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NOMENCLATURE

Symbols are defined when they first appear in the text;those which

appear frequently are listed below for reference,

AB cross-sectional area, base portion.

A cross-sectional area, tower portion.

B subscript to denote base or base portion.
[c] damping matrix.

Cp, Cqp  Dbase shear coefficient.

CBB base torque coefficient.

CT tower-base shear coefficient.

Cisk coefficients in expression for mode shapes of shear beam.

G rigidity per unit area along the x direction in shear beam,
(1] identity matrix.

[x] stiffness matrix.

[M] inertia matrix

N number of stories.

P story at which setback occurs.

R:k kth torsional mode.

T4 torque in ith story.

Tj natural period of Jjth mode,

T:k kth translational mode, x direction.

T subscript to denote tower portion.

Vi, Vo resultant shear force on horizontal cross-section, shear beam.
Vv resultant torque on horizontal cross-section, shear beam.
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Vi shear force in dith story.

i
al, ap width in x and y directions, tower portion.

by, b2 width in x and y directions, base portion.

b subscript to denote base portion.

c degree of setback.

€ & offset between tower and base centroids in x and y directions.,
£ frequency expression, shear beam.

£, {f} external force per unit length; external force vector.

g acceleration due to gravity.

h height of beam to step.

i story or floor number,

k mode number,

i, j, k indices

kl, kg,k5 stiffness per unit length in x and 7y directions and torsional
stiffness per unit length.

kxs ith story stiffness in x direction.
ky; ith story stiffness in y direction.
kos ith story torsional stiffness.

)i total height of beam.

m, my, mpy mass per unit length.

s mass moment of inertia per unit length.

m; ith mass.

me; mass moment of inertia of ith mass.

P level of setback.

q, s stiffness to inertia ratio in base and tower portions.
{r} displacement vector.
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subscript to denote tower portion.

time coordinate,

displacement along x and y directions.

principal directions beam and building cross-sections.
ground accelerations in x and y directions.

rotation of cross section about vertical axis, shear beam,
vertical coordinate axis, shear beam.

ratios (bp/by, ap/aj) of widths in base and tower portions.
fraction of critical damping.

ratio of rigidity per unit area in y direction to that in
x direction.

modal displacement coerdinate

rotation of cross=-section about vertical axis through centroid,
shear beam,

rotation of ith mass about vertical axis through centroid.
modal participation factor.

distribution factor for stiffness.

displacement co=-ordinate of a one-degree-of=-freedom system.
mass per unit volume of shear beam.

the ratio (k3/m )/(k1/m1) (shear beam) or (k®;/me;)/(kx;/m;)
(shear building).

mode shape.
mode shape vector,

circular frequency.

absolute value.

determinant.






CHAPTER 1

INTRODUCTION

THE PROBLEM

A troublesome problem in earthquake engineering is evaluating
the effect of a setback on the dynamic stresses induced in a tall building
by earthquake ground motion. Two difficulties arise. First,there are
stress concentrations in the vicinity of the setback. The method of deal-
ing with this problem in some of the current seismic building codes(1,2,3)
is to ignore the setback if the plan area of tower is more than a certain
percentage (25% in the case of one code(1) and approximately 50% in the
case of some others(2’3)) of the base area; for other conditions of set-
backs the tower is considered as a separate building for its own height(l)
or as a part of the overall structure, whichever gives the larger force
at the base of tower(2’3). The separate tower concept does not take into
account the fact that the ground motion is modified greatly by the base
portion of the structure before it affects the tower. The tower is sub-
Jjected essentially to a harmonic forced vibrajzion(LF> instead of the nearly
random motion of the ground.

A second difficulty arises with unsymmetrical setbacks. It is
well known that if dynamic symmetry is not preserved the ground motion
induces torsional oscillations in the structure. In the dynamically
symmetric case the translational vibrations in the two principal direc-
tions and the torsional vibrations are uncoupled from each other. Tor=-
sional oscillations due to earthquake are negligible in this case because

the torsional component of earthquake ground motion is small. Unsymmetrical
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setbacks will in general destroy the dynamic symmetry of a structure in
one or both principal directions., If dynamic symmetry is absent in one
or both of the principal directions torsional motion is coupled with
the translations in one or both of the principal directions, and in

the latter case the translations in the two directions are mutually
coupled.

Dynamic symmetry in a uniform building(i.e. one without a set-
back) may also be lacking due to the unsymmetrical distribution of in-
ertia or stiffness. The dynamic effect of such lack of symmetry is
usually ignored by the current seismic building codes(l’2’3>. The de-
sign forces are computed on the implicit assumption of absence of cou-
pling between the torsional and translational motions, and the torque

resulting from the static application of such design forces is pro-

vided for in design.

PRIOR RELATED STUDIES
Very little work has been done on the problem of the effect

(5)

of setbacks on seismic forces in buildings. Berg made an explora-
tory study of this problem using a rectangular stepped cantilever shear
beam as a model for the building with setback. He considered the gen-
eral case of coupled lateral-torsional vibrations of the beam with un-
symmetric setback.

Multi-story buildings with appendages or very light towers
on their top may be considered as extreme cases of buildings with set-

back. Penzien and Chopra(6) gave an approximate method of computing

the seismic forces in the appendages. When one of the lower mode periods
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of the building is very close to or equal to the period of the appendage
(or tower) very high seismic forces may be expected in the appendages.
This problem was considered by Skinner‘gijgj7) as well as by Penzien
and Chopra.(6)

There have been several studies of the problem of coupled
lateral-torsional vibrations in buildings§8-15) Ayre(8) set forth the
theory of torsion coupling in building vibrations in a paper in 1938
in which he reported the results of analytical and experimental research
on symmetric and unsymmetric models of one and two story buildings.

In a later paper(9) he reported an experimental study of the response
of an unsymmetric single story building to a damped sinusoidal one-
directional translation of the base, An excellent brief summary on
the theory of torsional coupling was included in a paper presented by

Ayre at the First World Conference on Earthquake Engineering.(lo)

In 1958, Housner and Outinen(ll) analysed the stresses and
energy input for symmetrical and unsymmetrical buildings and compared
them with the customary design results obtained by static procedures.
Bustamante and Rosenbleuth(le) examined the effect of eccentricity
between centers of mass and stiffness in one principal direction in
one or more stories of a large number of four and eigth-story idealized
structures using three different simplified acceleration spectra.
Bustamante(l3) also investigated the torsional behavior of four~story
buildings subjected to earthquakes.,

Skinner et al(7),in their paper referred to earlier in connec-

tion with the problem of a building with periods close to that of a

light tower situated on its top, also dealt with a similar problem
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arising out of the introduction of small unbalance (i.e. lack of dynamic
symmetry) in a building having close translational and torsional mode

(1k)

periods. Shiga examined the coupled lateral-torsional vibrations
of multi-story buildings with certain properties that lead to a consid-
erable simplification in the modal analysis of the system, He also
examined the response of such buildings to sinusoidal ground motions.
Medearis(l5) analysed the coupled lateral-torsional vibrations of a
geometrically (as well as dynamically) unsymmetric sky-scraper and pre-
sented its coupled mode shapes and frequencies in a recent paper.

Among other related studies are the investigqtions of tor-
sional coupling in unsymmetric uniform thin walled beams of open cross-
section by Gere and Lin(l6>, Lin(l7), and Tso.(l8) Less directly re-

lated work has been done on the vibration of twisted blades and the

coupled longitudinal-torsional wvibrations of bars and shafts,

SCOPE OF PRESENT STUDY

The purpose of the present study is to gain information about
the effects of setbacks on the dynamic behavior of multistory buildings,
which may eventually lead to improved methods of treating setbacks in
seismic building codes. The study is restricted to buildings having
setback at only one level along their height and having a rectangular
cross-section both above and below the level of setback (the tower and
the base portions, respectively).

Further, the structure is assumed to be linearly elastic, and
damping is assumed to be of the viscous type., It is also assumed that

the damping has negligible effect on the mode shapes and frequencies of
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the undamped structure. Only the horizontal motions of the building
are considered and these are assumed to be independent of the vertical
motions,

The multi-story building with setback is represented by two
models: one, a cantilever shear beam stepped at one location along its
height and having a uniform rectangular cross-section in each part of
the structure; and the other, a multi-mass model obtained by assuming
that all the mass in the building is lumped at the floor levels and
the interconnecting stiffness elements (springs) are weightless. The
structure is assumed to be simply coupled in stiffness, i.e. springs
connect only the adjacent masses to each other and only one mass to the
ground. ‘This is the so-called "shear building" assumption and is
equivalent to the assumption of infinitely rigid girders in moment
resisting space frames.

The stepped cantilever shear beam was used as a model of the
building with setback by Berg£5) The formulation of the equations of
motion of the coupled vibrations of a shear beam with unsymmetric set-
back and their solution as developed in Reference 5 is given in Appen=-
dix A with minor changes.

The equations of motion for the coupled vibrations of the lumped
mass model are developed in Chapter II. Conditions under which the trans-
lational and the torsional vibrations uncouple are also discussed. The
solution of the equations of motion in the usual modal superposition
form and a method of finding the mode shapes and frequencies are also

described in Chapter IT.
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The study of the effect of setbacks on building vibrations
is divided into two parts. First it is assumed that the setback is
symmetric about one principal direction and the translational vibra-
tions in that direction are uncoupled from torsional vibrations.

Two parameters represent the setback insofar as the uncoupled trans-
lational vibrations of the shear beam are concerned. They are the
ratio of the height of base portion to the total height, termed the
level of setback, and the ratio of plan area of tower portion to that
of base portion,termed the "degree" of setback. The stiffness and mass
properties of the lumped mass model are idealized so as to permit the
representation of setback by two similar parameters.,

The effects on various modal quantities (periods, mode shapes
etc,) of the two models of the variations in the two parameters of set-
back are examined in Chapter III, Also in this chapter the computed
responses of the lumped mass model to recorded earthquakes and the ap-
proximate responses of the shear beam model are compared with the spec-
ifications of seismic building codes in regards to the effect of set-
back,

Second, the coupled torsional-lateral vibrations in buildings
having unsymmetric setbacks are examined in Chapter IV. For the pre-
sent study it is assumed that stiffness and mass are symmetrically dis-
tributed about the geometrical planes of symmetry in each of the two
portions of the structure. The‘tower and the base portions of the

buildings are then dynamically symmetric structures by themselves.
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The lack of dynamic symmetry in the structure is due to its lack of
geometric symmetry and it 1s represented by the offsets in two mutu-
ally perpendicular directions between the tower and the base centroids.
Results are obtained for the case of buildings with setback
unsymmetric about only one principal direction for which case the trans-
lational vibrations in that direction alone are coupled with the torsion-
al vibrations. Variation of thé eccentricity of the setback along one of
the principal directions and its effect on the modal properties is examined
in Chapter IV for the two models of a building with given level and degree
of setback. The responses of the lumped mass model of the building to
recorded earthquakes are also computed and examined for the effect of

variation in the eccentricity of the setback.



CHAPTER- IT
DIFFERENTIAL EQUATIONS OF MOTION OF
MULTI-STORY BUILDINGS SUBJECTED TO EARTHQUAKES

EQUATIONS OF MOTION

Multistory buildings are very complex structures and their
dynamic analyses are impossible without introducing simplifying assumptions.
During earthquakes the ground shakes in all directions and induces motion
in buildings in all six components of motion. Buildings are designed to
carry static vertical dead and live loads with a reasonable factor of
safety. Due to this reserve strength in the vertical direction it is
customary to neglect the vertical components of vibration.

Mass 1s distributed throughout the building. However, since
in most buildings much of the mass is indeed concentrated at floor levels,
it will be assumed here, for mathematical convenience, that all mass in
the structure is concentrated at floor levels (Figure 2.1). The error
introduced by this approximation is expected to be small in the lower
modegs of vibration(lg) which are the modes of primary importance in
structural response to earthquakes. Ignoring the vertical translatory
inertia and the rotatory inertia about the horizontal axes, one is left
with three degrees of freedom per floor in the building. Thus 3N
coordinates will describe completely the motion of interest, viz. the
motion of each floor in its horizontal plane, in an N-story building.
It is also assumed that the effect of vertical motions on the horizontal

vibrations in the structure is negligible.
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Plan

b.

Flevation

Figure 2.1.

¢c. Plan of a Typi-
cal floor

An . N-Story Building.
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If we further assume that,

a. stiffness is linearly elastic,

b. damping is of the viscous type,
and

c. there is no foundation yielding,

the differential equation of motion for an N-story building (Figure 2.1)

may be written in the matrix form as

M {¥ + [c] {z} + [x] {} = {£(t)} (2.1)

In Equation (2.1) {r} is the displacement vector of order 3N

r =¢ . 5 (2.2)

[M] is 3N x 3N inertia matrix

m .o .o . .o

1,1 * 11, 3N
[M] = : : (2.3)
Lr—n'?)N,l.. .o ) . ) m3N)3N

where m; j is the inertia force acting along the 1-th coordinate of

displacement when the configuration of the structure is such that the

acceleration along the j-th coordinate is unity and zero along the

rest, i.e. ry = 1, r; = 0 foralli £ 3.
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[C] is the 3N x 3N damping matrix

(:l)loo .o .o e P ?l)SN
[c] =1: : (2.4)
)_C—3N’l. Y LI ) . e . e CBN) 3£

where cij is the force exerted by dampers on the mass along the 1i-th
coordinate when the configuration of the structure is such that the
velocity along the j-th coordinate is unity and zero along the rest,
i.e. fj = 1, #; = O for all i £ 3;

[K] is the 3N x 3N stiffness matrix

Ky e oeoee e e Koy
[X] = |: : (2.5)

\BN,]—. o . .o o o . ng)iN‘—

where kij is the force exerted by the springs on the mass along the
i-th coordinate when the configuration of the structure is such that the
displacement along the j-th coordinate is ﬁnity and zero along the rest,
i.ee r. = 1, r = O for all i= jJ; and

{f(t)} is the 3N-order driving force vector

(7, ()

£, (%)

{£(t)} ={f : (2.6)

Fan(®)

where fi(t) is the driving force acting on the mass along the i-th

coordinate at time t; dots above letters denote differentiation with

respect to time.
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The terms "displacement" and 'force" are used in a general
sense to include, respectively, translation and rotation, and linear
force and torque. The terms "velocity" and "acceleration" are used
in the similar generalized sense. It may also be noted that the vectors
and matrices involved are not necessarily homogenious dimensionally. The
matrices [M], [C] and [K] are symmetric, [M] and[K] positive definite
and [C] non-negative definite, for stable structures.

The displacements of each mass will be measured as the trans-
lations of its center of gravity (c.g.) along any set of two mutually
perpendicular directions, x and y, and its rotation about the vertical
axis through its c.g. as shown in Figure 2.lc, which also indicates the
positive sense of these displacements. All displacements are measured

relative to the ground. The elements of the vector {r} will be ordered

such that
e
{r} ={ v (2.7)
8)
where
ul Vl @l
U.2 V2 @2
{u} = > {v} = {e} ={. (2.8)
uy / vy °N

are sub-vectors of {r} and u., V. ©; are, respectively, the trans-

i i’

lations in the x and y directions and rotation about the vertical axis of

the 1i-<th mass.
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The above choice of the system of coordinates makes the inertia
matrix, [M], diagomal. The matrices ([M], [C] and [K] can be par-
tioned into nine N X N sub-matrices following the partitioning of
vector {r} into subvectors {u}, {v} and {Q}, Equation (2.7). Thus

one may write

(M) [O] [O]

o = | [0l M) [0] (2.9)
(01 0] Mg |
[ [c,] [c,)  [Cuol]

(€] = | o) [G]  [Cyq] (2.10)
| [Coul [Coyl  [CG]
k) (K] (Kol ]

(K] = | [Kyy) (K] [Kggl (2.11)
(Kgu] [Kovl [Xgl

with all the submatrices being of size N x N. In Equation (2.9) [C]
is the null matrix. Since [M] 1is diagonal all its off-diagonal submatrices

are null matrices and [M,], [M,] and [My] are diagonal matrices.

Also,

B . ° L] . .O—

my 0

0 m2 .

M = =
[ u] [MV] ° - . (2‘1‘2)

° * O

O o oo » 0 m

- N

where m, is the value of i-th mass;
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and

qngl Oo e o o o O ]
0 m92 .
[MQ] = . 3 . (2-15)
. A O
Oo e ¢ o & o O mO
L el

where m@i is the rotational inertia of the i-th mass about the vertical

axis through its centroid.

The matrices [C] and [K] are symmetric; therefore

T T T
[Cor) = [C,,0 5 [C 0] = [Cg0 s IG5 = I[Cg] (2.1%)

and

T
ol = KD (2.15)

1
=
>

[K ]

uv vu uO]

The driving force vector {f(t)} may also be partitioned into

three subvectors

{e(0)} ={¢_(¢) (2.16)

CONDITIONS FOR UNCOUPLING

The motion of a building under dynamic forces has been
divided into three components: (1) translation of all masses parallel
to x direction, {u}; (2) translation of all masses parrallel to y
direction, {v}; and (3) rotation of all masses in the horizontal

plane, {Q} . From Equations (2.7), (2.9), (2.11) and (2.16), Equation
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(2.1) may be seen as three sets of equations, one for each component of
motion. If the off-diagonal submatrices of [K] and [C] are zero
matrices, the set of 3N simultaneous equations, Equation (2.1), de-
generates into three sets of N simultaneous equations independent from

each other, viz.

) ok o+ e {ak + ok {ub = {0} (2.17)

0] 9+ el {3+ ke b = {e(0)) (2.18)
) {8F + reg) {88+ k) {oF = {eg(0)} (2.19)

Accordingly the three components of motion will also be uncoupled from
each other. It should be noted here that by the choice of the particular
system of coordinates that has been made to describe the motion of
structure, the off-diagonal submatrices of the inertia matrix [M] are
zero matrices.,

When some or all of the off-diagonal submatrices of the matrices
[K] and [C] are non-zero, any two or all three sets of equations will
be coupled and the corresponding components of motion therefore will also
be coupled. In such a case a single component of driving forces (i.e.

either {f }

o oF {fv}, or {fg}) may induce motions not only of its

own type ({u}, {v}, or {Q}, respectively) but also in one or both
of the other types. Whether or not such coupleing will exist in a
structure depends on the distribution of stiffness and damping in the

structure and on the orientation of the x, y axes.
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Not much is known about the nature and extent of damping in
buildings. The assumption made here that it is of the viscous type is
essentially for mathematical convenience. In any case, damping is not
expected to affect significantly the modes of vibration of the structure.
For these reasons the conditions for decoupling of the three components
of motions are discussed only with regard to the distribution of stiff-
ness. It may be noted, however, that conditions of decoupling similar
to those derived for stiffness distribution may also be obtained in
exactly the same manner for viscous damping.

The equation for undamped vibration, from Equation (2.1),1s

) 74+ (k) feb = {re)} (2.20)

Using Equations (2.7), (2.9), (2.11) and (2.16), Equation (2.20)

may be written in the following form

il

e fub o+ fub o+ ke b+ kel {of = {ra(e)}(2.21)

il

) {5+ ke b+ kD I+ [kl {ob = { (6)}(2.22)

]

Mgl {6} + [Koul fuf + [Kgel W1 +  [Kg] {o} {rg(t)}(2.23)

The lateral stiffness in a building may be represented by
springs acting laterally, interconnecting, in general, every pair of
masses as well as all masses and the ground. This is shown schematically
in Figure 2.2. for a two-story building. For buildings where the '"shear
building" assumption can be made, the stiffness may be represented by
springs connecting only adjacent masses and only one mass to the ground.

(The set of springs connecting m, and ground would then be absent in
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Figure 2.2. Schematic Representation (in Plan) of Stiffness
in a Two~-Story Building.
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Figure 2.2.) Ayre examined the nature of coupling in one.and two-story
shear buildings(B). The ideas used there can be readily extended to the
general case, For each set of springs connecting a pair of masses or a
mass to the ground, there may be defined two principal elastic axes
perpendicular to each other (mmy;, nny, etc., in Figure 2.2.) Any
force applied along a principal elastic axis will, by definition of
principal elastic axis, produce deflection only along that axis and

vice versa. The point of intersection of the two principal elastic axes
for a set of springs may be called the center of rigidity (c.r.) for that
CR

set of springs ( cr Cng in Figure 2.2); and the springs

o1’ oo’
may be equivalently represented by two resultant stiffnesses acting along
the principal elastic axes and a torsional stiffness about the vertical
through the c.r. The principal elastic axes are unique except for the
case of equal stiffness in all directions, in which case any set of
perpendicular lines through the c.r. may be called the principal axes.

There will be a pair of principal elastic axes and a center
of rigidity for each set of springs connecting each pair of masses or
mass and ground.

In most regular shaped buildings all the stiffness elements
such as walls and moment resisting frames will in general, have their
principal axes oriented in two fixed perpendicular directions over the
entire height of the structure. In the mathematical model of all such
structures the principal elastic axes of all the sets of springs will
also be oriented along two fixed perpendicular directions. These may
then be called the principal directions of the structure. If the x

and y directions are taken parallel to these principal directions, direct
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coupling between the translation components in x and y directions will

be eliminated and

] = [k 1T = [0] (2.24)

[K
uv vu

This will be assumed to be the case throughout this work.

However, unless certain other conditions are also satisfied,
the rotational component of motion will still be coupled with the two
translational components, since the three equations, (2.21) through
(2.23), still remain coupled.

In addition to the above condition, if the lateral stiffness
in one of the principal directions is distributed symmetrically about
one vertical plane of symmetry over the entire height of the structure,
the principal elastic axes of all the sets of springs in that direction
will be on the same vertical plane. The c.r.'s of each set of springs
will then lie in this plane, Further, if the mass in the structure is
so distributed as to have one plane of symmetry valid for the entire
height of the building, and if this plane coincides with the plane of
symmetry of stiffness, then the c.g.'s of all the masses will also lie
in that plane. This plane is then a plane of dynamic symmetry. Transla-
tions in these directions will then be uncoupled from rotations.

If the plane of symmetry is parallel to x then

(Kol = [Kg,l" = [0 (2.25)

and Equation (2.21) will be independent from Equations (2.22) and (2.23).

They may be rewritten as

) oh o+ (k) fub = {eg(e)} (2.26)
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and

] 19F + [Ke] {v o+ (Kol 1) = {fy ()} (2.27)
[Mg] {6} + [Kgv] {V} +  [Kg] {@} = {f@(t)} (2.28)

If the plane of dynamic symmetry were parallel to y, then

T

[Kyel = [Kgyl™ = [O] (2.29)

and Equations (2.21) - (2.23) may be rewritten as

] 5+ ke b = {el(6)} (2.30)

and

i

) 8+ 1x) {ub o+ [xe) {eb = ey (o)) (2.31)

) {8} + (Kgul Tt + (o] {e}

If the mass and stiffness distributions were such as to have

planes of dynamic symmetry in both x and y directions, the principal

{eo(t)} (2.32)

elastic axes in each direction would all lie in a plane of symmetry and

all the c.r.'s, and the c.g.'s, would lie on the same vertical. Under

these conditions Equations (2.25) and (2.29) will hold simultaneously

resulting in decoupling of all three components of motion, since Equations

(2.21) - (2.23) would reduce to

vy i+ ok b= {e, (00 (2.33)
) {7+ k) v = {e (0)) (2.34)
g1 {6+ kg1 {of = {eg()} (2.35)
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A case of no real practical interest occurs when the c.r.'s and
the c.g.'s all lie on the same vertical, but not all the principal elas-
tic axes are oriented in the same directions. Here rotation is decoupled

from translations since

[Kyol = [KglT = [0] (2.36)

and T

[Kyol = [Kgvl™ = [0] (2.37)
but the translations themselves cannot be decoupled for any orientation
of the x and y directions. For this condition, Equations (2.21) - (2.23)

may be rewritten as

) {8+ kgl {ob = {eg(e)} (2.38)
p) it o+ k) {wh o+ k1 o= {e (0} (2.39)
) fb o+ k] {1k = {eg(e)) (2.40)

It may again be noted that a similar discussion can be made
with regard to the damping distribution in the structure replacing it by
equivalent dashpots, etc.

SOLUTION

As seen earlier, the differential equations of motion (2.1) of
a building are a set of 3N simultaneous second-order equations. The
movement of a building may be divided into three components and the 2N
Equations (2.1) may be seen as three sets of N equations, one set cor-
responding to each component of motion. The three sets of equations are
in general coupled but, as shown in the foregoing section, under certain
conditions some of the three sets may become independent of the other

sets. In the latter case two or three sets of N or 2N simultaneous
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equations will have to be solved separately. However, whether one, two,
or three cumponents are involved in the set of Q (Q=N, 2N or 3N)
equations to be solved simultaneously, in all cases the form of the

equations remains the same, viz.

g {2+ (e 5 o+ (k) {xb = {e(e)} (2.41)

with the definition of various matrices and vectors depending on the
case considered.

In the previous section the effect that damping might have on
the nature of coupling was ignored. In writing Equation (2.41) as valid
for one, two or all three components of motion, it is implicity assumed
that the nature of damping in the structure is also such as to satisfy the
requirements for the uncoupling of the components of motion assumed in
the equation,

First consider the undamped system
g {7F o+ ok e = {e(o)} (2.42)

The natural frequencies and modes of free vibration of the undamped system

(2.42) may be obtained by considering the related homogeneous equations

1o} (2.4%)

g {5+ x {xt
Let
{r} = {é} eiwt (2.bk)

be a solution of Equation (2.43) where w is a constant scalar of

dimension T—l, {ﬁ} is a constant vector with the dimension of its
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elements being consistent with the dimension of the corresponding elements
of the vector {r}, t is the independent time variable, and i = \/—l.

Differentiating (2.44) twice, one gets
o= -0 el {g} (2.45)
Using relations (2.44) and (2.45), Equation (2.43) becomes
S (- ft + ot {8t = {of (2.46)
or (1 - ) g = {of (2.47)
For nontrivial solution, {#} # {0}, hence
lx1 - & = o (2.48)

where the symbol || || stands for determinant. Equation (2.48) is a
2

ch—order polynomial in w « If the matrices [M] and [K] are symmetric

and positive definite, then the Q roots, wj, w3,...uy, of Equation (2.48)

are real and positive, but not necessarily distinct. These conditions on

[M] and [K] are always satisfied for stable structural systems. For

each root wﬁ, k = 1,2, «v., Q, Equation (2.47) can be solved for the

vector {A} = {ék}, which contains an arbitrary constant factor. The pos-
1 2

itive wvalues wl wg,..., QQ’ and the corresponding vectors {6 }, {é },

cee) {éQ} are termed the natural frequencies and the natural modes of

2. . k
system (2.43). The roots w,  and corresponding vectors {ﬁ } are also
called the latent roots or eigenvalues and eigenvectors, respectively,

of the matrix [M]_l [K], since by premultiplying Equation (2.47) by

[M]-l it may be seen that

k) {8 = W ) {4 (2.49)
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The inverse [M]-l of the matrix [M] exists because [M] 1is positive

definite.

Let W, and w be any two of the matural frequencies and {¢7}

k
k .
and {4 }  the corresponding natural modes of system (2.43). Then

0% {43} (2.50)

{r}
{x}

and

il

S {4 (2.51)

are both solutions of system (2.43).

Hence, applying relations (2.50) and (2.51) to Equation (2,43)

one gets
- wi ng {87+ k) {9 = {o} (2.52)
S {8 - o {8 = o (2.53)

On premultiplying (2.52) by {¢k}T and transposing Equation (2.53) and

postmiltiplying it by {#’}, it follows that

-5 T o0 )+ T {9 = o (2.54)
e 1 " g+ (8T T ) = o (2.55)
Since [M] is diagonal and [K] is symmetric
Mt = (M) (2.56)
KT = (K] (2.57)

Subtracting (2.55) from (2.54) and using (2.56) and (2.57), one finds

that

(ol - o) {# oo {69 = o (2.58)
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Hence if wﬁ # m?,

T .
{5 g {89} = o (2.59)
From (2.54) it also follows that
T .
{#1 &1 {#} = o (2.60)

Relations (2.59) and (2.60) are known as the orthogonality relations of
the natural modes of the undamped system (2.42).

