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CHAPTER I

Introduction

Many interesting AMO (Atomic, Molecular and Optical) physics phenomena can

be understood from a single particle perspective. By studying the details of single

particle dynamics, and summing up contributions from all particles, one can generally

find a satisfying understanding of the ensemble behavior of such particles. Optical

lattices [1], for example, belong to this category.

In atomic systems, however, there are also cases where many body effects can sig-

nificantly modify the physics of the problem. One has to treat the particle-particle

interactions explicitly to correctly describe the physics. Studies of such systems usu-

ally lead to interesting connections between AMO and condensed matter physics. Ac-

tually, AMO systems, because of their exceptional controllability, are ideal platforms

to study many body physics. Over the last decades, interesting many body phenom-

ena, including Bose Einstein condensates [2][3], Mott insulators [4], and fermionic

superfluids have been realized [5][6][7]. Study of these systems has proved to be both

exciting and revealing. In this thesis, I study two such examples: the modifications

of single atom process inside a dielectric [8][9] and the collective behavior of ultra

cold Bose [10] and Fermi gases [11].

1
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1.1 Single Atom Decay Inside a Dielectric

Single particle atomic decay, accompanied by recoil of the source atom is among

the most basic AMO processes. Most theoretical treatments of this problem are

based on a single particle picture. The dynamics of the atom interacting with the

vacuum and external fields are treated for individual atoms. With increasing density

of the environment in which the decaying atom is found, one has to consider the mod-

ification to the decay produced by the environment. This modification of the single

particle process inside an atomic gas is important because precision measurement,

and quantum computation are based on these single particle processes.

Traditionally, such calculations have been carried out using a macroscopically the-

ory [12][13]. The effects of environment atoms are treated as a dielectric. To find

corrections to the single particle processes, various assumptions have been make for

the local environment in which the single particle finds itself. Such calculations are

less than satisfying because they cannot give a unified way of treating the environ-

mental effects. The corrections are based on the model chosen. In addition, there

is not a clear picture on the physical processes that are responsible for particular

corrections.

In this thesis, we develop a microscopic theory to calculate the modification of the

single particle process inside an atomic gas. The effects of the environment atoms

are evaluated perturbatively. Since the theory is quite general, one can apply it to

various single particle processes and follow similar procedures to find modifications

due to the medium. Moreover, because of the microscopic nature of the theory, one

can have clear physical pictures of the underlying mechanisms giving rise to such

modifications.



3

g

e

e

+ +

e

e

g

g

e

g

e

g

e

g

e

=e +  .....

Figure 1.1: Diagrams of an excited atom interacting with the vacuum field

This microscopic theory is applied to two particular single particle processes,

namely, spontaneous decay and photon recoil of a source atom inside a dielectric

medium.

1.1.1 Spontaneous Decay Inside a Dielectric

The spontaneous decay of an excited atom is determined both by the the prop-

erties of the source atom and by the environment. The dependence on the source

atom is obvious. Different kinds of atoms generally have different decay rates. The

dependence on the environment can be illustrated by putting an atom inside a single

mode cavity. In this situation, there is no decay since the atom field dynamics is

reversible.

In a microscopic picture, the spontaneous decay in a vacuum can be understood in

terms of processes of the type depicted in Fig. (1.1). The excited state of the source

atom interacts with the vacuum by radiating and reabsorbing photons [14]. This

process introduce a correction to the self energy of the source atom excited state.

The real part of the self energy gives a correction to the energy shift, while the finite
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imaginary part gives rise to the decay of the source atom excited state. In a medium,

the intermediate state, the ground state with one photon is modified. The photon

radiated by the source atom can be scattered by the medium atoms. This modifies

the photon propagator and thereby modifies the imaginary part of the self energy of

the source atom. This observation is the basis of our microscopic calculation [8]. In

Chapter 2, we calculation the contribution to the decay from the process of photons

scattered by the medium atoms.

Most of the experiments done so far used Eu3+ ions as the source radiator

[15][16][17][18], as a dopant into Gd2O3, Y2O3, P bO or B2O3 hosts. The resultant

noncrystalline structure are immersed into liquids, or supercritical CO2, where the

index of refraction can be varied. After exciting the Eu3+ to its excited state, one

measures the fluorescence to determine the decay rate as a function of the environ-

mental index of refraction. These experiments have not yet given conclusive results.

Moreover, since the ions are doped inside crystals, it decay properties may depend

significantly on the properties of the crystal instead of on the liquid or gas used to

modify the environmental index of refraction.

1.1.2 Photon Recoil Inside a Dielectric

In spontaneous decay, the photon radiated by the source atom imparts a momen-

tum to the source atom. At room temperature, it is virtually impossible to resolve

the effect of photon recoil, which is typically 10 KHz in frequency units. On the

other hand, the recoil shift can be observed in laser-cooled gases. In particular, in

the extreme case of a Bose-Einstein condensate, the atoms are cooled to an energy

E = ~f with frequency f = 100 Hz [2][3]. In this case, the recoil energy of the source

is much larger than the relevant energy scale of the problem and one has to take into

account the recoil explicitly.
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The photon recoil momentum in vacuum is just the opposite of the photon mo-

mentum evaluated at the atomic frequency. In order to calculate the modification

of the photon recoil inside a dielectric, we need to consider the process in which

the photon radiated by the source atom is scattered by the medium atoms. This

scattering modifies the energy and momentum that a photon carries. By momentum

conservation, this modifies the recoil momentum imparted to the source atom. This

calculation predicts that the source atom recoils according to the canonical photon

momentum instead of the vacuum photon momentum. This conclusion is consistent

with experimental findings.

Experimentally, the photon momentum inside a medium was measured by immers-

ing mirrors inside a liquid and measuring the photon force on the mirror [19][20].

Recently, with the realization of Bose-Einstein condensate, it is possible to directly

measure the photon recoil by turning off the confining trap of the condensate. Ac-

tually, since the atom-atom interaction can be turned off almost instantaneously,

the time of flight image gives a direct probe of the momentum distribution of the

condensate before expansion. It is found that the photon recoil of the source atom

is n~k where the n is the index of refraction of the medium and k is the photon

wavenumber in vacuum.

1.2 Many body Behavior of Ultra-cold Atomic Gases

These calculations discussed above are essentially single particle calculations.

They include many body corrections as perturbations. In atomic systems, there

are occasions where the above approach does not suffice to solve the problem. One

has to work in the many-body basis from the very beginning.

With the rapid progress in cold atom experiments, several interesting many body
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systems have been realized. Studies of such systems can give insight to the study

of similar systems in other fields. For example, the study of Bose-Einstein con-

densates, fermion superfluids and the so-called BEC-BCS crossover, in which the

many body ground state continuously change from a BEC type to a BCS type, [5]

[6][7][21][22][23][24][25][26] may shed light on the problem of high-temperature su-

perconductivity. The versatility of atomic systems also allows one to realize systems

that have not yet been considered theoretically. In the following, we present two

such examples.

1.2.1 Tonks Girardeau Gas with a Local Impurity

The so-called Tonks Girardeau gas was proposed several decades ago by Tonks in

the classical case and Girardeau for the quantum case [27]. It is a one dimensional

Bose gas whose inter-particle interaction it taken to be infinitely positive. As a

consequence of the infinite repulsion, the many body wave function has nodes when

two particles overlap. In one dimension, this many body wavefunction is similar to

the free Fermi many body wavefunction. The only difference is that the bosonic

wavefunction is symmetric under permutation while the Fermi wavefunction is anti-

symmetric under permutation of the particles. This observation allows one to obtain

exact solutions of the many body problem.

This system has been realized recently by two groups [28][29]. In these experi-

ments, particles are confined by optical traps. By increasing the transverse confine-

ment, one can approach an effective one dimensional problem. In order to reach the

strongly interacting regime, one needs to increase the ratio of the interaction energy

I vs. the kinetic energy K. In a one dimensional homogenous system one can show
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that the ratio of the these energies is equal to

γ =
I

K
=

mg

~2n
, (1.1)

where m is the mass of the particle, g is the interactions strength and n is the one

dimensional particle density. To increase γ, one can either increase the effective

mass, increase the interaction strength, or decrease the density. In the experiments,

the regime with γ ≈ 200 has been achieved.

The impurity problem for the Tonks Girardeau problem is particularly interesting

because it is straightforward to realize in experiments. This can be done by intro-

ducing impurity atoms or introducing external fields. In addition, it is related to

the ion-BEC experiment planned at the University of Michigan. Since the Tonks Gi-

rardeau system is exactly solvable, study of this system may provide some theoretical

insight into the ion-BEC system.

In chapter 4, we solve the problem of a Tonks Girardeau gas in the presence of

a local potential. The single particle density matrix is found as a function of the

local potential strength. The effect of the impurity on the condensate fraction and

conductance of the Tonks Girardeau gas is discussed.

1.2.2 Atomic Fermi Gas with Spatially Modulated Interaction

Tuning interactions among atoms via Feshbach resonance has been one of the

most important techniques discovered in recent atomic experiments [30]. This kind

of controllability allows many applications in the study of many body physics. For

example, using this technique, a BCS-BEC crossover was realized in atomic systems

recently [5][6][7] [21][22][23][24][25][26]. While there are many studies of tuning the

interaction in the time domain [7][22][24] [25][31][32][33] there are few studies on

tuning interaction in the spatial domain. I try to explore this possibility in a Fermi
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gas system.

Experimentally, a degenerate Fermi gas can be prepared by sympathetic cooling

or adiabatic switching from a molecular condensate. The typical Fermi frequency is

in the kHz range and the particle density is about 1012cm−3. Since experiments are

typically done close to resonance, the scattering length approaches infinity. Conse-

quently, the interaction between Fermi atoms is typically large, where the gap can

be of the order of the Fermi energy.

At zero temperature, the attractively interacting Fermi gas becomes a superfluid

by forming Cooper pairs. This the basic picture of the BCS theory. In a typical

situation, the interaction between particles does not depend on the center of mass

coordinate of the interacting particles. With the technique of the Feshbach resonance,

it is possible to have atoms interact differently at different positions. Under this kind

of interaction, the ground state wavefunction acquire some non-trivial changes.

In the case studied in Chapter 5, we consider a periodically modulated interaction.

Using the Bogliubov de Gennes mean field theory, we obtain the ground state and

single particle excitation of the system. It is found that the ground state consists of

non-zero momentum Cooper pairs. This state is similar to the Fulde-Ferrell-Larkin-

Ovchinnikov (FFLO) states [34][35]. The excitation spectrum, on the other hand,

has a multiple gap structure.

1.3 Outlines of the Thesis

In Chapter 2 and 3, the work on the modification of the single particle process by

the many body environment is presented. Spontaneous decay is studied in Chapter 2

while photon recoil is studied in the Chapter 3. In Chapter 4, the study on the Tonks

Girardeau gas with a local potential is presented, and in Chapter 5, the study on
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the ultra-cold fermi gas under spatially modulated interaction is presented. Finally,

in Chapter 6, a summary of the thesis and a discussion of the directions for future

studies are given.



CHAPTER II

Spontaneous Decay of an Atom in a Dielectric

2.1 Introduction

An excited atom decays to its ground state by radiating a photon into vacuum

modes. This phenomena was described theoretically by V. Weisskopf and E. Wigner

in their 1930 paper [36]. The decay rate can be calculated directly from Fermi’s

golden rule and is determined by the density of states to which the system can

decay and the magnitude of the transition matrix elements. It is obvious that the

environment in which the atom finds itself can significantly modify such a process.

In particular, the problem of spontaneous emission from an atom imbedded inside a

dielectric has attracted considerable interest [37][38][40].

Most theoretical treatments of this problem follow a macroscopic approach[12].

In a macroscopic picture, the modification of the photon density of states can be

accounted for directly by assuming an index of refraction for the dielectric. A

more subtle modification, however, arises from local field effects. Based on different

models of the local environment of the imbedded atom, one obtains different types

of local field corrections to the spontaneous decay rate Γ0 of the impurity atom. For

example, if the local environment is modeled as a virtual cavity, the local field can

10
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be calculated as

Elocal =

(
2 + ε

3

)
Eexternal,

which leads to the decay rate of the so-called virtual cavity model,

Γvirtual =
√

ε

(
ε + 2

3

)2

Γ0. (2.1)

Another model known as the ”real” cavity model, involves the assumption that an

empty spherical cavity surrounds the emitter. The local field is

Elocal =
3ε

2ε + 1
Eexternal,

and this gives a decay rate,

Γreal =
√

ε

(
3ε

2ε + 1

)2

Γ0. (2.2)

The quantity ε in the above equations is the permittivity of the dielectric. It is

connected to the microscopic polarizability α by the Lorentz-Lorenz relation

ε = 1 +
Nα

1− 1
3
Nα

,

where N is the dielectric number density.

It is of some interest to expand the decay rate in powers of Na. The first order

term corresponds to the photon scattered by one of the media atoms, and the second

order term corresponds to the photon scattered by two media atoms. Expansions for

the decay rates in powers of Nα yield

Γreal = [1 +
7

6
Nα +

19

72
(Nα)2 + O(Nα)3]Γ0 (2.3)

and

Γvirtual = [1 +
7

6
Nα +

17

24
(Nα)2 + O(Nα)3]Γ0. (2.4)
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To first order in Nα, the real and virtual cavity models give identical results, but

they differ in higher order. To determine the validity range of these macroscopic

models, calculations using a somewhat more fundamental approach are needed. Sev-

eral attempts at such microscopic models involve a polariton approach for crystals

[39], and a Green’s function approach for crystals [41] and disordered dielectrics [42].

In the polariton method, the interaction between the vacuum radiation field and the

crystal atoms is solved exactly; the eigenmodes of this system are the polaritons. The

source atom then decays by radiating polaritons. This polariton calculation agrees

with the virtual cavity result [39]. In the Green’s function approach, the modification

of the decay rate results from scattering of radiation emitted from the source atom

by the dielectric, calculated to all orders in the dielectric density. This calculation

reproduces the virtual cavity result with the source atom at an interstitial position

and the real cavity result with source atom at a substitutional position in the crystal

[41]. For disordered dielectrics, the Green’s function method gives the virtual cavity

result [42].

All the above calculations are carried out in momentum space. For homogenous

media, the use of momentum space can simplify the problem because the momentum

of the photon is conserved when scattering from an infinitely large homogenous

medium. This simplification allows for a non-perturbative calculation of the local

field correction. In calculating the local field correction we are, however, interested

in the short distance behavior (local environment). It is therefore more transparent

to carry out a calculation in configuration space. Such calculations are generally

complicated and the problem can be treated only perturbatively. In our study of the

problem, we used an amplitude method in configuration space.

The amplitude method was first used by M. E. Crenshaw and C. M. Bowden [43]
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and later extended by P. R. Berman and P. W. Milonni [44] to an isotropic dielectric.

The method represents a direct calculation of the modification of the decay rate as

a perturbation series in Nα [43], [44]. To first order in Nα, the radiation emitted by

the source atom is scattered back to the source atom separately by each dielectric

atom; the resultant decay rate agrees with both the virtual and real cavity models

to first order in Nα [44].

In this chapter, the amplitude method is extended to second order by including

scattering events in which the radiation emitted by the source atom is scattered back

to the source atom by a combined scattering from two dielectric atoms. It will be seen

that the result differs from those of both the real and virtual cavity models; however,

when contributions to the decay rate originating from scattering by two dielectric

atoms located at the same physical point are included, the calculation reverts to the

virtual cavity model. The content of this chapter is based in large part on Ref. [8].

2.2 Model Hamiltonian

The physical system consists of a source atom and a medium of dielectric atoms.

The source atom, located at R = 0, has a J = 0 ground state and a J = 1 excited

state, the frequency separation of the ground and excited state denoted by ω0. The

uniformly distributed dielectric atoms have J = 0 ground states and J = 1 excited

states, the frequency separation of the ground and excited state denoted by ω. At

t = 0, the source atom is excited to the m = 0 excited state sublevel, the dielectric

atoms are all in their ground states, and there are no photons in the field. The

process we consider is radiation emitted by the source atom that is scattered by

dielectric atoms back to the source atom. It is assumed that |ω − ω0| /Γ0 À 1 but

that |ω − ω0| / (ω + ω0) ¿ 1 [rotating wave approximation (RWA)].
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We use a multipolar Hamiltonian [45]. The free part is

H0 =
~ω0

2
σz +

∑
j

1∑
m=−1

~ω
2

σ(j)
z (m) + ~ωka

†
kλakλ, (2.5)

where σz = (|2〉 〈2| − |1〉 〈1|), |2〉 and |1〉 are the m = 0 excited and J = 0 ground

state eigenkets of the source atom, respectively, σ
(j)
z (m) =

(
|m〉(j) 〈m| − |g〉(j) 〈g|

)

is the population difference operator between excited state |J = 1,m〉 and ground

state |J = 0, g〉 of dielectric atom j, and akλ is the annihilation operator for a photon

having momentum k and polarization λ. A summation convention is used, in which

any repeated symbol on the right hand side of an equation is summed over, unless

it also appears on the left-hand side of the equations.

The interaction part of the Hamiltonian is,

V = −d0 · D(0)

ε0

− dj ·
D(Rj)

ε0

, (2.6)

where d0 and dj are the dipole operators of the source atom located at the origin

and a dielectric atom located at position Rj respectively. The operator D is the

displacement field having positive frequency component

D+(R) =iε0

∑

k,λ

√
~ωk

2ε0V
ε
(λ)
k akλe

ik·R, (2.7)

where V is the quantization volume and ε
(λ)
k is an unit polarization vector, with

ε
(1)
k = cos θk cos φkx̂ + cos θk sin φkŷ − sin θkẑ, (2.8)

ε
(2)
k = − sin φkx̂ + cos φkŷ. (2.9)

In the RWA, one can write
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V =
∑

k

~gk(σ+ak − a†kσ−)

+
∑

k,λ,m

~
[
g′kλ(m)σ

(j)
+ (m)akλe

ik·R + g′kλ(m)∗a†kλσ
(j)
− (m)e−ik·R

]
; (2.10)

where

gk = −i

√
ωk

2~ε0V
µ(ε

(λ)
k )0 (2.11)

g′kλ = −i

√
ωk

2~ε0V
µ′(ε(λ)

k )∗m, (2.12)

σ± are raising and lowering operators for the source atom, σ
(j)
± (m) are raising and low-

ering operators between the excited state |J = 1,m〉 and the ground state |J = 0, g〉

of dielectric atom j, µ is
√

3 times the reduced matrix element of the dipole operator

d0 and µ′ is
√

3 times the reduced matrix element between ground and excited state

manifolds of the medium atoms. The quantities

(ε
(λ)
k )±1 = ∓(ε

(λ)
k )x ± i(ε

(λ)
k )y√

2

(ε
(λ)
k )0 = (ε

(λ)
k )z

are spherical components of the polarization vectors. The source atom interacts only

with the z component of the radiation field.

