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Abstract 
 
 

Competition for pollinators and avoidance of heterospecific pollen transfer have 

been assumed to be important factors promoting the evolution of specialized (restricted) 

floral morphologies.  To test these assumptions, I performed field and greenhouse studies 

on prairie plants in Iowa.  I also examined whether self-incompatibility reduces 

detrimental effects of heterospecific pollen.  In a field study, neither Sisyrinchium 

campestre (Iridaceae) with an unrestrictive floral morphology nor Viola pedatifida 

(Violaceae) with a restrictive floral morphology showed a decrease in fruit or seed set 

when growing near patches of introduced Euphorbia esula (Euphorbiaceae) indicating 

that competition for pollination was weak or absent.  In a survey of 29 species, plants 

with restrictive floral morphologies experienced less pollinator overlap with Euphorbia 

and received significantly less Euphorbia and other heterospecific pollen than those with 

unrestrictive (open) floral morphologies, as predicted.  However, flowers with 

unrestrictive morphologies had significantly larger stigmas, and the density of 

heterospecific pollen (per stigmatic area) did not differ significantly between floral 

morphologies.  Thus, correlated effects of stigma size may explain the patterns of 

heterospecific pollen receipt. 

 Large quantities of Euphorbia pollen added to stigmas prior to conspecific pollen 

had no effect on fecundity for two self-incompatible species and reduced fecundity for 

three self-compatible species, as predicted.  However, two other self-compatible species 

were not significantly affected, indicating that this relationship needs further testing.  

Additional experiments with two species demonstrated that Euphorbia pollen receipt is 

unlikely to affect fecundity in nature because reducing the quantity of Euphorbia pollen 

applied or eliminating the time delay between Euphorbia and conspecific pollen 

application reduced effects of heterospecific pollen receipt.  



 xii

 To further explore the effects of relative abundance, pollinator visitation rates, 

and pollen carryover on competition by interspecific pollen loss, analytical and 

simulation models were developed which indicate that rare plants receiving few visits are 

most affected by pollen loss.  Furthermore, increased pollen carryover is expected to 

result in the same average pollen receipt, but with a more uniform pollen distribution.  

This could increase or decrease competition by pollen loss, depending on the relationship 

between pollen receipt and pollination success. 
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Introduction 
 

 Differences among plant species in floral morphology, color, phenology and 

breeding systems, and the degree to which these differences have been shaped by 

interactions with pollinators have long intrigued biologists.  One long-standing 

explanation for this diversity of floral traits is that it results from selection to avoid 

competition for pollination (Robertson 1895, Waser 1983).  Competition for pollination 

has been invoked to explain divergence in flowering period (e.g. Robertson 1895, Stiles 

1977, Brown and Kodric-Brown 1979, but see Poole and Rathcke 1979), flower color   

and floral morphology (reviewed in Levin 1978 and Waser 1983, also see Fishman and 

Wyatt 1999, Miyake and Inoue 2003).  A logical first test of this hypothesis is whether 

interspecific competition for pollination affects plant reproduction, although the effect of 

competition for pollination on selection can also be measured directly (Caruso 2000).  An 

indication that plants may experience competition for pollination is provided by studies 

of pollinator limitation, reviews of which have shown that the fruit or seed set of many 

populations are limited by inadequate pollinator service (Burd 1994, Ashman et al. 2004).  

If pollinator service is inadequate, then anything further decreasing the quantity or quality 

of pollinator service could further reduce fecundity. 

 Competition for pollination is of ecological interest because the interaction may 

differ considerably from competition for other abiotic or biotic resources.  In particular, 

the resource – pollinators – are highly mobile, allowing interactions to occur across 

considerable distances.  Additionally, for outcrossing species, pollination is only 

successful if the pollinator delivers pollen from another conspecific.  This results in the 

potential for positive frequency dependence in mixed communities, where more common 

flowers may receive increased visitation rates (Levin 1972, Thomson 1978, Rathcke 

1983) and may be disproportionately likely to be successfully pollinated (Levin and 

Anderson 1970, Feinsinger et al. 1986, Feinsinger et al. 1991, Kunin 1993, Kunin and 
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Iwasa 1996, but see Caruso 1999).  However, for potentially self-pollinating species, 

prior visit history may be less important (Motten 1982, Kunin 1997). 

 Ecological effects of competition for pollination may have applied implications.  

This is true for conservation because rare plants may be especially prone to inadequate 

pollinator service (Kunin 1997).  Furthermore, introduced plants have been integrated 

into plant-pollinator networks (Memmott and Waser 2002), and in a variety of cases this 

integration has resulted in decreased fruit or seed set of native species (Chittka and 

Schürkens 2001, Brown et al. 2002, Ghazoul 2004, Larson et al. 2006), although such 

effects are not always detected (Aigner 2004).  In agriculture, it has also been observed 

that pollinator visits to weeds in preference to crop plants can lead to reduced pollination 

service (Free 1968). 

 The term competition for pollination actually subsumes a variety of mechanisms 

(Rathcke 1983, Waser 1983), all of which share the outcome that increased floral 

abundance of one species results in reduced pollination success of another species.  

Competition for pollination can occur when species compete for pollinator visits 

themselves, and this has been detected in several studies (Gross and Werner 1983, 

Jennersten and Kwak 1991, Chittka and Schürkens 2001, Brown et al. 2002, Ghazoul 

2004), although other studies have instead detected facilitation (Laverty 1992, LaRosa et 

al. 2004, Moeller 2004).  Additionally, if pollinators make interspecific flights, species 

can exchange pollen (Kephart 1983, Bell et al. 2005), and interspecific exchange can 

result in reduced fecundity (Waser 1978a, Harder et al. 1993, Caruso and Alfaro 2000, 

Brown and Mitchell 2001).  This reduced fecundity may result from stigma clogging 

(Galen and Gregory 1989), pollen allelopathy (Murphy 2000), premature stigmatic 

closure (Waser and Fugate 1986), or production of unviable hybrids (Randall and Hilu 

1990, Fishman and Wyatt 1999).  However, receipt of heterospecific pollen does not 

necessarily reduce fecundity (Kwak and Jennersten 1991, Gross 1996, Kasagi and Kudo 

2005, Moragues and Traveset 2005).  Finally, interspecific pollinator flights can lead to 

loss of pollen to heterospecific stigmas, resulting in reduced conspecific pollen receipt 

(Campbell and Motten 1985). 

Plants’ susceptibility to experiencing competition for pollination may be 

influenced by a variety of traits, depending in part on the mechanisms by which the plants 
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compete.  For example, competition by any mechanism could be minimized by 

differences in flowering phenology or primary pollinators (Waser 1983).  Competition 

could also be reduced by decreased reliance on pollinator service overall, for example by 

increased reliance on self-pollination or asexual propagation (Motten 1982, Bond 1994, 

Fishman and Wyatt 1999).  When heterospecific pollen receipt occurs, a large stigmatic 

surface area could minimize competitive effects because a smaller portion of the stigma 

would be occluded by or in the immediate vicinity of a given amount of heterospecific 

pollen (Kohn and Waser 1985).  It has been hypothesized that pollen carryover could 

help to maintain population success when competition occurs by loss of pollen to 

heterospecific flowers, (Feldman et al. 2004).  Finally, traits promoting pollinator 

constancy could decrease competition resulting from heterospecific pollen receipt or 

conspecific pollen loss (Levin and Anderson 1970, Waser 1983, 1986). 

 Complex and restrictive floral morphologies could decrease competition, 

especially when competitors have unrestrictive morphologies.  Avoidance of competition 

is likely to occur in this case because different pollinator guilds tend to visit flowers with 

easy access to floral rewards and flowers with restricted access.  Additionally, when 

pollinator overlap between these groups does occur, competition may be minimized 

because pollinators to complex and restrictive flowers tend to exhibit greater constancy 

than to simple and unrestrictive morphologies (Waser 1983).  This decreases the 

probability of both heterospecific pollen receipt and conspecific pollen loss. 

Because many traits could buffer plants from experiencing competition for 

pollination it may be hypothesized that plants with any one such trait that minimizes 

competition may be less likely to also exhibit other such traits (Pleasants 1980).  For 

example, Kunin and Shmida (1997) found that rare plants were either likely to have 

either simple flowers that were self-compatible, thereby allowing pollinators to be 

effective despite making interspecific flights, or they were likely to be self-incompatible 

but have deep flowers which restrict access to floral rewards.  It may be similarly 

hypothesized that flowers with restrictive morphologies are less likely to receive 

heterospecific pollen than unrestrictive flowers, so restrictive flowers may be less reliant 

on large stigmas as a mechanism to minimize effects of heterospecific pollen receipt.  
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Although hypotheses have been put forth to predict how various traits influence a 

plant’s response to competition for pollination, few studies have investigated whether 

particular traits influence competition in the manner hypothesized.  Instead, many studies 

have focused on competitive effects for a single species or between species pairs, making 

it hard to identify which traits or ecological conditions influence the degree of 

competition (but see McLernon et al. 1996).  Other studies have compared competitive 

responses among species with different traits, but only for small groups of species 

(Feinsinger et al. 1986, Murcia and Feinsinger 1996, Fishman and Wyatt 1999, Larson et 

al. 2006). 

Modeling approaches have also been used productively to investigate the potential 

for competition for pollination and to generate hypotheses concerning which traits are 

likely to influence response to competition for pollination.  For example, models have 

demonstrated that competition by loss of pollen is likely to be particularly severe for rare 

plants, plants receiving few visits, and plants with inconstant pollinators (Levin and 

Anderson 1970, Straw 1972, Waser 1978b, Campbell 1986).  However, previous models 

have included simplifications that could exaggerate the potential for competition for 

pollination to influence fruit or seed set.  Previous models have also suggested that pollen 

carryover may mitigate the effect of competition for pollination (Feldman et al. 2004), 

but unrealistic assumptions call this result into question. 

In this dissertation, I seek to build on previous studies of competition for 

pollination by considering responses of several species to a putative competitor in a 

comparative context, and by developing novel models of competition for pollination.  

The empirical component of this research (Chapter 1 through Chapter 4) looks at 

indicators of the competitive effect of an introduced plant on the pollination of 

simultaneously flowering species with different traits on a Loess Hill prairie in western 

Iowa.  The introduced plant, Euphorbia esula L. (Euphorbiaceae, leafy spurge), is native 

to Eurasia and has only been present in Iowa since the late 1800’s (Huerd and Taylor 

1998).  Consequently, there has been relatively little opportunity for selection among 

other species for traits that minimize the competitive effect of Euphorbia.  Euphorbia’s 

inflorescence is morphologically complex, composed of male and female flowers 

subtended by involucres with nectaries.  Nonetheless, the structure is remarkably similar 
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to a simple flower with an unrestrictive morphology, as the nectar source is located below 

and in close proximity to the anthers and stigmas.  As a result, patterns of pollen transfer 

and competition from Euphorbia to simultaneously flowering species may reasonably 

represent patterns from less complex flowers with unrestrictive morphologies.  

