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This report contains two separate papers. One describes a
new implementation for formulating the scattering by flat
resistive plates and the other is an application of the same
formulation for computing the scattering by finite
frequency selective surfaces.
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A BICONJUGATE GRADIENT FFT SOLUTION FOR
SCATTERING BY PLANAR PLATES

Jian-Ming Jin and John L. Volakis

Radiation Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, Michigan 48109-2122

ABSTRACT

An efficient numerical solution of the scattering by planar perfectly conducting or
resistive plates is presented. The electric field integral equation is discretized using
roof-top subdomain functions as testing and expansion basis and the resulting system is
solved via the biconjugate gradient (BiCG) method in conjunction with the fast Fourier
transform (FFT). Unlike other formulations employed in conjunction with the conjugate
gradient FFT (CG-FFT) method, in this formulation the derivatives associated with the
dyadic Green’s function are transferred to the testing and expansion basis, thus reducing
the singularity of the kernel. This leads to substantial improvements in the convergence

of the solution as demonstrated by the included results.



I. INTRODUCTION
The problem of electromagnetic scattering by a perfectly conducting or resistive plate

amounts to that of solving the electric field integral equation
& x E™(r) = n(r) & x J(r) + jkoZo & X //S Go(r,r') o I(r')dS’ 1)

where 1 denotes the unit vector normal to the plate, E*° denotes the incident electric
field, 7 is the resistivity of the plate and J is the unknown electric current. Also, kg =
27 /X is the free space wavenumber, Z, is the free space intrinsic impedance, S denotes

the area of the plate and (=30 is the free-space dyadic Green’s function given by

= = 1
Go(r,r') = (1 + pvv) Go(r,r') )
0
with
To k5499445 and Go(r,e)= S
=XX+yy+zz an 0(!‘,1‘)—4—7‘1;':—!_,—'.

The integral equation (1) can be solved using the traditional moment method pro-
cedure in conjunction with a direct solution of the system. Alternatively, to reduce the
memory demand required for matrix inversion, various iterative methods have been em-
ployed in the past and the conjugate gradient FFT (CG-FFT) method is most popular
among these. Several different‘ implementation schemes of the CG-FFT method have
been proposed [1]-[8] and these differ in the manner in which the two del operators ap-
pearing in (2) are treated. The simplest approach is to employ the analytical Fourier
transform of Go and handle the spatial derivatives implied by the del operators in the
spectral domain where they become simple algebraic multiplicative factors [1]-[3]. This

approach usually requires a large FFT pad to reduce aliasing errors since the analytical



Fourier transform of Go extends over the entire space. To reduce the size of the FFT
pad and to eliminate aliasing errors, another approach has been considered where the
integral equation is first cast in a discrete form before invoking the convolution theorem
to evaluate the integrals [4]-[6]. In connection with this approach, the derivatives implied
by the del operators can be approximated via finite differences and calculated via the
discrete Fourier transform as described in [5] and [6].

The above approaches share a common feature that the del operators act directly
upon Go. However, by using Gauss’ or the divergence theorem these differential oper-
ators can be transferred to the testing and/or expansion functions provided they are
differentiable. This concept has been adopted in [7] where the roof-top basis functions
were employed for the expansion of J and one of the del operators was transferred from
Go to J. Point matching was then used to cast the integral equation in a discrete form
before invoking the convolution theorem. Most recently, another approach was proposed
by Zwamborn and van den Berg [8] who employed the roof-top functions for testing the
integral equation (1). By invoking Gauss’ theorem, one of the del operators was trans-
ferred to the testing function and the other was left to operate on the vector potential
which was then expanded in terms of the roof-top basis functions. Unfortunately, in (8]
the analytical Fourier transform of Go was still employed and thus a large FFT pad was
required to suppress aliasing errors, reducing the efficiency of the solution.

The approaches described in [7] and [8] demonstrated that a much more accurate
and efficient solution can be achieved by transferring one of the del operators from the
singular kernel to the expansion or testing functions. One would then expect that if

both del operators are transferred from the free space Green’s function the resulting



discrete system should yield a more accurate and efficient solution. In the following this
proposition is examined by transferring one of the del operators to the testing function
and the other to the expansion function. The roof-top expansion basis are employed
to discretize the surface current density but iﬁ contrast to traditional formulations the
resulting system of equations is obtained by setting to zero the variation of a certain
functional stationary about the true solution of the current density. The resulting sys-
tem is identical to that resulting from an application of Galerkin’s procedure but the
adopted variational approach leads to the system construction in less steps. The biconju-
gate gradient (BiCG) algorithm is employed for the system solution and it is shown that
the convergence rate is substantially improved in comparison with previous CG-FFT
implementations. In those implementations the CG algorithm was employed to ensure
convergence and this increased the operation count per iteration in addition to squaring
the system’s condition. In contrast, the BiCG algorithm, although not monotonically
decreasing the error, requires only one matrix-vector product per iteration (since the ma-
trix is symmetric) and does not square the condition number which generally translates

to improved convergence rates.

II. FORMULATION AND DISCRETIZATION
In this section, we formulate the system of equations for the solution of the integral

equation (1). To this end we introduce the functional
F@) = //S n(r)3(r) o I'(r)dS + jkoZo //S J(r)e [ //s éo(r,r').y(r')ds'] ds
—2 /L 3'(r) « E™¢(r)dS (3)

which we assert to be stationary about J' = J, where J is the true solution of (1). To



prove this assertion, let us set

I'(r) = 3(r) + u(r) (4)

where u is an arbitrary vector which lies in the plane of S. The first variation of J is

then given by

= 2 //S n(r)u(r) » 3(r)dS + jkoZo / [ 3(r) o [ / Séo(r,r').u(r')ds'] ds

+ikozo ([ ute)e [ [] Gotr, ) o 30057 ds

—2 // ) o E™(r)dS (5)

and since Go(r r') is equal to its transpose, we can rewrite (5) as

6F =2 // [n(r (r) + jkoZo / Séo(r,r')..l(r')ds'-E‘“C(r)] ds (6)

Upon setting u = v X i1, where v is arbitrary in both magnitude and direction, it follows

that

6F =2 //s v(r) e {ﬁ X [n(r)J(r)+ ikoZo //s Go(r,r') 0 J(x')dS" — E*"w(r)]}ds (7)

and upon invoking the stationarity requirement that 6 F' = 0 we recover (1).

Let us now proceed with the discretization of F and for convenience we will henceforth
drop the distinction between J and J’. We will first attempt to reduce the singularity
of the improper kernel in (3) by transferring the del operators to the current density in
much the same way as done in [9] and [10]. By substituting (2) into (3) and invoking a

common vector identity along with the divergence theorem, (3) can be written as

//S 7(r)I(r) e J(r)dS + jkoZo /SJ(r) . {/SJ(I")Go(r,r')dS
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Elgv //S [V' o 3(t')] Go(r, 1')dS" }{ « J(t')Go(r T )dl’}
—2 //S I(r) o E™(r)dS 8)
where C denotes the perimeter of the plate and . is the unit vector which lies in the
plane of the plate and is normal to C. However, since i/, ¢ J(r’) = 0, the corresponding

contour integral vanishes. Further application of the vector identity and the divergence

theorem on the third right-hand side term of (8) gives

/ n(r)J(r) ¢ J(r)dS + jkoZo /J(r [//J Gorr)dS] ds
]ko/ [Ved(r {/ [V" ¢ 3(x")] Go(r, r)dS’}ds
Zo

i b i, e J(r) {/S [V’ 0 J(r')] Go(r, r')dS'} ds

—2 //S 3(r) o E™(r)dS (9)
where we again note that n.eJ(r) = 0 and thus the fourth right-hand side term vanishes.
Clearly, the singularity of all kernels in (9) are integrable and we can proceed with their
discretization in the standard manner provided the divergence of the chosen expansion
basis can be analytically defined.

Without loss of generality, let us assume that the plate is in the z-y plane and (9)

can then be written as

// (v2+7) d5+1koZo//{ [//JGodS]+J [/ JGodS']}dS
() (% )]

-2 //S (Jo e 4 J, Einc)ds (10)

With the intend of computing the surface integrals via the FFT we place the plate in a

rectangular area which is then divided into (M + 1) X (N + 1) small rectangles whose
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side lengths are Az and Ay along the z and y directions, respectively. To discretize (10)
we expand the z and y components of the current density as
M N+1

I(z,y) = Y3 JP(mn)TE(2.9) (112)

m=1 n=1

M+1 N
J(@,y) = 3 3 I (mn)Tha(z,) (11b)

m=1 n=1
where JD ,(m,n) denote the sample values of the current density at (z = mAgz,(n -
1)Ay < y < nAy) for J; and at ((m - 1)Az < z < mAz,y = nAy) for Jy, which are

non-zero only if the associated cell is within S. The functions T%¥ represent the roof-top

basis given by

1- Ji——;l"i-A—’—l, for |z — mAz| < Az and |y - (n - 0.5)Ay| < 5
Toa(z,y) = (12a)
0, else
1- J-V%!/All, for |y — nAy| < Ay and |z — (m — 0.5)Az| < 4F
Ton(z,y) = (12b)
0, else
from which it is readily found that
0J: M+1N+1 1D (m,n) — JP(m - )
g - mz_l nz Az mn(z’ y) (133')
6Jy M+1N+1 JD(m n) JD(m n— 1)
= Ly Pra(2,9) (135)
where Pr,(z,y) is the pulse function defined by
1, for |z — (m - 0.5)Az| < 42 and |y — (n - 0.5)Ay| < %1
Pmn(xay) = (14)
0, else

Substituting (11) and (13) into (10) yields the functional F in terms of the unknown

current samples le?y(m,n). To obtain a system of equations for ny(m,n) we must



enforce 6 F' = 0 and this is equivalent to setting

oF

e e
oF
— =0 (15b)
0JP(m,n)
Upon performing the differentiations we find that
1__0F f Af:l [RF(m,n;m’,n’) + jkoZoGH(m,n;m’,n')] JP (m’,n")
23JP(m,n) == s 18y ’ s 1y ) T ]
[Gp(m,n;m',n") = Gp(m + 1,n;m’,n')]
]koA.’l) m'=1n'=1

(& -

1 D¢ 1 .t D¢ 1 1t
ta; [72(m’,n") = JP(m'\n —l)]}-—b,_.(m,n) (16a)
1_oFr _ Af:l i [RY(m,n;m/,n') + jkoZoGY(m,n;m’,n")] JP(m/,n')
23JyD(m,n) m'=1n'=1 ,’ ’ T Y ’ v ’

Z, MHINH
+_7k Ay > Y [Gp(m,n;m!,n’) = Gp(m,n + 1;m’,n")]

m'=1n'=1

. {A_:r [J,D(m',n') -JP(m! - l,n')]

+ALy [JyD(m',n’) - JP(m' ' - 1)]} - by(m,n) (16b)

in which
R”’y(m,n;m';n') = ‘//snT,i’z T2V .dS (17a)
G=¥(m,m;m!,n') = //S Tz [ // =Y GodS’] (17b)
Gp(m,n;m'n) = //S P [ //s Pm.,.,Gods'] ds (17¢)
b y(myn) = / [ T34 Birgas (17d)



The system implied by (15) is symmetric and can be solved via a direct method such
as Gaussian elimination or LU decomposition. By resorting to an iterative solution,
though, such as the CG and the BiCG method, substantial memory reduction can be
achieved. Such a BiCG solution is discussed next, where the FFT is also employed
for computing the required matrix-vector products, thus avoiding a need to explicitly

generate the matrix.