In case of repeated eigenvalues_(of the matrix [M]- (K])
also, it caﬁ be shown that if [M] and [K] are positive definite then
there are as many associated linearly independent eigenvectors as the
multiplicity of the eigenvalue. These eigenvectors are orthogonal to
eigenvectors associated with other eigenvalues of [M]-l[K] as shown
above., PFurthermore, the set of linearly independent eigenvectors associ-
ated with the repeated eigenvalue may, by suitable linear combination, be
transformed to a mutually orthogonal set of eigenvectors.

The vectors {ék}, (k = 1,2,00.,Q) form a linearly inde-

pendent set of Q vectors. Hence any displacement configuration of the

system can be expressed in terms of its modes, i.e.

{r} =ro1 {t} (2.61)

where the columns of matrix [®] are the modes {ﬁj} (3 = 1,2,...,Q)
and gj are the so-called generalized coordinates. It was noted earlier
that the modes {ﬁj} are arbitrary to a constant factor. But in what-
ever suitable way the modes are normalized, there will exist an appropri-
ate {g} so that Equation (2.61) holds. It may also be noted that

(0] exists and

{¢d = (017t {x}
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Considering now the general case of forced vibration, Equation

(2.61) put in Equation (2.42) gives
o) At + (x) [0y {0b = {r(e)} - (2.63)
Premultiplying by {¢k}T, we get
B oot o+ 8w - BT o e
and using Equations (2.59) and (2.60), this reduces to
@ oo 6 e+ B9 B w = 6 0l )
From Equation (2.53%) it is clear that
P m - € 9 T > o (2.66)

since [M] and [K]. are positive definite. Therefore, Equation (2.65)

may be written as

M + we M = g(t) K = 1,2,...,a  (2.67)

where

T
{ﬁk% {f(t)i (2:68)
{1 g {g}

g, (t)

A simple way customarily used to take account of damping in a
structure is to introduce a damping term in the uncoupled equations (2.67)

in generalized coordinates:

Me * B e towe . = g () (ko= 1,2,...Q) (2.69)

where By is the fraction of critical damping in the k-th mode. This

is based on the assumption that the damping does not affect the natural
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modes and frequencies of the structure. The modes are indeed unaffected
it the damping matrix is expressible as a linear sum of the mass and

stiffness matrices. For if
(C] = oM] + v[K] (2.70)

-1
where « and 7 are constants of dimension [T "] and [T], respectively,

then the equation for damped vibration (2.41) becomes

iy {5} + Calmy + o0k ) b o+ (k1 {eb = {e(0)}. (2.72)
Using (2.61) and premultiplying by {¢k}T we get

T - T
{#° o {8, + CafpT g {8+ {8 {8 )
(2.72)
T
{ﬁk} ﬁk}nk {¢k} {f k = 1,2,.4.,Q,
also utilizing Equations (2.59) and (2.60). Using Equation (2.55) for
the case J = k and dividing through by {ﬁk}T [M] {ﬁk}, Equation

(2.72) reduces to

2 . 2
ﬂk + ( a *t wk 7) Mk + Wy nk = gk(t) (2075)
which in comparison with Equation (2.69) gives

>
@ 7 (2.74)

2
Wy

The relation (2.70) between the damping matrix and the mass
and stiffness matrices is a sufficient condition for the modes of the

undamped system (2.42), the so-called classical modes, to be valid for
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the damped system (2.41). Caughey(2o) showed that the necessary and
sufficient condition is that the transformation that diagonalizes the mass
and stiffness matrix also diagonalizes the damping matrix. For symmetric
mass and stiffness matrices and distinct eigenvalues, it wasvshown that
the above condition reduces to the following restriction on the damp-
ing matrix(gl),

-1 J=Q-1 -1

% a. ([M]  [K] )‘j (2.75)
j=0  J

where aj are constants.

Equation (2.70) is a special case of this for which ag =0,
a; =7 , and ap = 83 = ... 8 = o .

For the general linear viscous damped system the solution may
be obtained by changing the problem of solving Q equations of second
order to 2Q equations of first order(eg’ga). Unless the damping matrix
[C] satisfies relation (2.75); the resulting modes will be complex so
that, although in any one mode different parts of the system will oscil-
late at the same frequency, they may not necessarily be in phase,

Since, as mentioned earlier, not much is known about the nature
of damping in structures, it is assumed for the purpose of present
investigation that the damping is viscous and that it does not affect
the undamped modes,i.e., the damping matrix does satisfy the condition
(2.75).

GIVENS' METHOD

The problem of determining the frequencies and modes of the

system

g {5+ (x] {eb = {o} (2.76)
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is equivalent to the problem of determining the eigenvalues and eigen-~
vectors of the matrix [M]—:L [K]. There are several methods available
to solve this problem. Prominent among these are Jacobi's Method,
Givens' Method, Matrix Iteration (Stodola-~Vianello) Method, Power Method,
and Lanczos' (pq algorithm) Method. All these methods are described in
Reference 24, Givens' Method was originally presented in Reference 25.
It was decided to use Givens' Method because of its advantages over
other methods of accuracy, possibility of determining any or all eigen-
values with equal ease, less time-consumption, and suitability to the
present problem., It was, of course, necessary to use a digital com-
puter to solve the large systems encountered in this investigation.
Givens' Method is applicable to real symmetric matrices. The
matrix [M]_l[K] is, in general, not symmetric but can be easily trans-
formed into one by means of a similarity transformation. The eigenvalue

problem is

7tk o= O ) (2.77)
Iet
¥ o= =AY, (2.78)

then substituting for {ﬁ} into Equation (2.77) and premultiplying by

&

[M] =, we get

[

1 1
0™ pg Tt k) {ﬂf} ]2 {\lf} (2.79)
or

o= o {4} (2.80)
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where
L _E
[A] = [M]7° (K] [M]° (2.81)
is symmetric since
T 1 1 T AT T 1T
(A)" = (M2 (k] M72) = ([ 2) K] ([M]2)
L -
= [M] 2 [K] [M] 2 = [A] (2.82)

-1
noting that [M] and [M] 2 and [K] are symmetric.

hoie
I

A word of explanation about the matrices [M]® and [M] 2 .

1
[M]2 1is a square root of the matrix [M], i.e.

L L
(M) [M]2 = [M] . (2.83)
Similarly, [M]nE is a square root of the matrix [M}—l, i.e.
-1 L -1
[M] 2[M] 2 = [M) . (2.84)

The number of square roots , and in general the m-th roots, of

(22)

a square matrix are dependent upon the nature of the matrix . The ma-
trices [M] and [M}_ are diagonal matrices. For such matrices,

matrices having diagonal elements equal to one of the two square roots

cf the corresponding elements of the original matrix are the obvious,

among other, square roots.
The matrix [M], and hence also [M]— , 1s real and positive
definite; therefore, their diagonal elements are real and positive,

The square roots of such elements are real. Here the square root matrix

is restricted to the one having its elements equal to the positive

-

square roots. Thus the matrix [M] is diagonal and its diagonal
elements are J}& (i = 1,2,...,Q) where [M] is a diagonal matrix

-1
with elements mf>0 (i = 1,2500.,Q). [M] is also diagonal having
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VT

1
elements T (i = 1,2,..4,Q) and [M] is diagonal having elements

/ 1 .
I-ﬁi—’ 1 = 1,2’...)Q.

Comparing Equations (2.80) and (2.77) it is seen that the
-1
eigenvalues of the matrices [A] and [M] [K] are the same, and
their eigenvectors are related by Equation (2.78).

Givens(25) showed that it is possible to construct an orthogonal

transformation T

{ot = (1 {o} (2.85)

il

(r)” [Ty = (1) , (2.86)

where [I] 1is an identity matrix, which would transform a real symmetric

matrix [A] into a tridiagonal matrix [S]
T
(8] = [T] [A] [T] (2.87)

Since (2.87) is also a similarity transformation (noting the property of
[T] given by (2.86)), the eigenvalues of [S] and [A] are identical
and their eigenvectors are related by Equation (2.85).

The transformation T is made up of a finite number of suc-
cessive orthogonal transformations TE,B’ TQ,M}""""’ TQ,Q’
T5,4........, TQ-2,Q' formed so as to eliminate successively the (2,3),
(2,8) 0000, (2,Q), (3;4);00..,(Q-2,Q) elements, respectively, (and also
the corresponding transposed elements by symmetry) of [A]. Q is the or-

der of matrix [A]. Thus,

[T = [Tl [Ty eeeen [Tpg 1Tg) eeee [Ty 5 o] (2.88)

In all, at most %@LJJ (@-2) transformations are needed to reduce a
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symmetric matrix [A] into a tridiagonal matrix [S]. See Reference (7))
for details of construction of matrix [T].
The eigenvalues of matrix [S] are the roots of the determi-

nintal equation
| o 1] - sill = o . (2.89)

2
The successive principal minors of the matrix [w™ [I] - [S]], fi(w )

are given by

¢ pou . 2, . 4.
to(w) = (w '“L,L) ol (w7) - (Si-l,i) fiolw) 1 = 1,2,...,Q

(2.90)

t (w7) is the determinant in Equation (2.89). It may be noted that if

811 O for one or more 1, the matrix [S] can be gplit up into
L-1,L

two or more smiller tridiagonal submatrices; each may be treuted sepura-

tely in the sume way as [S] with 8. 1.1 # O for all i, as described
=+t

here. The zeros of Equation (2.90) can then be found by linear inter-

polation.

2
)

A property of the sequence of the principal minors fQ(w R

2
fQ l(w ) fo = 1 (Equations 2.90), known as Sturm sequence,
corresponding to the matrix [S] i1s that the number of eigenvalues of
[S] greater than « 1is equal to the number of the variations in the

algebraic signs in the sequence, f (), (a), seey 1o This property

f
Q Q-1
can be used, among other things, to check against slipping over a set
of two or more close eigenvalues, while searching for them by the method
of interpolation.

The eigenvector corresponding to a eigenvalue, w

found by solving the equations
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[o2 [1] - 811 0%} = o . (2.91)

Since [S] is tridiagonal, (2.91) may be solved by a simple recursion

formula

J 2 J J

piip = Ly -y ) P s pi-l]/si,iﬂ

i = l)g)OOC,Q (2'92)
. J J _ ] - . .
in terms of pl 5 po = 0. Q£+l = O 1s a check on the computation.
-1
The eigenvalues of ([S], [A] and ([M] [K] are identical,

-1
The eigenvectors {ﬁ} of [M] [K] are obtained from Equations (2.78)

and (2.85):

b= 7 m {eb . (2.93)



CHAPTER IIT

BUILDINGS WITH SYMMETRIC SETBACKS

INTRODUCTION

The effect of a symmetric setback in a building upon its uncou-
pled translational vibration is examined in this chapter. Conditions for
the uncoupling of the translational vibrations in the direction considered
from other components of vibration are assumed to exist. Two models are
used: (a) a rectangular cantilever shear beam stepped at one location along
its height, and (b) a lumped mass model based on the assumption that mass
is lumped at floor levels in buildings. Simple coupling in stiffness is
assumed in the latter model, i.e., the massless springs are assumed to
connect only the adjacent masses and only one mass to the ground. This
assumption is often termed as the "shear building" assumption.

The setback is represented by two parameters, the level of set-
back and the degree of setback., In the case of the shear beam the degree
of setback is defined as the ratio of plan area in the tower portion to
that in the base portion. In the case of lumped mass model the mass lumped
at all floor levels in each part of the structure is assumed to be con-
stant; the ratio of the mass value of the tower portion to that in the
base portion is then termed the degree of setback.

The effect of changes in these parameters on the modal proper-
ties of the two models are examined, Approximate reponses of the shear
beam are computed and the effect of setback on the responses is studied.
Actual maximum responses of the lumped mass model to two strong-motion
earthquake records (El Centro 1940, S, and Taft 1952, N69°W) are also com-
puted and examined for the effect of setback. Finally, the effect of

-34-
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setback on shear coefficients as obtained from these responses are com-
pared with that obtained from the specifications for buildings with set-

backs in one of the seismic building codes currently (1966) in effect.

SHEAR BEAM

The uncoupled translational vibration of a vertical cantilever
shear beam of rectangular section stepped at one location along its
height is considered here. A general description of such a beam is given
in the Appendix. Here it is assumed that the step is such that the trans-
lational vibration in the direction considered is uncoupled from other

vibrations, (i.e., eq and/or eo equal to zero).

Eqguation of Motion and Solution

In Figure 3,1 is shown a stepped shear beam with setback symmetric
about x axis. Notations used here are the same as those defined in the
Appendix, The equation of motion for vibration in the x direction may

be written as
migy - KU = £(z,t) (3.1)

where u(x,t) is the displacement of centroid in the x direction, m
is the mass per unit length, k the stiffness per unit length and f is
the external force per unit length acting on the beam in the =z direction;
t is the time coordinate., Subscripts after a comma denote differentia=-
tion with respect to that variable.

Equation (3.1) is the first (i = 1) of the three equations
derived in the Appendix, Equation (A.7); here the subscripts have been

dropped and x7 1is replaced by u .
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Figure 3.1. Stepped Shear Beam with Setback
Symmetric About x-axis.
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The inertia coefficient m and stiffness coefficient k in
Equation (3.1) have different values in the base portion (0 < z < h)
and the tower portion (h < z < £) of the beam. From Equations (A.5)

and (A.6), (with i = 1)

(in 0 < z < h)

1l

m p bibo (3.2)

k

1]

G byby
and
(inh<z<1)

m P ajan (3.3)

]

k G ajap

The boundary conditions are
u(0o, t) = 0 (3.4)

v(L, t) = O (3.5)

and the conditions at the step are

1

u(h - 0, t) u(h + 0, t) (3.6)
and

V(h - 0, t) V(h + 0, t) (3.7)

where V 1is the resultant shear force on horizontal cross section and

is given by

V(z, t) = GAu (3.8)

where A is the area of cross section.
Equations (3.4) and (3.5) are first (i = 1) of Equations (A.9)
and (A.10); Equations (3.6) and (3.7) are first of Equations (A.11) and

(A.12), the latter with ep =0 .
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Equation (3.1) can be solved by the method of separation of
variables used for the set of three simultaneous equations (A.7) for
the general unsymmetric (el % 0, ep % O) shear beam in Appendix A.

The solution may be written in the form

[o]

u(z, = z) - t .
(z, t) Z B (2) « m (8) (3.9)

where ¢k (z) is the kth mode shape and mn (t) is the kth modal dis-

placement. m (t) is given by the equation

ﬁk + QBkthk + (L)i ‘r]k = gk<t) P k = 1,2,... (3-10)

where o is the frequency of the kth mode and gk(t) is given by

/
[ f(z,t) ¢az
o}
g, (t) = - (3.11)
2 .
[ m dz
0 ¢k
When the beam is subjected to earthquake acceleration io s
£z, t) = - m X,(t) (3.12)
and
g (t) = =g+ E(t) (3.13)
where
)
/] m@ dz
: 0
M o= (3.14)
[ m ¢k2dz
0

Ax 1s known as the modal participation factor of the kth mode,

In Equation (3.10) Pk 1s the fraction of critical damping
in the kth mode. The term in Equation (3.10) containing B, has been
added on the assumption that viscous damping exists and that the undamped

modes remain valid for the damped case as well.
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The mode shapes ¢k are -given by (see Equations (A.20) and

(A.21))
g X
= C sin — 0<z<h
k 1k
d (3.15)
D2 A R/
= C cos —— + C sin 2. h<z<</{
2k . 3k S
in which
P = IEH 0<z<h
(3.16)
32 = E h <z <1}

From Equations (3.2) and (3.3) it is seen that
q= s = jfg (3.17)
p

In the Appendix it is shown that the boundary conditions and
conditions at the step, when applied to Equation (A.20), lead to Equations
(A.21) and (A.22). The matrix Equation (A.22) can be solved for Cij's
for those values of w for which the determinant of the coefficient ma-
trix is zero. Such values of ® are the frequencies and the correspond-
ing Cij give the corresponding mode shapes of the general unsymmetric
shear beam. Here it has been assumed that ep = O, and the first three
equations are then equations in Cj37 , C1p, and Cj3, and are uncoupled
from the remaining six equations. Dropping the first subscript, 1 , from

the C..'s these equations are

ey
LW w4
0 sin — Cosg— Cq 0
-sin & cos® sin®h Col\ = 0\ (3.18)
q s s <
b1bo cos 4B ajap sindh -alagcosgg Cq 0
S (S S L
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Equation (3.18) may be derived directly by considering vibration
- in the x direction alone of the shear beam symmetric about the =x axis
(i.e. ep = 0), which is under consideration here. For such a shear beam,
the values of w for which the determinant of the coefficient matrix in
(3.18) is zero are the natural frequencies of vibration, W , and the
values of Cq, Cp, and C3 determined from (3.18) for these values of

@ give the coresponding mode shapes ¢k , k=1, 2, 3,

Let
ala2 . \
= e———— "'L )
c 575, (3.19)
_ h
po= 7 (3.20)
and
o= 2. 2 (3.21)
g S

noting that q = s (Equation (3.17)). Expanding the determinant of the
matrix in Equation (3.18) and using the notations introduced in Equations

(3.19), (3.20) and (3.21), cne gets the frequency equation

f(w!') = ¢ sin o'p sin o' (1-p)

- cos w'p cos w' (1-p) =0 (3.22)

The zeros of f(w') , the frequencies of the system, were found by simple
interpolation, Only the few smallest positive frequencies are of inter-
est since the lower modes of vibration are the modes of primary importance

in structural response.
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Since Equations (3.18) is a linear homogeneous set of equations
they cannot be solved uniquely for Cj's for a given frequency. To
assign numerical values to Cj's some normalization is therefore necessary.
If the mode shapes are normalized by making @(£) = 1, the following

solution may be obtained for the Cj's from Equation (3.18)

cos 'y (1~
i = — i(' p) if sinwf p# O
kP

c sin w'i(1l-
= k(1-p) if cos w'yp £ 0

cos w'yp
(3.23)
Cox = cos w'k
03k = Sil’l (D'k

where f(w'y) = 0. From Equation (3.15) it can be checked that

1 1

¢k(ﬁ) = Coi cos f@f + C3k sin 95{
S S

2

2 w'k + gin w’k

= Ccos

Parameters Representing the Setback

Two assumptions that have been made implicitly in the shear
beam model of a building with setback that is used here should be
pointed out:

a. Values of the mass per unit length and stiffness per unit

length in each part of the structure (the base portion and

the tower portion) are assumed to be constant.
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b. The mass and stiffness of the tower are both in the same

proportion to the mass and stiffness in the base, i.e.

k
S R Ay~ . (3.24)
m,  k, b1bp

where m , kt are the mass per unit length and stiffness per unit
length in the tower and mpy , kp are corresponding values in the base.
This is seen from Equations (3.2), (3.3), and (3.19).

With these assumptions only two parameters (see Equations (3.22)
and (3.23)) represent the setback insofar as the uncoupled translational
vibrations are concerned, These are:

a. The level of setback which may be represented by p as

defined in Equation (3.20);

and
b. what may be termed as the '"degree" of setback represented

by c¢ as defined in Equation (3.19); the significance of
¢ as seen in Equation (3.24) is also important.
The ranges of possible variation of the two parameters are

0< p<1l and 0L ¢< 1. The values p=1and c =1, each by
themselves, represent a uniform beam regardless of the value of the
other parameter. The value p = 0O also represents a uniform shear
beam, the cross section depending oh the value of ¢ . The value ¢ =0
represents no real physical beam. However, it is taken here to represent
the extreme case of beam with a tower section infinitely small compared to
its base section. The value c¢ = 0 should not be interpreted as repre-

senting a uniform beam of height h .
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Periods
Periods for the first four modes are plotted (Figure 3.2) as
functions of c¢ for various values of p . From Equation (3.22) it

is obvious that frequencies are equal for beams with p = p' and

p = 1-p'. The values p =0 and p =1 represent uniform beams and
so does ¢ =1 . The periods have been non-dimensionalized,
T :%E :.2_7[.. - S =T __2'22 (3-25)
w' »w £ G

The periods for the case ¢ = 0 were obtained by letting

¢ =0 in Equation (3.22), i.e. from

cos o' p cos w' (1-p) =0 (3.26)
which requires that

cos w'p = cos ¢h - o
q

or (3.27)
cos w' (l-p) = 0 = cos Qiéiﬁl =0

Fquations (3.27) are the frequency equations of uniform cantilever shear
beams of height h and (4-h) i.e. of the base portion and the tower
portion acting separately as cantilevef beams., Frequencies of these two
beams are combined together and numbered in the usual ascending order of
their magnitude. It is this combined set of frequencies that i1s used
for the periods plotted in Figure 3.2 of case ¢ = 0, Two modes with
equal frequencies are possible for certain values of p when ¢ =0

(e.g., for modes 1 and 2,3 and 4 ete., for p = .5).
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The following observations may be made from Figure 3.2. The
first mode period decreases monotonically as the tower cross section
decreases relative to the base cross section, i.e. as ¢ decreases
from 1 to 0. The influence of a variation in ¢ is maximum when
the setback level is exactly at midheight, i.e. when p = .5, and

diminishes as the setback level is moved towards either end.

For any fixed value of p , the higher mode periods are mono-
tonic functions of ¢ . Whether they increase or decrease with ¢ , or
remain constant, depends upon the value of p ., The influence of a vari-
ation of ¢ on the higher mode periods is smaller than its influence on
the first mode period.

The third mode period remains constant with varying c¢ for
shear beam with setback levels at p = .2, .4, .6, and .8 (and also for
the trivialcases p = O and 1), see Figure 3.2. For other modes there
are other values of p for which the period will remain independent of
¢ . It is easy to see that these setback levels p should be such that
the natural frequency of the particular mode for the uniform (¢ = 1) shear
veam (o' =(k-1)7/2 , k =1,2,3,....) will satisfy either

sin w'p = cos w'(l-p) =0 (3.28)

or

I

(3.29)

I
(@]

cos w'p sin w'(1-p)

so that the frequency equation, Equation (3.22), is satisfied regardless
of the value of ¢ . That the particular values (viz. p = .2, .4, .6,
and .8) chosen for study satisfy this condition for the third mode, which

has a frequency w’3 = 51/2, is coincidental.
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In Figure 3.3 the first four periods are given as functions
of p for beams with ¢ = .25. For each mode the horizontal line is
drawn to represent the corresponding mode period of the uniform beam
(c = 1) . It was noted from Figure 3.2 earlier that the change in
periods with ¢ for a beam with a given level of setback p is mono-
tonic, Hence Figure 3.3 provides information about the range of levels
of setback for which the period of a stepped beam (¢ < 1) in a given
mode will be always greater than or always smaller than the correspond-
ing mode period of the uniform beam. Thus, for example, the second mode
periods of stepped beams with a level of setback p such that 0 <p < 1/3
or 2/3 <p <1l will always be smaller than that of the second mode of
the uniform beam, Further, the points at which the graph of Tk‘(c = .25)
cuts the horizontal line representing the uniform beam period are the
values of p 1in the particular mode for which the periods are indepen-
dent of c .,

In the above discussion the stiffness to mass ratio (G/p) has
been assumed to remain constant as p and ¢ change., However, even if
this assumption is not made, the plots in Figure 3.2 indicate, in general,
a significant reduction in the ratios of fundamental period to higher mode
periods for buildings with slender towers (c << l) compare with those of
the uniform beam, In fact it can be shown that these ratios will always
either decrease or remain constant as c¢ decreases,

Mode Shapes

The first four natural mode shapes of beams with varying levels
of setback, p , and degrees of setback, ¢ , are given in Figure 3.k,
Corresponding modes of beams with degrees of setback, ¢ =1, .5, .25,

and 0 (.00625 for p = .5) but having the same setback level, are drawn
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on the same plot; this is done for five values of p , viz.,.8, .6,
.5, .4, and .2, The mode shapes have been normalized by fixing the
displacement at the top of the beam, (z = £), equal to 1.

For any value of p , the case ¢ = O may be looked upon as
representing the extreme case of beam with a tower section infinitely
small relative to its base section. The frequencies for such a case
are computed by using Equation (3.27) as explained earlier. The
corresponding mode shapes are computed by using Equations (3.23) with
¢ = 0 and Equation (3.15).

It was shown earlier that the natural frequency of any mode
of a beam with setback at ¢ = 0 is equal to a frequency of either
the tower portion or the base portion, or both in special cases like
P = .5, each acting alone as a uniform cantilever shear beam. It is
possible to make the following interpretation of the mode shapes for
the case ¢ =0 . As c -0 if the kth frequency of the entire beam
approaches the jth frequency of the tower (acting alone), then the
tower portion of the kth mode shape is identical to the jth mode shape
of the tower and there is no motion in the base portion., However, if,
as ¢ =0 , the kth frequency of the beam approaches the jth frequency
of the base (acting alone), then the base portion of the kth mode shape
is identical to the jth que~shape of the base; and the tower portion
of the kth mode shape is the steady state response amplitude (absolute
displacement) of the tower to a periodic base motion of period (21 /w'y)
and amplitude ¢k(p), neglecting damping. (The latter statement is true

of course regardless of the value of c.).
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Except for the third mode shapes of beams with setback level
p = .6 and .2, an abrupt change in slope is apparent in all the four
mode shapes of all beams with c¢ # 1. This can be explained by recalling
the condition that the shear force just above the setback level,
V (h+0), must be equal to the shear force just below the setback level,
V (h=0) . This is the equilibrium condition at the step, Equation (3.7),
.which also holds for each mode individually. This condition requires

that, for any natural mode shape ¢ ,

¢ Z(h"‘O) _ 3.132 G _ o (3q32)
¢ ,(h+0) bibo G '

)

Thus the ratio of slopes of mode shapes just above and just below the
setback is equal to the degree of setback ¢ and is different from 1
whenever ¢ # 1. However, for some cases the slope in the mode shape
at the setback may be equal to zero and remain unaffected by c .
This is what happens for the third mode shapes of beams with setback
level p = .6, .2,

Earlier it was shown that if either of Equations (3.28) and
(3.29) is satisfied for some frequency of a beam with a given level of
setback p , then that frequency will be independent of the degree of
setback ¢ . When such is the case it can be seen from Equation (3.23)
that Cpo and C3 , and hence ﬁhe modé shape in the tower part (h < z < £)
given by Equation (3.15), would also be independent of ¢ , This is indeed
the case for the third mode shapes for beams with p = .2, .4, .6, and .8

for which one of the Equations (3.28) and (3.29) is satisfied. Further,



53
from the first of Equation (3.15)
g ,(n-0) = ' Cp cos w' P (3.33)

where o' = wf/q and p = h/f . If Equation (3.29) is satisfied for

some &' and p , then cos w' p =0 or

g ,(n-0) = 0.

For p = .6 and .2, Equation (3.29) holds for the third mode frequency
o' = (5x)/2 . For these cases the entire mode shapes remain unaffected

by changes in c¢ , see Figure 3..4.

Modal Shear Coefficients

An important quantity used in the design of buildings for earth-
quake resistance is the shear at the base of buildings, generally known
as the bage shear. In buildings with setback the shear at the base of
towers will also be of importance. The base shear and the tower-base
shear in the first four modes of the stepped beam, when subjected to
earthquake ground acceleration Xy , will therefore be examined.

From Equations (3.8) and (3.9) the base shear in the kth mode
is:

Vi(0, t) = ca g o (0) m(t) (3-34)

It may also be written as the summation of inertia forces over the

height of beam,
L
Vi (0, ) = ([ mpyaz)(f(t) +a %, (4)) (3.35)
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although this 1s an approximation when damping exists. The kth modal
displacement m, is given by Equation (3.10) with Equation (3.13)

used for g, (t):

fi, + 2By + aEn = - n % (t) (3.36)

Since Equation (3.36) is linear and N 1s independent of time, t ,
one can write

M = M B (3.37)

where gk is the response of a one degree of freedom oscillator with
frequency W and fraction of critical damping Bk subjected to base

acceleration %,(t):
Ek + 2Bkwkék + wﬁ Ex = - %o(t) (3.38)
Equation (3.35) then becomes
2 5 ..
Vx(0, £) = A (J'm $dz) (& (t) + X (%))
o

and the base shear per unit weight or the base shear coefficient is
given by

_ Vi (0, 1)

))
g [ .mdz
o

Cpi(t)

b/
é m ¢de

1
[. mdz
o

Y (E,() + % (1))/e (3.39)

in which g is the acceleration due to gravity.
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Similarly it can be shown that the ratio of tower-base shear
to the weight of tower, i.e., the tower-base shear coefficient, in the
kth mode is given by

)

o mpdz )
Cre = — (& (t) + %,(t))/e (3.40)

m dz
hf

The term (£, (t) + X,(t)) in the above equations is the
absolute acceleration of the oscillator described by Equation (3.38).
It varies with time, t , and is dependent on the earthquake ground
acceleration X,(t) to which the oscillator is subjected.

