
CARBON NANOTUBES: CARBON-14 LABELING AND ECOLOGICAL 
AVAILABILITY 

 
by 

 
Elijah Joel Petersen 

 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Environmental Engineering) 
in The University of Michigan 

2007 
 
 

Doctoral Committee: 
 
 Professor Walter J. Weber, Jr., Chair 
 Professor Gordon L. Amidon 
 Professor Kim F. Hayes 
 Associate Professor Nicholas Kotov 



 

 

 

 

 

 

 

 

 

© Elijah Petersen 

All rights reserved 

2007 

 



 ii

 

 

 

 

 

 

 

 

To all sentient beings 



 iii

Acknowledgements 

 

I thank my parents, sister and other family members for their unconditional 

love and support as I worked towards my Ph.D.  No career direction I could have 

made impacted their love for me and at no point did they criticize whatever path I 

chose to take.  They were there for me during the inevitable challenges that 

come during work and my personal life and their guidance and support were the 

best gifts I could have asked for. 

 Working with the other members of the Weber group has also been a 

great joy and source of support.  I have enjoyed getting to know the many 

members of our research group: Debbie Ross, Daniel Burlingame, Lisa Colosi, 

Heng Li, John Norton, Nathan Dunahee, Jixin Tang, Roger Pinto, and Qingguo 

(Jack) Huang.  I also am indebted to the numerous undergraduate students who 

helped me conduct the experiments included in this dissertation: Arde 

Boghossian, Fernando Delgado, Bradley Osinski, Kyle Roebuck, Karen Yeh, 

Beata Leung, Erica Braverman, and Katelyn Klein.  Arde and Brad were 

especially great assistants for having worked with me for two years.   

 One of my great surprises during my doctoral studies has been the 

mentorship provided by Jack Huang first as a postdoc in the Weber group and 

then remotely from his position at the University of Georgia



 iv

(congratulations again Jack!).   Reading a proposal that he wrote with Dr. 

Weber first inspired me to begin studying the environmental behaviors of 

carbon nanotubes.  Jack helped me consistently throughout my dissertation 

work with developing experimental methods, interpreting results, and writing 

papers and grants.  He was also a great friend who always took the time to 

assist me with anything regardless of his busy schedule. 

 I also am sincerely grateful for the opportunity to conduct research 

under Dr. Weber.  I passed up the unbearably temperate weather in California 

to study under him at the University of Michigan, and I am so thankful for this 

opportunity.  I was flattered by his confidence in my abilities when he allowed 

me to branch out from the research group’s current expertise by investigating 

carbon nanotubes and when he supported me to begin writing grant 

proposals.  Working with him has given me insights into the life of a 

consummate scientist and scholar. 

 I would also like to thank the invaluable assistance provided by my 

committee members Dr. Hayes, Dr. Amidon, and Dr. Kotov.  I had the great 

opportunity to work under Dr. Hayes as a Graduate Student Instructor for 

CEE 260 where I learned so much about what it is like to teach engineering 

concepts to undergraduates.  I also appreciated his insightful suggestions and 

demand for precision with regards to my dissertation research.  Dr. Amidon 

also kindly provided me with the cells that were used in Chapter 4, and this 

chapter would not have been included in this thesis without his 

encouragement.  His suggestions helped me contextual how this work fit into 



 v

my thesis.  Dr. Kotov kindly allowed me to use instruments in his laboratory 

throughout my dissertation.  I was in his lab so often that I sometimes felt like 

a surrogate group member.  Without this generosity, I am not sure how I 

could have gathered all of the data to complete this work.  I also sincerely 

appreciate his letters of recommendation, one of which helped me to win the 

Fulbright scholarship through which I will be continuing this nanotube 

research in Finland. 

Lab director Tom Yavaraski played an absolutely critical role helping 

me develop my carbon nanotube synthesis procedure and giving me advice 

at innumerable points during my dissertation research.  Rick Burch made 

numerous pieces of equipment for me.  Harald Eberhart made me a quartz 

tube and boats for the carbon nanotube synthesis.  Haiping Sun and Kai Sun 

were extremely helpful training and advising me with the various instruments 

at EMAL. 

Funding for this research was provided in part by an award from the 

University of Michigan Graham Environmental Sustainability Institute and U.S. 

EPA grant RD833321.  I also thank the National Science Foundation for a 

Graduate Research Fellowship. 



 vi

Table of Contents 
 

Dedication. ...................................................... ………………………………………ii 
Acknowledgements .............................................................................................. iii 
List of Figures .......................................................................................................ix 
List of Tables ........................................................................................................xi 
Abstract ...............................................................................................................xii 
CHAPTER 1. INTRODUCTION AND BACKGROUND......................................... 1 

1.1 Background................................................................................................. 1 
1.1.1 Overview .............................................................................................. 1 
1.1.2 Novel Considerations Related to The Potential Environmental and 
Human Health Implications of Nanomaterials................................................ 2 
1.1.3 Cellular Interactions with Carbon Nanotubes ....................................... 6 
1.1.4 Interactions Between Carbon Nanotubes and Organisms.................... 8 
1.1.5 Bioaccumulation of Hydrophobic Organic Chemicals ......................... 10 
1.1.6 Previous Limitations with Quantifying Carbon Nanotubes in Biological 
and Environmental Medias .......................................................................... 14 

1.2 Objectives ................................................................................................. 15 
1.3 Overview................................................................................................... 17 

Chapter 2. MATERIALS AND METHODS .......................................................... 21 
2.1 Chemicals ................................................................................................. 21 
2.2 Single- and Multi-Walled Carbon Nanotube Synthesis and Purification.... 22 

2.2.1 Single-Walled Carbon Nanotube Synthesis........................................ 22 
2.2.2 Multi-Walled Carbon Nanotube Synthesis .......................................... 22 
2.2.3 Carbon Nanotube Purification ............................................................ 23 

2.3 Carbon-14 Labeling Quantification............................................................ 23 
2.3.1 Solid Carbon Nanotubes .................................................................... 23 
2.3.2 Carbon Nanotube Radioactivity Measurements in Solutions.............. 24 

2.4 Carbon Nanotube Characterization........................................................... 25 
2.4.1 Transmission Electron Microscopy..................................................... 25 
2.4.2 Scanning Electron Microscopy ........................................................... 25 
2.4.3 Thermal Gravimetric Analysis............................................................. 25 
2.4.4 Raman Spectroscopy ......................................................................... 26 
2.4.5 X-ray Photoelectron Spectroscopy ..................................................... 26 

2.5 Carbon Nanotube Acid Modification.......................................................... 27 
2.6 HeLa Cell Uptake Tests ............................................................................ 27 

2.6.1 Cell Culturing...................................................................................... 27 
2.6.2 Cell Assimilation ................................................................................. 27 

2.7 Lumbriculus variegatus Uptake and Depuration Experiments................... 29



 vii

2.7.1 Aquatic Worm Culturing...................................................................... 29 
2.7.2 Sediments .......................................................................................... 30 
2.7.3 Uptake Experiments ........................................................................... 30 
2.7.4 Depuration Experiments ..................................................................... 33 
2.7.5 Statistical Analysis.............................................................................. 33 

2.8 Eisenia foetida Uptake and Depuration Experiments................................ 33 
2.8.1 Earthworm Culturing........................................................................... 33 
2.8.2 Soils.................................................................................................... 34 
2.8.3 Uptake Experiments ........................................................................... 34 
2.8.4 Depuration Experiments ..................................................................... 36 

2.9 Phase Distribution Experiments ................................................................ 36 
2.9.1 Settling Experiments........................................................................... 36 
2.9.2 Octanol-Water Phase Distribution Experiments ................................. 37 

Chapter 3. CARBON-14 SINGLE- AND MULTI-WALLED CARBON NANOTUBE 
SYNTHESIS AND CHARACTERIZATION ......................................................... 40 

3.1 Introduction ............................................................................................... 40 
3.2 Experimental Methods .............................................................................. 42 
3.3 Results and Discussion............................................................................. 43 

3.3.1 Carbon-14 Labeling Quantification ..................................................... 43 
3.3.2 Transmission Electron Microscopy..................................................... 44 
3.3.3 Scanning Electron Microscopy ........................................................... 44 
3.3.4 Thermal Gravimetric Analysis............................................................. 45 
3.3.5 Raman Spectroscopy ......................................................................... 46 
3.3.6 X-ray Photoelectron Spectroscopy ..................................................... 46 

3.4 Summary................................................................................................... 47 
Chapter 4. MULTI-WALLED CARBON NANOTUBE ASSIMILATION BY HELA 
CELLS ................................................................................................................ 64 

4.1 Introduction ............................................................................................... 64 
4.2. Methods ................................................................................................... 66 
4.3 Results and Discussion............................................................................. 67 
4.4 Summary................................................................................................... 70 

Chapter 5. ECOLOGICAL UPTAKE AND DEPURATION OF CARBON 
NANOTUBES BY LUMBRICULUS VARIEGATUS............................................. 73 

5.1 Introduction ............................................................................................... 73 
5.2 Methods .................................................................................................... 75 
5.3 Results and Discussion............................................................................. 77 

5.3.1 Uptake Experiments ........................................................................... 77 
5.3.2 Depuration Experiments ..................................................................... 79 

5.4 Summary................................................................................................... 79 
Chapter 6. BIOACCUMULATION OF RADIOACTIVELY LABELED CARBON 
NANOTUBES BY EISENIA FOETIDA ................................................................ 84 

6.1 Introduction ............................................................................................... 84 
6.2 Methods .................................................................................................... 85 
6.3 Results and Discussion............................................................................. 86 

6.3.1 Uptake Experiments ........................................................................... 86 
6.3.2 Depuration Experiments ..................................................................... 88 



 viii

6.4 Summary................................................................................................... 90 
Chapter 7. ECOLOGICAL UPTAKE AND PHASE PARTITIONING OF PURIFIED 
AND ACID-MODIFIED MULTI-WALLED CARBON NANOTUBES..................... 94 

7.1 Introduction ............................................................................................... 94 
7.2 Experimental Methods .............................................................................. 96 
7.3 Results and Discussion............................................................................. 98 

7.3.1 Ecological Uptake and Depuration ..................................................... 98 
7.3.2 Phase Partitioning Behaviors ........................................................... 100 

7.4 Overview................................................................................................. 103 
Chapter 8. CONCLUSIONS AND FUTURE WORK ......................................... 110 

8.1 Conclusions ............................................................................................ 110 
8.2 Future Work ............................................................................................ 113 

REFERENCES................................................................................................. 117 
 



 ix

List of Figures 

Figure 1.1: Schematic of carbon nanotube structures: a) single-walled carbon 
nanotubes and b) multi-walled carbon nanotubes. ............................................20 

Figure 3.1: Transmission electron micrograph of single-walled carbon nanotubes 
(250 kx magnification) ............................................................................................48 

Figure 3.2: Transmission electron micrograph of multi-walled carbon nanotubes 
(30 kx magnification)...............................................................................................49 

Figure 3.3: High-resolution transmission electron micrographs of multi-walled 
carbon nanotubes (300 kx magnification) ...........................................................50 

Figure 3.4: Transmission electron micrograph of multi-walled carbon nanotubes 
treated with a 3:1 mixture of sulfuric to nitric acid (150 kx magnification)......51 

Figure 3.5: Scanning electron micrograph of HCl purified multi-walled carbon 
nanotubes (20 kx magnification)...........................................................................52 

Figure 3.6: Length distribution plot of HCl purified multi-walled carbon nanotubes 
(n=239)......................................................................................................................53 

Figure 3.7: Scanning electron micrograph of 3:1 acid mixture treated multi-walled 
carbon nanotubes. ..................................................................................................54 

Figure 3.8: Length distribution plot of 3:1 acid mixture treated multi-walled carbon 
nanotubes (n=165)..................................................................................................55 

Figure 3.9: Thermal gravimetric analyzer graph of purified single-walled carbon 
nanotubes.................................................................................................................56 

Figure 3.10: Thermal gravimetric analyzer graph of 6N nitric acid purified multi-
walled carbon nanotubes. ......................................................................................57 

Figure 3.11: Thermal gravimetric analyzer graph of HCl purified multi-walled 
carbon nanotubes. ..................................................................................................58 

Figure 3.12: Thermal gravimetric analyzer graph of 3:1 modified multi-walled 
carbon nanotubes. ..................................................................................................59 

Figure 3.13: Raman spectrum of single-walled carbon nanotubes.........................60 
Figure 3.14: X-ray photoelectron spectrum of HCl purified multi-walled carbon 

nanotubes with elemental analysis. .....................................................................61 
Figure 3.15: X-ray photoelectron spectrum of 3:1 acid mixture modified multi-

walled carbon nanotubes with elemental analysis.............................................62 
Figure 5.1: Biota-sediment accumulation factors (BSAFs) of single-walled carbon 

nanotubes (SWNT) (0.03 mg/g dry sediment), multi-walled carbon 
nanotubes (MWNT) (0.37 mg/g dry sediment) and pyrene (0.054 mg/g dry 
sediment) uptake by L. variegatus .......................................................................81 

Figure 5.2: Biota-sediment accumulation factors (BSAFs) of single-walled carbon 
nanotubes (SWNT) (0.03 mg/g dry sediment), multi-walled carbon



 x

       nanotubes (MWNT) (0.37 mg/g dry sediment) and pyrene (0.054 mg/g dry 
sediment) depuration by L. variegatus.................................................................82 

Figure 6.1: Bioaccumulation factors (BAFs) of single-walled carbon nanotubes 
(SWNT) (0.03 mg/g dry soil), multi-walled carbon nanotubes (MWNT) (0.3 
mg/g dry soil) and pyrene (0.04 mg/g dry soil) spiked to Chelsea soil ...........91 

Figure 6.2: Bioaccumulation factors (BAFs) for the depuration behaviors of 
single-walled carbon nanotubes (SWNT) (0.03 mg/g dry sediment), multi-
walled carbon nanotubes (MWNT) (0.3 mg/g dry sediment) and pyrene (0.04 
mg/g dry sediment) spiked to Chelsea soil after 14 days exposure ...............92 

Figure 7.1: Bioaccumulation factors (BAFs) for L. variegatus uptake of 3:1 
modified MWNTs spiked to sediment amended with 10% by mass Michigan 
Peat .........................................................................................................................104 

Figure 7.2: Bioaccumulation factors (BAFs) for earthworm uptake of 3:1 modified 
MWNTs spiked to Chelsea soil. ..........................................................................105 

Figure 7.3: Bioaccumulation factors (BAFs) for L. variegatus depuration of 3:1 
modified and HCl purified MWNTs, SWNTs, and pyrene spiked to sediments 
amended with 10% by mass Michigan Peat after 14 days of exposure.  ...106 

Figure 7.4: Bioaccumulation factors (BAFs) for L. variegatus depuration of 3:1 
modified spiked to Michigan sediment after 28 days of exposure.................107 

Figure 7.5: Settling of 3:1 treated or HCl purified multi-walled carbon nanotubes 
in water (H2O) or octanol. ....................................................................................108 



 xi

List of Tables 

Table 3.1: Summary of carbon purity for different carbon nanotube samples 
determined using thermal gravimetric analysis. .................................................63 

Table 5.1: Biota-sediment accumulation factors (BSAFs) for L. variegatus uptake 
after 14 days of exposure ......................................................................................83 

Table 6.1: Bioaccumulation factors (BAFs) after 14 days exposure for single-
walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), 
and pyrene uptake by E. foetida ...........................................................................93 

Table 7.1: Octanol/water distribution coefficients for multi-walled carbon 
nanotubes (MWNTs) dispersed in either water (H2O) or octanol ..................109 



 xii

Abstract 

 
Carbon nanotubes comprise a class of nanomaterials having 

demonstrated promise for broad ranges of potential applications.  The ecological 

and human health risks these nanomaterials may pose after release into 

environmental systems, however, are yet largely unknown. 

The lack of an adequate method for quantifying carbon nanotubes in 

environmental media has been a principal challenge associated with determining 

their environmental behaviors.  To address this problem, a modified chemical 

vapor deposition process employing carbon-14 labeled methane was used to 

synthesize radioactively labeled single- and multi-walled carbon nanotubes 

(SWNTs and MWNTs).  These nanotubes were used to show that HeLa cells 

rapidly and apparently irreversibly assimilated unmodified MWNTs.   

Given these results, previous qualitative detections of nanotubes in 

ecological receptors, and shared chemical properties with polycyclic aromatic 

hydrocarbons (PAHs), the bioaccumulation potential of nanotubes was 

investigated.  The labeled nanotubes and a representative PAH, pyrene, were 

individually spiked to identical sediment and soil samples. The uptake and 

depuration behaviors of these compounds by the earthworm Eisenia foetida and 

the oligochaete Lumbriculus variegatus, potential entry points to
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terrestrial and aquatic food chains, were then assessed.  Bioaccumulation values 

determined for the nanotubes were almost two orders of magnitude smaller than 

those measured for pyrene, indicating that purified nanotubes, unlike pyrene, are 

not readily absorbed into organisms. 

 Carbon nanotubes are also commonly physically and chemically altered, 

and these modifications can change their physicochemical properties and 

possibly also their environmental behaviors.  Purified MWNTs were treated with a 

3:1 mixture of sulfuric to nitric acid, a process that made the nanotubes more 

hydrophilic.  These nanotubes were similarly spiked to soils and sediments, but 

their ecological uptake was determined to be the same as that for the unmodified 

nanotubes. 

