searched at each design point, however, the procedure spends more com-

putation time at the same time.

We try the same example from Qiu(2002) and consider the regression function

f(x1, x2) = 1
4
(1 − x1)x2 + [1 + 0.2sin(2πx1)]Ix2≥0.6sin(πx1)+0.2, for (x1, x2) ∈ [0, 1] ×

[0, 1] which has a unique jump location curve g(x1) = 0.6 sin(πx1) + 0.2 with jump

magnitude 1+0.2 sin(2πx1). The true regression surface and jump location curve are

shown in figure 5.24. Observations are generated from this model with ε ∼ N(0, σ2)

at design points (x1i, x2j) = (i/n1, j/n1), for i, j = 1, 2, . . . , n1. The sample size
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Figure 5.24: The True Regression Surface and Jump Boundary Curve of the Model from Qiu(2002)

is n = n1 × n1. We take n1 = 100 and σ = 0.5. Figure 5.25 provide the fitting

results. The upper one is the fitted boundary curve by the procedure we propose.

And the lower one is got from Qiu(2002). After four repeats, we obtain the fitted

curve. Compared to the kernel smoothing method, our procedure is much cheaper

and faster.

5.3.3 Discussion

When the jump boundary curve (Figure 5.26) exists only in the middle of (X1, X2)

plane, it is not hard to see the random pattern around those areas where there is no

jumps in reality. Hence, we can ignore those areas and apply our procedure on what

we are interested in.

5.3.4 Future Work

In this section a qualitative methodology was introduced for detection of a jump

boundary curve. In our procedure, a uniform design is used to generate samples

along the X1 direction. For simplicity, we focus on one-stage procedure to describe

possible problems. Suppose we use grid points {i/n1} on the X1 direction, obtain the

change point estimates {b(i/n1)} on the X2 direction for each fixed x1, and obtain

a fitted curve. There are many issues that need to be examined in depth: such as

consistency of the estimates, rate of convergence, asymptotics, confidence bounds,
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Figure 5.25: Comparison of the Fitted Jump Boundary Curves of the Model from Qiu(2002)

and pointwise confidence sets for the 2-dimensional case.
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Figure 5.26: Special Example
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