In Equations (3.39) and (3.40), the terms

[ m frdz
Chie = M (3.41)
f£ m dz
°
and f _
m ¢, dz
Co = (3.42)
O = M
[ mdz
h

are independent of the earthquake ground motion. They are the base
shear and tower-base shear coefficients in the kth mode of a beam sub-
jected to a one g static acceleration(26> , (i.e. of a beam subjected
to a static force per unit length equal to its weight per unit length
over the entire height along the centroidal axis). The term Ak in
the above equations is the modal participation factor defined in Equa-

tion (3.1k4).
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By substituting Equation (3.15) for ¢ in Equations (3.1%4),
(3.41), and (3.42), and using Equation (3.22) for the coefficients C,
and C3 , one may derive the following relations after integration and

proper use of the boundary and other conditions:

2C
)\k = —:]';. 2 ]k (3')4'3)
wp  Cyx° P + c(1-p)

C
Cl = N ¢ o= - ELs (3.44)
Bk } )
@ p+ c(l-p)
1
— .1 . GqiC0s &P )
N W e i < (3.45)
Tk ay c(1-p)
Thus Cék and ka and therefore the modal base shear and tower-base

shear coefficients are, like other modal quantities such as periods,

functions of level and degree of setback. Cék and Cék are plotted

in Figures 3.5 and 3.6 as functions of the degree of setback, c , for
several levels of setback p .

In Equations (3.43) - (3.45) either of the formulae for Cx

in Equation (3.23), whichever is applicable, is used. Values of Chy

and Cp at c =0 in Figures 3.5 and 3.6 were derived by substituting

¢ = O or taking the limits as ¢ -0 in Equations (3.43) - (3.45) and
(3.23). The values p =0 and p =1 represent uniform beams regard-

less of the value of c¢ . Hence Cé does not change with ¢ for these

k

values of p . ka for beams with p = 0 1s the same as and

C!
Bk ’

for beams with p = 1, ka is always equal to zero.
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It was shown earlier that at ¢ = O the frequencies of the
stepped beam were equal to a frequency of either the tower portion or
the base portion acting alone as a uniform cantilever shear beam.
Further, if the kth frequency of the entire beam is equal to the jth
frequency of ﬁhe base portion acting alone, then the base portion of
the mode shape of the entire beam is identical to the jth mode shape
of the base; and the tower portion of the mode shape of the entire beam
is identical to the response of the tower subjected to sinusoidal base
motion of amplitude @y(p) and frequency ay . In this case the Cf
value of the whole beam 1is idenfical to Céj value of the base acting
alone, whereas the ka of the whole beam is the amplitude of base-
shear coefficient response of the tower subjected to a sinusoidal base
acceleration of amplitude xk¢k(p) and frequency wy .

HoweVer, if the kth frequency of the entire beam is equal to the
jth frequency of the tower, then the tower portion of the mode shape of
the entire beam is identical to the jth mode shape of the tower; and
there is no motion in the base portion (or if finite motion is assumed
in the base portion then the amplitude of the motion in the tower portion
tends.to infinity). 1In this case Cék is equal to zero whereas Cdy
is in indeterminate (8-) form, The limiting value of ka as ¢ =0
can, however, be evaluated, ‘and it is found to be always equal to or
greater than the Céj value of the tower, though no significance of
such value is apparent.

For a beam with setback exactly at mid-height (p = .5) the
frequencies of the base and the tower (each acting alone) are identical.
Thus at ¢ = 0 such a beam will have pairs of modes with identical

frequencies, and the mode shapes will involve finite motions in the
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tower portion and zero motion in the base portion or finite motion in the

base portion and unbounded motion in the tower. The Cﬁ and CT values for
such cases are indeterminate. When the limiting process is applied to Equa-
tions (3.44) and (3.45) it turns out that in each of the pair of modes with
equal frequencies Cé—aw and Cé values (in both modes) are equal to half
the C! value of the corresponding mode of the base (or the tower). The

B

unbounded increase in C/!

Tk as ¢ >0 can be considered as the effect

of resonance since the frequencies of the base and the tower are iden-
tical, and the tower is subjected to sinusoidal bgse motions of fre-
quencies equal to its natural frequencies.

There are other values of p (i.e. other than p = .5) for
which some (but not all) frequencies of the base and the tower are
identical. Such cases are not encountered in the results presented
here, For such cases too, there are pairs of modes whose frequencies
tend toward identical values as ¢ — 0, The observation made in the
preceding paragraph hold for these pairs of modes also.

From Equations (3.38) - (3.42) it can be easily verified that

C!

Bk and C/

Tk values are independent of the actual length and the cross-

sectional area of the beam and the manner in which the mode shape is
normglized, Thus the Cﬁk value of a uniform beam is the same regard-
less of its length, cross-sectional area, etc, Therefore the Céj value
of the base acting alone for a given J will be the same no matter what
its héight and will equal the Cﬁj value of the stepped beam with c¢ = 1.
Also, it may be observed from Figure 3.5 that for uniform beams (c = 1)

1 1 1 1
CBl > CB2 > CB3 > CBM .
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For a stepped beam with setback level below mid-height (p < .5)
the base is smaller in height than the tower. The frequencies of a uni-
form beam are inversely proportional to its height. Thus when p < .5
the first mode frequency of the base is larger than at least the first
mode frequency of the tower; and for sufficiently small p the first
mode frequency of the base will be larger than the second or higher
mode frequency of the tower. Keeping in mind that the modes are num-
bered so that w; <wy < Wy < wee. <O <Oy ..., for stepped beams
with p < .5 1t will be the second or higher mode frequency (of the
whole beam) that will equal the firsﬁ mode frequency of the base as
¢ -0 . Thus for such stepped beams (i.e. with p < .5) the Cék
value for one of the higher modes (i.e. for k > 1) will, in general,
increase as ¢ deereases and will equal Cgy value of the ﬁniform
beam as ¢ -0 . (It may be noted again that Cﬁk values for a
given. k are the same for all uniform cantilever shear beams regard-
less of their height,) In Figure 3.5 it is seen that for beam with set-
back level p =4 it is in the second mode and for beam with p = .2
it is in the third modeé that Cﬁk (k = 2 and 3, respectively) increases,
as ¢ 20, to Clyp value of the uniform beam; for smaller values of
p it will be in still higher modes that this will happen.

For uniform beams (c = 1) Cj, 1is much greater than Cj.
in the higher modes and usually the first mode base shear will make up
a large portion of the total base shear. However, as seen above as well
as in Figure 3.5, for stepped beams with setback level below mid-height
and ¢ << 1 the Cék value in oné of the higher modes will be much

larger than in the first mode, and this higher mode will therefore be

the most significant one for base shear computation. Thus,.if the base
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shear for structures corresponding to such shear beams is computed by
the method of modal analysis of the structure as a whole, higher modes
must be taken into account. However, for such structures with tower
very small in cross section compared to the base, the method of
treating the base portion as a separate structure (that is used in

the present day building codes) removes this problem and, as can be
deduced from the observations made above for the shear beam, has a
rational basis.

In the case of beams with setback above mid-height (p > .5)
since the first mode frequency of the beam at ¢ = 0 will be equal
to the first mode frequency of the base portion the Cél value at
¢ =0 will remain the same as for the uniform beam. This is the
case for p = .6 and p = .8 in Figure 3.5 although there is a
small decrease in C] for intermediate values of c¢ . In the

Bl

second or higher modes the Cﬁk values will either decrease to zero
or tend to Cﬁk values of second or higher modes of uniform beams as

c =0, values in second and higher modes are much less than

“Bk
that in the first mode for the uniform beam as moted earlier., Thus
in the second or higher modes of beams with p > .5 Cék will not
increase much (if at all) as c decreases and consequently will not
increase the importance of higher modes as far as base shear is con-
cerned,

The !, values as computed by Equation (3.45) are negative

Tk
for one or more higher modes for all beams with various levels of set-
back., However, the sign of Cfy does not change in any mode as c
changes, the level of setback remaining fixed. In Figure 6 the minus

sign is placed along with the values of p +to indicate that ka

values are negative for those cases.



-65-

The shear at the base of tower of beams with p = .2 and. .6
happens to be zero in the third mode for all values of c¢ .

As is seen in Figure 3.6, for all levels of setback, Ciy
increases as ¢ decreases in almost all modes. The increase is more
for those beams with setback levels above mid-height than those with
setback levels below mid-height. For a beam with setback level exactly
at mid-height the increase in Cqfi is unbounded in all modes as ¢ =0 .
This was noted earlier as a resonance effect. The sign of Cék alternates
in successive modes for this case.

The maximum tower-base shear coefficient in the kth mode is a
function of Cp  as well as the maximum absolute acceleration Oék(t)

+ iO(t)Rax)’ which itself is a function of the kth natural period.

The increase in ka for all levels of setback in almost all modes,
therefore, suggests a possible increase in the tower-base shear coeffi-
cient response as ¢ decreases for a given ground acceleration.

For almost all cases (of p), the increase in’ Ch, as c de-
creases seems to be confined at the left (c = 0) end of the plot in all
four modes studied, This suggests that the possible increase in tower-
base shear coefficient may be significant only for sturctures with very
small tower section as compared to the base section, say with c¢ < .25

approximately. Due to the nature of variation in Cé with decreasing

k
c in the four modes studied (Figure 3.5), the possible effects of de-

creasing c¢ on base shear coefficient are not at all obvious.

Approximate Combined Maximum Responses

The response of a structure subjected to earthquake excitation

varies with time. For design purposes only the absolute maximum values



of the response are of interest. In Equations (3.39) and (3.40) for the
base shear coefficient and tower-base shear coefficient, the term ( & + %)
is the one that varies with time. The maximum value that this term will
take on for a given earthquake excitation &O(t), is dependent on the fre-
quency & and the fraction of critical damping Bk‘; this is obvious

from Equation (3.38). They symbol Sy(B, ®) is commonly used to denote

the maximum value of the absolute acceleration (E + %,) of an oscillator
with frequency w and fraction of critical damping £ subjected to earth-

quake ground acceleration Xg , i.e,
Sa(By w) = | E(t) -+ H,(8)[ . (3.146a)

The plot of 85 vs. w or S, vs, T , where T = Qnﬁw , for
severagl values of B , for a given earthquake excitation is known as the

absolute acceleration response spectrum. Similar plots of the maximum

values of other response quantities,

5,8y @ = | & | (3.46b)

max

and

5q(B, ® = | ¢ | (3.46c)

max

are known as the relative velocity response spectrum and the relative
displacement response spectrum, respectively., The following relations

(27)

have been shown to hold approximately between the various spectra values:

®© 8y x Sy o C% Sa (3.47)
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Advantage may be taken of this relation by plotting the spectra
(Sy vs. T) on a log-log plot so that all the three spectrum values maybe
read off the same plot.(28) Figure 3.7 is an example of such a plot for
the response spectra of the S component of El Centro, 1940, earthquake
record. The plots are given for four different values of B .

Alternative definitions of the response spectra S , Sy , and
Sg are possible.(27) They are slightly different from the definitions
used here and lead to an exact relationship between the three spectrum
values instead of the approximate relationship (3.47). The results obtained
from various definitions are substantially the same for low damping.

The maximum values of the base shear and the tower-base shear

coefficients in the kth mode

!

Cpx = Ci, * Sa/e (3.48a)

and

il

Crrye C'i‘k - S,/ (3.48b)

(from Equations (3.39) - (3.42)) for a beam with given level and degree
of setback (responding to the N-S component of the E1l Centro, 1940,
earthquake) can be computed by reading off Cék and ka values from
Figures 3.5 and 3.6 and the S, value from Figure 3.7. The period Tg
can be obtained from Figure 3.2 (for k <4 ) with the knowledge of the
£, G and p values of the beam.

The actual total base shear response Vg and tower-base shear

response Vq , or the corresponding coefficients Cp and Cp , in a beam

subjected to external dynamic forces are, at any instant, the sum of the
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corresponding values in each mode at that instant. Thus

(o]

Cp(t) = £ Ch C (B () + %(t))
k=1
and (3.49)
(o]
Cp(t) = = Ch (B(t) + ()
k=1
when the beam is subjected to ground acceleration XO . The maximum

values that Cpg(t) and Cp(t) take on are the maximum values that
the corresponding sums on the right hand side reach during the response.
Generally, the terms of the sum on the right hand side will reach their
maximum values at different times so that the knowledge of such maximum
values will not enable one to know the maximum value that the sum might
attain, The sum of the maximum absolute values of each term will pro-
vide only an upper bound to the actual maximum of the sum. Several
other methods of superimposing the individual modal maxims to obtain
approximate total maximum responses have been suggested and investigated,(29’3o)
It has been suggested(3l) that the '"probable" value of the maximum response
is approximately the square root of the sum of the squares (RSS) of the
modal maxima. This is based on the assumption that the modal components
are random variables, which is consistent with the random nature of the
earthquake ground accelerations ¥o(t) . This method of superposition
has been found to give as good or better approximation to the actual
maximum response than most other methods of superposition,(29’ 30)

The response spectrum for the g component of El1 Centro,
1940, earthquake is given in Figure 3.7. For a given fraction of criti-
cal damping £ , the maximum response, for example, the maximum velocity

response Sy , is an irregular function of period T . The same is true
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of the response spectra of other recorded earthquake ground motion., More-
over, the overall magnitude of the various maximum responses is different
for different recorded ground accelerations. The plots of the average
maximum velocity and acceleration responses of the various recorded

ground acceleration (of strong-motion earthquakes), normalized in a
suitable manner, have been found to be reasonably smooth functions of
period T ,<32) Further, it has been observed that for a given B the
average maximum velocity response remains almost constant with change in
period, T , over a wide range of periods,(32)

To obtain a rough idea as to the effect of setback on the maxi-
mum base shear and tower-base shear coefficients of a stepped shear beam
subjected to earthquake acceleration, the method of RSS (square root of
sum of squares) superposition of modal maxima to obtain the total maxi-
mum will be used. The modal maxima will be obtained from the average
spectrum assuming that fraction of critical damping remains constant in
all modes for all beams with various levels and degrees of setback.
Further, it will be assumed that the range of period encountered is with-
in the range of period for which the average maximum velocity response
is almost constant. Only the first four modes will be used, the contri-
bution of the higher modes to the significant response parameters being
negligible in comparison to that of first two or three modes in the cases

considered here, Then using Equation (3.48),

L]» 1
2 S
C, ~ by (cr. w'y ). 2v s
(3.50)
S
~ o v G_
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and

(3.51)

12
(@]
=
m I<:U)
%

012

where Cp and Cp are the maximum base shear coefficient (BSC) and
the tower-base shear coefficient (TBSC) respectively. Advantage is

also taken of the approximate relation (3.L47)

in writing Equations (3.50) and (3.51), and ® is replaced by !
(see Equations (3.21) and (3.17)) so that Ci and C; are dimensionless.

The variation in Cé and Cé with ¢ fof various levels of
setback p is shown in Figures 3.8 and 3.9,respectively, The base shear
coefficient increases with decreasing ¢ for all levels of setback,

This increase becomes larger and larger ag the level of setback gets
lower (i.e. as p decreases) when c < .375 (approximately);the case
of setback level exactly at mid-height is an exception.

The tower-base shear coefficient also increases with decreasing
¢ for all levels of setbacks. The Cp values at c¢ =1 for different
values of p are nothing but the seismic coefficients at various levels
of a uniform beam. From Figure 3.9 it is clear that the seismic coeffi-
cient increases from bottom to top of the uniform shear beam. The seis-
mic coefficient at a given level is defined identically as the tower-base
shear coefficient, i.e., as the ratio of shear at that level to the weight

of structure above that level.
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The increase in tower-base shear coefficient with decreasing
¢ is most for setback level p = .8 and becomes smaller as the set-
back level is lowered, (i.e. as p decreases), the case p = .5 being
an exception. For setback level exactly at mid-height, the increase
in Ci is unbounded as ¢ —» 0 since ka in each of the four modes
increase indefinitely as ¢ - 0 (as was observed earlier) due to
resonance effects, There will also be an unbounded increase in C%
value for those values of p for which af ¢ = 0 , there is at least
a pair of modes whose frequencies are equal,

The RSS combination of the maximum modal responses will give
a reasonable approximation of the actual combined maximum response only
if the periods of the modes involved are well separated.<3l) If the
periods of any two of the lower modes involved are very close or equal,
as in the case of shear beam with setback at midheight (p = .5) and
very slender tower (i.,e, very small c ), the RSS combination will
not, in general, give a good approximation, Besides p = .5 , there
are other values of p for which two lower mode periods will be close
when the tower portion of the shear beam is very slender, e.g. the sec-
ond and third modes for p = .75.

When two modes have close periods, the algebraic sum of the
two modal maximum responses may, under certain conditions, be a good
approximation of the true combined response of the two modes., This de=~
pends on several factors such as the ratio bf the periods involved, the
ratio of the amplitudes of the responses in the two modes, and damping.
Skinner et @l(7) have investigated this problem. They find that if the
algebraic sum is not too small in comparison with the individual modal

responses (i.e.; if the ratio of amplitudes of the two modal responses is
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sufficiently different from -1), it will be a good approximation of the
actual combined response for a small range of period ratios around 1,

and that this range of period ratio would increase to some extent with
increase in damping. The algebraic sum combination will of course give
exact results when the periods of the modes involved are exactly equal.

In the case of shear beam with setback at midheight and very
small c ,the ratios of the modal base shear coefficient (BSC) responses
in successive pair of modes (viz, first and second modes, third and
fourth modes, etc., each pair having close periocds, see Figure 3.,2) is
very nearly equal to one, see Figure 3.5, The algebraic combination
of the maximum modal BSC responses of successive pair of modes will in
this case, therefore, give good results, Further, at ¢ =0 such alge-
braic sums hold exactly since the periods of each successive pair of
modes are equal, The RSS combination of the algebraic sums of first
and second, and third and fourth mode BSC responses for this case
(c = 0) gives CL 2,68 instead of 1.9 as shown in Figure 3.8, a
value obtained by the RSS combination of all four individual modal
responses,

The ratio of the modal tower-base shear coefficient (TBSC)
responsges in successive pair of modes of the shear beam with setback at
midheight and extremely slender tower is more nearly equal to -1, see
Figure 3.6, Algebraic sum of the modal responses in such pairs of modes
will be small and therefore will not give a good approximation of the
actual combined response. The actual cbmbined responses in such cases
have been found to be very high although not as high as would be sugges-

ted by the RSS combination of the modal responseso<6f7>



SHEAR BUILDING

In the previous section,the effects of step size and levels on
the uncoupled translational vibrations of the stepped shear beam were
examined, The shear beam is a highly idealized model of multi-story
buildings. However, the simplicity of this model made it possible
to obtain some information about the effect of setbacks that would not
be easily apparent otherwise.

In Chapter II,equations of motions of a multi-story building
have been developed using a multi-mass model. The mass of the building
is assumed to be concentrated at floor levels in such a model. This is
much closer to reality than the assumption of uniform mass and stiffness
distribution made in the case of shear beam.

Conditions were established in Chapter II under which the lateral
vibrations in one or both principal directions (assuming the existence of
such principal directions, see Chapter II) are uncoupled from the torsional
vibration. As with the shear beam, the uncoupled translational vibrations
in one of the principal directions of the multi-mass model of the multi-
story building will be studied next in this chapter; assuming that condi-

tions for such uncoupling exist.

Equations of Motion and Solution

In Figure 3.10a is shown a N-story bullding with a setback
above the Pth story. The setback is geometrically symmetric about
the x axis and it is assumed that dynamic symmetry also exists about
this axis. If we assume linear elastic stiffness and viscous damping,

the equations of motion for uncoupled translational vibration in the
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x direction of a N-story structure is given by Equation (2.17). Drop-

ping the subscript u , Equation (2.17) may be written as
) {i}p + (] {a} + (K] {u} = {e()} (3.52)

The usual normal mode solution of the equations of type (3.52)
was outlined in Chapter II. The solution of the system of Equation (3.52)

with no damping,

] {i} + [k {u} = {£(¢t)} (3.53)

may be written as

{u} = [o] {n} (3.54)

where [®] is NxN modal matrix,each column of [®] being a mode shape
of the system (3.53),and {n} is the Nx1 modal displacement vector.

The kth element of {n} corresponding to the kth mode is given by
. 2
me e, = g (t) (3.55)

where & 1is the kth mode frequency of system (3.53) and

9 {2}
{# D0 {4}

K v
where {¢ } is the kth mode shape of system (3.52) i.e. the kth column

gk(t) =

(3.56)

of matrix [®] .
Assuming that the damping in the system is viscous and that
it does not affect the normal modes and frequencies of the correspond-

ing undamped system,the term QBkwkﬁk may be added on the left side in
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Equation (3.55)

. . 2
n, o *teB e + QN = gk(t) (3.57)

to represent the damping in the structures,where f) 1is the fraction of
critical damping in the kth mode., With elements of vector {n} given by
Equation (3.57), Equation (3.54) is then the solution of Equétion (3.52).

| When the structure is subjected to ground acceleration, the force
vector {f(t)} is

60} = - 00 {1} soe) (3.58)

where {i} is a Nx1 vector with all elements equal to unity. Substituting
t
for {f(t)} in Equation (3.56)

gk(t) = - >\-k ‘ io(t) (3059)

where

&7 ) {1}
Ne = { { j (3.60)

{#" na {6

N 1s generally known as the modal participation factor of the kth mode,
A method of obtaining the freguencies and the mode shapes of

system (3.53) was described in Chapter II.

Assumption of Simple Coupling in Stiffness

It is assumed that the structure is simply coupled in stiffness,
i.e.,the shear force acting in a story is independent of the deformations
in other stories. The stiffness of the structure may then be represented
by springs connecting adjacent masses only with the first floor alone being
connected to the ground. Such structures are sometimes also referred to

(10)

as "shear" buildings.
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The deformation of bulldings in which lateral forces are re-
sisted by shear walls may be well represented by the above model if the
walls are of such proportions as to have negligible bending type deforma-
tion,

In buildings where a space frame provides the resistance against
lateral forces, if the floor girders are assumed to be infinitely rigid
in comparison to the columns the model described above would again be
adequate. However, in most buildings this is not the case, especially in
the lower floors of tall buildings. Rubinstein and Hurty(33) have found
that such an assumption leads to more than 50% decrease in the fundamental
period of a typical 19-story steel-frame building.

On the other hand Housner and Brady(34) have found that funda-
mental periods of steel-frames computed by assuming infinitely rigid
girders give better correlation with measured periods than periods cal-
culated without making this assumption. This may be partly accounted
for by the stiffening effect of floor slabs on girders (where adequate
bond exists between them) and other effects such as the stiffness of
"non-structural" elements.,

It is expected that the nature of the effects of setbacks will

not be affected much by the assumption of simple coupling in stiffness.

Idealized Structural Properties

Consider a N-story structure with setback above the Pth story,
Figure 3.10a. Let kx5 Dbe the stiffness of the ith story and mji be

the value of the lumped mass at ith level. The following distribution
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of mass and stiffness is assumed:

in the base portion (1 <i < P)

+ Nkx (P -1+ 1)+ ce pkx (N-P+1l) (3.61)

and in the tower portion (P + 1 < i <N)

It
0
B

" (3.62)

kxj = ckXp +cr Akx <(N-1)

In Equations (3.61) and (3.62) kxﬁ, Nkx and m are constants; c¢ is
the degree of setback. The distribution of mass and stiffness described
by Equations (3.61) and (3.62) is shown graphically in Figure 3.10b.

The range of c¢ is restricted to 0 <c <1 . The case ¢ =1 represents
a uniform building and the mass and stiffness distribution for this case
is shown by dotted lines in Figure 3.10b.

Whenever the behavior of a building with setback is compared
with that of a uniform building, it is a uniform building with the same
number of stories and whose properties are given by Equations (3.61) and
(3.62) with c = 1 and the values of the constants kx&_ , Akx and m
the same as those of the building with setback., Such a uniform building
will be termed "comparable" uniform building.

The value of the lumped masses in each part of the structure
is assumed to be constant: mp =m in the bdse portion and mt = cm
in the tower portion. The ratio mt/mb then defines the degree of set-

back c¢ ,

C = IEG_ (3'63)
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This definition is similar to the one made in the case of shear beam, see
Equation (3.24).

Stiffness at any level is assumed to be equal to a constant
(kxﬁ or c - kxﬁ) plus a quantity Akx/mb times the total mass above that
level. Thus, the increment in stiffness per story is Akx in the
base portion and c¢ ° Akx in the tower portion, see Figure 3.10. Also
the constant parts in the stiffness at any level are kxﬁ in the base
portion and c ° kxﬁ in the tower portion.

The multi-mass model of buildings with setback being considered
here can also be seen as a discrete mass approximation of a stepped shear
beam, In the case of shear beam model used in the previous section both
the stiffness and mass values per unit length were assumed to be constant
in each part of the structure. 1In the discrete-mass model considered
here the value of lumped mass is constant in each part of the structure;
the same is not necessarily true (unless Akx = 0) with regard to the
stiffness.

In the tower portion the ratio of the mass or stiffness at a
given level of a building with respect to the corresponding values at
the same level in a comparable uniform (c = 1) building (having identical
values for Akx , kxﬁ and m ) is equal to ¢ in the discrete mass
model as well as in the shear beam model., In the base portion such ratios
for mass as well as stiffness are equal to 1 for shear beam model. This

is also the case for mass in the multi-mass model; but not for stiffness,

(see Figure 3.10b) unless Akx = O ,
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(34)

The mass and stiffness distribution used by Housner and Brady
for space frames with infinitely rigid girders in their investigation of
fundamental periods of structures is of the same form as assumed here for
uniform structures. The value of the ratio Akx/kxﬂ is 1/3 for the re-
sults presented in this chapter, which is the same value that was used
by Housner and Brady. This seems to be a reasonable value for space-
frame buildings where columns are the main lateral resistance elements,

Results were also obtained using Akx/kxﬁ =0, i.,e. constant
story stiffness in each part of the structure, which along with the
assumed constant mass distribution in each part of the structure, leads
to a lumped mass approximation of the stepped shear beam of the previous
section. As should be expected, the results for this case were not very
much different from those presented in the previous section. For example,
the effects of decreasing c¢ on the fundamental period and mode shape
of a 15 story building with Akx/kxﬁ = O are compared with similar effects
in the case of shear beam in Figure 3.11l. No further results for this
case will be presented.

The ratio kxﬁ/m was chosen so as to give a fundamental period
of approximately one second for a uniform structure of 10 stories satisfying
the code(3) formula, T = 0.1N (for N = 10), for space-frame buildings.
This value is kxﬁ/m = 579.132‘sec_2 , which gave a period of 1.03 seconds
for such a building,

The level of setback p , defined here by

p = P/N (3.64)
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and the degree of setback c¢ are now left as parameters as in the case
of shear beam. The range of possible values that the parameters p and
¢ can assume are 0 <p<1 and O0<c <1, again just as in the case
of shear beam. However, p can take on only a few discrete values in
this range noting that P and N in Equation (3.64) are integers.
Having chosen the values of the two quantities kxﬁ/m and
Akx/kxﬁ one can evaluate m; and kx; (i =1,..,N) for an N-story
structure given P and c, by using Equations (3.61) and (3.62). The
construction of matrices [M] and [K] of Equation (3.52) is then a

simple matter, For the inertia matrix [M] , which is diagonal,
iJ
(3.65)

and for the stiffness matrix which for the shear building assumption is

tridiagonal
ki i-1= - kx4
ki, i = kxg 4+ kxyy
i,d =1, &, oy N
ki, 441 = - KX (3.66)
jJg>1i+1
ki’j -0 or j<i-1

The mode shapes and frequencies were obtained by using Givens'
method described in Chapter II. Computations for these and other modal
quantities presented here were made on a digital computer., Results were

obtained for a 15 story building with different levels (P/N) and degrees
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of setback (c) . Similar results were also obtained for 5, 10jand 20-
story structures, Since these results show a similar trend as far as
the effect of level and degree of setback is concerned, results are

presented here only for the 15-story structures.