Furthermore, Euphorbia is visited by a diverse array of pollinators and another study has 

detected pollen transfer from Euphorbia to simultaneously flowering prairie species 

(Larson et al. 2006).   

The first two chapters investigate the effects of Euphorbia on the pollination of 

two native species with contrasting reproductive traits.  Sisyrinchium campestre 

(Iridaceae) is self-incompatible with an unrestrictive morphology whereas Viola 

pedatifida (Violaceae) is self-compatible with a restrictive morphology.  The difference 

in floral morphologies suggests that Sisyrinchium is more likely to share pollinators and 

receive interspecific flights from Euphorbia, and self-incompatibility is hypothesized to 

render Sisyrinchium’s pollination success more dependent on pollinator service than is 

Viola’s pollination success.  Viola also produces cleistogamous flowers, which pollinate 

in bud without opening, which render these flowers immune to competition for 

pollination.   

To investigate the potential for competition between Euphorbia and these species, 

I observed pollinators to all three species to investigate overlap.  For Sisyrinchium, I also 

investigated whether close proximity to Euphorbia decreased visit rates compared to 

plants at least 10 m from Euphorbia (visit rates were too low to Viola for such 

comparisons to be made).  I measured heterospecific pollen receipt from Euphorbia to 

each of these species and performed hand-pollination studies to investigate the effect of 

heterospecific pollen receipt.  Finally, to assess overall competitive effects of Euphorbia 

on the pollination of these species, I measured fruit and seed set of both species in close 

proximity or more distant from Euphorbia.  To gauge whether the differences in success 

near Euphorbia were attributable to differences in pollination, for Sisyrinchium I 

compared the success of hand-pollinated flowers to unmanipulated flowers at each 

distance.  This also allowed determination of whether Sisyrinchium experienced 

pollinator limitation at the study site.  For Viola, hand-pollinations on a large scale were 
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impractical, so I instead compared the success of chasmogamous flowers, which are open 

to pollination, to the success of cleistogamous flowers, which necessarily self-pollinate. 

In chapters 3 and 4, I investigated aspects of competition for pollination with 

Euphorbia across a broader array of species to test whether floral restrictiveness 

influenced patterns and effects of heterospecific pollen receipt.  Specifically, in chapter 3, 

I tested the hypothesis that flowers with restrictive morphologies would receive less 

heterospecific pollen than flowers with unrestrictive morphologies.  To test this 

hypothesis, I compared pollen loads of Euphorbia and all other heterospecific pollen 

across 29 species, which were categorized as having restrictive or unrestrictive 

morphologies.   

Additionally, I hypothesized that if flowers with unrestrictive morphologies 

receive more heterospecific pollen, then selection to minimize negative effects of 

heterospecific pollen receipt would be stronger on these plants.  Greater stigmatic area is 

hypothesized to be one adaptation to minimize effects of heterospecific pollen, so I also 

tested the hypothesis that flowers with unrestrictive morphologies have a greater 

stigmatic area.  For a subset of seven species with variation in floral restrictiveness and 

breeding systems (including the Sisyrinchium and Viola experiments previously 

described), I tested whether receipt of Euphorbia pollen affects fecundity.  Comparisons 

among these seven study results then suggest whether floral restrictiveness and breeding 

system are predictive of the effect of receiving heterospecific pollen. 

The degree to which interspecific pollen loss causes competition for pollination is 

less easily measured empirically, especially for large cross-species comparisons.  Instead, 

I used analytical and simulation models to investigate how different floral traits are 

expected to influence competition by pollen loss.  In particular, I present two analytical 

models with different assumptions that include competition by pollen loss and also 

incorporate pollen carryover.  The models suggest different hypotheses about the effect 

of pollen loss on competition, and I work to reconcile these differences with a simulation 

models that allows incorporation of different functions relating pollen receipt to fruit and 

seed set.  This model suggests that the relationship between pollen receipt and fruit and 

seed set is critical in determining whether pollen carryover increases or decreases the 

effect of competition by pollen loss. 
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Together, these studies are intended to advance our understanding of competition 

for pollination from a list of case studies with mixed outcomes toward the development 

of testable hypotheses about how different traits affect a species’ susceptibility to 

experiencing competition.
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Chapter 1 

 

Pollination of Sisyrinchium campestre (Iridaceae) in Prairies Invaded by the 
Introduced Plant Euphorbia esula (Euphorbiaceae) 

 

ABSTRACT  This study investigates the breeding system and pollination biology of the 

native prairie perennial Sisyrinchium campestre (Iridaceae, blue-eyed grass) and the 

potential for the introduced plant Euphorbia esula (Euphorbiaceae, leafy spurge) to 

interfere with its pollination.  Sisyrinchium was determined to be self-incompatible.  Visit 

rates by pollinators were lower for Sisyrinchium near Euphorbia than for flowers greater 

than ten meters away, indicating competition for pollinator visits.  However, 

supplemental hand pollinations of Sisyrinchium detected no evidence of pollen limitation 

of fruit or seed set either near to or far from Euphorbia.  Although nearly one-fourth of 

stigmas sampled contained Euphorbia pollen, hand-pollination experiments detected no 

effect of Euphorbia pollen receipt on fruit or seed set, whether Euphorbia pollen was 

applied immediately or two hours prior to application of Sisyrinchium pollen.  Overall, 

this study suggests that Euphorbia does not reduce Sisyrinchium’s pollination success 

despite competing for pollinator visits and being a source of heterospecific pollen on 

Sisyrinchium stigmas.
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INTRODUCTION 

 

 Interspecific competition for pollination occurs when the fecundity of one species 

is diminished in the presence of a simultaneously flowering species due to pollinator-

mediated interactions.  Competition may occur by three mechanisms: competition for 

pollinator visits (e.g. Chittka and Schürkens 2001, Brown et al. 2002), pollen loss to 

flowers of other species resulting in decreased pollination success of the donor 

species(e.g. Campbell and Motten 1985), and foreign pollen deposition causing decreased 

success of recipient flowers (Waser 1978b, Rathcke 1983)  Competition by foreign pollen 

transfer may occur either by stigma clogging (e.g. Brown and Mitchell 2001) or pollen 

allelopathy (Kanchan and Chandra 1980, Murphy 2000). 

Competition for pollination may be particularly strong between native and 

invasive plants because there has been less opportunity for selection for traits, such as 

divergence in flowering time, that reduce competition.  Indeed, several studies have 

documented competitive effects of invasive plants on the pollination of simultaneously 

flowering native species (Brown and Mitchell 2001, Chittka and Schürkens 2001, Brown 

et al. 2002, Ghazoul 2004), although not all native species are necessarily affected and 

facilitation may occur instead (e.g. Moragues and Traveset 2005).  As species invasions 

and habitat fragmentation continue to create novel flowering communities, the strength of 

competition for pollination by all of these mechanisms is likely to increase (Kephart 

1983). 

Leafy spurge (Euphorbia esula L.; Euphorbiaceae; hereafter Euphorbia) is an 

introduced species that may exert a competitive effect on the pollination of native 

species.  Euphorbia is of Eurasian origin, and in North America, it is particularly 

abundant in the central and northern Great Plains (Watson 1985).  Its presence is 

frequently associated with decreased diversity of and abundance of native forbs (Belcher 

and Wilson 1989, Butler and Cogan 2004).  Euphorbia is abundant on Iowa’s Loess Hills 

prairies, where steep slopes and well-drained soils create ideal semiarid habitat 

conditions, and the use of herbicides to control Euphorbia is limited by the potential for 

water contamination, and high densities of native plants that could be adversely affected 

(Huerd and Taylor 1998).  The potential for competition for pollination with native forbs 
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is suggested by the high abundance of Euphorbia in areas with a diversity of native 

species, and Euphorbia’s open floral morphology, which allows visits by a wide array of 

pollinators.  The plant provides pollen and nectar rewards and is visited by a wide range 

of pollinators, but especially Diptera and Hymenoptera (Selleck et al. 1962, Messersmith 

et al. 1985, Larson et al. 2006).  Its clonal growth form leads to high flowering densities, 

especially in well-established clones.  A study in North Dakota has shown that some 

native species receive fewer visits and fewer conspecific pollen grains per stigma when 

growing in areas invaded by Euphorbia compared to non-invaded areas (Larson et al. 

2006). 

Blue-eyed grass (Sisyrinchium campestre E. Bickn; Iridaceae; hereafter 

Sisyrinchium) is a common perennial in Iowa’s Loess Hills prairies, and its flowering 

period overlaps with that of Euphorbia.  Like Euphorbia, Sisyrinchium flowers have open 

morphologies and therefore they may potentially share pollinators.  However, neither 

Sisyrinchium’s pollination biology nor the potential for Euphorbia to interfere with its 

pollination has been investigated.  Studies of congeners have shown that a range from 

complete self-incompatibility to complete self-compatibility occurs in other members of 

the genus (Ingram 1968, Henderson 1976, Cholewa and Henderson 1984).  

 The goal of this study was to investigate the pollination biology of Sisyrinchium 

and determine whether it experiences competition for pollination with Euphorbia.  To 

determine whether Euphorbia’s presence affects visit rates, pollinator visits to 

Sisyrinchium were observed in areas either interspersed with Euphorbia or at least ten 

meters distant.  To determine whether Sisyrinchium experiences pollen limitation and 

whether the degree of limitation is influenced by proximity to Euphorbia, the fruit and 

seed set of supplementally hand-pollinated flowers were compared to unmanipulated 

control flowers either nearby or distant from Euphorbia.  In order to assess the possibility 

that improper pollen receipt from Euphorbia decreases Sisyrinchium’s pollination 

success, foreign pollen counts were conducted on naturally pollinated stigmas, and 

greenhouse experiments were conducted in which reproductive success was compared 

between outcrossed flowers and flowers pollinated with Euphorbia pollen prior to 

outcrossing.  Finally, as part of this greenhouse study, the breeding system of 
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Sisyrinchium was investigated, as to our knowledge no published information about this 

exists. 