 The octanol-water distribution coefficient, kow, represents a chemical 

property known to relate to bioaccumulation and is frequently employed for 

predictions thereof.  A modified shake-flask method was used to measure the 

distributions of purified and 3:1 acid modified MWNTs between water and 

octanol.  While their bioaccumulation behaviors were similar, different distribution 

coefficients were found for these nanotubes thus suggesting that, unlike typical 

hydrophobic organic chemicals, kow coefficients may not predict such behaviors 

for nanotubes. 
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Chapter 1 

 

INTRODUCTION AND BACKGROUND 

 
1.1 Background 

1.1.1 Overview 

Carbon nanotubes (CNTs), first discovered by Iijima in 1991 (Iijima 

1991), comprise one of the most promising classes of new materials to 

emerge from nanotechnology to date.  Two principal types of CNTs have 

been fabricated.  Single-walled carbon nanotubes (SWNTs) are one-layered 

graphitic cylinders having diameters on the order of a few nanometers, and 

multi-walled carbon nanotubes (MWNTs) comprise between 2 to 30 

concentric cylinders having outer diameters commonly between 30-50 nm 

(see Figure 1.1).  Their unique structures endow them with exceptional 

material properties with respect to electrical and thermal conductivity, 

strength, and high surface-to-mass ratios.  These characteristics in turn make 

them suitable for numerous potential applications, including uses in 

composite materials, sensors, and hydrogen-storage fuel cells (Dillon et al. 

1997; Dalton et al. 2003; Snow et al. 2005).  A number of these applications 

have reached or are approaching their respective commercialization phases. 
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CNT research has been driven to date by potential applications, and 

extensive information regarding their relevant electrical, thermal and 

mechanical properties has been forthcoming. Their potential health and 

environmental impacts, on the other hand, have not been similarly 

characterized, and the risks they pose to the welfare of humankind and the 

environment are not well understood (Colvin 2003).  If even a small fraction of 

their potential applications are realized, it is inevitable that they will enter such 

human and ecologically critical environments and media as the water we 

drink and the food we eat.  The materials comprising the pure nanotubes may 

themselves pose environmental or human health risks, or they may act as 

adsorbents, concentrators, and durable sources and carriers of various 

environmental contaminants (Yang et al. 2006b). This research initiates an 

assessment of the extent to which SWNTs or MWNTs released into 

environmental systems may bioaccumulate in human and ecological 

receptors. 

1.1.2 Novel Considerations Related to The Potential Environmental and 

Human Health Implications of Nanomaterials 

Nanomaterials have been defined as particles possessing one 

characteristic dimension less than 100 nm.  As described above for carbon 

nanotubes, materials on this scale possess surprising new properties that 

have given rise to numerous applications in a broad range of fields.  Materials 

on this size scale, however, may also pose unique environmental and human 

health risks.  Few new technologies have been without deleterious impacts 
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and nanotechnology is unlikely to be different (Colvin 2003; Masciangioli and 

Zhang 2003; Oberdorster et al. 2005; Wiesner et al. 2006). 

 A principal challenge for determining the potential ecological and 

human health risks posed by nanoparticles is the numerous differences 

between them and typical environmental pollutants, differences that may 

substantially limit the application of common environmental risk and/or fate 

and distribution models for nanomaterials.  One such difference is the size of 

nanomaterials.  Unlike most contaminants, nanoparticles are within the size 

range of many cellular organelles.  If such materials are able to enter cells, as 

has been demonstrated for many types of nanoparticles (Scrivens et al. 1994; 

Marinakos et al. 2001; Jaiswal et al. 2003; El-Sayed et al. 2005; Kirchner et 

al. 2005), they could potentially alter cellular functioning in novel positive or 

negative ways.  Also unlike common environmental pollutants, nanoparticles 

are known to agglomerate, and in this form may pose exacerbated or 

mitigated risks.  The most striking example of this phenomenon has been 

observed with fullerene particles.  After treatments similar to those that they 

could experience in environmental systems, some fullerene particles formed 

aggregates, often known as nC60, that are cytotoxic at concentrations seven 

orders of magnitude less than other slightly modified fullerene particles 

(Sayes et al. 2004; Brant et al. 2005).  Another difference between 

nanomaterials and most contaminants relates to surface coatings or 

functionalization of the nanomaterials.  Carbon nanotubes, for example, have 

been solubilized/dispersed by a wide range of polymers, surfactants, and 
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macromolecules (O'Connell et al. 2002; Zheng et al. 2003; Sinani et al. 2005) 

and also by chemical treatments such as addition of functional groups to the 

nanotubes or shortening them with acid treatments (Liu et al. 1998; Ziegler et 

al. 2005; Kostarelos et al. 2007).  Furthermore, nanotubes may also interact 

with compounds ubiquitous in environmental systems, such as naturally 

occurring organic matter (Hyung et al. 2007).  As such, nanotubes modified 

with these different methodologies or impacted after their release into 

environmental systems could manifest distinctly different environmental 

behaviors.  Some types of nanoparticles, such as carbon nanotubes, also 

differ from typical hydrophobic organic chemicals (HOCs) in that they are 

polydisperse; e.g., regardless of the synthesis procedure employed, carbon 

nanotubes vary widely in length and diameter each combination of which may 

dramatically or subtly influence their environmental behaviors.  In this regard, 

CNTs more closely resemble natural organic matter than HOCs.   

 Lastly, the desorption behaviors of nanomaterials may differ from those 

of typical hydrophobic organic chemicals.  After varying time periods, an 

equilibrium can be approached for organic chemicals between soils or 

sediments and water, a result that stems from the chemicals’ ability to transfer 

between these phases.  In other words, the attachment of the organic 

chemicals to the organic carbon fractions of the soil or sediments is to some 

extent reversible.  For nanoparticles such as carbon nanotubes that typically 

require sonication prior to dispersal in aqueous solutions, it is unlikely that 

nanotubes could readily transfer back into the aqueous phase after sorption.  
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It is possible, however, that bioturbation or certain hydrodynamic conditions in 

water bodies could lead to mixing which could then resuspend the nanotubes.  

Alternatively, interactions with natural organic matter as described above 

could change the nanotube properties and cause their dispersal into aqueous 

systems.  Even if nanotubes were not resuspended, nanotubes may be 

released from the soil or sediment particles in the guts of ecological receptors 

or the gastrointestinal tracts of humans after uptake and then be available for 

absorption into the organisms.  The extent to which these various scenarios 

would influence the fate of nanotubes is yet unknown. 

 Given these significant potential and proven differences between the 

behaviors of nanoparticles and typical environmental pollutants, the 

terminology used to describe nanomaterials is important; this nomenclature 

may intentionally or unintentionally suggest certain environmental behaviors 

for these materials which may be misleading.  Caution should be exercised in 

describing nanomaterials using terms such as molecules, macromolecules, or 

chemicals, as these terms implicitly suggest a similarity between 

nanomaterial behaviors and those of typical organic or inorganic pollutants or 

certain biomolecules.  At the same time, the fundamental principles 

developed for environmental systems and processes will likely still serve as 

useful starting points for studying the environmental behaviors of 

nanomaterials, but the potential for different behaviors should be 

acknowledged and new paradigms developed when necessary. The most 

commonly used phrase in the reviews of the potential environmental and 



 6

human health risks to describe nanomaterials is “nanoparticle” (Colvin 2003; 

Masciangioli and Zhang 2003; Oberdorster et al. 2005; Wiesner et al. 2006).  

This term indicates differences between nanomaterials and typical pollutants 

as described above and also captures how such materials often act more 

similarly to particles than typical pollutants.  The term particle, however, 

suggests certain features and behaviors in the field of pulmonary toxicology, 

an association that may be misleading (Colvin 2003). 

1.1.3 Cellular Interactions with Carbon Nanotubes 

Cellular interactions with carbon nanotubes have gained widespread 

research attention in recent years both with regards to using CNTs as a tool 

for biomedical studies (Strong et al. 2003; Cherukuri et al. 2004; Kam et al. 

2004; Pantarotto et al. 2004; Barone et al. 2005; Gheith et al. 2005; Heller et 

al. 2005a; Singh et al. 2005; Cherukuri et al. 2006; Gheith et al. 2006; Kam et 

al. 2006; Singh et al. 2006; Liu et al. 2007a; Liu et al. 2007b) as well as with 

regards to the potential toxicological properties of carbon nanotubes 

(Shvedova et al. 2003; Correa-Duarte et al. 2004; Pantarotto et al. 2004; Cui 

et al. 2005; Ding et al. 2005; Heller et al. 2005a; Jia et al. 2005; Manna et al. 

2005; Monteiro-Riviere et al. 2005; Sato et al. 2005; Bottini et al. 2006; Chen 

et al. 2006; Sayes et al. 2006; Smart et al. 2006; Becker et al. 2007; 

Kostarelos et al. 2007; Pulskamp et al. 2007; Wick et al. 2007).  The 

toxicological literature on cellular interactions with CNTs is vast and often 

conflicting, with some researchers showing the biocompatibility of carbon 

nanotubes and others nanotubes’ cytotoxicity (Smart et al. 2006).  Numerous 
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factors are likely involved in the toxicity of nanotubes, including the 

physicochemical properties of the nanotubes (Sayes et al. 2006; Becker et al. 

2007) and the presence of metal catalysts in the nanotube mixtures 

(Shvedova et al. 2003; Kagan et al. 2006).  Two factors that have not been 

readily characterized are the rates at which CNTs can enter cells and the 

masses of nanotubes that have entered the cells.  Initial concentrations of 

carbon nanotubes dispersed in cell media are measures generally used for 

toxicological studies, but this approach does not readily indicate the quantity 

of those nanotubes that have attached to or entered the cells to cause cellular 

dysfunction and damage.  Rates at which nanotubes can enter cells would be 

particularly important measures for assessing biodistributions of nanotubes in 

organisms.  After oral ingestion of contaminated water, for example, 

nanotubes would be in transit through the digestive systems of organisms and 

the rate at which they interact with cells lining this system could partially 

determine their absorption into systemic circulation in the organisms. 

Cherukuri et al. (2004) conducted the primary research investigation of 

the cellular uptake rates of CNTs.  They used spectrofluorimetry to assess the 

uptake rates of single-walled carbon nanotubes dispersed with a noncytotoxic 

pluronic surfactant by mouse macrophage-like cells, and showed a linear 

increase in cellular nanotube concentrations with time.  Other investigators 

have estimated nanotube concentrations in cells using a variety of 

spectroscopic methods or by bonding bulky fluorescent polymers on the 

nanotubes (e.g., Becker et al 2007 and Kam et al. 2006).  These experimental 
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approaches, however, have significant limitations with regards to human and 

ecological toxicology and environmental investigations as discussed in 

section 1.1.6. 

 While uncertainty remains regarding the cytotoxicological properties of 

carbon nanotubes, many researchers have indicated that they can indeed 

enter cells (Cherukuri et al. 2004; Kam et al. 2004; Heller et al. 2005a; 

Monteiro-Riviere et al. 2005; Kam et al. 2006; Becker et al. 2007; Kostarelos 

et al. 2007).  These nanotubes were typically modified chemically and/or 

bound by surfactants or biomacromolecules such as DNA.  In particular, 

Kostarelos (2007) showed that a broad range of functionalized SWNTs and 

MWNTs could enter numerous types of cells including 3T6, HeLa, Jurkat 

human T-lymphoma, human keratinocytes, Escherichidia coli, and 

Crpyptococcus neoformans. 

1.1.4 Interactions Between Carbon Nanotubes and Organisms 

 Given the apparent widespread ability for carbon nanotubes to enter 

cells during in vitro experiments, interactions between nanotubes and whole 

organisms becomes of increasing importance.  The preponderance of in vivo 

toxicological investigations with CNTs have centered around inhalation risks 

(Lam et al. 2004; Warheit et al. 2004; Lam et al. 2006).  This focus stems 

mainly from the morphological similarities between carbon nanotubes and 

asbestos.  This research, however, does not address other potentially 

significant exposures pathways for ecological receptors after carbon 

nanotubes are released into environmental matrices, such as by oral 
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ingestion or dermal absorption.  Under these conditions of prolonged 

exposure, the distribution of nanotubes within organisms and potential CNT 

accumulation in the organisms’ fatty tissues would be of critical importance. 

 The biodistribution of carbon nanotubes has been studied using rats 

(Wang et al. 2004; Singh et al. 2006; Liu et al. 2007a) and rabbits (Cherukuri 

et al. 2006) to assess the applicability of CNTs for medicinal purposes.  In 

contrast to the cellular studies showing facile cellular uptake, these 

researchers generally did not find significant concentrations of nanotubes in 

organisms after intravenous injection.  One exception was for Liu et al. (2007) 

who found significant accumulation in the liver 24 hours after exposure, a 

difference they speculated to stem from the shorter length of their SWNTs.  

The cause of the discrepancies between these in vivo studies and the 

multitude of in vitro investigations showing significant cellular uptake is 

unclear. They are unlikely to be entirely due to nanotube length, because 

nanotubes having a range of lengths, diameters, and agglomeration states 

were used in the cellular studies.  It is also uncertain how closely the 

behaviors of highly modified carbon nanotubes after intravenous injection 

would relate to the behaviors of nanotubes released into ecosystems.  

Organisms could possibly be exposed to CNTs in environmental settings 

through inhalation, dermal absorption, and oral uptake of contaminated water, 

soil, or food.  The nanotubes in such systems could be present in either 

dispersed or aggregated forms and would be unlikely to possess the 

sophisticated surface coatings utilized in these in vivo experiments. 
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 The influence of carbon nanotubes on aquatic organisms has also 

been investigated (Templeton et al. 2006; Cheng et al. 2007; Roberts et al. 

2007; Smith et al. 2007).  All of these studies indicated that CNTs exerted 

toxic effects on these organisms, although one investigator speculated that 

the metal catalysts in the mixture may have been the primary cause of the 

toxicity (Cheng et al. 2007).  Templeton and co-workers (2006) showed that, 

while purified SWNTs did not cause acute or chronic toxicity, unpurified 

SWNTs and a fraction of shorter SWNTs did have significant toxic impacts, 

thus highlighting the importance that size could play in toxicological 

investigations.  Lysophosphatidylcholine coated SWNTs were qualitatively 

detected in Daphnia magna using Raman spectroscopy (Roberts et al. 2007), 

a technique that can identify the presence of SWNTs but cannot give 

quantitative results.  The presence of surfactant-stabilized SWNTs has also 

been identified in fish (Smith et al. 2007).  These results suggest the potential 

for carbon nanotubes to accumulate in ecological receptors. 

1.1.5 Bioaccumulation of Hydrophobic Organic Chemicals 

One of the critical environmental risks associated with hydrophobic 

organic chemicals (HOCs) is bioaccumulation, a process by which 

compounds accumulate in organisms’ fatty tissues with time.  This 

phenomenon can be particularly dangerous when the chemicals are present 

in environmental systems at concentrations that do not cause immediate 

effects but do build up with time to levels that pose chronic toxicity (Neely et 

al. 1974).  By the time these effects have been determined, it may be difficult 
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to limit the introduction of a compound to the environment to prevent its toxic 

impacts.  Absorbed chemicals could also be transported throughout food 

chains, accumulating in organisms at higher trophic levels (i.e., humans) at 

increasing concentrations. 

 After the discovery of this phenomenon, characteristics to identify 

compounds that may have this potential were sought.  A principal chemical 

property that has been linked to bioaccumulation is the octanol-water 

partitioning coefficient (kow) (Di Toro et al. 1991; Belfroid et al. 1996; Mackay 

and Fraser 2000).  This coefficient represents a ratio of equilibrium 

concentrations of a chemical in water and octanol, a phase having chemical 

properties similar to those of fatty tissues.  The mechanistic basis for use of 

this coefficient in ecosystems is equilibrium partitioning theory (Di Toro et al. 

1991).  This theory assumes that a compound reaches a thermodynamic 

equilibrium among the various phases present in a system through passive 

diffusion in response to chemical potential differences in those phases.  This 

approach has a number of recognized limitations, however, including a linear 

sorption model and failure to account for biotransformation, chemical aging in 

organic soil phases, and behavioral differences among organisms (Belfroid et 

al. 1996). 

 The biota-sediment (or soil) accumulation factor (BSAF) is often used 

in this framework.  This term represents the concentration of a compound in 

the organism normalized by its lipid content divided by that in a soil or 

sediment normalized by its organic carbon content.  Although some authors 
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suggest a decrease in BSAF values for highly hydrophobic compounds 

(Thomann et al. 1992), a relationship between accumulation by organisms in 

terrestrial or sediment ecosystems and hydrophobicity has not been generally 

found (Belfroid et al. 1996).  This finding can be explained by assuming a 

similar relative increase in affinity by the organisms’ lipids and by the soil or 

sediment organic carbon for HOCs that possess higher octanol-water 

partitioning coefficients.   

Although the octanol-water partitioning coefficients of carbon 

nanotubes have not previously been measured, the highly hydrophobic nature 

of nanotubes suggests they will also possess large kow values.  Equilibrium 

partitioning behavior suggests that in the absence of sediments nanotubes 

would accumulate in organisms at high concentrations as a result of the 

greater affinity for lipid phases than for water.  Numerous correlations have 

been formulated to link kow values, aqueous concentrations of organic 

chemicals, and the corresponding concentrations in fish (Neely et al. 1974; 

Mackay and Fraser 2000).  It would thus appear tempting to use any 

measured partitioning coefficient of carbon nanotubes to predict their uptake 

by fish and other organisms.  As described above, the use of equilibrium 

partitioning could also be used to predict the behaviors of nanotubes in 

systems with soils or sediments.  Under these conditions nanotubes would be 

expected to exhibit similar BSAF values to typical HOCs given the predicted 

strong interactions with both the sediment or soil organic matter and the 

organism fatty tissues.   
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By this logic, one possible approach for predicting the uptake of carbon 

nanotubes by ecological receptors is by comparison with compounds that 

share chemical similarities.  CNTs, for example, comprise molecular 

structures containing extensive sp2 carbons arranged in fused benzene rings 

(Iijima 1991). Their respective smaller macromolecular counterparts having 

between two to seven aromatic rings, polycyclic aromatic hydrocarbons 

(PAHs), are known to readily accumulate in the fatty tissues of organisms, in 

large part as a result of their hydrophobicities and resistances to microbial 

degradation (Di Toro et al. 1991; Jager et al. 2003a).  Based on this 

comparison and the detection of nanotubes in cells and aquatic organisms, 

the possibility that these CNTs may similarly bioaccumulate in ecological 

receptors and be transferred throughout food chains thus represents a broad 

ranging and serious concern.   