Periods

In Figure 3.12 the first four mode periods are plotted as
functions of ¢ for values of p =0, .2, .4, .6, .8, and 1 (i.e.
P=0, 3, 6, 9, 12 and 15). The values p = O and p = 1 represent
the uniform building (i.e. one without a setback) for all values of c
as was the case with the shear beam. For these values of p , therefore,
periods, and all other modal quantities discussed later, do not change
with ¢ .

Periods and other modal quantities for the extreme case ¢ =0
cannot be directly computed for the multi-mass model as was possible
with continuous shear beam model. The smallest value of c¢ for which
the periods have been computed directly is .00625, It was shown in
the case of shear beam that a frequency of the stepped shear beam with
¢ =0 i1is equal to a frequency of either the base portion acting alone
or the tower portion acting alone (each as a uniform cantilever beam).
Periods of uniform buildings of P and N-P stories were computed,
The two sets of periods were combined together and rearranged to that
for the combined set T, >Tpy1 , n =1, 2, ..., N-1,

Periods thus obtained are given in Table III .1 for the first
four modes (n = 1 through 4) for N = 15 and P = 12, 9, 6, and 3. In
each case the period is identified by its origin, i.e., whether it is a

period of the base portion or tower portion, and the mode number in the



-86-

TABLE III.1
PERIODS AT ¢ =0 (N = 15)
Mode | Setback Level, P
No.
12 9 6 3

1.1485 0.9673 0.9673 1.1485

* Base, 1 Base, 1 Tower, 1 Tower, 1
0.4904 0.7551 o.%551 | ;“o.u9ou

° Tower, 1 Tower, 1 Base, 1 Base, 1
0.4493 0.37kk 0,374k 0.4493

. Base, 2 Base, 2 Tower, 2 Tower, 2
0.2781 0.2894 0.2894 0.2781

) Base, 3 Tower, 2 Base, 2 Tower, 3 |
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Figure 3.12. Fundamental and Higher Mode Periods, Shear Building.
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original structure. Smooth extensions of the T; vs. c¢ plots in
Figure 3.10 beyond c¢ = ,00625 to c = O are in excellent agreement
with the corresponding periods in Table IIT .1.

It may be noted from Equation (3.61) that the mass and stiff-
ness distributions in the base portion>at ¢ =0 is the same as those
given by Equations (3.61) and (3.62) for a uniform (¢ = 1) building of
P stories, Noting that the periods are dependent only on the mass and
stiffness distribution and the mass-to-stiffness ratio, the same is true
for the tower portion.

Although the periods for structures with P = P' and P = N-P'
are identical at ¢ = O this does not hold for other values of ¢ < 1.
For shear beam the periods for p =p' and p = l-p' were identical for
all c¢ . This difference is due to the assumed effect of ¢ on the
stiffness in the base portion as seen in Equation (3.61).

The following observations may be made from Figure 3.12, The
first mode period decreases as ¢ decreases for all levels of setback.
The influence of a variation of ¢ on the fundamental period is greater
when the setback level is near mid-height (p = .4, .6 in Figure 3.12)
and decreases as the setback level is moved towards either end., Similar
behavior was observed in the first mode period of stepped shear beam
though the extent of decrease in the period ié much more than in the
present model.

In third and fourth modes in general the periods increase as
¢ decreases. (This was also observed in fifth through eighth modes,
the results for which are not presented because they are relatively
unimportant.) Also, the changes in periods with c¢ in the higher modes

are not monotonic., For the shear beam the changes in higher mode periods
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with ¢ are both ways depending on the level of setback, but for the period
in a given mode changes monotonically with ¢ . The non-monotonic varia-

tion in period observed here is due to the assumed effect of ¢ on

the stiffness in the base portion as seen in Equation (3.61).

Mode Shapes

The mode shapes have been normalized by fixing the displace-
ment of the Nth mass (at the top), ¢N , equal to 1, First four mode
shapes of the 15-story buildings with levels of setback p = .2, .4, .6
and .8 and degrees of setback ¢ =1, .5, .25 (except for third and
fourth modes) and .125 are shown in Figure 3.13.

In the first and sécond mode shapes the effect of setback is
apparent in the somewhat abrupt change in slope at the level of setback
when ¢ % 0O ; the smaller the value of ¢ the sharper the kink. These
kinks at the setback level, however, are not as sharp as in the case of
the first and second modes of the shear beam. The reason for this lies
mainly with the difference in the stiffness distributions assumed for
the two models. In the shear beam the stiffness is constant in each
part of the structure, whereas in the multi-mass mecdel used here stiff-
ness varies linearly with the height in each part of the structure.

The difference in the modes shapes for the uniform structure (¢ = 1),
especially in the fundamental mode shape, is alsoc due to this same rea-
son,

Sharp changes in slope occur in the third and fourth mode
shapes of the uniform structure (c = 1). Hence, in these modes dis-

tinctive kinking at the level of setback is not apparent in most cases.
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In the case of the shear beam, the smoothness of the mode shapes in each
part of structure makes the kink at the level of setback distinctly appar-
ent whenever c # 1 . However, some consistency can be seen in the way
the mode shapes change with decreasing c¢ 1in each group of third and fourth
mode shapes in Figure 3,13,

Exceptions were noted in the case of shear beam where for some
‘levels of setback p there was no effect of change in ¢ on some mode
shapes, e.g. the third modes for p = .6 or p = .2. The second mode
for p =.2 in the multi-mass model seems to be a similar exception.
Also, the first mode for p = .8 shows very little effect of decreasing

¢ , as was also the case with the shear beam.

In general, the effect of setback on the mode shapes is to decrease
the amplitude of displacements in the base portion relative to that in
the tower portion in comparison with the same mode shape of the corres-
ponding uniform structure. This effect is émplified with decreasing c .
With a few exceptions this observation is borne out in all the four mode
shapes of the shear beam as well as the multi-mass model given in Figures

3.4 and 3.13,respectively.

Modal Shear Coefficients

In the section on shear beams,formulae were derived for modal
base shear coefficients and tower-base shear coefficients of the stepped
shear beam subjected to earthquake ground acceleration X5(t) (Equations
(3.39) and (3.40)). Similar formulae for these coefficients can be de-

rived for the multi-mass model. Omitting the intermediate steps, which
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are similar to those in the preceding section on the shear beam, the base
shear coefficient in the kth mode is given by

N

I omigs .

Cpr(t) = Ag * 1;1N ©(Ee(t) + %(8)) /8 (3.67)
2 my
i=1

and the tower-base shear coefficient is given by

N ¢k
L miPi
Cr(t) = Ay s i=P+l . (£ (t) + %x,(t)) /g . (3.68)

N

2 mi

1=P+1
In Equations (3.67) and (3.68), N, 1s the modal participation factor of
the kth mode defined by Equation (3.60); m; is the value of ith mass;
¢? is the displacement of ith mass in the kth mode; g 1is the accelera-
tion due to gravity; and (Ek(t) + X5(t)) 1is the absolute acceleration

of a single-degree-of-freedom oscillator with frequency . and damping

coefficient B, subjected to ground acceleration Xo(t)

N . 2 .-
Ex + 2Pg W Bk * W Ex = - Xg (3.69)

The kth modal displacement m, (Equation (3.57)) is related
to Ex by

Me = N B o (3.70)

which is apparent on comparing Equations (3.57) and (3.69) noting that

gk(t) in Equation (3.57) is given by Equation (3.59).
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From Equations (3.67) and (3.68) it is seen that Cpx and

13

Crk vary with time and are dependent on the ground acceleration Xg
The portions of the expressions for Cgk and Cpk given by

N
kK
ot iélmiséi (3.71)
w7 e 7
Zmi
i=1
and N k
S om-Q.
i=P+] l¢1,

Cl = . . 2
Tk Ne * (3.72)
2 my

i=P+1

are however independent of ground acceleration and are dependent only on
the structural properties of the building. Cék and ka can be looked
upon as the kth mode base shear and tower-base shear coefficients, respec-

(26)

tively, ina building subjected to unit g staticacceleration. (i.e.
inabuilding subjected to static lateral force at each floor equal to
the weight of the floor). Cﬁk and ka were similarly defined by
Equations (3.41) and (3.42) for shear beam.

In Figure 3.14 and 3.15 are gi&en plots of ClL  vs. c and
ka vs, c¢ for several setback levels p , for the first four modes
(k = 1 through 4). The values p =0 and p = 1 represent uniform

structure regardless of the value of ¢ . Hence Cﬁk does not change

with ¢ . For p =1 the tower-base shear coefficient is equal to zero

(i.e. Cék = 0) and for p = 0 it is equal to the base shear coefficient
i.e., C' = C! d f f .

(i.e Coye CBk) regardless of the value of ¢

As was pointed out earlier no direct computations can be made
for the extreme case ¢ = 0 . The smallest value of ¢ for which com-
putations were made is ,00625. Smooth extensions of the Cék vs. ¢C
plots beyond c¢ = .00625 to ¢ = O give values that are in good agree-

ment with corresponding values obtained from uniform buildings of P
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and (N-P)stories as per the interpretations made for C in the case

Bk
of stepped shear beam with ¢ =0 .v It may be recalled that for the
stepped shear beam no interpretation of the ka value at ¢ =0
was possible in some cases.

In Figure 3.1h4,the first mode Cﬁl decreases with decreasing
¢ and tends to zero as ¢ = 0 when setback level is below midheight
(p < .5). When the setback level is above midheight there is some

decrease in C}! as ¢ decreases; on further decrease in

1
Bl ¢ Cpy
begins to increase and tends to a finite value (equal to the Cél value
of P-story wuniform building) as c =0,

In the second mode for setback levels p = .2 and p = .4,

Cﬁg increases with decreasing c¢ and tends to finite values (equal
to the Cél value of 3- and 6-story uniform buildings, respectively).
For p = .6 and .8 Ci, decreases with c and tends to zero as
c -0,

For setback level p = .2 ,C]é3 in the third mode increases

significantly over most of the range of ¢ and then decreases very
sharply at the ¢ =0 end. No definite reason is apparent for this
peculiar behavior. No other significant increase in Cék is noted
in the higher modes.

Unlike the modal base shear  coefficient Cék , the modal tower-

base shear coefficient ka has different signs in different modes.

Furthermore, shear coefficient ka changes in sign (but at most once)

as it varies with C .
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In Figure 3.15, the C%k plots for some cases are drawn with
signs that are opposite to the actual, for convenience. Such plots are
identified by minus signs placed along with the values of the parameter
D .

As with the shear beam,the absolute value of ka increases
with decreasing c¢ in almost all modes for all levels of setback as
seen in Figure 3,15. The increase is more when p > .5, i.e., for struc-
tures with setback level above mid-height. Also,much of the increase in
ka in all modes and for all values of p is confined to the ¢ =0
end,

The observations noted above suggests that the maximum tower-
base shear coefficient of a structure with setback subjected to a given
earthquake acceleration would possibly be quite high when the tower sec-
tion is very small in comparison with the base section, especially when
the setback level is above mid-height.

It may be noted that the mode shapes and the quantities Cék
and C/  defined by Equations (3,71) and (3.72) are dependent only on

Tk
the mass and stiffness distributions in the structure. They are inde-
pendent of the actual magnitudes of the mass or stiffness and also the
stiffness-to-mass ratio. The mass and stiffness distributions are
governed by p and c .

The stiffness-to-mass ratio (kxﬁ/m) was assumed to have a con-

stant value, say g ,in the study of the effect of p and c¢ on the
periods. For a different value of stiffness-to-mass ratio,say q'

(assuming it remains constant as p and c change),the plots of peri-

od vs. c¢ in Figure 3.72 would be valid with a different scale for the
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period axis, T' =T q/q' . However, the effect of p and c on the
ratios Ty : Tp : T3 : T), is independent of the stiffness-to-mass

ratio,

Responses to Recorded Earthquakes

Having studied the influence of setbacks on some of the impor-
tant modal quantities, the maximum responses of structures with setback
subjected to recorded earthquake ground motion will next be examined.

Responses are computed for the 15-story structures with the
same properties as were assumed in the modal study. Computations were
made for structures with setback above 12th, 9th, 6th and 3rd stories
and with degree of setback c¢ =1, .75, .50, .25 and .125 for each set-
back level.

The earthquake excitations used for the response computations
are the NS component of the F1 Centro, May 18, 1940, and the N69°W
component of the Taft, July 21, 1952, earthquake records. These are
two among the strongest earthquake ground motions recorded to date (1966).
These records (among many others) have been reduced to digital form
with appropriate base line adjustments.(35)

The total response of the system of Equation (3.52) is a
linear combination of modal responses as seen in Equation (3.54).

Hence, first the modal displacements My (or alternately € » see
Equations (3.69) and (3.70)) were computed by solving Equation (3.69)
by a numerical integration procedure and then using Equation (3.70).
A fourth order Runge-Kutta procedure, availableas a subroutine at the

University of Michigan Computing Center, was used for this purpose.
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At the end of each step (in time) of numerical integration the desired
total responses were then computed from the knowledge of the values of
&k at that instant of time.

Since the contribution of higher modes to the various signifi-
cant response parameters is known to be small in comparison with first two or
three modes, only the first four modes were considered in computing the
total response. Earliey it was pointed out that for some cases the base
shear coefficient in the higher modes may be significant. However, among
the cases for which response computations were made, there was no indica-
tion of modes higher than the third contributing significantly to the
total base shear coefficient.

In the past response studies of multi-story buildings damping
has been assumed to be anywhere between zero and 20% of critical in one
or more modes. Vibration tasts of multistory buildings indicate low
values of damping,(36’37) usually less than 5% and much less in steel
frame structures, at the small excifation levels produced by the vibra-
tion generators used in the tests in comparison to the earthquake genera-
ted excitations. These tests also indicate that, in general, damping in
the higher modes is greater than in the first one or two modes. Here,it
was decided to use 4% of critical damping in the first two modes and 6%
of critical in the third and fourth modes.

Only the maximum absolute values attained by the responses of
a structure during the time it vibrates when subjected to some earthquake
excitation i1s of interest for design purposes. The maximum magnitudes

of displacements (relative to ground) uj of all floors and the relative
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story displacements Au; of all the stories were computed. Since the
structure was assumed to be simply coupled in stiffness, the shear forces
in each story is proportional to the relative story displacements.

The root sum of squares (RSS) combination of the maximum modal
displacements and relative story displacements in the four modes were
also computed., In general, a very good agreement was found between
the RSS sum of the modal maxima and the actual maximum in case of both the
responses for all values of P and c¢ for which computations were

made,

Floor Displacements and Relative Story Displacements

In Figure 3.16 are given the maxiﬁum floor displacements of
15-story structures with various levels and degrees of setback subjected
the N69°W component of the Taft '52 earthquake record, The maximum dis-
placements of successive stories are joined by straight lines giving a
envelope of the maximum displacement responses. It should be remembered
that the maximum displacements of each floor may have occured at different
times. The maximum response envelopes of structure with various degrees
of setback (c¢) but with the same setback level (p) are given on the same
plot. 1In each plot the case ¢ = 1 represents the response of the uni-
form building.,

Maximum relative story displacement envelopes of the same 15-
story structures subjected to the same (Taft '52, N69°W) earthquake ex-
citation are given in Figure 3.17. Similar maximum response envelopes
of these same structures subjected to S component of El Centro '40

earthquake record are given in Figures 3.18 and 3.19. It may be noted
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that in magnitude the El Centro responses are roughly twice as large as the
Taft responses,

In structures with degrees of setback ¢ = .25 and c¢ = ,125
(and also ¢ = .5 in the case of El Centro),the maximum displacements
of the floors in the tower portion are in general higher than the corres-
ponding displacements of the uniform structure (¢ = 1). This increase in
displacements is much more pronounced when the setback is at 6th or 9th
stories than when the setback is at 3rd or 12th stories. This is true
for both the Taft and the E1l Centro responses.

In the El Centro responses (Figure 3.18),the maximum displace-
ments in the base portion are also,in general, slightly higher in buildings
with setback (¢ < 1) than the corresponding displacements in the uniform
building.

In the Taft responses,it is noted that maximum displacements
in structures with ¢ = .50 are not significantly different from, and
in some cases are even less than, the corresponding displacements of
the uniform structure.

The maximum relative story displacement (MRSD),Figures 3.17 and
3.19, in the tower portions of buildings with setback (¢ < 1) are also
much larger than the corresponding displacements in uniform buildings
(¢ =1). The smaller the value of c¢ , i.e, the smaller the tower sec-
tion in comparison to the base section, the larger the MRSD in the tower;
the MRSD's in the base portion do not vary regularly with ¢ and also

the changes are not as drastic as in tower portion.
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The MRSD's for structures with ¢ = .25 and c¢ = .125 are ex-
tremely high, especially in the El Centro responses. In some cases drifts
(story deflection/story height) greater than .0l are indicated, assuming

a standard story height of 12°',

Shear Coefficients

The seismic shear coefficient at any level in a building is
defined as the ratio of shear at that level to the total weight of the
structure above that level., Since the structure is assumed to be simply
coupled in stiffness the shear in any story is the stiffness times the
relative story displacement of that story. Noting that the stiffness and
mass are both assumed to be proportional to ¢ in the tower portion (see
Equation (3.62)),;the MRSD's of Figures 3.17 and 3.19 also represent the
effect of ¢ on the maximum seismic coefficients on a different scale,
although the change in scale is different for each story. Thus, Figures
3.17 and 3.19 also show an increase in seismic shear coefficients values
in the tower portions of buildings with decreasing tower section (i.e.
decreasing c). This increase is tremendous for small values of c, e.g.
in the El Centro responses for the case P = 12 the seismic shear coef-
ficient for the 14th story for c¢ = .125 is over 250% greater than that
of the uniform structure.

Next the maximum base shear coefficients and the tower-base
shear coefficients of the Taft and the El Centro responses will be com-
pared with those obtained from the 1966 Uniform Building Code.(3)

For uniform buildings the base shear coefficient according to
the code is

.05

Cg = (1)1/3 (3.73)
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where T is the fundamental period of the building. The seismic shear
coefficient at any other level is obtained from the code formula for
lateral force distribution in uniform structures:

Wyh
F, = Vg =X (3.74)

5 Wh

where Vg 1s the base shear,

F_  is lateral force applied to a
level designated as x,

Wy the portion of total deal load which
is located at or is assigned to the
level designated as x ,

hy Theight in feet to the level designated
as X, |

2 Wh is summation of the product of all

Wx , hy for the building.

Noting that mass is assumed to be lumped at floor level, x
is replaced by 1 in the above formula for the ith floor level. Then

seismic shear coefficient in the (P + 1)th story will be

N N
o iZpaft v .i§P+lw_ihi (3.75)
S N i 3.5
hy W5 2 Wy - Z‘Wihi
=P+l i=P+l =1

where Wi;=m3j - & , & being the acceleration due to gravity. The base
shear Vg is given in terms of base shear coefficient of Equation (3.73)
oy

Vg =KCyW (3.76)
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N
where W = X W3 1is the total dead load and K 1is a numerical coef-
i=1
ficient varying between .67 and 1.50 reflecting the ability of structure
to deform into the plastic range. Here K 1is taken equal to unity.

Substituting for Cp from Equation (3.73) in Equation (3.76) and using

the latter in Equation (3.75)»

N N
o - 205 iZpy il 35N (3.77)
T - . N N o
(/3 % Wi § W
i=1 1=P+1

Equations (3.73) and (3.77) give the base shear coefficient
and the seismic shear coefficient in the (P + 1)th story for uniform
buildings as specified by the Uniform Building Code (UBC). For

buildings with setback this code specifies the following:

"Buildings having setbacks wherein the plan
dimensions of the tower in each direction are at
least 75 percent of the corresponding plan dimen-
sion of the lower part may be considered as a
uniform building without setbacks for the purpose
of determining seismic forces.

"For other conditions of setbacks the tower
shall be designed as a separate building using
the larger of the seismic coefficient at the base
of the tower determined by considering the tower
as either a separate building for its own height
or as part of the over-all structure. The result-
ing total shear from the tower shall be applied at
the top of the lower part of the building which
shall be otherwise considered separately for its
own height."

Assuming that the degree of setback ¢ 1is also the ratio of
tower cross-sectional area to base cross-sectional area (as was the case

with shear beam, see Equation (3.24)), according to the above specification



-111-

building with setbacks having c < (3/&)2 = .5625 should be treated as
uniform buildings. The values for the case c¢ = .75 are therefore also
computed from Equations (3.73) and (3.77).

The tower-base shear coefficient (Cp) for the cases c¢ = .5,
.25, and .125 were computed by either Equation (3.77) (tower as a part
of the overall structure) or by

Cp = —292 (3.78)
T (TT)1/3

(tower as a separate structure for its own height), whichever gave the
greater value for Cy . In Equation (3.78) Ty 1s the period of the
tower portion as a separate building. It turned out that for all cases
(c < .5) Equation (3.77) gave the larger value for Cp
The base shear coefficients CB for the cases c < .5625

are given by

P N
-2 1/3 = Wi + Cp 2 Wi
(Ty) i=1 i=P+1
Cy = (3.79)
N
W
i=l

where Tp 1s the fundamental period of the base portion alone and
Cp 1is the tower base shear coefficient computed as described above,
In computing the Cp and Cp values as described in the
Previous paragraphs,actual values of the various fundamental periods
involved (viz. T, Tp, and TT) have been used. The story height was

assumed to be the same for all stories in computing hy .
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The Cg and Cp values thus obtained from the UBC speci-
fications for 15-story buildings with setbacks at 12th, 9th, 6th and
3rd stories for various values of c¢ (including c = 1 for the uniform
building), along with the corresponding (maximum) values obtained from
the Taft and El1 Centro responses described previously are given in
Table ITII.2 and Table III.3.

As would be expected, the code values for both the coefficients
are much smaller than the Taft and E1 Centro response values. For ex-
ample for uniform building the base shear coefficient given by code
specifications is about 1/3rd of the Taft value and about 1/4th of the
El Centro value. Incidentally, the difference in the intensity of Taft
and El Centro responses can also be noted from Tables III.2 and Table
III.3. It would be uneconomical to design structures to remain elastic
when subjected to earthquake ground motion as severe as that of the
Taft and the ELl Centro records. The capacity of structures to deform
inelastically, thus absorbing a large part of the energy imparted to it
by earthquakes without collapsing, is relied upon in specifying design
lateral loads smaller than would be suggested by the elastic analyses.

To measure the effectiveness of the code provisions for build-
ings with setback in the elastic range,the ratios of the base shear co-
efficient of building with setback to that of uniform building as obtain-
ed from the two responses and by application of code specifications are
plotted against c¢ din Figure 3.20. Similar plots for the ratios of
tower-base shear coefficients are given in Figure 3.21.

The above mentioned ratios as obtalned from approximate response
values computed for the shear beam in the previous section are also plot-

ted in Figures 3.20 and 3.21. It may be recalled that these values were
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BASE SHEAR COEFFICIENTS (CB)

Cc

! 1,ooﬁvﬂ?45:%;~7”7 6,50 0.25 - 0.125
TAFT RESPONSES (51)2 = L9, B3,k = 6%)
12| ,1210 .1184 .1158 L1171 | L1105
9| .1210 . 1075 . 1068 .1321 .1117
6| .1210 L1132 L1145 .1190 . 1685
31 .1210 ,1188 .1134 . 1256 L1416
EL CENTRO RESPONSES (B1 o = 4%, B3 ) = 6%)
12{ .19%0 .2182 .2h76 .2498 .2259
9| .1940 2475 ., 2864 . 2661 .2958
6] .1940 .2349 .3030 23443 .2992
3( .1940 .2015 .2199 .3065 h55h
cong(3)
12| ,0457 ,oL61 L0534 ,0511 . 0496
91 ,oLks57 L0461 L061h ,0587 ,0558
6| .oks57 . 0460 ,0671 .0678 , 0655
3] .0L57 L0458 . 0668 L0731 L0775
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TABLE III.3

7)

c

’ 1.00 | 0.75 0.50 0.25 0.125
TAFT RESPONSES (By 5 = 4%, B3 ), = 6%)

12 |.312k .3578 .3937 .4983 .6366
9 | .17kk .1851 .2279 .3567 4118
6 {.1576 .1537 .1719 .2262 .2985
3 |.1298 L1262 1272 . 1694 .2318

EL CENTRO RESPONSES (51)2 = 49, Bzl = 6%)

12 | .5850 L6934 8781 | 1.1672 | 1.4113
9 |.3718 4189 .5550 L6541 | 1.0254
6| .2676 .2917 .3128 Lok .6405
3 |.2230 .23887 .2521 .3007 L4365 i

cong(3)

12 | ,0800 .0839 .0887 .0949 .0986
9| .071k .0769 .0850 .0985 .1093
6| .0629 L0677 L0762 .0940 .1135
3| .0543 L0571 .063h .0768 .0990
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Figure 3.21. Comparison of Effect of Setback on C
as Obtained from Responses and Code
Specifications.
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obtained by RSS superposition of the corresponding quantities in the
first four modes and on the assumption that the velocity response spec-
trum S, had the same constant value in each mode for all beams with
various levels and degrees of setback.

The striking feature of Figure 3.20 is the disparity between
the effect of setback on the base shear coefficients as obtained from
the E1 Centro responses and as obtained from the Taft responses. The
El Centro values in general show an increase in base shear coefficients
as c¢ decreases for all levels of setback, the increase becoming larger
with lower levels of setback. The Taft values show in general a small
and irregular decrease in Cp due to setbacks, The shear beam values
demonstrate effects similar to the El Centro values (only more regularly)
though the extent of increase in CB is generally smaller. The code
values also show an irregular increase in Cp for buildings with set-
back, The effect of setback on Cé thus seems to be very much depen-
dent on the nature (as represented roughly by the response spectra)
of the earthquake excitation used to measure this effect.

Considerably more consistency is noticeable in Figure 3.21 in
the effects of setback on the tower-base shear coefficient as obtained
from the E1l Centro and the Taft responses. The tower-base shear coef-
ficients, in general, are higher than the seismic coefficients at the
corresponding levels in uniform buildings and increase as the tower cross
section decreases in both responses. The same is true about the values

obtained from code specifications.
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There is however a significant difference in the extent of
change in tower-base shear coefficients obtained from the four sets of
responses when the setback level is above mid-height (p = .6, .8 or
9, 12). 1In general the increase is most in the El Centro responses
and least in the code values, with the Taft response and the shear beam
values falling somewhere in between. When the setback is below mid-
height (p = .2, .4; P = 3, 6) the agreement between the four sets of
values is generally good.

The above comparison of tower-base shear coefficients is based
on the assumption that seismic coefficients at the various levels in
the uniform structure as obtained from the code are equal to the corres-
ponding response values. However, it is known that code specifications
underestimate shears at levels near the top of structures as compared
to the actual responses assuming that the code base shear is equal to
the response base shear. This is clearly seen in Table III.4 wherein
the ratio CT/CB at various levels in a uniform structure obtained from
response and code values are given, The difference between the responses
and code values of the tower-base shear coefficients for setback levels
above midheight would thus be accentuated further if they were compared

on the basis of equal base shear coefficients in uniform structures.

TABLE IIT.h

Cp/Cg  RATIOS FOR UNIFORM STRUCTURE,

Story | Taft El Centro Code

12 2.58 3.02 1.75
9 1.44 1.92 1.56
6 1.30 1.38 1.38
3 1,07 1.15 1.19
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Comparison of Code and Response Shear Distributions

Shear Vi in the ith story (i = 1 through N) as specified
by the code may be as computed as follows. In structures which are to

be treated as uniform as per the code specifications,

N

J=i
N
2, Wihj

= Vg £ (3.80)

N
L Wihyk
k=1

where Vg 1is given by Equation (3.76).
In structures where the tower and the base portions are to be

treated as separate structures as per the code specifications:

for N>i>P+ 1,

N
I Wshy
Vi = Vg Jﬁ_L______ (3.81a)

Y Wihy
k=P+1
and for P >1 >1,
P
Z thj
Vi o= Vp Vg A=l (3.81b)
P
% Wihy
k=1

In Equations (3.8la) and (3.81b) Vp is the shear at the base of tower

acting alone,

Vp = Cp R Wy (3.82)
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where Cp is larger of the values given by Equations (3.77) or (3.78);

and Vé is the shear at the base of base portion acting alone,

Vo= =2 B (3.83)
(T)l/3 =1

Shear distributions (Vi/VB) obtained as described above from
the Uniform Building Code are compared with the response shear distribu-
tions for the uniform structure (c = 1) as well as structures with
various degrees and levels of setback in Figure 3.22.