2.3 Perturbative Calculation in Orders of Nα

There are three relevant state amplitudes of the system: b2, the state amplitude

for the source atom to be in state |2〉 = |J = 1,m = 0〉 and all dielectric atoms in

their ground states, bmj , the state amplitude for dielectric atom j to be in excited

state |J = 1,m〉 all other atoms in their ground states, and bk, the state amplitude
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of a photon with momentum k present and no atomic excitation. In the interaction

representation, the equations of motion are

i~ḃ2 = V2;ke
−i(ωk−ω0)tbk, (2.13)

i~ḃk = Vk;2e
i(ωk−ω0)tb2 + Vk;mj

ei(ωk−ω)tbmj
, (2.14)

i~ḃmj
= Vmj ;ke

−i(ωk−ω)tbk. (2.15)

Here the V2;k and Vmj;k are the matrix elements of the interaction part of the

Hamiltonian. By formally integrating Eq. (2.14) and substituting it back to Eqs.

(2.13,2.15), we obtain the coupled equations for b2 and bmj

ḃ2 = − 1

~2

∫ t

0

V2;k Vk;2e
−i(ωk−ω0)(t−t′)b2(t

′)dt′

− ei∆t

~2

∫ t

0

V2;k Vk;mj
e−i(ωk−ω)(t−t′)bmj

(t′)dt′, (2.16a)

ḃmj
= − 1

~2

∫ t

0

Vmj ;k Vk;m′
j′
e−i(ωk−ω)(t−t′)bm′

j′
(t′)dt′

− e−i∆t

~2

∫ t

0

Vmj ;k Vk;2e
−i(ωk−ω0)(t−t′)b2(t

′)dt′, (2.16b)

where ∆ = ω0 − ω. In the Weisskopf-Wigner approximation, one evaluates V2;k Vk;2

and Vmj ;k Vk;mj
with k equal to ω0/c and ω/c, respectively. The integration over k

gives a delta function of t− t′ and one finds,

− 1

~2

∫ t

0

V2;k Vk;2e
−i(ωk−ω0)(t−t′)b2(t

′)dt′ = −γb2 (t)

− 1

~2

∫ t

0

Vmj ;k Vk;mj
e−i(ωk−ω)(t−t′)bmj(t

′)dt′ = −γ′bm (t) ,

where

γ =

(
1

4πε0

)
2µ2ω3

0/3~c3;

γ′ =
(

1

4πε0

)
2µ′2ω3/3~c3,
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are half the excited state decay rates of the source and medium atoms, respectively.

In Eq. (2.16b), besides the γ′bm (t) term, there are terms that couple bmj
to bm′

j′
,

corresponding to scattering of a photon from an atom in position j to an atom in

position j′. The summations over k in the remaining terms can be carried out in

a straightforward manner by transforming them to integrals using the prescription

∑
k →

[V/ (2π)3] ∫
dk. One finds

ḃ2 = −γb2 − γ(
µ′

µ
)ei∆tG0,mj

(Rj, ω)bmj
(t); (2.17a)

ḃmj
= −γ′bmj

− γ(
µ′

µ
)e−i∆tGm,0(Rj, ω0)b2(t)− γ′Gmj ,m′

s
(Rj −Rs, ω)bm′

s
(t).

(2.17b)

We have set b2(t − τ) ≈ b2(t) and bmj
(t − τ) ≈ bmj

(t) on the assumption that

γR0/c, γ
′R0/c ¿ 1, where R0 is the sample size. The quantity Gmj ,m′

s
(Rj −Rs, ω)

is a propagator for scattering from a dielectric atom in sublevel mj at position Rj

to one in the sublevel ms at position Rs, given by

Gmj ,m′
s
(R,ω) =

3

8π

1

πω3

∫ t

0

dτ

∫ ∞

−∞
dωkω

3
ke
−i(ωk−ω)τ

∫
dΩk(ε

(λ)
k )∗mj

(ε
(λ)
k )m′

s
eik·R,

(2.18)

while Gm,0(Rj, ω) is a propagator for scattering from the source atom to a dielectric

atom in sublevel mj at position Rj. In what follows we ignore the difference between

ω0 and ω, consistent with the RWA. The integration over momentum leads to Dirac

delta functions of the form δ (R− ct) and δ (R + ct). The integration over τ in

the range from 0 to t guarantees that only the retarded solution, corresponding

to δ (R− ct) , is taken into account. The propagator can be evaluated explicitly.

We calculate explicitly G1,1(R,ω) given in Eq. (2.18). The other Gm,m′(R,ω) are

calculated in a similar fashion. To carry out the angular integrations, one expands
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eik·R as

eik·R = 4π
l∑

m=−l

ilY ∗
lm(k̂)Ylm(R̂)jl(kR), (2.19)

uses the fact that (ε
(λ)
k )∗1(ε

(λ)
k )1 = 1

2
(1 + cos2 θ) =

√
4π
3

[2Y00(k̂) + 1√
5
Y20(k̂)], and the

orthogonality of the spherical harmonics, to obtain

G1,1(R,ω) =
1√
πω3

∫ t

0

dτ

∫ ∞

−∞
dωkω

3
ke
−i(ωk−ω)τ [2Y00(R̂)j0(kR)− 1√

5
Y20(R̂)j2(kR)]

(2.20)

The spherical Bessel function can written in terms of spherical Hankel functions as

jl(kR) = 1
2
[hl(kR) + h∗l (kR)], transforming Eq. (2.20) into

G1,1(R,ω) =
1

2
√

π

∫ t

0

dτ

∫ ∞

−∞
dωke

−i(ωk−ω)τ

×{2Y00(R̂)[h0(kR) + h∗0(kR)]− 1√
5
Y20(R̂)[h2(kR) + h∗2(kR)]}.

In the calculation we always make the Wigner-Weisskopf approximation. Differences

between ω, ω0 and ωk are neglected except they appear as exponential factors. In

integrating over ωk, the h∗l (kR) terms give a contribution proportional to δ(R/c+ τ)

while the hl(kR) terms give a contribution proportional to δ(R/c − τ). We retain

only the δ(R/c − τ) contributions since they correspond to the retarded solution

(outgoing spherical waves). As a consequence, we find

G1,1(R,ω) =
√

4πh0(k0R)Y0,0(R̂)− 1

2

√
4π

5
h2(k0R)Y2,0(R̂) (2.21)
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We simply list the explicit expressions for all the propagators in the following.

G11 =
√

4πh0(k0R)Y0,0(R̂)− 1

2

√
4π

5
h2(k0R)Y2,0(R̂); (2.22a)

G00 =
√

4πh0(k0R)Y0,0(R̂) +

√
4π

5
h2(k0R)Y2,0(R̂); (2.22b)

G1,−1 = −3

2

√
8π

15
h2(k0R)Y2,−2(R̂); (2.22c)

G−1,1 = −3

2

√
8π

15
h2(k0R)Y2,2(R̂); (2.22d)

G1,0 = −3

2

√
4π

15
h2(k0R)Y2,−1(R̂); (2.22e)

G−1,0 = −3

2

√
4π

15
h2(k0R)Y2,1(R̂), (2.22f)

where Y`,m(R̂) is a spherical harmonic and k0 = ω0/c. The remaining Gmj ,m′
s
s are

obtained using G−1,−1 = G11, G0,−1 = −G1,0, and G0,1 = −G−1,0 . The spherical

Hankel functions of the first kind, h0(k0R) and h2(k0R), conform to the appropriate

boundary conditions in which only outgoing scattered waves are considered.

In order to solve Eqs. (2.17a,2.17b), we assume that b2 varies slowly on the

time scale 1/∆ (adiabatic approximation). If bmj
= ymj

e−i∆t, Eqs.(2.17a,2.17b) are

transformed into

ḃ2 = −γb2 − γ(
µ′

µ
)G0,m(Rj, ω0)ymj

(t) (2.23a)

(γ′ − i∆)ymj
= −γ(

µ′

µ
)Gm,0(Rj, ω0)b2(t)− γ′Gmj ,m′

s
(Rj −Rs, ω0)ym′

s
(t). (2.23b)

The formal solution for ḃ2 is

ḃ2 = −γb2 +γ(
µ′

µ
)G0,mj

(Rj, ω0)

[
1

γ′ − i∆ + γ′G

]

mj ,m′
s

γ(
µ′

µ
)Gm′

s,0(Rs, ω0)b2, (2.24)

where G is an 3N × 3N matrix having matrix elements Gmj ,m′
s
(Rj −Rs, ω0). This

can be expanded as a power series in Nα with α = −4πµ′2
~∆ . To second order, one
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finds

ḃ2 = −γb2




1 + iNα
k3
0

6πN
G0,mj

(Rj, ω0)Gmj ,0(Rj, ω0)

−(Nα)2(
k3
0

6πN
)2G0,mj

(Rj, ω0)Gmj ,m′
s
(Rj −Rs, ω0)Gm′

s,0(Rs, ω0)


 .

(2.25)

The term linear in the density was first calculated by P. R. Berman and P. W. Milonni

[44]. In this order,

ḃ2 = −γb2

[
1 + iNα

k3
0

6πN
G0,mj

(Rj, ω0)Gmj ,0(Rj, ω0)

]
. (2.26)

Using the prescription that
∑

j → N
∫

d3R, one finds

ḃ2 = −γb2 − γib2Nα
k3

0

6π

∫
d3RG0,mj

(Rj, ω0)Gmj ,0(Rj, ω0)

= −γb2 − iγ
Nα

3
(A0 + A1 + A−1) b2,

where the integrals Am are given by

A0 = 2

∫ ∞

0

dρ

{
−1

ρ2
+

1

5

[
i

(
3

ρ3
− 1

ρ

)
+

3

ρ2

]2
}

ρ2e2iρ;

A1 = A−1 = 2

∫ ∞

0

dρ

{
3

20

[
i

(
3

ρ3
− 1

ρ

)
+

3

ρ2

]2
}

ρ2e2iρ.

with dimensionless variable ρ = k0R.

The real part of Am corresponds to a modification of the spontaneous decay

rate, while its imaginary part gives rise to a level shift. The imaginary part is

divergent due to the singular behavior of G (r, ω0) at small distances. This divergent

behavior has to be renormalized to give a physical result. Practically, one usually

uses a short distance cutoff based on the fact that two atoms experience repulsion

when their electron wavefunctions overlap. On the other hand, the real part of Am,

corresponding to the modification of the decay rate, is well-behaved. In the limit

when two atoms overlap with each other, a simple calculation leads to a maximum
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decay rate of 2γ. For very large Rj, a convergence factor must be added to insure

that the integrals are well-behaved at infinity. Actually, in neglecting retardation,

we have omitted a step function Θ(t − 2R/c) in the second term on the right hand

side of Eq. (2.17a,2.17b). This step function would provide a natural limit for the

R integration, removing the need to add a convergence factor. When a convergence

factor of the form e−gρ is included, the integral can be evaluated analytically. Setting

g = 0 in the final result, one finds A0 = −2 and A1 = −3/4. It then follows that

ḃ2 = −γ

(
1 +

7

6
Nα

)
b2. (2.27)

This result agrees with both the real and virtual cavity result.

In order to distinguish real and virtual cavity model, one needs to extend the

perturbative calculation to second order,

δγ(2)

γ
= −(Nα)2(

k3
0

6πN
)2G0,mj

(Rj, ω0)Gmj ,m′
s
(Rj −Rs, ω0)Gm′

s,0(Rs, ω0). (2.28)

Using
∑ → N

∫
dR, one finds

δγ(2)

γ
= −(Nα)2(

k3
0

6π
)2

∫ ∫
dR2dR1G0,mj

(R2, ω0)Gmj ,m′
s
(R, ω0)Gm′

s,0(R1, ω0).

(2.29)

The calculation for δγ(2)

γ
is tedious, since it involves contributions from different

m and m′ (nine terms). We show how to calculate one specific contribution, mj = 1,

m′
s = 1, and then give the final results for the other components. Substituting Eqs.
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(2.22a,2.22e) in Eq. (2.29), we find

δγ(2)(1, 1)

γ
= (Nα)2(

k3
0

6π
)2 6π

3
2

5

∫ ∫
dR1dR2

× h2(k0R2)Y2,1(R̂2)h0(k0R21)Y0,0(R̂21)h2(k0R1)Y2,−1(R̂1)

− (Nα)2(
k3

0

6π
)2 3π

3
2

5
√

5

∫ ∫
dR1dR2

× h2(k0R2)Y2,1(R̂2)h2(k0R21)Y2,0(R̂21)h2(k0R1)Y2,−1(R̂1). (2.30)

To evaluate this, we expand the Hankel functions as [46]

hl(k0R21)Yl,m(R̂21) = il1+l2−l(−1)l2+m
√

4π(2l + 1)(2l1 + 1)(2l2 + 1)

×
[
Θ (R2 −R1) + (−1)l Θ (R1 −R2)

]



l1 l l2

0 0 0







l1 l l2

m1 m m2




×hl1(k0R>)jl2(k0R<)Y`1,m1(R̂>)Y`2,m2(R̂<), (2.31)

where
(

...

...

)
is a 3 − j symbol, jl(x) is a spherical Bessel function, and R> (R<) is

the larger (smaller) of R1 and R2. When this expansion is used in Eq. (2.30), the

angular integration selects only l = 2, 0 and m = 1,−1, 0 terms, such that

δγ(2)(1, 1)

γ
= −(Nα)2

7

∫ ∞

0

dρ2ρ
2
2

∫ ρ2

0

dρ1ρ
2
1h2(ρ2)h2(ρ1)h2(ρ2)j2(ρ1) (2.32)

with ρ1 = k0R1, ρ2 = k0R2. To evaluate the above integral, we add a convergence

factor e−ερ2 , and eventually take the limit ε → 0. The imaginary part of the integral

diverges as ρ2 → 0, but the real part is finite and gives the local field correction to

the decay rate. The result is

δγ(2)(1, 1)

γ
=

15

112
(Nα)2.

We note that the contributions from other terms may involve factors such as

h0(k0R1)h2(k0R21)h2(k0R2).
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Direct expansion of h2(k0R21) gives a divergent result for the decay rate, when the

contribution from R1 = R2 is excluded. Instead, we expand h0(k0R1) in terms of

R21 and R2 and integrate over these two variables. This procedure leads to the finite

results given in the paper. The fact that we get divergent results when directly

expanding h2(k0R21) in terms of R1 and R2 can be traced to the fact that one finds

different values for the integrals at R1 = R2 depending on whether the limit R1 = R2

is approached from above or below. If the contribution from R1 = R2 is included, it

leads to a divergence that exactly cancels the divergence from the first integral and

again leads to the same result given in the text.

The corresponding results for the other terms are

δγ(2)(−1,−1)

γ
=

δγ(2)(1, 1)

γ
=

15

112
(Nα)2,

δγ(2)(0, 0)

γ
=

25

63
(Nα)2,

δγ(2)(0, 1)

γ
=

δγ(2)(1, 0)

γ
=

δγ(2)(−1, 0)

γ
=

δγ(2)(0,−1)

γ
=

3

28
(Nα)2,

δγ(2)(−1, 1)

γ
=

δγ(2)(1,−1)

γ
= − 3

56
(Nα)2,

giving a total second order correction to the decay rate of

δγ(2)

γ
= 2

δγ(2)(1, 1)

γ
+

δγ(2)(0, 0)

γ
+ 4

δγ(2)(0, 1)

γ
+ 2

δγ(2)(−1, 1)

γ
=

71

72
(Nα)2. (2.33)

This result differs from both the virtual
[

51
72

(Nα)2
]

and real
[

19
72

(Nα)2
]

cavity models.

2.4 Comparing with the Green’s Function Approach

Our result can be compared with Fleischhauer’s [42]. Instead of writing amplitude

equations and finding the photon propagator, Fleischhauer used the dyadic Maxwell-

Helmholtz equation to solve for the propagator,

(
1

c2

∂2

∂t2
+5×5

)
D0 (r1t1; r2t2) = −i~

ε0

ω2

c2
δ (r1 − r2) δ (t1 − t2)1 (2.34)
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The solution can be written directly in momentum space,

D0 (q, ω) =
i~
ε0

[
k2

k2 − q2 + i0
(1− q̂⊗ q̂) + q̂⊗ q̂

]
.

One can transform it to configuration space as

D(0) (x, ω) = −i~
ε0

ω2

c2

eikx

4πx
[P (ikx)1+Q (ikx) x̂⊗ x̂] +

i~
3ε0

δ (x)1,

where

P (z) = 1− 1

z
+

1

z2
;

Q (z) = −1 +
3

z
− 3

z2
.

The δ (x) should be subtracted since it gives a finite contribution to the decay rate

when two atoms overlap with each other, and the true photon propagator should be

F (0) (x, ω) = −i~
ε0

ω2

c2

eikx

4πx
[P (ikx)1+Q (ikx) x̂⊗ x̂] .

Our propagator Gm,m′(R, ω) Eq. (2.18), can be cast into a tensor form,

Gm,m′(R, ω) = −3

2
i
4π

k

eikR

4πR

[
P (ikR)1+Q (ikR) R̂⊗ R̂

]
.

We therefore find that the propagator we used in our study differs from the propa-

gator used in Green’s approach only by a prefactor. Both of them describe the field

radiated by an oscillating dipole at frequency ω.

At this point, it seems a matter of taste to do the integration (2.29) in momentum

or in configuration space. In the Green’s function approach, the integral (2.29) is

done in momentum space. It yields a virtual cavity result different from our finding

[Eq. (2.33)]. The apparent discrepancy can be explained by the way we expand

hl(k0R21)Yl,m(R̂21). The expansion we used is valid for R1 > R2 or R2 > R1, but is

not defined for R1 = R2. For a well-behaved integral this will not make any difference
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since R1 = R2 contributes a set of measure zero. In the present case, however, where

the dipole-dipole interaction between dielectric atoms diverges when one atom is on

top of the other atom, i.e. when R1 = R2, the contribution from R1 = R2 can be

finite.

It is not easy to calculate this contribution in the original form of the integral

(2.30). Instead, it proves useful to Fourier transform just one of the Gm,m′ in the

integrand. As an example, we consider the integral in the second term of Eq. (2.30)

I =

∫ ∫
dR2dR1h2(kR2)Y2,1(R̂2)h2(kR21)Y2,0(R̂21)h2(kR1)Y2,−1(R̂1). (2.35)

We Fourier transform h2(kR21)Y2,0(R̂21)e
−εR21 , using a convergence factor e−εR21 that

is physically connected with the boundary condition of outgoing spherical waves.