III. BICONJUGATE GRADIENT FFT SOLUTION
The BiCG algorithm employed herein for the solution of Az = b in which A is
symmetric, is as follows [11]:

Initialize the residual and search vectors with an initial guess zq:
Po=To = b- A:l:o

Iterate for k = 0,1,2,...:

(e, TE)
ap = —
(pka APk)
Tk41 = ZTik+ QpPk
Tk+1 = Tk — apApg
B = (Tk41,Tke1)
(TksTk)
Pe+r = Tkt1 + BibPk
Terminate when
r
IT = M < tolerance
|11}

In the algorithm, (z,y) = 2Ty, where T denotes the transpose of the column.



It is observed that in the entire algorithm, A is only involved in the matrix-vector
product Apg. For the problem considered here this product can be computed efficiently
via the FFT without a need to generate the square matrix. To describe how we compute

the Ap, let us first examine G7 defined in (17b). This can be explicitly written as

(m+1)Az pnAy _ (m'+1)Az rn'Ay
GE(m,n; m!,n') = / / (l_h_mArl> / /
(m-1)az J(n-1)ay Az (m'-1)az J(n'-1)Ay

-
. (1 — I'TA—";A:DI) Go(z - 2’5y — y')dz'dy'dzdy  (18)

and on letting £ = z — mAz and § = y — nAy, we have

Az 0 Ii' Az (0 |jl|
Z(m,n;m',n’' =/ / (1——)/ / (1——)
T( " ) ~-Az J-Ay Az) Joaz -Ay Az

‘Go(Z — &' + (m — m')Az; § - §' + (n — n')Ay)dz'di didy . (19)

It is then clear that G7:(m,n; m’,n’) is a function of the differences (m — m’) and (n — n’)
and in a similar manner it can also be shown that G%(m,n;m’,n’) and Gp(m,n;m',n’)
are functions of (m — m') and (n — n’). Making use of this property, the system (15) can

be more explicitly written as

+1
Z Jf(m + i, n)R*(m,n;m +i,n) + jkOZoJ,D(m, n)® G7(m,n)

1=-1

ooz (g [220mm) = 220m = 1) 4 5 [1P0m,m) = 2P(mn - )]}
® [Gp(m,n) = Gp(m + 1,n)] = bz(m,n) (20a)

+1
Z JyD(m, n+i)R¥(m,n;m,n + 1) + jkOZOJf(m, n) ® G(m,n)

1=-1

+jkf?&y {_A_IZ [Jf(m,n) - JP(m - l,n)] + -Al—y [Jf(m,n) - JP(m,n - 1)]}

® [Gp(m,n) — Gp(m,n + 1)] = by(m,n) (20Db)



where G7¥(m,n) = G7¥(m,n;0,0), Gp(m,n) = Gp(m,n;0,0) and the symbol ® de-
notes convolution. The use of the FFT in evaluating the convolutions is now obvious.
Specifically, let us define JPP(u,v) to be the discrete Fourier transform of the sample

train JPP(m,n) defined as

JP(m,n) foriI<m<M,1<n<N+1
J,?P(m,n)= (21)
Ofor M4+1<m<2M +2,N+2<n<2N 42

and it is seen that JPP(m,n) is simply JP(m,n) padded with zeros so that its size is
increased by a factor of two in each dimension. Similarly, we let G’%P (u, v) to denote the

discrete Fourier transform of GZF(m,n) where
(GE(m,n) for1<m<M+1,1<n<N+1

F2M +4-m,n) for M +2<m<2M +2,1<n<N+1
C%P(m,n)=< Gr(m,2N+4-n) for1<m<M+1,N+2<n<2N +2 (22)

G7(2M +4—-m,2N +4-n)

L forM+2<m<2M +2,N4+2<n<2N +2

and in an analogous manner we can define J-yDP(u,v), G’%P(u,v) and GB(u,v) to be the
discrete Fourier transforms of the corresponding quantities. With these definitions, (20)

can be more compactly written as

+1
E JP(m +i,n)R*(m,n;m +i,n) + Fp! {jkoZoffp(u,v)G'%P(u,v)
1=-1
Z 1 - = 1 . =
+jk0°m [ZZ (1= F2(u) J2P (u,0) + e (1- F(v) JfP(u,v)]
(1= Fz(u)) C;(u,v)} = by(m,n) (23a)

+1
Z Jf(m,n + 1)R¥(m,n;m,n + i) + Fp! {jkozojfp(u,v)égf(u,v)

i=—1

Z [1 I 1 N -
Y ny [EE (1= F2)I2P (w o) + 5 (1= F(2) pr(u,v)]
(1= F(v)) GB(u,0)} = by(m,n) (23b)
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in which the asterisk denotes complex conjugation,

Fi(u) = exp (12;“:2> (24a)
Fy(v) = exp (J‘2f,”:2) (24b)

and Fp! is the inverse discrete Fourier transform operator. Expressions (23) provide the
most explicit definition of the matrix-vector product required in the BiCG algorithm.
We remark that if the roof-top functions T}y, and T, are approximated by the pulse
functions Pm41/2)n and Pp(n41/2), Tespectively, and if mid-point integration is used in
the evaluations of the first area integral in (17b) and (17c), it follows that (23) are

identical to those derived in [7].

IV. NUMERICAL RESULTS
To demonstrate the efficiency of the proposed solution, we proceed to compare it with
other CG-FFT solutions. In [8], a comprehensive comparison was presented for the plane
wave scattering by a square Ax A plate at normal incidence and this example was therefore
chosen here for benchmarking purposes. This method’s convergence characteristics are
displayed in Figure 1 for two sampling rates and a comparison of the iteration count with
four other methods [8] is given'in Table 1. The characteristics of these four methods can

be briefly described as follows:

e Method 1: Employs the analytical Fourier transform of the Green’s function and
pulse expansion functions. The spatial derivatives of the del operators are replaced
by algebraic factors in the spectral domain. System is solved via the CG method

(Generally, the BiCG method does not converge for this system)

1



e Method 2: Employs the analytical Fourier transform of the Green’s function and
piecewise sinusoidal expansion functions. The spatial derivatives of the del opera-

tors are replaced by algebraic factors in the spectral domain. System is solved via

the CG method

e Method 3: Employs the discrete Fourier transform of the Green’s function (inte-
grated over the cell’s area) and pulse expansion functions. The spatial derivatives
of the del operators are approximated by finite differences. System is solved via

the CG method

e Method 4: Employs the analytical Fourier transform of the Green’s function and
' roof-top expansion functions. One of the del operators is transferred to the roof-top

testing function. System is solved via the CG method

o This method: Employs the discrete Fourier transform of the Green’s function (inte-
grated over the cell’s area). One del operator is transferred to the roof-top testing

function and the other to the roof-top expansion function. System is solved via

the BiCG method

From Table 1 it is clear that the proposed method attains convergence in at most half
the number of iterations required by the best of the other four methods. Furthermore,
considering that the BiCG solution requires only one matrix-vector product per iteration,
whereas the CG solution requires two such products, the proposed method is even more

efficient in terms of CPU time.

12



Table 1: Number of iterations required for convergence of the solution for a A x A

plate illuminated with a plane wave at normal incidence

Discretization | err | Method 1 | Method 2 Method 3 | Method 4 | This method
17x17 cells | 1072 185 115 125 46 22 ]
17x17 cells | 1073 440 310 202 67 29
33x33 cells | 1072 338 162 128 108 34
33x33 cells | 1073 1480 800 1330 170 47

We next turn our attention to the accuracy of the proposed solution method. For
such an assesment we considered the three plates depicted in Figure 2. Only one of
these is rectangular whereas the perimeter of the other two includes circular and planar
sections. For those non-rectangular plates the surface was still modeled as a collection
of rectangular cells. The RCS of each plate was computed at 10 degrees off grazing
for the horizontal polarization of incidence and the corresponding patterns are given in
Figures 3-5. The criteria used for terminating the iteration were (a) the normalized root
mean square error err (see algorithm) was less than 0.1, (b) the variation in RCS was
less than 0.1 dB for 10 consecutive iterations, and (c) the number of iterations reached
200 (this occurred only in very few cases). The average number of iterations to reach
convergence is given in Table 2. For the perfectly conducting case, the computed RCS
patterns via this method are compared with a solution based on a traditional moment
method implementation using triangular patches and linear basis to model the surface

[12] and, as seen, the agreement is good.

13



Table 2: Average number of iterations required for convergence

of the solution in Figures 3-5

Problem | No. of unknowns | Average no. of iterations
Fig. 3(a) 4366 794

Fig. 3(b) 4366 9.2

Fig. 4(a) 6056 117.1

Fig. 4(b) 6056 13.2

Fig. 5(a) 12034 145.6

Fig. 5(b) 12034 124

V. CONCLUSIONS

An efficient solution was presented for the scattering by planar conducting or resistive
plates. A unique feature of the formulation is the transfer of the del operators contained
in the dyadic Green’s function to the expansion and testing functions. The resulting
integral equation was then discretized by employing the roof-top functions for both
expansion and testing. The resultant matrix was shown to be Toeplitz and was solved
via the biconjugate gradient method in conjunction with the FFT. Numerical results were
presented which demonstrated the efficiency, accuracy and capability of the solution over

previous CG-FFT implementations.
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Fig.

Fig.
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FIGURE CAPTIONS

1 Convergence curves for a A x A plate with normal incidence. Solid line: 17x17

cells; Dashed line: 33x33 cells.

2 Geometries of three plates for computations. (a) Target 1; (b) Target 2; (c)

Target 3.

3 Backscatter RCS for Target 1; E" = $E, 6" = 80°, 4366 unknowns. (a)n=0;

(b) = Zo/4. (9897 unknowns were used in generating the TRIMOM data.)