The applicability of these theories and correlations developed for 

HOCs for predicting the environmental behaviors of nanotubes requires 

scrutiny though given the differences described above between the behaviors 

of nanotubes and typical chemical pollutants.  Humic acids, for example, are 

highly hydrophobic but not known to be absorbed by rats or fish likely as a 

result of their inability to pass through the biological membranes in the 

gastrointestinal tracts of the organisms (Geyer et al. 1987).  This result stands 

in contrast to what would be predicted with equilibrium partitioning behaviors.  

While nanotubes are known to enter cells, their ability to pass through the gut 

membranes has not yet been established.  As such, it is necessary to 
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investigate the extent to which nanotubes exhibit behaviors similar to those of 

HOCs. 

1.1.6 Previous Limitations with Quantifying Carbon Nanotubes in Biological 

and Environmental Medias 

Direct measurements of the ecological uptake of carbon nanotubes 

have not yet performed, largely because methods have not been available to 

readily quantify them in complex environmental or biological systems.  Such 

common experimental methods as optical counting, spectroscopic methods, 

and elemental carbon analysis can be used to measure carbon nanotubes in 

relatively pristine samples, but the presence of other carbonaceous materials 

severely hinders use of these methods.  The polydisperse nature of carbon 

nanotubes makes chromatographic techniques inapplicable; e.g., regardless 

of the synthesis procedure employed, nanotubes vary widely in length and 

diameter. Detection techniques able to distinguish carbon nanotubes from 

background carbon materials also remain a challenge.  Near-infrared 

spectrofluorimetry has been used to detect carbon nanotubes in cells and 

rabbits (Cherukuri et al. 2004; Cherukuri et al. 2006).  This approach cannot 

however detect metallic SWNTs or carbon nanotube bundles, and changes in 

carbon nanotube surface chemistry, a likely phenomenon in most 

environmental or biological systems, can influence absorption readings 

(O'Connell et al. 2002).  Raman spectroscopy has been used to determine 

the presence of SWNTS in Daphnia magna (Roberts et al. 2007), but this 

approach is best suited for SWNTs, and does not provide quantitative results. 
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The addition of fluorescing chemicals or polymers with radioactive metals to 

carbon nanotubes has been used to assess nanotube behavior in biological 

systems (Kam et al. 2004; Kam et al. 2006; Singh et al. 2006; Liu et al. 

2007a).  Such probes may however alter the physicochemical characteristics 

of the nanotubes, and thus likely also their environmental behavior.   

1.2 Objectives 

To overcome the many limitations associated with quantifying carbon 

nanotubes in biological and environmental samples, the first objective of this 

dissertation research effort was to synthesize carbon-14 labeled SWNTs and 

MWNTs.  Specifically, the carbon-14 isotope was incorporated into nanotubes 

using a modified chemical vapor deposition method with combinations of 

regular and carbon-14 labeled methane gas.  Beta emissions from this 

isotope can be detected in most samples following combustion of the material 

of interest and liquid scintillation counting.  This allows for facile quantification 

of modified or unmodified individual or bundles of SWNTs or MWNTs.   

Such a tool could then be used to assess the rate at which unmodified 

SWNTs and MWNTs become associated with organisms and human cells.  

As such, the second research objective was to measure carbon nanotube 

assimilation by human cells. Assimilation here refers to the combination of 

cellular uptake and strong attachment to the cell membrane.  This was 

investigated by determining the rate at which purified MWNTs interacted with 

HeLa cells, epithelial cells from a human carcinoma cell line.  The successful 

completion of this objective would outline a novel quantification approach that 
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would both hold many advantages for future toxicological investigations of 

carbon nanotubes and yield information regarding the extent to which cells 

may assimilate unmodified CNTs. 

Motivated by previous reports of the detection of CNTs in human cells 

and ecological receptors, the third objective was to measure the 

bioaccumulation potential of nanotubes in environmental receptors.  As 

previously stated, the ability for nanotubes to be absorbed by organisms and 

then transferred throughout food chains could pose significant environmental 

and human health risks.   Radioactively labeled carbon nanotubes were thus 

spiked to soils and sediments, and their uptake assessed by the earthworm 

Eisenia foetida and the oligochaete Lumbriculus variegatus, representative 

ecological receptors for terrestrial and sediment ecosystems, respectively.  

For these experiments, the accumulation and depuration behaviors of purified 

and acid modified carbon nanotubes were tested.  In addition to the potential 

risks caused by the nanotubes themselves, CNTs possess strong sorptive 

capacities for various metals including lead, cadmium, and copper (Li et al. 

2003) and a broad range of hydrophobic organic chemicals (Long and Yang 

2001; Yang et al. 2006a; Yang et al. 2006b).  Carbon nanotubes could 

hypothetically act similarly to charcoals and other forms of black carbon by 

sequestering such compounds and limiting their bioavailability and mobility.  It 

is also possible, conversely, that nanotubes loaded with highly elevated 

concentrations of toxic chemicals could transport these such chemicals into 

organisms exacerbating bioaccumulation and food chain transfer.  While such 
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effects were not explicitly investigated here, the potential for organisms to 

accumulate carbon nanotubes would likely correspondingly increase the 

uptake of other environmental contaminants. 

The fourth objective was to assess the extent to which distribution 

coefficients for carbon nanotubes between water and octanol could be used 

to predict CNTs’ bio-uptake behaviors.  As described above, this coefficient, 

called the octanol-water partitioning coefficient for typical HOCs, has been 

frequently used to estimate a chemical’s accumulation by environmental 

receptors (Di Toro et al. 1991; Belfroid et al. 1996; Mackay and Fraser 2000).  

The physicochemical properties of carbon nanotubes, however, differ broadly 

from those of typical organic compounds, and it is thus unclear the extent to 

which such a value would relate to the biological uptake of the nanotubes.  A 

modified shake-flask method was developed to determine the distribution 

coefficients for purified MWNTs and those modified by sonication in a 3:1 

mixture of sulfuric to nitric acid for 2 hrs, and these values then compared 

against the BSAFs determined during the completion of the third objective. 

1.3 Overview 

 The results of this research are presented in eight chapters.  The 

second chapter describes the experimental methods and materials.  The third 

chapter details results of the synthesis, purification, and characterization of 

radioactively labeled SWNTs and MWNTs.  In the fourth chapter, the 

radioactively labeled MWNTs were used to assess the assimilation rate for 

HeLa cells, a human cell line.  The potential for nanotubes to bioaccumulate 
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in terrestrial and sediment ecosystems was investigated in chapters 5 and 6 

with the oligochaete Lumbriculus variegatus and the earthworm Eisenia 

foetida.  Based on the broad range of nanotube physicochemical properties 

for various applications, the potential for uptake of chemically modified 

nanotubes using acid mixtures was studied in chapter 7.  Such modifications 

procedures have been previously shown to cause significant physicochemical 

changes to nanotubes with regards to their hydrophilicity and length.  Also in 

this chapter, a modified shake-flask method was developed to assess the 

distribution of MWNTs between octanol and water phases.  This marks the 

first time that such a coefficient has been measured for carbonaceous 

nanoparticles, and these values were compared against the uptake results for 

E. foetida and L. variegatus to assess the extent to which such coefficients 

can predict the bioaccumulation behaviors of MWNTs.  Lastly, overriding 

conclusions are drawn and auspicious future research directions highlighted 

in Chapter 8. 

 Results from this dissertation comprise four articles that either have 

been submitted or are being prepared for submission to peer-reviewed 

journals.  The results shown here have been presented at numerous 

conferences including three American Chemical Society conferences and one 

conference organized by the National Institute of Occupational Safety and 

Health.  I will also be giving a presentation at the Fall 2007 American 

Chemical Society conference based on my receipt of one of the 2007 

Graduate Student Paper Awards by the American Chemical Society’s 
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Environmental Chemistry Division for a paper using the results from chapters 

3 and 5.  This research was recently highlighted in an article by the Michigan 

Record on March 27, 2006.  
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Figure 1.1: Schematic of carbon nanotube structures: a) single-walled carbon 

nanotubes and b) multi-walled carbon nanotubes (Adapted from (Lueking 

2003).
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Chapter 2 

 

MATERIALS AND METHODS 

 

2.1 Chemicals 

Nickel nitrate hexahydrate (99%), magnesium nitrate hexahydrate 

(reagent grade), ferric nitrate (reagent grade), citric acid, n-octanol (ACS 

grade), sulfuric acid (technical grade; 93-98%), nitric acid (ACS grade; 68-

70%), hydrochloric acid (37-38%), and 30% hydrogen peroxide (ACS grade) 

were purchased from Fisher.  Alkaline magnesium carbonate was obtained 

from Sigma Aldrich. Helium gas (99.95%), argon gas (99.998%), and 

methane gas (99.97%) from Cryogenic Gases.  Carbon-14 methane was 

obtained from American Radiolabeled Chemicals.  Phosphate buffered saline 

(PBS) solution, dulbecco’s modified eagle’s medium, trypsin-EDTA, and fetal 

bovine serum were purchased from Gibco, while tryphan blue and 

penicillin/streptomycin were obtained from Sigma-Aldrich. Cell culture plates 

were from Falcon (78.5 cm2).   



 22

2.2 Single- and Multi-Walled Carbon Nanotube Synthesis and 

Purification 

2.2.1 Single-Walled Carbon Nanotube Synthesis 

Single-walled carbon nanotubes (SWNTs) were synthesized using a 

methane chemical vapor deposition method (Li et al. 2002).  Alkaline 

magnesium carbonate was annealed under Ar at 400 °C for 1 hr.  One gram 

of iron nitrate was dissolved in 100 mL MilliQ water and mixed with 10 g 

annealed magnesium carbonate.  This solution was bath sonicated for half an 

hour, dried at 115 °C, and the solids ground to a powder with mortar and 

pestle.   One gram of the catalyst was heated to 850 °C under a stream of 

250 mL/min Ar, and a mixture of regular and carbon-14 methane flowing at 60 

mL/min mixed with 250 mL/min argon gas was flown over the catalyst for 15 

minutes before cooling in Ar. 

2.2.2 Multi-Walled Carbon Nanotube Synthesis 

Multi-walled carbon nanotubes (MWNTs) were synthesized via 

chemical vapor deposition using methane as the feedstock gas (Chen et al. 

1997).  A 1.94-g quantity of nickel nitrate and a 2.56-g quantity of magnesium 

nitrate were thoroughly mixed, and 2 g of citric acid and 20 mL of Milli-Q 

water were then added.  This solution was dried at 100 °C for approximately 

40 hours, and the resulting green solid was calcined at 700 °C for 5 hours in 

air to produce a fluffy grey catalyst.  One hundred milligrams of this catalyst 

was added to a quartz boat, and hydrogen gas was flown at a rate of 100 

mL/min over the boat as the temperature in the reactor was raised to and held 
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at 600 °C.  The flow of hydrogen gas was then stopped, and a mixture of 

carbon-14 methane and regular methane was introduced at a flow rate of 

approximately 300 mL/min for thirty minutes.  After the methane gas flow was 

stopped, the reactor was cooled to room temperature in argon.  

2.2.3 Carbon Nanotube Purification  

For all experiments, except the HeLa cell assimilation one, the single- 

and multi-walled carbon nanotubes were purified by sonication in full-strength 

hydrochloric acid for 1 hr.  For the HeLa experiments, the MWNTs were 

purified by bath sonication in 6-N nitric acid for 1 hr.   

2.3 Carbon-14 Labeling Quantification 

2.3.1 Solid Carbon Nanotubes 

To determine the radioactivity of the synthesized nanotubes, the 

MWNTs were combusted in a biological oxidizer (OX 500, R. J. Harvey 

Instrumentation Corporation). This instrument was used to burn the 

nanotubes at 900°C for three minutes under a stream of oxygen gas running 

at 350 mL/min, the 14CO2
 released during the combustion process was 

captured in carbon-14 scintillation cocktail, and the radioactivity in the cocktail 

measured using a LS6500 liquid scintillation counter (Beckman, Fullerton, 

CA). Samples were generally counted for one hour or until the uncertainty in 

the measurement was less than 1% of the radioactivity.  The direct addition of 

solid carbon nanotubes to scintillation cocktail followed by scintillation 

counting was found to consistently underestimate the radioactivity of the 

carbon nanotubes relative to combusting the nanotubes in the biological 
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oxidizer.  The decreased measured radioactivity from samples in which the 

carbon nanotubes were directly added to scintillation cocktail likely stems 

from absorption of beta emissions by nanotube agglomerations, or from 

settling of insoluble nanotubes in the scintillation cocktail.     

2.3.2 Carbon Nanotube Radioactivity Measurements in Solutions 

The radioactivities of samples with MWNTs dispersed in water were 

determined by adding the solution to Ready Safe scintillation cocktail 

(Beckman Coulter Inc.).  Blank samples with only water and cocktail showed 

that the measured background radioactivity is roughly constant for 0 to 3 mL 

of water per 20 mL of cocktail solution.  As such, 2 mL of water was added to 

each scintillation vial for the settling experiments, and the water volume was 

evaporated from 20 mL to less than 3 mL for the phase distribution 

experiment.  A total of 20 background samples were used to determine the 

average background radioactivity. The radioactivity of samples in which 

MWNTs were dispersed in octanol was determined by adding 2 mL of 

solution to a 20 mL borosilicate scintillation vial with ScintiSafe cocktail 

(Fisher Scientific).  The background radioactivity was determined by the 

average of 10 blank samples.  Preliminary experiments showed that the 

measured radioactivity in samples with water and cocktail remained relatively 

constant over time, but that the radioactivity measured in the octanol samples 

decreased dramatically during the first 24 hours and then roughly stabilized.  

As such, the radioactivities of octanol-cocktail samples were measured by 

scintillation counting approximately 24 hours after the initial mixing, and the 
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measured radioactivity then corrected to yield the radioactivity immediately 

after the octanol solution was mixed with the cocktail. 

2.4 Carbon Nanotube Characterization 

2.4.1 Transmission Electron Microscopy 

Microscopic analysis of the carbon nanotubes was performed using 

transmission electron microscopy (TEM).  TEM samples were prepared by 

sonicating multi-walled carbon nanotubes in dimethyl formamide or single-

walled carbon nanotubes in water, dripping the solution onto holey carbon film 

grids (Ted Pella), and viewing the grids using a JEOL 3011 TEM operating at 

300 kV. 

2.4.2 Scanning Electron Microscopy 

For scanning electron microscopy (SEM) analysis, HCl purified or 3:1 

acid mixture treated multi-walled carbon nanotubes were dispersed in 

dimethyl formamide and added to silicon wafers.  These wafers were 

assessed with a Philips/FEI XL30 FEG scanning electron microscope using 

an accelerating voltage of 15.0 kV.    

2.4.3 Thermal Gravimetric Analysis 

The quality of the purified carbon nanotubes was assessed using 

thermal gravimetric analysis (TGA) (Pyris 1 TGA, Perkin Elmer).  TGA has 

been commonly used to measure the presence of amorphous carbon 

impurities and residual catalyst materials in carbon nanotube samples (Dillon 

et al. 1999; Chiang et al. 2001; Harutyunyan et al. 2002).  Amorphous carbon 

impurities generally burn at lower temperatures than carbon nanotubes as a 
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result of their less stable chemical configuration.  The presence of carbon 

impurities can thus be quantified by analyzing the derivative of the mass 

change with respect to temperature; peaks at lower temperatures represent 

the oxidation of carbon impurities, while the principal peak at a higher 

temperature is typically attributed to the carbon nanotubes.  The mass 

remaining after oxidation indicates the fraction of residual catalyst in the 

sample. 

2.4.4 Raman Spectroscopy 

Carbon nanotube samples were prepared by pressing SWNTs onto 

carbon tape adhered to aluminum foil.  The carbon tape was completely 

covered with a thick layer of SWNTs to prevent interference from the carbon 

in the carbon tape during the spectroscopy.  Raman spectra were obtained 

using a Renishaw inVia Raman Microscope equipped with a Leica 

microscope, RenCam CCD detector, 785 nm diode laser, 1200 lines/mm 

grating and 50 μm slit.  Due to the high variability in the D- and G-band peaks 

and areas indicated in the literature (Itkis et al. 2005), ten spectra were 

averaged for each spectrum shown here. 

2.4.5 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) spectra were taken using a 

Kratos Analytical Axis Ultra X-ray photoelectron spectrometer.  These spectra 

were then used to assess the elemental composition and changes to the 

functional groups of the MWNTs after acid treatment.  A thick mat of mat of 
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nanotubes was pressed onto carbon tape to ensure that carbon from the 

carbon tape did not influence the results.  

2.5 Carbon Nanotube Acid Modification 

One common method to introduce defects in carbon nanotubes and to 

make them more hydrophilic is sonication in an aggressive acidic mixture 

composed of a 3:1 ratio of concentrated sulfuric and nitric acid (Liu et al. 

1998).  To assess to what extent such a modification would influence the 

bioaccumulation of MWNTs in environmental settings, purified MWNTs were 

bath sonicated for 2 hrs in this acid mixture.  The carbon nanotubes were 

then filtered using 0.45 μm polytetraflouroethylene (PTFE) filter paper, and 

washed with boiling water after each step to remove residual acids and water-

soluble aromatic impurities formed during the acid treatments.  These 

nanotubes were labeled “3:1 MWNTs.”   

2.6 HeLa Cell Uptake Tests 

2.6.1 Cell Culturing 

HeLa cells were maintained at 37°C and 5% CO2 in media consisting 

of Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal bovine serum 

and penicillin (100 U/mL)/ streptomycin (100 μg/mL).  Cells were used at 

passage numbers 55-61, and seeded at roughly 1 x 106 cells per 78.5 cm2 

plate every 7 days. 