Carrying out the Fourier transform in Eq. (2.35), we find

I = −4πi

k3

∫ ∫
dR2dR1h2(kR2)Y2,1(R̂2)h2(kR1)Y2,−1(R̂1)

×
∫

dp

(2π)3

p2

k2 − p2 + iε
Y2,0(p̂)eip·(R2−R1). (2.36)

The angular integrations can be done by expanding eip·R2 , e−ip·R1 in terms of spher-

ical harmonics and Bessel functions. In this manner one obtains

I =
1

14

√
5

π

(4π)3i

k3

∫ ∫
dR2dR1R

2
2R

2
1h2(kR2)h2(kR1)

∫
dp

(2π)3

p4

k2 − p2 + iε
. (2.37)

We are interested only in the contribution in the region where R1 = R2 . This

contribution can be isolated by integrating R2 from R1 − a to R1 + a, and then

integrating the resultant expression over p using the method of residues. In the limit

that both a and ε tend to zero, one obtains the contribution δI from the region

R1 = R2 as

Re[δI] = Re[
−1

7

√
5π

2i

k3

∫
dR2R

2
2h2(kR2)h2(kR2)] =

−5
√

5π

7k6
(2.38)



26

(the imaginary part of δI diverges). The contribution from the sphere R1 = R2 is

identical to that from R1 = R2 since all other points with R1 6= R2 on the sphere

are regular and contribute zero to the integral. The same calculation can be done

for the first integral in the Eq. (2.30). For this term, there is no contribution from

the region R1 = R2 (no delta function like term is found) since h0(kR21) has a lower

order divergence at R21 = 0 than does h2(kR21).

Including contributions of the type (2.38), we find

δγ(2)(0, 0)

γ
=

1

3
(Nα)2,

δγ(2)(1, 1)

γ
=

δγ(2)(1,−1)

γ
=

7

48
(Nα)2,

δγ(2)(0, 1)

γ
=

δγ(2)(1, 0)

γ
=

δγ(2)(−1, 0)

γ
=

δγ(2)(0,−1)

γ
=

1

12
(Nα)2,

δγ(2)(−1, 1)

γ
=

δγ(2)(1,−1)

γ
= −1

8
(Nα)2. (2.39)

When these are summed, the total

δγ(2)

γ
=

17

24
(Nα)2

agrees with the virtual cavity result.

2.5 Discussion

The modification of the decay rate of a source atom in a dielectric medium was

calculated perturbatively. It was found that the first order calculation in Nα agrees

with both the real and virtual cavity model. To compare microscopic calculations

with the macroscopic model, one has to extend the calculation in higher orders

of Nα. In this chapter the second order contribution to the modified spontaneous

emission rate of an impurity atom in a disordered dielectric has been calculated using

a microscopic theory.
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Depending on the manner in which overlapping atoms are treated, one arrives

at different results. If the delta function contributions at R1 = R2 are included,

the virtual cavity model is recovered, but if such terms are excluded, neither the

real nor the virtual cavity model results are found. It seems to us somewhat of an

open question at this point as to whether or not such contributions can be uniquely

calculated once Eq. (2.24) is expanded in a power series in the density. The reason

for this is that the expansion parameter is not small as interatomic distances tend

to zero. That the expansion can lead to divergences is already evident if the integra-

tions are carried out using a different set of variables. From physical considerations,

however, the decay rate does not diverge, even for interparticle spacings much less

than a wavelength. Actually, dielectric atoms within a sphere of radius λ (γ′/∆)1/3

reradiate collectively; outside this radius, there is destructive interference resulting

in some additional finite contribution to the decay rate. In dealing with a homo-

geneous dielectric, we have performed the ensemble average by integrating over all

space assuming a constant density. This averaging process includes configurations

where interparticle spacings are sufficiently small to invalidate the expansion (2.25).

Nevertheless, the procedure has yielded finite results for the change in the decay

parameter. To improve this situation, one has to treat contributions from atoms

located at r < λ (γ′/∆)1/3 and r > λ (γ′/∆)1/3 separately. For contributions form

the close atoms, one need to solve the time evolution of the source atom exactly.

This can be done by some numerical simulation. After this contribution is obtained,

it can then be combined with the perturbative calculation with a cutoff at small r

to give the full result.

In our microscopic model, we have not included the external degree of freedom

for the atoms. The atoms were simply modeled as point particles locating at fix
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positions. In the real physical systems, the atom-atom interaction significantly mod-

ifies the atom locations. In general, one can conjecture that the density-density

correlation has the following limits

lim
|r1−r2|→0

〈n (r1) n (r2)〉 = 0,

lim
|r1−r2|→∞

〈n (r1) n (r2)〉 = n (r1) n (r2) .

The correlation for two positions separated by a intermediate distance is the interpo-

lation of these two limits. Our microscopic calculation includes the correct behavior

at |r1 − r2| = 0. However, it does not incorporate the correct short distance corre-

lation at |r1 − r2| 6= 0. The correlation simply jumps from one limit, |r1 − r2| → 0

to the other limit, |r1 − r2| → ∞. To give a satisfactory description of the local

field correction, one has to develop a theory including both the atom internal and

external degrees of freedom.

Different experiments support both the real and virtual cavity results [18][17][15].

The source atom in these experiments is usually an impurity ion in a protective

molecular cage. No experiments of this nature have been carried out with impurity

atomic radiators in a dielectric that consists of a dense atomic vapor. It may be

possible to use an alkali metal atom as the source atom and rare gas atoms as

the dielectric atoms. With such a system, one could not make the rotating wave

approximation used in this paper, but the physics is not changed in any substantive

manner. The key feature of the alkali metal - rare gas system is the extremely small

quenching cross sections for rare gas collisions to inelastically change the electronic

state of the alkali atom [47][48][49]. Any quenching cross sections would appear as a

modification of the decay rate that would mask the sought after effect. For rare gas

pressures on the order of 100 atmospheres, we estimate that a change in the decay
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rate of order of 3% could be observed. To increase the effect it is necessary to find

radiator atoms whose first excited state is radiatively coupled to the ground state

and dielectric atoms whose lowest excited state is about 0.2eV above the energy of

the excited state of the radiator. In this limit, quenching will be negligible, but

the detuning ∆ is decreased from the alkali-rare gas system by a factor of 50. At

the same time, it is necessary to achieve a high pressure for the dielectric atoms.

A possible system would be Li radiators with a high density sodium dielectric; the

energy mismatch of Li and Na is about 0.25eV, giving a correction factor to the

lithium decay rate of 1.3×10−21N , where N is the sodium dielectric density in units

of atoms/cm3.



CHAPTER III

Photon Recoil of an Atom Inside a Dielectric

In the previous chapter, we presented a microscopic calculation of the spontaneous

decay rate of a source atom inside a dielectric medium. When the source atom

is cooled to the photon recoil energy, one generally needs to consider the recoil

momentum imparted to the source atom as it radiates. This chapter gives an explicit

calculation of such a momentum recoil.

3.1 Introduction

The momentum of a photon in a dispersive medium has been considered by many

authors, due to its conceptual and practical importance. One of the issues in under-

standing photon momentum in a medium is how the momentum is conserved when a

photon with momentum ~k in the vacuum is scattered from an atom in the medium

to a new momentum state ~k′ in the vacuum. Should the momentum imparted on

the atom be the difference of the momenta in the vacuum ~k′ − ~k or the difference

of the canonical photon momenta in the medium n (~k′ − ~k) [50]? One might argue

[51] that, assuming the medium is dilute, the atom is localized in the vacuum space

between particles of the medium, therefore the photon, before and after it strikes

the atom, travels in the vacuum and its momentum should be conserved in terms

30
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of the vacuum momenta. On the other hand [13], one can also argue that it is the

macroscopic field of the incident wave that induces and interacts with polarizations

and polarization currents of atoms in the medium and therefore the imparted mo-

mentum should be the difference of the canonical photon momenta in the medium.

Experimentally, this issue has been studied in two systems. One measures the recoil

of a mirror immersed in a liquid when the light is reflected from it [19][20], and more

recently [51], a measurement of the recoil frequency of the Bose condensed 87Rb us-

ing a two-pulse Ramsey interferometer. Both experiments confirm that atoms recoil

according to canonical photon momenta.

Most theoretical studies related to this issue deal mainly with classical fields. Some

of the recent work by Loudon [53][52] and Nelson [54] clarified some issues related

to momentum in a dielectric from a quantum and microscopic perspective. Milonni

and Boyd [50] consider a case where a source atom imbedded in the medium recoils

due to its spontaneous decay. They find that the source atom recoils according to

n~ω0/c, where ω0 is the atomic frequency and c is the speed of light in the vacuum.

Their calculation is based on a Heisenberg picture approach and extinction theorem,

where the operator expectation value, 〈P 2〉 is calculated to be n2~2ω2
0/c

2. Here

we present a similar calculation in the Schrödinger picture. The calculation in the

Schrödinger picture is particularly revealing because it includes explicitly processes

that are responsible for the modification of the momentum imparted by the photon.

As we show in the following, the photon traveling in the medium experiences a series

of scatterings from media atoms. Different scattering amplitudes interfere to shift the

central frequency of the field. Since the source atom is coupled directly to the field,

by momentum conservation, the source atom recoils according to the modified central

frequency of the radiation. Our calculation is based on a quantum field quantized in
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free space, which allows a separate description of the field and the medium, i.e. any

wavelength and frequency of the field are calculated unambiguously in the vacuum.

The discussion of resolvent method is based on Ref. [14], and the calculation of the

photon recoil is based on Ref. [9].

3.2 Resolvent Method

In this chapter, we present an alternative way of doing the microscopic calcula-

tion. Instead of writing amplitude equations for different states and then identifying

terms corresponding to contributions from different processes [8], we adopt a resol-

vent approach [14], which allows us to write amplitudes directly from diagrammatic

representations of the scattering processes. The evolution operator for a time depen-

dent perturbation satisfies the following equation,

i~
d

dt
U (t, t′) = [H0 + V ] U (t, t′)

with boundary condition

U (t, t) = 1.

The quantity H0 is the time-independent unperturbed Hamiltonian and V is the

perturbation. This can be transformed into an integral equation,

U (t, t′) = U0 (t, t′) +
1

i~

∫ t

t′
dt1U0 (t, t1) V U (t1, t

′) . (3.1)

Here U0 (t, t′) is the zeroth order time evolution operator,

U0 (t, t′) = exp [−iH0 (t− t′) /~] .
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In order to simplify the integral equation, we make use of the following retarded and

advanced propagators,

K+ (t, t′) = U (t, t′) Θ (t− t′)

K− (t, t′) = −U (t, t′) Θ (t′ − t) ,

where Θ (t) is the Heaviside step function. With this transformation, Eq. (3.1) can

be written as

K+ (t, t′) = K0+ (t, t′) +
1

i~

∫ ∞

−∞
dt1K0+ (t, t1) V K+ (t1, t

′) (3.2)

K− (t, t′) = K0− (t, t′) +
1

i~

∫ ∞

−∞
dt1K0− (t, t1) V K− (t1, t

′) . (3.3)

Note that the limits of the integration extend from minus infinity to plus infinity.

Using the Fourier transforms,

G+ (E) =
1

i~

∫ ∞

−∞
dτeiEτ/~K+ (τ)

G− (E) = − 1

i~

∫ ∞

−∞
dτe−iEτ/~K− (τ) ,

one can recast Eqs. (3.2,3.3) into an algebraic equation

G (E) = G0 (E) + G0 (E) V G (E) , (3.4)

where

G (z) =
1

z −H

is the so-called resolvent operator. Eq. (3.4) gives a simple way to calculate the full

resolvent operators, G (E) , from the unperturbed resolvent operators, G0 (E), using

a type of gemometric series. It is not hard to relate the resolvent operator to the

evolution operator by noting that U (t, t′) = K+ (t, t′)−K− (t, t′). Such a formula is

the basis of the resolvent method, written as

U (τ) =
1

2πi

∫ ∞

−∞
dEe−iEτ/~ [G− (E)−G+ (E)] . (3.5)



34

The procedure to calculate the transition amplitudes is now reduced to finding

the matrix elements of the resolvent operator, G (E), given by Eq. (3.4). They can

be obtained by inserting complete basis states between interaction operators and

resolvent operators. Suppose we are interested in calculating the resolvent operator

of an eigenstate of H0, |φa〉 . We want to include its coupling, given by V, with the

rest of eigenstates of H0, |φb〉. The resolvent equation can be solved iteratively, given

by the following Dyson equation,

Gaa (E) = G0aa (E) +
∑

b

G0aa (E) VabG0bb (E) VbaG0aa (E) + ...

=
1

E −H0aa + Σaa (E)
,

where the geometric series has been summed and the self energy is given by

Σaa =
∑

b

Vab
1

E − Eb

Vba. (3.6)

3.3 Model Hamiltonian and the Recoil Calculation

The calculation is based on a model that we used previously [44][8] in Chapter 2.

The source atom, with finite mass M, centered at position 〈R〉 = 0, has two internal

levels, whose frequency separation is denoted by ω0. The uniformly distributed

dielectric atoms have J = 0 ground states and J = 1 excited states. The frequency

separation of the ground and excited states is denoted by ω. We assume the mass

of each medium atom to be infinite, which allows us to ignore recoil of the medium

atoms. At t = 0, the source atom is excited to the m = 0 excited state sublevel with

center of mass momentum 〈P〉 = 0, and 〈∆P2〉 ¿ (~k0)
2, the dielectric atoms are all

in their ground states, and there are no photons in the field. The process we consider

is one in which radiation emitted by the source atom is scattered by dielectric atoms.

The medium is modeled to be infinitely extended, i.e. radiation is always inside the
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medium. The vacuum field amplitudes, the medium atoms’ excited state amplitudes,

and the source atom center of mass motion are calculated as t → ∞. It is assumed

that the medium atoms are far detuned from the source atom, ω À ω0, and also

ω0 À γ, where γ is the spontaneous decay rate of the source atom.

The free part of Hamiltonian describing such a system is

H0 =
~ω0

2
σz +

∑
j

1∑
m=−1

~ω
2

σ(j)
z (m) + ~ωka

†
kλakλ +

P2

2M
, (3.7)

where all symbols were defined in Chapter 2. We have also included a term P2/2M

describing the external motion of the source atom, where P is the momentum op-

erator for the source atom and M is the mass of the source atom. As before, the

summation convention is used. The interaction part that couples the field with the

atoms is

V = ~gk(µ0·ε(0)
k σ+ake

ik·R0 − µ0·ε(0)
k a†kσ−e−ik·R0)

+
∑

j

~g′kλ




µm·ε(λ)
k σ

(j)
+ (m)

(
akλe

ik·Rj − a†kλe
−ik·Rj

)

+µ∗m·ε(λ)
k σ

(j)
− (m)

(
a†kλe

−ik·Rj − akλe
ik·Rj

)


 . (3.8)

All the symbols appearing in the interaction Hamiltonian have been defined in Chap-

ter 2. The source atom interacts only with the z component of the vacuum field.

Since the medium atoms are far detuned from the source atom, we include anti-

rotating terms in the field-medium atoms’ interaction. We have not included such

terms for the interaction Hamiltonian between the source atom and the field because

we have chosen the initial state to be the source atom excited with no photon in the

field.

We want to calculate the recoil energy of the source atom, which includes the

contribution from three amplitudes: the source atom in the ground state with one
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photon in the field, the source atom in the ground state with one medium atom

excited, and the source atom in the ground state with both the field and a medium

atom excited. These amplitudes are represented by

bk = 〈1,q; g;k|U (∞) |2, 0; g; 0〉 (3.9)

bmj
= 〈1,q; mj; 0|U (∞) |2, 0; g; 0〉 (3.10)

bmj ;k,k′ = 〈1,q; mj;k,k′|U (∞) |2, 0; g; 0〉 , (3.11)

where the state of the system is labelled with source atom internal states, source atom

external momenta, medium atoms’ internal states, and photon field wave vectors.

For example, 〈1,q; g;k| is the state with the source atom in ground state |1〉 with

momentum ~q, the medium atoms in ground state |g〉, and a photon with a wave

vector k present. We use |mj〉 to label the state of a medium atom at position Rj

in its |J = 1,m〉 excited state. The photon polarizations are not written explicitly

in the formulas. It should be understood, in the following perturbative calculations,

any intermediate states’ photon polarizations are summed over in amplitudes, while

the final states’ photon polarizations are summed over in probabilities.

The system starts at τ = 0. According to Eq. (3.5), the evolution operator can

be expressed in terms of the retarded resolvent operator as

U (τ) = − 1

2πi

∫ ∞

−∞
dE exp (−iEτ/~) G+ (E) , (3.12)

where the resolvent operator, G+ (E), is defined as

G+ (E) =
1

E + i0− Ĥ
.

The processes that we want to take into account are shown in Fig. (3.1). Let us

focus on the calculation of bk first,

bk = − 1

2πi
lim

τ→∞

∫ ∞

−∞
dE exp (−iEτ/~) 〈1,q; gm;k|G (E) |2, 0; gm; 0〉 , (3.13)
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Figure 3.1: (a) The source atom in state |2〉 spontaneously decays by radiating a normalized photon
with wave vector k and goes to the ground state |1〉 with external momentum −~k. The
thick wavy line corresponds to the normalized photon propagator and straight solid lines
correspond to the atom propagator. (b) The photon of wavevector k being scattered
by medium atoms. We include both the rotating and anti-rotating contributions in the
intermediate states. A medium atoms can get excited to J = 1 sublevel m by absorbing
a photon k and return to the ground state by radiating photons. It can also get excited
by emitting photons and then deexcited by absorbing other photons from non-rotating
wave terms. In this diagram, the time propagation is from left to right. Averaging
over the positions of the medium atoms results in conservation of the photon momenta
before and after the scattering from medium atoms.
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which requires a calculation of the matrix element of the operator. According to Eq.

(3.4), the resolvent operator can be expanded to first order in V̂ as,

〈1,q; gm;k|G(1) |2, 0; gm; 0〉

= 〈1,q; gm;k|G(0) (E) |1,q; gm;k〉 〈1,q; gm;k| V̂ |2, 0; gm; 0〉 〈2, 0; gm; 0|G(0) (E) |2, 0; gm; 0〉

= ~g∗kδq,−k (µ∗m · εk)
1

E − ~ω0 + i~nγ

1

E + i0− ~ωr
q − ~ωk

Wm,0. (3.14)

Here Wm,0 is the transverse polarization tensor of the photon defined as

Wm,m′ =
(
µm · ε(λ)

k

)(
µm′ · ε(λ)

k

)

=
(
ε
(λ)
k ⊗ ε

(λ)
k

)
m,m′

=
(
1− k̂⊗ k̂

)
m,m′

, (3.15)

where two relationships,

µ∗mµm = 1

and

µ∗0 · εk = (εk · µ∗m)Wm,0, (3.16)

have been used to derive its transverse property.

In the first order calculation, we neglect the possibility that the photon can be

scattered by medium atoms. In Eq. (3.14), the source atom recoil momentum equals

the inverse of the photon momentum, q = −k (conservation of momentum), resulting

from evaluation of the matrix element 〈p = ~q| eik·R |p = 0〉. We have rearranged

the order in the last line of Eq. (3.14) so that the first part,

~g∗kδq,−k

(
µ∗m · ε(λ)

k

) 1

E − ~ω0 + i~nγ
, (3.17)

describes the decay of the source atom in the medium. The imaginary part in the

dominator i~nγ is added to represent spontaneous decay [14]. The modification of γ

in the vacuum to nγ in the medium is related to the process that photons scattered
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by the medium atoms are reabsorbed by the source atom, as shown in Refs. [44][8].