4 Backscatter RCS for Target 2; E™¢ = ¢E, ™" = 80°, 6056 unknowns. (a) 7 = 0;

-(b) n = Zy/4. (10722 unknowns were used in generating the TRIMOM data.)

5 Backscatter RCS for Target 3; E™"¢ = SE, 6™ = 80°, 12034 unknowns. (a)
n = 0; (b) » = Zo/4. (6354 unknowns were used in generating the TRIMOM

data.)

17



10 Log(err)

cceq,
-“’

10.

20. 30.

Number of Iterations

18

40.

‘:\‘o&\\

50.



YT —f"

f— YT —

19



o/\2 (dB)

o/\* (dB)

10. =

-40.

—_— 324 cclls/)L2 o)

) TRIMOM

| ] | 1 | ] I |

10. 20. 30. 40. 50. 60. 70. 80. 90.

¢ (degrees)
(a)

10. 20. 30. 40. 50. 60. 70. 80. 90.

20



/A% (dB)

/A% (dB)

0.
-10.
-20. ——— 900 cells/A?
o) TRIMOM
_30. | | | | |
0. 30. 60. 90. 120. 150. 180.
¢ (degrees)
(a)
0.
-10.
-20. -
-30. ”
_40. | 1 1 | 1
0. 30. 60. 90. 120. 150. 180.
¢ (degrees)
(b)

?\\?(\ 4

21



10.
=
2
o
S
-20. ° 900 cells/A?
e TRIMOM
_30 1 1 1 1 |
0. 30. 60. 90. 120. 150. 180.
¢ (degrees)
({Q)
0.
=
KC)
P
B

0. 30. 60. 90. 120. 150. 180.

¢ (degrees)
(h)

22



PROGRAM PLTBCG

C**********************************************************************c

OO0 0000000

THIS PROGRAM COMPUTES ELECTROMAGNETIC SCATTERING BY A CONDUCTING
PLATE WITH ZERO THICKNESS OR AN APERTURE IN AN INFINITESIMALLY
THIN CONDUCTING PLANE. THE PROBLEM IS FORMULATED USING INTEGRAL

EQUATION. THE RESULTING SYSTEM OF EQUATIONS IS SOLVED USING

THE BICG-FFT TECHNIQUE. ONCE THE ELECTRIC CURRENTS ARE COMPUTED,

THE PROGRAM COMPUTES THE FAR FIELD PATTERN IN RCS.

JIANMING JIN

RADIATION LABORATORY

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
THE UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 48109

C
c
c
c
o
C
c
c
c
c
c

C**********************************************************************c

QOOQOOQOO0O00000000000000

INPUT DATA DESCRIPTION:

XL - PLATE DIMENSION ALONG THE X AXIS (REAL)
YL - PLATE DIMENSION ALONG THE Y AXIS (REAL)
NX - NUMBER OF DISCRETE POINTS ALONG THE X AXIS (INTEGER)
NY - NUMBER OF DISCRETE POINTS ALONG THE Y AXIS (INTEGER)
WAVE - WAVELENGTH (REAL)
KODE - INTEGER
KODE=0 - COMPUTE BISTATIC SCATTERING
KODE=1 - COMPUTE BACKSCATTERING
PHIINC - INCIDENCE ANGLE OF PHI (REAL)
THEINC - INCIDENCE ANGLE OF THETA (REAL)
PHIBEG - BEGINNING ANGLE OF PHI (REAL)
PHIFIN - FINAL ANGLE OF PHI (REAL)
PHISTP - INCREMENT ANGLE OF PHI (REAL)
THEBEG - BEGINNING ANGLE OF THETA (REAL)
THEFIN - FINAL ANGLE OF THETA (REAL)
THESTP - INCREMENT ANGLE OF THETA (REAL)

OO0 00000000000n

Chhkkhkkhkkkkhhkhkhhkkkkhkhkhkhkhkkkkkhhhkhkhkhhkhkkkkkhkhkhkkkkkhkhkhkhkkkkkkhkkkkkkkkkkx*xC

c

INPUT DATA
PRINT*, ' INPUT DIMENSION OF THE PLATE: XL,YL (in cm)’
print*,’If you are running test case #l: set XL=3, YL=2'

printx,’ #2: set XL=4, YL=2'
print*,’ #3: set XL=3.5, YL=2'
print*,’ #4: set XL=2.5, YL=2'
READ* , XL, YL

PRINT*,XL,YL

PRINT*, ' INPUT NUMBER OF POINTS ALONG EACH SIDES: NX,NY’
READ*, NX, NY

PRINT*,NX, NY

NXFT=2** (INT (ALOG (2. *NX) /ALOG (2.) ) +1)

NYFT=2%* (INT (ALOG (2.*NY) /ALOG (2.) ) +1)

PRINT*, 'FFT PAD SIZE:’, NXFT, NYFT

PRINT*, ’ INPUT WAVELENGTH: WAVE (in cm)’

READ*, WAVE

PRINT* , WAVE
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PRINT*,  INPUT KODE: 0 FOR BISTATIC, 1 FOR BACKSCATTERING’
READ* , KODE

PRINT*, KODE

PRINT*, ' INPUT BEGINNING, FINAL AND INCREMENT ANGLES: PHIBEG,PHIFIN
&, PHISTP’

READ*, PHIBEG, PHIFIN, PHISTP

PRINT*, PHIBEG, PHIFIN, PHISTP

PRINT*,’ INPUT BEGINNING, FINAL AND INCREMENT ANGLES: THEBEG, THEFIN
&, THESTP’

READ*, THEBEG, THEFIN, THESTP

PRINT*, THEBEG, THEFIN, THESTP

IF (KODE.EQ.1) GOTO 1

PRINT*,’ INPUT INCIDENCE ANGLE IN DEGREE: PHIINC,THEINC’
READ*, PHIINC, THEINC

PRINT*, PHIINC, THEINC

1  CONTINUE

PRINT*, ' INPUT PLOARIZATION ANGLE IN DEGREE: ALPHA’
PRINT*,’0 FOR TE (Ez=0) CASE; 90 FOR TM (Hz=0) CASE’
READ* , ALPHA

PRINT*,ALPHA

PRINT*,’ INPUT TOLERANCE AND MAXIMUM ITERATIONS’

READ*, TOL, ITMAX

PRINT*, TOL, ITMAX

PRINT*, 'PRINT OUT CURRENT: 1 FOR YES, 0 FOR NO'

READ*, IPRC

PRINT*, IPRC

C..... CALL SUBROUTINE PLATE TO SOLVE THE PROBLEM
CALL PLATE (XL, YL,NX,NY,NXFT,NYFT, WAVE, KODE, PHIINC, THEINC, ALPHA,
& PHIBEG, PHIFIN, PHISTP, THEBEG, THEFIN, THESTP, TOL, ITMAX, IPRC)
STOP
END

SUBROUTINE PLATE (XL, YL, NX,NY, NXFT, NYFT, WAVE, KODE, PHIINC, THEINC,

& ALPHA, PHIBEG, PHIFIN, PHISTP, THEBEG, THEFIN, THESTP, TOL, ITMAX, IPRC)
oL i L T e T Yol
THIS PROGRAM COMPUTES THE ELECTRIC CURRENTS ON A THIN CONDUCTING C
PLATE OR ELECTRIC FIELDS ON AN APERTURE IN A THIN CONDUCTING Cc
PLANE. THE PROBLEM IS FORMULATED USING INTEGRAL EQUATION.

THE RESULTING SYSTEM OF EQUATIONS IS SOLVED USING THE BICG-FFT
TECHNIQUE. ONCE THE ELECTRIC CURRENTS OR FIELDS ARE COMPUTED,
THE PROGRAM COMPUTES THE FAR FIELD PATTERN.

o R L e I T T T T e T T e,

PARAMETER (NMAX=25000,NSMAX=20000,NFT=70000)

C**********************************************************************C

OO0OO0O00a0n
OO0

C NMAX - MAXIMUM NUMBER OF EDGES C
c NSMAX - MAXIMUM NUMBER OF CELLS c
Cc NFT - MAXIMUM FFT PAD C

o R T T T S e E S T L 2 2 2 To!
COMPLEX AX (NMAX) ,AY (NMAX) ,EX (NMAX) ,EY (NMAX),
& PX (NMAX) , PY (NMAX) , RX (NMAX) , RY (NMAX) ,
& BX (NMAX) , BY (NMAX) , EPS,MU, B, T,C1, CNORM, ZL
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COMPLEX AXX(2,2,NMAX),AXY(2,2,NMAX),AYX(2,2,NMAX),

& AYY (2, 2,NMAX) ,GXX (NFT) , GYX (NFT) , GYY (NFT)
C**********************************************************************C

INTEGER NEX (NMAX) ,NEY (NMAX) , COUNT

REAL KO

PI=3.141592654

KO=2.*PI/WAVE

DX=XL/FLOAT (NX-1)

DY=YL/FLOAT (NY-1)

NXT= (NX-1) *NY

NYT=NX* (NY-1)

NT3=NXT+NYT

PRINT*,’DX=',DX,’ DY=',DY

o
o
Coun.. CALL DIRIC TO IDENTIFY THE EDGES WHOSE NORMAL ELECTRIC CURRENT OR
C ... TANGENTIAL ELECTRIC FIELDS SHOULD BE SET TO ZERO

CALL DIRIC (NX,NY,LEX,LEY,NEX,NEY)

LET=LEX+LEY

NUM=NT3-LET »

PRINT*, 'NUMBER OF UNKNOWNS =/, NUM
C

NXP=NX-1

NYP=NY-1
o
Cuvn.. CALL GREENF TO COMPUTE THE DISCRETIZED SURFACE INTEGRAL

CALL GREENF (GXX,GYX,GYY,NX,NY,DX, DY, KO, AXX, AYX, AXY,AYY,

& NXFT, NYFT)
o

IF (KODE.EQ.1) THEN

PHI=PHIBEG

THETA=THEBEG

ELSE

THETA=THEINC

PHI=PHIINC

END IF
o

1111 CONTINUE

Counn. INITIALIZE ELECTRIC FIELDS
DO 201 I=1,NXT
201 EX (I)=CMPLX(0.0,0.0)
DO 202 I=1,NYT
202 EY(I)=CMPLX(0.0,0.0)

C..... COMPUTE THE KNOWN VECTORS ON THE UPPER APERTURE

CALL FDINC (BX,BY,NX,NY,DX,DY,KO, THETA, PHI,ALPHA)
(o R s T T T T

C..... OUTPUT DATA DESCRIPTION: C
Cc BX - COMPLEX VECTOR KNOWN EXCITATION C
C BY - COMPLEX VECTOR KNOWN EXCITATION C

C**********************************************************************C
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..... CALCULATES THE EUCLIDIAN NORM OF KNOWN VECTOR
CALL BNDRY (BX,NEX, LEX)
CALL BNDRY (BY,NEY,LEY)
VNRM=VNORM (BX, NXT) +VNORM (BY, NYT)