 

METHODS 

 

  Sisyrinchium campestre was studied at The Nature Conservancy’s Broken Kettle 

Grasslands Reserve in Plymouth County, northwestern Iowa (42.709° N, 96.579° W) 

during the spring of 2004.  The study was conducted in an open area with a mix of prairie 

and European grasses, and prairie and introduced forbs.  Euphorbia esula was the only 

abundant introduced forb in flower during the study.  The area was subject to grazing, 

though not during the study, and had been burned during the previous summer. 

Pollinator observations 

 To determine whether the presence of Euphorbia affects visitation rates to 

Sisyrinchium, visits were observed for Sisyrinchium growing either near (< 0.5 m) or 

distant from (> 10 m) a Euphorbia patch.  Visitors were observed during afternoons 

between 3 May and 22 May, with observation pairs consisting of sequential 15-minute 

observations, one at each distance.  Plots were haphazardly established with a 1 m 

diameter frame, ensuring that plots within an observation pair had similar Sisyrinchium 

densities.  Up to three observation pairs were performed per day, and locations were 

shifted to avoid multiple observations of the same plots within a day.  In total, there were 

16 pairs of observation periods, amounting to 8 hours of observations over the course of 

the study.  Visitors, excluding ants, were identified in the field to higher level groups (e.g. 

solitary bees, flies).  Visit rates were determined by dividing the total number of flower 

visits during an observation period by the number of Sisyrinchium flowers in the plot, 

thus counting visits by a single pollinator to multiple flowers as multiple visits. 

 To verify that floral abundances were similar, the number of Sisyrinchium flowers 

was compared between plots with or without Euphorbia with a t-test paired by 

observation period.  Visit rates per Sisyrinchium flower were calculated as visits per 

flower per observation period and were also compared between plots with or without 

Euphorbia with a t-test paired by observation period. 
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Pollen limitation of fruit and seed set 

To determine whether Euphorbia’s presence affects the pollination success of 

Sisyrinchium, pollen limitation of fruit and seed set was examined for plants near and far 

from Euphorbia.  Two sites, approximately 150 m apart, were selected, each of which 

had abundant Sisyrinchium and patches with and without Euphorbia.  In each site, 

fourteen pairs of Sisyrinchium plants were chosen in a patch with high densities of 

Euphorbia and in a patch 10 m from the nearest flowering Euphorbia (112 plants total).  

In areas without Euphorbia, plants were selected by choosing the nearest two plants to 

each meter mark along a transect.  Due to the patchy distribution of Sisyrinchium within 

Euphorbia stands, in areas with Euphorbia, plants with a conspecific within 0.5 m were 

selected haphazardly and paired by proximity.  Within a pair, plants were randomly 

assigned to either supplemental hand-pollination (HP) or untreated control (Control) 

groups.  The number of conspecifics with inflorescences within one-half meter of each 

plant pair was counted.  Fruits and flowers open prior to the start of the study were 

labeled with acrylic paint on the ovary and excluded.  Thereafter, plants were monitored 

daily or every other day throughout the remainder of the flowering season. 

For hand-pollinated plants, all flowers open at the time of monitoring received 

supplemental hand-pollination and were monitored for fruit and seed set.  For use as a 

pollen source, in both sites several Sisyrinchium located between the study patches were 

bagged with bridal veil netting, and each day anthers from several bagged plants were 

collected in a glass vial and agitated to release and mix the pollen.  Hand pollinations 

were always performed with pollen from the same site using a paintbrush, taking care to 

minimize self pollen from landing on stigmas.  Pollination success was confirmed with a 

hand-lens.  Hand-pollinated flowers were labeled in one color, and flowers that senesced 

without having received hand-pollination (senesced) were labeled in another color.  

Flowers on control plants were monitored and labeled on the same schedule as HP plants 

but without distinguishing between open and senesced flowers.  Because fruit and seed 

set could change during the flowering season, the season was divided into three flowering 

periods of nine, eight, and fourteen days, respectively, with different paint colors used for 

each period.   



 13

Fruit set was determined by counting the number of developing ovaries about one 

week after labeling, by which time aborted ovaries had abscised.  Fruit set was calculated 

as the proportion of flowers that initiated fruit development.  Fruits were collected three 

to four weeks after flowering, when they were mature, and were stored in 70% ETOH.  

All undamaged collected fruits with intact pericarps were checked to ensure seeds were 

present; if no seeds were present, the fruit was treated as an abortion when calculating 

fruit set, and the zero count was excluded when calculating seed set.  Seed set per 

developed fruit was determined by counting seeds from two randomly chosen undamaged 

fruits, whenever available, for each combination of plant, flower status (open or 

senesced), and time period.  Counts from only one fruit were used when additional fruits 

were unavailable.  Overall, including both treatments, seed counts from 481 fruits were 

included in the analysis.  Only 44 of 112 plants produced flowers during the third period, 

so analysis of fruit and seed set was restricted to the first two time periods.  Analyses of 

fruit and seed set excluded senesced flowers (unpollinated ) on HP plants.   

To analyze the effects of pollination treatment, Euphorbia’s presence, and time 

period on fruit set, a mixed model was fit using the generalized linear mixed effects 

(GLME) procedure assuming a binomial distribution with the logit function and using the 

correlatedData library in S-Plus 6.0.  Fruit set in this analysis is represented by the 

numbers of fruits and aborted flowers (i.e. fruit set) for each plant in each time period.  In 

this analysis, site was treated as a random effect, while time period, Euphorbia presence, 

and pollination treatment were treated as fixed effects, and Sisyrinchium density was 

included as a covariate.  A model including all interactions between the fixed effects was 

initially fit, but interactions between time period and the other fixed effects were not even 

marginally significant (P  > 0.10), so were dropped from the model.  The interaction 

between Euphorbia presence and pollination treatment was retained, because this value 

indicates whether the degree of pollen limitation of fruit set differs between the two 

distances from Euphorbia. 

 A similar analysis was conducted to determine whether proximity to Euphorbia 

influenced whether Sisyrinchium experienced pollen limitation of seed set.  For analysis 

of seed set, counts were square-root transformed to meet model assumptions of normality 

and constant error variance, but for ease of interpretation figures depict untransformed 
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values.  This analysis was conducted using a linear mixed effects (LME) model in S-Plus, 

with transformed average seed set as the response variable, pollination treatment, time 

period, and Euphorbia presence included as fixed effects, and site treated as a random 

effect.  Interactions with time period were again not significant, so were dropped from the 

model. 

 

Flowering phenology 

 Euphorbia’s flowering was monitored in ten 0.25 square-meter plots in each of 

four Euphorbia patches, two patches of which included Sisyrinchium plants used in the 

pollinator limitation study.  In each patch, plots were situated every meter along a 

haphazardly placed transect.  Monitoring was repeated every three to five days, noting 

the number of ramets in each plot with open male or female flowers.  The flowering 

curve was calculated by averaging the number of flowering ramets across all forty plots.  

Sisyrinchium’s flowering phenology was constructed based on the proportion of 

monitored Sisyrinchium plants in the pollinator limitation study with new flowers since 

the last inspection (flowers generally remained open for one day, and inspections were 

performed daily or on alternate days). 

 

Incidence of Euphorbia pollen on Sisyrinchium stigmas 

 To determine whether Sisyrinchium stigmas receive Euphorbia pollen under 

natural conditions, 118 stigmas were collected from 58 plants between May 7 and May 

28, 2004 at distances ranging from 0 – 14 m from the nearest flowering Euphorbia.  From 

one to three stigmas per plant were stored in microcentrifuge tubes in a 9:1 mixture of 

70% ethyl alcohol to glycerin.  In the laboratory, stigmas were either individually 

mounted on slides with basic fuchsin gel (Kearns and Inouye 1993), or individually 

acetolyzed in a microcentrifuge tube after which the pollen was similarly mounted in 

basic fuchsin gel (Kearns and Inouye 1993).  In a paired comparisons, the two techniques 

did not significantly differ in the quantity of pollen recovered (unpublished data).  

Additional pollen that fell off stigmas during storage was recovered from the storage 

vials and added to the pollen counts from stigmas.  Pollen was identified with a 

compound scope at 400X magnification, and Euphorbia pollen grains were counted.  To 
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avoid pseudoreplication, pollen counts from multiple stigmas on the same plant were 

averaged prior to analysis.  The effect of distance to the nearest flowering Euphorbia on 

incidence of Euphorbia pollen grains was analyzed using linear regression after square-

root transforming average Euphorbia pollen incidence per plant, with weights assigned 

according to the number of stigmas analyzed from each plant.  For Sisyrinchium within 

0.5 m of flowering Euphorbia, the effect of Euphorbia flowering ramet density on 

average Euphorbia pollen incidence (square-root transformed) was investigated with a 

linear model weighted by the number of stigmas analyzed from each plant. 

 

Breeding system and effect of heterospecific pollen transfer  

 To determine the breeding system and effect of Euphorbia pollen incidence on 

Sisyrinchium reproductive success, a greenhouse experiment was conducted with plants 

transplanted from McCormack Prairie in O’Brien County, Iowa, about 100 kilometers 

west of Broken Kettle Grasslands Reserve.  The experiment was conducted at the 

University of Michigan’s Matthaei Botanical Gardens.  After overwintering plants in a 

cold frame until late February 2004, Sisyrinchium plants were enclosed in groups of up to 

eight plants under bridal-veil nets, and the forty-four plants that flowered were used in 

the experiment.  Several potted Euphorbia were similarly treated to use as a pollen 

source.  The study included the following four hand-pollination treatments, each applied 

to one flower per plant: self-pollinate (Self), cross-pollinate (Cross), heterospecific pollen 

transfer  of Euphorbia followed by cross-pollinate (HPT+Cross), and untreated control 

(Control). 

 Pollinations were performed on the first day a flower opened.  All pollinations 

were performed by transferring pollen with cleaned fine-tipped forceps.  Control flowers 

were left unmanipulated.  Self-pollinations were performed by transferring self-pollen 

from the anthers to the stigma within flowers autogamously.  Cross pollinations were 

performed by sequentially transferring pollen from flowers on two different plants to the 

selected stigma.  HPT+Cross treatments were performed by transferring pollen from one 

or two dehisced Euphorbia anthers in the same manner, then cross pollinating the flower 

as in the cross pollination treatment.  Flowers were labeled with a dot of acrylic paint on 

the ovary.  Pollination treatments were performed between March 19 and April 1, and 
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fruits were collected on April 18, by which time seeds were mature.  Fruits were stored in 

70% ETOH until seeds were counted. 