Here we have neglected the local field correction to the decay rate. The second part

of Eq. (3.14),

1

E + i0− ~ωr
q − ~ωk

Wm,0, (3.18)

describes the propagation of the photon, where ωr
q = ~q2/2M is the recoil frequency

associated with the emission of a phone with wavevector q.

In order to carry the calculation of the matrix element of the resolvent operator,

〈1,q; gm;k|G |2, 0; gm; 0〉 , to higher order, it is necessary to consider processes in

which the photon is scattered by medium atoms. Including these processes modifies

the photon propagator (3.18). For a dilute medium with Nλ3
0 ¿ 1, where N is the

density of the medium and λ0 = 2πc/ω0 is the photon wavelength, it is appropriate to

make use of the independent scattering approximation, i.e. neglecting the correlation

between different scatterings. We need only include contributions from processes

shown in Fig. (3.1b), i.e. ladder diagrams, which amount to a self energy insertion

[14] to the photon propagator (3.18) in the dominator as

∑
=

∑

j,m,k′
〈1,q; g;k|V

×



|1,q; mj;k,k′〉 〈1,q; mj;k,k′|G(0) (E) |1,q; mj;k,k′〉 〈1,q; mj;k,k′|

+ |1,q; mj; 0〉 〈1,q; mj; 0|G(0) (E) |1,q; mj; 0〉 〈1,q; mj; 0|




× V |1,q; g;k′〉 . (3.19)

Using the prescription
∑

Rj
→ N

∫
dR and

∑
k′ → V

(2π)3

∫
dk′ we can change sums

to integrals. The integration over R gives δ (k− k′) as a result of the translational

invariance of the medium. The integration over k′ picks up contributions only at k,
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and the self energy can be written as

∑
= ~2NV |gk|2 µ2

[
1

E − ~ωr
k − ~ω

+
1

E − ~ωr
k − ~ω − 2~ωk

]
. (3.20)

Spontaneous decays of the medium atoms are ignored because medium atoms are

far detuned from the source atom. The renormalized photon propagator, with the

above self energy modification, is

1

E + i0− ~ωr
k − ~ωk −

∑W =
1

E − ~ωr
k −

[
1− 1

2
Nα (E)

]
~ωk

W, (3.21)

where the polarizability is defined as

α (E) = − 4πµ2

∆ (E)
, (3.22)

and the detuning by

1

∆ (E)
≡ 1

E − ~ωr
k − ~ω

+
1

E − ~ωr
k − ~ω − 2~ωk

. (3.23)

The self energy insertion (3.20) brings a correction of order Nα to the denominator

of the photon propagator, which cannot be obtained from any finite order calculation.

Substituting this normalized photon propagator (3.21) back to the first order formula

(3.14) and using the fact that W2 = W, one finds the relevant matrix element to be

〈1,−~k; gm;k; 0|G (E + i0) |2, 0; gm; 0〉

= ~g∗k (µ∗0 · εk)
1

E − ~ω0 + in~γ
1

E − ~ωr
k −

(
1− 1

2
Nα

)
~ωk

. (3.24)

To find the transition amplitude in Eq. (3.9), we need to integrate over E ac-

cording to Eq. (3.5). The integration includes contributions from two poles, one at

E = ~ωr
k +

(
1− 1

2
Nα

)
~ωk, and one at E = ~ω0 − i~nγ. In the limit γτ À 1, only

the first pole contributes, since the second one has a finite imaginary part and its
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contribution decays as e−nγτ . The amplitude for finding a photon with wavevector

k and source atom with momentum −~k is then

bk = lim
τ→∞

g∗k (µ∗0 · εk)
exp

[−i
(
~ωr

k +
(
1− 1

2
Nα

)
ωk

)
τ
]

ωr
k +

(
1− 1

2
Nα

)
ωk − ω0 + inγ

, (3.25)

and the corresponding probability is,

|bk|2 = |gk|2 |µ0 · εk|2 1

[ωk/n− (ω0 − n2ωr
0)]

2 + n2γ2
, (3.26)

with ωr
0 = ~ω2

0/2Mc2.

To obtain the resonant frequency from |bk|2, we need to solve the equation

n
~ω2

k

2mc2
+ ωk − nω0 = 0.

This equation has two solutions, one at

ωk = n

(
ω0 − ~ (nk0)

2

2m

)

and the other at

ωk = −2mc2

n~
.

The second is irrelevant and we simply ignore it. We have set n = 1 + 1
2
Nα in the

limit of small Nα. We also note that we have not included the local field corrections

to the index of refraction. These corrections correspond to higher order corrections

in Nα. The photon frequency centers around n (ω0 − n2~ωr
0) . The total probability

of finding a photon in the field is just the sum over all the k′s

∑

k

|bk|2 =
4π

3

2µ2

(2π)2 ~c3

∫
dωk

ω3
k

[ωk/n− (ω0 − n2ωr
0)]

2 + n2γ2
= 1. (3.27)

In working out the integration, we have used the Wigner-Weisskopf approximation:

that is, we extend the integration of ωk to start from minus infinity, and take into

account only the contribution from the pole at n (ω0 − n2ωr
0 + inγ)[55][56][57]. We
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Figure 3.2: Medium atoms are excited by emitting or absorbing normalized photons. Figure (a)
corresponds to a rotating situation while figure (b) corresponds to an anti-rotating
situation.

note that the integral (3.27) can also be done by closing the contour in the lower half

plane. The pole we pick up in this case is n (ω0 − n2ωr
0 − inγ) . This procedure yields

the same result. Here the decay rate γ should be evaluated at the photon frequency

and it is given by γ = 2µ2ω3
k/3~c3.

Other amplitudes, indicated in Fig. (3.2), can be calculated by the same tech-

nique. Let us consider the processes shown in Fig. (3.2). Making use of the nor-

malized photon propagator (3.21), we find the amplitude for a medium atom located

at Rj, being excited to a sublevel m, with the source atom recoiled by momentum

−~k, to be

bmj
= lim

τ→∞
|gk|2 µ2eik·Rj

exp
[−i

(
~ωr

k +
(
1− 1

2
Nα

)
ωk

)
τ
]

ωr
k +

(
1− 1

2
Nα

)
ωk − ω0 + inγ

× 1(
1− 1

2
Nα

)
ωk − ω

Wm,0. (3.28)

It proves more useful to work in momentum space, since one can take advantage of

the translational invariance of the problem. We denote the Fourier transforms of bmj

and bmj ;k,k as b̃m (k) and b̃m;k,k (k), respectively. Here the only relevant two photon
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amplitude is the amplitude where two photons carry the same momentum,

b̃m (k) = lim
τ→∞

√
NV µ2 |gk|2

exp
[−i

(
~ωr

k +
(
1− 1

2
Nα

)
ωk

)
τ
]

ωr
k +

(
1− 1

2
Nα

)
ωk − ω0 + inγ

× 1(
1− 1

2
Nα

)
ωk − ω

Wm,0. (3.29)

The probability of finding medium atoms excited is

∑

m,k

∣∣∣b̃m (k)
∣∣∣
2

= NV µ4
∑

k

|gk|4
[ωk/n− (ω0 − n2ωr

0)]
2 + n2γ2

×
[

1(
1− 1

2
Nα

)
ωk − ω

]2

W0,0. (3.30)

The amplitude corresponding to a medium atom excited with two photons present

arises from anti-rotating terms. It can be shown to be

b̃m;k,k (k) = lim
t→∞

√
NV µ2 |gk|2

exp
[−i

(
~ωr

k +
(
1− 1

2
Nα

)
ωk

)
t
]

ωr
k +

(
1− 1

2
Nα

)
ωk − ω0 + inγ

× 1(
1− 1

2
Nα

)
ωk − ω − 2ωk

Wm,0, (3.31)

and the corresponding probability, summed over different magnetic sublevels is,

∑

m,k

∣∣∣b̃m;k,k (k)
∣∣∣
2

= NV µ4
∑

k

|gk|4
[ωk/n− (ω0 − n2ωr

0)]
2 + n2γ2

×
[

1(
1− 1

2
Nα

)
ωk − ω − 2ωk

]2

W0,0. (3.32)

The probability
∑

m,k

∣∣∣b̃m (k)
∣∣∣
2

and
∑

m,k

∣∣∣b̃m;k,k (k)
∣∣∣
2

are of order Nαωk/ω, which

are negligible when ωk ¿ ω and Nα ¿ 1. By now we have calculated all the

nonvanishing amplitudes of the system as τ →∞. The total probability, the sum of

Eqs. (3.27), (3.30), (3.32), is found to equal unity to order Nα.

The average recoil energy of source atom is calculated solely from the amplitude

bk (3.25) as 〈
~2k2

2M

〉
=

∑

k

~2k2

2M
|bk|2 = n2~ωr

0. (3.33)
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This result shows that the source atom recoils according to the canonical photon

momentum nk0. This modification of the source atom recoil is directly related to

the fact that the photon in the medium is centered at a frequency nω0+O (~ω2
0/Mc2)

instead of ω0+O (~ω2
0/Mc2), as is shown in formula (3.25). In the spontaneous decay

of the source atom, momentum of the source atom plus the field is conserved. This

modification of the central frequency of the photon therefore results in a modification

of the source atom recoil. However, this shift in the photon frequency seems surpris-

ing, because we expect the frequency to center around the atomic frequency ω0 from

energy conservation considerations. In the following, we give a detailed analysis of the

energy conservation to order of the shifted frequency, namely, n~ω0−~ω0 = 1
2
Nα~ω0.

Before we proceed to show energy conservation, it is necessary to note that the

source atom excited at t = 0 is not in an eigenstate of the system. However, a

discussion of energy conservation is meaningful in the sense that the average energy

being conserved.

In order to find all the other forms of energy besides the photonic excitation, we

should note that as the photon propagates in the medium, medium atoms inside the

sphere of R = ct are excited, with a weighting function proportional to e−γ(ct−R).

Although the excitation probability is of order of magnitude Nαωk/ω, its correction

to the energy is of order Nαωk. Including this contribution to the energy, and the

interaction energy of the medium atoms with the field, we should be able to recover

conservation of energy. In the following we work out explicitly energies associated

with different excitations in the system and show that the total average energy is

conserved.
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The first part of the energy corresponding to the field excitation is

∑

k

|bk|2 ~ωk =

(
1 +

1

2
Nα

)
~ω0. (3.34)

The energy associated with the medium atom excitations is

∑

m,k

∣∣∣b̃m (k)
∣∣∣
2

~ω +
∑

m,k

∣∣∣b̃m;k,k (k)
∣∣∣
2

(~ω + 2~ωk)

= −NV
∑

k

~4 |gk|4 W00
1

(~ωk/n− ~ω0)
2 + γ2

1

∆′ , (3.35)

where

1

∆′ ≡ −~ωm





[
1(

1− 1
2
Nα

)
~ωk − ~ω

]2

+

[
1(

1 + 1
2
Nα

)
~ωk + ~ω

]2


 .

Here the difference in the energies of state b̃m (k) and b̃m;k,k (k) can be ignored,

because it amounts to a correction of order Nαωk/ω. To leading order in ωk/ω, we

find that

1

∆′ −
1

∆ (E)
= − 1

~ω
Nα

ωk

ω
, (3.36)

which enables us to neglect the difference between 1
∆′ and 1

∆(E)
. The detunning ∆ (E)

is evaluated at the pole of the photon propagator E =
(
1− 1

2
Nα

)
~ωk. Making use of

the definition (3.22), one finds that the energy associated with the atomic excitations

is
∑

m,k

∣∣∣b̃m (k)
∣∣∣
2

~ω +
∑

m,k

∣∣∣b̃m;k,k (k)
∣∣∣
2

(~ω + 2~ωk) =
1

2
Nα~ω0.

The third part of the energy, the interaction energy between excited medium

atoms and the field can be calculated as,

〈V 〉 =
∑

m,k

NV ~gk

(
b∗kb̃m (k) + b∗kb̃m;k,k (k)

)
+ h.c.

=
∑

k

−Nα (ωk) ~ωk
|~gk|2

(~ωk/n− ~ω0 + n2~ωr
k)

2 + n2~2γ2

= −Nα (ωk) ~ωk. (3.37)
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Adding all of these contributions, we have

∑

k

|bk|2 ~ωk +

(∑

m,k

∣∣∣b̃m (k)
∣∣∣
2

~ω +
∑

m,k

∣∣∣b̃m;k,k (k)
∣∣∣
2
)
~ω + 〈V 〉 = ~ω0. (3.38)

The frequency shift of the photon in the medium is compensated by the excitation

energy of medium atoms and the interaction energy of excited atoms with the field.

3.4 Perturbative Calculations in Configuration Space

Our calculation suggests that the photon radiated by the source atom has average

energy n~ω0 inside a infinitely extended medium. This energy is different from the

initial state average energy ~ω0. We have shown in the previous section that the

difference of these two energy can be accounted by the excitation of medium atoms

and the interaction energy between medium atoms and the field. In the following,

we present a perturbative calculation in configuration space. This calculation gives

insight into the physical processes responsible for the shift of the photon frequency.

The equation of motion for the relevant amplitudes can be written directly as

ḃk (t) =
1

i
g∗k

∑
j

(µ∗m · εk) exp (−ik ·Rj) exp [−i (ωj − ωk) t] bmj
(t)

+
1

i
g∗k (µ∗0 · εk) exp [−i (ω0 − ωk) t] b2 (0, t) (3.39)

ḃmj
(t) =

1

i

∑

k

gk (µm · εk) exp (ik ·Rj) exp [i (ωj − ωk) t] bk (t) (3.40)

ḃ2 (t) =
1

i

∑

k

gk (µ0 · εk) exp [i (ω0 − ωk) t] bk (t) , (3.41)

where the amplitude bk (t), bmj (t), b2 (t) are the amplitudes for a state with a photon

of type k and no other excitation, a state with a medium atom located at Rj excited

to internal state m, and a state with the source atom excited respectively. Note that
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in zeroth order, the photon can be radiated only by the source atom, and one has,

b
(0)
k (t) =

1

i

(∫ t

0

dτ

)
g∗k (µ∗0 · εk) exp [−i (ω0 − ωk) τ ] e−γτ

=
1

ωk − ω0 + iγ
g∗k (µ∗0 · εk) . (3.42)

We again assume that we are interested in times that are sufficiently large so that

e−γt can be neglected. Our calculation is limited to first order in the scattering. The

first order correction to the photon field is the field scattered from one of the medium

atoms. To this end, we proceed as the calculation done in Chapter 2. Integrating

the ḃk equation formally over t, and substituting the result into the equations for

b2 (t) and bmj
(t) , we find the equation for the state amplitude bmj

(t) to be,

ḃmj
(t) = −γbmj

(t)− γe−i∆tGmj0 (Rj, ω0) b0 (t−Rj/c) . (3.43)

Note that we have explicitly included the retardation in b2 (t−R/c). The Gmj 0

is the propagator defined as in Chapter 2. In first order perturbation, we take

b2 (t) = exp (−γt) Θ (t) in the calculation of bmj
, where Θ (t) is the Heaviside step

function. Under the adiabatic approximation, Eq. (3.43) can be solved as,

bmj
(t) =

γ

i∆
Gmj,0 (Rj, ω0) exp (−i∆t) exp (−γt) exp (γRj/c) Θ (t−Rj/c) , (3.44)

which corresponds to the amplitude of one medium atom being excited by the photon

radiated by the source atom. The medium atom can scatter radiation and this gives

a first order correction to the photon field. Substituting the bmj
(t) amplitude into

equation (3.39) and use the prescription,
∑

Rj
→ N

∫
dR, we find that

ḃ
(1)
k (t) =

1

i

Nγ

i∆

(∫
dR

)
g∗k (µ∗m · εk) exp (−ik ·R) Gmj,0 (R, ω0)

× exp [−i (ω0 − ωk) t− γt] exp (γR/c) Θ (t−R/c) .
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The integration over the angular part of R can be done by expanding the exp (−ik ·R)

in terms of spherical harmonics and Bessel functions. In this manner, one obtains

b
(1)
k (t) = −2

Nπγ

∆
gk (µ0 · εk)

∫ T

0

dt

∫ ct

0

dRR2ei(ωk−ω0)te−γ(t−R/c)

× [2h0 (k0R) j0 (kR) + j2 (kR) h2 (k0R)] .

We first show that the probability of the field is equal to unity to first order in

the density. The probability is,

P =
∑

k

∣∣∣b(0)
k (t) + b

(1)
k (t)

∣∣∣
2

=
∑

k

∣∣∣b(0)
k (t)

∣∣∣
2

+ 2 Re
∑

k

b
(0)∗
k (t) b

(1)
k (t) .

The correction comes from the interference of the directly radiated field and the

scattered field, and it is given by,

2 Re
∑

k

b
(0)∗
k (t) b

(1)
k (t) = −2

Nπγ

∆
Re

∑

k

|gk|2 |µ0 · εk|2
(ωk − ω0)− iγ

∫ T

0

dt

∫ ct

0

dRR2

× ei(ωk−ω0)te−γ(t−R/c) [2h0 (k0R) j0 (kR) + j2 (kR) h2 (k0R)] .

(3.45)

The term involving h0j0 can be evaluated as,

2V

(2π)3

∫
d3k

|gk|2 |µ0 · εk|2
(ωk − ω0)− iγ

∫ T

0

dt

∫ ct

0

dRR2ei(ωk−ω0)te−γ(t−R/c)h0 (k0R) j0 (kR)

=
V

(2π)3

∫
d3k

|gk|2 |µ0 · εk|2
(ωk − ω0)− iγ

∫ T

0

dt

∫ ct

0

dRei(ωk−ω0)te−γ(t−R/c) e
i(k0−k)R − ei(k0+k)R

k0k
.

We integrate over k first. The angular part gives 8π/3 and one obtains

1

(2π)3

4πµ2

3~ε0c

∫
dωk

ω2
k

ωk − ω0 − iγ

∫ T

0

dt

∫ ct

0

dRei(ωk−ω0)te−γ(t−R/c) e
i(k0−k)R − ei(k0+k)R

ω0

.
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The phase factors are exp [iωk (t±R/c)] . The contour should be closed in the upper

half plane. We find

2π
i

(2π)3

4πµ2

3~ε0c
ω0

∫ T

0

dt

∫ ct

0

dRe−γte−γ(t−R/c)
(
eγR/c − e2ik0R−γR/c

)

= 2π
i

(2π)3

4πµ2

3~ε0c
ω0

∫ T

0

dt

∫ ct

0

dR
(
e−2γ(t−R/c) − e2ik0Re−2γt

)
.