RSS=0.0
ITER=0
RCS=0.
COUNT=0

..... COMPUTE THE RESIDUAL FOR THE INTIAL FIELDS
DO 204 I=1,NXT

204 RX (I)=BX(I)
DO 205 I=1,NYT

205 RY (I)=BY(I)

..... COMPUTE THE SEARCH VECTOR
DO 207 I=1,NXT

207 PX(I)=RX(I)
DO 208 I=1,NYT

208 PY (I)=RY(I)

..... BEGIN ITERATION TO FIND SOLUTION
30 CONTINUE

..... COMPUTE COMPLEX VECTOR [A]*P
DO 11 I=1,NXT

11 AX(I)=CMPLX(0.0,0.0)
DO 12 I=1,NYT

12 AY(I)=CMPLX(0.0,0.0)

CALL ADDAX (AX,AY,PX,PY,GXX,GYX,GYY,NX, NY,NXFT, NYFT, AXX, AYY)

..... ENFORCE BOUNDARY CONDITION
CALL BNDRY (AX, NEX, LEX)
CALL BNDRY (AY,NEY, LEY)

C1=CNORM (RX, RX, NXT) +CNORM (RY, RY, NYT)
T = C1/(CNORM(PX,AX,NXT)+CNORM(PY,AY,6NYT))

DO 210 I=1,NXT

EX (I)=EX (I)+T*PX(I)

210 RX (I)=RX (I)-T*AX(I)
DO 211 I=1,NYT

EY (I)=EY (I)+T*PY (I)

211 RY (I)=RY (I)-T*AY (I)

..... CALCULATES THE EUCLIDIAN NORM OF RESIDUAL VECTOR
B=(CNORM (RX, RX, NXT) +CNORM (RY, RY,NYT) ) /C1
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213

214

.COMPUTE THE SEARCH VECTOR
DO 213 I=1,NXT
PX(I)=RX(I)+B*PX(I)
DO 214 I=1,NYT
PY(I)=RY(I)+B*PY(I)

ITER = ITER+1

VNRMR=VNORM (RX, NXT) +VNORM (RY, NYT)
RSS = SQRT (VNRMR/VNRM)

IF NOT TO MONITOR THE ITERATIVE PROCEDURE, COMMENT THE NEXT LINE
PRINT 140, ITER,RSS,CABS(T)

CALL SCATER(EX, EY,NMAX, NXP,NYP,DX,DY, KO, THETA, PHI, SIG)
.SET A CHECK ON RCS

IF (ABS(SIG-RCS) .LT.0.1) THEN

COUNT=COUNT+1

ELSE

RCS=SIG

COUNT=0

END IF

.IF THE CRITERIA IS SATISFIED, THEN
IF((RSS.LE.TOL) .OR. (COUNT.EQ.10)) THEN
PRINT 120

.CALL SCATER TO COMPUTE THE RADAR CROSS SECTION

IF (KODE.EQ.1) THEN
PRINT¥*, ! THETA PHI SIG(DB) SIGTHETA
&SIGPHI’

CALL SCATER (EX,EY,NMAX, NXP,NYP,DX,DY,KO, THETA, PHI, SIG)

ELSE
PRINT¥*, ' THETA PHI SIG(DB) SIGTHETA
&SIGPHI’
IIF=INT ( (PHIFIN-PHIBEG) /PHISTP) +1
DO 1002 II=1,IIF
PHI=PHIBEG+FLOAT (II-1) *PHISTP
JJF=INT ( (THEFIN-THEBEG) /THESTP) +1
DO 1002 JJ=1,JJF
THETA=THEBEG+FLOAT (JJ-1) *THESTP
CALL SCATER(EX,EY,NMAX,NXP,NYP,DX,DY,KO, THETA,PHI, SIG)
CONTINUE

.PRINT OUT THE FIELD AND CURRENT DATA
IF (IPRC.GT.0) THEN
PRINT 150
DO 216 I=1,NXT
IF(EX(I).EQ.(0.,0.)) PHX=0.

IF(EX(I).NE. (0.,0.)) PHX=ATAN2 (AIMAG(EX(I)),REAL(EX(I)))*180./PI

PRINT 90,I,CABS(EX(I)),PHX
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216 CONTINUE
PRINT 151
DO 217 I=1,NYT
IF(EY(I).EQ.(0.,0.)) PHY=0.
IF(EY(I).NE. (0.,0.)) PHY=ATAN2 (AIMAG(EY(I)),REAL(EY(I)))*180./PI
PRINT 90,I,CABS(EY(I)),PHY
217 CONTINUE
90 FORMAT (I5, 5X,2G13.4,2G13.4,2G13.4)
ELSE
END IF

END IF

C..... IF THE CRITERIA IS NOT SATISFIED, THEN
ELSE
IF (ITER.EQ.ITMAX) THEN
PRINT 130

ELSE
GO TO 30
END IF
END IF

IF (KODE.EQ.1) THEN
THETA=THETA+THESTP
IF (THETA.LE.THEFIN) GOTO 1111
PHI=PHI+PHISTP
THETA=THEBEG
IF (PHI.LE.PHIFIN) GOTO 1111
ENDIF

120 FORMAT (' CONVERGENCE ACHIEVED, WOW!!’//)

130 FORMAT (' ITMAX EXCEEDED; NO CONVERGENCE. ')

140 FORMAT (' ITER=',I4,’ RSS=',Gl4.4,' |T|=',Gl4.4)
150 FORMAT (/' THE DISCRETE ELECTRIC CURRENTS'/

& ' SIDE MAG (JY) PHASE (JY) ')
151 FORMAT (/' SIDE MAG (JX) PHASE (JX) ')
RETURN
END

SUBROUTINE DIRIC (NX, NY, LEX, LEY,NEX, NEY)
o R e S S S R R R I I T I
THIS SUBROUTINE IDENTIFIES THE EDGES WHOSE TANGENTIAL ELECTRIC *
FIELDS SHOULD SET TO ZERO *
NX - NUMBER OF POINTS IN THE X-DIRECTION *
NY - NUMBER OF POINTS IN THE Y-DIRECTION *
LEX - NUMBER OF SIDES WITH EX=0 *
LEY - NUMBER OF SIDES WITH EY=0 *
NEX - VECTOR INDICATING THE SIDES WITH EX=0 *
NEY - VECTOR INDICATING THE SIDES WITH EY=0 *
oL 2 T e T 2 R R R I I I I I

INTEGER NEX (*),NEY (*)

OO0 0000
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NXY=NX*NY
LEX=2* (NX-1)
LEY=2* (NY-1)
LX=0
LY=0
NX1=NX-1
NY1=NY-1
DO 402 I=1,NX1
LX=LX+1

402 NEX(LX)=I
DO 403 I=1,NX1
LX=LX+1

403 NEX (LX) =NX1*NY-NX1+I
DO 404 I=1,NY1
LY=LY+1
NEY (LY) =NX* (I-1)+1
LY=LY+1

404 NEY (LY)=NX*I
IF (LX.NE.LEX) GOTO 10
IF (LY.NE.LEY) GOTO 10

... TARGET GEOMETRY SPECIFICATION

WRITE (*, *)

WRITE (*,*) ' **SCATTERING FROM THIN CONDUCTING PLATES**’
WRITE (*, *)

WRITE (*,*)’SPECIFY THE TARGET:'

WRITE (*, *)

WRITE(*,*)’1l: RECTANGULAR PLATE’

WRITE (*,*)’2: CIRCULAR DISK'

WRITE (*,*)’3: TRIANGULAR PLATE’

WRITE(*,*)’4: POLYGONAL PLATE’

WRITE (*,*)’5: TEST TARGETS’

WRITE (*, *)

READ*, NTARG

IF (NTARG.EQ.1) RETURN

IF ((NTARG.GE.l) .AND. (NTARG.LE. 4) ) THEN
WRITE (*, *) 'ENCLOSURE CENTER AND LIMITS: X0,Y0,XL,YL’
READ*,X0,Y0,XL, YL

ELSEIF (NTARG.EQ.5) THEN
WRITE (*,*)’'TEST CASES’
WRITE(*,*)’6: TARGET # 1’
WRITE(*,*)’7: TARGET # 2’
WRITE (*,*)’8: TARGET # 3’
WRITE (*,*)’9: TARGET # 4’
READ* ,NTARG

ENDIF

IF ((NTARG.LT.0) .OR. (NTARG.GT.9) ) THEN
WRITE (*, *) "WRONG TARGET! TRY AGAIN...’
GO TO 1

ENDIF

CALL GEOMTR (NX1,NY1,NTARG,X0,Y0,XL,YL,LX,LY, LEX, LEY, NEX, NEY)
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30

10
20

RETURN™

WRITE (*, 20)
FORMAT ( THERE IS AN ERROR IN SUBROUTINE DIRIC’')
END
* TARGET GEOMETRY SPECIFICATIONS *

SUBROUTINE GEOMTR (MX,MY,NTARG,X0,Y0,XL, YL, LX, LY, LEX, LEY, NEX, NEY)
INTEGER NEX(*),NEY (*)

REAL XC(10),YC(10)

CHARACTER*1 ITARG(256,256)

LOGICAL TAG, TRITAG

TAG=.FALSE.

IF (NTARG.EQ.1) THEN

. .RECTANGULAR PLATE

ELSEIF (NTARG.EQ.2) THEN

...CIRCULAR DISK

WRITE (*,*)’ENTER THE RADIUS:’
READ*, RAD

ELSEIF ( (NTARG.EQ.3) .OR. (NTARG.EQ. 4) ) THEN
IF (NTARG.EQ. 3) THEN

.TRIANGULAR PLATE

NC=3
ELSEIF (NTARG.EQ.4) THEN

.POLYGONAL PLATE

WRITE (*,*) "NUMBER OF CORNERS:'
READ *,NC
ENDIF
NT=NC-2
WRITE (*, *) 'ENTER THE COORDINATES OF EACH CORNER SEQUENTIALLY:'
DO 30 I=1,NC
WRITE (*,*)’CORNER #’,1I
READ*,XC(I),YC(I)
CONTINUE
ELSEIF (NTARG.EQ. 6) THEN
XL=3.
YL=2.
X0=1.5
Y0=0.
Cl=SQRT(3.)
ELSEIF (NTARG.EQ.7) THEN
XL=4.
L

0
0

o]
Il

KX
U
oONN
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C1=SQRT(3.)
C2=1.+4Cl
ELSEIF (NTARG.EQ. 8) THEN
XL=3.5
YL=2,
X0=1.75
Y0=0.
Ci=2.5
ELSEIF (NTARG.EQ.9) THEN
XL=2.5
YL=2.
X0=.25
Y0=0.
C1l=SQRT(3.)
Cc2=Cl1/2.
ENDIF
XL2=XL/2.
YL2=YL/2.
XSTRT=X0-XL2
YSTRT=Y0-YL2
NX=MX
NY=MY
DX=XL/MX
DY=YL/MY
DO 20 J=1,NY
DO 10 I=1,NX
ITARG(I,J)='."