As expected as ¢ decreases the shears obtained from the re-
sponses as well as the code decrease throughout the height of the struc-
ture relative to the base shear. In the code shear distribution kinks
are apparent at the setback level for structures having degrees of set-
back ¢ < 0.5 . Such distinct kinks at the setback level are not always
apparent in the response shear distributions.

The response shear distribution values exceed those given by
the code in the upper half (approximately) of the uniform structure,

The same is true in the case of structures with setback (c # 1) in the

upper portion generally and in some cases almost throughout the height

of the structure,



CHAPTER IV

BUILDINGS WITH UNSYMMETRIC SETBACKS

INTRODUCTTON

The coupled latergl-torsional vibrations of a building with
unsymmetric setback are examined in this chapter. The geometric asym-
metry of the setback is assumed to be the only reason for the lack of
dynamic symmetry; i.e., the tower and the base portions of the building
with setback are assumed to be dynamically symmetric by themselves.
Again two models of a building are used, a shear beam and a lumped mass
shear building.

Results are obtained for a building with setback unsymmetric
about one principal direction only, with given level and degree of set-
back, and having fixed and similar cross-sections in plan in both the
base and the tower portions. These results are examined for the effect
of variation in the eccentricity of the setback upon the modal properties
of the two models and upon the response of the4lumped mass model to two

strong-motion earthquake records.

SHEAR BEAM

This section is concerned with the coupled lateral-torsional
vibrations of a vertical cantilever shear beam of rectangular section
stepped at one location along its height. The shear beam 1s a hypothe-
tical ideal beam whose properties have been described in Appendix A.

The coupling in the lateral and torsional vibrations of the shear beam

-123-
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is assumed to be due to the asymmetry of the setback, the tower centroid
being offset from the base centroid by distances e} and ep along the

X and y axis, respectively, as shown in Figure A.l.

Equations of Motion and Solution

The equations of motion for the coupled vibration of the vertical
cantilever shear beam with unsymmetric setback along with appropriate
boundary conditions and conditions at the setback are derived in the
Appendix. The solution of these equations by the method of separation
of variables is also presented in Appendix . A. . For convenience, the
equations of motion and the solution will be briefly described here,
Notations used are as defined in Appendix A.

The equations of motion (Equation (A.7)) are:
mixi,tt - kiXi,ZZ = fi(Z} t) i=1,2,3; (4.1)
the boundary conditions (Equations (A.9), (A.10)) are:

i=1,2,3 (4.2)

[
O

Xi(O) t)

vi(L, t) 1, 2, 3 (4.3)

il
o
I_l
Il

and the conditions at the steps (Equations (A.11), (A.12)) are:

V;(h-o, t) = Vi(hto, t) 1=1,2
(4.4
[V3 - el V2 -+ 62 Vl](h—o,t) = V3(h+0, ‘t)
[x1 - eo X3](h—o, £) = x (hto, t)
(x5 + e X3](h-o £) = xp(hto, t) (k.5)
X3(h—0, t) = x3(hto, t)
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The solution of Equation (4.1) may be written as (Equation

(A.29))

I

Xi % ¢ik Nk (4.6)
k=1

where ¢ik is the ith component of the kth mode (i = 1 refers to trans-
lation along x axis, 1 =2 to translation along y axis, 1 =3
to rotation about the vertical); and Nk is the kth modal displacement

and is given by (Equation (A.36)):

T + 2Pk 0k M + aﬁ e = ex(t) . (%.7)

In Equation (4.7) @ is the kth mode frequency; B, is thr fraction of
critical damping in the kth mode and the term containing it in Equation
(k.7) is added on the assumption that viscous damping exists and that the
undamped modes remain valid for the damped case also; and dots above
variables denote differentiation with respect to time. Finally, g (t)

in Equation (L4.7) is given by (Equation (A.35)):

g (t) = 2= ' : (4.8)

When the driving forces f; in Equation (4.1) result from

base acceleration, they are given by

(k.9)
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where X is the ith component of the base acceleration., The torsional

ol
component (i = 3) in ground motion due to earthquake is assumed to be
negligible and will be taken here to be nil. Then, using Equation (4.9),

g (t) may be written as

where
Y4
[ mi @ik dz
A = O ' (4. ll)
ik .
3 1 5
2 [ my P5xaz

The quantities Klk and KZk are then the x- and y-direction modal
participation coefficients, respectively.

The mode shapes @) (i =1, 2, 3) are given by:

in 0<z<h

Z z
¢ik = Cyox COS ~=— + Ci1k sin fk_ (4.12a)
di a5

and in h<z< J

fi1c = Ciop cOS kZ 4 Ci3k sin K2 . (4.12p)
Si Shi

In Equation (L4.12) q3; and si are given by (Equation (A.18))

N
Iy

a5 = % 0<z<h,
my i=1,2,3 (4.13)
k.
s? = = h<z< g,
m.
i
where k; and m; are the stiffness and inertia (lateral or torsional)

per unit length of the shear beam.
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By virtue of the boundary condition (4.2)

Cio = O i=1,2,3 (h.1h)

and the mode shapes are then given by:

Z
fic = Cix sin 2 (k.15a)
qi

and in h <z <[
z z
@i = Ciok cos %2 + Ci3k.sin§iL_ . (4.15b)
53 53

The orthogonality of the modes
Y/
o

is established in Appendix A.

Application of the remaining boundary conditions, Equation
(4.3), and conditions at the step, Equations (4.4) and (4.5), to Equa-
tion (4.15) leads to a set of linear homogeneous simultaneous equations
in Cij(i, j =1,2,3), Equation (A.22). Non-trivial solutions
Cs 5% (k = 1,2,3)..) of Equation (A.22) exists for such values of
o= (k =1,2,3,...) vhich make the determinant of the coefficients
of Cij's equal to zero., These values & are then the frequencies and

the corresponding solutions Cijk give the mode shapes of the shear beam.

New Notations

Before proceeding further the following notations are intro-
duced:
P2 /by

a2/al

Q
o
n

(h,17)

R
I
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of = (Pfay +ap)/(Tfay +ap)
(4.18)
o2 = (FPfoy + ap)/(Lfoy + )

The term « is then the ratio of sides of the shear beam section. The
subscripts b and t denote, respectively, the base portion and the
tower portion of the shear beam. The term 72 is the ratio of rigidity
of the shear beam in the y direction to its rigidity in the x direc-

tion. It can also be seen as the ratio (from Equations (A.5), (A.6) and

(4.13)):
P o= G/ = 26 (%.19)

and it is assumed to have the same value in the base and tower portions
of the shear beam,

From Equations (A.4), (A.5), (4.13) and (4.16), it can also be

seen that
2 2,2
o =
b q3/ql
(4.20)
2 2,02
op = S3/Sl
Using Equations (4.13), (4.19) and (4.20), it may be shown that
> ky/m
7 = 2
kq/my
and
k /m
52 = 373 .

k1/my
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The similarity in the nature of the quantities 72 and 02 is apparent
from these equations. However, unlike 72, 0° has different values in the
base and the tower portions of the beam unless Qap = . If Qp = g
then, as is obvious from Equation (4.17), oy = oy -

The following notations are also introduced for convenience:

d, = op-(L/ap + ap)/12
(k.21)
dy = c2 . op + (Lo + op)/12 .
Further, the following definitions are recalled from Chapter III:
p = h/t (k.22)
c = alaE/ble (k.23)

|
|

®' = ayglz%; = ©f = O (h.2k)
04 4 51

p is termed the level of setback and ¢ the degree of setback (in a
restricted sense in this chapter) and ' is the non-dimensionalized
form of frequency.

The eccentricities e; and ey of the tower centroid with
respect to the base centroid and the coefficients Cgy (3 = 1,2,3) are

redefined with a slight change to make Equation (A.22) dimensionally

homogeneous.
el = ey/+/Ag i=1, 2 (k.25)
Céj = C3j “/AB Jg=1, 2,3 (4.26)

where AB = ble is the plan area of the base portion of the beam.
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Frequency Equation

Introducing the above changes in notation, Equation (A.22) may
be re-written here as Equation (4.27). Expanding the determinant of" the
coefficients with the help of Laplacian expansion of a determinant(38)

and equating it to zero,one gets the frequency equation

'2f2cos w'p sin 0'(1-p)

f(w') = fifpfy - c sin QP oog ©(1-p) [ e
Ot

Op

+ eig flcos LR gin @' (1-p) J =0 (4.28)

4 Y
where
f1(w') = ¢ sin 0'p sin ©'(1-p) - cos w'p cos w'(1-p), (4.29)
w' w'( 1~ w' w'( 1~
fe(w') - ¢ sin =& gin p) - cos —= cos (1-p) s (4.30)
4 7 4 Y
and
: 9P . @' (1-p) ®O'P L L' (1-p)
f(w') = d, sin sin - d,.cos cos . (4.31)
3 t op ot b op oy

From Equation (3.22) of Chapter III, it is evident that fl(w') =0
is the frequency equation of uncoupled translational vibration in the x
direction of the shear beam with eé =0 ., The quantity fl is also the
determinant of the upper most 3 x 3 diagonal submatrix of the matrix of
coefficients in Equation (4.24). This submatrix is associated with the
translational vibration in x direction and when eé =0 it will form
the coefficient matrix of Cjj (3 = 1,2,3) , equations in which will be
uncoupled from the rest of the equations in Cij (i =2,3, j =1,2,3)

in Equation (4.27).
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Similarly, f, is the determinant of the central 3 x 3 diag-
onal submatrix in Equation (4.27) and is associated with the translaﬁional
vibration in the y- direction of the shear beam. When the setback is
such that ei = 0, the equation fo(w') = O is the frequency equation
of the uncoupled translational vibration in the y direction.

Finally, f3(w') , Which is in a slightly different form than
bfl or fpo , is the determinant of the lowermost 3 x 3 diagonal subma-
trix in Equation (4.27). It refers to the torsional vibration of the shear
beam about a vertical axis. When both ei and eé are equal to zero, the
equation f3(w') = 0 1is the frequency equation of the uncoupled torsional
vibration of the shear beam.

The zeroes of f(w') , Equation (4.28), are found by linear
interpolation. There are cases of repeated frequencies for specific pro-
perties of the shear beam even when ei and eé are not equal to zero.
In the computer program written for locating the frequencies of the unsym-
metrically stepped shear beam, provision was not made for spotting repeat-
ed frequencies. Only one case of repeated frequency, of multiplicity
two, was found in the results presented in this report, The details of
this case are mentioned later. Suspicion of two missing modes in results
obtained from the above program led to a detailed check of this particu-
lar case, and repeated frequency was confirmed by the behavior of f(w')

at the value of ®' equal to the repeated frequency (viz. f = O and
df__o)

do'

Evaluation of Coefficients Cijk

Equation (4.27) can be solved for Ci3k (i, = 1,2,3) when

w' = wﬁ for which the determinant of the coefficients is zero in the
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following manner for the general unsymmetric case (e £ 0, e} £0) .
First of all it is noted that Equations (4.27) being a linear homogene-
ous set, only the relative values of Cijk can be determined. The
case of repeated frequency is assumed not to occur. (This case is
considered later,) A normalization process is used to assign a unique
numerical value to each of the Cijk's' To this end let

iy w4

¢ék(ﬂ) = CéEk cos —EE + C33k sin —EE =1 (k.32)

assuming that ¢ék(l) #£ 0 where ¢ék = ¢3k ‘\[Ag , see Equation (L4.26)).

Then the first of the last three equations in Equation (4.27) leads to

— Dy

032k = cos Eg (4.33a)
and

. v

C33k = sin —E; . (4.33Db)

The second of the last three equations in Equation (4.29) then yields

c' = cos wﬁ(l—p)/ot if sin f&g £0. (4.33¢c)
31k sin w&p/d 0y

]
If sin kP _ g , then it is clear from Equation (4.27) that
0
b
the mode will consist only of the rotational components the other two
translational components vanishing, i.e., Cljk = C2jk =0, J=1,2,3.

Thus, the last equation of Equation (4.27) would then give

. dy sin ay(1-p)/oy (b 330)
3k gycos @ /oy, .
WP

%y

Assuming that sin # O, the first three equations and the

middle three equations of Equation (4.27) can be solved, respectively, for
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Cij and Cogp (j = 1,2,3) by means of Craemer's Rule:
1
D
_ bl %k . _
Clyp = {e2 C31x Sin o C sin @y (1 p)}/fl
P
| % <
Ciop = {eé C3lk sin o cos Wy COS wﬁjp}/fl
_ - . WP N \
Cl3k = {e C31k sin o sin ay cos wp p}/fl
and
1
. WxP . ﬂﬁ;gl_Ez
= - ! 3
Cope = {el Cly sin — ¢ sin +/ o
b 7
op PO Ok P
C = =-3e! C! sin cos cos f
22k { 1 31k oy, y _ y }/ 2
' [ . Cl)l'{ Zp . ('D]:'C (Dl'{ P
023k = - {el C31k sin sin cos }/f2
Oy, 4 Y

(%.34)

(4.35)

If £, =0, then the mode shape consists only of the x-trans-

lational component and the

if

In

be

as

fo = 0, the mode shape

other two components are absent.

Similarly,

consists only of y-translational component.

such cases the sets of first three or the second three equations can

solved for Cljk or Cij (3 = 1,2,3),respectively in the same manner

was done for C3jk above,

In the case when ¢§k(£> = 0, it is clear from Equation (L4.15b)

and the boundary condition V3(£) = 0 (which means ¢é Z(l)
J

Arbitrary value may then be assigned to Cé

(4.32) may be solved for this value of C!

CI
32k

Cl
33k

31k °

. 0) that

(4.36)

" and Equations (4.31) and
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The above procedure of computing Cijk does not take account
of all the possible special cases that may arise, For example, the case
of repeated frequencies mentioned earlier is not accounted for in this
procedure., The case of isotropic (72 = 1) shear beam with unsymmetric
setback was mentioned in the Appendix. Since such a beam has a (vertical)
plane of dynamic symmétric passing through the centroids of the tower and
the base portions it can be treated as a beam with setback unsymmetric
about one axis by appropiately rotating the x and y axes. This case
is also not accounted for in the above procedure except when either ei
or eé is zero,

In the case of repeated frequencies there are as many associated
linearly independent modes as the multiplicity of the repeated frequency
(for the type of problem under consideration). The coefficients Cijk
may then be evaluated as follows. A number of coefficients equal to the
multiplicity of the frequency are assigned arbitrary values and Equation
(4.27) is solved for the remaining coefficients. The number of linearly
independent sets of arbitrary values that may be assigned to the chosen
coefficients is equal to the multiplicity of the frequency. BEquation
(4.,27) can therefore be solved for cach of the set of arbitrary values
of the chosen coefficients. Thus there will be as many linearly inde-
pendent sets of coefficients Cjjk satisfying Equation (4.,27) for the
repeated frequency as the multiplicity of the frequency. Care is needed
in choosing the coefficients to be assigned arbitrary values in that
they should not be vanishing for all the modes of the repeated frequency.

Modes thus obtained will be orthogonal with respect to the
modes of other frequencies of the beam, but they are not neccessarily

mutually orthogonal. However, since any linear combination of the modes
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belonging to a single frequency is also a mode of that frequency, a
mutually orthogonal set may be easily found by appropriate linear com-
bination of the computed modes.

The above procedure was used in evaluating Cijk's by hand

computation for the particular case of repeated frequency encountered,

Parameters of the Problem

The parameters involved in the problem of coupled lateral tor-
sional vibrations of the shear beam with unsymmetric setback then are:

D, C, Oy, O,y 72, ef, and e} ; 0% and c% may be considered as para-
meters in place of Qyf and Ot , although they are also dependent on
¥2 , see Equation (4.18).

The number of parameters involved in the problem makes a com-
plete study of it unfeasible. All the same,the range of possible varia-
tion of each of the parameters is discussed below. Later on,the restricted
range for which the problem is studied is outlined,

The quantities p and c¢ are, respectively, the level and

degree of gsetback and were first defined in Chapter III by Equations

(3.20) and (3.24). Their ranges are:

0<p< 1 (4.37)
and

0<c< 1 (4.38)

with p =0, p =1, and ¢ = 1 representing uniform beams.
The ratio of the lengths of sides of the beam cross-section, Q ,
can take on any positive value. In reality,though,buildings (with rec-

tangular cross-sections) are restricted to a much smaller range around
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=1 . The subscripts t and b of « denote the tower and base
portions, respectively. For a given c¢ and 0 the range of 0oy
is restricted to

Cop < A < Gp/e . (4.39)

The quantities e and ep are the offsets of the tower centroid from
the base centroid along the x and y axes,respectively; ei B eé
are in nondimensionalized form, see Equation (4.25). For given c ,

Qps and 04, e] and eg are restricted within the range:
0< el < 12 (/o + Afe/oy) (4.40)
o< |el s 12 (o +qfa) . (b.41)

The frequencies of the shear beam with unsymmetric setback are
dependent only on the arithmetical value of ei and eé and are inde-
pendent of their signs as is apparent from Equation (4.25). Also, as can
be verified from Equations (4.30), (4.31), and (4.32), a change in sign
in ei and/or eé will change the signs of one or two components of
the mode shapes with respect to its third component but otherwise will
not affect the mode shape., Since this will not affect the numerical
value of any of the maximum responses of the beam the variation of e
and eé will be restricted to positive values within the range prescribed
by Equations (4.40) and (4.41).

The ratio 72 of the lateral stiffnesses in the y-direction to
that in the x-~direction can take on all positive values. Again,in real

structures the value of 72

would be restricted to a much smaller range
around the value 72 =1 ., For example, consider a structure with steel

columns providing the main lateral resistance. The commonly used sections



-138-

for columns in multi-storied buildings are 14 x 16 and 1Lk x 14i W
sections. The ratio of moment of inertia about the weak axis to that
about the strong axis of such sections is around .36 to .39. If the
lateral stiffness is assumed to be proportional to the moment of in-
ertia values of the columns, then 72 would be around .36 to .39 if
all the columns are arranged with their strong axis parallel to the x
axis (of the structure); if the columns are arranged to have their weak
axis parallel to the x axis, 72 would be around 2.56 to 2.78. If
the arrangement is such that alternating columns in a row have their
strong (or weak) axis parallel to a axis of the structure,the value
of 72 would tend to be more nearly around 1.

Finally, it may be of some interest to note that for a given

72 , the range of o will be

1<o0 <92 2 <1
=1 72 = 1 (4.42)
1>g > 9° ¥ > 1

The actual value of ¢ within this range depends on the value of ¢ (viz.

@ - w, @—-0), except when 7° = 1,

Shear Beam With Setback Unsymmetric About One Axis

The investigation here is restricted to the study of the proper-
ties of the coupled vibrations of a shear beam with setback unsymmetric
about one axis only. It is assumed for this purpose here that the set-
back is symmetric about the y axis, i.e. ei = 0 . The translational

vibrations in the x direction and the torsional vibrations will be

coupled and these will be the subject of the present investigation. The
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translational vibrations in the y direction will remain uncoupled.
The effect of setback on uncoupled translational vibrations was examined
in Chapter III.

In this section the phrase "translational vibrations", unless
otherwise qualified, will hereinafter be assumed to mean the translational
vibration in the x direction,

The study is further restricted to a shear beam with a fixed

degree and level of setback,
c=.25, p=.6, (4.43a)
and with a square cross-section in the base as well as the tower portion,
op = Qg =1, (4.43b)

see Figure 4.1,

When ei = 0 the frequency equation of the coupled vibrations,

Equation (4.28), can be separated into two independent equations:

X e V(7
£ (w') = flf3 - ce2'2 sin L8 cos & (1-p) cos LB sin w'(1-p) _ 0
13 op Oy oy, ot
(4Ll

and

fo(w') = 0 . (4.45)

The latter equation refers to the translational vibrations in the ¥y
directions and is of no interest here. Equation (4.44) is the frequency
equation of coupled vibrations consisting of translational vibration in

the x direction and the torsional vibration,.
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Figure 4.1. Shear Beam with Setback Unsymmetric About

x-Axis and Dimensions Assumed Fixed.
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The two components of the coupled mode shape are still given
by Equation (4.15) with i =1 and 3. The coefficients Cij(i=1,3; j=1,2,3)

of the coupled mode shape are given by Eguations (4.33) and (L.34).

Uncoupled Translational and Rotational Mode Periods

When eé is also equal to zero the translational vibration in
the x direction and the torsional vibration are uncoupled from each

other and their natural frequencies are then given by Equations (4.29) and

(4.31), respectively. It may be observed from Equation (4.18) that

0, = Og when O = 04 . (4.46)

Having chosen ) and oy such that o = «, from Equation (4.21)
and (L.46) one gets

dy = cfq, . (.27

The frequency equation for the torsional vibration, Equation (4.31), may

then be transformed to

c® sin %?R sin w'(}- - cos OB cog @ (1-p) - o ) (4.48)
o o

The similarity between the frequency equations for the uncoupled
torsional vibration when Qy, = Oy and the uncoupled translational vibra-
tion, Equation (4.29), should be noted, Figure 3.2 shows the effect of
varying the degree and the level of setback on the translational mode
Periods, The same figure represents the variation of the torsional mode
periods if the abscissa and the ordinate axis represent, respectively,

c2 and T'o .
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For fixed p and c¢ and with O, = 0y = 0 , the natural
periods (non-dimensionalized as in Equation (4.24)) of the torsional
vibration are thus proportional to 1/o . The variation in the first
five uncoupled torsional and the translational mode periods with 1/0
is shown in Figure 4.2, The translational mode periods are, of course,
independent of o .

For convenience a new notation for the modes as used in Figure
4.2 is introduced here. In this notation (viz. T:j or R:j), the letters
T and R refer to the translational and the torsional modes, respective-
ly, and the numeral Jj indicates the mode number in the individual group
of modes,

The following observations may be made from Figure 4.2, If for
a given value of ¢ the two groups of modes are combined together and then
numbered according to the ascending order of their frequencies, then the
same torsional (or translational) mode may be numbered differently for
different values of o . This is the main reason for denoting the modes
by the convention described in the previous paragraph. Furthermore, thus
numbered the modes are not always alternately translational and torsional.
Also, there are several values of ¢ at which a torsional mode period is
equal to a translational mode period,

For the already chosen values of ¢ , & , and Oy , (Bquation

43 e range of variation o e 1s given by (see Bquation . :
(4.43)), th f iat] f e} is gi by ( Equati b.41))

o<le <5 . (4.49)
As stated before, since the sign of ej does not affect the results numeri-

cally, the variation of eé will be restricted positive values within the

above range, see Figure k4.1.
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Mode Periods, Shear Beam.
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The effect of varying eé on the coupled mode properties of
the beam chosen to be studied will be examined next. This effect will

. . ) . k3 kg
be studied for a few different values of o2 (i.e. the ratio ﬁ§//ﬁT ) .

Since ¢, and O are already fixed, o will be varied by varying
52 , see Equation (4.18).

Earliey while discussing the range of the parameter 72, it
was mentioned that for a building using steel columns of 14 x 16 and
14 x 143 WF  sections the value of 72 could possibly range between
.36 and 2.78. Values of a2 corresponding to these two values of 72 s
as well as that corresponding to 72 = 1 are chosen for study. Another
value, 72 = .5, is also included in the study.. The significance of

2 g explained in the following paragraphs. The value

this value of vy
of @2 equivalent to the chosen values of 72 and for fixed o4, and

o (op =t = 1) are given in Table IV.1

TABLE IV.1

EQUIVALENT VALUES OF ¢2 AND 92 , SHEAR BEAM

o .36 .5 1| 2.78

e .68 750 1] 1.8

An interesting problem in the case of coupled lateral torsional
vibrations of buildings is the one that arises when a building has a tor-
sional mode period equal to a translational mode period. If slight un-
balance is introduced in such a building, there well be severe twisting
in these two modes (which are now of the coupled type) when the building
is subjected to translational ground motions. However, unless damping

in the two mcdes is very low, the true combined rotations or torsional
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forces of the two modes will not be large as would be suggested by the
RSS combination of the maximum responses of the two modes or byvtheir
absolute sum.(7)

This problem has been investigated by Skinner 23,2£(7) for
buildings where dynamic asymmetry is due to eccentricity befween the
center of rigidity and the center of mass. Even though the asymmetry
is assumed to be due to different conditions in the case of buildings
with setback, a similar behavior is also observed in this case as will
be seen later, To this end the value 72 = ,5, for which, as may be
observed from Figure 4.2, the first mode torsional and the first mode

translational periods are almost equal, is also included in the present

study.

Periods

The effect of varying eé on first several mode pericds of a
shear beam with other properties given by Equation (L4.43) is shown . in
Figure 4.3. The modes are identified by the notation introduced in Fig-
ure 4,2 for the uncoupled (translational and torsional) modes. The kth
coupled mode is identified by the same nétation as used for the kth mode
in the combined set of uncoupled translational and torsional modes for
the beam with otherwise (i.e. other than eé) identical properties. For
example, in Figure 4.2 the first mode of the combined uncoupled modes
for 72 = 2,78 is T:1. The first mode of the corresponding coupled

modes is also called T:1. Thus the first mode is T:1 for 72 = 2,78

and 72 =1, and R:1 for 7° = .5 and .36.
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Figure 4.3. Coupled Mode Periods, Shear Beam.
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The modes R:1 through R:4 and T:1 through T:4 constitute the
first eight coupled modes of the shear beam except for the T:4 and R:L
modes ofy? = .36 and 2.78, respectively. For 72 = .36 , the T:4 mode
is the ninth mode whereas the eighth mode is the R:5 mode. - Simllarly

for 72 = 2,78, the R:k mode is the ninth mode and T:5 is the eighth

mode,

The following observations may be made from Figure 4.3. The
first mode (i.e. R:1 mode for the cases 72 = .36 and .5 and T:1 mode
for 72 =1 and 2.78, see Figure 4.2) period always increases with in-

creasing eccentricity regardless of the value of 72 . In the higher
modes, changes (i.e. increase or decrease) in periods with increasing
eé are monotonic.

Changes in higher mode periods (i.e. in T:j or R:j mode, > 2)
are, in general, small compared to the changes in T:1 or R:1 mode periods.
However, for some cases of 72 (e.g. ¥2 = 2,78) the changes in periods
in some of the higher translational (T) modes are equal to or greater
than those in the T:1 mode on a percentage basis.

Such changes in periods as do occur over the entire range of
eé are in general very small compared to those occuring in the uncoupled
mode periods over the entire range of ¢ (Figure 3.2) or o (Figure 4.2).

The T:1 and R:1 mode periods for 72 = .5 in the uncoupled case
(i.e. when e} = 0) are almost equal, see Figure 4.2, Tt may be observed
in Figure 4.3 that the changes in T:1 and R:1 mode periods with es for
this case (72 = .5) occur at a higher rate than for other cases especially

for smaller values of eé . Also, the total changes in these mode periods

for 72 = .5 are greater than the rest.
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The third translational (T:3) mode period remains constant

with el for all values of ¥2 ., The third torsional (R:3) mode
period for the case 72 = 1 which is identically equal to the T:3
mode period also remains constant with varying ed . Thus the T:3
and the R:3 mode frequency for the case 72 = 1 1is a repeated frequency

of multiplicity two regardless of the value e5 for the shear beam with

other properties given in Equation (4.43).

Mode Shapes

The component mode shapes of the coupled modes are given by
Equation (4.15) with i = 1,3 , and the coefficients Cij(i=l,2; j=1,2,3) are
given by Equations (4.33) and (4.34). The translation component ¢l(z)
is the displacement of the centroid along the x direction. The trans-
lational component ¢1(z) thus represents the displacements of two non-
coincidental vertical lines in the two parts, the tower and the base por-
tions, of the structure. This presents some difficulty in representing
the translational component in two-dimensional form, Here therefore the
translational component is instead represented by the displacements along
a single vertical line, passing through the tower centroid, for the entire
height of the beam, The torsional component ¢é as modified by Equation
(h.26). (¢é = ¢3~W/E£), gives Ap times the rotation of the cross-section
at z and of course is constant for the section. No modification is
thus needed for the torsional component.