The first term is purely imaginary and can be neglected. The second term gives a

contribution,

− iµ2

3~πε0c
ω0

∫ T

0

dt

∫ ct

0

dRe2ik0Re−2γt = − µ2

12~πε0γ
.

Therefore, the h0j0 term contributes

I1 = −2

3
π

N

∆

µ2

~
=

1

6
Nα.

For the h2j2 term, one needs

V

(2π)3

∫
d3k

|gk|2 |µ0 · εk|2
(ωk − ω0)− iγ

∫ T

0

dt

∫ ct

0

dRR2ei(ωk−ω0)te−γ(t−R/c)h2 (k0R) j2 (kR) .

The integration over k yields

i
µ2

3~ε0c3π
ω3

0

∫ cT

0

dRR2eγR/ch2 (k0R) j2 (k0R + iγR/c)

∫ T

r/c

dte−2γt =
5

6

µ2

~γ
,

and the contribution to the probability from the second term is

I2 = −5

3

Nπγ

∆

µ2

~γ
=

5

12
Nα.

Adding up the contributions from I1 and I2, we find a correction equal to 7
6
Nα.

We note that in the first order of perturbation theory, there is a correction to the

source atom decay rate. As calculated in the previous chapter, this decay rate is

γ(1) =

(
1 +

7

6
Nα

)
γ.
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This change in the decay rate modifies the photon probability as

∑

k

|gk|2 |µ0 · εk|2
(ωk − ω0)

2 − [γ(1)]
2 =

γ

γ(1)
= 1− 7

6
Nα.

The contribution from the modification of decay rate exactly cancels the contribution

from the interference. This guarantees that the probability of finding a photon in

the medium at a sufficiently late time is equal to unity even when the local field

correction is considered.

The average energy of the field and the atom can also be calculated in the per-

turbative approach. Given Eq. (3.44), the energy in the atom is

∑
m,j

∣∣bmj

∣∣2 ~ω =
1

2
Na

ω0

−∆
.

The interaction energy of the field and the medium atoms is

V =
∑

k,j,m

~g∗k (m) σ
(j)
− (m) a†ke

−ik·Rjei(ωk−ω)t + c.c.

=
∑

k,j,m

~g∗k (m) b
∗(0)
k bmj

e−ik·Rj + c.c.

=
∑

k,j,m

~g∗kgk

ωk − ω0 − iγ
(µ0 · ε0) (µm · εk)

γ

i∆
Gmj,0 (ω0) e−ik·Rje−i∆t−γ(t−Rj/c) + c.c.

After integrating over angle of the vector Rj, one finds

V = − Nγµ2πi

~ε0 (2π)3 c3∆

∫
dRR2

∫
d3ωkωk

sin2 θk

ωk − ω0 − iγ

× ei(ωk−ω0)te−γ(t−R/c) [2h0 (k0R) j0 (kR) + h2 (k0R) j2 (kR)] + c.c.

The integration over the angle of k gives,

V = −i
Nµ2γ

3~ε0πc3∆

∫
dR2R

∫
dωkω

3
k

ei(ωk−ω0)te−γ(t−R/c)

ωk − ω0 − iγ

× [2h0 (k0R) j0 (kR) + h2 (k0R) j2 (kR)] + c.c.
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We can complete the contour in the upper half plane to find

V =
2Nµ2γω3

0

3~ε0c3∆
e−2γt

∫ ct

0

dRR2eγR/c

× [2h0 (k0R) j0 (k0R + iγR/c) + h2 (k0R) j2 (k0R + iγR/c)] + c.c.

The integration follows the same procedure as the calculation in the perturbative

calculation of the field probability. One finds that

〈V 〉 =
Nµ2ω0

~ε0∆
= −Nαω0.

In calculating the energy of the photon, if we use the Wigner-Weisskopf Ap-

proximation (WWA) directly, we get ~ω0. This does not conserve energy since the

interaction and medium atom energies do not cancel each other. We instead calculate

the correction to the photon energy

∑

k

|bk|2 (ωk − ω0) ,

under WWA. The correction in zeroth order is zero. Given Eq. (3.45), the correction

in energy is

2 Re
∑

k

b
(0)∗
k (t) b

(1)
k (t) (ωk − ω0) = I1 + I2,

where

I1 = −4
Nπγc3

∆ωkω0

|gk|2 |µ0 · εk|2
(ωk − ω0)

2 + γ2
(ωk − ω0)

×
[

ωk − ω0

(ωk − ω0)
2 + γ2

+
1

ωk + ω0

+
ωk − ω0

2ωk (ωk + ω0)
Re

(
e2iωkt − 1

)]
,

and

I2 = −2
Nµ2πγc3

∆ω2
kω0

|gk|2 |µ0 · εk|2
(ωk − ω0)

2 + γ2
(ωk − ω0)

× Re

[
e2iωkT

(ωk + ω0 − iγ)
− 1

(ω0 − ωk − iγ)
− f (k, k0, T )

2ω2
0

]
.
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The function f is given by

f (k, k0, t) = 2k2 + 6 (γE − 3) kk0 + (11− 6γE) k2
0

+ k2
0 cos (2ωkt) + 6 (k0 − k) [ci (2ωkt)− log (2)− log (ωkt)] .

We note that there is no pole in the function f (k, k0, t) . Following WWA except for

terms of the form ωk − ω0, one gets

∫
dωk

(ωk − ω0) ω2
k[

(ω0 − ωk)
2 + γ2

]2 →
∫

dωk
(ωk − ω0) ω2

0[
(ω0 − ωk)

2 + γ2
]2 = 0,

and ∫
dωk

(ωk − ω0)
2 ω2

k[
(ω0 − ωk)

2 + γ2
]2 →

∫
dωk

(ωk − ω0)
2 ω2

0[
(ω0 − ωk)

2 + γ2
]2 6= 0.

The integration over k gives the correction

∑

k

|bk|2 (ωk − ω0) =
1

2
Nαω0.

This correction conserves the the total energy. We therefore have shown that the

perturbative calculation agrees with the non-perturbative results obtained from the

resolvent method.

3.5 Discussion

In this chapter we have shown that the source atom recoils according to n~k0,

which agrees with the previous theoretical and experimental results [51][19][20][50].

This modification of the photon recoil arises in our calculation as a result of the inter-

ference of the different scattering amplitudes. As has been shown in the calculation,

while the average frequency of the source atom is at ω0, only frequencies centered

at nω0 experience constructive interference. This is very much similar to the case of

a source atom radiating in a cavity with the cavity frequency instead of the atomic
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frequency. From a quantum point of view, the source atom decays because it radiates

and reabsorbs virtual photons. Such a process introduces a finite self energy whose

real part gives the level shift and whose imaginary part gives the decay of the atomic

excitation [44][8][42]. This process, though not included explicitly in our calculation,

is the only way that the source atom ”knows about” the environment(vacuum, cav-

ity or dielectric medium) in which is it located. In the cavity, the virtual photon

can interfere with those reflected from the cavity walls and constructive interference

occurs only at the cavity frequency. In the dielectric medium the virtual photons

radiated by the source atom can be scattered by medium atoms and reabsorbed by

the source atom during the time t ¹ 1/γ. Different scattering amplitudes interfere

to shift the real radiating frequency to nω0. This is a different effect from the level

shift, the real part of the source atom self energy, due to the interaction of the source

atom with the environment. In our particular example of the source atom located

in a dilute medium, the shift due to interacting is of the order Nαγ while the shift

due to interference is of the order Nαω0.

An alternative explanation can be put forward in terms of eigen-excitations of the

system. Actually, if we consider the interaction of the field with the medium atom,

the eigenmodes of the system are neither medium atoms being excited nor a photon

present, but a superposition of these two type of excitations, a polariton [58]. The

source atom decays by radiating polaritons instead of photons. For the energy to

be conserved, the polariton energy plus the recoil energy should equal to the initial

average energy ~ω0. As we have shown, the photon carries only part of the energy

of the eigen excitation. On the other hand, the momentum carried by the medium

atoms is negligible, the polariton momentum is just the photon momentum. When

we require energy and momentum conservation for the radiating process, the only
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possibility is the source atom to recoil according to n~k0.



CHAPTER IV

Tonks Girardeau Gas with a local potential

The study of cold atom gases has been one of the most fruitful research areas in

physics in the last decade. Many of its successes can be attributed to its deep con-

nections to a broad range of problems in condensed matter physics, nuclear physics,

and atomic physics. Several interesting many body states, including Bose Einstein

Condensate (BEC)[2][3], Mott insulators [4], and Fermi superfluids [5][6][7], have

been realized experimentally. The cold atom version of these many body states

have unique advantages over traditional condensed matter systems. In atomic sys-

tems, important parameters of many body systems, such as the external potential,

the dimensionality, and the interaction can be tuned using external fields. In the

next two chapters, we explore two possibilities in cold atom systems utilizing this

extraordinary controllability.

4.1 Introduction

The effect of impurity and disorder on many body systems has been one of the

main themes of condensed matter physics [59][60][61]. It plays an important role

in our understanding of phenomena such as superconductivity, superfluidity, and

Kondo physics. Due to the advantages the cold atom system has, it is tempting to

study the effects of impurities in these systems.

55



56

This line of research has both been pursued theoretically [66][68][69], and experi-

mentally [70][71][72]. One particular interesting possibility is to introduce ions into

a BEC [66], utilizing both the techniques for manipulating atoms and ions. It is

predicted that thousands of atoms will be bound by the ion to form a mesoscopic

molecule. In such a scenario, the BEC is heavily depleted and a simple perturbative

treatment might not be able to describe the system correctly. It would be bene-

ficial to solve this problem in an exactly solvable model and compare it with the

perturbatively result.

Recently, an interesting many body system, the Tonks-Girardeau gas, has been

realized by two groups [28][29]. Such a system can be analyzed exactly using a

boson-fermion mapping technique. We propose to study the impurity effect in such

an exactly solvable system. The study serves two purposes: first, it shows, in its

simplest form, the interplay between interaction, superfluidity, and impurity. Second,

the theoretical predictions can be compared readily with experimental observables.

4.2 Tonks-Girardeau Gas

The Tonks-Girardeau gas was introduced 40 years ago by Girardeau [27]. A Tonks-

Girardeau gas is a one-dimensional quantum gas with interaction energy per particle

much larger than the kinetic energy per particle. As stated by F. D. M. Haldane

[73], ”In 1D [...] the symmetry of the wave function cannot be tested by a continuous

change of coordinates that exchange particles with close approach (collision). Thus

interaction and statistical effects cannot be separated”. This peculiar feature of a

one dimensional system enables us to map a Tonks-Girardeau gas to a free fermion

system, which allows for an exact solution. It turns out later that the more general
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one dimensional problem with interparticle interaction taking the following form,

V (x1,x2) = gδ (x1 − x2) , (4.1)

can be solved exactly by Bethe asantz [62]. In our study, we do not discuss this more

general case and limit ourselves only to the Tonk-Girardeau case for simplicity.

To facilitate the numerical calculation, we worked on a lattice version of a Tonks

Girardeau gas, in which the Hamiltonian is,

H = t
∑

i

(
a†iai+1 + a†i+1ai

)
, (4.2)

where t is the hopping amplitude between nearest sites. The ai and a†i are annihilation

and creation operators for site i. They obey the bosonic commutation relation,

[ai, aj] = δij. (4.3)

The infinite interaction between particles on the same site is included in the following

on-site constraints,

a2
i =

(
a†i

)2

= 0. (4.4)

The on-site constraint is similar to the behavior of Fermi creation and annihilation

operators. This similarity suggests the following Wigner-Jordan transformation,

ai =
i−1∏
α=1

eiπc†αcαci (4.5)

a†i = c†i
i−1∏
α=1

e−iπc†αcα . (4.6)

Here the c†i and ci are fermionic operators, which satisfy the anticommunication

relation
{

ci, c
†
j

}
= δij. Under this transformation, we see that both the boson

commutator (4.3) and the on-site constraint (4.4) are satisfied. Substituting this
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transformation into the original Hamiltonian (4.2), we have

H = t
∑

i

(
c†ici+1 + c†i+1ci

)
. (4.7)

Without the on-site constraint, this Hamiltonian is just the Hamiltonian for free

fermions. Therefore, the eigenenergies of a Tonks-Girardeau gas equals the those

of a free fermion gas. For the many-body ground state, however, one cannot make

such conclusions. This is because the fermion wavefunction has to be antisymmetric

while the boson wavefunction is symmetric under particle exchanges. Therefore, in

order to find the ground state of the Tonks-Girardeau gas, one needs to symmetrize

the free fermion wavefunction. The discussion in this chapter is based in large part

on Ref. [10].

4.3 Model of the Tonks-Girardeau Gas in an Optical Lattice with an
Impurity

The Hamiltonian describing interacting cold bosons can be written in second

quantization formula as

H =

∫
d3xψ† (x)

[
−5

2

2m
+ V (x) + Vimp (x)

]
ψ (x)+g

∫
d3xψ† (x) ψ† (x) ψ (x) ψ (x) ,

(4.8)

where m is the mass of the atom, and V (x) and Vimp (x) are the external potentials.

Experimentally, such potentials are given by the dipole coupling between atoms and

external magnetic or optical fields. V (x) is the external periodic potential produced

by the optical lattice, and Vimp (x) is a local potential that mimics the effects of

a local impurity. The atom-atom interaction takes an s wave contact form. The

validity of such an interaction is discussed in the next chapter. At this time, we

just take the above form of the interaction and note that g is directly related to the

s wave scattering length of atom-atom scattering. The field operators ψ† (x) and
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ψ (x) are the creation and annihilation operators of the boson field. They satisfy the

commutation relation,

[
ψ (x) , ψ† (x′)

]
= δ (x− x′) .

In an optical lattice, the external potential is periodic. We can expand the field

operator in the basis of the Wannier functions,

ψ (x) =
∑
i,n

ai,nWi,n (x)

ψ† (x) =
∑
i,n

a†i,nW
∗
i,n (x) .

Here ai,n and a†i,n are the creation and annihilation operator for a vibrational Wannier

state n at site i. They satisfy the Bosonic commutation relation as well. Assuming

that the interaction and kinetic energy are much smaller the energy spacing between

different Wannier states, one can safely neglect Wannier states with n > 1 and

expand

ψ (x) =
∑

i

aiWi (x)

ψ† (x) =
∑

i

a†iW
∗
i (x)

Substituting the above expansion of the field operator into the Hamiltonian (4.8),

we arrive at the following Boss-Hubbard Hamiltonian describing an ultra-cold dilute

gas of bosonic atoms in an optical lattice [74],

H = t
∑

i

(
a†iai+1 + a†i+1ai

)
+

1

2
U

∑
i

ni (ni − 1) + ua†0a0 (4.9)

The quantity t, which is generally negative, is the hopping amplitude between nearest

neighbors

t =

∫
d3xW (x− xi)

[
−5

2

2m
+ V (x)

]
W ∗ (x− xi+1) ,
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U characterizes the on-site interaction,

U = g

∫
d3x |W (x)|4 ,

and u is the local potential strength at site zero

u =

∫
d3x |W (x)|2 Vimp (x) .

We are interested in the regime where the interaction energy is much larger than

the hopping energy and the impurity energy, i.e. U À t, U À u. In this regime,

there are no double or higher occupations of the same site. The Hamiltonian can be

written as

H = t
∑

i

(
a†iai+1 + a†i+1ai

)
+ ua†0a0, (4.10)

and the particle interaction can be included by imposing the constraint a2
i =

(
a†i

)2

=

0. This is the just the Hamiltonian for a Tonks-Girardeau gas (4.2) with an impurity.

The behavior of the many body system is determined by the ratio of u/t. When

|u/t| < 1, the kinetic part dominates and the particles distribute uniformly to lower

the kinetic energy. On the other hand, when |u/t| > 1, the local potential becomes

important. In this regime, local charge fluctuations are suppressed and the coherence

among particles is degraded. We numerically evaluate the single particle density

matrix (SPDM) of the many-body ground state, and compute the effect of a local

potential (impurity) on the spectrum of the SPDM, on the ”BEC” wave function,

and on the superfluidity of the many-body ground state.

In order to solve for the ground state of the system, we can use the same Bose

Fermi mapping (4.5,4.6)

H = t
∑

i

(
c†ici+1 + c†i+1ci

)
+ uc†0c0 (4.11)
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The ground state |GF 〉 of this Hamiltonian corresponds to the well-known Fermi

sea, in which fermions fill the single particle levels up to the Fermi surface. The

corresponding ground state |GB〉 of the boson Hamiltonian(4.10) can be obtained

from |GF 〉 by symmetrizing the corresponding many body fermionic wave function.

4.4 Single Particle Density Matrix

We seek the one particle density matrix [75], which is the expectation value of

a†iaj in the ground state,

ρij = 〈GB| a†iaj |GB〉

= 〈GF | c†i
i−1∏
α=1

e−iπc†αcα

j−1∏
α=1

eiπc†αcαcj |GF 〉 . (4.12)

The diagonal part of the density matrix, ρii, gives the density 〈ni〉 = 〈GB| a†iai |GB〉

at site i, while the off diagonal part gives the coherence in the many body ground

state for different sites. In the uniform case, the coherence ρij depends only on

the difference, |i− j|. In the presence of a local potential, however, the coherence

depends on both i and j separately. In addition to that, ρij is much smaller than

its uniform counterpart when i and j are on different sides of the local potential.

Diagonalizing the single particle density matrix gives a set of eigenvectors |n〉,

which may or may not be the single particle eigenstates of the noninteracting gas.

The corresponding eigenvalues λn represent the occupation of state |n〉. The one

state with λn ∼ N (total number of particles) is the ”BEC” state [75]. (Note that

in 1D, there is no Bose Einstein Condensation in the thermodynamical limit. In the

particular case of the Tonks-Girardeau case, the particles that condense into a single

state are calculated to be order of
√

N [63]. However, this state, compared with

other states, is the only state that is significantly occupied. With this clarification, we
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will call that state the BEC state and the corresponding occupation the condensate

fraction).

The evaluation of this density matrix is not simple even when the ground state is

known. Here we adopt a technique developed by M. Rigol and A. Muramatsu [65].

We sketch their method as the following. In stead of calculating the single particle

density matrix, one can calculate the single particle Green’s function

Gij = 〈GB| aia
†
j |GB〉

and recover the single particle density matrix by the following identity,

ρij = Gij + δij (1− 2Gii) . (4.13)

We can directly write the matrix form of the Fermi ground state as

|GF 〉 =
NF∏
n=1

N∑
i=1

fnmc†m |0〉 ,

where NF is the number of fermions and N is the number of sites. The quantity fni

is the amplitude of site i for the nth single particle eigenstate. The Fermi ground

state |GF 〉 is simply the occupation of lowest single particle states by fermions. We

are interested in calculating the state

|φj〉 = c†j
j−1∏
α=1

e−iπc†αcα |GF 〉 .