2.6.2 Cell Assimilation 

Cellular uptake of multi-walled carbon nanotubes (MWNTs) was 

quantified using carbon-14 multi-walled nanotubes.  HeLa cells were seeded 
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at 8 x 105 cells per 78.5 cm2 culture plate and maintained for 1 week.  Cell 

growth approached confluency after this period, and the total number of cells 

was 38 ± 2 x 106 cells per plate.  The MWNTs were sonicated at a 

concentration of 0.1 mg/mL in 200 mL of cell growth medium for 15 minutes 

at 262.5 watts administered at ten second on/off pulse intervals.  The 

supernatant was slowly decanted into a second beaker to remove the non-

dispersed carbon nanotube agglomerates.  The solution was mechanically 

stirred when adding the aliquots to the cell culture plates. In a preliminary test, 

this process was shown to produce a homogeneous solution. In this test, 

aliquots were taken at the beginning, middle, and conclusion of the mixing 

period, their radioactivity was determined, and the standard deviation was 

found to be 7 percent.  Preliminary results using live/dead counts did not 

show acute cellular toxicity in HeLa cells incubated for 24 hrs with MWNTs 

dispersed at the concentration described above.  

MWNT uptake by adherent HeLa cells was measured after 15 minutes, 

1 hr, 6 hr, 12 hr, and 24 hr.  Triplicate plates were used at each time interval.  

The nanotube solution overlying the cells was decanted at the conclusion of 

each uptake period, and the plate cultures were washed with refrigerated 

phosphate buffered saline solution to arrest cellular activity and completely 

remove any unattached nanotubes. Washing of the cells with phosphate 

buffered saline solution for a second time did not reveal removal of additional 

unattached nanotubes. Two mL of trypsin-EDTA was then added to each 

plate to suspend the cells, and the plates were incubated for five minutes. A 
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3-mL quantity of DMEM media was added to each plate to neutralize the 

trypsin-EDTA, and the solution was then mixed thoroughly to fully suspend 

the cells. The cell solution was passed through filter paper (Whatman 1 

Qualitative) to capture the cells.  These filters were allowed to dry in air, 

combusted in the biological oxidizer, and their radioactivity measured by 

scintillation counting. Plates with cells that were not amended with carbon 

nanotubes were used to measure background radioactivity.  

The release of carbon nanotubes after cellular uptake was also 

assessed.  The nanotube solution was introduced to triplicate plates for 12 

hours, the cellular media then decanted, and the plates washed with room 

temperature phosphate buffer saline solution.  The plates were refilled with 

cell media and incubated for an additional 12 hours.  To quantify nanotube 

release by the cells, the media overlying them on each plate and the 

phosphate buffered saline solution used to wash each plate were filtered 

(Whatman 1 Qualitative), and the filter papers combusted in the biological 

oxidizer.  Radioactivity in the cells was measured as described above. 

2.7 Lumbriculus variegatus Uptake and Depuration Experiments 

2.7.1 Aquatic Worm Culturing 

Lumbriculus variegatus were obtained from the Carolina Biological 

Supply Co. (Burlington, NC) and used to assess the availability of the carbon 

nanotubes to biological uptake and accumulation.  The organisms were 

cultured in aquariums containing artificial freshwater (ISO 1996) and 

unbleached brown paper towels, and maintained at 21±2 oC under photo-
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period (light:dark) ratios of 16:8 hrs.  The overlying water was changed, and 

aquatic worms fed (daphnia food, Carolina Biological Supply Co.) at least two 

times per week. 

2.7.2 Sediments 

Carbon nanotubes or pyrene samples were added to mixtures of 90% 

sediment (Huron River, Ann Arbor, MI) with 10% Michigan Peat (by mass) or 

unamended sediment.  The addition of 10% MI Peat allowed for a larger 

number of worms to be used for bioavailability experiments with a 50:1 ratio 

of sediment organic carbon to dry weight of the aquatic worms (Kukkonen 

and Landrum 1994).  The sediment and peat samples were analyzed to 

ensure neither the soils nor sediment contained any traces of the target 

contaminants. The sediment was air-dried and passed through a 2-mm mesh 

sieve prior to ecological experiments.  The organic carbon content of the 

sediment and peat were 0.66% and 45.1%, respectively.   

2.7.3 Uptake Experiments 

Uptake experiments were conducted according to a modified EPA 

method (U.S. EPA Office of Water 2000). Carbon-14 single-walled carbon 

nanotubes (0.03 or 0.003 mg/g dry sediment) and multi-walled carbon 

nanotubes (0.37 or 0.037 mg/g dry sediment) were dispersed by sonication in 

water prior to addition to the sediment.  Carbon-14 labeled pyrene (positions 

4,5, 9, and 10) in methanol and non-radioactive pyrene were dissolved in 

acetone and added to sediment to give a final concentration of 0.054 mg/g 

dry sediment.  The samples were thoroughly tumbled, the acetone from the 
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pyrene samples allowed to volatilize, and the samples then refrigerated.  

Sediment samples were freeze-dried, combusted using the biological 

oxidizer, and the radioactivity determined using scintillation counting to 

determine the initial concentration of the compounds in the sediments and the 

homogeneity of their distribution.  Occasionally, elevated nanotube 

concentrations would be detected likely as a result of carbon nanotube 

aggregates that were not fully dispersed during the sonication process.  

Samples for which sediment radioactivities were greater than two times the 

mean value were excluded from calculating the mean sediment 

concentration.  Sediment samples spiked with non-radioactive carbon 

nanotubes or pyrene and unspiked sediment samples were prepared similarly 

as controls. 

Six days after the samples were spiked with carbon nanotubes or 

pyrene, 50 g (dry weight) of amended or unamended sediment was added to 

300 mL lipless beakers, and twice daily water renewal was initiated using 

artificial freshwater (ISO 1996). Aquatic worms were removed and placed in a 

tray for one day prior to the start of the experiment.  On the following day, 

sixty aquatic worms were added to each container to achieve a 50:1 ratio of 

organic carbon in the sediment to dry mass of aquatic worms (Kukkonen and 

Landrum 1994).  The aquatic worms were not fed during the experiment.  At 

the beginning of the experiment and on a weekly basis thereafter, hardness, 

pH, dissolved oxygen, alkalinity, and conductivity measurements were taken 
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to ensure that the water quality remained relatively constant during the 

experiments (U.S. EPA Office of Water 2000). 

Aquatic worms were sieved from the sediments after predetermined 

intervals to determine the uptake of the desired compound.  The worms were 

collected from the sediment and placed in beakers with 500 mL of new 

artificial freshwater for 6 hours, a period that has been shown to allow the 

organisms to purge >98% of their gut contents but also minimizes tissue 

depuration of non-polar hydrophobic chemicals (Mount et al. 1999).  The 

worms were blotted dry, weighed, and added to biological oxidizer boats with 

100 mg of D-mannitol to aid combustion.  After drying overnight, the worms 

were combusted in the biological oxidizer and the radioactivity measured 

using liquid scintillation counting.   

On days 7, 14, and 28, aquatic worms were also removed from 

containers with non-radioactive nanotubes or pyrene and unmodified 

sediments.  The number of living worms was compared between these 

containers and those with carbon-14 labeled compounds.   The lipid content 

was measured using a spectrophotometric method for the aquatic worms 

from blank and spiked sediments (Van Handel 1985).  Biota-sediment 

accumulation factors (BSAFs) were calculated as the ratio of the compound 

concentration in organism normalized by its lipid fraction to concentration in 

sediment normalized by its organic carbon fraction. 
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2.7.4 Depuration Experiments 

On day 14 or 28, the aquatic worms from three containers were added 

to 600 mL beakers containing 500 mL of clean water or to 300 mL lipless 

beakers with 50 g dry mass clean sediment and filled with clean water.  For 

the worms added to clean sediment, the worms were removed from the 

containers after the predetermined depuration interval and sediment particles 

removed.  After depuration for 1, 2, or 3 d, the worms were removed from 

their containers, blotted dry, and then added to biological oxidizer boats with 

100 mg of D-mannitol.  The radioactivity remaining in the worms was 

determined via biological oxidation and scintillation counting as described 

above. 

2.7.5 Statistical Analysis  

Statistically significant differences among the means of triplicate 

samples were conducted using two-way t-tests or analysis of variance 

(p<0.05) (Microsoft Excel).  Attempts were made to model the uptake data 

using a two-compartment, first-order coefficient model using nonlinear curve 

fitting with SAS (SAS Institute).  This model did not provide a good fit for the 

single- and multi-walled carbon nanotube data, and the results are not 

included here.  

2.8 Eisenia foetida Uptake and Depuration Experiments 

2.8.1 Earthworm Culturing 

Earthworms (Eisenia foetida) were obtained from the Carolina 

Biological Supply Co. (Burlington, NC), maintained on a worm bedding 
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(Carolina Biological Supply) at 21± 2°C, and kept moist with deionized water.  

The worms were fed twice a week with worm food comprising a mixture of 

crude proteins and carbohydrates (Magic Worm Products, Amherst Junction, 

WI). 

2.8.2 Soils 

Three soils were used for the bioaccumulation experiments.  They 

were collected from Chelsea and Ypsilanti, Michigan and from the North 

Campus at the University of Michigan Ann Arbor, Michigan and are indicated 

as “Chelsea,”  “Ypsilanti,” and “NC” soil, which respectively possess organic 

carbon fractions of 5.95%, 1.14%, and 2.17%.  The soils were air-dried and 

passed through a 2-mm mesh sieve.  The samples were previously analyzed 

to ensure the soils did not contain traces of pyrene. 

2.8.3 Uptake Experiments 

Nanotube and pyrene uptake by the earthworm Eisenia foetida from 

the test soils was determined using modified standard procedures (ASTM 

1998).  Carbon-14 SWNTs (0.03 mg/g dry soil) and MWNTs (0.3 or 0.03 mg/g 

dry soil) were dispersed by sonication in water at 262.5 watts for 30 minutes 

in an ice-water bath to prevent damage to the nanotubes during the 

sonication process (Heller et al. 2005b).  Carbon-14 labeled pyrene (positions 

4,5, 9, and 10) dissolved in methanol and non-radioactive pyrene were 

dissolved in methylene chloride and added to the soil to give a final 

concentration of 0.04 mg/g dry soil.  All soil samples were thoroughly tumbled 

and the soil with pyrene air-dried overnight to allow the solvents to volatilize.  
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Soil samples taken from the SWNT, MWNT, and pyrene-spiked soils were 

freeze-dried, combusted using the biological oxidizer, and the radioactivity 

determined using scintillation counting.  At least four samples were 

combusted for each soil.  This allowed us to determine the initial 

concentration of the compounds in the soils as well as the homogeneity of 

their distribution.  Samples with elevated nanotube concentrations would be 

detected on occasion likely as a result of carbon nanotube aggregates that 

were not fully dispersed during the sonication process.  Samples for which 

soil radioactivities were greater than the mean value plus two standard 

deviations were excluded from calculating the mean soil concentration.  

Samples with non-radioactive carbon nanotubes or pyrene and unspiked soil 

samples were prepared similarly as controls. 

Three adult worms with combined masses between 1.2 and 2.0 g were 

transferred to moist (20% water for Chelsea and Ypsilanti soils and 25% for 

NC soil) soil samples (30 g dry mass) in 250-ml glass jars, the jars loosely 

closed with a cap to prevent worm escape but allow air exchange, and then 

held in the dark at 21±2oC. Worms were removed from triplicate containers 

after 1, 7, 14, and 28 d for the Chelsea soil and after 14 days for the Ypsilanti 

and NC soils.  After removal, the earthworms were washed with Milli-Q water, 

transferred to wet filter paper in Petri dishes for 24 hrs in the dark to allow 

purging of gut contents, and again rinsed with clean Milli-Q water until the 

radioactivity of the water had a background radioactivity concentration.  The 

worms were then transferred to glass centrifuge tubes, freeze-dried for 24 
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hrs, weighed, combusted in a biological oxidizer, and the radioactivity 

determined using liquid scintillation counting.  Bioaccumulation factor (BAF) 

values were calculated as the ratio of the concentration of the compound of 

interest in the organism divided by that in the soil. 

2.8.4 Depuration Experiments 

After exposure for 14d, the earthworms were removed from three containers 

and added to containers with unspiked soils to allow for depuration.  After 

depuration for 1, 2, or 7 d, the worms were removed from their containers and 

the radioactivity remaining in the worms determined as described above.   

2.9 Phase Distribution Experiments 

2.9.1 Settling Experiments 

Settling experiments were conducted to assess the extent to which the 

dispersed MWNTs would settle during the equilibration phase of the octanol-

water phase distribution experiments.  A microbalance was used to weigh 2.5 

mg of MWNTs which were added to 250 mL beakers with 100 mL of water or 

octanol.  The samples were sonicated for 30 minutes in an ice-water bath to 

minimize damage to the carbon nanotubes during the sonication process.  

Immediately after sonication, two 2-mL samples of the liquid were removed 

and the radioactivity determined as described above and 50 mL of the 

remaining liquid was added to a test tube.  A 2-mL aliquot was removed from 

each of the vials after 1, 4, 8, 10, 14, 17, and 21 days.  Triplicate samples 

were tested for the HCl purified and 3:1 treated MWNTs dispersed in octanol 

or in water. 
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2.9.2 Octanol-Water Phase Distribution Experiments 

Octanol-water partitioning coefficients (kow) have been previously used 

to predict the bioaccumulation of hydrophobic organic chemicals (HOCs).  

One possible approach for estimating the bioaccumulation potential of carbon 

nanotubes would be to treat them similarly to HOCs by using models and 

correlations developed for these organic compounds.  There are numerous 

differences between nanotubes and HOCs though as described in section 

1.1.2, and the applicability of such models to the environmental behaviors of 

CNTs is thus unclear.  As such, the distribution coefficients measured using 

this methodology should not be carelessly equated with the kow values of 

typical organic chemicals. 

Phase distribution experiments were first attempted by sonicating a 2.5 

mg sample of HCl purified or 3:1 modified multi-walled carbon nanotubes in 

100 mL of water or octanol; the distribution behaviors of SWNTs were not 

similarly categorized due to the instability of the SWNT dispersion.  After 

allowing the sample to sit overnight, 25 mL of the sample was combined with 

25 mL octanol in a 50-mL test tube for samples initially sonicated in water and 

the converse for those first sonicated in octanol.  All experimental conditions 

were tested in triplicates.  After 21 days, two 2-mL aliquots of each sample 

were taken from the octanol phase, and the radioactivity determined as 

described above.  To determine the radioactivity in the water phase, water 

was removed from the test tubes using a syringe.  Air was bubbled out of the 

syringe during passage through the octanol phase to prevent octanol from 
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entering the syringe.  Typically, 15 to 20 mL of water were drawn up into the 

syringe while attempting to avoid any potential areas of octanol remaining on 

the side of the test tube.  The needle of the syringe was then removed to 

avoid octanol uptake during the removal of the needle from the sample, and 

all of the liquid except for the last one to two milliliters was added to 

preweighed scintillation vials.  These vials were weighed, added to an oven at 

80 °C, the samples heated typically from 24-30 hrs until the volume of water 

remaining in the vials was less than 3 mL, and the radioactivity then 

measured using scintillation counting.   

These results, however, did not reveal an ability of carbon nanotubes 

to transfer across the water-octanol interface.  For the samples in which the 

nanotubes were initially sonicated in water, the radioactivity of the octanol 

phase was at the background levels and likewise for the water phase when 

the MWNTs were sonicated originally in octanol.  As such, a modified OECD 

shake flask method was developed (Organization for Economic Cooperation 

and Development. 1981. Partition coefficients. OECD Guideline 107. Paris).  

A 2.5 mg sample of MWNTs was weighed and dispersed in water as 

described above.  After allowing the sample to sit overnight, 25 mL of the 

sample was combined with 25 mL octanol in a 100 mL beaker.  The sample 

was sonicated for 30 minutes with the probe 0.3 inches from the bottom of the 

beaker.  This height was slightly above the octanol-water interface and 

allowed for thorough mixing of the two phases.  The samples were then 

added to 50 mL test tubes, which were inverted in an attempt to remove 



 39

residual octanol from the bottom of the water phase.  After 4, 8, 14, and 21 

days, the MWNT distribution between the two phases was assessed using 

triplicate measurements and the procedures described above. 

The impact of dispersing the carbon nanotubes first in octanol and then 

measuring their partitioning behavior was also assessed.  These experiments 

were conducted analogously to those described above except for that the 

carbon nanotubes were initially sonicated in octanol and 25 mL of water was 

combined with 25 mL of this octanol phase prior to the second sonication.  

The octanol-water partitioning data were assessed after 16 days using 

triplicate vials. 
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Chapter 3 

 

CARBON-14 SINGLE- AND MULTI-WALLED CARBON 

NANOTUBE SYNTHESIS AND CHARACTERIZATION 

  

3.1 Introduction 

As discussed in the introduction of this thesis, the exciting properties of 

carbon nanotubes promise a broad range of future application.  This expected 

widespread usage will inevitably lead to their release into environmental 

systems.  The understanding of the environmental fate and behaviors of 

nanotubes is as yet largely unknown, however, in large part as a result of the 

lack of a method to quantify carbon nanotubes in environmental and 

biological settings.   

Common experimental methods such as optical counting, 

spectroscopic methods, and elemental carbon analysis can be used to 

measure carbon nanotubes in relatively pristine samples, but the presence of 

other carbonaceous materials severely hinders the use of these methods.  