 Because fruit set was zero for some treatments, effects of pollination treatment 

were analyzed with Fisher’s exact test, which does not allow estimating random 

differences among plants.  To focus exclusively on the effect of Euphorbia pollen 

transfer on fruit set relative to cross-pollinated flowers, fruit set was reanalyzed including 

only the cross pollination and HPT+Cross treatments, using a GLME model assuming 

binomial variance as detailed in earlier analyses, and including plant as a random effect 

to account for variation among plants.  Seed set, which was square-root transformed prior 

to analysis, was compared between the Cross and HPT+Cross treatments with a LME 

model assuming a normal distribution, and including plant as a random effect.   

 A follow-up study was performed on April 7 and 8 to determine whether the 

effect of Euphorbia pollen depended on its timing of application.  The study included 

twenty plants, on each of which one flower was pollinated with Euphorbia pollen 

immediately preceding conspecific pollination, as in the earlier study while  another 

flower on each plant pollinated with Euphorbia pollen approximately two hours prior to 

conspecific pollination.  Euphorbia pollen application was scheduled such that 

conspecific pollen was applied at the same time for both treatments.  All methods were 

otherwise identical to the prior study.  Fruit set and seed set were analyzed with GLME 

and LME models, respectively, as in the prior study. 

 

RESULTS 

 

Flowering phenology 

 Both species had begun flowering by 27 April, when monitoring began, and 

Sisyrinchium finished flowering while Euphorbia remained in flower (Figure 1.1).  

Reduced flowering of Sisyrinchium during its flowering season corresponded to periods 

of cold or rainy weather.   
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Pollinator Visitations 

 Observations suggested limited pollinator sharing between Euphorbia and 

Sisyrinchium.  Halictid bees and other solitary bees comprised the majority of visits to 

Sisyrinchium, while ants, syrphids, and other flies accounted for most visits to Euphorbia 

(Table 1.1).  However, all groups of visitors made some visits to both species.  

Sisyrinchium floral abundance was similar between plots with and without Euphorbia 

(paired t-test, t = -0.909, d.f. = 15, P = 0.37).  Visit rates per flower per 15-minute time 

period to plots without Euphorbia were (+ s.e.) 1.02 + 0.29, and were significantly higher 

than the visit rates to plots with Euphorbia of 0.29 + 0.12 (paired t-test, t = 2.2463, d.f. = 

15, P = 0.04). 

 

Fruit and Seed Set 

 Sisyrinchium fruit set was significantly higher near than distant from Euphorbia 

(0.71 + 0.03 v. 0.68 + 0.03, respectively)  but there was no significant main effect of time 

period or of supplemental hand-pollination (Table 1.2a).  There was also no significant 

interaction between Euphorbia’s presence and pollination treatment, indicating that 

pollen limitation of fruit set was not detected at either distance from Euphorbia (Figure 

1.2, Table 1.2a). Sisyrinchium seed set was significantly higher in the first time period 

than second (13.5 + 0.7 v. 10.5 +0.6, respectively).  However, there were no significant 

effects of distance from Euphorbia, pollination treatment, or the interactions between 

these variables, indicating that pollen limitation of seed set was not detected overall or at 

either distance from Euphorbia (Figure 1.3, Table 1.2a). 

Incidence of Euphorbia pollen on Sisyrinchium stigmas 

 Euphorbia pollen was found adhered to 22% of Sisyrinchium stigmas, and with 

the conservative assumption that all unattached Euphorbia pollen recovered within each 

tube originated from only one stigma stored within that tube, Euphorbia pollen occurred 

minimally on 38% of stigmas.  Including dislodged pollen, an average (+ s.d.) of 1.6 (+ 

2.4) Euphorbia pollen grains were found per Sisyrinchium stigma, with a maximum of 

seven Euphorbia grains associated with a single stigma.  Excluding one observation with 

disproportionate leverage, Euphorbia pollen incidence declined with distance to the 

nearest flowering Euphorbia (Euphorbia pollen incidence square-root transformed r2 = 
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0.13, F1,55 = 8.08, P = 0.006).  However, Euphorbia pollen was detected at all distances 

measured (Figure 1.4), and one plant received nearly six pollen grains despite being 

located 10 m from Euphorbia (inclusion of this point in regression did not substantially 

change curve fit, but reduced fit to r2 = 0.06, F1,56 = 3.40, P = 0.07).    The density of 

flowering Euphorbia ramets was positively correlated with Euphorbia pollen grain 

receipt for Sisyrinchium plants with flowering Euphorbia ramets within 0.5 m (r2 = 0.24, 

F1,25 = 7.99, P = 0.009) (Fig. 1.5). 

 

Breeding system and effect of heterospecific pollen transfer (HPT) 

 Fruit set was significantly affected by pollination treatment, with no fruit set in 

either the self pollination or unmanipulated treatments, and high fruit set in the cross 

pollination and HPT+Cross treatment (P < 0.001, Fisher’s exact test, Table 1.3).  When 

the analysis was restricted to the HPT+Cross and Cross treatments, fruit and seed set 

were similar (Table 1.3), and did not significantly differ for either treatment variable 

(Table 1.4a,5b).  In the study investigating the timing of Euphorbia pollen application, 

fruit set was 60% when Euphorbia pollen was applied two hours prior to conspecific 

pollination, and 55% when applied immediately before conspecific pollination, and this 

difference was not significant (Table 1.4c).  Seeds were counted from eleven fruit per 

treatment, and seed set averaged (+ s.e.) 22.3 + 4.0, and 23.5 + 4.6 seeds when applied 

two hours before or immediately prior to conspecific pollination, respectively, and this 

difference was not significant (Table 1.4d). 

 

DISCUSSION 

 

 Euphorbia was found to compete with Sisyrinchium for pollinator visits, but this 

competition did not translate to decreased fruit or seed set near Euphorbia.  This outcome 

may be explained by the finding that neither Sisyrinchium’s fruit nor seed set was pollen 

limited during the study.  Consequently, even if Euphorbia’s presence decreased 

conspecific pollen receipt by competition for pollinator visits or by pollen loss to 

Euphorbia, such a decrease would not necessarily decrease fruit or seed set.  It is not 

clear why Sisyrinchium’s fruit set increased in the vicinity of Euphorbia, but the 
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similarity of fruit set patterns between plants receiving supplemental pollination and 

control flowers indicates that this pattern does not relate to different rates of pollinator 

visits or pollen receipt.  Instead the pattern could be attributable to differences in soil 

moisture or nutrients or a variety of other abiotic variables with the capacity to affect fruit 

set. 

This study does not support the hypothesis that Euphorbia decreases the 

pollination success of Sisyrinchium.  The finding of Euphorbia pollen associated with 

more than one-third of Sisyrinchium stigmas suggests the potential for competition by 

heterospecific pollen transfer.  However, even when present, Euphorbia pollen grains 

occluded only a small fraction of the stigmatic surface, and artificial transfer of large 

quantities of Euphorbia pollen failed to reduce fruit or seed set relative to 

uncontaminated flowers.  This suggests that neither stigmatic clogging nor pollen 

allelopathy are a likely result of improper pollen transfer from Euphorbia. 

 Although several studies have detected competition for pollination (Waser 1978a, 

Campbell 1985b, Murphy and Aarssen 1995b, Caruso 2000, Chittka and Schürkens 2001, 

Brown et al. 2002, Bell et al. 2005), other studies have failed to detect such competition 

(Caruso 1999).  Other studies have detected competition for pollination, but only for a 

subset of species investigated (Feinsinger et al. 1986), a subset of years, or a subset of 

indicators of competition (Feinsinger et al. 1991, Caruso 2001, Ghazoul 2004).  Other 

studies have instead detected facilitation for pollination (Laverty 1992, LaRosa et al. 

2004, Moeller 2004).  This variation in study outcomes may result in part from 

differences in floral attributes, such as floral morphology, and differences in the degree to 

which focal species rely on outcrossing, as species more reliant on self-pollination may 

be more buffered from competitive effects than species more reliant on outcrossing 

(Feinsinger et al. 1991, Fishman and Wyatt 1999).  However, in this study competition 

for pollination was not detected despite Sisyrinchium’s reliance on outcrossing.  

Additionally, variation in outcomes may result from variation in target or neighbor 

density (Thomson 1978, Kunin 1993), or the spatial scale examined.  Sisyrinchium 

flowers were abundant during peak flowering which may have allowed pollinators to 

specialize on this floral resource, thus reducing competition with Euphorbia. 
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  Similarly, several previous studies have detected decreases in fruit or seed set 

upon artificially transferring foreign pollen to stigmas (Waser 1978a, Galen and Gregory 

1989, Caruso and Alfaro 2000, Brown and Mitchell 2001), but other studies have not 

detected this effect (e.g. Campbell and Motten 1985, Kwak and Jennersten 1991, 

McGuire and Armbuster 1991).  Differences in the pollen chemistry of donor flowers 

may partly account for why only a subset of studies have detected an effect (Murphy 

2002).  The breeding system may also affect outcomes, as outcrossing plants are likely to 

have larger stigmatic areas due to decreased certainty of pollination success (Cruden and 

Millerward 1981).  This could result in a smaller proportion of a stigmatic surface being 

occluded by heterospecific on outcrossing plants than primarily self-pollinating species 

(Kohn and Waser 1985).  Because Sisyrinchium is self-incompatible and presents pollen 

immediately beneath its receptive stigma, its stigmas are likely adapted to function 

despite receipt of conspecific incompatible pollen, for example by having a large 

stigmatic surface relative to area required for adherence of enough pollen grains to bring 

about complete pollination. 

 Considered together, the results of this study and that of Larson et al. (2006) 

indicate that Euphorbia affects the pollination of simultaneously flowering species in 

some but not all cases.  Larson et al. (2006) detected a significant decrease in visit rates 

near Euphorbia for Linum lewisii across two study seasons and for Campanula 

rotundifolia in one of two study seasons.  These species and Sisyrinchium have open, 

unrestrictive floral morphologies.  In contrast, overall visit rates to Oxytropis lambertii, 

which has a restricted morphology, were not affected by Euphorbia in their study.  This 

suggests that flowers with an open floral morphology, are more likely to experience 

competition for pollination with Euphorbia, which also has an open morphology.  

However, in the Larson et al. (2006) study, visit rates by halictid bees were lower for all 

three species near Euphorbia, and conspecific pollen receipt rates were lower for both 

unrestrictive Linum flowers and restrictive Oxytropis flowers, indicating that restrictive 

floral morphologies do not necessarily prevent competition for pollinators that visit both 

open and restrictive flowers.  