The first two mode shapes of each type (i.e. of T:1, T:2, R:1
énd R:2) of modes aregiven in Figure 4.4 for the case 72 =1 showing the
effect of e5 . The mode shapes are normalized by making either ¢lk(£)

or ¢ék(£) equal to unity depending on whether the mode was originally
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(i.e. at eé = 0) purely translational or torsional mode, respectively,
i.e. in the T modes the normalization is ¢1k(£) = 1, and in the R modes
it is ¢'3k(/z) = 1.
The effect of increasing e on the mode shapes is to increase
that component (numerically) which is absent at e} = O relative to the

2

component which constitutes the mode at eé =0 . Similar effect is ob-
served in the higher modes and also modes of the same beam with different
values of 72 .

However, in the R:1 and T:1 modes for 72 = .5 having almost
equal periods at e} =0 , the component originally (i.e. at eé = 0)

absent increases sharply relative to the other component for small values
of e} (upto about e} = .05) and then increases further at a much slower
rate with further increase in eé . These modes are shown in Figure L.5.
The T:3 and R:3 modes for the case 72 = 1 have identical fre-
quencies for’all values of eé . The method of determining the coefficients
cijk for the two mode shapes for this repeated frequency has been already
explained. These two mode shapes are also shown in Figure 4,5. Any linear
combination of the two mode shapes will again be a mode shape correspond-
ing to the repeated frequency. The mode shapes as given in Figure 4,5 are
mutually orthogonal. One of the two modes has zero torsional component
and is therefore denoted as the T:3 mode, and the other mode which has a
relatively small translational component is termed the R:3 mode.
The T:3 and R:3 mode shapes for the case 72 = 1, computed as
mentioned above show very little or no coupling even though they have
equal periods. It is apparent that this is an exception to the general
rule of a high degree of coupling from small values of eé when a pair of

T and R mode periods are equal or very close at e5=0, as was observed here

earlier in the case of T:1 and R:1 mode for 72=.5 and as has been observed

by others‘,(7>
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Kinks form in both components of the mode shapes at the setback
level, The T:3 and R:3 modes for 72 = 1 are exceptions. As observed in
Chapter III, the kinks are caused by the existence of sharp setback (i.e.
small c¢). The kink in the purely torsional modes (i.e. in the R modes
at eé = 0) is usually somewhat sharper than in the corresponding purely
translational modes. This is to be expected since the effect of setback
felt on the torsional modes is proportional to c? (assuming 0 and Oy

to remain constant), whereas in the case of translational mode it is pro-

portional to c¢(0 <c <1).

Coupling

In a torsional (R) mode, the ratio ¢lk(z)/¢ék(z),or its inverse
in a translational mode,may be termed the degree of coupling at height z.
The value of this ratio varies with z unless og = q3/ql = o% = 53/5l =1,
see Equation (4.15). The mode shapes in Figures 4.4 and 4.5 show indi-
rectly the degree of coupling, and the effect of eb on it, over the entire
height of the beam., More direct and quantitative information about the
effect of eé on the degree of coupling may be obtained by plotting the
value of the ratio ¢Lk(z)/¢ék(z), or its inverse, for a constant z as a
function of e}. Figure 4.6 shows the effect of el on the ratios ¢1(£)/¢é(£)
for the modes R:1 through R:4 and on the ratios ¢é(£)/¢l(£) for the modes
T:1 through T:4. As noted earlier, these modes constitute the first
eight modes except for the cases 72 = .36 and 2.78. ,The following ob-
servations may be made from Figure 4.6,

The ratios of modal rotations and displacements at the top of

the beam invariably increase (numerically) with el starting from zero

at eé = 0 ., Generally, this increase is either linear or is such that
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the rate of increase decreases with increasing eé . The effect of change
in 72 (or ¢2) is not uniform. However, for those pairs (consisting of
one R and one T modes) having equal or almost equal periods at eé = 0,
there i1s a sharp rise in the numerical value of the ratio for very small
values of eé and then a slow increase in the rest of the range of eé .
Examples are the T:1 and R:1 modes for 72 = .5, the T:4 and R:5 (not
shown here) modes also for 72 = .5, In generél, the closer the periods
of such pairs of modes the sharper the increase in the value of the ratio
for very small values of e5 . For modes with sufficiently close periods
a decrease in the ratio value may possibly be observed beyond small values
of eé .

The T:3 mode in which the torsional component remains zero and
in which, as observed earlier, the period does not change for all values
of 72 , 1s an exception. Any torsional mode having a period close or
equal to that of T:3, at e} = 0 (e.g. R:3 mode of y2 = 1), shows vir-
tually no variation in period (no variation in the case of ¥e = 1, see
Figure 4.3), and the coupling in this mode, though it exists, proves also
to be an exception to the observation made above,

In general, if similar ratios of displacements and rotations

at other points (of height) of the beam were drawn a similar behavior

would be observed.,

Base Shear and Base Torque

Next, the effect of unsymmetric setback on two modal quantities
which are more directly connected to the earthquake responses used for
design purposes will be examined. These are the modal base shear and base
torque coefficients when the beam is subjected to a static one g trans-

lational acceleration., When these quantities are multiplied by the maximum
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absolute acceleration (in g wunits) attained by a single-degree-of-freedom
system with the same frequency and damping when subjected to a ground acceler-
ation, they will give the corresponding modal responses of the structure
to that ground acceleration.

The effect of symmetric setback on base shear in the uncoupled
translational mode was examined in a similar manner in Chapter III.

When the beam is subjected to ground excitation, the kth modal

base shear coefficient (in the x direction) is given by
C]_Bk = :»--—_-————-—O z ‘ (ﬁk + }\:L‘K ;}&Ol + %Qk 5*()2)/g ‘. (LI-°50)

Since the y-translational vibrations are not coupled with the x-transla-
tional and the rotational vibrations, in the latter coupled modes the
modal participation factor in the y direction Mg will be equal to

zero, see Egquation (4.11). Then, the modal displacement M Will be

given by
.- . 2 .
M + 2Bkt W Mk = - Mk Xo1 - (4.51)
Equation (4.50) may then be rewritten as
b4
[ m Py az . )
Cigg = Mk =—— (& +¥,)/e (k.52)
[ mdz
o
where Ek is given by
E o+ 2 £+ P = - X ] .
Byt RS % o1 (+.53)
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Because of the linearity of the systems (4.51) and (4.53)
Me = M & - (4.54)

The gquantity ék is also the response of a linear single degree-of-freedom
oscillator having the same frequency and damping as the kth coupled mode
of the shear beam to a ground acceleration of i01 .

Base torque in the kth mode may be similarly shown to be
2 ) 3 ‘

The = Mk (f m3¢3k dz - ep £ my @y dz)- (Eg + X51) . (k.55)
¢

It may be noted that the torque produced by the inertial lateral forces
(in the x direction) of the tower portion is accounted for in Equation
(.55).

To obtain a non~dimensional quantity corresponding to the base
torque, which may be termed "base torque coefficient", several different
alternatives are possible, e.g.:

)
a) s/ [ mgr dz
o

1
b) TB/(f ‘mEe dz "‘\/—A—]g ) (4.56)

i
c) Ty /A / g mag dz

in which r is the radius of gyration of the cross-section and has dif-
ferent values in the base and the tower portion; and Ap = bybo 1is the
cross-sectional area in the base portion.

Non-dimensionalisation of the type a.) was used by Skinner et al
in their paper on unbalanced (i.e. dynamically unsymmetric) one-story
building under earthquake forces.(7) However, due to its direct similarity

with the non-dimensionalisation used for base shear, type c) is used here.
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Thus the base torque coefficient is defined as

y) )
é m3@3rdz - esfy, my @ xdz

C3Bk = }\.lk . (E’,k + .}&Ol)/g : (4.57)

L
L [ m3dz
w/AB 0
The non-dimensional parts of the base shear and base torque

coefficients on the right hand side in Equations (4.52) and (4.57),

that are independent of ground acceleration are:

1
é m,f1xdz ) eg
Clge = Mk © T (+-58)
f mld.Z
o
and / 1
L g myf3xdz - ep Iy m,@1xdz (h.59)
3Bk 1k 7 °
1 f mydz
VAB o]
Cin and CéBk are the base shear and torque coefficients in the kth
mode of the shear beam subjected to static one g translational accelera-
tion.(26)

Formulae for Ay , which is given by Equation (4.11) with

= 4 1 a !
g,=0 , an iy and C4

Equations (4.15) for i =1, 3:

, may be derived in terms of Cij by using

(4.60)

31k
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C
cr. o= A 11k (4.61)
1Bk Yo [p + (1-p)e]
and
G . op © C31x
C3Bk = Ay (4,62)
o' [p+ (l-p)cgl
where
2
Cg _c (o + l/at) _ m3(h <z < 1) ) (14.63)

(o + 1/y) m3(O <z <h)

It is interesting to note that e, does not appear explicitly
in Equation (4.62) although it does in Equation (4.59). It should be
noted that although the value of Ay , as given by Equation (4.60), will
depend on the manner in which the mode shape is normalised, the values
of Cip and CéB as given by Equations (4.61) and (4.62) do not depend
on it,

The base shears Cin and base torque CéBk are given in
Figures 4.7 and 4.8, respectively, as functions of e} for the chosen
values of 72 . This is done for the eight modes: R:1 through R:4 and
T:1 through T:4., Again, as noted earlier these modes constitute the
first eight modes except for the cases 72 = ,36 and 72 = 2,78,

In the torsional (R) modes the base shears increase from
zero to some finite value as e} varies from zero to its maximum pos-
sible value (i.e. e} = .25). In the translational mode base shear
decreases from some finite value at eé = 0 (values which are obtain~-
able from Figure 3,5 in Chapter III for p = .6 and c = ,25), to

some other finite value as eé increases, The sign of Cin is the

same in all modes,
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The antisymmetry between the increase in base shear in the R:1
mode and its decrease in the T:1 mode;especially for the cases 72 = .36,
.5 and 1, is striking. For these cases,the sum of the Cin in the two
modes remains almost constant (equal to CiB (eé = 0) value of T:1 mode)
for all values of eb ; the closer the periods of T:1 and R:1 modes at
e5 = O the closer the sum remains to the original,

In the higher modes the base shears are considerably smaller.

The change in the ordinate scale for these modes in Figure 4.7

(Clg) 7
should be noted. The behavior noted above in the T:1 and R:1 modes does
not seem to hold well in the higher modes.

In Chapter III it was found that for beams with p < .5 and small
values of c¢, higher modes contribute significantly to the total base
shear, Here of course the values in Figure 4.7 are for a beam with p = .6
and ¢ = .25 ., For beams with p < .5 and c¢ quite small, base shear in
some of the higher modes can be expectedAto be as high or higher than in
the first two (T:1 and R:1) modes. The behavior of such higher modes
in such cases may be expected to be similar to the behavior of T:1 and
R:1 modes observed for the beam considered here,

There is no change in base shear in the T:3 mode which, as
noted before, remains purely translational with no change in period.

For the case 72 = .5 , whose T:1 and R:1 mode periods at
eé = 0 are almost equal, the base shear increases sharply for small
values of e} (say eé < ,05) in the R:1 mode and decreases sharply by
almost equivalent amounts in the T:1 mode. With further increase in
eé it decreases slowly in the R:1 mode and increases by almost equal

amounts in the T:1 mode,
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The kth mode base shear coefficient in a beam subjected to ground

acceleration is given by Equation (Lk.52), i.e.
Cipe = Cipy ° (B, + %1)/8 . (4.64)

At small values of eé the periods of the T:1 and R:1 modes forthe case72=.5
are still quite close. The modal accelerations in the two modes in response

to ground acceleration X will have almost equal maximum values and will

o1
reach these values at almost the same time if damping is not very lowo(7)
The maximum value of the combined base shear of the two modes will there-
fore be almost equal to the algebraic sum of the maximum value of base
shear in each mode (obtained by using Equation (4.52))., Now it may be
assumed that the maximum value of acceleration (gk + §Ol) achieved by
system (4.53) responding to a given ground acceleration %y, does not
change much with small changes in periods. If the contributions to the
total base shear of the higher modes are neglected it may be concluded
that the base shear of the beam under consideration (with 72 = .,5) will
not change much, from its value in the symmetric case, with the introduc-
tion of small asymmetry when subjected té the same ground acceleration.
At el = 0, base torque in both the torsional and translational

2

modes is zero; in the case of former because kl = 0 and in the case of

latter bacause ¢3 =0 ., As eé increases base torque increases in all
modes, in magnitude (Figure L.5).
The signs of CéBk in the R:1 and T:1 modes are opposite to

each other, In higher modes such pairing of consecutive modes in terms

of opposite signs for base torque is not always possible.
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As in the case of base shear, there 1s some antisymmetric
similarity of the plots of base torque in the R:1 and T:1 modes. How=-

ever this is not as precise as in the case of base shear. Only for

7 = .5 for very small values of e} (say e} < .05) does the (alge-
braic) sum of CéBk in R:1 and T:1 add up to that at eé = 0 (which is
zero),

The increase in C! with increasing e5 1s either linear

3Bk

or it is such that the rate of increase diminishes with increasing eé .
The T:1 mode is an exception where CéB actually decreases with eé
beyond (roughly) eé = ,05 .

Base torque in higher modes (T:j , R:j , J >2) is quite
small compared to that in the first two modes (T:1 and R:1) for the
beam considered here, i.e,, for p = .6 and c = .25 , For beams with
other values of p and c (as well as o and oy ) some of the higher
modes may be as important or more so. By analogy with the behavior of
base shear CiB this may be expected to happen for beams with p < .5
and small c¢ .,

For the case 72 = ,5 periods of T:1l and R:1 modes are very
close to each other for small values of e (say e} < L05) . CéB in
the two modes increase (numerically) very sharply for small values of

eé . However, the values of C!_ 1in the two modes are then almost

18

equal and opposite., The kth mode base torque coefficient in the beam

subjected to ground acceleration is given by Eguation (4057),viz,

C3mk = Capg (5, + %p)/e . (k.65)
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Since the periods of the two modes are close the maximum base torque
due to the two modes combined will be very nearly equal to the alge-
braic sum of maximum base torque CéB in the two modes, which is to
say that it will be very small numerically.

The overall impression one may gather from Figure 4.8 is
that when the beam is subjected to some ground acceleration the base
torque will increase with increasing e! and probably its rate of in-

2

crease will itself diminish with increasing eé o

SHEAR BUILDING

The effect of unsymmetric setbacks on the dynamic behavior
of a shear beam was studied in the previous section. As in the case
of Chapter III on the effect of symmetric setbacks, a similar study
with the multi-mass shear building model will be presented in this sec-
tion,

Equations of motions of a multi-story building using a multi-
mass model and their solution were developed and presented in Chapter
IT., Mass is assumed to be concentrated at floor levels with massless
springs connecting them with each other and with the ground. Further
as in Chapter III, buildings are assumed to be simply coupled in stiff-
ness, i.e,, they are "shear buildings". This assumption was discussed

in Chapter TITT,

Some Further Assumptions

Principal directions of structures are assumed to exist as
mentioned in Chapter II, Furthermore, it i1s assumed here that in each

part of the structure (i.e. the tower and the base portions) separately
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the stiffness and mass are distributed symmetrically about two mutually
perpendicular planes; i.e., the tower and the base portions are each
assumed to be dynamically symmetric in themselves.

The building is assumed to be rectangular in plan in both por-
tions and the plane of dynamic symmetry in each portion is assumed to be
coincidental with the corresponding plane of geometric symmetry.

Putting it simply, the centers of mass and the centers of resis-
tance above the setback level are assumed to fall on a single vertical
axls through the geometric centroid; and the same 1s true for the centers
of mass and centers of resistance below the setback level.

It should be observed here that such an assumption presumes
simple coupling in stiffness, The statement about centers of resistance
above or below some level would otherwise be meaningless.

With the above assumption,; the structure is dynamically unsym-
metric due only to the geometric asymmetry of setback. Thus, as in the
case of the shear beam, the parameters representing dynamic asymmetry
are e and eo , the offsets between the tower and base centroids
along the x and y directions respectively., The x and y direc-
tions are of course chosen to be parallel to the planes of dynamic sym-

metry in each part of the structure,

Idealised Structural Properties

The distributions of mass my and lateral stiffness (in the
x direction) kxi over the height for an N-story building with a set-
back of degree c¢ above the Pth story were idealised in Chapter III,
Equations (3.61) and (3.62), This idealization is assumed to hold here

also, Further, the distribution of lateral stiffness in the y direction,
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kyi , over the height is assumed to be similar to that of kxs; . This

can be expressed simply as
ky; = 7 kxg (4.66)

by analogy to a similar assumption in the case of the shear beam, see
Equation (A.4) in the Appendix.

The torsional stiffness of ith story, kos; , is defined here
as the second moment of the lateral stiffnesses (in both x and ¥y
directions) in the ith story about the vertical axis through the center
of resistance of that story. The lateral stiffnesses in the case of
the shear beam was assumed to be uniformly distributed over the plan
area, In buildings, the lateral stiffnesses are provided by such items
as columns and shear walls and are thus concentrated in points or lines
in the horizontal plane. Let p be the ratio of the second moment of
stiffness about the vertical as obtained from its actual distribution
(in plan) to that obtained by assuming it to be uniformly distributed
(in plan) over the story cross-section,

The torsional stiffness is also equal to the sum of the second
moment of lateral stiffnesses in the x direction about the x axis
and that of lateral stiffnesses in y direction about y axis. The
ratio p may have different values for the second moments of stiff-
nesses in the two directions, say p, and by o These ratios are
assumed to have constant values (“bx ) Py o Py “ty) for all stories
in each of the two parts of structure. The subscripts b and t re-

fer to base and tower portions, respectively. With this assumption
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the torsional stiffnesses are given by:

for 1<i<P

A
- 2 . B . kx.

and for P+ 1 < i < N

Ap

2 . .
kO; = (myyly + bgy 77/04) © o0 kg

In Equation (4.67), Ap = bibp 1is the plan area of the base por-
tion of the building, and AT = ajao that of the tower portion. As with
the shear beam, 4, and o4 are defined as the ratios of the plan dimen-

sions:

bo/by

%

(4.68)

In Chapter III,the values of the lumped masses were assumed to
be constant in each part of the structure, m, and my in tower and base
portion respectively, and their ratio ¢ = my/m, (Equation (3.17)) was
termed the degree of setback. In the case of the shear beam, ¢ also is
the ratio of tower cross-sectional area to base cross-sectional area (as
well as that of lateral stiffness in tower fo that in base), see Equation

(3.24), Here also it is assumed that

A Ap (4.69)

bybs Ag

This assumption along with the definition c = mt/mb implies
the assumption that the value of the lumped mass at a given floor level

is proportional to the floor plan area.
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Using Equation (4.k4),Equation (4.2) may be rewritten as
i

A
_ 2 . B,
ke; = (%Xab +‘%y7/%ﬂ 10 b% (4,70)
and for P+ 1 <i <N
2 CAB
KOy = by 0 + by 7/ 0) - - kxy

The (lumped) mass at floor levels is assumed to be uniformly
distributed over the floor plan area. Although the walls, columns,
partitions, etc., in the adjoining stories contribute to the value
of lumped mass, 1t consists substantially of the floor mass itself,
for which the above assumption may be approximately true. In any case,
by adjusting the values of the ratio p introduced in computation of
torsional stiffness, provision may be made for any significant varia-

tion from the above assumption of uniform distribution of mass. Thus,

for 1<i<?P

Ap
m@i = (Oﬁb -+ l/O{b) ° —_ e mi
12
and for P+ 1<1i<DN (4.71)
CAB
me;, = (o + 1/og) - = M

where m@i is the mass moment of inertia of the ith mass about the

vertical axis through its centroid.
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Equations of Motion

The equations of motion of an undamped N-story structure with
3N degrees of freedom, Equations (2.21) through (2.23), are derived in
Chapter II. Since principal directions are assumed to exist, direct
coupling between the two translational components vanishes and Equation
(2.24) follows. The equations of motion of the N-story structure then

become

[M,] {ﬁ} +  [Kyl {u} + (Kol {Q} = {fu<t)}
1 {v} o+ (K, ] {v} + [Kgl {o} = {fe(t)} (4.72)
] {8} + [Keu]{e} + [K@v]{v}+ [Ky] {9} = {fe(t)}

By introducing the following changes, Equation (4.72) is made

dimensionally homogeneous. Let

{w}p = {o} g (1.73)
eJ'- = ea/}mg ’ J=12 (474)
R L (4.75)
B
K, = [K]- X (4.76)
Ap
T 1
(Kl = (Kol = [Kgul * T (4.77)
B
(K = Kl = (KD L (4.78)

;;q

Introducing these changes in Equation (4.22), they may be rewritten as

) {a} + [k, {u} vr ] {wh = {e ()}
M, ] {v} + + [k, {v} + [K) v} = {£,(6)}  (%.79)
D {i} + [Kd {ub+ kv + 18,0 b = {g,(0)}
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Evaluation of Stiffness and Inertia Matrices

The inertia matrices [My] and [M,] are constructed from
m; values as per Equation (2.12). Equation (2.13) shows the relation
between the matrix [M@] and the me; values given by Equation (4,71).

From Equation (4.75) it follows that

MWi i = m@.’
’ * (4.80a)
Mwi,j = O i43
where
me! = m; /Ay - (4.80b)

The building is assumed to be simply coupled in stiffness,

Hence as in Chapter III, Equation (3.66), the matrix [K;] is given

by:
Kug,i40 = - 59
Kai, i = kxg + kxygq
’ i,j=1,2,... (4.81)
Koi,i41 = - KX L
Kaj,3 = 0 J>i+1,orj<i+l
Similarly,
Kri,i-1 = - kvy
Kry 4 = ky. + ky.+l
’ * * i,j=1,2,..N (L4.82)
i v = - Win

Kis - = 0 J>i+1,or j<i+ 1
1,y
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and

i,i‘l

1 1
Kwi,i = k@l + kei'l'l

i 1
except Kw kO, + KO ) + kxpy) eé2 + Kypy eie i,j=1,2.., (4.85)

p,D , ...
KWy 441 - k6,1
Kw:. s+ = 0 j>i+lor j<i-1
1sd
where ke, = k@i/AB

Finally, due to the assumptions made previously with regards to the loca-
tion of centers of mass, resistance, and geometry of the building the

coupling matrices [Kyw] and [Ky] may be shown to be given as follows

Kow. . = O
s
KV'Wl,J' = 0
except for i,j = 1,2,...N (4.84)
— - — - 1
Kuwp’p = Kuwp,p+l = e, kxp+l
Kvwp p = = KV¥ip,pr1 = €] Kpn

The matrices [Kwu] , [Kwv] are transpose of [Kuw] and [Kvw] , re-

spectively.

Parameters of the Problem

As in Chapter III, the study here will be restricted to build-
ings with N=15 as a typical case., The quantities kxj and m; are
computed from Equations (3.61) and (3.62). They depend on the values
chosen for Akx , kxy and m , In Chapter III,the values of Akx/kxﬁ

and kxﬁ/m were chosen, respectively, to be 1/3_ and 1.5g where g
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is the acceleration due to gravity. These same values for the two quan-
tities will be used in this chapter also.

Among the other parameters, then, are p(= P/N), c, o4, o4, 72
ei s eé as well as Hpx 7 Hpy » My “ty . The former group of param=-
eters are identical to those obtained for shear beams. The remarks made
about them in the section on the shear beam applies equally here except
that p can take on only finite number of values within its range.

The term p was defined earlier as the ratio of the second mo-
ment of stiffness about the vertical axis through its centre of resistance
as obtained from actual distribution to that obtained with the assumption
of uniform distribution over the story cross-section. Since torsional
stiffness may be divided into two parts, one obtained from lateral stiff-
ness in the x direction and the other from lateral stiffness in the y
direction, one may alternately define By and By > respectively, refer-
ring to the two parts,

The range of p, and may be easily shown to be
X Hy

0<u<3 . (4.85)

When the stiffness is all lumped at the center of resistance there will

be zero (actual) torsional stiffness and p will be zero. When all the
stiffness is distributed at the extremeties of the floor plan the value

of p will be 3.

2 was defined in the previous section as the ratio

The term o
k3 ky
ﬁ;/'ﬁ— ; in general it has different values in the two portions of the
1

beam. For shear building, a similar quantity may be defined:

o2 = WO5 kg (4.86)

17w /oy
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Noting the definitions of k6; and me;  from Equations (4.70) and
(4.71), it is apparent that c? has a constant value for each of the two

parts of the structure., One may then write:

2 _ (beab + “'bv72/ab)

%
(o4, + 1/cy)
and ’ (4.87)
Ui i _Futxaa + Ugy? o)
(o + /o)

where the subscripts b and t stand for the base portion and the tower
portion respectively.

The similarity between Equations (4.18) and (4.87) may be noted.
The only difference between the two equations is the addition of the u
terms in Equation (4.87) to provide for the non-uniform distribution of
stiffness in the case of shear building.

G% and o% may be conveniently considered to be the parameters
in place of Gy 5 O 5 Hpy 5 oy 2 By o and “ty . The advantage in con-
sidering the latter group of parameters, however, is that they provide

a more direct applicability to real problems.

The range of @ for a given value of 72 is

o
IN
'_.l

0 < 02 < 3 7
(4.88)
o > 02 > 372 72 > 1

For a given 72 , the value of 02 depends on the values of Moy and

e shown by

by as well as « . The difference between the range of ¢
Equation (4.39) and (4.88) should be noted. It is due to introduction

of the terms py and py in Equation (4.87).
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Shear Building'With Setback Symmetric About One Axis

As in the case of shear beam in previous section the investi~
gation will be restricted mainly to coupled vibrations of buildings with
setback unsymmetric about one axis only. To this end the. setback will
be assumed to be symmetric about the y axis, i.e. ei =0 , The trans-
lational vibration in the y direction will then be uncoupled from the
translational vibration in the x direction and the torsional vibration
about the vertical. The latter two vibrations will be coupled to each
other except when e! = 0 , and these coupled vibrations only will be

2

investigated.

Equation of Motion and Solution

From Equation (4.84) when ei = el/JkB= 0
[Kyyel = O (4.89)

Thus the equations of motion, Equation (4.79), are reduced to

(M) ﬁﬁ +[Ku]{@' + [Kyy] ﬁ& = {ﬂﬂtﬁ
: (4.90)
(M ] {W} + [y {W} + [Ky] {W} = {fw(t)}
and
] vk + kD {v) = {gg(0)} (4.91)

It is the former set of coupled ecuations, Equation (4.90), that are of
interest here. Equation (4.91) represents the translational vibrations
in the y direction,

In the following the phrase "translational vibrations", unless
otherwise qualified, will be used to mean the translational vibrations

in the x direction.
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Equation (4.90) may be written in the general form (2.42) of
Chapter II with appropriate definitions of the matrices [M] and [K]
and vectors {r} and {f(t)} . The general solution of Equation (2.42)
is given by Equations (2.61), (2.67) and (2,68) from which the solution

of (4.90) may be written as follows

{3} = fo]{n} (k.92)

In Equation (4.92) [0] is the modal matrix,the colums {@5} (k=1,2,..,2N)
of which are the modes of the related homogeneous system of Equation (4.90).

The elements mn, of vector {n} is given by

. . 2
M + Zﬁkdﬁ{ﬂk + D M = gk(t) (4.93)

in which o (k = 1,2,...,2N) are the frequencies of the related homo-
geneous system of Equation (4.90) and By are the fraction of critical
damping. The term containing Bk is added on the assumption that damp-
ing in buildings is viscous and that it does not affect the natural fre-
quencies and modes of the corresponding undamped system (Equation (4.90)).
Also i T I fult)
{¢ } 'f'w(t)
Be(t) = — (1.9%)
k
{#*}" na {g}

When the structure is subjected to ground acceleration

H
o
—~
i
~
11

i
B [Mu:I {%} i01
(4%.95)

1
- D] {3} %3 - /By

H
=
N
&+
~—
1
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where iOl is the translational component of the base acceleration in
the x direction and XO3 is its rotational component about the vertical
axis. The latter is generally assumed to be negligible in earthquake
ground acceleration and will be neglected here, Then,gk(t) may be
written as
gk<t) = Xlk XOl (4°96)
where
1k T i
{g™ ) {1}
A, = 5 (4.97)
{7t o {g

in which {¢lk} is the translational component of the mode {¢k} .