The polydisperse nature of carbon nanotubes makes chromatographic 

techniques inapplicable; e.g., regardless of the synthesis procedure 

employed, nanotubes vary widely in length and diameter, which would be 
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very challenging to be resolved by HPLC. Appropriate detection techniques 

that can distinguish carbon nanotubes from background carbon materials also 

remains a challenge for the use of HPLC. Near-infrared spectrofluorimetry 

has been used to detect carbon nanotubes in cells and rabbits (Cherukuri et 

al. 2004; Cherukuri et al. 2006).  However, this approach cannot detect 

metallic SWNTs or carbon nanotube bundles, and changes in the carbon 

nanotube surface chemistry, a likely phenomena in many environmental or 

biological systems, can influence absorption readings (O'Connell et al. 2002).  

Raman spectroscopy has been used to determine the presence of SWNTS in 

Daphnia magna (Roberts et al. 2007), but this approach can only detect 

SWNTs, and cannot provide quantitative results. The addition of fluorescing 

chemicals or polymers with radioactive metals to carbon nanotubes has also 

been used to assess how carbon nanotubes would interact in biological 

systems (Kam et al. 2004; Singh et al. 2006).  The addition of such a probe, 

however, may well change the physicochemical characteristics of the 

nanotubes and thus likely also its environmental behaviors. 

This chapter describes a novel carbon synthesis approach for 

radioactively labeling carbon nanotubes and the robust characterization of 

nanotubes synthesized through this chemical vapor deposition process.  

Synthesis and purification procedures were designed to minimize the 

presence of amorphous carbon and catalyst impurities.  The presence of 

significant concentrations of amorphous carbon impurities would undermine 

the quantification of carbon nanotubes present in cellular or environmental 
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medias using measurements of their radioactivities.  Thermal gravimetric 

analysis (TGA), electron microscopy, and Raman spectroscopy were thus 

performed to assess the presence of this impurity.  Given that most potential 

applications of carbon nanotubes would likely utilize highly purified 

nanotubes, efforts were also made to limit the quantity of catalyst materials 

remaining in the carbon nanotubes samples used in the following cellular and 

environmental investigations.  The fraction of the metal impurities remaining 

in the samples was assessed using TGA.  Lastly, the specific radioactivity 

and the homogeneity of the carbon-14 isotope distribution were assessed for 

the radioactively labeled nanotubes using biological oxidation followed by 

scintillation counting. 

3.2 Experimental Methods 

Single-walled carbon nanotubes (SWNTs) and multi-walled carbon 

nanotubes (MWNTs) were synthesized, purified, modified and characterized 

as described in Chapter 2.  Briefly, SWNTs and MWNTs were synthesized 

using the modified methane chemical vapor deposition processes as 

described in section 2.2.  Streams of regular and radioactive methane gas 

were combined in controlled ratios and flown over metal catalysts at elevated 

temperatures.  The nanotubes were then purified as described in section 

2.2.3 to remove metal catalyst impurities remaining from the synthesis 

procedure. 

Non-radioactively labeled carbon nanotubes were similarly synthesized 

and purified.  These nanotubes were then assessed with a broad range of 
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analytical instruments to determine the purity of the nanotubes with regards to 

amorphous carbon impurities as well as catalyst impurities as described in 

section 2.4.  Some MWNTs were also modified by strong acid treatments as 

described in section 2.5 and their chemical properties investigated using X-

ray photoelectron spectroscopy. 

The radioactive labeling of the carbon nanotubes was assessed using 

biological oxidation followed by scintillation counting as described in section 

2.3.1.  In brief, the carbon nanotubes were carefully weighed, combusted in 

the biological oxidizer, the carbon-14 dioxide emitted captured in scintillation 

fluid, and the radioactivity of that fluid assessed using scintillation counting. 

3.3 Results and Discussion 

3.3.1 Carbon-14 Labeling Quantification 

The radioactive labeling of both single- and multi-walled carbon 

nanotubes was affirmed.  While the specific radioactivity of the carbon 

nanotubes varied from batch to batch depending upon the quality of the 

catalyst and the relative flow rates of the radioactive and regular methane 

gases, typical specific radioactivities were 1.35 ± 0.03 mCi/g and 0.122 ± 

0.004 mCi/g for the SWNTs and MWNTs, respectively.  The low standard 

deviations suggest that the 14C atoms are homogenously distributed 

throughout the nanotubes.  The rationale for the higher specific radioactivity 

for the SWNTs mainly relates to the lower total methane flow rate for the 

synthesis procedure; for the same carbon-14 methane flow rate, the 

radioactive fraction of the total flow rate would be much higher for the 
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SWNTs.  It is certainly possible to obtain similar specific radioactivities for 

both kinds of nanotubes by modifying the methane flow rates.  The high price 

of the carbon-14 methane, however, makes significantly increasing the 

radioactivity of the MWNTs prohibitively expensive especially given that the 

nanotube yield using the MWNT catalyst often varies considerably. 

3.3.2 Transmission Electron Microscopy 

As shown in Figures 3.1 and 3.2, transmission electron micrographs 

indicated that the SWNTs had diameters typically from one to two 

nanometers, while the diameters for the MWNTs generally ranged from 30 to 

70 nanometers.  The lengths also varied but were generally several 

micrometers.  High-resolution transmission electron microscopy (Figure 3.3) 

indicated that the multi-walled nanotubes have a fishbone configuration.  This 

result accords with those of other studies (Zhang et al. 1999).  Micrographs 

were also taken from MWNTs after treatment with the 3:1 acid mixture as 

shown in Figure 3.4.  The open end of the nanotube is representative of the 

damage that this aggressive solution causes to the nanotubes opening up 

their ends (Liu et al. 1998). 

3.3.3 Scanning Electron Microscopy 

Scanning electron microscopy was used to assess the length 

distributions for the different types of MWNTs as shown in Figures 3.5 

through 3.8.  Surprisingly, the length distribution did not significantly differ 

between the nanotubes modified with the 3:1 acid mixture and those only 

purified with hydrochloric acid.  It was previously shown that mixing single-
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walled nanotubes with this acid solution for 1 hr decreased the average size 

from 280 nm to 150 nm (Liu et al. 1998).  The average diameter for the 

purified MWNTs was 386 nanometers while that for the acid modified 

nanotubes was 407 nanometers.  The length distributions were very broad 

though and this result should not be taken as an indication that this procedure 

increased the length of the nanotubes.  Perhaps the greater diameter of the 

multi-walled carbon nanotubes typically ranging from 30 to 70 nanometers 

and their composition of numerous concentric carbon layers made them more 

resistant to size shortening.   

3.3.4 Thermal Gravimetric Analysis 

Thermal gravimetric analysis is a procedure commonly used in the 

carbon nanotube literature to assess the presence of amorphous carbon 

impurities and residual catalyst materials in carbon nanotube samples (Dillon 

et al. 1999; Chiang et al. 2001; Harutyunyan et al. 2002).  None of the 

samples indicated the presence of an amorphous carbon peak.  Figures 3.9 

through 3.12 represent example graphs for each of the various carbon 

nanotubes samples used in this thesis.  Table 3.1 shows the carbon purity 

(fraction of carbon in the sample compared to catalyst materials) for all of the 

CNT samples.  The MWNTs had significantly higher purities than the SWNTs, 

a result hypothesized to come in part from the higher purity of the multi-walled 

carbon nanotubes prior to acid purification.  The yield of the multi-walled 

carbon nanotubes was significantly higher than that for the single-walled 
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carbon nanotubes per mass of catalyst resulting in a much higher ratio of 

carbon to metals in the initial samples.  

3.3.5 Raman Spectroscopy 

Raman spectroscopy is among the most common technique used to 

assess the purity of SWNT samples by investigating the relative heights of or 

areas under the G-band and D-band peaks as shown in Figure 3.13.  The 

areas underneath the G-band peaks compared to those for the D-band was 

19.6 ± 0.2 (n=3), a ratio that corresponds to minimal amorphous carbon 

impurities (Itkis et al. 2005).   

3.3.6 X-ray Photoelectron Spectroscopy 

Survey spectra taken for the HCl purified and 3:1 acid mixture treated 

MWNTs did not indicate the presence of metal catalysts (Figures 3.14 and 

3.15).  This result agrees with the lower metal concentrations measured using 

TGA.  It should be noted though that XPS only measures the top few 

nanometers of the sample, and the lack of detection of the metal catalysts 

indicates the low quantity of metal catalysts present and not their absence.  

The 3:1 acid modification increased the oxygen content in the carbon 

nanotubes samples from 1.4 ± 0.2% to 6.8 ± 0.3% (n=3) thus indicating the 

damage to the nanotubes and the increase in functional groups on the 

nanotubes as a result of the acid treatment.  This oxygen content for the HCl 

purified MWNTs agrees with that for an XPS spectrum (1.57%) collected 

using a different, but similarly purified, MWNT sample, which suggests the 

reproducibility of this technique with different samples.   
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3.4 Summary 

Carbon-14 labeled SWNTs and MWNTs were synthesized for the first 

time to the best of our knowledge.  Radioactivity measurements of these 

nanotubes indicated a low standard deviation for the nanotube samples even 

though the samples burned had very small masses (typically less than 1 mg) 

thus indicating the uniform distribution of this isotope throughout the nanotube 

samples.  Non-radioactively labeled nanotubes were thoroughly characterized 

and shown to possess high purity with regards to amorphous carbon and 

catalyst impurities as measured using electron microscopy, Raman 

spectroscopy, and thermal gravimetric analysis.  The application of these 

nanotubes for environmental and biological applications will be investigated in 

the following chapters. 
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Figure 3.1: Transmission electron micrograph of single-walled carbon 

nanotubes (250 kx magnification). 
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Figure 3.2: Transmission electron micrograph of multi-walled carbon 

nanotubes (30 kx magnification). 
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Figure 3.3: High-resolution transmission electron micrographs of multi-walled 

carbon nanotubes (300 kx magnification). 
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Figure 3.4: Transmission electron micrograph of multi-walled carbon 

nanotubes treated with a 3:1 mixture of sulfuric to nitric acid (150 kx 

magnification).  The arrow points to an opened end of one of the multi-walled 

carbon nanotubes. 
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Figure 3.5: Scanning electron micrograph of HCl purified multi-walled carbon 

nanotubes (20 kx magnification). 
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Figure 3.6: Length distribution plot of HCl purified multi-walled carbon 

nanotubes (n=239). 
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Figure 3.7: Scanning electron micrograph of 3:1 acid mixture treated multi-

walled carbon nanotubes. 
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Figure 3.8: Length distribution plot of 3:1 acid mixture treated multi-walled 

carbon nanotubes (n=165). 
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Figure 3.9: Thermal gravimetric analyzer graph of purified single-walled 

carbon nanotubes.  
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Figure 3.10: Thermal gravimetric analyzer graph of 6N nitric acid purified 

multi-walled carbon nanotubes. 
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Figure 3.11: Thermal gravimetric analyzer graph of HCl purified multi-walled 

carbon nanotubes.
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Figure 3.12: Thermal gravimetric analyzer graph of 3:1 modified multi-walled 

carbon nanotubes. 
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Figure 3.13: Raman spectrum of single-walled carbon nanotubes. 



 61

 

Figure 3.14: X-ray photoelectron spectrum of HCl purified multi-walled carbon 

nanotubes with elemental analysis. 
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Figure 3.15: X-ray photoelectron spectrum of 3:1 acid mixture modified multi-

walled carbon nanotubes with elemental analysis. 
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  Carbon Purity (Percent) 
6N Nitric Acid Purified MWNTs 96.9 ± 0.1 
HCl Purified MWNTs 98.9 ± 0.01 
3:1 Acid Mixture Modified MWNTs99.86 ± 0.24 
HCl Purified SWNTs 92.1 ± 0.4 
 

Table 3.1: Summary of carbon purity for different carbon nanotube samples 

determined using thermal gravimetric analysis. 
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Chapter 4 

 

MULTI-WALLED CARBON NANOTUBE ASSIMILATION BY 

HELA CELLS  

 

4.1 Introduction 

Synthesis procedures for carbon-14 nanotubes were described in 

Chapter 2 and nanotubes synthesized using these chemical vapor deposition 

methods thoroughly characterized in Chapter 3.  These radioactively labeled 

carbon nanotubes promise a critical new tool in assessing the cytotoxicity of 

carbon nanotubes by allowing the exact quantification of nanotubes in cells.   

There have been numerous toxicological investigations on carbon 

nanotubes including inhalation (Lam et al. 2004; Warheit et al. 2004), dermal 

(Shvedova et al. 2003; Manna et al. 2005; Monteiro-Riviere et al. 2005), and 

cellular exposure effects (Shvedova et al. 2003; Cui et al. 2005; Jia et al. 

2005; Manna et al. 2005; Monteiro-Riviere et al. 2005; Bottini et al. 2006; 

Sayes et al. 2006; Becker et al. 2007). Much of this work has been severely 

hindered, however, by an inability to accurately quantify masses of carbon 

nanotubes in biological systems, thus preventing direct linkages of 

toxicological responses to carbon nanotube concentrations in cells or organs.  
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The current limitations of analytic techniques for carbon nanotube 

quantification were described at length in sections 1.1.6 and 3.1. 

Several researchers have attempted to investigate the cellular uptake 

of modified or functionalized carbon nanotubes (Cherukuri et al. 2004; Kam et 

al. 2004; Heller et al. 2005a; Monteiro-Riviere et al. 2005; Kam et al. 2006; 

Becker et al. 2007; Kostarelos et al. 2007).  Most of these researchers have 

assessed the extent to which carbon nanotubes can enter cells instead of 

quantifying their accumulation by cells.  The sole research investigation on 

the uptake rates of CNTs by cells showed that the uptake rate of surfactant-

modified SWNTS was relatively constant across a 24-hour uptake period 

(Cherukuri et al. 2004).  These results yielded valuable evidence for those 

hoping to use such nanotubes for biological applications, but unmodified 

nanotubes will also likely be released into environmental systems and the 

extent to which their cellular interactions would differ from those with various 

functionalizations is of critical interest for those investigating the potential 

environmental and human health risks of this nanomaterial.   

Here I show that carbon-14 MWNTs can be successfully used to 

precisely measure CNT concentrations in biological samples.  MWNTs were 

dispersed in cellular solution and their assimilation rates determined for HeLa 

cells, a widely used epithelial cell from a carcinoma cell line; assimilation here 

refers to the combination of strong attachment and cellular internalization.  

Results using these cells give indications for cellular interactions of carbon 

nanotubes with other environmentally critical cells such as the epithelial cells 
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in organism’s digestive tracts, especially given the similar uptake behaviors 

shown by Kostarelos et al. (2007) using a broad range of cells.  Unlike the 

highly modified nanotubes used in the broad majority of previous cellular 

investigations, the MWNTs used here were only briefly treated by purification 

in 6N nitric acid prior to cell tests.  As such, this investigation provides crucial 

evidence for how unmodified carbon nanotubes would interact with cells. 

4.2. Methods 

As described in detail in section 2.6, MWNTs were suspended in 

cellular media consisting of Dulbecco’s modified eagle’s medium, fetal bovine 

serum, and antiobitics.  This solution was decanted to remove the 

undispersed nanotubes, and the solution then mechanically mixed to produce 

a homogenized slurry.  Eight milliliter aliquots of this solution were added to 

plates with confluent HeLa cells and the cells incubated with this solution for 

various times.  After the predetermined exposure interval, the cell media was 

decanted and the cells washed with ice-cold phosphate buffered solution 

(PBS).  A second rinsing with this solution did not show the removal of 

additional nanotubes, and preliminary tests indicated that washing with PBS 

solution was sufficient to remove carbon nanotubes from the polystyrene 

plates.  The cells were then removed from the plate using trypsin-EDTA, 

captured on filter paper, combusted, and their radioactivity assessed using 

scintillation counting.  The extent to which carbon nanotubes would be 

released from the cells after the replacement of the nanotube solution with 

clean cell solution was also assessed.   
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4.3 Results and Discussion 

As shown in Figure 4.1, HeLa cells rapidly accumulated the multi-

walled nanotubes. The fraction of carbon nanotubes that entered the cells 

versus the fraction that were strongly bound to the cell surface was not 

investigated here, and these results represent the combination of cellular 

uptake and attachment.  Seventy-four percent of the nanotubes added to 

each plate were assimilated within the first 15 minutes, and after 6 hrs, the 

cellular concentration reached a maximum at eighty-nine percent of the 

nanotubes added.  The uptake of the nanotubes by the HeLa cells appeared 

also to be nearly irreversible.  Only 0.9 ± 0.5% of the carbon nanotubes 

accumulated by the cells after the 12 hr uptake period were released during a 

subsequent 12 hr period during which the cells were incubated with regular 

media.  Despite differences in the dispersion techniques and carbon 

nanotube types involved, this result agrees with those obtained by Strano and 

coworkers (Heller et al. 2005a), who determined that single-walled carbon 

nanotubes wrapped with DNA remained in murine myoblast stem cells for the 

duration of a three month time period.  These researchers utilized raman 

spectroscopy to qualitatively confirm the continued presence of nanotubes 

within these cells.  

This rapid and nearly complete uptake of multi-walled carbon 

nanotubes by the HeLa cells differs substantially from that estimated for 

single-walled carbon nanotubes solubilized using a Pluronic surfactant and 

mouse peritoneal macrophage-like cells (Cherukuri et al. 2004).  The 
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investigators in that study observed a relatively constant rate of carbon 

nanotube accumulation by the cells over a 24 hr time period.  While 

numerous factors (e.g., cell type, carbon nanotube type, and carbon nanotube 

concentration) might have influenced these results, the disparities in uptake 

rates could also stem, at least partially, from different analytical approaches 

used to measure nanotube concentrations.  Labeling carbon nanotubes with 

the carbon-14 isotope provides a straightforward means for quantitatively 

measuring carbon nanotubes at minute concentrations in a wide variety of 

media, regardless of changes in nanotube agglomeration state, physical or 

chemical properties, or aquatic conditions.  Conversely, aqueous conditions 

and dispersion states of the carbon nanotubes can impact their detection 

using spectrofluorimetry (O'Connell et al. 2002).  That approach is capable 

only of detecting semiconducting single-walled carbon nanotubes and 

neglects metallic ones, and is unable to detect agglomerations containing 

semiconducting and metallic nanotubes because the latter quench 

fluorescence from the former.  Thus, to quantify carbon nanotube 

concentrations in phagocyte cells, the authors extrapolated the spectral 

activity of the semiconducting nanotubes to both semiconducting and metallic 

nanotubes.    