Larson et al. (2006) did not measure effects on fruit or seed set, so it is unknown 

whether changes in visit rates or conspecific pollen receipt rates resulted in decreased 
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fecundity.  For Sisyrinchium, the close proximity of anthers and stigma prevented 

attaining conspecific pollen counts free of contamination from anthers, so conspecific 

pollen receipt rates could not be compared between studies.  Future studies measuring 

both pollen receipt rates and fecundity would provide stronger evidence of whether 

Euphorbia is likely to interfere with the pollination of simultaneously flowering species. 

Another important difference between this study and that of Larson et al. (2006) is 

the spatial separation of invaded and uninvaded areas.  In the Larson et al. (2006) study, 

uninvaded areas were at least 100 m distant from the nearest flowering Euphorbia, but in 

this study uninvaded areas were separated by as little as 10 m.  This small distance is 

justifiable given that pollinators typically fly short distances to nearby flowers (Levin and 

Kerster 1969a), and in this study, expected Euphorbia pollen receipt was reduced by 

more than 70% ten meters distant from Euphorbia compared to immediately adjacent to 

it (see Figure 1.4).  This reduction is greater than the 50% reduction in heterospecific 

pollen receipt for every 10 m separating adjacent populations of lepidopteran pollinated 

Phlox (Levin 1971), perhaps because small flies and bees tend to fly shorter distances 

between flowers than lepidopterans (Herrera 1987).  Nonetheless, Euphorbia pollen was 

detected more than 10 m from Euphorbia, suggesting that future studies could benefit 

from further separating plots with and without Euphorbia. 

This study, and that of Larson et al. (2006) indicates that the presence of 

flowering Euphorbia can decrease visit rates and act as a source of pollen contamination 

for simultaneously flowering native plants.  Although Sisyrinchium did not experience 

decreased fecundity when nearby Euphorbia or when artificially exposed to Euphorbia 

pollen, other species that are pollen limited or that are more affected by foreign pollen 

receipt may experience greater competitive effects.  This suggests that timing Euphorbia 

management prior to full flowering may help to restore pre-invasion plant pollinator 

interactions and minimize the potential for other species to experience competition for 

pollination. 
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Table 1.1  Total number of visitors observed from each group to Euphorbia and to 
Sisyrinchium in Euphorbia’s presence and absence.  Parenthetical numbers indicate 
percent of visits each taxa represents out of total for column. 
 

Plant Species 

Euphorbia present Euphorbia absent 

Insect group Euphorbia  Sisyrinchium Sisyrinchium 

Green halictid bees 1   (5%) 8 (33%) 12 (31%)

Other solitary bees 2 (10%) 11 (46%) 17 (44%)

Apis mellifera 1   (5%) -- --

Syrphids 6 (30%) 2 (8%) 6 (15%)

Other flies 10 (50%) 1 (4%) 0

Moths -- 1 (4%) 0

Unidentified -- 1 (4%) 4 (10%)

Total 20        .    24       . 39         .
  

 
 
Table 1.2  A.  Results of generalized linear mixed effects (GLME) analysis of effects of 
specified factors and interactions on fruit set of Sisyrinchium, with site included as a 
random effect.  B.  Results of linear mixed effects model of effects of specified factors 
and interactions on seed set across the first two time periods, with site included as a 
random effect. 
 Numerator Denominator   
Factor d.f. d.f. F P 
A. Fruit set 
Intercept      1    200  73.25569   < 0.0001 
Euphorbia      1    200   6.74290   0.0101 
Treatment      1    200   0.39759   0.5291 
Time period      1    200   2.20673   0.1390 
Euphorbia by treatment 1    200   0.01151   0.9147 
 
B.  Seed set 
Intercept      1    179  944.790   < 0.0001 
Euphorbia      1    179    1.791    0.183 
Treatment      1    179    0.203   0.653 
Time period      1    179   9.424   0.003 
Euphorbia by treatment 1    179    0.044   0.835 
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Table 1.3  Fruit and seed set of Sisyrinchium flowers exposed to one of four pollination 
treatments: cross pollination (Cross), pollination with Euphorbia immediately followed 
by cross pollination (HPT+cross), self pollination (Self), and untreated control (Control). 
 
        Fruit Set            Seed Set 
Treatment Mean s.e. N Mean s.e. N_ 
Cross  0.79 0.06 43 18.5 2.5 34 
HPT+cross 0.86 0.05 43 20.9 2.2 33 
Self 0.00 n.a. 43 n.a. n.a. n.a. 
Control 0.00 n.a. 43 n.a. n.a. n.a. 
 
 
 
Table 1.4  Significance tests of effect of pollination treatment on Sisyrinchium fruit set.  
A. First study, fruit set including only Cross and HPT+cross treatments  B. First study, 
seed set including only Cross and HPT+cross treatments  C.  Second study, fruit set 
including Euphorbia pollen applied two hours before or immediately before conspecific 
pollen.   
 

 Numerator Denominator   
Factor d.f. d.f. F P____ 
A.  Fruit set including only Cross and HPT+cross treatments  
Intercept      1 42 26.68 <0.0001 
Cross v. HPT+cross 1 42 3.34   0.07 
 
B.  Seed set including only Cross and HPT+cross treatments 
Intercept 1 25 309.56 <0.0001 
Cross v. HPT+cross 1 25 1.22   0.28 
 
C.  Fruit set, pollen application timing study 
Intercept 1 19 0.78   0.39 
Immediate v. delay 1 19 0.11   0.75 
 
D.  Seed set, pollen application timing study 
Intercept      1      5   61.35   < 0.001 
Immediate v. delay      1      5   0.04      0.85 
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Figure 1.1  Phenology curves showing proportion (+ s.e.)of Sisyrinchium plants in 
pollinator limitation study with new flowers (circles) and average number (+ s.e.) of 
Euphorbia ramets in flower per 0.5 square meter plot (triangles).  
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Figure 1.2  Effect of treatment on fruit set per flower (+ s.e.) in the absence (Abs.) and 
presence (Pres.) of Euphorbia, for each the first two time periods.  See Table 1.2 for 
significance testing. 
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Figure 1.3  Effect of treatment on seed set per fruit (+ s.e) in the absence (Abs.) and 
presence (Pres.) of Euphorbia, for each of the first two time periods. 
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Figure 1.4  Average number of Euphorbia pollen grains received per stigma for plants at 
a range of distances to the nearest Euphorbia flowering ramet.  Curve fit based on 
regression of square root of pollen receipt as a function of distance.   Filled point 
excluded from regression. 
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Figure 1.5  Average number of Euphorbia pollen grains received per stigma for plants 
with a range of densities of Euphorbia flowering ramets within a 0.5 m radius.
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Chapter 2 
 

Effect of Introduced Euphorbia esula on the Pollination of Viola pedatifida, a Species 
with Cleistogamous and Chasmogamous Flowers 

 

ABSTRACT Interspecific competition for pollination has the potential to affect the 

pollination success of chasmogamous flowers but not cleistogamous flowers, potentially 

leading to increased reliance on cleistogamous flowers in the presence of competing 

species.  This study assesses the potential for a competitive effect of the invasive plant 

Euphorbia esula (leafy spurge, Euphorbiaceae) on the pollination of the native plant 

Viola pedatifida (prairie violet, Violaceae), which has both chasmogamous and 

cleistogamous flowers.  Both plants were mostly visited by solitary bees, and Euphorbia 

pollen was found on most Viola stigmas, suggesting the potential for competition.  

Additionally, in heterospecific pollen transfer experiments, application of Euphorbia 

pollen prior to conspecific pollen led to substantially reduced seed set.  Unexpectedly, 

fruit set was higher for Viola near Euphorbia despite increased Euphorbia pollen receipt, 

and seed set did not vary with distance from Euphorbia.  However, there was no 

significant interaction between distance from Euphorbia and flower type suggesting that 

the cause of increased fruit set near Euphorbia is unrelated to pollination.  The results of 

study suggest that Viola and Euphorbia interact through shared pollinators, but there is no 

evidence that Euphorbia reduces the fecundity of Viola or that this interaction leads to 

selection for increased reliance on cleistogamous flowers.
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INTRODUCTION 

 

 Competition for pollination may involve three mechanisms: competition for 

pollinator visits, pollen loss to flowers of other species causing decreased seed set of the 

donor species, and heterospecific pollen transfer causing decreased seed set of the recipient 

species (Rathcke 1983).  Competition for pollinator visits has been detected in several studies 

(e.g. Chittka and Schürkens 2001, Brown et al. 2002, Larson et al. 2006), as has competition 

mediated by pollen loss to other species (e.g. Campbell and Motten 1985).  Finally, 

competition mediated by heterospecific pollen transfer occurs when foreign pollen is 

improperly deposited on a stigma, resulting in reduced pollination success by conspecific 

pollen due to stigma clogging (e.g. Waser 1978a, Brown and Mitchell 2001) or pollen 

allelopathy (Kanchan and Chandra 1980, Murphy 2000).  As species invasions and habitat 

fragmentation continue to bring together novel flowering communities, the strength of 

competition for pollination by all of these mechanisms is likely to increase (Kephart 1983).  

Models suggest that competition for pollination may have substantial ecological effects, 

leading to competitive exclusion for plants with overlapping flowering phenologies or to 

coexistence for species with different times of peak flowering (Levin and Anderson 1970, 

Ishii and Higashi 2001).   

Flower types may differ in their susceptibility to experiencing competition for 

pollination.  In particular, chasmogamous flowers, which open and may receive pollinator 

visits, are more susceptible to experiencing competition than are cleistogamous flowers, 

which self-pollinate in bud without exposure to pollinators (Fishman and Wyatt 1999).  

One reason for this is that cleistogamous flowers are less likely to receive heterospecific 

pollen (Randall and Hilu 1990, Murphy and Aarssen 1996).   

For many species, chasmogamous and cleistogamous flowers are produced 

simultaneously or sequentially on the same plant (Lord 1981).  For chasmogamous 

flowers, fruit and seed set may be limited by either a lack of pollination or a lack of other 

resources (Burd 1994).  In contrast, pollination success is assured for cleistogamous 

flowers, so their fruit and seed set may only be limited by a lack of other resources.  

Consequently, competition for pollination can be tested for by comparing patterns of fruit 

and seed set between chasmogamous and cleistogamous flowers in areas with or without 
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a putative competitor.  Fruit set, and the number of seeds per fruit may differ between 

chasmogamous and cleistogamous flowers within a given population, as has been 

demonstrated for multiple Viola species (Redbo-Torstensson and Berg 1995, Culley 

2002).  However, differences in seed set per fruit between flower types tend to mirror 

differences in the number of ovules per flower (Berg 2003).  Thus, detection of 

competitive effects should be based on whether the ratios of fruit set and seed set 

between chasmogamous and cleistogamous flowers change between environments with 

or without the putative competitor, rather than on whether fruit and seed set differ 

between flower types overall. 