10 CONTINUE
20 CONTINUE
INDX=0

DO 60 J=1,MY
Y=YSTRT+ (J-0.5) *DY
Ll=(J-1) *NX
DO 50 I=1,MX
X=XSTRT+ (I-0.5) *DX
L=L1+I

IF (NTARG.EQ. 1) THEN
TAG=.TRUE.

—— > = ————————— — - - —— ——— - — - ——— —— — — - ——_— — ————_————_—————— o

...TARGET # 2 CIRCULAR DISK

O0O0n0n

ELSEIF (NTARG.EQ. 2) THEN
IF( (SQRT((X-X0)**2+(Y-Y0)**2)) LT.RAD ) TAG=.TRUE.

...TARGETS # 3 AND 4 TRIANGLE AND POLYGON

eNeoNoNeNe!
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QOO0

QOO0 0a0

ELSEIF ( (NTARG.EQ.3) .OR. (NTARG.EQ.4) ) THEN
DO 40 K=1,NT

IF(
+ TRITAG (X, Y,
+ XC(1),YC(1),XC(K+1),YC(K+1l),XC(K+2),YC(K+2))
+ ) TAG=.TRUE.
0 CONTINUE

...TARGET # 6

ELSEIF (NTARG.EQ. 6) THEN

IF( ,
+ (X.LE.C1l) .AND. (ABS (Y) .LE.X/C1)
+ .OR.
+ (X.GE.C1) .AND. (((X-Cl) **2+Y**2) .LE.1.)
+ ) TAG=.TRUE.

—————— ——————————— ———— - —— - —————— - " T —————————— — = —————— - -

...TARGET # 7

ELSEIF (NTARG.EQ.7) THEN
IF( (X.LE.Cl).AND. (ABS(Y).LE.X/C1)

+ .OR.
+ (X.GE.Cl1) .AND. (X.LE.C2) .AND. (ABS(Y) .LE.1.)
+ .OR.
+ (X.GE.C2) .AND. (((X-C2)**2+Y**2) _LE.1.) )TAG=.TRUE.
...TARGET # 8
ELSEIF (NTARG.EQ. 8) THEN
IF( (X.LE.Cl).AND. (ABS(Y).LE.1l.)
+ .OR.
+ (X.GE.Cl) .AND. (((X~-C1l)**2+Y**2) .LE.1.) )TAG=.TRUE.
...TARGET # 9
ELSEIF (NTARG.EQ.9) THEN
IF( ((ABS(Y).LE.C2).AND.(Y.GE.Cl*(ABS(X)-.5)))
+ .OR.
+ ((X.GE.0.) .AND. (Y.LE.C2)
+ AND. (((X-.5)**2+Y**2) _LE.1.)) )THEN
TAG=.TRUE.
IF((X.LE.O.) .AND. (ABS(Y) .LE.DY/2.)) THEN
TAG=.FALSE.
ENDIF
ENDIF

ENDIF
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c

C...TAG ASSIGNMENT

c

50
60

oo NeNe]

70
80

[eNeNeNe!

IF (TAG) THEN
ITARG(I,J)="*'
INDX=INDX+1
TAG=.FALSE.

ELSE

LEX=LEX+1

LX=LX+1

NEX (LX) =MX* (J-1) +I
LEX=LEX+1

LX=LX+1

NEX (LX) =MX*J+1I
LEY=LEY+1

LY=LY+1

NEY (LY)=(MX+1) * (J-1)+I
LEY=LEY+1

LY=LY+1

NEY (LY)=(MX+1) * (J-1)+I+1

ENDIF
CONTINUE
CONTINUE

...TOTAL NUMBER OF ’'NONZERO’ ELEMENTS

WRITE (*, *)

WRITE (*,*)'XI= ' ,XSTRT+0.5*DX,’ XF=
WRITE (*,*)'YI= ' ,YSTRT+0.5*DY,’ YF=
WRITE (*, *)

MG=INDX

MGI=2*MG

WRITE (*, *) ' TOTAL NUMBER OF UNKNOWNS:

’ ’ -—
X, =

r,Y,! My=

2 *',MG

WRITE (*,*) ' GEOMETRY DISPLAY? 1)YES 2)NO’

READ*, IRES
IF (IRES.EQ.1) THEN
DO 70 J=NY,1,-1
WRITE (*,80) (ITARG(I,J),I=1,NX)
CONTINUE
FORMAT (255 (1X,A1))
ENDIF
WRITE (*, *)

’ r
 MX,
‘MY, '
(ML,

WRITE (*, *) ' TARGET GEOMETRY SPECIFICATION COMPLETED.’

RETURN
END

NX=

I’NX
I'NY

*
*

IDENTIFYING A POINT IN THE INTERIOR OF A TRIANGLE SPECIFIED BY

ITS CORNERS

LOGICAL FUNCTION TRITAG(X,Y,X1,Y1l,X2,

33
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TRITAG=.FALS

21 = (X - X1) * ( Y2-Y1 )
22 = ( X3 - X1) * ( Y2-Y1 )
23 = (X =-X1) * ( Y3-Y1 )
24 = ( X2 - X1) * ( ¥3-Y1 )
25 = (X - X2) * ( ¥3-Y2 )
26 = ( X1 - X2) * ( Y3-Y 2)
IF(
+ (21*22 .GE. 0.0).AND. (23*Z4
+ ) TRITAG=.TRUE.
RETURN
END

E.

A~ o~ N~~~

X2-X1
X2-X1
X3-X1
X3-X1
X3-X2
X3-X2

.GE. 0.

)y * (Y -Y1)
) * (Y3 -Y1 )
) * (Y -Y1)
) * (Y2 -Y1 )
) * (Y -Y2)
) * (Y1l -Y2 )

0) .AND. (25*26 .GE. 0.0)

SUBROUTINE GREENF (GXX,GYX,GYY,NX,NY,DX,DY, KO, AXX,AYX, AXY,AYY,

&

NXFT,NYFT)

Chhkhkkhkhkkhhkkhhkdkhhkhkhkhhkkhhkhhkhhhhkhhkkhhhkhhkhkkhkkkkkkhkkkhkkkkkkhkkhkkkkkkkkkkx

THIS SUBROUTINE FIRST GENERATES THE DISCRETIZED GREEN'’S

Cc

c FUNCTION AND THEN TRANSFORMS IT USING FFT
Cc DX - INCREMENT IN THE X DIRECTION

c DY - INCREMENT IN THE Y DIRECTION

C

G = AN ARRAY WITH OUTPUT AS TRANSFORMED GREEN'’S FUNCTION
oL L T S R R R L R LR T LT a ey

COMPLEX AXX(2,2,*),AXY(2,2,*),AYX(2,2,*),AYY(2,2,*),G1

COMPLEX GXX(*),GYX(*),GYY(*),ETA

REAL KO,KR,XI(2),X1(3),
& PNX (2) ,PNY (2) ,NEX (2) ,NEY (2) ,NEXP (2) ,NEYP (2),IL1(2)

INTEGER NN (2)

DATA X1/-0.333333333,0.,0.33333333333/
DATA XI/-0.5773502692,0.5773502692/

DATA IL1/2,1/
PI=3.141592654
TPI=2.*PI
WAVE=TPI /KO
SKO=KO*KO
AREA=DX*DY

RLIM=0.01*SQRT (DX*DX+DY*DY)

NXP=NX-1
NYP=NY-1
NX1=NX+1
NY1=NY+1
NXY1=NX1*NY1

DO 601 L=1,NXY1l

DO 601 I=1,2
DO 601 J=1,2
AXX(I1,J,L)=0.
AXY(I,J,L)=0.
AYX(I,J,L)=0.
601 AYY(I,J,L)=0.

C..... START HERE TO GENERATE THE MATRIX ELEMENTS
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XC=DX

PNX (1)=-1./DX
PNX (2)=1./DX
PNY(1)=-1./DY
PNY (2)=1./DY

DO 607 JP=1,NY1l
YPC=FLOAT (JP-1) *DY
DO 607 IP=1,NX1
XPC=FLOAT (IP-1) *DX
Kp=(JP-1) *NX1+IP

IF((JP.LE.4) .AND. (IP.LE.4)) THEN

DO 605 JJ=1,3
Y=YC+X1 (JJ) *DY
NEX (1)=0.5-X1(JJ)
NEX (2)=0.5+X1 (JJ)
DO 605 II=1,3
=XC+X1 (II)*DX
NEY (1)=0.5-X1(II)
NEY (2)=0.5+X1 (II)

DO 604 JJP=1,3
YP=YPC+X1 (JJP) *DY
NEXP (1) =0.5-X1 (JJP)
NEXP (2)=0.5+X1 (JJP)
DO 604 IIP=1,3
XP=XPC+X1 (IIP) *DX
NEYP (1)=0.5-X1(IIP)
NEYP (2)=0.5+X1 (IIP)

XX=X-XP
YY=Y-YP
R=SQRT (XX*XX+YY*YY)
IF (R.LE.RLIM) THEN
..... USING ANALYTICAL INTEGRATION FOR 1/R
XL=X-DX/6. '
XU=X+DX/6.
YL=Y-DY/6.
YU=Y+DY/6.
XLP=XP-DX/6.
XUP=XP+DX/6.
YLP=YP-DY/6.
YUP=YP+DY/6.
Al=FINT (XUP, YUP, XU, YU)
A2=FINT (XLP, YLP, XU, YU)
A3=FINT (XLP, YUP, XU, YU)
A4=FINT (XUP, YLP, XU, YU)
AS5=FINT (XUP, YUP,XL, YL)
A6=FINT (XLP,YLP,XL,YL)
A7=FINT (XLP,YUP,XL,YL)
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c

-----

602

&

&

603

604
605

A8=FINT (XUP, YLP, XL, YL)
A9=FINT (XUP, YUP, XL, YU)
Al10=FINT (XLP, YLP, XL, YU)
Al1=FINT (XLP, YUP, XL, YU)
A12=FINT (XUP, YLP, XL, YU)
Al13=FINT (XUP, YUP, XU, YL)
Al4=FINT (XLP, YLP, XU, YL)
A15=FINT (XLP, YUP, XU, YL)

Al16=FINT (XUP,YLP, XU, YL)
Gl=Al+A2-A3-A4+A5+A6-A7-A8-A9-A10+A11+A12-A13-A14+A15+A16
G1=Gl/ (AREA/9.)