Another potential difference between these two studies is that there did 

appear to be some MWNT settling during the first fifteen minutes after 

addition to the cell culture plates.  The ability of the PBS washings to 

completely remove carbon nanotubes from the culture plates, however, 
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suggests that these settled nanotubes were internalized or strongly attached 

to the cells.  Nevertheless, this rapid settling may have introduced more 

contact between the cells in carbon nanotubes than as experienced in the 

experiments by Cherukuri et al. (2004), for which the nanotubes were 

indicated to remain fully dispersed.  This difference may also partly explain 

the more rapid initial cellular assimilation of the carbon nanotubes in this 

study. 

These results also accord with those by Kostarelos et al. (2007) in that 

these unmodified nanotubes appeared to have strong cellular interactions.  

While future work is necessary to quantify the extent to which the broad array 

of nanotubes used by those authors would enter cells, it appears that cellular 

assimilation of carbon nanotubes is not dependent upon surface 

modifications.  Nevertheless, uptake mechanisms for carbon nanotubes are 

still unclear and may vary based on the nanotube modification and cell type.  

The assimilation rates and capacities of different types of cells for various 

types of CNTs are unknown, but the radioactive nanotubes developed here 

would be ideal for such investigations. 

Upon release into environmental systems, these results suggest rapid 

cellular attachment of nanotubes or uptake by dermal or digestive cells of 

humans or ecological receptors and hence the potential for significant 

bioaccumulation.  Passage through cells and tissues is necessary though for 

the nanoparticles to enter systemic circulation in the organisms, and the 

extent to which and the rate at which nanotubes travel across these various 
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tissues is unknown.  If nanotubes only become attached to or entered the 

outermost cells, the periodic sloughing off of these cells may mitigate the 

nanotubes’ toxic effects and bioaccumulation would not be expected.  

Another complicating factor between cellular investigations and the actual 

ecotoxicological impacts of nanotubes is the state at which nanotubes would 

be present in environmental systems.  Nanotubes may settle out of aqueous 

solutions in aquatic ecosystems, become strongly attached to soil or sediment 

organic matter, or may interact with natural organic matter (Hyung et al. 

2007).  Any of these changes to the physicochemical properties or 

aggregation state of the nanotubes may affect their environmental behaviors.  

Nevertheless, the results shown here for unmodified nanotubes and those by 

others for nanotubes with various physical and chemical properties 

demonstrate strong interactions between nanotubes and cells and indicate 

that understanding the bioaccumulation potential of nanotubes represents a 

critical research topic. 

4.4 Summary 

Purified multi-walled carbon nanotubes were shown to rapidly become 

assimilated with HeLa cells in time intervals as short as 15 minutes.  These 

carbon nanotubes also appeared to be relatively irreversibly bound to the 

carbon nanotubes with less than 1% of the accumulated carbon nanotubes 

being released by the cells after 12 hours of exposure to clean cell media.  

These results and those by others (Cherukuri et al. 2004; Monteiro-Riviere et 

al. 2005; Kam et al. 2006; Kostarelos et al. 2007) suggest that a broad range 
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of cells can internalize or strongly attach single- and multi-walled carbon 

nanotubes.  As such, the potential for accumulation of carbon nanotubes by 

humans and ecological receptors represents a significant research concern.  

Some researchers have investigated the biodistribution of intraveneously 

injected functionalized carbon nanotubes (Wang et al. 2004; Cherukuri et al. 

2006; Singh et al. 2006; Liu et al. 2007a) and have generally found them not 

to accumulate in the organisms, although Liu et al. (2007) found significantly 

slower clearance and accumulation in the liver after 24 hours.  The impact of 

functional groups and exposure pathway (i.e., intravenous injection versus 

oral exposures through contaminated water, soil, or food) is unclear, and the 

applicability of these studies to the biological uptake of carbon nanotubes in 

environmentally relevant settings is thus likely quite limited. 
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Figure 4.1: Assimilation of multi-walled carbon nanotubes by HeLa cells.  An 

8-mL volume of cellular media having a carbon nanotube concentration of 

313 μg/ plate was added to each plate.  Results are mean ± SD of triplicate 

plates. 
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Chapter 5 

 

ECOLOGICAL UPTAKE AND DEPURATION OF CARBON 

NANOTUBES BY LUMBRICULUS VARIEGATUS 

 

5.1 Introduction 

Although carbon nanotubes have drawn widespread research attention 

in recent years, their potential environmental and human health impacts have 

not been well characterized, and the risks they may pose to the welfare of 

humankind and the environment are largely unknown (Colvin 2003).  Carbon 

nanotubes are molecules containing extensive sp2 hybrized carbons arranged 

in fused benzene rings. One potential approach for predicting their 

environmental behaviors would be through comparison to their counterparts 

of smaller sizes having between two to seven aromatic rings, often called 

polycyclic aromatic hydrocarbons (PAHs).  These compounds are known to 

readily accumulate in organisms’ fatty tissue in large part as a result of their 

hydrophobicity and resistance to microbial degradation (Di Toro et al. 1991; 

Jager et al. 2003a).  Experimental evidence from the biouptakes of PAHs by 

27 species of benthic organisms suggests that biota-sediment accumulation 

factors (BSAFs) of PAHs do not widely vary based on their octanol-water 
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partitioning values (Tracey and Hansen 1996).   This leads to the conjecture 

that carbon nanotubes may be highly bioaccumulable molecules, which would 

have profound implications in an ecological and human health context.   

Additional support for the bioaccumulation potential of carbon 

nanotubes comes from the cellular uptake literature and the work conducted 

in Chapter 4 investigating cell assimilation by HeLa cells.  Numerous studies 

have indicated that carbon nanotubes can enter cells (Cherukuri et al. 2004; 

Kam et al. 2004; Heller et al. 2005a; Monteiro-Riviere et al. 2005; Kam et al. 

2006; Kostarelos et al. 2007) and cause toxic damage to cells (Shvedova et 

al. 2003; Cui et al. 2005; Ding et al. 2005; Jia et al. 2005; Manna et al. 2005; 

Monteiro-Riviere et al. 2005; Bottini et al. 2006; Sayes et al. 2006; Pulskamp 

et al. 2007).  Carbon nanotubes have also been shown to cause toxic effects 

to aquatic organisms (Templeton et al. 2006; Cheng et al. 2007; Roberts et al. 

2007; Smith et al. 2007), and SWNTs, for example, have been qualitatively 

detected in Daphnia magna (Roberts et al. 2007) and fish (Smith et al. 2007).  

The extent to which carbon nanotubes released into the environment may be 

accumulated by ecological receptors, however, is unknown.   If organisms 

uptake these compounds, they could then be transferred throughout food 

chains and could enter organisms at higher trophic levels such as humans at 

significant concentrations, thus posing profound ecological and human health 

risks. 

In order to accurately evaluate the extent to which carbon nanotubes 

released into the environment bioaccumulate in organisms, 14C-labeled 



 75

carbon nanotubes (both single- and multi-walled) were synthesized using 

modified chemical vapor deposition procedures as described in Chapter 3.  

This radioactive labeling process overcomes a formidable challenge in 

determining the uptake of nanotubes: the current lack of a method to quantify 

both individual and bundles of unmodified single- or multi-walled carbon 

nanotubes in environmental or biological systems.  The ability of these 

radioactively labeled nanotubes to give quantitative results for nanotube 

concentrations in biological samples was determined in Chapter 4.  In this 

chapter, these nanotubes were spiked to sediments, and assessed with 

respect to their uptakes by Lumbriculus variegatus, a sediment-burrowing 

oligochaete.  Oligochaetes have been used extensively as bioindicators of 

pollution (Lauritsen et al. 1985) and L. variegatus has been selected by the 

U.S. Environmental Protection Agency as the freshwater organism for 

assessing bioaccumulation (U.S. EPA Office of Water 2000). 

5.2 Methods 

Full experimental details are described in section 2.7.  Briefly, 

radioactively labeled multi-walled carbon nanotubes (MWNTs) and single-

walled carbon nanotubes were synthesized via modified chemical vapor 

deposition methods using mixtures of unlabeled and 14C-labeled methane as 

feedstock gases (Chen et al. 1997; Li et al. 2002).  The nanotubes so 

produced were then purified by bath-sonication in full-strength hydrochloric 

acid for 1 hr.  The radioactivity of the synthesized nanotubes, spiked 

sediments, and aquatic worms were determined via combustion in a 
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biological oxidizer (OX 500, R. J. Harvey Instrumentation Corporation), and 

the cocktail then analyzed using a LS6500 liquid scintillation counter 

(Beckman).  Carbon-14 labeled SWNTs, MWNTs, or combinations of regular 

and carbon-14 pyrene dissolved in acetone were added either to mixtures of 

90% sediment (Huron River, Ann Arbor, MI) with 10% Michigan Peat (by 

mass) or to unamended sediment.  These sediment samples were then 

thoroughly mixed, the acetone evaporated for the pyrene samples, and the 

sediments then added to beakers with Lumbriculus variegatus.  After 

predetermined intervals for the uptake experiments, the worms were removed 

and placed into containers with clean water, and allowed to purge their guts 

for 6 hrs. After drying, the radioactivity in the worms was measured as 

described above.  For depuration experiments, the worms were removed from 

the spiked sediments and placed in beakers either with fresh water or fresh 

water and clean sediment. Radioactivity in the worms was measured after 

each depuration interval.  Containers with sediment spiked with non-

radioactive SWNTs, MWNTs, or pyrene were used as blank controls to 

assess acute toxicity and measure lipid content (Van Handel 1985).  Biota-

sediment accumulation factors (BSAFs) were calculated as the ratio of the 

compound concentration in organism normalized by its lipid fraction to 

concentration in sediment normalized by its organic carbon fraction. 
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5.3 Results and Discussion 

5.3.1 Uptake Experiments 

Despite compositions of fused benzene rings similar to those of 

pyrene, the BSAF values for L. variegatus of the SWNT and MWNT were 

almost an order of magnitude lower than those for pyrene, as illustrated in 

Figure 5.1.  The uptake data do not indicate systematic differences between 

the SWNTs and MWNTs.  The SWNTs may have been present as bundles, 

as indicated in Figure 3.1, with apparent diameters approaching those of the 

MWNTs thus causing similar uptake.  BSAF values for worms exposed to 

sediments spiked with SWNTs, MWNTs, and pyrene for 28d were 0.28 ± 

0.03, 0.40 ± 0.1, and 3.6 ± 0.2, respectively.  BSAF values for 16 different 

PAHs of broadly varying hydrophobicities exposed to sediments for 28d and 

with a depuration interval of 12 hrs have been shown to range from 0.4 to 5 

(Ingersoll et al. 2003), thus confirming low uptakes for carbon nanotubes 

relative to those for PAH compounds.   

Subsequent experiments in which the organic carbon content of the 

sediment was decreased by a factor of 8 by removal of the Michigan Peat 

amendment were performed. In these experiments a decrease in BSAF 

values after 14 days of exposure from 0.51 ± 0.09 to 0.035 ± 0.015 was 

observed.  Assuming that partitioning processes leading to an eventual 

bioaccumulation of such compounds by organisms depend upon a 

thermodynamic equilibrium between sediment organic carbon and organism 

lipid phases being reached, the fraction of organic carbon in the sediment 
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would not be expected to affect BSAF values for nonionic organic chemicals 

(Di Toro et al. 1991).  The observed changes in BSAF values are inconsistent 

with this understanding of hydrophobic organic chemical uptake, suggesting 

that the nanotubes detected have not been absorbed into organism tissues, 

but rather are associated with sediment matter remaining in the organism’s 

gut. 

Interestingly, standard deviations of BSAF values for the carbon 

nanotubes are all significantly larger than those for pyrene.  This result may 

support the notion that a significant fraction of the radioactivity detected in the 

aquatic worms was from sediment-associated nanotubes not purged from the 

organisms after 6 hrs of depuration, a parameter that would reasonably vary 

over a greater range than that of absorption by tissues.  This variability may 

also stem from greater heterogeneities of carbon nanotube distributions in the 

sediment.  While all pyrene was dissolved in acetone prior to spiking, some 

carbon nanotubes were not fully dispersed by sonication.  Larger aggregates 

of carbon nanotubes may then have caused small regions of elevated 

nanotube concentration.   

Increases in the mortality of L. variegatus exposed to sediments 

containing SWNTs, MWNTs, or pyrene compared to unspiked sediments 

were not observed at the concentrations and exposure durations investigated 

here.  Measurement of acute toxicity across a broad range of nanotube 

concentrations was not attempted. 
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5.3.2 Depuration Experiments 

How rapidly the organisms studied purged carbon nanotubes from their 

bodies was also investigated (Figure 5.2).  After roughly three days of 

depuration in beakers containing only water, the organisms had purged over 

80% of the single- or multi-walled nanotubes remaining in the worms after the 

initial 6 hrs of depuration, while only 13% of the pyrene was excreted after the 

same interval.  The relatively slow depuration of pyrene is attributed to low 

rates of clearance from organism tissues compared to rates of sediment gut 

purging.  Conversely, the rapid elimination of the carbon nanotubes suggests 

that the major fraction of carbon nanotubes present in the worms after the 

initial 6 hrs of depuration comprised nanotubes associated with residual gut 

sediment.  Depuration rates of MWNTs in beakers containing both water and 

clean sediment were significantly faster than those in beakers containing only 

water, suggesting that the worms would almost completely purge the carbon 

nanotubes from their systems after a few days of exposure to water and clean 

sediments.  Concentrations of nanotubes detected in organisms were below 

background concentration levels after two days of depuration in clean 

sediment dispersions in water. 

5.4 Summary 

We show here that biota-sediment accumulation factors for purified 

CNTs of both single- and multi-walled nature by a common aquatic 

oligochaete, Lumbriculus variegates, are shown here to in fact be lower by 

nearly an order of magnitude than those for pyrene, a three-ringed PAH.  
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CNTs detected in the test organism appear to be associated predominantly 

with sediment materials accumulated in its gut, rather than being absorbed 

into its tissues, importantly suggesting that unmodified carbon nanotubes 

released into sediment ecosystems may, unlike PAHs, not readily 

bioaccumulate in aquatic organism tissues and thus not magnify in associated 

food chains.  Explanations for the limited nanotube uptake compared to that 

of pyrene are explored in detail in Chapter 6. 
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Figure 5.1: Biota-sediment accumulation factors (BSAFs) of single-walled 

carbon nanotubes (SWNT) (0.03 mg/g dry sediment), multi-walled carbon 

nanotubes (MWNT) (0.37 mg/g dry sediment) and pyrene (0.054 mg/g dry 

sediment) uptake by L. variegatus.  All compounds were spiked to mixtures of 

90% sediment (Ann Arbor, MI) with 10% Michigan Peat (by mass). Error bars 

represent one standard deviation (n=3). 
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Figure 5.2: Biota-sediment accumulation factors (BSAFs) of single-walled 

carbon nanotubes (SWNT) (0.03 mg/g dry sediment), multi-walled carbon 

nanotubes (MWNT) (0.37 mg/g dry sediment) and pyrene (0.054 mg/g dry 

sediment) depuration by L. variegatus.  “Water” indicates samples for which 

the depuration was conducted in beakers with only water, while “Sediment” 

indicates that the depuration was conducted in beakers with water and 50g 

clean sediment.  Times represent the depuration period after the standard 6 

hrs for gut clearance.  Error bars represent one standard deviation (n=3). 
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  BSAF 
Pyrene (0.05 mg/g) 3.353 ± 0.050
MWNT #1 (0.37 mg/g) 0.418 ± 0.308
MWNT #2 (0.37 mg/g) 0.506 ± 0.092
MWNT (0.037 mg/g) 0.370 ± 0.093
SWNT (0.03 mg/g) 0.174 ± 0.045
SWNT (0.003 mg/g) 0.141 ± 0.006
MWNT Sediment Only (0.37 mg/g) 0.035 ± 0.015
 

Table 5.1: Biota-sediment accumulation factors (BSAFs) for L. variegatus 

uptake after 14 days of exposure.  The term “Sediment Only” refers to a 

sample where the oligochaetes were exposed in sediment without the 

amendment of 10% (by dry mass) Michigan Peat.  Means and standard 

deviations are the result of triplicate measurements. 
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Chapter 6 

 

BIOACCUMULATION OF RADIOACTIVELY LABELED CARBON 

NANOTUBES BY EISENIA FOETIDA 

 

6.1 Introduction 

Given the widespread interest in carbon nanotubes for new 

technologies, their release into terrestrial ecosystems is inevitable.  Rationale 

for the potential uptake of carbon nanotubes by organisms in terrestrial 

ecoystems mirror those discussed in Chapter 5 for aquatic sediment 

ecosystems.  Although L. variegatus was not shown to bioaccumulate 

nanotubes in chapter 5, it is possible that differences in the feeding between 

earthworms and aquatic worms, and the unknown behaviors of carbon 

nanotubes in environmental systems could lead to different results for 

earthworms exposed to soils spiked with carbon nanotubes.  Earthworms are 

often used to assess the bioaccumulation of chemicals in terrestrial 

ecosystems due to their intimate contact with and ingestion of soil and their 

frequent consumption by many vertebrate species (Ma et al. 1998; Jager et 

al. 2000; Krauss et al. 2000).  Given these factors, the potential for carbon 
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nanotubes to enter the earthworm Eisenia foetida, a potential entry point to 

terrestrial food chains, was explored. 

6.2 Methods 

The uptake of carbon nanotubes or pyrene by Eisneia foetida was 

conducted using a modified ASTM method (ASTM 1998) as described in 

section 2.8.  Carbon-14 labeled multi-walled carbon nanotubes (MWNTs) and 

single-walled carbon nanotubes (SWNTs) were synthesized and purified as 

described in section 2.2 according to Chen et al. (1997) and Li et al. (2002).  