 It has been hypothesized that species with similar floral traits may be more likely 

to experience competition from heterospecific pollen transfer than species with very 

different flowers.  This is because pollinators transition among flower types less when 

flowers have different morphologies (Heinrich 1979, Lewis 1986), and the placement of 

pollen on visitors is hypothesized to be more similar among flowers with similar 

morphologies, leading to an increased likelihood of foreign pollen transfer (Murcia and 

Feinsinger 1996).  However, patterns and effects of heterospecific pollen transfer among 

dissimilar species have rarely been investigated, so the extent to which different 

morphologies prevent receipt of heterospecific pollen is not well known. 

 Chasmogamous Viola flowers may be likely to receive heterospecific pollen from 

dissimilar flowers because, despite their restrictive floral morphology, many species are 

primarily pollinated by generalist solitary bees, though some rely heavily on bumblebees, 

syrphid flies and bombyliid flies (Beattie 1974, Freitas and Sazima 2003).  Evidence that 

Viola is prone to heterospecific pollen receipt comes from a study of three British Viola 

species, for which all observed pollinators carried heterospecific pollen (Beattie 1971).  

Additionally, heterospecific pollen, mostly from nearby flowering species, was 

commonly found on all three Viola species, and represented up to 7% of pollen found in 

Viola stigmatic cavities (Beattie 1969).  Of the four common sources of heterospecific 

pollen in Beattie’s (1969) study, two species had restrictive tubular morphologies similar 

to Viola, but the other two had unrestrictive morphologies dissimilar from Viola.  Based 

on this evidence, Beattie (1971) hypothesized that heterospecific pollen receipt could 

affect fecundity, but evidently, this was not tested. 
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 Leafy spurge (Euphorbia esula L.; Euphorbiaceae; hereafter Euphorbia) is an 

introduced species that may exert a competitive effect on the pollination of native 

species.  Euphorbia is of Eurasian origin, and in North America, it is particularly 

abundant in the central and northern Great Plains (Watson 1985).  Its presence is 

frequently associated with decreased diversity and abundance of native forbs (Butler and 

Cogan 2004), and some evidence suggests that it exerts an allelopathic effect on 

competitors (Steenhagen and Zimdahl 1979, Olson and Wallander 2002).  Euphorbia is 

abundant on Iowa’s Loess Hills prairies, where steep slopes and well-drained soils create 

ideal semiarid habitat conditions and herbicide use is discouraged because there is 

potential for water contamination and native plant populations could be adversely 

affected(Huerd and Taylor 1998).  The plant provides both pollen and nectar rewards and 

is visited by a wide range of pollinators, but especially Diptera and Hymenoptera (Selleck 

et al. 1962, Messersmith et al. 1985, Larson et al. 2006).  Its clonal growth form leads to 

high flowering densities, especially in well-established clones.  A previous study in North 

Dakota has shown that some other native species receive fewer visits and fewer 

conspecific pollen grains per stigma when growing in areas invaded by Euphorbia 

compared to uninvaded areas (Larson et al. 2006). 

 Prairie violet (Viola pedatifida G. Don; Violacaeae, hereafter Viola) is one species 

that flowers simultaneously with Euphorbia.  Viola occurs primarily on mesic to dry 

prairies (Christiansen and Muller 1999).  Viola produces both chasmogamous and 

cleistogamous flowers, with chasmogamous flowers occurring from late April through 

late May at the study site, and cleistogamous flowering beginning in mid-May and lasting 

into June (B. Montgomery, unpublished data).  Viola occurs within and nearby clones of 

Euphorbia, and this proximity increases the potential for competition.  The floral 

morphology of Viola is zygomorphic and restrictive, whereas the morphology of 

Euphorbia is actinomorphic and unrestrictive.  However, despite this difference, 

Euphorbia relies on generalist pollinators (Selleck et al. 1962), as do many Viola species 

(Beattie 1974), so there is potential for Viola to experience competition for pollination 

from Euphorbia. 

If the fecundity of chasmogamous Viola flowers is reduced from competition with 

Euphorbia, this could lead to increased reliance on cleistogamous flowers due to 
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phenotypic plasticity or selection.  For another Viola species, it has been experimentally 

demonstrated that preventing pollinator visits to chasmogamous flowers leads to 

decreased chasmoganous fruit set, and increased production of cleistogamous flowers, 

demonstrating phenotypic plasticity (Redbo-Torstensson and Berg 1995).  Selection for 

increased reliance on cleistogamous flowers could occur if relative reliance on 

chasmogamous and cleistogamous flowers varies and plants relying more heavily on 

cleistogamous flowers are more fecund near Euphorbia.  This mechanism has been 

invoked to explain the evolution self-pollinating populations of  Arenaria uniflora 

sympatric with a competing congener (Fishman and Wyatt 1999). 

 To assess the potential for competition for Euphorbia to compete for pollination 

with Viola, a series of experiments was conducted. The effect of Euphorbia pollen receipt 

on Viola was investigated by comparing the fruit and seed set of Viola flowers hand-

pollinated with Euphorbia and Viola pollen to those receiving only Viola pollen.  

Pollinator overlap between Viola and Euphorbia was investigated by observing 

pollinators to both species over two field seasons.  To determine whether Viola receives 

Euphorbia pollen, the pollen content of Viola stigmas was determined for individuals 

growing near to or several meters from Euphorbia.  To determine whether proximity to 

Euphorbia results in reduced fecundity, patterns of fruit and seed set of chasmogamous 

and cleistogamous Viola flowers were determined for plants growing near to or several 

meters from Euphorbia.  Finally, the breeding system of Viola pedatifida is not known, 

so to investigate this, breeding system studies were performed in the field and 

greenhouse. 

 

METHODS 

Breeding System Studies 

 Viola pedatfida’s breeding system was investigated with field and greenhouse 

experiments.  The field study was conducted in the spring of 2003 at McCormack Prairie 

(O’Brien County, Iowa).  On 21 May, 54 plants with at least one chasmogamous bud 

were found and assigned to one of four treatment groups: cross-pollinate (Cross), self-

pollinate (Self), open and unmanipulated (Open), or enclosed and unmanipulated 
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(Enclosed).  For all treatments except open, plants were enclosed under bridal veil 

netting.  Open flowers were labeled but not manipulated.  Pollinations were performed on 

24 and 25 May on one flower per plant by transferring pollen three times per flower on 

the tips of fine-pointed forceps, which were cleaned with alcohol between flowers.  For 

self-pollinations, pollen from another flower on the same plant (geitonogamous pollen) 

was used when available; otherwise, pollen from the same flower was used.  Cross-

pollinations were performed by independently transferring pollen from three donor 

flowers that were either bagged or recently opened.  Flowers were labeled with acrylic 

paint on the upper penduncle.  Flower status was surveyed and bags were removed on 4 

June, by which time petals had abscised and fruit development was apparent.  Developing 

fruits were left to allow for seed maturation, but subsequent animal removal of fruits 

prevented collection of fruits for seed counts. 

In 2005, another breeding system study was performed in the greenhouse with 37 

plants transplanted from McCormack Prairie in order to confirm results from the field 

study and to determine seed set.  One flower from each plant was assigned to one of three 

treatments: cross-pollinate (Cross), self-pollinate (Self), or enclosed and unmanipulated 

(Enclosed).  For cross-pollinations pollen was independently transferred with an insect 

pin from donor flowers on two other plants to the recipient stigma.  For self-pollinations, 

pollen was transferred with a clean insect pin from another flower on the same plant 

(geitonogamously) when available, or from the same flower (autogamously).  

Pollinations were performed between 21 and 30 March; fruit set was determined on 9-10 

April, and fruits were collected on 18 April.  Fruits were stored dry in coin envelopes, 

and seeds were counted.  Smaller, soft seeds were included in the counts, but very small 

undeveloped ovules were not counted. 

Heterospecific Pollen Transfer (HPT) Studies 

 In order to determine whether receipt of Euphorbia pollen on Viola stigmas 

decreases fruit and seed set, greenhouse experiments were performed from February 

through April of 2004 and 2005.  Viola plants came from two populations.  Plants from 

Iowa were transplanted from wild populations in O’Brien County Iowa in April of 2003, 

and were brought to Matthaei Botanical Gardens (Ann Arbor, Michigan) in July of 2003.  
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Plants from Wisconsin were purchased from AgroEcol in 2002, and were maintained in a 

greenhouse during the summer of 2003.  Plants were potted into 7.5 cm square pots, and 

were fertilized using Osmocote fertilizer during the growing season.  Euphorbia was 

transplanted from Iowa into larger pots during the summers of 2002 – 2004 and treated 

similarly.  All plants were overwintered in cold-frames until mid-February of 2005, when 

they were moved inside.  Flowering of both species began by mid March. 

 The 2004 study was performed at Matthaei Botanical Gardens and included 20 

plants with chasmogamous flowers from each population (ie. field-collected and 

purchased).  To prevent insect visitations, groups of up to eight plants were enclosed 

under bridal veil netting during flowering.  The first two flowers from each plant were 

assigned one of two treatments:  conspecific pollen only (Conspecific), or transfer of 

heterospecific (Euphorbia) pollen transfer from Euphorbia followed immediately by 

conspecific pollen (HPT Prior).  Each treatment order was assigned randomly to half of 

the plants from each population, and plants with only one chasmogamous flower received 

only the first treatment.  Flowers that opened prior to netting and extra flowers on a given 

plant were not used.  Flower treatments were labeled with acrylic paint on the upper 

sepal. 

 Pollinations were performed between 13 and 28 March on the second or rarely the 

third day that the flower was open enough for the stigma to be visible. To transfer 

Euphorbia pollen, a dehissed Euphorbia anther was excised and touched to the Viola 

stigma.  Viola pollen was gathered by probing the anthers and the cup formed by petals 

beneath the ovary with the tip of fine-pointed forceps.  Pollen was then transferred to the 

recipient stigma on forceps tips.  This procedure was repeated for two donor flowers on 

different plants.  Yellow Euphorbia pollen was easily visible on stigmas, and receipt of 

Viola pollen was inferred by the reduction in the pollen load on the forceps as the white 

grains could not be seen on the stigma. 