USING GAUSSIAN FORMULA (2X2) FOR INTEGRATION
DO 602 J4=1,2

Y2=YY+XI (J4) *DY/6.

DO 602 I4=1,2

X2=XX+XI (I4)*DX/6.

R=SQRT (X2*X2+Y2*Y2)

KR=KO*R

SI=SIN(KR)

CO=COS (KR)

G1=G1l+ (CMPLX (CO,-SI)-1.)/R* (AREA/36.)
G1=Gl/TPI

ELSE

USING ONE POINT FORMULA FOR INTEGRATION
R=SQRT (XX*XX+YY*YY)

KR=KO*R

SI=SIN (KR)

CO=COS (KR)

G1=CMPLX (CO,-SI)/ (TPI*R) * (AREA/9.)
END IF

Gl=-G1

DO 603 I1=1,2

DO 603 J1=1,2

AXX(I1,J1,KP)=AXX(I1,J1,KP)+(NEX(I1)*NEXP (J1)*SKO-
PNY (I1) *PNY (J1)) *G1*AREA/9.

AXY(Il1,J1,KP)=AXY(I1,J1,KP)+PNY(I1)*PNX(J1l)*Gl*AREA/9.

AYX(I1,J1,KP)=AYX(I1,J1,KP)+PNX(I1l)*PNY (J1)*G1l*AREA/9.

AYY(I1l,J1,KP)=AYY(I1,J1,KP)+(NEY(I1l)*NEYP (J1)*SKO-
PNX(I1)*PNX(J1)) *G1*AREA/9.

CONTINUE

CONTINUE
CONTINUE

ELSE

XX=XC-XPC

YY=XC-YPC

USING ONE POINT FORMULA FOR INTEGRATION
R=SQRT (XX*XX+YY*YY)

KR=KO*R

SI=SIN(KR)

CO=COS (KR)
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606

913

915

G1=CMPLX (CO, -SI) / (TPI*R) *AREA
Gl=-G1

DO 606 Il=1,2

DO 606 J1=1,2

AXX (I1,J1,KP)=AXX(I1,J1,KP)+(0.25*SKO-

& PNY (I1) *PNY (J1) ) *AREA*G1

AXY (I1,J1,KP)=AXY(I1,J1l,KP)+PNY (I1)*PNX (J1)*G1*AREA
AYX(I1,J1,KP)=AYX(I1,J1,KP)+PNX(I1)*PNY (J1)*G1*AREA
AYY(I1,J1,KP)=AYY(I1,J1,KP)+(0.25%SKO-

& PNX (I1) *PNX (J1) ) *AREA*G1

CONTINUE

END IF

CONTINUE

.GENERATE GREEN’S FUNCTION IN FTT PAD

NFT=NXFT*NYFT
DO 915 J=1,NYP

K1=J*NX1+1

K2=(J-1) *NXFT

DO 915 I=1,NXP

IK1=I+K1

I1=I+K2

GXX (I1)=(AXX (1,1, IK1)+AXX (1,2, IK1-NX1)+AXX (2,2, IK1)
& +AXX (2,1, IK14+NX1) ) /NFT
GYX (I1)=AYX(1,1,IK1)/NFT
IF(I.EQ.1) GOTO 913
I2=NXFT-I+2+K2

GXX (I2)=GXX (I1)

GYX (I2)=GYX (I1)

CONTINUE

IF(J.EQ.1) GOTO 915

I3=NXFT* (NYFT-J+1)+I

GXX (I3)=GXX (I1)

GYX (I3)=GYX (I1)

IF(I.EQ.1) GOTO 915

I4=NXFT* (NYFT-J+2) -I+2

GXX (I4)=GXX (I1)

GYX (I4)=GYX(I1)

CONTINUE

DO 917 J=1,NYP

K1=J*NX1+1

K2=(J-1) *NXFT

DO 917 I=1,NXP

IK1=I+K1

I1=I+K2

GYY (I1)=(AYY(1,1,IK1)+AYY(1,2,IK1-1)+AYY(2,1,IK1+1)
& +AYY (2,2,1IK1)) /NFT

IF(I.EQ.1) GOTO 916
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916

I2=NXFT-I+2+K2

GYY (I2)=GYY (I1)
CONTINUE

IF (J.EQ.1) GOTO 917
I3=NXFT* (NYFT-J+1) +I
GYY (I3)=GYY (I1)
IF(I.EQ.1) GOTO 917
I4=NXFT* (NYFT-J+2) -I+2
GYY (I4)=GYY(I1)
CONTINUE

MODIFY TO ACCOMMODATE RESISITIVE PLATE
PRINT*, ' INPUT THE COMPLEX RESISTIVITY ETA / Z 0:’
READ*,ETA

PRINT*,ETA
GXX(1)=GXX(1)+(0.,4.)*ETA*KO*AREA/ (3.*NFT)

GYY (1)=GYY(1)+(0.,4.)*ETA*KO*AREA/ (3.*NFT)

GXX (2)=GXX(2)+(0.,2.) *ETA*KO*AREA/ (3.*NFT)

GXX (NXFT) =GXX (2)

GYY (NXFT+1)=GYY (NXFT+1)+(0.,2.) *ETA*KO*AREA/ (3. *NFT)
GYY (NXFT* (NYFT-1)+1) =GYY (NXFT+1)

MODIFICATION ENDS

NN (1) =NXFT

NN (2) =NYFT

CALL FFTN (GXX,NN,2,1)
CALL FFTN(GYX,NN,2,1)
CALL FFTN(GYY,NN,2,1)

RETURN
END

REAL FUNCTION FINT (XP,YP,X,Y)

XX=X-XP

YY=Y-YP

R=SQRT (XX*XX+YY*YY)

IF ((ABS(XX) .LE.0.0) .OR. (ABS (YY) .LE.0.0)) THEN

SUM=-R*R*R/6.

ELSE

SUM=0.5*XX*YY* (XX*ALOG (YY+R) +YY*ALOG (XX+R) )
=0.25*XX*YY* (XX+YY) -R*R*R/6.

END IF

FINT=SUM

RETURN

END

SUBROUTINE FDINC (BX, BY,NX,NY,DX,DY,KO, THETA, PHI,ALPHA)

CRr A KKK KRR KA A A A KKK AR A AR KK KRAAA KA KA KRKRKAR KA KKk kkk Kk kK k R KKk Kk Kk Kk Kk ok kk k% k%% %k k%

THIS SUBROUTINE COMPUTES THE EXCITATION TERM INVOLVING THE

INCIDENT FIELD ON THE APERTURE
THETA - INCIDENT ANGLE
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PHI - INCIDENT ANGLE

ALPHA - THE ANGLE BETWEEN H VECTOR AND PHI DIRECTION
ALPHA = 0 DEGREE - HZ=0 H-POL. OR TM POL.
ALPHA = 90 DEGREES - EZ=0 E-POL. OR TE DPOL.

C*********************************************************************

COMPLEX BX(*),BY(*),BXX,BYY,CJ

REAL KO, HOLD

NXT= (NX-1) *NY

NYT=NX* (NY-1)

DO 701 I=1,NXT

* F ¥

[eeNeNe]

701 BX (I)=CMPLX (0.,0.)
DO 702 I=1,NYT

702 BY (I)=CMPLX (0.,0.)
NX1=NX-1
NY1=NY-1

RED=0.01745329
CJ=CMPLX(0.0,1.0)
TH=RED*THETA
PH=RED*PHI
AL=RED*ALPHA
AREA=DX*DY
SINT=SIN(TH)
COST=COS (TH)
SINP=SIN (PH)
COSP=COS (PH)
SINA=SIN (AL)
COSA=COS (AL)
DO 703 J=1,NY1
Y=(FLOAT (J)-0.5) *DY
DO 703 I=1,NX1
X=(FLOAT (I)-0.5) *DX
K=(J-1) *NX1+I
HOLD=KO*SINT* (X*COSP+Y*SINP)
HY=SINA*COST*SINP-COSA*COSP
BXX=-CJ*KO*HY*CMPLX (COS (HOLD) , SIN (HOLD) ) *AREA
HX=SINA*COST*COSP+COSA*SINP
BYY=CJ*KO*HX*CMPLX (COS (HOLD) , SIN (HOLD) ) *AREA
DO 704 I1=1,2
IF(I1.EQ.1) L=(J-1)*NX1+I
IF(I1.EQ.2) L=J*NX1+I
BX (L) =BX (L) +BXX
IF(I1.EQ.1) L=(J-1)*NX+I
IF(I1.EQ.2) L=(J-1)*NX+I+1
704 BY(L)=BY(L)+BYY
703 CONTINUE
RETURN
END

SUBROUTINE BNDRY (EX,NEX, LEX)
CHAKKIKI KA KA KKK KRR KK A KKK A KA KA KA Rk Rk ARk Ak Ak kkk kA kkk Kk kkkkkkkkkkkkkkok
C..... THIS SUBROUTINE ENFORCES THE BOUNDARY CONDITION ON THE NODAL *

C ... FIELDS *
Chd ko k kA Ak kK ARk kA Ak kA Ak kR Ak kA k ok kkkkk kA kkkkkkkkkkhkkkkkkkkkkkkkk
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801

COMPLEX EX (*)

INTEGER NEX (*)

DO 801 I=1,LEX

I1=NEX (I)
EX(I1)=CMPLX(0.0,0.0)

RETURN

END

ChhkkkkkkkhhhkkkhhkhhkkkhkhkkhkhhhhhkkhhkhkkkkkkkkkkkkkhkkkhkhkkkkkkkkkkkkkxC

C

THIS SUBROUTINE CALCULATES THE EUCLIDIAN NORM OF A VECTOR C

Chr kKA A I IR A KA I I I AR KA KKK KA A KA KK RA KA KKK AR A Ak ko k ek kkkkkkkkkkkkkkkxC

10

REAL FUNCTION VNORM (A, N)
COMPLEX A (N)

SUM=0.

DO 10 I=1,N
SUM=SUM+CABS (A (I)) **2
CONTINUE

VNORM=SUM

RETURN

END

ChRAIKAK KA KKK KAKR KA KK AK KA KRR KKK KA KRR A KA AR A AR A Ak kR kkkkkkkkkkkkkkkkkkkkkkxC

C

THIS SUBROUTINE CALCULATES THE EUCLIDIAN NORM OF A VECTOR Cc

C**********************************************************************c

20

COMPLEX FUNCTION CNORM(Al,A,NO)
COMPLEX A (NO),Al (NO),SUM
SUM=(0.,0.)