Note that
j−1∏
α=1

e−iπc†αcα =
j−1∏
α=1

(
1− 2c†αcα

)
.

Therefore, the effect of
j−1∏
α=1

eiπc†αcα on the Fermi Ground state is to switch the sign of

the matrix element fnm for m < j − 1. To obtain state |φj〉 , we will need to create

an additional particle at site j. In the matrix form of f, one simply adds a column to



63

f with fN+1,j = 1 and rest of the column equals to zero. We denote the manipulated

matrix as f ′(j) in the following.

The single particle Green’s function in terms of f ′ is,

Gij = 〈0|
NF +1∏
n=1

N∑
m=1

f ′(i)nmcm

NF +1∏
n′=1

N∑

m′=1

f
′(j)
n′m′c

†
m′ |0〉 = det

[(
f (i)

)†
f (j)

]
.

Substituting this result into equation (4.13), we find a numerically simple way to

calculate ρij. Actually, this method allows us to calculate a system with up to a

thousand lattice sites. We focus on the low occupation limit only, which corresponds

to a continuum case. In order to check the convergence of our numerical calculations,

we fix the number of particles at 9 and calculate the condensate fraction for a lattice

of 100 sites and 200 sites. The difference is found to be less than 1%.

For a continuum system of size L, the ground state of a Tonks Gas with N bosons

is

Ψ0(x1, · · · , xN) = L−N/2| det eiklxm |.

In terms of the rescaled, dimensionless variables ui = xi/L, the one particle density

matrix is

ρN(x, x′) = L−1ρN(u, u′).

The eigenvalue λ and eigenvector ϕ (x) satisfy the relation,

∫ L

−L

ρN(x, x′)ϕ (x′) dx′ = λϕ (x) .

By changing variables, one can write the eigenvalue as

λ =

(∫ 1

−1

ρN(u, u′)ϕ (u′) du′
)

/ϕ (u′) ,

which is independent of the size of the system L. This verifies that 9 particles in

100 lattice sites already converges very well to the continuum case. In the following



64

calculation, unless otherwise stated, all the calculations are based on a system of 9

particles in a one dimensional lattice of 100 sites, with an impurity located at site

zero. Periodic boundary conditions are imposed on this one dimensional chain.

4.5 Condensate Fraction and Condensate Wavefunction

Since all the physics is determined by the ratio u/t, in the following numerical

calculations, we fix t = −1 and vary u. Fig. (4.1a) shows SPDM spectra for different

u’s. The peak corresponds to the BEC state and its magnitude is the condensate

fraction. The introduction of an impurity lowers the condensate fraction, as shown

in Fig. (4.1b). The attractive and repulsive potentials almost equally deplete the

condensate fraction for small impurity potential u, with the attractive potential

having a slightly larger effect. The physics that gives rise to this behavior, as is

shown in the following, is that an attractive local potential has a stronger effect on

decreasing the coherence between particles.

Since only the BEC state is significantly occupied, the BEC state determines the

most important features of the many-body system. It would be useful to look at

the BEC wave function itself (see Fig. (4.2a)). For a repulsive local potential, we

find that the BEC density decreases near the impurity. In the case of an attractive

potential, for u > −1, there is an increase in the probability of the BEC density at

the impurity site. For the case of u < −1, in contrast to what one might expect,

there is a decrease of the BEC density at the impurity site. This feature actually

arises from the competition between two effects: the single particle effect, i.e. the

potential attracts particles, and the many body effect, i.e. the impurity decreases the

coherence among particles. We have also included the particle density plot in Fig.
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Figure 4.1: (a) SPDM spectra at different local potential strengths u. On the y axis, the SPDM
eigenvalues λn are normalized to the total number of particles N. The x axis labels
different eigenstates |n〉 of the SPDM. The first state, |n = 1〉, is overwhelmingly occu-
pied compared with all the others, and is identified as the BEC state. Our numerical
calculations show that about 45% of the particles are condensed into this BEC state
for u = 0. This is of the order 1/

√
N = 0.3 [63]. Only the first five largest eigenvalues

are shown. (b) Condensate fraction [the occupation of the |n = 1〉 states in Fig. (4.1a)]
as a function of the local potential strength. The attractive potential is seen to have a
slightly larger effect in decreasing the condensate fraction.
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(4.2b). It shows an increase of particle density for any attractive potential. For the

BEC density, we see that, for each attractive potential, there is a peak at the impurity

site corresponding to the local bound state. However, due to the lack of coherence

between bound and extended states, the bound state is less likely to be found in

the BEC state, which results in an overall decrease of the BEC density at site zero

compared with the uniform case. This is the main observation of this chapter. To be

more specific on how the impurity decreases the coherence among particles, we plot

some of the relevant off-diagonal elements of the single particle density matrix (see

Fig. (4.3)) In particular, we take the coherence between an arbitrary site and the

fifth site next to the local potential site zero as an example. We find that, given the

same distance, the coherence between particles on different sides of the impurity is

much smaller than that of the particles located on the same side of the impurity. For

the same magnitude of the attractive and repulsive potential, we find that the effect

of the attractive and repulsive potential are roughly the same, with the attractive

one having a stronger effect in decreasing the overall coherence among particles.

This actually explains the fact that the attractive potential has a stronger effect

on decreasing the condensate fraction. The only place that the attractive potential

results in a larger coherence than the repulsive one with the same magnitude is near

the impurity site. This is due to the presence of a local bound state, which effectively

increase the probability of finding particles at the impurity site.

This single particle bound state is well known [76] in the tight binding Hamil-

tonian. Its eigenenergy is

E = −
√

u2 + 4t2,

and its wave function localizes in space as exp [−α (E) |n|] with n being the site
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number and

α (E) = − ln

[√
u2 + t2 − |u|

2 |t|

]
, (4.14)

corresponds to the inverse of the characteristic length. The nice overlap of the

coherence peak and the bound state wave function verifies our argument for the

increase of coherence in the vicinity of an impurity. The small peak in the impurity

site is purely a single particle effect.

With the picture of the impurity introducing decoherence, it would seem that in

higher dimensions, since the impurity has a weaker effect in decreasing coherence

among particles, a smaller effect of the impurity should be found. We have verified

this point numerically by extending our calculation to two dimensions. The conden-

sate fraction is shown in Fig. (4.4). For dimensions greater than one, there is no

simple mapping from bosons to fermions. An exact diagonalization has been done

for this case which limits the calculation to a system of five particles in a three by

three lattice.

4.6 Superfluidity

It is well known that Bose Einstein condensation is neither necessary nor sufficient

for the existence of a superfluid. In a BEC, the long range inter-particle coherence

is reflected in the eigenvalue spectrum of the SPDM. In general, the coherence de-

creases with the increase of inter-particle interaction. Superfluidity, on the other

hand is related to the response of the system to an external velocity field. In the

Tonks-Girardeau gas, the strong interaction among particles decreases the conden-

sate fraction. However, in the absence of impurity, the system can be mapped exactly

to a non-interacting one-dimensional fermionic gas. A velocity field v increases its

energy by 1
2
Nmv2, corresponding to a unity superfluid fraction. This point has been
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Figure 4.2: (a) The BEC wave functions for different strengths of the local potential are shown. In
the special case of u=0, the BEC wave function is constant. Note that the BEC wave
function corresponding to u = −1 has a lower value at the impurity site compared with
the u = 0 uniform case. (b) The particle density is shown with respect to lattice sites
for different u’s. Here we see for attractive u, the particle density at the impurity site
is always larger than that of the uniform case.
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addressed before by Lieb, Sieringer and Yngvason [64]. It is interesting to investigate

how the superfluidity is decreased in the presence of an impurity. We emphasize that

we use the word superfluidity strictly in the sense of the following phenomenological

definition

E (v)

N
− E (0)

N
=

1

2
fsmv2 + O

(
v4

)
,

where E (v) is the ground state energy of the many body system in the presence of a

perturbative velocity field v, fs is the superfluid fraction, and m is the mass of the

particle. The velocity field is introduced by imposing a twisted boundary condition

[64], which amounts to a phase jump eiϕ, ϕ = vLm
h

, whenever the wave function

passes through the boundary. We restrict ϕ < π to yield a single valued function.

Note that since the definition is based only on the static properties of the many body

system, it can tell us only whether the ground state has the property of superfluidity.

It cannot predict the stability of the superfluidity.

The results of numerical calculations are shown in Fig (4.5). We see that without

impurity, the system exhibits superfluidity with superfluid fraction of unity. The

degree of degradation on the superfluid fraction produced by an impurity depends

on both the local impurity strength and the size of the system. In a large system,

the superfluidity drops sharply with the presence of the local impurity. Note that as

far as the spectrum is concerned, the Fermi ground state is equivalent to the boson

ground state. This allows an understanding of the superfluidity in a single particle

picture. The energy of a single particle in such a system consists of two parts: the

kinetic energy, and the part of the energy due to the presence of the local potential.

As the lattice size increases, the kinetic energy goes like 1
L2 , while the mean values

of the potential energy due to the local potential goes like 1
L

for an extended state.

Therefore, in the limiting case of large L, the local potential play a more dominant
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role than the hopping. For a repulsive potential, the particle has to hop through the

barrier. For an attractive potential, since the local bound state is always occupied,

for strongly interacting bosons, in order to get through this potential, a potential

barrier of order 1
L

is also present, which gives rise to the sharp drop of superfluidity

in the presence of a local potential.

This problem can be understood quantitatively by considering the following single

particle model Hamiltonian,

H = − ~
2

2m

d2

dx2
+ gδ (x) , (4.15)

with x defined in the regime [−L,L] with the twisted boundary condition. To cal-

culate the eigenenergy with different a boundary condition is elementary since it

corresponds to a one dimensional piecewise potential problem. As an example, we

consider only two states with energies close to ~2π2

2mL2 . This allows us to use a per-

turbative calculation of k =
√

2mE/~ around π
L
. The solution of equation (4.15) is

equivalent to the solution of the following form in the momentum space,

k cos ϕ− k cos(2kL)− gm sin(2kL)

~2
= 0.

We are looking for solution with k ∼ π
L
. This parameter converges slowly and it

is found that one has to expand to order
(
k − π

L

)4
to yield a reasonable result. The

modification of eigenenergy due to the presence of the velocity field is

[E (v)− E (0)] /2 =
1

2
mv2

(
1− 0.008g2L2

)

in the perturbative limit that gL is small. This result shows that the superfluid

fraction is

fs = 1− 0.008g2L2.

There is no modification to first order in gL, which is consistent with discussions

concerning repulsive and attractive potentials.
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Figure 4.5: Superfluid fraction is plotted as a function of different local potential strength u. The
cases of nine particles occupying 100 and 200 lattice sites are shown. The larger the
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4.7 Experimental Observables

The effect of an impurity on the Tonks-Girardeau gas can be studied in an exper-

iment using an optical lattice. The local potential we model here may be realized in

an experiment by introducing a focused laser beam, an impurity atom, or an ion at

a particular lattice site. If a focused laser beam is chosen to generate the impurity

potential, the potential profile is given by Vimp (x) = |χ(x)|2
∆

, where χ (x) is the field

intensity of the external fields. To make it sufficiently local, the radius of the focus

has to be comparable to the lattice spacing. In a optical lattice, the lattice spacing

is given by half of the wavelength of the optical lattice laser beam. This means that

the impurity laser beam should be focused to the order of a wavelength. When an

impurity atom or ion is directly introduced to a Tonks-Girardeau gas, the s wave

scattering length can be used to characterized the impurity potential. Similarly, for

the impurity potential to be local, the s wave scattering length should be smaller

than the wavelength of the optical lattice beam.

To observe the effects of an impurity inside a Tonks-Girardeau gas, one needs

to measure experiment observables that are directly related to the single particle

density matrix. The real space density distribution will be the same as the free

fermion density in the presence of a local potential, which contains information only

on the diagonal part of the density matrix. The non-trivial part of the density

matrix, the off diagonal coherence, can be detected by measuring the momentum

distribution, defined as

n (k) =
1

N

N/2∑

m,n=−N/2

ρmnei(m−n)k

We have ignored the localized Wannier function profile. The direct measurement of

the momentum distribution of Tonks-Girardeau gas has been demonstrated recently
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[77]. It involves turning off the atom-atom interaction suddenly before the expansion.

Experimentally, this sudden approximation requires the time scale of turning off the

atom-atom interaction to be much smaller than the inverse of the many body energy

scale.

In fig. (4.6) we show the peak value density in momentum space for different

impurity strengths. The highest momentum density peak corresponds to the case

with no impurity. The attractive potential has a larger effect on the broadening

compared with the repulsive one. The superfluidity of the system can be measured

by imposing a velocity field on the many-body system. This can be realized in the

experiment by changing of the external potential with time. The measurement can

be done by looking at the damping motion of the particles.

4.8 Summary

A Tonks-Girardeau gas confined in an optical lattice in the presence of a local

potential was studied. In order to evaluate the single particle density matrix of the

many-body ground state, the Wigner-Jordan transformation is used. The eigenvector

with the largest eigenvalue of the single particle density matrix corresponds to the

”BEC” State. We find that the ”BEC” state density at the position of the local

potential decreases, as expected, in the case of a repulsive potential. For an attractive

potential, it decreases or increases depending on the strength of the potential. The

superfluidity of this system is investigated both numerically and perturbatively. It

is found that the superfluidity is degraded by the impurity, the degradation scales

like g2L2 in the small gL limit. This effect of impurity on a many-body system can

be measured by looking at the momentum distribution and the system response an

external velocity field.
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Figure 4.6: The peak value of the density distribution in momentum space. The maximum of zero
momentum occupation is reached in the uniform case.



CHAPTER V

A Cold Atomic Fermi Gas with a Spatially Modulated
Interaction

Significant progresses has been made in cold atom research in the last twenty

years. The exceptional controllability of atom-field interactions has made it possible

to realize, in the atomic domain, interactions equivalent to those in condensed matter

systems that, to this point, have been studied only theoretically. More importantly,

opens up new venues of systems that are not feasible in traditional condensed mat-

ter systems. In the previous chapter, we discussed one interesting cold atom system,

namely, a Tonks-Girardeau gas with an impurity. In this chapter we study the prop-

erties of an ultra-cold atomic Fermi gas with the atom-atom interaction modulated

periodically in space.

5.1 Introduction

Most Hamiltonians describing few-body or many-body systems can be divided

into two parts: the single particle part, and the two body interaction part. It is

usually easier to control the single particle part of a Hamiltonian than the two body

part. In particular, one can modify single particle potentials by introducing external

fields. However, few experiments have been done trying to manipulate the two body

interaction spatially. Consequently, there have been very few theoretical studies of

77
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systems where particles can interact differently in different space points.

For an ultra cold atomic gas, the effective atom-atom interaction is

V (ρ) = 4πas~2δ (ρ) /m,

where ρ is the relative coordinate between the two particles, m is the mass of the

atom, and as is the s-wave scattering length. Near a Feshbach resonance, the scat-

tering length can be described by [79],[31]

aeff = abg − m

4π~2v0

|g0|2 ,

where abg is the background scattering length, and the second term is the contribution

from the nearby Feshbach resonance. The constants g0 and v0 are the coupling

strength and energy detuning between the scattering channel and the molecular

channel, respectively. In magnetic Feshbach resonances [79][31], the detuning v0

can be controlled by an external magnetic field. In an optical Feshbach resonance

[88][89][90][91][93] v0 can be tuned by varying the laser frequency, and the free bound

coupling g0 can be tuned by varying the laser intensity. A spatially dependent

scattering length can be achieved by applying spatially varying external fields. This

gives an effective interaction,

V (r, ρ) = 4πas (r) ~2δ (ρ) /m

that depends on both the relative coordinate and the center of mass (COM) co-

ordinate r. This direct substitution of the scattering length locally requires that

the scattering length to vary only in a scale much larger than the local scattering

length, i. e. |5as (r)| ¿ 1. In particular, we consider the simplest form of such an

interaction,

V (r, ρ) = [g0 + g cos (k0 · r)] δ (ρ) (5.1)
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The constant g0 term, with g0 < g < 0, is added to guarantee that the interaction is

always negative. The ground state of the system is therefore a BCS ground state.

In several recent experiments, fermionic atoms were cooled below degenerate tem-

peratures, and superfluid Fermi gases were observed [21][22][23][24][25][7][?][5][6][26].

It is interesting to discuss the effect of the modulating interaction on the pairing of

the superfluid. The possibility to achieve such a system experimentally is feasible

only with recent advances in atomic physics. A relatively obvious phenomenon that

arises from such a spatially modulated interaction would be the modulation of the

atomic density. Atoms are prone to congregate in locations with maximum attrac-

tions. A much more interesting phenomenon resides in the pairing of atoms. In a

typical BCS theory, the ground state wave function consists of Cooper pairs with

their COM momenta equal to zero. The interaction we propose (5.1) creates coher-

ences between pairs with COM momenta differing by k0 to lower the free energy of

the system. The ground state thus includes Cooper pairs with zero, as well as ±k0,

±2k0, COM momenta. However, we find that the probability of occupying higher

COM momenta is low due to its kinetic energies and the constant attractive interac-

tion g0. Our ground state is closely related to the Fulde-Ferrell-Larkin-Ovchinnikov

(FFLO) state discussed in the literature [34][35]. In the FFLO state, due to the

mismatch of the chemical potential for spin up and spin down particles, particles

can pair with non-zero COM momenta to lower the energy. Even though the ground

states of these two systems may look similar, the underlying mechanisms are differ-

ent. In the FFLO case, the spatial symmetry is broken spontaneously while in the

system studied in this chapter, the spatial symmetry is broken by external fields.

In this chapter, we consider a fermion gas with the atom-atom interaction varying

in space. We first review some basic cold atom physics: the s wave scattering length



80

description of the cold atom interaction, the Feshbach resonance, and the BEC-BCS

crossover scenario of a Fermi gas near a Feshbach resonance. In our study of the

spatial modulation effect, we use the mean field Bogliubov de Gennes approach.

The ground state and excited state properties of the Fermi gas is investigated. A

detection scheme is presented at end of the chapter. The discussions of s wave

scattering lengths and Feshbach resonances are base on Stoof’s work [92], and the

discussion of the spatially modulated fermi gas is based on Ref. [11].

5.2 Describing Cold Atom Interactions with s Wave Scattering Lengths

At low temperature, the atom-atom scattering is dominated by the s wave channel.

This observation can be used to simplify the description of the ultra cold atom-atom

interaction. In this section, we first calculate the energy shift of the two body system

due to atom-atom interactions. We show that this shift can be described by a T

matrix [92]. This T matrix is then related to the s wave scattering length to find the

effective atom-atom interaction at low temperatures.

We consider a system of two non-identical atoms with equal mass m interacting

in free space with the Hamiltonian

H =
p2

1

2m
+

p2
2

2m
+ V (r1 − r2) .

We define Vq as the Fourier transform of the true atom-atom interaction V (r1 − r2).