 To determine fruit set, flowers were monitored until the ovary showed clear signs 

of swelling or until the flower aborted.  Fruits were collected on 12 April, at which time a 

few fruits had dispersed their seeds.  The remaining fruits were stored individually in 

70% ETOH.  Seed set was determined by counting developed or developing seeds in 

each fruit, excluding very small, undeveloped ovules. 
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 The 2005 heterospecific pollen transfer (HPT) study was performed in the Kraus 

Natural Sciences greenhouse (Ann Arbor, Michigan).  The HPT study was performed on 

the first 32 plants from Iowa and the first eight plants from Wisconsin to produce 

chasmogamous flowers.  Three treatments were included:  outcrossing with two other 

flowers from the same population (Conspecific); outcrossing with two flowers followed 

by Euphorbia pollen (HPT after); and Euphorbia pollen followed by outcrossing (HPT 

prior).  Treatment order was varied and randomly assigned among plants such that each 

treatment was represented in approximately equal frequency among first, second, and 

third flowers.  Plants producing fewer than three chasmogamous flowers received a 

subset of treatments, and additional flowers were left unmanipulated.  Pollinations were 

performed on the second day a flower was open, between 17 – 25 March. 

Unlike the 2004 study, Viola pollen was applied using the tip of a insect pin, and 

Euphorbia pollen was applied using the tip of a dissecting needle.  As a sham control, 

flowers receiving only conspecific pollen were prodded with a clean dissecting needle 

prior to application of pollen.  Application of Euphorbia pollen occurred a few minutes 

before or after application of conspecific pollen.  Flowers were labeled as in the 2004 

study. 

 Fruit set was determined on 9-10 April, and fruits were collected between 10-15 

April 2005 and stored dry in coin envelopes.  Seed set was determined by counting the 

number of seeds per set fruit, including smaller, soft seeds, but excluding very small 

undeveloped ovules. 

Pollinator Observations  

 Visitors to Viola and Euphorbia were observed at The Nature Conservancy’s 

Broken Kettle Grasslands Reserve (Plymouth County, Iowa, 42.709° N, 96.579° W) 

during the spring of 2005 and 2006 as part of a larger study investigating pollinator 

overlap between Euphorbia and simultaneously flowering species.  During 2005, 

observations of Viola occurred between 27 April and 20 May, and observations of 

Euphorbia occurred between 27 April and 16 June.  During 2006, observations of both 

species occurred between 27 April and 18 May.  In both years, pollinators were observed 

by placing a 1 m diameter sampling frame around haphazardly selected plants and 
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observing all visits to flowers of any species within the plot for fifteen minutes.  New 

visits were counted if a pollinator transitioned to a new plant or ramet.  Occasional 

additional visits to Viola were recorded when observed. 

 

Field Study of Proximity to Euphorbia and Reproductive Success  

 Viola’s pollination success was investigated during the spring of 2004.  The study 

was conducted in an open area with a mix of native and introduced grasses and forbs.  

Euphorbia esula was the only abundant introduced forb in flower during the study.  The 

study was conducted in an area subject to late summer grazing that had been burned 

during the previous summer.  To study the effect of Euphorbia on the pollination of 

Viola, four Viola patches were selected with patches including between 35 and 110 Viola 

plants within ten m, and few or no conspecifics within at least a 15 m around the patch.  

In two patches Viola was interspersed with Euphorbia (Euphorbia status = present), 

whereas in the remaining two patches, Viola was on average at least 15 m from the 

nearest flowering Euhorbia and never closer than 7 m (Euphorbia status = absent). 

 Twenty-five Viola plants were selected per patch, with haphazard selection of 

plants in the three smaller patches.  In the largest patch, plants were selected by 

establishing two parallel transects and randomly selecting one plant within a 0.5 m radius 

at 1.5 m intervals.  Plants were labeled with a small white garden stake nearby and a flag 

0.5 m away.  For each plant, the distance to the nearest reproductive Euphorbia ramet and 

the number of reproductive Euphorbia ramets within 0.5 m was determined.  Flowers 

already senesced at the beginning of the study (April 27) were labeled and excluded from 

analysis.  Plants were surveyed for newly mature flowers at the initiation of the study and 

subsequently on six or seven day intervals until June 14.  Flowers were identified as 

being chasmogamous (with showy petals and an extended style) or cleistogamous 

(without showy petals and with stigma appressed to ovary) and were labeled with dots of 

acrylic paint along the peduncle to identify flowers within a plant. Stigmas were collected 

from all chasmogamous flowers during subsequent surveys once petals had abscised, and 

were stored individually in microcentrifuge tubes in a 9:1 solution of 70% 
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ethanol:glycerin.  Fruit status (aborted, fruit, or damaged) was noted during subsequent 

surveys, and mature fruits were collected and stored in 70% ethanol for seed counts. 

 In the laboratory, 94 stigmas (43 from near Euphorbia, and 51 distant from 

Euphorbia) were acetolyzed to isolate pollen, and the resulting pollen was mounted in 

basic-fuschin gel (Kearns and Inouye 1993).  Additionally storage tubes were 

centrifuged, and dislodged pollen was similarly mounted in basic-fuschin gel.  Pollen was 

identified to species when possible and later aggregated into the categories of 

conspecific, Euphorbia, or other foreign pollen.  Counts from stigmas and storage tubes 

were combined prior to analysis. 

 

Statistical Analyses 

 The field breeding system study was analyzed using a general linear model 

(GLM) with a binomial distribution and the logit-link function in S-Plus 7.  Treatment 

was significant overall, so all six pairwise treatment combinations were compared 

individually with Fisher’s exact test, with significance compared to Bonferroni-adjusted 

critical values.  For the greenhouse breeding system study, fruit set was analyzed using a 

generalized linear mixed effects model (GLME) in S-Plus 7.0, using the correlatedData 

library, and including plant as a random effect.  Seed set in the greenhouse breeding 

system study was analyzed using ANOVA omitting plant as a variable because for about 

two-thirds of plants, a seed count could be made for only one of the two treatments (due 

to the plant producing only one chasmogamous flower or one flower aborting). 

Fruit set in the 2004 and 2005 HPT studies were analyzed with GLME models, 

including plant as a random effect and fixed effects of treatment and population (Iowa or 

Wisconsin).  Interaction terms between fixed effects were initially included but were 

dropped if they failed to reach marginal significance.  For the 2004 and 2005 HPT 

studies, seed set was square-root transformed to improve normality prior to analysis, but 

graphs depict the untransformed data.  For both years seed set results were analyzed with 

a mixed effects ANOVA, with population (Iowa or Wisconsin) included as a random 

effect and treatment as a fixed effect.  For analyses of seed set, plant was not included as 

a random effect because few plants produced a fruit for both treatments.  To allow a more 
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similar comparison with the 2004 HPT results, the 2005 HPT fruit set and seed set results 

were reanalyzed without the HPT-after treatment, which was not performed in 2004. 

Conspecific pollen receipt in the field study was analyzed using a general linear 

model (GLM) with Euphorbia status (presence or absence of reproductive ramets) as a 

main effect and site nested within Euphorbia status.  The number of Euphorbia pollen 

grains per stigma was analyzed in S-Plus using the MASS library, with a generalized 

linear model (GLM) with a negative binomial variance and log link function.  In the 

analysis, Euphorbia status in the patch was treated as a fixed effect, site differences were 

nested within Euphorbia status, and the number of conspecific pollen grains per stigma 

was treated as a covariate.  Interactions between the number of conspecific pollen grains 

and both factors were also initially included in the model, and non-significant interactions 

were dropped. 

 Fruit set was analyzed including both flower types (chasmogamous or 

cleistogamous) using a GLM with a binomial variance logit link function, with flower 

type and Euphorbia status included as main effects with an interaction term, and site 

nested within Euphorbia status.  Fruit set was similarly analyzed for chasmogamous 

flowers only.  Seed set (seeds per developed fruit) was analyzed in the same manner as 

fruit set, but with a GLM with a Gaussian variance function. 

 Pollen counts and fruit set were known for a subset of 90 flowers.  For these 

flowers, the effect of conspecific pollen receipt, Euphorbia pollen receipt, and other 

heterospecific pollen receipt was investigated.  This was analyzed as a binomial GLM (as 

above) with each category of pollen count included as an independent variable and fruit 

set per stigma included as the dependent variable.  Pollen counts and seed set were 

determined for 40 flowers.  The effects of conspecific, Euphorbia, and other 

heterospecific pollen receipt on seed set were investigated for these flowers with a linear 

multiple regression model including these three pollen counts as independent variables 

and seed set as a dependent variable. 
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RESULTS 

Breeding System Studies 

In the field study, several flowers were eaten before results could be determined, 

and the actual sample sizes used in analyses are included under the x-axis of Figure 2.1.    

There was an overall effect of treatment on fruit set (Fisher’s exact test, Ntotal = 54, P = 

0.0001), and post-hoc comparisons indicated that the fruit set for open flowers and hand-

pollinated cross flowers was significantly higher than for enclosed unmanipulated 

flowers, which had no fruit set, but other differences were not significant (Figure 2.1).   

 In the greenhouse breeding system study, fruit set differed significantly among all 

three treatments, with the highest fruit set for cross flowers, intermediate fruit set for self 

flowers, and very low fruit set for enclosed flowers (Figure 2.2, Table 2.1).  Seed set per 

developed fruit did not differ significantly between cross and self treatments (ANOVA, 

F1,27=0.078, P = 0.78), and the seed set of the only enclosed flower to set fruit was three 

seeds, less than 10% of the average seed set of the other treatments. 

 

Heterospecific Pollen Transfer (HPT) Studies 

In the 2004 HPT study, stigmas in the HPT prior treatment contained an average 

of 103 Euphorbia pollen grains, while flowers in the conspecific treatment received 

almost no Euphorbia pollen (Table 2.2).  Conspecific pollen receipt did not differ 

significantly between HPT prior and conspecific flowers (F1,44 = 0.86, P = 0.36, Table 

2.2).  In the 2004 HPT study, fruit set was not significantly affected by population 

(Wisconsin or Iowa), treatment, or their interaction (Figure 2.3, Table 2.3a).  However, 

seed set per developed fruit was more than 50% lower for flowers treated with HPT prior 

relative to conspecific (Figure 2.4), a significant difference (fixed effect of treatment in 

GLME model, F1,24 =12.31, P = 0.002). 