DO 20 I=1,NO

SUM=SUM+Al (I)*A(I)

CONTINUE

CNORM=SUM

RETURN

END

SUBROUTINE ADDAX (AX,AY, EX, EY,GXX, GYX,GYY, NX, NY, NXFT, NYFT, X, Y)

Chhkkkkkk ok ok ok ks k kA Ak kA A A A AR AR ARk h kA A AR AR Rk k kA A Ak kkkk kA kkkkk Ak kkkkkkkk

Cc ...

.THIS SUBROUTINE GENERATES VECTORS AX AND AY CONTRIBUTED BY b
BOUNDARY INTEGRALS *

C % % % %k %k %k % %k K Kk %k %k sk sk %k %k K Kk ok sk ok ok ok ok ok kK Kk ok ok ok ok sk ok ok ok 3k ok ok ke kS %k ok K ke ok sk ok ok K ok %k ok ok ok ok ok ok dk ke ko ok ke ok

910

COMPLEX AX(*),AY(*),EX(*),EY(*),GXX(*),GYX(*),GYY(*),
& X(*),Y(*), XX, YY ’
INTEGER NN (2)

NXP=NX-1

NYP=NY-1

NFT=NXFT*NYFT

DO 910 I=1,NFT
X(I)=CMPLX(0.,0.)
Y (I)=CMPLX(0.,0.)

DO 915 J=1,NY
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915

917

920

925

927

930

Kl=(J-1) *NXP
K2=(J-1) *NXFT
DO 915 I=1,NXP
I1=I+K1
12=I+K2

X (I2)=EX(I1)
CONTINUE

DO 917 J=1,NYP
Kl=(J-1) *NX
K2=(J-1) *NXFT
DO 917 I=1,NX
I1=I+K1
I2=I+K2

Y (I2)=EY(I1)
CONTINUE

NN (1) =NXFT

NN (2) =NYFT

CALL FFTN(X,NN,2,1)
CALL FFTN(Y,NN,2,1)

DO 920 I=1,NFT
X (I)=GXX (I)*X(I)
Y (I)=GYY (I)*Y(I)
CONTINUE

CALL FFTN(X,NN,2,-1)
CALL FFTN(Y,NN,2,-1)

DO 925 J=1,NY
Kl=(J-1) *NXP
K2=(J-1) *NXFT

DO 925 I=1,NXP
I1=I+K1

I2=I+K2

AX (I1)=AX(I1)+X(I2)
CONTINUE

DO 927 J=1,NYP
Kl=(J-1) *NX
K2=(J-1) *NXFT

DO 927 I=1,NX
I1=I+K1

I12=I+K2

AY (I1)=AY(I1)+Y(I2)
CONTINUE

DO 930 I=1,NFT
X(I)=CMPLX(0.,0.)
Y (I)=CMPLX(0.,0.)

DO 935 J=1,NYP
Kl=(J-1) *NXP
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K2=(J-1) *NXFT

DO 935 I=1,NXP

I1=I+K1

I2=I+K2

X (I2)=EX(I1)-EX (I1+NXP)
935 CONTINUE

DO 937 J=1,NYP

K1l=(J-1) *NX

K2=(J-1) *NXFT

DO 937 I=1,NXP

I1=I+K1

I2=I+K2

Y (I2)=EY(I1)-EY(I1+1)
937 CONTINUE

CALL FFTN(X,NN,2,1)
CALL FFTN(Y,NN,2,1)

DO 940 I=1,NFT

X(I)=GYX(I)*X(I)

Y (I)=GYX(I)*Y(I)
940 CONTINUE

CALL FFTN(X,NN,2,-1)
CALL FFTN(Y,NN,2,-1)

DO 945 J=1,NYP

Kl=(J-1) *NXP

K2=(J-1) *NXFT

DO 945 I=1,NXP

I1=I+K1

I2=I+K2

AX (I1)=AX(I1l)+Y(I2)

AX (I1+NXP)=AX (I1+NXP)-Y(I2)
945 CONTINUE

DO 947 J=1,NYP

K1=(J-1) *NX

K2=(J-1) *NXFT

DO 947 I=1,NXP

I1=I+K1

I2=I+K2

AY (I1)=AY(I1)+X(I2)

AY(I1+1)=AY(I1+41)-X(I2)
947 CONTINUE

RETURN
END

SUBROUTINE SCATER (EX,EY,NMAX,NXP,NYP,DX,DY, KO, TETA, PHI, SIG)
EXTERNAL SINC
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20

30

REAL KO
COMPLEX EX(*),EY(*),XJ,SX,SY,MX,MY,NTETA,NPHI
DATA PI/3.141592653589793/,TPI1/6.28318530717959/,XJ3/(0.,1.0)/
STE=SIN(TETA*PI/180.)
CTE=COS (TETA*PI/180.)
SPH=SIN(PHI*PI/180.)
CPH=COS (PHI*PI/180.)
RX=KO*STE*CPH
RY=KO*STE*SPH
SX=(0.,0.)
SY=(0.,0.)
DO 20 J=1,NYP
L= (J-1) *NXP
Y= (FLOAT (J)-0.5) *DY
DO 10 I=1,NXP
K=L+I
X=(FLOAT (I)-0.5) *DX
I1l=(J-1) *NXP+I
I2=J*NXP+1I
I3=(J-1)* (NXP+1)+I
I4=(J-1)* (NXP+1)+I+1
=-0.5% (EX(I1)+EX(I2))
MX=0.5* (EY (I3)+EY(I4))
SX=SX+MX*CEXP (XJ* (RX*X+RY*Y))
SY=SY+MY*CEXP (XJ* (RX*X+RY*Y) )
CONTINUE
CONTINUE
WAVE=2.*PI/KO
AREA=DX*DY/WAVE/WAVE
SX=AREA*SINC (0.5*DX*RX) *SINC (0.5*DY*RY) *SX
SY=AREA*SINC (0.5*DX*RX) *SINC (0.5*DY*RY) *SY
NTETA= CTE* (CPH*SX+SPH*SY)
NPHI=-SPH*SX+CPH*SY
SIGT=PI*CABS (NTETA) **2
SIGP=PI*CABS (NPHI) **2
SIG = PI* (CABS(NTETA) **2+CABS (NPHI) **2)

THE FACTOR OF 4 FROM IMAGE THEORY

SIGT=4.*SIGT

SIGP=4.*SIGP

SIG = 4.*SIG
IF(SIG.LE.1.E-8)SIG=1.E-8
SIG = 10.*ALOG10(SIG) -6.
IF(SIGT.LE.1.E-8)SIGT=1.E-8
SIGT = 10.*ALOG10 (SIGT) -6.
IF (SIGP.LE.1.E-8)SIGP=1.E-8
SIGP = 10.*ALOG10(SIGP) -6.
WRITE (*,30) TETA,PHI,SIG,SIGT,SIGP
FORMAT (5F12.2)

RETURN

END
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SINGLE PRECISION SINC

REAL FUNCTION SINC(A)
REAL A

IF (A.EQ.0.) THEN
SINC=1.

ELSE
SINC=SIN(A) /A

ENDIF

RETURN

END

FFT ROUTINE FOR COMPUTATION OF N DIMENSIONAL FOURIER TRANSFORM
TASKS: 1)BIT REVERSAL 2) TRIGONOMETRIC RECURRENCE 3) TRANSFORM
ALL DONE IN THIS PROGRAM

PARAMETER DESCRIPTION

% % % % %k %k %k %k Kk K Kk %k %k Kk Kk ok %k %k Kk Kk Kk ok %k Kk Kk Kk sk %k K Kk ok ok %k kK ok %k %k %k ok %k ok ok %k %k Kk %k %k sk sk sk %k % %k ok %k ok ok %k Kk Kk ok %k ok ok Kk

*
*
*

KR KKK KA KA A kA A A A A A A A A A AR A A A AR AR AR A AR AR A KA A A KA AR A kA A kAR Ak AR Kk k*k

DATA......iiieveennn. A REAL ARRAY IN WHICH DATA ARE STORED AS IN
A MULTIDIMENSIONAL COMPLEX FORTRAN ARRAY
NDIM.........ci0vene DIMENSION OF DATA AND THE FFT
NN.....oiiiiiinnnnnns INTEGER ARRAY OF LENGTH NDIM
ISIGN........ ceeeccnse DIRECTION OF THE TRANSFORM:
1 -FOREWARD FFT
-1 -INVERSE FFT TIMES THE PRODUCT OF

LENGTHS OF ALL DIMENSIONS

SUBROUTINE FFTN (DATA,NN,NDIM, ISIGN)
REAL*8 WR,WI,WPR,WPI,WTEMP, THETA
DOUBLE PRECISION WR,WI,WPR,WPI,WTEMP, THETA
DIMENSION NN (NDIM),DATA (*)
NTOT=1
DO 10 IDIM=1,NDIM
NTOT=NTOT*NN (IDIM)
ENDDO
NPREV=1
DO 80 IDIM=1,NDIM
N=NN (IDIM)
NREM=NTOT/ (N*NPREV)
IP1=2*NPREV
IP2=IP1*N
IP3=IP2*NREM
I2REV=1

BIT REVERSAL SECTION

DO 40 1I2=1,1IP2,IP1
IF(I2.LT.I2REV)THEN
DO 30 I1=I2,I2+IP1-2,2
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20

30

40
C
Cc

2

50
c

60
C

C

70

DO 20 I13=I1,1IP3,IP2
I3REV=I2REV+I3-I2
TEMPR=DATA (I3)
TEMPI=DATA (I3+1)

DATA (I3)=DATA (I3REV)
DATA (I3+1)=DATA (I3REV+1)
DATA (I3REV)=TEMPR

DATA (I3REV+1) =TEMPI

CONTINUE
ENDDO
CONTINUE
ENDDO
END IF
IBIT=IP2/2
IF((IBIT.GE.IP1l) .AND. (I2REV.GT.IBIT) ) THEN
I2REV=I2REV-IBIT
IBIT=IBIT/2
GO TO 1
END IF
I2REV=I2REV+IBIT
CONTINUE
ENDDO
DANIELSON-LANCZ0OS FORMULA
IFP1=IP1
IF(IFP1.LT.IP2)THEN
IFP2=2*IFP1
THETA=ISIGN*6.28318530717959D0/ (IFP2/1IP1)
WPR=-2.D0*DSIN(0.5D0O*THETA) **2
WPI=DSIN (THETA)
WR=1.D0
WI=0.DO0
DO 70 I3=1,IFP1,1IP1
DO 60 I1=I3,13+IP1-2,2
DO 50 I2=I1,IP3,IFP2
K1=I2
K2=K1+IFP1
TEMPR=SNGL (WR) *DATA (K2) -SNGL (WI) *DATA (K2+1)
TEMPI=SNGL (WR) *DATA (K2+1) +SNGL (WI) *DATA (K2)
DATA (K2) =DATA (K1) -TEMPR
DATA (K2+1)=DATA (K1+1) -TEMPI
DATA (K1) =DATA (K1) +TEMPR
DATA (K1+1)=DATA (K1+1)+TEMPI
CONTINUE
ENDDO
CONTINUE
ENDDO
WTEMP=WR
TRIGONOMETRIC RECURRENCE
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI
CONTINUE
ENDDO
IFP1=IFP2
GO TO 2
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END IF
NPREV=N*NPREV
CONTINUE
ENDDO
RETURN
END
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SCATTERING BY A FINITE FREQUENCY SELECTIVE SURFACE