Biological oxidation followed by scintillation counting was used to assess the 

radioactivity of the synthesized nanotubes, spiked soils, and earthworms.  

Carbon-14 labeled SWNTs, MWNTs, or combinations of regular and carbon-

14 pyrene dissolved in methylene chloride were added to soils from Chelsea 

or Ypsilanti, Michigan and referred to as “Chelsea” and “Ypsilanti” soils, soils 

that possessed organic carbon fractions of 5.95%, 1.14%, respectively.  

These soil samples were then tumbled, solvent volatilization allowed 

overnight, and three adult earthworms added to moist containers (20% 

moisture content) with 30 g dry weight soil.  Worms were removed from 

triplicate containers after 1, 7, 14, and 28 d for the Chelsea soil and after 14 

days for the Ypsilanti soil.  After removal, the earthworms were washed with 

Milli-Q water, transferred to wet filter paper in Petri dishes for 24 hrs in the 

dark to allow purging of gut contents, and again rinsed with clean Milli-Q 

water until the radioactivity of the water had a background radioactivity 

concentration.  The worms were then transferred to glass centrifuge tubes, 
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freeze-dried for 24 hrs, weighed, combusted in a biological oxidizer, and the 

radioactivity determined using liquid scintillation counting.  After exposure for 

14d, the earthworms were removed from three containers and added to 

containers with unspiked soils to allow for depuration.  After depuration for 1, 

2, or 7 d, the worms were removed from their containers and the radioactivity 

remaining in the worms determined as described above.  Containers with 

sediment spiked with non-radioactive SWNTs, MWNTs, or pyrene were used 

as blank controls to assess acute toxicity.  No toxicity was found with the 

nanotube and pyrene concentrations and exposure durations used here.  

Bioaccumulation factor (BAF) values were calculated as the ratio of the 

compound concentration in organism to concentration in soil. 

6.3 Results and Discussion 

6.3.1 Uptake Experiments 

Bioaccumulation factors (BAF; concentration of the chemical in the 

worm divided by that in the soil) of the SWNTs and MWNTs by E. foetida 

were almost two orders of magnitude lower than those for pyrene, as shown 

in Figure 6.1 and Table 6.1.  These low levels of uptake may be largely 

accounted for by carbon nanotubes in soil mass remaining in the worms’ guts 

after depuration. Gut loading (dry weight egesta per dry weight worm) for 

Eisenia foetida was found to be 0.63 ± 0.022 for mineral soil (Hartenstein et 

al. 1981). A 0.05-fraction of gut content remaining after 24 hours depuration 

has been reported for E. foetida, a value similar to the fraction of gut content 

(0.056 ± 0.021) remaining for E. Andrei after 24 hours depuration (Jager et al. 
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2003b) .  Assuming 5% gut content remaining in E. foetida after 24 hours, the 

BAF for a non-bioaccumulating chemical would be 0.0315 ± 0.001 for E. 

foetida.  None of the earthworm uptake data points for SWNT and MWNT 

(Figure 6.1 and Table 6.1) were significantly greater than this level (P > 0.05), 

while all pyrene values exceeded this value.  Gut loading of soil for E. foetida 

was previously found to vary based on the properties of the substrate and 

moisture content (Hartenstein et al. 1981).  As such, differences in 

experimental conditions could account for the fact that the nanotube BAFs 

measured here were generally slightly less than 0.03.   

This finding suggests that any apparent differences between the 

SWNT and MWNT uptakes stemmed largely from differences in the gut 

contents of the worms and are not indicative of differences in accumulation 

behaviors between these two types of carbon nanotubes. The earthworm bio-

uptake of MWNTs after 14 days was larger than that for SWNTs in the 

Chelsea soils, but the BAF values for the SWNTs were higher than the 

MWNTs for exposure in Ypsilanti soil.  Uptakes after 28 days of exposure to 

the Chelsea soil, however, were almost identical for the SWNTs and MWNTs.  

The differences in BAF values after 14 days are difficult to explain or 

rationalize, and may relate to unapparent differences in the health of worms 

during worm selection at the beginning of the experiments. 

The pyrene BAFs shown in Table 1 were, unlike those for carbon 

nanotubes, strongly correlated to the organic carbon content of the soils, 

consistent with equilibrium partitioning expectations.  The BAF for the 



 88

Ypsilanti soil after exposure for 14 days was a factor of 4.8 higher than that 

for the Chelsea soil, while the organic carbon content of the Chelsea soil was 

a factor of 5.2 greater than that of the Ypsilanti soil.   

6.3.2 Depuration Experiments 

Rates of carbon nanotube purging after earthworm exposure to clean 

soils were also investigated (Figure 6.2).  Unlike the depuration of pyrene, 

which exhibited an expected exponential decay behavior, the depuration 

behaviors of the SWNTs and MWNTs did not exhibit a clear pattern. This is 

again consistent with a conclusion that the majority of the carbon nanotubes 

measured were in the guts of the earthworms.  Similar depuration behaviors 

were previously found with the oligochaete, Lumbriculus variegatus, for 

polydimethylsiloxane-spiked sediment (Kukkonen and Landrum 1995).  The 

apparent uptake of this chemical was suggested to be a result of sediment 

residing in the organism’s gut after the initial depuration period, and not of 

chemical absorption into the tissues of the organism.       

Differences between the uptake and depuration behaviors of carbon 

nanotubes and pyrene by E. foetida can be attributed to one or more of 

several factors, factors which also largely explain the related behaviors 

demonstrated with L. variegatus.  E. foetida can potentially uptake chemicals 

directly from interstitial waters by dermal absorption or oral ingestion, and 

from uptake of soil particles and subsequent release of the chemical of 

interest to the interstitial fluids (Belfroid et al. 1996).  Given the limited 

solubility of carbon nanotubes in water, their uptake by earthworms from 
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interstitial water is likely minimal.  This nanotube behavior also suggests that 

dermal absorption of nanotubes would be highly limited.  The potential for 

uptake of soil particles, desorption of the chemicals in the organisms’ gut, and 

absorption into the organism represents a more likely potential source of bio-

uptake.  This exposure pathway has been shown to be significant for 

chemicals having high octanol-water partitioning coefficients (log kow > 5) 

(Belfroid et al. 1996).  The results shown here though do not suggest 

significant absorption through this exposure route, at least after 28 days of 

exposure.  The hydrophobic nature of the nanotubes would suggest strong 

sorption to organic matter associated with the soil or sediment particles, and it 

is unclear as to what extent the carbon nanotubes would desorb from the  

organic matter in the gut of the worms.  If some fraction of the nanotubes had 

indeed desorbed, cellular uptake of these nanotubes across the body wall of 

the worms may have limited absorption into worm bodies.  Cellular uptake of 

a variety modified SWNTs and MWNTs by a broad range of cells has been 

recently determined (Kostarelos et al. 2007), although the cellular uptake 

mechanisms for carbon nanotubes is still debated.  The extent to which 

nanotubes would pass through these cells and enter systemic circulation in 

the bodies of the worms has not yet been established, but the cellular 

assimilation of unmodified carbon nanotubes was shown to be rapid in 

Chapter 4.    

The results presented here clearly indicate that absorption of purified 

SWNTs and MWNTs into the tissues of E. foetida is minimal in comparison to 
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that of a representative PAH counterpart, pyrene. Nonetheless, carbon 

nanotubes can undergo modification by acid treatment, numerous chemical 

reactions, and/or adsorption of polymers or biomolecules.  Each event can 

significantly change such physicochemical properties such as nanotube 

length and solubility in water.  Compounds readily available in environment 

systems (natural organic matter, for example) have been shown to disperse 

MWNTs, a change which could significantly influence their ecological 

behaviors (Hyung et al. 2007).  Development of better understandings of the 

extents to which such alterations may impact nanotube toxicokinetics 

represents a crucial area for ongoing research. The carbon-14 labeled 

nanotubes developed here clearly provide a promising tool for further 

environmental investigations along these and other lines. 

6.4 Summary 

The uptake and depuration behaviors of the spiked carbon nanotubes 

and pyrene by the earthworm Eisenia foetida, a potential entry point to 

terrestrial food chains, were then assessed.  Bioaccumulation factors 

determined for the nanotubes were almost two orders of magnitude smaller 

than those measured for pyrene, indicating that purified carbon nanotubes, 

unlike pyrene, are neither readily absorbed into organism tissues nor manifest 

equilibrium partitioning thereto.  These results mirror those determined in 

chapter 5 for the uptake of sediment-spiked nanotubes by the oligochaete 

Lumbriculus variegatus.
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Figure 6.1: Bioaccumulation factors (BAFs) of single-walled carbon 

nanotubes (SWNT) (0.03 mg/g dry soil), multi-walled carbon nanotubes 

(MWNT) (0.3 mg/g dry soil) and pyrene (0.04 mg/g dry soil) spiked to Chelsea 

soil.  Error bars represent one standard deviation (n=3). 
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Figure 6.2: Bioaccumulation factors (BAFs) for the depuration behaviors of 

single-walled carbon nanotubes (SWNT) (0.03 mg/g dry sediment), multi-

walled carbon nanotubes (MWNT) (0.3 mg/g dry sediment) and pyrene (0.04 

mg/g dry sediment) spiked to Chelsea soil after 14 days exposure.  Test day 

refers to the depuration time in fresh soil.  Error bars represent one standard 

deviation (n=3). 
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  BAF 
Pyrene Chelsea Soil (0.04 mg/g) 2.94 ± 0.25 
Pyrene Ypsilanti Soil (0.04 mg/g) 14.0 ± 0.9 
MWNT Chelsea Soil (0.3 mg/g) 0.023 ± 0.01 
MWNT Chelsea Soil (0.03 mg/g) 0.016 ± 0.001
MWNT Ypsilanti Soil (0.3 mg/g) 0.014 ± 0.003
SWNT Chelsea Soil (0.03 mg/g) 0.0061 ± 0.002
SWNT Chelsea Soil (0.1 mg/g) 0.0078 ± 0.005
SWNT Ypsilanti Soil (0.03 mg/g) 0.022 ± 0.003
 

Table 6.1: Bioaccumulation factors (BAFs) after 14 days exposure for single-

walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), 

and pyrene uptake by E. foetida.  Mean and standard deviation values were 

calculated from triplicate measurements. 
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Chapter 7 

 

ECOLOGICAL UPTAKE AND PHASE PARTITIONING OF 

PURIFIED AND ACID-MODIFIED MULTI-WALLED CARBON 

NANOTUBES 

 

7.1 Introduction 

As discussed in Chapter 1, one major difference between carbon 

nanotubes and most environmental contaminants is the potential for surface 

coatings on or chemical functionalization of the CNTs.  Nanotubes, for 

example, have been solubilized/dispersed by a wide range of polymers, 

surfactants, and macromolecules (O'Connell et al. 2002; Zheng et al. 2003; 

Sinani et al. 2005) and also by chemical treatments, such as by adding 

functional groups to the nanotubes or shortening them with acid treatments 

(Liu et al. 1998; Ziegler et al. 2005; Kostarelos et al. 2007).  Furthermore, 

nanotubes may also interact with compounds ubiquitous in environmental 

systems such as natural organic matter (Hyung et al. 2007).  It is unknown 

though to what extent these changes to the nanotubes would affect their fate 

and distribution in environmental systems. 
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One potential approach for estimating the extent to which such 

modified nanotubes would accumulate in ecological receptors would be to 

test the applicability of approaches that have been previously used for similar 

purposes with hydrophobic organic chemicals (HOCs).  Predictive models for 

bioaccumulation of HOC in a wide range of terrestrial and aquatic ecosystems 

have often been based on the octanol-water partitioning coefficient (Di Toro et 

al. 1991; Belfroid et al. 1996; Mackay and Fraser 2000).  This coefficient is 

used to relate partitioning via passive diffusion processes between 

contaminated media such as sediments, soils, and water and the lipid tissue 

in organisms, an approach based on Equilibrium Partitioning Theory.  This 

theory has many recognized limitations though including reliance on a linear 

sorption model and the failure to account for biotransformation, aging, and 

differences in behavior among various organisms (Belfroid et al. 1996).  The 

application of octanol-water partitioning values for estimating bioconcentration 

behaviors, nevertheless, still holds value for screening wide databases of 

chemicals for potentially bioaccumulating chemicals (Mackay and Fraser 

2000).   

Although purified SWNTs and MWNTs were not shown to accumulate 

in the earthworm Eisenia foetida and the aquatic oligochaete Lumbriculus 

variegatus in Chapters 5 and 6, CNTs with a wide range of sizes and 

chemical properties are being investigated for their future applications.  The 

potential for some forms of this class of nanoparticles to accumulate in 
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organisms remains a distinct possibility and a critical topic for elucidating the 

potential human and environmental risks, if any, posed by nanotubes. 

As such, we tested the ecological uptake of MWNTs modified by 

sonication in a 3:1 acid mixture of sulfuric to nitric acid using E. foetida and L. 

variegatus.  The phase distribution behaviors of purified and 3:1 acid-modified 

MWNTs between water and octanol were also investigated, and these values 

and the extent to which these nanotubes were absorbed by ecological 

receptors were then compared against the bio-uptake behaviors of HOCs with 

similar partitioning coefficients.  This investigation was intended to help clarify 

the relationship between the accumulation behaviors of carbon nanotubes 

and HOCs in two primary ways: i) the extent to which the uptake of carbon 

nanotubes would resemble that of other organic chemicals with similar 

octanol-water distribution coefficients and ii) to what extent previous 

approaches for modeling the environmental behaviors of HOCs can be used 

to predict how various forms of CNTs would behave in environmental 

systems.  

7.2 Experimental Methods 

MWNTs purified with hydrochloric acid for 1 hr were bath-sonicated in 

a mixture of 3:1 concentrated sulfuric to nitric acid for 2 hrs.  These 

nanotubes were filtered, dried, and robustly characterized as described in 

Chapter 3.  They were found to maintain high purity with regards to 

amorphous carbon and to possess minimal traces of metal catalysts from the 

synthesis process.  X-ray photoelectron spectroscopy was used to confirm a 
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significant increase in the elemental percentage of oxygen in the MWNT 

sample after the 3:1 acid treatment process, a change which indicates a 

greater density of functional groups on the nanotubes.  Length distributions of 

the nanotubes determined using scanning electron microscopy (SEM) did not 

indicate changes in the nanotube lengths as a result of this modification 

procedure. 

Given these changed physicochemical properties of the nanotubes, the 

extent to which these alterations influenced nanotubes’ bio-uptake was 

assessed. These modified MWNTs were sonicated, spiked to soils or 

sediments, and their uptake and depuration behaviors then measured using 

the earthworm E. foetida and the oligochaete L. variegatus.  These 

procedures mirrored those used for the purified MWNTs as described in 

sections 2.7 and 2.8.  Also similarly to the purified nanotubes, the amendment 

of 3:1 acid mixture modified MWNTs to the soils and sediments did not cause 

acute toxicity to the organisms for the concentrations and exposure durations 

examined here. 

A modified shake-flask method was used to assess the nanotubes’ 

distribution coefficients as described in section 2.8.  MWNTs purified with HCl 

for 1 hr or those also modified by the 3:1 acid mixture were dispersed in water 

or n-octanol, 25 mL of the solution added to test tubes, and then 25 mL of the 

complimentary phase added.  This sonication treatment was similar to that 

which the MWNTs received prior to their addition to the soils or sediments.  

The octanol/water mixtures were allowed to equilibrate for three weeks after 
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which period the radioactive nanotube concentrations were measured in both 

the water and octanol phases.  The results, however, indicated that minimal 

transport across the water-octanol interface occurred for nanotubes originally 

dispersed in either phase.  As such, additional experiments were conducted 

in which a second round of ultrasonication was used to vigorously intermix the 

two phases by positioning the probe slightly above the interface.  Given this 

different methodology as compared to the traditional octanol-water 

partitioning coefficient measurements, the term “distribution coefficient” is 

used here when referring to values determined using this method.   

The stability of the MWNT dispersion for both types of MWNTs in 

octanol and water was also assessed.  MWNTs were sonicated in both 

solutions at similar concentrations to those used in the distribution 

experiments, 50 mL of the solutions added to test tubes, and the nanotube 

concentrations in the liquid phases measured at various times. 

7.3 Results and Discussion 

7.3.1 Ecological Uptake and Depuration 

 Modifying the carbon nanotubes by sonication with the 3:1 sulfuric to 

nitric acid mixture did not significantly change their uptake and depuration 

behaviors by either E. foetida or L. variegatus.  The bioaccumulation factor 

(BAF) values for both organisms with the 3:1 treated MWNTs resembled 

those for the purified MWNTs as shown in Figures 7.1 and 7.2.  Depuration 

behaviors for L. variegatus after 14 days of exposure in sediment amended 

with 10% by mass Michigan Peat resembled those for the purified MWNTs as 
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illustrated in Figure 7.3; these results are generally similar to those found for 

L. variegatus and polydimethylsiloxane, a compound believed not to 

significantly absorb into the organisms’ tissues (Kukkonen and Landrum 

1995).  As shown in Figure 7.4, the concentration of the 3:1 nanotubes in the 

worms after depuration in clean sediment for two days was found to be below 

the background level indicating the rapid rate at which the nanotubes can be 

purged from these organisms.  These results taken together suggest that the 

3:1 acid-mixture modified MWNTs measured in the organisms were again 

associated with soils or sediments remaining in the guts of the organisms and 

not absorbed into their tissues.  The BAF values for the aquatic worms with 

3:1 acid mixture modified unamended sediments and those amended with 

10% Michigan Peat were 0.67 ± 0.26 and 0.39 ± 0.08, similar values as to 

those shown for the purified nanotubes.  These results strongly suggest that 

the uptake of these nanotubes did not follow equilibrium partitioning.  If the 

nanotubes uptake did indeed followed the behaviors described by Equilibrium 

Partitioning Theory, the BAF value should be a factor of 8 greater for the 

worms exposed to nanotubes spiked to unamended sediments given that the 

percent of organic carbon decreased from 5.1 to 0.66 % without the 

amendment of the Michigan Peat.  