Without this interaction, eigenstates of the system are plane waves. In the following

calculation, we work in the center-of-mass frame and label only the relative coor-

dinate. Including the interaction, we can calculate the energy shift of state |k〉 in
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perturbation theory as

∆Ek = 〈k |V |k〉+

〈
k

∣∣∣∣V G0
+

(
~2k2

m

)
V

∣∣∣∣k
〉

+

〈
k

∣∣∣∣V G0
+

(
~2k2

m

)
V G0

+

(
~2k2

m

)
V

∣∣∣∣k
〉

+ ..., (5.2)

where

G0
+ (E) =

1

E −H0 + i0

is the zeroth order resolvent operator we have discussed in the third chapter. We

can write the Lippman-Schwinger equation explicitly in momentum space as

T (k′,k; E) = V (k′ − k)

+

∫
dk′′

(2π)3V (k′ − k′′)
1

~2k2/m− ~2k′′2/m + i0
T (k,k′; E) . (5.3)

According to Eq. (5.2), the energy shift can be written in terms of the T matrix as

∆Ek = 〈k |T |k〉 = T (k,k; E) .

This formula shows that by replacing the bare interaction V with the T matrix, the

exact energy shift can be calculated as a first order perturbation. The formula works

for two non-identical atoms. For identical terms, an additional T matrix T (−k,k; E)

should be included.

We have thus related the energy shift to the T matrix. This T matrix can be

determined from scattering properties. At low temperature, the scattering is domi-

nated by the s wave. The scattering properties are solely determined by the energy.

In the following, we use the following simplified notation for the S and T matrices,

S (k) = S

(
k′,k;

~2k2

m

)
; (5.4)

T (k) = T

(
k′,k;

~2k2

m

)
. (5.5)



82

The S matrix describing low energy scattering is,

S (k) = (1− 2ikas) ,

where the as is the s wave scattering length. Recall that the T matrix is related to

the S matrix by

T (k) =
2πi~2

mk
[S (k)− 1] , (5.6)

such that,

T (k) =
4π~2

m
as.

We note that the T matrix is independent of energy for low temperature scattering.

If we Fourier transform to configuration space, we recover the effective interaction

used widely in the literature [95],

V (r) =
4π~2

m
asδ (r) (5.7)

We note that this effective interaction is ill-defined for large momenta. The renor-

malization of the interaction is discussed in the next section in the case of a Feshbach

resonance.

5.3 Feshbach Resonance

Feshbach resonance occurs when two colliding atoms have an energy equal to that

of a quasi-bound molecule. The energy scheme is plotted in Fig. (5.1)

Near the resonance, the scattering properties of the two atoms can be determined

solely by the molecular resonance. This provides a mechanism to tune atom-atom

interaction in experiments. Feshbach resonances were first demonstrated in a sodium

Bose Einstein condensate [30]. For BEC systems, the usefulness of the resonance is

fairly limited because of the increase of the three-body loss near the resonance. For



83

Interatomic Distance

P
ot

en
ti

al
s 

of
 th

e 
Sc

at
te

ri
ng

 C
ha

nn
el

s

Open Channel

Closed Channel

S
ca

tte
ri

ng
 L

en
gt

h

Magnetic Field

B0

 

Figure 5.1: Energy schemes and scattering lengths across a Feshbach resonance.

Fermi systems, however, three body loss is inhibited by the Pauli exclusion principle.

It was indeed demonstrated in later experiments on fermions that the loss rate of

the Feshbach molecule is negligible.

Near a Feshbach resonance, the scattering process can be described by three para-

meters, the coupling between the open and the closed channels, the energy difference

between the open and the closed channels and the background scattering length.

Following Kokkelmans [80], we use the following contact forms,

V P (r) = V P δ (r) ;

Vc (r) = Vcδ (r) .

Here V P (r) is the open channel interaction and Vc (r) is the free bound coupling.

Since we are interested only in the low energy physics, the nature of the short range

interaction is not important. We have chosen the potential as a delta function to

simplify calculations. This choice is only a matter of convenience. For example,
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one can choose the potential to be a square well potential, as long as the effective

range of the potential is much smaller than the characteristic length of the problem.

This point has been numerically verified by Kokkelmans [80], where the scattering

properties of different modeling potentials are compared with the true potential.

The problem is to relate the parameters V P , g and dress molecular energy v to the

physical observables.

The T matrix can be calculated as

T
(
k,k′; ~2k2/m

)
= V p (k′ − k) +

|Vc|2
~2k2/m− v + i0

+

∫
d3k′′

(2π)3V p (k′ − k′′)
1

~2k2/m− ~2k′′2/m + i0
T (k′′,k)

+
|Vc|2

~2k2/m− v + i0

∫
d3k′′

(2π)3

1

~2k2/m− ~2k′′2/m + i0
T (k′′,k) .

At low temperature, the scattering is dominated by the s wave contribution. There-

fore, the T matrix does not have angular dependence. In addition, for elastic scat-

tering, the magnitude of the momentum should be conserved. We use the simplified

notation for the T matrix defined in Eq. (5.5). The above Lippman-Schwinger

equation can be simplified as

T (k) = V p

[
1 +

∫
dk′′

(2π)3

1

~2k2/m− ~2k′′2/m + i0
T (k)

]

+
|Vc|2

~2k2/m− v + i0

[
1 +

∫
dk′′

(2π)3

1

~2k2/m− ~2k′′2/m + i0
T (k)

]
.

The integral over k′′ is divergent, which is directly related to the delta function form

we have assumed for the atom-atom interaction. We can quantify this divergence

by introducing a high momentum cut off at K. The T matrix, in terms of the cut off
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momentum, is

T (k) = V P − V P m

2π2~2
T (k)

[
k − tanh−1 k

K
+

iπ

2
k

]

+
|Vc|2

~2k2/m− v

{
1− 1

2π2

m

~2
T (k)

[
k − tanh−1 k

K
+

iπ

2
k

]}
.

Solving for T (k), we get

T (k) =
V P + |Vc|2

~2k2/m−v

1 +
(
K − tanh−1 k

K
+ iπ

2
k
)

m
2π2~2

(
V P + |Vc|2

~2k2/m−v

) .

The corresponding S (k) matrix can be calculated using Eq. (5.6) as

S (k) = −i2k
m

4π~2

−vV P + |Vc|2
−v + α

[−vV P + |Vc|2
] + 1. (5.8)

We have neglected terms of order k/K. Here the parameter α is defined as,

α =
mK

2π2~2
.

On the other hand, for Feshbach resonances, the S matrix can be written out in

terms of physical observables. Expanding the exponential to first order in k in the

low momentum limit, we find

S (k) = (1− 2ikabg)

[
1− 2ik |Vc0|2

−4π~2
m

(v0 − ~2k2/m) + ik |g0|2
]

= 1− 2ik

(
abg − m |Vc0|2

4π~2v0

)
. (5.9)

Note that the U, Vc0, v0 are the parameters that are used in the S matrix to

characterized scattering near the resonances. These are experimentally measurable

quantities. They give the location of the resonance, its width and its strength. From

this we can deduce that

a = abg − m |V c0|2
4π~2v0

, (5.10)
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is the modified scattering length due to the closed channel. By equating the two S

matrices (5.8,5.9) we can find that the background interaction far from the resonance

is

U =
4π~2abg

m
=
|Vc0|2

v0

+
−vV P + |Vc|2

−v + α
[−vV P + |Vc|2

] , (5.11)

defined in terms of the contact potential parameters. To find a renormalization

condition, we need to find an appropriate relation between the contact potential

parameters V P , g, v and U, g0,v0, to reproduce relation (5.10). This can be done by

defining

Γ =
1

1− αU
; (5.12)

V P = ΓU ; (5.13)

Vc = ΓVc0; (5.14)

v = v0 + αΓV 2
c0. (5.15)

This relation relates the physical observables U, Vc0, and v0 with the parameters

V P , Vc, and v that one uses in theories.

One can then directly write the many body Hamiltonian with the delta function

parameters as

K =

∫
d3x




∑
α ψ†σ (x)

(− 1
2m
52 −µ

)
ψσ (x) + φ† (x)

(− 1
m
52 −µ

)
φ (x)

+V P ψ†↑ (x) ψ†↓ (x) ψ↓ (x) ψ↑ (x)

+Vcφ
† (x) ψ↓ (x) ψ↑ (x) + Vcφ (x) ψ†↓ (x) ψ†↑ (x)




,

(5.16)

where ψσ (x) is the field operator for the open channel atoms with spin σ, φ (x) is

the molecular field operator, and µ is the chemical potential. In K and Li experi-

ments, one finds broad Feshbach resonances: that is, the width of the resonance is

much larger than all other relevant energy scales. Therefore, the population of the
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molecular state is negligible near the resonance. One can eliminate the molecular

population and reach the following single channel model,

K =

∫
dr

∑
a

ψ†α (r)

(
− 1

2m
52 −µ

)
ψα (r)

+
1

2

∫
dr

∑

α,β

gψ†α (r) ψ†β (r) ψβ (r) ψa (r) , (5.17)

where the effective single channel interaction is

g = V P − V 2
c

v

=
U − V 2

c0

v0

1− α
(
U − V 2

c0

v0

)

=
Ũ

1− αŨ
,

with the Ũ being the bare effective interaction between atoms,

Ũ = U − V 2
c0

v0

.

5.4 Mean Field Bogliubov-de Gennes Approach

In the previous section, we assumed that the system is uniform. In particular, we

assumed that the interaction g is a constant in the whole space. This restriction is

not necessary. As long as the modulation of the interaction is slow compare to the

chemical potential of the many body system, the effective interaction can acquire a

spatial dependence,

K =

∫
dr

∑
a

ψ†α (r)

(
− 1

2m
52 −µ

)
ψα (r)

+
1

2

∫
dr

∑

α,β

g (r) ψ†α (r) ψ†β (r) ψβ (r) ψa (r) . (5.18)

The dependence of g (r) on position is shown explicitly.
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To solve the above problem, we write Eq. (5.18) in the following effective single

particle mean field form,

Keff =

∫
d3x

∑
a

ψ†α (x) Heψα (x)

+
1

2

∫
d3x

∑

αβ

∆αβ (x) ψ†α (x) ψ†β (x) + ∆∗
αβ (x) ψβ (x) ψa (x)

− 1

2

∫
d3x

∑

αβ

Vaβ (x) ψ†β (x) ψa (x) +
1

2

∫
d3x

∑

αβ

Uαα (x) ψ†β (x) ψβ (x) ,

(5.19)

where we have taken the mean field as

∆αβ (x) = −g (x) 〈ψβ (x) ψa (x)〉

Vaβ (x) = g (x)
〈
ψ†α (x) ψβ (x)

〉

Uαα (x) = g (x)
〈
ψ†α (x) ψα (x)

〉
, (5.20)

and He = H0 − µ is the single particle part of the potential. For s wave scattering

gaβ = g for α 6= β and gaβ = 0 for α = β. In our system, we assume equal spin

populations, therefore, U↓↓ (x) = U↑↑ (x) . We can simplify Eq. (5.19)

Keff =

∫
d3x




∑
a ψ†α (x) Heψα (x)

+∆ (x) ψ†↑ (x) ψ†↓ (x) + ∆∗ (x) ψ↓ (x) ψ↑ (x)




+

∫
d3x

[
U (x) ψ†↑ (x) ψ↑ (x) + U (x) ψ†↓ (x) ψ↓ (x)

]
. (5.21)

This single particle Hamiltonian can be diagonalized by the following transforma-

tion

ψ↑ (x) =
∑

n

un (x) γn↑ − v∗n (x) γ†n↓

ψ↓ (x) =
∑

n

un (x) γn↓ + v∗n (x) γ†n↑. (5.22)
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Here γnσ and γ†nσ are the Fermi creation and annihilation operator, satisfying anti-

commutation relations. They correspond to eigenstates of the effective single particle

potential (5.21)

H = Eg +
∑
nα

εnγ†nαγnα.

We define the ground state as that for which

γnα |0〉 = 0

. Using commutation relations one can show that

[ψ↑ (x) , Keff ] = Heψ↑ (x) + ∆ (x) ψ†↓ (x) + U (x) ψ↑ (x)

[ψ↓ (x) , Keff ] = Heψ↓ (x)−∆ (x) ψ†↑ (x) + U (x) ψ↓ (x) , (5.23)

which, together with (5.22) yield the Bogoliubov de Gennes (BdG) equation [104]

Enun = Heun + ∆ (x) vn + U (x) un

Envn = −H∗
e vn + ∆∗ (x) un − U (x) vn. (5.24)

We can write the above equations and Eq. (5.20) in momentum space as

(εk − µ) uk + Uk′uk−k′ + ∆k′vk−k′ = Euk; (5.25)

− (εk − µ) vk − Uk′vk−k′ + ∆∗
k′uk+k′ = Evk; (5.26)

− 1

V
v

(n)
k′ v

(n)

k+k′−k′′ g̃k′′ = Uk; (5.27)

1

V
v

(n)
k′ u

(n)

k+k′−k′′ g̃k′′ = ∆k; (5.28)

2

V
v

(n)
k v

(n)
k = n̄. (5.29)

A summation convention is used for any momentum that appears twice on the left

hand sides of these equations. The spin index can be neglected due to the symmetry

between spin up and down.
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Recall that we want to study the following form of modulation,

g (r) = [g0 + g cos (k0 · r)] .

In the following, we take k0 along the z direction. With this choice, ∆ (r) , U (r) are

functions of z only. In momentum space, we can solve the single particle problem in

a set of subspaces corresponding to constant kx and ky. The Fourier transforms of

u (r) , v (r) , g (r), ∆ (r) , and U (r) are defined as uk, vk, gk,∆k, and Uk, respectively.

We can take u (r) , v (r) and ∆k to be real without loss of generality. Since we are

dealing with a problem invariant under reflection r → −r, we can also take ak, bk, ∆k

and Uk to be real. The quantity εk = ~2k2/2m is the kinetic energy of a particle

with wave vector k, and V is the quantization volume. We note that near a Feshbach

resonance the chemical potential, µ, need to be self-consistently determined using the

an average density of the Fermi gas n̄ in Eq. (5.29).

5.5 Ground State Properties and the Excitation Spectrum

We can solve the BdG equations self-consistently using numerical iteration. The

self-consistent gap is found to have only three components in momentum space,

namely, kz = 0,±k0. Due to the form of the interaction we choose (5.1), the zero

momentum component of the gap, ∆0, is always larger than the ±k0 components of

the gap, ∆±k0 . The pairing of the many body ground state ,|0〉, is directly related

to the expectation value, 〈0| ak↑aq−k↓ |0〉. Since the modulation of the interaction

is along the z direction, the non zero COM pairing occurs only in the z direction.

The system is homogeneous along the x and y directions. In these directions, pairing

occurs with opposite momenta. Without loss of generality, we can limit ourselves to

the study the Cooper pairs formed by the atoms with kx = ky = 0. It can be shown



91

that

〈0| akz↑aq−kz↓ |0〉 =
∑

n

u
(n)
kz

v
(n)
kz−q. (5.30)

The numerical result is presented in figure(5.2a).

We find that only states with the COM momenta q = 0,±k0 are occupied. The

probability of finding Cooper pairs with higher integral multiples of k0 is negligible.

Given the magnitude of the coupling between different COM components, descried

by the g term in the interaction (5.1), it is surprising that atom pairs do not occupy

states with COM momenta corresponding to higher harmonics of k0. Actually this

result can be explained by the nonlinear property of the BdG equations. Atom

pairs tend to occupy as few COM states as possible because the interaction energy

is proportional to the square of 〈0| akz↑aq−kz↓ |0〉. By occupying only these three

COM states, the pairing energy is maximized in magnitude. One can see clearly

from Fig. (5.2a) that the pairing occurs mostly for atoms near the Fermi surface.

We note that generally the pairing amplitude 〈0| akz↑ak0−kz↓ |0〉 does not equal the

pairing amplitude 〈0| akz↑a−k0−kz↓ |0〉 . This is because, for kz 6= 0, either k0 − kz or

−k0 − kz is closer to the Fermi surface. We emphasize that pairs occupy several

COM states coherently. A direct consequence of this is that one particular atom,

say an atom with momentum k and spin up, can form pairs simultaneously with

several spin down atoms with momenta −k, k0−k,and −k0−k, respectively. Right

at the Fermi surface, pairings with opposite momenta dominate, and therefore the

amplitudes 〈0| akF ↑ak0−kF ↓ |0〉 and 〈0| akF ↑a−k0−kF ↓ |0〉 are small. Slightly away from

the Fermi surface, the pairing with zero COM is not as strong and one starts to see

pairings with nonzero COM. This feature of the ground state is closely related to the

single particle excitation spectrum discussed below.

The eigenenergies that we found by solving Eqs. (5.25)(5.26) are the single particle
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Figure 5.2: Pairing amplitudes akz↑aq−kz↓ as a function of q and kz. Plot (a) corresponds to the
ground state, (b) to the first excited state, (c) to the excited state right before the
second gap (the 20th excited state in Fig. (5.3)), and (d) to the excited state right
after the second gap (the 21st excited state in Fig. (5.3)). Only momenta close to the
fermi surface are shown. The arrows are used as guides to the eyes. It points to the kz

and q′s where significant changes in the pairing amplitudes, akz↑aq−kz↓, take place. We
have used a units with fermi momentum and fermi energy to be one. The numerical
values for the parameters are: g0 = 20, g = 15, and k0 = 0.2. The self-consistent gaps
and chemical potential are found to be, ∆0 = 0.13, ∆±k0 = .06 and µ = 0.85.
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Figure 5.3: Plot of the single particle excitation energy. Here we only look at the quasi-particles
with kx = ky = 0. The n labels the eigenstates. The second gap locates between the
state n = 20 and n = 21. The other ”mini gaps”, for example, gaps between the state
n = 22 and the state n = 23, comes from the finite grid of our numerical calculation.
We have used same numerical values for relevant parameters as Fig. (5.2).

excitation energies of the many body state. The excitation gap, ∆ (r), is positive

everywhere in real space with its minimum being ∆0−∆k0 . This minimum is the lower

bound of the excitation gap. Above the gap, the excitation spectrum is continuous.

However, for quasi-particles with a particular value of kx and ky, say, kx = ky = 0,

additional gaps emerge due to the periodic modulation of the interaction along z

direction [see Fig(5.3)].

The modulation therefore induces band gap structures in the quasi-particle ex-
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citations. According to the standard BCS theory, excitation gaps emerge because

extra energies are needed to break Cooper pairs. In the following, we develop a

semi-quantitative understanding of the excitation spectrum plotted in Fig. (5.3) in

a pair breaking picture. The pairing amplitudes in an excited state |n〉 are,

〈n |ak↑aq−k↓|n〉 = 〈0 |ak↑aq−k↓| 0〉 − u
(n)
k v

(n)
k−q.

The pairing amplitudes for several excited states are shown in Fig. (5.2b, 5.2c, 5.2d).