Jian-Ming Jin and John L. Volakis

Radiation Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, Michigan 48109-2122

ABSTRACT
An exact solution is presented for finite frequency selective surfaces (FSS) which is
used to assess the accuracy of an existing approximate solution. Exact scattering patterns
are given for planar FSS structures modelled with as many as 123000 unknowns and it

is concluded that the approximate solution is reasonably accurate away from grazing.
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I. INTRODUCTION

Frequency selective surfaces (FSS), comprising an array of conducting/resistive patches
or perforations in a conducting screen, find numerous applications in radome designs and
dichroic reflector antenna systems. An FSS is typically analyzed on the assumption that
it is infinite in extent. Floquet’s theorem is then invoked to express the currents of the
F'SS in terms of a periodic function whose period is equal to the area over a single cell,
thus reducing the computational region to that of the single patch [1]-[3]. In practice,
though, the FSS is finite and for an exact analysis it is required that the currents over
the FSS be determined without a priori assumptions on their functionality. The FSS
structure must then be modelled in its entirety and this implies excessive memory and
computational demands [4], [5]. For this reason, an approximate solution was proposed
in [6] where the currents computed for the infinite FSS were integrated over the extent of
the corresponding finite F'SS to evaluate its scattering. Due to the lack of available exact
data for three-dimensional finite FSS, this approximate solution was only validated for
a unidirectionally truncated model (finite in one direction and infinite in the other) by
comparing it with the exact data presented in [7], [8]. In this communication we present
new exact data for large three-dimensional FSS structures which are used to assess the
accuracy of the approximate solution based on the infinite FSS model. The exact data
were generated from an iterative solution of a new discrete form of the integral equa-
tion. This is briefly discussed in the subsequent section and because of its low memory
requirement coupled with its fast convergence it was possible to obtain results for large

FSS of practical interest.
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II. APPROXIMATE AND EXACT SOLUTIONS

To obtain the approximate solution for the scattering by a finite FSS we first consider
the corresponding infinite periodic FSS. This is readily analyzed by invoking Floquet’s
theorem to reduce the domain of the unknown currents to that over a single FSS cell.
Following the analysis given in [6], roof-top basis functions are employed for represent-
ing the current distribution on the reference patch and the resulting integral equation is
discretized via Galerkin’s method. The system is then solved via the conjugate gradient
method in conjunction with the fast Fourier transform (FFT) [6]. Once the currents
on the reference patch are obtained, the FSS scattering is approximately found by mul-
tiplying the radiated field from the reference patch with the array factor of the finite
FSS.

The exact treatment of the finite FSS involves a direct solution of the integral equa-

tion
5 X E(r) = jkoZo 3 X // Go(r, ') 0 I(r')dS" (1)
S

In this, Zg is the free space intrinsic impedance, kg = 27/ is the free space wavenumber,
E*™¢ denotes the incident field, éo is the free-space dyadic Green’s function and J is the
unknown surface current density on the patches of the FSS occupying the surface § in
the 2-y plane. To discretize the integral equation, S is subdivided into small rectangular
elements of width Az along the z direction and Ay along the y direction. Assuming
M + 1 subdivisions along the = direction and N + 1 subdivisions along the y direction,

by using roof-top basis the current density may be expanded as

M N+1

J(z,y) = D> JP(m,n)TE (2,y) (22)

m=1 n=1
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M+1 N
Jy(z,y) = Y Y I (mn)Tha(z,y) (2b)
m=1 n=1

where ng(m,n) denote the discrete current density and T,¥ are the roof-top basis.

They are defined as

1- k=22l for |z — mAz| < Az and |y - (n - 0.5)Ay| < 4
Trn(z,y) = )

0, else

1- 224l for [y — nAy| < Ayand [z - (m - 0.5)Az| < 42
Toa(z,y) = )

0, else

When the expansions in (2) are substituted into (1), upon employing Galerkin’s technique

we obtain

Zo [1
t hoir Bz

ikoZoJP(m,n) ® GE(m,n) (JD(m n) - JP(m - l,n))

+Aly (Jf(m,n) — JP(m,n - 1))] ® (Gp(m,n) — Gp(m + 1,n)) = b(m, n) (4a)

Z 1
" D Y 0 D _ D(
]kOZon (m,n) @ G¥(m,n) + T L_—l‘ (Jz (m,n) = J7 (m l,n))
+———1y (JyD(m, n)— Jf(m,n - 1))] ® (Gp(m,n) — Gp(m,n + 1)) = by(m,n) (4b)

where the symbol ® denotes convolution and

GH(m —m',n — ') / /_Ay( lzl)/ /A( Az)

Go(Z - '+ (m - m)Az,§ - § + (n - n')Ay)dz' dj' dzdy (52)
0 0 0 40
Gp(m-m’,n—n'):/ / / /
-Ar J-Ay J-Az J-Ay
‘Go(Z = 2+ (m - m)Az,§ - 7 + (n - n')Ay)dz'dj didy (5b)
bz(m,n) / / < ——) E™(% + mAz,§ + nAy)didy (5¢)
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in which Go is the free space scalar Green’s function. G% and by are obtained from G7
and b by interchanging # and ' with § and §'. It is important to note that in deriving
(4) from (1) we employed the divergence theorem twice to transfer the double gradient
operations from the Green’s function Go to the expansion and the weighting functions.

The most important aspect of (4) is its convolutional form which was explicitly
brought out through the transformations £ = z — mAz and § = y — nAy. This form
is necessary for the application of the discrete Fourier transform to evaluate the convo-
lutions and solve the system via an iterative algorithm using only O(N) storage. For
example, the conjugate gradient (CG) or biconjugate gradient (BCG) algorithm could
be used here. However, in most previous applications of the CG-FFT or BCG-FFT
algorithm, point matching was employed and this compromised the convergence rate
of the solution. As will be seen later, though, the application of Galerkin’s technique
in conjunction with the transfer of the two V operators to the expansion and weight-
ing functions leads to substantial improvements in the convergence of the CG-FFT and
BCG-FFT. One can then handle large size problem with reasonable computational efforts

and this is demonstrated in the next section.

III. NUMERICAL RESULTS
Consider the planar FSS georﬁetry shown in Figure 1. It is a square array of square
perfectly conducting patches 0.8 cmx0.8 cm in size and each patch is separated 0.2 cm
from its adjacent. To assess the accuracy of the aforementioned approximate analysis
technique we will examine the bistatic scattering of the FSS as obtained by the exact

and approximate solutions. For this purpose we assume a plane wave excitation in the
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direction (¢'*¢ = 0°,6""¢ = 45°) with an operating frequency of 24 GHz. Radar cross
section (RCS) patterns corresponding to this excitation are given in Figures 2-5 and
each figure applies to a different FSS size. Figure 2 refers to the scattering by a single
patch, Figure 3 displays the pattern of a 4x4 patch array whereas Figures 4 and 5
include the patterns for the 12x12 and 25%x25 patch arrays, respectively. In the figures,
the solid line is the numerically exact solution whereas the dashed line represents the
approximate solution, and in all cases we observe a good agreement between the two
solutions near the pattern peaks. In general, the agreement is better for the larger
arrays and this is more so for the transverse magnetic (TM) to z incidence than the
transverse electric (TE) to z incidence results. The largest discrepancy between the
exact and approximate solutions occurs in the TE, incidence near grazing angles and
this persists even for the larger arrays. RCS comparisons for other incidences are given in
Figures 6 and 7. In particular, Figures 6 and 7 show the comparison of the approximate
and exact RCS solutions for the 12x12 patch array when the plane wave is incident at
(6™ = 45°,0™¢ = 45°) and ('™ = 45°,0"¢ = 75°) , respectively. Again, a reasonable
agreement is observed between the two solutions.

In generating the data in Figures 2-7 we employed 200 unknowns in implementing the
approximate solution. For the exact solution the numbers of unknowns used for the 4x4,
12x12 and 25x25 arrays were, respectively, 2964, 28084 and 123504. The corresponding
convergence curves (backscatter RCS versus the number of iterations) for the exact
solution with (¢™° = 0°,™¢ = 45°) are given in Figure 8. These demonstrate the
impressive convergence of the BCG-FFT in connection with the described formulation.

Even in the case of the 25x25 patch array, convergence was achieved within 70 iterations
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whereas in previous implementations the convergence was substantially slower.

V. CONCLUSIONS
In this comminuication an exact solution for the scattering by a finite FSS was
employed to validate a previously proposed approximate solution. It was found that
away from grazing, the approximate solution is reasonably accurate and is therefore

suited for engineering design purposes.
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FIGURE CAPTIONS

. 1 Geometry of a finite frequency selective surface comprising an array of conduct-

ing patches.

2 Bistatic scattering pattern for a single patch (1x1 array); (¢'™ = 0°,6™¢ = 45°),

f = 24 GHz. (a) TM incidence. (b) TE incidence.

3 Bistatic scattering pattern for a 4x4 array; (¢ = 0°,6"" = 45°), f = 24 GHz.

(a) TM incidence. (b) TE incidence.

4 Bistatic scattering pattern for a 12x12 array; (¢ = 0°,6™ = 45°), f = 24

GHz. (a) TM incidence. (b) TE incidence.

5 Bistatic scattering pattern for a 25x25 array; (¢'"¢ = 0°,6" = 45°), f = 24

GHz. (a) TM incidence. (b) TE incidence.

6 Bistatic scattering pattern for a 12x12 array; (¢‘"C = 45°,0'™ = 45°), f = 24

GHz. (a) TM incidence. (b) TE incidence.

7 Bistatic scattering pattern for a 12x12 array; (¢ = 45°,60¢ = 75°), f = 24

GHz. (a) TM incidence. (b) TE incidence.

8 Backscatter RCS versus number of iterations; (¢ = 0°,6'"¢ = 45°), f =
24 GHz. (a) For a 4x4 array (2964 unknowns). (b) For a 12x12 array (28084

unknowns). (c) For a 25x25 array (123504 unknowns).
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