A method of obtaining the modes {¢k} and the frequencies
® , k =1,2,...,2N , pertaining to the equations of motion in general
form, Equation (2.42), is described in Chapter II and can be used for the

particular set of equations of interest here, viz. Equations (4.90).

Parameters Held Constant

Attention will be restricted further to the study of the effect
of eé , and to some extent of ¢2 (Equations (4.87) and (4.88)) on the
dynamic behavior of a building with given level and degree of setback,

As in Chapter III, 15-story building will be investigated as a typical
case, As in the case of shear beam, the following level and degree of

setback are assumed:

and ' (4,98a)
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Further, o, and at are also assumed to be fixed and are

given by the same values as for the shear beam, viz.
@ = a = 1 (4,98pb)

the values of bpx 2 Bpy “yx ) Bty will also be assumed to be fixed.
These values are chosen from the following considerations.

Consider a story in a structure in which n 1lateral stiffness
elements sl, SpyeeeSy in one direction, say x, equally spaced in plan
along a line y perpendicular to that direction. Suppose these stiffness
elements are all identical, s, =8, = ... s =1 (say). Then, the
principal elastic axis (refer to Chapter II for definition) is midway be-
tween the end stiffness elements 5 and sn . It can be shown that the

second moment of the stiffness elements Sl’ 52, eoe sn about the prin-

cipal axis 1is

I = n(n+l)(n-1) , ze (4,99)

& 12

where f 1is the spacing between consecutive stiffness elements.

If the same total stiffness (sl tE, bl t sn) were distri-

buted uniformly about the principal elastic (x) axis then the second
moment of the lateral stiffness about the principal elastic axis will be
2 2

I = n. (n-1) ., (4.100)
u 12

The term P 1is defined as the ratio

T

po=T (k.101)

so that from Equations (4.99) and (4.100)

po= ot l (k,102)
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Table IV.2 gives the values of u for various values of n. Also from

Fquation (L4.102) it is seen that as n—wo, u -1 .

TABLE IV.Z2

VALUES OF u FOR SEVERAL VALUES OF n AS OBTAINED
¥ROM EQUATION (k4.102)

21 3 i 10

\j’f
(O)

-3
Qo
\C

312 1 1.67 | 1.50 | .40 | 1.33 | 1.29 | 1.2 | 1.22

In actual structures the conditions may very considerably from
those assumed above (viz., equal spacing of equal valued stiffness ele-
ments). Table IV.2 provides only én indication of the possible values of
i . As was noted earlier the value of p may range between O and 3.

Since the tower and the base portions of the building are as-
sumed to be square (i.e. Oy = O = 1), it is reasonable to assume that

Hpx = Hp
* Y (4.103)

Mgx = Mgy
Further, since the tower 1s smaller than the base in plan area, the value
of n for tower will be less than that of base and therefore He > By
(see Table IV.2). The following values
W = W = 1.2
bx by (4.10%)

T

were chosen for computations. It may be noted from Equations (4.87)

that increase or decrease in p values would increase or decrease the
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values of 02, and a relative increase or decrease in py with respect

2 2

to would increase or decrease the value of 0y with respect to of .

Mg
With the values of the p's , &4y and o chosen and fixed as

2

2 and 0% will be varied by varying the value of

above,; the values of oy,

72 , see Equation (4.87). Having chosen = bpy = 1.2 and
Mty = Mgy = 1.45 as well as Oy = Oy it is not difficult to see from

Equation (4.87) that

> = l°”5 g (4,105)
and this relation holds regardless of the value of 72 .

Uncoupled Translation and Torsional Mode Periods

When eé = 0, the translational vibration in the x direction
and the torsional vibration will also uncouple from each other, since

from Equation (4.84)

Kpo] = [Kgl = [0 . (14.106)

The two equations referring to the translational and torsional vibration
in Equation (4.90) then uncouple from each other,

The natural periods of the uncoupled translational vibrations
are independent of a% and of . The natural periods of the uncoupled
torsional vibration are however dependent on them, For a given p and
¢ , due to the particular choice of values for Qs Oy By “by’ iy
and “ty , such that Oy = O 5 Hpy = bpy and Py = Bty s which
leads to relation (4.105) between cg and ci , the periods of torsional

vibration will be linearly proportional to 1/op or 1/0; . This is illus-

trated in Figure 4,9 for first few mode periods of the shear building
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with properties already chosen, Equations (4.98), (4.104). The notation
for modes introduced in the section on shear beam is used here.

From Figure 4.9 the following observation may be made. As
was the case with shear beam,there are several values of oy for which
a translational mode period and a torsional mode period have identical
values, Also if the two groups of modes are combined together and
ordered in the ascending order of their frequencies,the same torsional
(or translational) mode will be ranked or numbered differently for dif-
ferent values of oy .

Next, the effect of varying eé on the various modal quantities

will be examined for a few values of ¢ . As mentioned earlier, the

value of 02 will be controlled by varying 72 . The values of 72
for which the computations are made are: .36, 1., and 2,78. These
same values of 72 were used in the case of the shear beam and their
significance was discussedthere,

Another value, 72 = .> , for which the T:1 and R:1 mode
periods at ej = O were almost equal, was also used. Here the T:1 and
R:1 mode periods of the uncoupled case are almost equal at 72 = .18
(see Figure 4.9). Computations will also be made for this value of 72
although it probably lies outside the normal range of values of 72
Also it may be noted from Figure 4.9 that at 72 = 2,78 the R:1 and

T:2 mode periods for the uncoupled case are almost equal.

The values of l/ab corresponding to the above values of 72

are shown by vertical lines in Figure 4.9. In Table IV.3 are given the

2

o
%

i -

2

above values of 7y~ with the corresponding values of and o

The difference between these values of 0% and 0% and those for the
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shear beam, Table IV.1, should be noted; this difference is of course be-

cause of the p values being taken different than 1 for shear buildings.

TABLE IV.3

EQUIVALENT VALUES OF o2 , of AND 7

')'2 0‘% (0] .%
.18 . 708 . ThO
.36 .816 .986

1.00 | 1.200 | 1.450

2.78 2.268 2.740

Periods

Periods vs. eé plots for R:1 through R:4 and T:1 through
T:4 modes are given in Figure 4.10. The convention used for denoting
the modes is explained in the section on the shear beam. Except for
the case 72 = 2,78, the T:1 through T:4 and R:1 through R:4 modes
constitute the first eight coupled modes (arranged in ascending order
of their frequencies)., For 72 = 2,78, the 8th and 9th modes are the
T:5 and T:6 modes and the 10th mode is the R:4 mode (see Figure 4.9).

2) always

The first mode period (T:1 for all values of y
increases with increasing eé . The changes in the higher mode (T:j,
R:j, 3 > 2) periods are generally very small. The T:2 mode period
for the case 72 = 2,78 is an exception. There is a significantly
greater change with eé in the T:2 mode for this case than for other

values of 72 . As noted earlier, the R:1 and T:2 mode periods for

72 =2.78 at eé = 0 are almost equal to each other (see Figure 4.9).
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In the R:1 and T:1 modes the maximum change in period occurs
for the case 72 = .18 . TFor this case the T:1 and R:1 mode periods at
eé = 0 are almost equal to each other. As the difference between the
mode periods at eé = 0 increases with increasing 72, the extent of
change in periods with increasing eé decreases. Thus, for the case
v = .36, there is still a significant amount of change in the T:1 and
R:1 periods as eé increases from zero to .25, although it is less
than for the case 72 = ,18 , For %° = 1 there is almost no change
in the R:1 period. For 72 = 2,78 +the change in T:1 period is very
small but there is a noticeably more change in the R:1 period. This

ties in with the observation made above that R:1 and T:2 modes are al-

most equal at el =0 for the case ¥2 = 2,78 .

Mode Shapes
The two components of the R:1 and R:2, and T:1 and T:2 mode

for the case 72 =1 is given in Figure 4.11. The translational com-
ponent {¢lk} of the mode vector {¢k} = {g%g} represents the
displacements of the centroids of the floor. Since such centroids in
the tower portion are on a different vertical line than those of the
base portion, (except when es = 0), the vector {¢lk} does not repre-
sent the translations along a single vertical liﬁe in the building.

This leads to some difficulty in representing the translational compo-
nent by a planar figure. The same difficulty is also encountered in the
case of shear beam for the same reasons. The translation component of
the mode as drawn in Figure 4.1l represents the translations along a

vertical line through the tower centroids (extended into the base por-

tion) for the entire hieght of the structure. It should be noted that
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the elements of {¢3k} are the rotations of the floors times the constant
\/Zg , see Equation (4.92).

The modeshapes are normalised by making either ¢§k or ¢§k
(the Nth element of vectors {¢lk} and {¢3k} , respectively, repre-
senting the translation of the centroid of the top floor and rotation
of the top floor about the vertical axis time wjﬂg'), depending on
whether it is a translational (T) mode or a torsional (R) mode, re-
spectively.

The effect of increasing eé on the mode shapes is to increase
the component (numerically) which is absent at eé = 0 relative to the
other component. The shape of the component originally (i.e. at eé = 0)
present is only slightly affected by the introduction and increase of
the eccentricity eé . In general, similar effects are observed in the
higher modes (of the case 72 = 1 ) and also the modes for the cases
v2 = ,18, .36 and 2,78 which have not been presented.

It may be observed from Figure 4,11 that the two components
of the same mode do not necessarily have the same number of nodes. As
stated above,the translational components in Figure 4,11 represent the
translations along a vertical line passing through the tower centroid.
If translations along some other vertical line (for example, the one
passing through the base centroid) is taken as the translational compo-
nent of the mode shape, it may show a different number of modes then
there are for the translation component as given in Figure 4.11. It

seems that this difference in the number of modes between any two re-

presentations of the translational component may be at most 1.
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The T:1 and R:1 mode shapes for the case 72 = ,18 are given

in Figure 4,12, The figure shows how in both modes the component of the
mode originally (i.e. eé = 0) absent increases very sharply for small
values of eé and then decreases with further increase in eé . A
similar effect is seen in the T:2 and R:1 modes for the case 72 = 2,78,
also given in Figure 4.12. As in the case of shear beam (T:1 and R:1
modes for 72 = .5, see Figure L4.5), this particular effect showing a
high degree of coupling for small eccentricities seems to be due to the
closeness of the periods of the pair of modes at eé =0,

Kinks at setback level are present in both the components of
all modes presented in Figures 4.11 and 4.12., They are due to the pre-
sence of setback which causes (as has been assumed) a sharp change at
the setback level in the stiffness, mass, torsional stiffness, and
mass-moment-of-inertia distribution. The presence of setback of de-
gree cC = AT/AB has a sharper effect on the quantities related to
the torsional vibration than those related to the translational vibra-
tion. This is because the former set of quantities are proportional
to the square of plan area (and therefore to c2 ) while the latter are
proportional only to the first power of the plan (and therefore to c ).

This fact explains the sharper kinks generally observed in the rotational

modes,

Coupling
The ratios ¢%k/¢§k (i = 1,2,...,N) may be called the degree of

coupling or simply coupling for the ith floor in the kth mode, if the kth
mode is a torsional (R) mode. If the kth mode is a translational (T) mode,

¢§k/¢%k may be termed the degree of coupling. The mode shapes as presented



1k

-189-

/P

0.4

o.zz/"_"""““7{‘~—-———;;______

0.2

. 1

-77:.18,.36,1,2,78

R:1
0.6 — | | ]
0 005 0OIl0 0I5 0.20 0.25
ez
R:2
0.2 _.——
0
2..18,.% ;
0.2 Y :.13,.36,1,2,78

72:.18,.36,1,2.78
L L1

1 ] | |

o)

0.05 010 0I5 0.20 025

e,

Figure 4.13.

Coupling,

79:.18,.3%6,1,2.78

T

] | 1 ]

005 OI0 0I5 0.20 0.25
/
€.

Shear Building.



-190-

in Figures 4.11 and 4,12 show in a qualitive manner coupling at carious
floor levels in these modes. As is apparent from these figgres, the
coupling (i.e., the ratio ¢ik/¢3§ or its inverse) will in general have
different values for different floors in the same mode.

In order to obtainva quantitative idea about the effect of eé
on coupling in various modes for various values of 72 , coupling for a
particular floor may be plotted against eé . This is done in Figure
4,13 for the (topmost) Nth floor. The ratios ¢§k/¢§k are plotted on
the first four torsional modes (R:1 through R:4) and the ratios
¢§k/¢$k are plotted for the first four translational modes (T:1 through
T:4)., As mentioned earlier these modes constitute the first eight modes
except for the case 72 = 2.78, in which R:4 is the tenth mode.

Coupling in general increases from zero at zero eccentricity of
the tower to some finite value as the tower as shifted to its maximum
eccentricity. The increase seems to be linear in most cases. Coupling
seems to increase sharply for small eccentricities and thenincrease
slowly on further increase in eccentricity in the T:2 and R:1 modes of
the case 72 = 2,78 and in the T:1 and R:1 modes for the cases 92 = .18
and, to a lesser extent, 72 = .36. The coupling has opposite signs in

each of these pairs of modes,

Base Shear and Base Torque

Next, the effect of tower eccentricity on the modal counter=-
parts of base shear coefficient and base torque coefficient will be ex-
amined, Base shear coefficient has already been established as an im-
portant quantity in earthquake resistant design. Since dynamic unsym-

metry induces rotabional vibration in structures torques (or torsional
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forces) will be generated throughout the height of the structure simul-
taneously with the shear forces. Thus in a manner similar to base shear
coefficient one may define and use base torque coefficient.

Modal base shear and base torque are here defined as the responses
of the structure subjected to a one g static acceleration. When these quan-
tities are multiplied by the maximum absolute acceleration (in g wunits)
attained by a single degree of freedom system with the same frequency and
damping as the mode being considered when subjected to a ground acceleration,
they will give the corresponding maximum modal responses of the structure
to that ground acceleration.

The kth mode base shear coefficient is given by

k1T X
o {5 o1 {1} (h.107)

1Bk 1k '
0 om {3

where hlk is the modal participation coefficient given by Equation
(M.97). The base shear coefficient response in the kth mode when sub-

Jected a ground acceleration XOl(t) would then be

Crpelt) = Cipy [E(t) + X41(t) /e (4.108)
where

(4.109)
From Equation (4.93) it follows that £ is given by

. ) 2 ..
Bt O2BE o By = - X1 (4.110)
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Base torque in the kth mode is given by

N 3k N 1k, .
T = A, [ 2 me! g5 -ef = mf 1Ay ( + %qp) & (4.111)

Ik 5o 1=P+1

The second term in the square bracket represents the torque produced by

the shear

at the base of tower about the base portion centroid.

Base torque is non-dimensionalized to obtain base torque coef-

ficient in a similar manner as used in the case of shear beam, viz.

N 3k N 1k
[= moy @7 -e)f = mf; ]
ok = My - i=1 i=P+1 . (k.112)
3Bk N
z mof
i=1

The relation between mei and the mass moment of inertia in given by

Equation (

Jjected to

T:4 modes
values of
the first

the tenth

from zero

mum value,

4.80b) may be noted.
The base torque coefficient response in. the kth mode when sub-

a ground acceleration iOl would then be

C3Bk(t) = CéBk . [Ek(t) + §Ol(t)]/g (4.113)

Cin and CéBk values for R:1 through R:4 and T:1 through
are plotted against eé in Figures 4.14 and 4,15 for several
72 . R:1 through R:4 and T:1 through T:4 modes constitute
eight modes except for the case 7 ; 2.78 for which R:k4 is

mode.,
In the torsional modes the base shear coefficient increases

at eé = 0 to some finite value as eé increases to its maxi-

In the translational modes Cin decreases from some finite
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value at e! = O, which is obtainable from Figure 3.2 (with P = 9 or

2

p = .6 and ¢ = .25), and decreases to some finite values as e} increases
to its maximum value. C{pp has the same sign in all modes.
The antisymmetry between the increase and decrease of Cypy
in the R:1 and T:1 modes, respectively, for the cases 92 = .18, .36
and 1, is quite remarkable; i.e,, for these cases the sum of Cin in

the R:1 and T:1 modes remains almost constant for all values of eé .

This behavior is best for 72 .18 and then worsens slightly for
72 = .3 and further for ¥ -1,

For the case 72 = 2,78 somewhat similar antisymmetry seems
to exist between the R:1 and T:2 modes although it is not as pronounced
as in the above cases. In fact for this case it seems that the sum of

igk in the R:1, T:1, and T:2 modes seems to be much closer at being
constant for all values of eé than the sum of Cin in the T:1 and
R;Q modes alone,

In the higher modes base shear is quite small compared to the
R:1 and T:1 modes, It was observed in Chapter III that for setback
levels below midheight, base shear might be largerin one of the higher
(T:J § > 2) modes that in the first mode (T:1) in a building with sym-
metric setback. For a building with unsymmetric setback level below
midheight and small ¢, large base shear may similarly be expected in
higher modes.

As mentioned earlier the maximum base shear coefficient re-
sponse in the kth mode to a given earthquake excitation is
Clpx Sg(we, Pk)/g , where Sg(wyg, Bx) is the acceleration response

spectrum value for that earthquake excitation. Unless the frequencies

of some of the modes are very close, the maximum total base shear
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coefficient response may be approximately given by the square root of
the sum of squares (RSS) of the modal maximum base shear coefficient
responses. In case two of the modes have close periods (as is the

2

= ,18 for small values of e! )

cagse of R:1 and T:1 modes when vy 5

and damping in the two modes is not very low(7), the responses in
these modes may be added algebraicly first and then the above rule
of the sum of squares may be applied to obtain a good approximation
for the maximum total base shear coefficient.

The sum of C!

1Bk in all 2N modes is equal to one. Thig is

proved in Appendix B, Further, Cin is always positive in all modes,
see Equations (4.107) and (4.97). Now at el = 0 the value of Cip
in the N +torsional modes is zero and it has non-zero values only in
N translational modes. However when eé # o, Cin is, in general,
non-zero and positive in all the 2N modes.

Consider, now, two buildings which are exactly similar except
that the setback in one 1s symmetric (eé = 0) and in the other is
unsymmetric about x axis (eé £ 0) . As was observed previously, the
introduction of asymmetry of setback changes the period of some extent
especially in the lower modes, see Figure 4,10,

Let us assume that the mode periods of each of the two build-
ings are well separated so that the RSS combination of modal maximum
responses 1is a good approximation of the true combined response. Let
us also assume that the Sg (absolute acceleration response spectrum)
value does not change significantly with the small differences between

the corresponding mode periods of the two buildings. Then, with these

agssumptions, the properties of Cin stated above suggest that the



_]_97-

base shear coefficient response of a building with setback unsymmetric
about one principal direction subjected to a given earthquake will, in
general, be smaller than that of the corresponding building with sym-
metric setback,

When the setback is symmetric (i.e. e} = 0), base torque
(and for that matter all torsional motion) is zero in the uncoupled
translational modes and torsional modes., This is because there is no
coupling between the rotational and translational vibration and external
rotational exciting forces are assumed to be zero,

As the setback becomes unsymmetric the base torgue coefficient
(Ci ) begins to increase numerically., As e} increases the rate of

3Bk

increase in CéBk either decreases or remains nearly constant. In

some cases like the R:1 mode of 72 = ,18 and T:2 mode of 72 = 2,78
after a sharp increase for small values of ed , CéBk decreases slightly
with further increase in e} (Figure 4.15).

The base torque coefficient in the R:1 and T:1 modes are oppo-
site in sign and some antisymmetry is apparent in the variation of C§BK
in the two modes for the case 72 = ,18, .36 and 1. for small values of
eé . Palring of higher modes in terms of opposite signs of CéBk is
not always possible,

Base torque coefficient (BTC) is,in general, progressively
smaller (in numerical value) in the higher modes. But, as observed
earlier in the case of base shear coefficient, for structures with set-
back level below midheight and with small c¢, base torque coefficient

may be larger (in numerical value) in some of the higher modes than in

the T:1 and R:1 modes,
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The maximum modal BTC response in the kth mode to an earthquake
acceleration is CéBk . Sa(wk ,Bk)/g where Sa(ak s Bk) is the accelera-
tion response spectrum value for that earthquake acceleration. Unless the
periods of some of the modes are very close to each other, the maximum
total BTC response to that earthquake will be approximately equal to the
square root of the sum of squares (RSS) of the maximum modal responses.
For such cases, assuming that S, 1is not much affected by the change in
periods as eé changes, the behavior of CéBk observed in Figure L4.15
suggests that maximum BITC response to an earthquake would generally in-
crease with increase in eccentricity eb . Further, the rate of increase
in the BTC response will generally diminish with increasing es .

If the above rule of adding the modal maximum responses to ob-
tain the total maximum response were applied to the cases of 72 = ,18
or 72 = 2,78 , it would lead to very high BTC response (in comparison
with the other two cases) for very small values of ) (eé < .05 say).
This is because, as seen in Figure M.l5,the CéBk values increase
sharply for very small values of eé in the T:1 and R:1 modes for the

2°_ 0,78,

case 72 = .18 and in the T:2 and R:1 modes for the case vy
However, from Figure 4.9 and 4.10 it is also obvious that
for very small values of eé the periods in the pairs of modes men-
tioned above are quite close to each other. For this reason, and if
the damping in the two modes is not too 1OW,(7) algebralc addition
of modal maximum BTC responses will be much closer to the combined
maximum BTC response of the two modes in such cases. Since CéBk

values in such pairs of modes are almost equal to each other but

opposite in sign (see Figure 4.15), the maximum BTC response of the



.=]_99 -

of the two modes combined, and hence also the total maximum BTC response,
will be much smaller than the one obtained by the method of adding modal
responses described earlier. Thus the conclusion made above about the

BTC response may be said to hold in general,

Responses to Recorded Earthquake Excitations

Responses of the 15=story building with setback level P = 9
and degree of setback ¢ = ,25 , examined in the preceding modal study,
to two recorded earthquake excitations have been computed., The earth-
quake excitations used here are the S component of the El Centro,

May 18, 1940, and the N69°W component of the Taft, July 21, 1952 earth-
quake records. The same records were used in the response studies for
buildings with symmetric setbacks in Chapter IIT.

First eight modes were used in computing the total responses.
In the responses computed (displacements, rotations, shears, and tor-
ques) the contribution of higher modes, including some within the first
eight modes, is negligible compared to that of the first few (say four)
modes, In Chapter III, where only the uncoupled translational modes
were used to compute the translational responses, cnly the first four
modes were considered for similar reasons.

Damping was assumed to be 4% of critical in the first four
modes and 6% of cirtical in the next four modes. At e} =0 ,the
first four modes consist of first two translational modes and first
two rotational modes., The next four modes are made up of higher
translational and rotational modes, In Chapter III, where first
four uncoupled translational modes were used in computing responses,

damping was assumed to be 4% of critical in the first two modes and
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6% of critical in the next two. Higher damping coefficients assumed
in the two higher (third and fourth) modes were justified on the
basis of results obtained from recent vibration tests.(36’37) The

(37)

Same vibration test results also indicate that damping in the
torsional modes is about the same (in terms of fraction of critical
damping) as in the translational modes.

The procedure used in computing the responses is the same
as described in Chapter ITII. The absolute maximum values attained
during the response by the displacements wu; , rotations o5 , rela-
tive story displacements Au; = u;- uj.] , and relative story rota-

tions MG, =0, -0 (i = 1,2,...,N) were recorded. Since the

i-1
structure is assumed to be simply coupled in stiffness, the shear and
torque in a story are proportional to the relative story displacement
and the relative story rotation, respectively, of that story. It

should be noted here that due to the manner in which {@} y (Mgl 5, [Kgl s
etc., have been normalised (Equations (4.73) through (4;78)), all the

torsional responses will be in terms Ag .

Comparison of Actual and Approximate (RSS) Responses

The square root of the sum of squares (RSS sum) of the modal
maxima of the above mentioned responses were also computed, The square -
root of the sum of square combination for rotations and displacements
of the top floor are compared with the actual maximum values in Tables
IV.4 and IV.5 for all four values of 72 . The comparison is made for
e! = .05 and .25 in the case of rotations, and eé = 0 (from results

2
obtained for Chapter III) and eé = ,25 in the case of displacements.



=201-

TABIE IV..4

COMPARISON OF ACTUAL MAXIMUM AND RSS COMBINATION
OF MODAL MAXIMUM RESPONSES, ROTATIONS @Nnﬂjﬁé, ft.

Combination 75
e} of Modal .18 .36 1.00 2,78
Responses
- El Centro N
.05 | Actual .633 .685 - 35k .181
RSS 1,775 | 1.039 430 | .600
.25 | Actual i:87f77ﬂ1:598 141k .630
RSS 2,202 | 2.074 | 1.605 .605
Taft
.05 | Actual ,298 | 197 | .193 | .107
RSS .833 - 377 - 195 .253
.25 | Actual .783 | .689 - T99 .252
RSS ,802 671 .739 .252
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TABLE IV.5

COMPARISON OF ACTUAL MAXIMUM RESPONSES AND RSS COMBINATION
OF MODAL MAXIMUM RESPONSES, DISPLACEMENTS Uy , ins.

Combination 7'I2

e} of Modal .18 .36 1.00 2,78
Responses
El Centro

Actual 8.362 | 8,32 | 8.362 | 8.362
° RSS 9.218 | 9,218 | 9,218 9.218
.| Actual 8.153 | 8.151 | 8.280 | 8.235
% RSS 6,965 | 8,483 | 9.104 | 8,818
.| Actual 6.032 | 8,135 | 7.996 | 8.077
" RSS 6.97% | 7.150 | 7.817 | 8.210

wee | ||

Actual TRy (TR T T I O 2 R N TR/
° RSS 4,393 | 4.393 | 4.393 | 4. 393

Actual h,607 | 4,655 | L,717 | L.668
" RSS 3,287 | 4,189 | 4,391 | 4,259

Actual 3.626 | h,1h2 | L. k27 | 4,403
0 RSS 3.146 | 3.112 | 4,160 | L.367
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Rotations and Displacements

The maximum rotations of the Nth floor, @N . AB’ are shown
in Figure 4.16, The maximum displacements of Nth floor centroids, Uy s
are shown in Figure 4.17 The maximum rotations and displacements
(centroidal) of a floor do not occur simultaneously. A simple combi-
nation of the two maximum responses in order to obtain maximum displace-
ments at other points of the floor (on the assumption that they occur
simultaneously) will give an upper bound to the maximum displacements
of such points that may actually occur during the response., The actual
maximum displacements that occur at either of the edges of the Nth floor

parallel to the x axis, uN(E) , during the response were also re=-
corded, These responses are shown by dotted lines in Figure 4,17,
Maximum rotaticns inérease with increasing eccentricity eé
for all values of 72 . Generally,the smaller the value of 72 the
larger the rotations. The E1l Centro responses for the cases 72 = ,18
and ,36 and the Taft responses for the cases '72 = .36 and 1 are ex-

2 | and therefore of ¢° (see Equa-

ceptions, Increasing values of vy
tion (4,87)), remembering that the a's and the u's are kept con-
stant, means increasing rotational stiffnesses (k©;) relative to the
lateral stiffness in the x direction (kx;) ., This is seen from
Equation (4.,70). The stiffnesses kx; are kept constant so that in-
creased rotational stiffness can be expected to result in decreasing
rotations.

Meximum centroidal displacements of the top floor are smaller
for buildings with unsymmetric setback than those of the identical
building with symmetric setback (i.e, with eé = 0) . In the Taft re-

sponses the centroidal displacements generally seem to decrease with
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increasing e/ but this is not the case in the El Centro responses for

5
eé > .15. The maximum decrease in both sets of responses (which occurs
for the case 72 = .18 , the reason for which is not quite clear) at

es = .25 are 249 for the Taft responses and 30% for the El Centro re-
sponses,

The effects of the eccentricity of the setback eé and of 72
on maximum rotation and displacement responses of the top floor is re-
presentative of the effects on such responses of all the floors. This
is shown to some extent in Figure 4,18 in which are given the plots of
the maximum rotation and displacement responses of all floors to the
E1l Centro '40 S excitation for the case 72 =1 . The rotation plots
are given for eé = .05 and .25 , and the displacement plots are given
for eé =0 and .25 . Plots of relative story rotations and displace-
ment responses, of all the N stories, to the El Centro '4JO 8 excitation
for the above cases are also given in Figure k4,18,

It was observed in Chapter III that the maximum relative story
displacements (MRSD) are considerably large in the tower portion than
those in the base portion in buildings having setbacks with small c ,

see Figures 3.15 and 3.17. The same is seen to be true about the maxi-

mum relative story rotations from Figure 4,18.