For low energy excitations, the pair breaking occurs near the Fermi surface. In other

words, the pairs akz↑aq−kz↓ with kz close to ±kF are most easily broken. In the

numerical calculation, we actually find that the pair breaking happens as a superpo-

sition of breaking the pair akz↑aq−kz↓ and breaking the pair a−kz↑aq+kz↓. The energy

related to this superposition is small. In the following we focus only on one side of

the Fermi surface. For the lowest excited state |1〉, the change in the pairing ampli-

tudes occurs right at the Fermi surface. The amplitude 〈1| akF ↑a−kF ↓ |1〉 is found to

be close to zero. This is a very significant change compared with the large ground

state pairing amplitude, 〈0| akF ↑a−kF ↓ |0〉 . On the other hand, as we mentioned in the

discussion of the ground state properties, the pairing amplitude 〈0| akF ↑ak0−kF ↓ |0〉

and 〈0| akF ↑a−k0−kF ↓ |0〉 are close to zero because of the dominant pairing amplitude

〈0| akF ↑a−kF ↓ |0〉. In the lowest excited state, now that the akF ↑a−kF ↓ pair is broken,

the particle a†kF ↑ is free to pair with particles a†±k0−kF ↓ and this decrease the energy

by a amount ∆k0. If we neglect the contribution from the kinetic energy and the

Hartree term in the Hamiltonian, the first gap can be estimated from the above pair

breaking picture to be

∑

k

[
2∆0u

(n)
k v

(n)
k + 2∆k0u±k0+kvk

]
≈ 0.09.

This is close to the value 0.10 obtained from solving the BdG equations. The exci-
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tation energy increases continuously as the excitation gets further and further away

from the Fermi surface. The states with energies right below and above the second

gap, the state n = 20 and the state n = 21 in Fig. (5.3), have sudden changes

of their signs for the pairing amplitudes ak↑a±k0−k↓ for several k′s. These k′s are

indicated in Figs. (5.2c, 5.2d) by arrows. We estimate the energy cost for this sign

change to be 0.09, which is close to the observed value of 0.11. Therefore, the phase

flips of the pairs with nonzero COM momenta give rise to the second gap. Similar

observations can be made for gaps at higher energies. However, as the kinetic energy

increases, the gap structure gets more and more obscure. Actually, with parameters

used in the calculation, only two gaps are observed. We would like to emphasis that,

after summation over the contribution from different kx and ky, the additional gap

we discussed above, is not a true second gap in the excitation spectrum. However,

it nevertheless induces a sharp change of the density of states. Such effects, arising

from the rich structures of the pair wavefunction, can be observed in experiments.

5.6 Experimental Observables

Experimentally, the spatial modulation of the atom-atom scattering length can

be achieved via magnetic or optical Feshbach resonances. However, it is not easy to

generate spatial variations of the magnetic field on a scale smaller than the sample

size. Optical Feshbach resonances are more promising to realize the desired system.

By coupling the incident channel of two atom scattering to the molecular state closed

channel [88][89][90], one can induce the desired spatial modulation using an optical

lattice. In an optical lattice the intensity and polarization of the laser field vary

periodically in space to introduce a spatial variation of atom-molecule coupling,

which leads to the desired spatially modulation of the scattering length. The laser
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fields need to be tuned far away from the resonance of a single atom to minimize the

effect of the field on the single particle part of the Hamiltonian. This technique has

recently been demonstrated in experiments using alkali atoms [91][93] and alkaline

earth atoms [94]. In the alkali atom experiments, large loss rates are observed. This

difficulty may be circumvented by using stronger laser fields and detuning further

away from the molecular levels. On the other hand, it was also found recently [94]

that alkaline earth atom systems give much smaller loss rates. Nevertheless, we

use the alkali atom experimental data in our numerical calculations, since they are

the only Fermi gas experiments available. In particular, we use data from the recent

experiments [24][25][7][5][6][26] for 6Li. We have taken the unit of energy as the Fermi

energy EF = (3π2n̄)
1/3 ∼ 3µk and the unit of wave vector as kF . The background

scattering length is abg ∼ −0.5 in these units. The wavevector k0, characterizing

the variation of the interaction (5.1), needs to be taken smaller than the Fermi

momentum. If we introduce the modulation via laser fields, the modulation is of the

order of wavelengths, say k0 ∼ .2. Note that this choice automatically satisfies the

condition k0 ¿ 2π/a, necessary for the validity of Eq. (5.1). The coupling strength

is about g0 ∼ −20. This gives an interaction energy n̄g0 ∼ −2. As has been stated

earlier, the coupling between different COM g is smaller in magnitude than g0.

The observation of this novel pairing in the ground state involves measurements

of the COM momenta of pairs. This can be done by pair-wise projecting Cooper

pairs into molecules by a fast sweep from BCS side of the resonance to the BEC

side. In such a process, the many body Cooper pairs are transformed into bound

molecules. After this procedure, the molecules of the condensate coherently occupy

momentum states q = 0, q = ±k0, which can be measured by a time of flight

image of the molecules. Such measurements have already been performed in several
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BEC-BCS cross over experiments [5][6][26]. Another way of observing the pairing

correlation, recently demonstrated experimentally [97][98], is to measure the shot

noise correlations.

For the excited states properties, one needs to measure the radio frequency (RF)

spectrum. RF spectra have been proposed [99][100][101][102][103] and recently used

to measure the Fermi gas pairing gap [78]. In experiments, two of the hyperfine levels

of the atoms, |1〉 , |2〉 are identified as the spin up and spin down states. A probing

RF field couples one of the hyperfine levels, say |2〉, to a third hyperfine level |3〉.

The coupling can be written as

Ωeiωt

∫
d3xψ†3 (x) ψ2 (x) + h.c..

The coupling strength is denoted by Ω which can be adjusted by the laser power

and laser detuning. The ψ3 (x) and ψ2 (x) are the Fermi field operators for atoms in

hyperfine states |3〉 and |2〉 , respectively. In momentum space, this can be written

as

Ωeiωt

V

∑

k

a†k;3ak,2 + h.c..

The excitation from a superfluid level |2〉 to normal state level |3〉 requires first

breaking the Cooper pair formed by |1〉 and |2〉 , and then exciting according to

the mean field shifted energy levels. As observed in the experiment of Li [78] the

mean field effects can be suppressed; therefore, the main feature of the RF spectra

arises from the pairing. The transition rate can be evaluated directly from our BdG

solution of the quasiparticle excitations by Fermi’s golden rule as

R (ω) =
2π

~
Ω2

V

∑

n,k

∣∣∣v(n)
−kz

(kx, ky)
∣∣∣
2

δ

[
En (kx, ky) + ~ω23 − µ +

~2k2

2m
− ~ω

]
. (5.31)

Here ~ω23 is the energy difference between the hyperfine state |2〉 and |3〉.
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Such calculation turns out to be numerically challenging. They require a very

fine grid in momentum space. However, in the case that k0 ¿ kF , we can adopt a

Local Density Approximation (LDA) approach. Such an approximation utilizes the

fact that most of the contribution to the radio frequency signal comes from qua-

siparticles with momentum k ∼ kF . Given the condition that k0 ¿ kF , one can

neglect the gradient of the modulation of the interaction. In LDA the RF spec-

trum is calculated locally and the final result is a summation of local contributions

[99][100][101][102][103],

R (ω) =

∫
d3rRloc (r, ω) ,

where the Rloc (r, ω) is the local contribution according to Eq. (5.31) with its para-

meters determined locally. For the particular parameters we studied in this paper,

k = kF /5. Such parameters do not necessarily validate the LDA approximation. We

nevertheless carry out the LDA calculation and compare the result with the direct

BdG calculation.

For LDA, at each local point we define a local gap and chemical potential,

∆ (r) , µ (r). The energy conservation condition is

f =

√
[εk − µ (r)]2 + ∆ (r)2 + εk − ~ω − µ (r) = 0,

and the εk can be found to be

εk =
~2ω2 −∆2 (r)

2~ω
+ µ (r) .

One can calculate the threshold frequency by requiring εk > 0,

~2ω2 + 2µ (r) ~ω −∆2 (r) > 0;

leading to

~ωth =
√

∆2 (r) + µ2 (r)− µ (r)
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Note that in the uniform case, one can find an analytical formula for the wavefunction

of the Cooper pair with

v2
k =

Ek − (εk − µ)

2Ek

and

Ek =

√(
~2ω2 −∆2 (r)

2~ω

)2

+ ∆2 (r) =
∆2 (r) + ~2ω2

2~ω
.

Therefore, according to Eq. (5.31) the local signal is

Rloc (r, ω) =
2π

~
Ω2

V
D (εk)

∆2 (r)

∆2 (r) + ~2ω2
Θ

(
~2ω2 −∆ (r)2

2~ω
+ µ (r)

)∣∣∣∣
1

∂f/∂εk

∣∣∣∣ ,

with

∂f/∂εk = 1 +


∂

√
[εk − µ (r)]2 + ∆ (r)2

∂εk




εk

=
2ω2

∆2 (r) + ω2
.

The final result for Rloc (r, ω) can be found as

Rloc (r, ω) =
π

~
Ω2

V
D (εk)

∆2 (r)

ω2
Θ

(
~2ω2 −∆ (r)2

2~ω
+ µ (r)

)
.

Note that ∆ (r) and µ (r) are extracted from numerical BDG solutions.

∆ (r) = ∆0 + ∆k0 cos (k0z) ;

µ (r) = µ− U (r) = µ− U0 − Uk0 cos (k0z) .

Here ω is the detuning of the laser frequency from the frequency difference in |2〉 and

|3〉 , and Ω is the coupling between them. D (εk) is the free particle density of states

and it is proportional to
√

εk. The chemical potential of state |3〉 is taken to be zero

and the RF spectrum is shown in figure (5.4).

For the direct BdG evaluation, we make use of the fact that there are only three

components for ∆ and U in momentum space, namely, the zero and the ±k0 com-

ponents. This observation suggests that in BdG equations (5.25) (5.26) uk and vk
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Figure 5.4: The RF spectra are plotted for a homogenous system and the spatially modulated
system. The RF signals for the modulated system are calculated both by LDA method
and by BdG method. We have used the numerical values as Figure(5.2) for various
parameters.
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couples only to uk±k0 , vk±k0 uk±2k0 , vk±2k0 , ... , uk±nk0 and vk±nk0 , where n can be

any integer. One can then decompose the Hilbert space into small subspaces for each

k in the range of (−k0, k0]. This significantly simplifies the size of the problem. The

RF signal calculated directly from equation (5.31) is plotted with the LDA signal in

figure (5.4).

We note that the LDA calculation gives a clear threshold. This threshold be-

havior is artificial resulting from the assumption that qusiparticle excitation have

well defined momenta. In the full BdG calculation, the qusiparticle wavefunction

contains momenta differing by integer numbers of k0. For ~ω < 0, one already see

non-negligible amount of weights in the RF spectrum. For ~ω > 0, the LDA and

BdG calculation predicts similar two peak structures. These two peaks correspond

to the first and the second gap in the quasiparticle excitation spectrum. The position

and strength of these two peaks are, however, different for LDA and BdG.

5.7 Summary

In conclusion, we studied a Fermi gas with spatially modulated interaction in a

mean field theory at zero temperature. We also discussed its experimental realization

and detection. Such a state has a periodic modulation of the order parameter similar

to that of the FFLO states. Even though we considered a spatially varying interaction

along one direction only, our analysis can be generalized easily to a system where the

interaction is modulated in three directions. In the case that the second gaps along

three directions overlaps, the system can have true additional excitation gaps. This

should produce more pronounce signals in the RF spectrum. We hope this study will

motivate experimental studies of the optical Feshbach resonances in Fermi gases.



CHAPTER VI

Summary and Future Study

6.1 Summary of the Thesis

In this thesis, we have presented a study of several many body effects in the

atomic systems. Atomic systems have advantages over traditional systems in that

they generally provide a clean environment in which parameters can be controlled

using various techniques. With the rapid progress in cold atom physics, the theories

presented in this thesis may find application in some interesting systems.

Chapters 2 and 3 were devoted to the study of single atom processes in a many-

body environment. The environment-induced modifications of the both the decay

rate and atomic recoil are among the basic processes investigated. A good un-

derstanding of those effects in a many body environment is necessary for future

applications of cold atoms in quantum computation and precision measurement.

Macroscopically, the corrections to the decay rate are calculated using either real

cavity or virtual cavity models. In a microscopic picture, a single atom decays by

exchanging virtual photons with the environment. Inside a dielectric, the virtual

photon is modified because of its scattering with the environment atoms. By includ-

ing such corrections, we found the modification of the source atom decay rate. In our

microscopic model, the atoms are modeled as randomly distributed fixed particles.

102
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In first order perturbation theory, a correction of 7
6
Nαγ to the vacuum decay rate

was found. This result agrees with both the real cavity model and the virtual cavity

model to first order in the dielectric density. To distinguish these two models, it

is necessary to carry out this calculation to the second order in density. In second

order, we found the correction is 71
72

N2α2γ, which is different from both the real and

virtual cavity model. In order to recover the result for the virtual cavity model, we

have to include contributions from the situation where two medium atoms occupy

the same space point.

In spontaneous decay, the source atom undergoes recoil when emitting a photon.

When the atoms are cooled below a temperature corresponding to the recoil energy,

this photon recoil phenomenon can be resolved. In the case where the source atom

is inside an atomic gas, the source atom recoil is modified by its many particle

environment. Experimentally, it was found that the source atom recoils according to

n~k0. We provide a microscopic explanation of this phenomenon. The reason for the

modification of the recoil momentum is that the photon radiated by the spontaneous

decay of the source atom is scattered by the medium atoms. The interference of

different scattering amplitudes effectively shifts the central frequency of the photon.

Because of this shift, the momentum carried by the photon is modified according to

n~k0, which results in a modification to the source atom recoil.

In Chapters 4 and 5, we studied two many body system that can be realized in

ultra-cold atomic gas systems. This research focuses on the many body behavior,

instead of single particle processes.

An impurity inside a many body system has always been an important topic in

condensed matter systems. In a cold atom gas, the system is very clean and is

generally free of any impurities. To generate effective impurities inside a cold atom
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gas, one can add impurity atoms, ions or apply external fields to this system. We

studied the many body coherence of a Tonks-Girardeau gas in the presence of a

local potential. It was found that a local potential decreases the value of the largest

eigenvalue of the single particle density matrix. The repulsive local potential always

decreases the ”condensate” density near the impurity while an attractive potential

may increase or decrease the ”condensate” density depending on the strength the

potential. To observe this phenomenon, one can observe the momentum distribution

of the gas with respect to different strengths of the local potential. This can be done

by switching off the confining trap of the atomic gas and observing the time of flight

image.

In Chapter 5, we discussed a cold atomic fermionic system with a spatially mod-

ulated interaction. The spatial modulation is achieved via an optical Feshbach res-

onance. In cases where the interaction strength is periodically modulated, we find

that, in the ground state, the Cooper pair acquires non-zero momenta. In addition,

the system’s single particle excitation spectrum along a particular direction has mul-

tiple gap structures. The magnitude of the gap is related to non-zero center of mass

pairing amplitudes. To observe the non-zero momentum pairing is straightforward.

One does a fast sweep of external fields to project the Cooper pairs to bound mole-

cules. The momentum distribution of the molecules give a direct measurement of

the Cooper pair momenta. The single particle excitation, on the other hand, can be

measured by the rf spectrum.

6.2 Future Directions

In the calculation of the spontaneous decay and photon recoil, we have used

a microscopic model where the dielectric atoms are fixed and randomly distributed
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point-like particles. We considered only the internal degrees of freedom and neglected

their external motions. As we have seen in the calculation of the decay rate, however,

the result depends critically on the atom-atom correlation in configuration space.

This is a consequence of the fact that when two atoms are close to each other, the

interaction energy between then can be quite large to invalidate the perturbative

calculation. These kinds of divergences are usually circumvented by certain types

of regularization procedures such as a high momentum cut off. Such procedures are

not necessary if the atomic motion and the details of the interaction potentials are

included in the theory. A full many body theory of the atoms and the photon fields

is able to take into account both the atom and the field degrees of freedom and gives

unambiguous pictures for photon propagation in a dielectric. Such systems may be

fairly complicated and numerical computation, such as Monte Carlo simulation, may

be necessary to find solutions.

In the study of the ultra-cold atomic gases, one usually utilizes a different modeling

approach. In typical atomic gas theories, the atomic external degrees of freedom are

treated quantum mechanically, while the photon fields are treated classically. There

the external fields are considered only as a control knobs. A great amount of physics

related to the properties of the photon fields may be lost in such a picture. In

addition, even considering the external fields only as knobs, not all the properties

of the fields have been used fully. For example, in a typical time of flight image

measurement, only the field intensity is measured. This actually corresponds only to

a very small part of the information that can be extracted from the photon fields.

In a many body theory where the photon fields and the atomic gases of such

systems are treated on an equal footing, it is possible to ask the following question.

Given an interaction of fields and atoms, how are correlations of electromagnetic
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fields related to correlations of cold atom many body states, and vice versa?

By answering this question, we may find new ways of engineering interesting cold

atom many body states by varying correlations of photon fields. It is equally possi-

ble to generate interesting photon states with particular cold atom states. On the

other hand, one may be able to develop novel ways of detecting many body correla-

tions by measuring correlations of the electromagnetic fields. In such a perspective,

many techniques developed in traditional quantum optics, such as pump probe spec-

troscopy, photon echoes, four wave mixing, etc., can be applied to cold atom gases.

Such a theory can be useful in elucidating the deep connections between atom

and photon correlations. As an example of one such application, let us consider a

method for detecting cold atom many-body states.

The atom-atom correlations can be measured by measuring the electromagnetic

field correlations. The detection of the cold atom many body states is optimal when

the field correlations are significantly modified by the presence of the atoms and

the atom-atom correlations are kept intact under the atom-field coupling. A weak

quantum field would be of particular interest in this case. This limit is the opposite

of the limit where the correlations of the electromagnetic fields are used to engineer

the correlations of the atom gases. The simplest form of photon correlations used

in measurements is intensities, as used in the time of flight image technique. Phase-

contrast imaging techniques, where the phase difference between two optical fields

is measured, have also been used. Beyond these techniques, there are some high-

resolution photon spectroscopy measurements of a hydrogen condensate in a cascade

setup. This measurement used the single particle correlation of the electromagnetic

field, a method that is limited by the laser line width. If a pump probe scheme

is used and both the pump and the probe beam are derived from the same laser
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source, one may overcome the constraint on the laser width. Such measurements

are generally not invasive and can be done with atoms inside a trap. In such spec-

troscopy measurements, only single-photon time correlations at the same position

are measured. In quantum optics, spatial as well as higher order correlations can be

measured. This can lead to the determination of higher order atomic correlations,

which would provide a systematic method of probing all the information contained

in many body atomic states.
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