 The lack of a change in the bio-uptake behaviors for the modified 

MWNTs was unexpected largely because these nanotubes were more stable 

in water, and as such, more likely available for biological uptake through oral 

ingestion or dermal absorption.  It is possible that the modified MWNTs still 
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strongly interacted with the soil and sediment particles and were thus not 

present in the water phase at significant concentrations.  The nanotubes were 

thus not available through ingestion of pore water, or, after the uptake of soil 

or sediment particles by the organisms, the nanotubes may not have 

appreciably desorbed from these materials in the guts of the organisms.  It 

has also been shown though that some chemical compounds are less likely to 

bioaccumulate in human’s adipose tissue if they become more hydrophilic by 

biotransformation and can then be more readily excreted (Geyer et al. 1987).  

Another possible explanation for the lack of uptake is that these MWNTs were 

still unable to pass through the gut lining of the organisms or through dermal 

absorption to enter systemic circulation in the organisms’ bodies.  This would 

stand in contrast to the facility in which nanotubes are known to readily enter 

cells. 

7.3.2 Phase Partitioning Behaviors 

One of the most intriguing findings from this set of experiments was the 

apparent inability of MWNTs to cross the interfacial boundary between the 

octanol and water phases.  Nanotubes were not detected in either the octanol 

or water phases when the nanotubes were initially dispersed in the 

complimentary phase.  This behavior differs from that of typical HOCs which 

would readily transfer between these phases although in larger quantities 

from the water to the octanol phase.  The cause of this behavior is yet 

unclear, but may be in part a result of the surface properties of the carbon 
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nanotubes that possess both hydrophobic and hydrophilic sections, and thus 

share chemical similarities with surfactants.   

After sonication, the measured distribution coefficient for the 3:1 acid 

mixture modified MWNTs was approximately 2.7.  Measurements of this 

coefficient for different time periods are shown in Table 7.1.  The distribution 

coefficient for the HCl purified MWNTs, conversely, could not be determined 

using this methodology as the concentration of MWNTs in the aqueous phase 

was below the detection limit.  Given that the 3:1 acid modification only 

changed the nanotubes’ hydrophilicity, differences in the octanol/water 

distribution behaviors are attributed to the increase in the quantity of 

functional groups on the nanotubes after this treatment. 

The extent to which settling of nanotubes in the aqueous phase could 

be responsible for the 1 hr MWNT results was assessed as shown in Figure 

7.5.  Both types of MWNTs appeared to be relatively stable in water for the 

duration of the distribution experiments.  This suggests that the inability to 

measure the distribution coefficient of the HCl purified MWNTs was not a 

result of settling in the aqueous phase.  Additionally, settled aggregates of 

MWNTs were not visually evident in the bottoms of the test tubes for the HCl 

purified MWNTs.  Comparisons can be made between the settling behavior of 

the various types of carbon nanotubes comparing their stability in water and 

octanol, but such discussions are beyond the scope of this thesis. 

The extent to which MWNTs’ distribution coefficients and bio-uptake 

behaviors mirror those for HOCs with similar coefficients may help 
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demonstrate the extent to which empirical relationships developed for the 

bioaccumulation of HOCs would be applicable for nanotubes.  The distribution 

coefficient for the 3:1 MWNTs was near the octanol-water partitioning 

coefficients (kow) for some chemicals known to bioaccumulate in organisms.  

The kow coefficients for toluene and chlorobenzene, for example, are 2.69 and 

2.84, respectively (ATSDR 1994).  Other chemicals with similarly low kow 

coefficients may not bioaccumulate to an appreciable extent if they are readily 

metabolized within organisms.  Biotransformation of chemicals has also been 

shown to influence bioaccumulation behaviors especially if chemicals become 

hydrophilic and are thus more readily excreted from the organisms (Geyer et 

al. 1987).   

The difference in the distribution coefficients measured here for two 

different types of MWNTs but their similar bioaccumulation by organisms 

indicates that distribution coefficients for MWNTs may not be a useful 

predictor of their uptake by ecological receptors.  As such, the distributions 

coefficients determined here should not be equated with octanol-water 

partitioning coefficients for typical HOCs, and specifically, these values should 

not be misused by predicting the bio-uptake of different types of nanotubes 

using empirical equations developed for organic chemicals with their kow 

values.  It should be noted though that, in the experiments conducted here, 

the nanotubes came into contact with soil or sediment particles prior to 

interactions with ecological receptors, and the corresponding sorption of the 

nanotubes may have determined the lack of uptake regardless of the 
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nanotube properties.  The uptake behaviors of nanotubes in ecological 

systems in the absence or sediment particles though is unknown, may differ 

from those shown here, and represents an important topic for future research 

investigations as described in Chapter 8. 

7.4 Overview 

Modifying MWNTs with a 3:1 mixture of sulfuric to nitric acid did not 

significantly modify their bioaccumulation behaviors by either E. foetida or L. 

variegatus.  The nanotubes appeared to remain in the guts of the organisms 

instead of being absorbed into their tissues.  Investigating the distribution 

behaviors of multi-walled carbon nanotubes between water and n-octanol 

indicated that the nanotubes do not readily transfer between these two 

phases.  After mixing the phases via sonication, the distribution coefficient for 

the 3:1 modified MWNTs was approximately 2.7, while that for the HCl 

purified MWNTs could not be determined as a result of low nanotube 

concentrations in the water phase.  The similar ecological behaviors of these 

compounds though suggest that the distribution coefficients are not indicative 

of their bioaccumulation behavior.  This stands in contrast to the usage of 

octanol-water partitioning coefficients for organic chemicals to predict their 

concentrations in organisms.  As such, the distribution coefficients measured 

here should thus not be confused with octanol-water partitioning values for 

typical hydrophobic organic chemicals, and empirical relationships developed 

for HOCs should not be used to predict the environmental behaviors of these 

nanotubes. 
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Figure 7.1: Bioaccumulation factors (BAFs) for L. variegatus uptake of 3:1 

modified MWNTs spiked to sediment amended with 10% by mass Michigan 

Peat.  All data points are from triplicate measurements and error bars 

represent the standard deviation of those measurements.  
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Figure 7.2: Bioaccumulation factors (BAFs) for earthworm uptake of 3:1 

modified MWNTs spiked to Chelsea soil.  All data points are from triplicate 

measurements and error bars represent the standard deviation of those 

measurements. 
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Figure 7.3: Bioaccumulation factors (BAFs) for L. variegatus depuration of 3:1 

modified and HCl purified MWNTs, SWNTs, and pyrene spiked to sediments 

amended with 10% by mass Michigan Peat after 14 days of exposure.  

Depuration time refers to the amount of time passed after the initial 6 hours of 

purging. 
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Figure 7.4: Bioaccumulation factors (BAFs) for L. variegatus depuration of 3:1 

modified spiked to Michigan sediment after 28 days of exposure.  Aquatic 

worm depuration data in beakers with only water are marked as “Water” and 

those in beakers with water and clean sediment are marked as “Sediment.”  

Depuration time refers to the amount of time passed after the initial 6 hours of 

purging. 
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Figure 7.5: Settling of 3:1 treated or HCl purified multi-walled carbon 

nanotubes in water (H2O) or octanol. 
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MWNT Type Initial Solution Time After Sonication logCoefficient 
3:1 MWNT H2O 4d 2.77 ± 0.06 
3:1 MWNT H2O 8d 2.70 ± 0.13 
3:1 MWNT H2O 14d 2.42 ± 0.14 
3:1 MWNT H2O 21d 2.69 ± 0.05 
HCl MWNT H2O 4d 2.95 ± 0.08 
HCl MWNT H2O 8d ND 
3:1 MWNT Octanol 16d 3.00 ± 0.12 
HCl MWNT Octanol 16d ND 
 

Table 7.1: Octanol/water distribution coefficients for multi-walled carbon 

nanotubes (MWNTs) dispersed in either water (H2O) or octanol.  Initial 

solution refers to whether the nanotubes were first dispersed in water or 

octanol.  Time after sonication refers to the duration the samples were 

allowed to equilibrate after the sonication period used to mix the two phases.  

LogCoefficient is the logarithm of the octanol/water distribution coefficient 

(concentration in octanol divided by the concentration in water).  ND indicates 

that the value could not be determined as a result of insufficient radioactivity 

in the aqueous phase.  All means and standard deviations are from triplicate 

samples.   
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Chapter 8 

 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

The main conclusions evident from the results presented in this thesis 

are succinctly summarized in the five paragraphs presented below. 

 Carbon-14 labeled single- and multi-walled carbon nanotubes 

were synthesized using a modified methane chemical vapor deposition 

method.  Measurements of the radioactivity of small (> 1mg) masses of 

nanotubes consistently revealed low coefficients of variation (generally < 5%), 

indicating a relatively uniform distribution of the carbon-14 isotope throughout 

the nanotube samples.  Analytical measurements of the nanotubes using 

transmission electron microscopy, thermal gravimetric analysis, and Raman 

spectroscopy confirmed high nanotube purity with respect to amorphous 

carbon and catalyst materials.  The synthesis and application of such carbon 

nanotubes overcomes serious prior experimental difficulties related to their 

quantification in biological and environmental samples, thus allowing a broad 

range of future research investigations for these materials. 
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 Purified multi-walled carbon nanotubes were assimilated rapidly 

and apparently irreversibly by HeLa cells.  Seventy-four percent of the 

nanotubes added to each plate were assimilated within the first 15 minutes, 

and the cellular concentration after 6 hrs reached a maximum at eighty-nine 

percent of the nanotubes added.  Uptake of the nanotubes by the HeLa cells 

appeared also to be essentially irreversible, with only 0.9 ± 0.5% of the 

nanotubes accumulated after the 12 hr uptake period being released during a 

subsequent 12 hr period of cell incubation in regular media. These results 

combined with those of other researchers who have qualitatively shown 

nanotube uptake by a broad range of cells (Kostarelos et al., 2007) suggest 

that nanotubes released in water bodies may have strong dermal attachment 

to skin cells or gastrointestinal cells after water ingestion.  The ability of 

nanotubes to pass through biological membranes though is a critical step for 

entering systemic circulation in organisms, but was not explored here and 

represents a topic for future work. 

 Purified single- and multi-walled carbon nanotubes were not 

readily bioavailable to model ecological receptors.  Uptake and 

depuration results using the earthworm Eisenia foetida and the oligochaete 

Lumbriculus variegatus suggested that SWNTs and MWNTs spiked to soils or 

sediments were not accumulated by the organisms at significant 

concentrations.  Concentrations of SWNTs and MWNTs in the organisms 

were relatively similar, both typically one to two orders of magnitude less than 

those for pyrene, a chemical known to bioaccumulate in organisms.   Thus, 
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unlike pyrene, carbon nanotubes did not appear to adhere to simple 

equilibrium partitioning theory behavior among aqueous, soil or sediment 

organic carbon, and organism lipid phases. 

 Modifying the MWNTs by sonication in a 3:1 mixture of sulfuric 

and nitric acids for 2 hours did not change their bioavailability to E. 

foetida or L. variegatus.  As indicated by an increased density of functional 

groups measured using x-ray photoelectron spectroscopy, such treatment 

made the nanotubes more hydrophilic, but did not change their length 

distribution as determined using scanning electron microscopy. Uptake and 

depuration behaviors by E. foetida or L. variegatus in environmentally 

relevant settings, however, were not changed by these modifications. 

 Phase distribution coefficients between octanol and water for 

purified and acid modified multi-walled carbon nanotubes were not 

indicative of their bioaccumulation behaviors.  The experimental method 

used here significantly differed from the conventional shake flask method in 

that the carbon nanotubes required vigorous ultrasonication to enable 

redistribution between the two phases.  The logarithm of the phase 

distribution coefficient for MWNTs modified by sonication in a 3:1 sulfuric to 

nitric acid mixture was approximately 2.7, a value that would suggest 

bioaccumulation by organisms based on the behaviors of organic chemicals 

with a similar octanol-water partitioning coefficient.  The value for the purified 

MWNTs, conversely, could not be accurately determined as a result of the 

low nanotube concentration in the aqueous phase.  This difference in the 
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distribution coefficients is attributed to an increase in density of functional 

groups on the 3:1 treated MWNTs as determined using x-ray photoelectron 

spectroscopy.  Despite the changed distribution coefficient, the 3:1 acid 

modified MWNTs exhibited the same uptake and depuration behaviors as 

described above.  As such, these nanotubes manifested distinctly different 

accumulation behaviors as compared to typical hydrophobic organic 

chemicals (HOCs).  The nanotube coefficients measured here should not be 

carelessly equated to octanol-water partitioning coefficients measured for 

HOCs, and related predictive models and correlations developed using HOCs 

should not be used with MWNTs. 

8.2 Future Work 

 While much remains unknown about the potential human and 

ecological risks associated with nanomaterials, the results presented here 

suggest several promising avenues for additional environmental 

investigations related to the fate and distribution of carbon nanotubes. 

 Ecological uptake and depuration of carbon nanotubes in aqueous 

systems in the absence of sediment particles.  The experiments conducted 

here tested the uptake of carbon nanotubes after their spiking to soils or 

sediments.  It appeared that the concentration of carbon nanotubes in the 

interstitial or overlying water was minimal, as a result of their sorption to soil 

or sediment particles and subsequent settling.  If carbon nanotubes were to 

remain dispersed in a water body for extended time periods, their uptake by 

organisms such as fish might exhibit different bioaccumulation behaviors than 
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those determined for L. variegatus.  Roberts et al. (2007), for example, 

qualitatively measured SWNT uptake by Daphnia magna using containers 

with suspended nanotubes but in the absence of sediment. 

 Additional investigations of the extent to which various 

physicochemical modifications may impact carbon nanotube bioavailability in 

different ecosystems.  In addition to the acid modifications utilized in this 

dissertation, the nanotechnology literature is replete with physical and 

chemical approaches that can be used to modify carbon nanotubes.  Given 

that researchers are assessing the application potentials of these altered 

nanotubes, elucidating the environmental behaviors of nanotubes with a 

broader range of physical and chemical properties becomes a clear research 

need.  The carbon-14 nanotubes synthesized here can serve as a foundation 

for a survey of the bioaccumulation behaviors of carbon nanotubes having an 

array of sizes, functional groups, and adsorbed biomacromolecules or 

polymers.  Such research will likely highlight those nanotube properties, if 

any, that most significantly impact their environmental behaviors and 

toxicities, thus guiding the safe manufacturing and production of devices 

incorporating carbon nanotubes. 

 The impact of carbon nanotubes on the fate and distribution of other 

organic and inorganic pollutants.  Carbon nanotubes have been shown to 

possess strong sorptive capacities for various metals including lead, 

cadmium, and copper (Li et al. 2003) and a broad range of hydrophobic 

organic chemicals including polycyclic aromatic hydrocarbons and 
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polychlorinated biphenyls (Long and Yang 2001; Yang et al. 2006a; Yang et 

al. 2006b).  Hypothetically, carbon nanotubes might act similarly to charcoals 

and other forms of black carbon by sequestering such compounds and 

limiting their bioavailability and mobility.  Conversely, it is also possible that 

nanotubes could serve as concentrators, durable sources, and transporters of 

such chemicals into organisms, thus exacerbating bioaccumulation and food 

chain transfer.  Carbon nanotubes have been shown to enter ecological 

receptors, although they did not accumulate within the organisms, and the 

passage of materials loaded with highly elevated concentrations of toxic 

chemicals through organisms could be pose serious environmental and 

human health risks. 

 Biological degradation of carbon nanotubes by microorganisms or 

fungi.  While carbon nanotubes have highly inert chemical structures, it is 

possible that some type of microorganisms of fungi will be able to degrade or 

biotransform them.  White rot fungi, for example, has been shown to 

mineralize numerous recalcitrant environmental pollutants (Bumpus et al. 

1985).  White rot fungi may also be able to introduce defects to carbon 

nanotubes structures, degrade functional groups already on the nanotube 

structures, or metabolize macromolecules bound to the surface of the 

nanotubes.  Such modifications could change the environmental behaviors of 

the nanotubes as well as reveal the potential for biotic mineralization of the 

nanotubes.  The radioactively labeled nanotubes developed here present a 

unique opportunity for assessing the extent to which different organisms can 
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metabolize carbon nanotubes.  Measuring the carbon-14 dioxide released to 

experimental reactors would reveal the mass of nanotubes degraded.  Such 

investigations would reveal the expected persistence of carbon nanotubes in 

environmental systems.   

  In vivo and in vitro toxicological and biodistribution studies using 

radioactively labeled CNTs.  Compared to the current nanotube identification 

techniques established in the literature, radioactively labeled nanotubes hold 

many advantages with regards to elucidating cellular uptake rates of carbon 

nanotubes, studying the biodistribution of nanotubes in organisms, 

determining mechanisms of nanotube cytotoxicity, and evaluating the ability 

for nanotubes to cross biological membranes.  Carbon-14 labeled nanotubes 

also allow for quantification of a wider range of nanotube types and dispersion 

states (i.e., agglomerated or individually dispersed), thus covering the broad 

range of conditions that humans or ecological receptors could realistically be 

exposed to nanotubes in environmental systems and biomedical applications.  

The ability to combine toxicological data with nanotube concentrations in 

tissues or cells will also likely facilitate identification of mechanisms behind 

nanotube toxicity.  By determining nanotube concentrations that cause 

various acute, subchronic, and chronic toxic responses, professionals will be 

able to develop, as has been previously determined for numerous chemicals 

of potential human or ecological health concern, acceptable nanotube 

concentrations for various critical media such as water, food, and air. 
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