Base Shear and Base Torque Coefficients

The maximum base torque coefficient (BTC) and base shear coef=-
ficient (BSC) responses are plotted in Figures 4.19 and 4.20, respectively
Base shear coefficient is the ratio of base shear to the weight of the

structure. Base torque coefficient is similarly defined as the ratio

T R
_ B
C3 = — - /A
2. M
R
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In the case of uncoupled translation vibrations of buildings
with setbacks studied in Chapter III, it was found that the RSS combina-
tion of modal maximum responses gave a good approximation for the actual
responses, In Table IV.2, it is seen that for eé = ,05 the difference
between the two responses in the case of rotations is considerable for
the cases 72 = .18 , 2.78 and .36 . TFor e} = .25 , however, the RSS
combination maximum modal rotations approximates the actual maximum ro-
tations very well.

The RSS combination of displacements generally approximates
the actual maximum displacements quite well (within + 25%) for all cases.

The reason for the large difference between the RSS combination
and the actual maximum of the rotation response for small eé is a pair
of lower modes with close periods in the cases of 72 = ,18 and 2,78 and,
to some extent, of 72 = .36. This violates the condition of well sepa-
rated mode periods on which the RSS combination of the modal maxima is
supposed to be the "probable" value of the total maximum response,(3l)

In the pair of modes with close periods the rotation responses
are of opposite sign, i.e. out of phase by almost 180°, The maximum
rotation response of the two modes combined is nearly equal to the
difference of the maximum rotations in each mode, The displacements
response in the two modes are of the same sign and the maximum displace-
ment response of the two modes combined is nearly equal to the sum of
the maximum displacements in each mode. By its very nature, therefore,
the RSS combination of the two modal maximum responses will be much
different from the actual maximum response in the case of the rota-

tions and less so in the case of displacements.
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where Tp 1s the base torque, mo; 1s the mass moment of inertia of
the ith mass, and AB is the base plan area. The term AB is intro=-
duced to make C3B nondimensional as Tg is of [ML'lT] units and
me; is of [MI'] wunits in the standard notation.

The base torque increases with increasing eccentricity eé
of the setback for all values of 72 , the rate of increase diminishing
with increasing eé . The effect of change in 72 on the BTC values
does not show much consistency.

Pres nt day (1966) seismic building codes specify that any
lack of symmei -y in structures be accounted for statically. That is,
the static to.-gue produced by the application of the lateral forces
computed on the assumption of uncoupled lateral (translational) vibra-
tions should be taken into account, along with the lateral forces, for
design purposes.

The dotted line in Figure 4.19 shows the base torque coeffi=
clent resulting from the shear at the base of tower obtained for the
building with eb = 0 in Chapter III. The BTC values thus obtained
are 1/5 to 1/2 +times the actual base torque coefficients (as obtain-
ed here by taking the dynamic coupling into account).

The maximum base shear coefficients are somewhat smaller for
the buildings with unsymmetric setback compared to that for the corres-
ponding building with symmetric setback (i.e. with, ed =0 ). The BSC
decreases at first with increasing eé for all values of 72 in both,
the Taft and the El Centro responses but beyond eé = ,15 1its behavior
is not regular. The maximum decrease in BSC due to the introduction of
asymmetry of the setback below the BSC at e' = 0 is about 28% in the case

2

of Taft responses and about 18% in the case of El Centro responses.
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The maximum shear and the maximum torque in a story do not,
generally, occur simultaneously during the response. Forces in the
resisting elements of the story computed on the assumption that they
do occur simultaneously will overestimate the actual maximum forces.
All the same, ‘it is much more convenient to keep track of a few re-
sultant forces per story in a structure rather than the forces in the
innumerable resisting elements of the structure. The latter course is
also impossible here because of the manner in which the properties of
the structures have been idealised.

A rough idea about the extent of overestimation of the forces
in resisting elements located at the edges (in plan) of the story has
been obtained as follows. The structure has been.assumed to be simply
coupled in stiffness. The forces in the story, and therefore also in
the individual resisting elements, are, then, proprotional to the rela-
tive story displacement. The actual maximum relative displacement be-

tween the edges of the two floors adjacent to the story,

b
2 .
lau,  + 20, ¢ == | i=1, 2,...,P
i i 2 max ’ J J J
oy (BY [ = (b.114)
a.
[Aus  + 205 - 2£ Ima.x ,i=P+1,...N
may be compared with the value
B
laus |+ |ney .= i=1, 2,...,P
lawi (B)| = e e (4.115)
i+ lmax ao

v | o + 1001 gy o 1=P+ L.
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obtained on the assumption that the relative displacements between the
centroids of the two floors and the relative story rotations both occur
simultaneously.

The values lAui(E)lmax and IA“i(E)lmax were obtained for
the first story during the response computations and are shown in Figure
4,21, ©No definite trend about the effect of either eé or 72 on the
difference between the two quantities seems to emerge in Figure 4.21.
The overestimation of IAmi(E)lmax by lAui(E)lmax ranges from 5% to
as high as 40% in both the Taft and the El Centro responses, not showing
any definite trend with respect to variation in eé or 72 .

The upper limit of the range of overestimation observed here
is quite high. The lower limit of this range suggests, however, that
it may be safer to design structures on the assumption that they are

subjected to the maximum seismic shear and torque simultaneously, which

is also much more convenient,

Effect of Damping in Cases of Close Periods

When examining the modal properties, a high degree of coupling
was observed for very small values of eé in the T:1 and R:1 modes for
the case 72 = .18 and also in the T:2 and R:1 modes for the case
72 = 2,78 . These results suggest that there would be severe twisting
in these modes of the building when sﬁbjected to earthquakes, The RSS
combination of the modal maximum responses would then indicate very high
rotations and torque in such building. However, no such special effects

are apparent in actual combined maximum responses, see Figure 4.16 and

4.19.
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It may be recalled that in computing the responses damping
has been assumed to be 4% of critical in the first four modes and 6%
of critical in the next four modes. If the damping is assumed to be
very small or absent then the actual combined responses will also in=
dicate that a building with close (uncoupled) translational and tor-
sional mode periods is subjected to severe torsional forces even when
the eccentricity of the setback is very small. This is shown in Table
IV.6 in which the maximum rotation responses of the top story forthe
damped and the undamped cases are given for 72 = ,18 for which case
the uncoupled R:1 and T:1 mode periods are almost equal. Similar re-

2

sults for the case = = 1 , which does not have modes with close periods,

are also given in Table IV,6 for the sake of comparison,

Table IV.6

COMPARTISON OF EFFECT OF CIOSE PERIODS ON ROTATION RESPONSES
(9N¢K§) IN DAMPED AND UNDAMPED CASES

oy /A » ins.
72 ef—s .01 .05 .15 .25
no damp. | 11.54 36.8k 41,50 35.11
0 damp. incl. 1.61 7,60 8,00 22,52
no damp. | e===- 12,11 30.89 43,52
: damp, incl, | ===== 4.25 11,54 16.97

Torque Distribution

In Figure 4.22 are given the torque distributions for buildings
with eccentricities eé = ,05 and .25. The torque distribution is an
envelope of the values ,Tilmax/lTBlmax plotted against i , where
lTilmax is the maximum torque obtained in the ith story during the

response history and ]TBlmax = ljllmax .
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The plots of torque distributions in Figure 4.22 are quite
similar in shape to the plots of shear distributions of buildings with
setback given in Figure 3.20 in Chapter IIT, and in Figure 4.23 to be
introudced later,

The variation in the value of ed and yg ‘affects the torque

distribution (i.e. the |T values) in buildings with other-

i'max/lTBlmax
wise identical properties and subjected to the same excitation. However
these effects on the torque distributions of variation in eé or 72
do not seem to be much more than the differences between the torque dis-
tributions obtained for the same structure subjected to the two differ-
ent excitations (viz. the El Centro and the Taft earthquake components).
It may therefore be expected that the torque distributions in
buildings with the type of unsymmetry assumed here, is mainly dependent
on two quantities: first, the level of setback and, second, a quantity
playing a role similar to the one played by degree of setback ¢ 1in the
case of shear distributions in buildings with setbacks. Noting that
¢ = my/my , this second quantity may be defined as c@ = (myry)/(myry)
where my, m, are the lumped mass values in the tower and the base por-

tions of the building, respectively, and ry and 1y are the radii of

gyrations of the lumped masses in the two parts of the structure. (Alter-

nately one may define co as c® = (m@t/%/ﬁ%)/m@b/ﬂ/ﬁg) .

Shear Distribution

The shear distributions |V;|..../[Vply., Obtained in the two
responses for buildings with setback eccentricities eé = ,05 and .25

are plotted in Figure 4.23. For comparison, the shear distributions
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obtained for the same building with symmetric setback (e} = O) respond-
ing to the two excitations in Chapter III are shown by dotted lines in
Figure 4,23.

The shear distributions for eé = ,05 are almost identical
for all four values of 72 . They are also almost identical to the
shear distribution for the same building with symmetric setback. This
is true in the case of both, the Taft and the El Centro, résponses.

As the setback eccentricity eé increases, the shear distri-
butions are affected noticeably by changes in 72 as well as by the
eccentricity itself. This shows up in the shear distribution plots for
el = .25 in Figure i, 23,

Keeping in mind the approximations and uncertainties involved
in the present day (1966) earthquake resistant design practices it is
reasonable to conclude the following (for design purposes) from the above
Observations. In a building with setback with the type of asymmetry con-
sidered here, the distribution of shear in the direction in which the

lateral vibrations are coupled with the torsional vibrations remains

approximately the same as for an identical building with coupling neglected,



CHAPTER V

SUMMARY AND CONCLUSIONS

A study of the effects of a setback on the dynamic behavior
of a tall building when subjected to earthquake ground motion has been
presented. As a first step in the study of this problem, the stiffness
in structures is assumed to be linearly elastic and damping is assumed
to be of the viscious type.

In Chapter II, the equations of motion of multi-story buildings
treated as lumped mass systems has been presented. In these equations,
the translations and rotations of each floor (mass) in the horizontal
plane, as a rigid body, is taken into account. Conditions are set
forth under which one or more of the three subsets of these equations
representing the translations of the floorsin two mutually perpendicular
directions and their rotations uncouple from the remaining equations.
Finally, the usual superposition-of-modes method of solution of these
equations and a method of obtaining the frequencies and modes of the
system is described.

In Chapter III, a study of the effects of setback on the un-
coupled translational vibrations of two models of buildings, a shear
beam and a lumped mass system with idealized mass and stiffness proper-
ties, was presented., A 15-story "shear building" was used as the
lumped mass model in this study. The setback was represented by two
parameters, the level and the degree of setback. The effectsof these
ﬁarameters on the modal properties of the two models and the responses

of the lumped mass model to recorded earthquakes, as well as the

-218-
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approximate responses of the shear beam model, were examined., The re-
sponses were compared with the specifications for dealing with setbacks
in buildings from one of the current seismic building codes.(3)

The coupled lateral-torsional vibrations of buildings with
unsymmetric setbacks were examined in Chapter IV. Again, two models
were used, a shear beam and a 15-story (lumped mass) "shear building".
Results were presented for a building with given level and degree of
setback and having a square cross-section in both base and tower por-
tions. The setback was assumed to be unsymmetric about one principal
direction only. The effect of varying the eccentricity of the setback
on the modal properties of both the modgls and on the responses of the
lumped mass model to recorded earthquakes were examined for several
values of o¢° the ratio of dynamic torsional stiffness to dynamic
lateral stiffness.

The following conclusions may be drawn from the study reported
here. The conclusions dealing with various response parameters refer to
the maximum values of the corresponding response parameters.

1. The fundamental translational mode period of a building
with setback is smaller than that of a comparable¥* uniform building;
the more slender the tower (relative to the base portion) or the nearer
the level of setback to the midheight of the building, the greater the
decrease in fundamental period from that of a comparable uniform build-
ing,

2. If a building with setback is subjected to an earthquake,

the displacements of the floors in its tower portion will, in general,

*
A definition of the "comparable" uniform building is given in Chapter

ITT, page 8p-
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be larger than those at similar levels in a comparable uniform building
subjected to the same earthquake. The same is true about the relative
story displacements in the tower portion of a building with setback.
The slimmer the tower, the larger is the increase in these floor and
relative story displacements., The increase, in percentage terms, is
greater in the case of relative story displacements than in the case

of floor displacements.,

3. The tower-base shear coefficient(defined as the ratio of
shear at the base of tower to weight of tower) in a building with set-
back is, in general, greater than the seismic coefficient at the same
level (defined as the ratio of shear at the given level to the weight
of building above that level) in a comparable uniform building, if both
are subjected to the same earthquake. The more slender the tower or the
higher the level of setback, the greater is the increase in the tower-
base shear coefficient, When compared with the response results, the
code gpecifications for buildings with setback seem to provide for a
sufficient increase in the tower-base shear coefficient when the set-
back level is below midheight. In the case of buildings with setback
level above midheight, however, the increase provided in the code is
smaller than that indicated by the response results,

k, When the tower is very slender (say ¢ < .05) compared to
the base portion and a lower mode period of the tower acting alone is
close or equal to a lower mode period of the base portion acting aldne,
very high tower-base shear coefficients can be expected.

5. In uniform buildings the contribution of the fundamental

mode to the total base shear coefficient is normally much larger than
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that of any of the higher modes., However, in a building with setback
level below midheight if the tower is very slim, the contribution of one
of the higher modes to the total base shear coefficient may be as much
or more than that of the fundamental mode.

6. Whether the base shear coefficient in a building with
setback will be greater or smaller than that in a comparable uniform
building when both are subjected to the same earthquake, will depend
very much on the nature of the earthquake, as represented (roughly) by
its response spectra, and on the range of the lower mode periods of the
building.

The following conclusions are primarily applicable to buildings
with setback unsymmetric about one axis only. Some of these conclusions
may, however, be also applicable to buildings with setbacks unsymmetric
about both axes and to buildings that are dynamically unsymmetric due
to reasons other than those considered in this study such as eccentricity
between centers of mass and centers of resistance in one or more stories,

7. A dynamically unsymmetric building when subjected to trans-
lational ground motion will be subjected to lateral as well as torsional
inertial forces. The actual torsional forces in such buildings are much
larger than the static torsional forces obtained by neglecting the dynamic
lateral-torsional coupling. In the case of buildings with setback ﬁnsym-
metric about one axis for which computations were made, the base torque
regponses are as much as two to five times larger than the static torque
values. The maximum resultant shear and torsional forces do not, in gen-
eral, occur simultaneously in dynamically unsymmetric buildings subjected
to earthquakes., However, it seems reasonable and convenient to design

buildings on the assumption that they do occur simultaneously.
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8. The rotations and torques in a building with unsymmetric
setback subjected to an earthquake, in general, increase with increasing
eccentricity of the setback. Close translational and torsional mode
periods do not result in very high rotations or torques in a building
with very small eccentricity of the setback unless damping is quite low
in the modes involved,

9. The torque distribution plot for a building with unsymmetric
setback subjected to earthquakes is found to be quite similar in shape to
the shear distribution plot, except that the kink at the setback level is
sharper in the case of torque distribution.

10. In a building with setback unsymmetric about one principal
direction, the base shear coefficient in that direction will be slightly
less than that for an identical building with symmetric setback when
both are subjected to the same earthquake., Among the cases for which
response computations were made, the maximum decrease was found to be
around 30%. The shear distribution in a building with unsymmetric set-
back does not change much from that corresponding to an identical build-

ing with symmetric setback,



APPENDIX A,
THE STEPPED CANTILEVER SHEAR BEAM: E%g?TIONS OF
MOTION AND THEIR SOLUTION

The beam under consideration here is a vertical cantilever
shear beam of rectangular cross section, stepped at one location along
its height. The shear beam is a hypothetical ideal beam in which all
deformations result from shearing strains, and extensional strains are
zero. This provides a mathematical model which behaves in a manner
roughly comparable with a tall building, in which horizontal shearing
deformation (due to flexure of the columns) predominates and bending de-
formation (due to lengthening and shortening of the columns) is small.
The cross section of the beam is uniform above and below the step and
the upper section may be set back from any or all sides of the base
section. The rigidity per unit area and the density are uniform through-
out the beam but the rigidity need not be the same in both directions.

The stepped beam i1s shown in Figure A.l. Let

bl,b2 = base width in x and y directions
81,8, = top width in x and y directions
e1,ep = offsets from centroid of base section to centrold of

top section in x and y directions.

h = height to step
£ = overall height.
G = rigidity per unit area in x direction
p = mass per unit volume

72G = rigidity per unit area in y direction
z = vertical coordinate axis

-203-



~22l -

y
A
€1
e ——
+ o2
en bo
+
PLAN
al
)
Y
h
b
< - >
ELEVATION
Figure A.1. ©Stepped Shear Beam.



I ,I

-225-

time coordinate

lateral displacements of centroid of section, relative
to base, from equilibrium position, in x and y direc-
tions

rotation of section about vertical axis through
centroid, relative to base, positive counter-clock-
wise

resultant shear forces on horizontal cross section
resulting twisting moment on horizontal cross

section

cross-sectional area

moments of inertia of cross-sectional area about x
and y axes

polar moment of inertia of cross-sectional area about
vertical centroidal axis

driving force per unit length in x and y directions
driving moment per unit length about vertical cern-

troidal axis.

Referring to Figure A.2, the three equations of motion for the

element are

Vl,,z + fl a pAu} tt
V2,Z + f2 = pAV).tt (A.l)
Vs, * Tz =000y

where the subscripts following the commas denote differentiation with

respect to the indicated variables.
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Figure A.2.

Forces on Element of Shear Beam.
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The force-displacement relations are

Vl = G A u’z
2
Vs = 7 GA U (A.2)
2
Vs = G(Il + 12) @,z .

Define the inertia coefficients in Equation (A.1).

m5 = pJ-

and the stiffness coefficients in Equation (A.2)

k. = GA
1 _
2
ky = 7°GA (A.4)
_ 2

The values of m; and k; are discontinuous at the step. In terms

of the beam dimensions

(in 0<z<h)

ml = P blb2
mp = P Dbyby

B b1bs 2 2
mg = 0=z~ (b + by)

(A.5)
k, = Gbb,
k. = 7°G b.b
o =7 1°2

_ b1bo 2 2

ks = G =5 ( 2bl + D, )
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and

(in h<z<4g)

o R s
My = P88

_ alag 2 2
myo = oe gt (a7 + oap)

(A.6)

kl = G a,8,

- 2
k2 = y=G a8,

- ajan 2 2
k G 5= (y a; o+ as) .

Then Equations (A.1l) through (A.4) may be combined to get the partial

differential equations of motion

m, X, - k. x, = f (z, t) (A.T)

in which the following notations are introduced for convenience in writ-

ing the equations

Xl = u
xg = v (A°8>
Xz = e

The boundary conditions are
x;, (0,8) = 0 (2.9)
and

V.(£,8) = 0 (A.10)
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The conditions at the step are:

for equilibrium

[Vl](h-o,t) ) [Vl](h+0,t)
[Ve](h-o,t) = [Vg](h+0,t) (A.11)
[V5 - e V, + e Vl](h-o,t) = [V5](h+o,t)
and for continuity
S e2X5](h-o,t) ) [Xl](h+0,t)
[x, + elx5](h-o,t) = [Xg](h+0,t) (A.12)
[XB](h-O,t) ) [X5](h+o,t)

Assume that the beam is in free vibration. The term fi(z,t) in

Equation (A.7) is then zero, leaving

(A,13)

k x. = m X,
ii,zz 11,6t

In the customary manner we express the solution in product

form
xi(z,t) = Zi(z)'T(t) (A.1h4)
This, substituted in Equation (A.lﬁ), gives
ky Z2Y T = my Z; T (A.15)

Separation of variables leads to the equation of free vibration

™ + oo T = 0 (A.16)
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and the equation determining the mode shape

m, 2
v+ Z =
z! —l-ki w2, 0 (A.17)

where w, the natural frequency, is yet undetermined., The values of ki

and mi are constant in 0<z < h and in h<z < /.

Let
2 ki
q. = — in O0<z<h
i m
and (A.18)
2 ki
S . = in 0<Kz<y
1 my
Then Equation (A.1l7) becomes
2
2"+ e Z, = O in O0<z<h
i a i
and (A.19)
2
w
Z" + —= Z. = 0 in h<z </
i Si2 i

The general solution of Equation (A.19) is

Z c 2% 4 ¢, sin — 0<z<h
., = . COS === .o 8in — z .
i i0 a3 il CH
w7 Wz (A.20)
Z = C COS m—— + C sin — , h<z <y
i i2 55 i3 S5

where the coefficients Cij are undetermined constants. Equation (A.9)

requires that

C = 0 (A.21)
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The equilibrium conditions at the free end (A.10) and the equilibrium
and continuity conditions at the step, (A.11) and (A.12), may then be
reduced to the matrix equation (A.22).

The natural frequencies of the system are the values of w
which make the matrix singular, i.e., which make the determinant of the
matrix zero. Equation (A.22) can be solved for the coefficients Cij to
within an arbitrary constant when w 1is equal to a natural frequency
of the system. A closed expression has been derived for the determinant
of the matrix as a function of w.

Some properties of the system may be observed from Equation
(A.22) without recourse to numerical calculation. If one partitions the
matrix into 3 x 5 submatrices, the diagonal submatrices are associated
with vibrations in the x, y and O directions and the off-diagonal sub-
matrices are associated with the coupling of these vibrations.

If the beam is symmetric about both the x and y axes, then
e, = & = 0 and all the coupling terms vanish. The modes then ap-
pear as translational modes in the x and y directions and torsional
modes, all of which are uncoupled.

If the beam has one plane of symmetry, the modes involving
translation in that plane will be uncoupled from translation in the
other direction and from torsion.

Except for special cases, translation in the direction of one
axis of asymmetry will be coupled with torsion. In a unsymmetric
isotropic (72 = 1) beam, the vertical plane through the centroids
of the upper and lower sections is a plane of dynamic symmetry, and there

are modes in this case which involve only translation in the plane of

dynamic symmetry, uncoupled from torsion.
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Orthogonality of the modes may be established in the following
manner. Equation (A.17), for the kth mode of vibration, says (substi-

tuting P for Z)
c 1 2
kp. + mw- P = 0 (A.23)

where the subscript k denotes the kth mode. Multiplying by ¢ij and

integrating from O to 4,one gets

£ " 2 A
g ky By Byg a2 4wy g m B, Biyda = 0. (A2h)

If one integrates the first term by parts taking into account the dis-

continuities at h, Equation (A.24%) becomes

h-0 )
[kiéik éij i kiéik bij]o ¥ klﬁlk Piy - kiéik ¢131h+0
2 5 (A.25)
+ g kiﬁik ¢ij dz + W g mlﬁlk b = 0.

The bracketed expression vanishes at 'z = 0. and 2z = f because of the
boundary conditions. From the conditions of continuity and equilibrium

at z =h, it is readily shown that

Z { (k10505 5] (k6,811 + = 0. (8.26)

13 n+0 1d'n-0

By virtue of these relations and Equation (A.24), Equation (A.25) yields

2 3 1
@ o) L f up
=1 o

J i=1 1 ik

2 2
and therefore if Fow

¢ (a.27)

]
o
AT

(A.28)

™
—
‘®~
‘&
]
@]

Equation (A.28) is then the orthogonality relation of the modes.
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The displacements of the beam can always be expressed in a

modal series
x (2, %) = Z ¢ z) n (¢ (A.29)

where 1 1is the r-th modal displacement. It follows that

X, = Z 8.
RN P
. (A.30)
X, = L @ gl
i,z2 k=1 ik,zz k

and the equation of forced vibration, Equation (A.7), can be written
20 0
m L 1 -k n = f (z,t) . (A.31)
io] ik k,tt 1= ¢ik,zz k i’

With Equation (A.17), substituting @ for 2, this can be converted

into
7 ) v X w g n = £z, ) (A.32)
ooy ik hert T Yk Tk m (z) .

Multiplying by mi¢_ integrating from O to / under the summation, and
13’
summing over 1, one gets
o0

2 2, 2,
kfi {n o g mi¢ik ¢ij dz} + o {wk o o m1¢lk ¢ dz}
(A.55)

£
] £ g dz .
o

1 1J

]
e s
W
}11_’

By virtue of the orthogonality property, all terms in the summation on

k vanish except the ones for which J = k, leaving

o
Ty TG T T gk-(t) (A.34)
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where

(A.35)

Damping has thus far been neglected. Assuming that viscous
damping exists and that the undamped modes remain valid for the damped

case as well, we get for the equation of motion for the k-th damped mode

2

Te bt T 2By Wy e 4 tow M S gk(t) (A.36)

where Bk is the fraction of critical damping in the k-th mode.



APPENDIX B

2N

PROOF OF % C! % = 1%
o 1Bk

Consider a N-story building in which principal directions
exist (see Chapter II) and in which the translations in one principal
direction are coupled with torsion. A building with setback unsymmetric
about one principal direction, the behavior of which was examined in
Chapter IV, is an example.

Let the translations in the x direction (assumed to be
one of the principal directions) be coupled with torsion. The equa-
tion of motion of the coupled lateral-torsional vibrations are then
given by Equations (2.31) and (2.32), (or by Equation (4.90) if vis-
cous damping is included and relations (4.73)-(4.78) between the var-
ious quantities in the two sets of equations are taken into account).

Noting that the matrices [M;] and [Mb] are diagonal as
shown in Equations (2.12) and (2.13), Equations (2.21) and (2.32) may

be rewritte as

N N
mil; + 2 Kujjuy + . Kyei395 = - miXgy » 1 = 1,2,...,N (B.1)
J=1 J=1
and
" N N
m;6; + I Kgujsuy + T Kgis0s =0, 1 =1,2,...,N. (B.2)
:l J:l
¢! is defined in Chapter IV, Equation (4.107), page

1Bk
*% The proof presented here was suggested by Professor G. V. Berg,
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In writing Equations (B.1l) and (B.2) it is assumed that the
structure is subjected to only a translational ground acceleration §01
in the x direction. The solution of these equations may be written

as (Equations (2.61), (4.29))

1k . A
uy b ¢i M » 3 =1,2,...,0 (B.3)
k=1
2N
k :
o, = = ¢§ B s 1=1,2,...0 (B.4)
k=1

k
where ¢ik and ¢§ are the ith elements of the translational and tor=-
sional components, respectively, of the kth mode. The kth modal displace-

ment m, is given by (Equation (2.67), (4.93)-(4.96))

20 2 .
M Fom = - Ay Xop s ko= 1,2,...,20, (B.5)

where Klk is the kth modal participation factor, Equation (4.97).

Damping is ignored.

=
[
™
=t
He
=3
=
<+

1k | K
S Kyis 5@ . 4+ DKo 8@k g
s g P et fuoig 2 P37

it

- miX.:Ol E} j. = 1)2).40)Na (376)

where the summation over the indices j and k extends from 1 to N
and 1 to 2N , respectively. Using Equation (B.5) for nk and inter-

changing the order of summation

1% 2 . Tk _ 3k
my i B (o m = Ay Xop) * E e ? Kusg P * iknk ? K017

= - mXyy > 1 =1,2,...,N. (B.7)
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Now it is the property of the natural modes (Equation (2.47))

that

2 41k 1k 3k . ‘
-moq f ? Kugg #5 + Z Kyoi ¢~ =0, i =1,2,...,N. (B.8)
J

Using this relation in (B.7), one gets

1k ,
mi Z Xlk ¢i = Ini J 1 = l)E,tcn,N' (B,9)
k

Summing over 1 , interchanging the order of summation and rearranging,

one gets
N1k

2N 2. mi@s
1k

k=1 % m;

= 1, (B.10)

The kth term in the summation on the left hand side in Equation
(B.10) is defined as cin in Chapter IV, see Equation (4%.107). Thus,
it follows that

2N

s Ccr =1, (B.11)
k=1 IBK
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