In the 2005 HPT study, fruit set was significantly lower overall for plants from 

Wisconsin than Iowa, but there was no significant difference among the three treatments, 

(Table 2.3b, Figure 2.5).   Results were similar when the HPT after treatment was omitted 

from analysis (analysis not shown ).  Seed set was not affected by population, but there 

was a marginally significant trend (P = 0.06) for treatment to affect seed set, with the 
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seed set of HPT prior fruits lower than that of conspecific or HPT after fruits (Table 2.4, 

Figure 2.6).  When the HPT after treatment was excluded to compare more directly with 

the 2004 results and results of studies of other species, the effect of treatment became 

significant (P = 0.04), and population became marginally significant (P = 0.07). 

Pollinator Observations 

 In 2005, twelve visits to Viola were observed over eight hours and ten minutes of 

observations, and 71 visits to Euphorbia were observed over 29 hours and 45 minutes of 

observation during the same time period (Table 2.5).  In 2006, eleven visits to Viola were 

observed over 7 hours and 15 minutes, and 87 visits were observed to Euphorbia over 11 

hours and 45 minutes.  In both years most visits to both Viola and Euphorbia were from 

solitary bees, suggesting the potential for overlap in pollinators. 

Field Study of Proximity to Euphorbia and Reproductive Success 

Conspecific pollen receipt did not differ significantly between areas with or 

without Euphorbia, or between patches with the same Euphorbia status (Table 2.6).  

However, Euphorbia status (ie. presence or absence of Euphorbia) significantly affected 

Euphorbia pollen receipt for Viola, as receipt rates were higher in patches with 

reproductive Euphorbia (Table 2.7).  Euphorbia pollen was found on 69% of stigmas in 

patches without Euphorbia, with an average receipt of (+ s.e.) 2.2 + 0.4 grains, and 

Euphorbia pollen was found on 86% of stigmas in patches with Euphorbia, with an 

average receipt of 8.2 + 1.1 grains.  Flowers receiving more conspecific pollen also 

received significantly more Euphorbia pollen (Table 2.7).  Interactions between 

conspecific pollen receipt and each factor did not approach significance, so were 

dropped. 

 Fruit set was significantly higher for cleistogamous than chasmogamous flowers, 

and was significantly higher for patches near Euphorbia, but there was no significant 

interaction between the flower type and Euphorbia status (Figure 2.7, Table 2.8a).  

Considering only chasmogamous flowers, fruit set was higher in areas with Euphorbia 

and differed between patches with the same Euphorbia status (Table 2.8b).  Seed set was 

significantly higher for cleistogamous than chasmogamous flowers, but did not 

significantly differ according to Euphorbia status, nor was there a significant interaction 
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between flower type and Euphorbia status (Figure 2.8, Table 2.9).  There were, however, 

significant differences in seed set between patches with the same Euphorbia status.  

Patterns and significances were similar when chasmogamous flowers were analyzed 

alone (results not shown). 

 In the analysis of fruit set as a function of pollen receipt, conspecific pollen 

receipt was significantly positively correlated with fruit set, but the effects of Euphorbia 

pollen receipt and other foreign pollen receipt were not significant (Table 2.10).  For the 

analysis of seed set as a function of pollen receipt, there was no significant relationship 

between conspecific pollen, Euphorbia pollen, or other foreign pollen and seed set 

(results not shown). 

 

DISCUSSION 

 

 The results demonstrate that Euphorbia and Viola share pollinators, resulting in 

Euphorbia pollen receipt on Viola stigmas.  Additionally, experimental transfer of 

Euphorbia pollen to Viola stigmas results in reduced seed set per fruit.  However, despite 

these findings, surveys of fruit and seed production from cleistogamous and 

chasmogamous flowers growing near to or several meters from Euphorbia do not support 

the hypothesis that Viola chasmogamous flowers experience competition for pollination 

from proximity to Euphorbia.  It is possible that no effect was found because fifteen 

meters was inadequate to functionally separate Viola from Euphorbia.  However, Viola 

several meters distant from Euphorbia received substantially less Euphorbia pollen than 

intermixed Viola, suggesting that this degree of separation could substantially reduce 

competition if heterospecific pollen receipt was the operative mechanism.  Other studies 

have also found that most pollinators fly short distances between flowers (Levin and 

Kerster 1969b, Waser 1982), and that separation by several meters is adequate to 

substantially reduce heterospecific pollen receipt (Levin 1971). 

 Pollinator sharing between Euphorbia and Viola occurs despite very different 

morphologies.  Inflorescences of Euphorbia are unrestrictive, actinomorphic and yellow, 

whereas Viola flowers are restrictive, zygomorphic and deep blue or purple.  

Nonetheless, observations show that both species receive a majority of their visits from 
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solitary bees.  Solitary bees include a diversity of species, so potentially there could be 

little overlap in the bee species visiting each plant.  However, observations suggest that 

both plants receive visits from an overlapping range of bee species, and this observation 

is corroborated by the presence of Euphorbia pollen on the majority of Viola stigmas.  

The receipt of Euphorbia pollen on Viola stigmas is similar to Beattie’s (1969) finding 

that other species of Viola receive heterospecific pollen from nearby flowers with a range 

of floral morphologies.  Together, these results suggest that despite Viola’s restrictive 

floral morphology, it relies on generalist pollinators. 

Additional evidence from previous studies suggests that pollen movement can 

occur between flowers with different morphologies.  A study of pollen transfer among 

three insect-pollinated species found that one species received more foreign pollen from a 

neighboring species with similarly shaped flowers than from a neighbor with dissimilar 

flowers, but the reverse was true for another species (Arroyo and Dafni 1992).  These 

results indicating that heterospecific pollen transfer occurs among dissimilar flowers 

reinforce an emerging view of pollination systems as being more generalized than was 

previously thought (Waser et al. 1996). 

Several studies in other systems have also found reduced fecundity resulting from 

heterospecific pollen receipt, as was found in this study when Euphorbia pollen was 

transferred by hand to Viola (Waser 1978a, Galen and Gregory 1989, Murphy and 

Aarssen 1995b, Caruso and Alfaro 2000, Brown and Mitchell 2001).  This result has been 

found for closely related species apparently due to the production of aborted unviable 

hybrid seeds (Fishman and Wyatt 1999).  However, other studies have found no 

significant reduction in reproductive success with heterospecific pollen receipt (Campbell 

and Motten 1985, Armbruster and McGuire 1991, Kwak and Jennersten 1991). 

Despite Viola receiving Euphorbia pollen in the field, fruit set for chasmogamous 

flowers was higher near Euphorbia (although seed set was unaffected by proximity), a 

pattern suggestive of facilitation of Euphorbia on Viola’s pollination.  However, 

cleistogamous flowers showed a similar increase in fruit set near Euphorbia, which is 

necessarily unrelated to interactions for pollination.  Also, analyses including both 

chasmogamous and cleistogamous flowers and proximity to Euphorbia showed no 

significant interaction between flower type and Euphorbia’s presence, which indicates 
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that the mechanism leading to increased fruit set near Euphorbia is unrelated to 

interactions for pollination and may reflect patterns of resource availability, such as good 

microsite conditions.  Comparisons of fruit and seed set between chasmogamous and 

cleistogamous flowers could give misleading results if the fruit or seed set of 

cleistogamous flowers increased in response to decreased success of chasmogamous 

flowers.  However, in this study, chasmogamous and cleistogamous flowers both showed 

increased success near Euphorbia.  In a study of Viola hirta, Redbo-Torstensson and 

Berg (1995) found that decreased pollination success of chasmogamous flowers led to 

increased production of cleistogamous flowers, but the study did not provide evidence of 

changed fruit set or seed set per fruit.  Proximity to Euphorbia did not affect conspecific 

pollen receipt, which further indicates that proximity to Euphorbia does not lead to 

increased pollination success.  Instead, different resource environments or other 

differences among sites are likely to have created this pattern of higher fruit set near 

Euphorbia. 

 There is an apparent discrepancy between the results of the greenhouse study, 

which detected a competitive effect of Euphorbia pollen receipt on seed set, and the field 

study, in which increased heterospecific pollen receipt did not result in a no decrease in 

seed set for Viola near to Euphorbia.  This discrepancy is likely a result of the different 

quantities of Euphorbia pollen received between the two studies.  In the 2004 greenhouse 

study, flowers in the heterospecific pollen receipt study received on average 103 

Euphorbia pollen grains.  In contrast, Viola stigmas near Euphorbia in the field received 

an average of only eight and a maximum of 26 Euphorbia pollen grains.  Additionally, 

the order of receipt of Euphorbia pollen may be important, as shown by the trend in the 

2005 greenhouse study toward decreased seed set only when Euphorbia pollen is 

received prior to Viola pollen.  For natural pollen receipt, conspecific pollen may be 

received first or simultaneously with heterospecific pollen, and this could result in the 

heterospecific pollen having less effect. 

 The breeding system studies show that Viola depends on pollinators for fruit set.  

In the field study no enclosed flowers set fruit and only a few set fruit in the greenhouse.  

Viola is self-compatible, as both self and cross pollination treatments resulted in similar 

fruit and seed set, indicating a lack of inbreeding depression.  Other Viola species have 
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also been found to be self-compatible, with a range of capabilities for self-pollinating in 

the absence of visits (Knuth 1908, Valentine 1962, Culley 2000, 2002, Berg 2003). 

 Competitive effects of Euphorbia on the pollination of Viola could lead to 

selection for increased reliance on cleistogamy; conversely, facilitative effects could lead 

to selection for increased reliance on chasmogamous flowers.  However, this study did 

not find strong evidence that proximity to Euphorbia affects the success of 

chasmogamous Viola flowers under natural conditions, so this study does not indicate 

that Euphorbia is likely to influence selection on the degree of cleistogamy in Viola.
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Table 2.1  Regression coefficients of treatment contrasts from GLME for Viola fruit set 

for breeding system study, greenhouse, 2005. 

 
Factor                  Value      s.e.     d.f.  t-value     P   
Intercept             -1.044   0.529    44    -1.97     0.055 
Self v. cross         1.306   0.342    44     3.82     0.0004 
Self v. enclosed  -1.685   0.267    44   -6.32   <0.0001 
 
 
Table 2.2  Pollen receipt (+ s.e.) for flowers in 2004 heterospecific pollen transfer study. 
 Euphorbia Viola 
Treatment mean s.e. mean s.e. 
HPT Prior 103.1 16.8 159.0 17.3 
Conspecific     0.3    0.1 189.0 25.7 

 
 
Table 2.3  For heterospecific pollen transfer (HPT) studies, regression coefficients from 
binomial GLME testing fixed effects of pollination treatment and plant population (Iowa 
or Wisconsin) on fruit set.  Individual plants were treated as blocks and included as a 
random effect.  A.  2004 results.  B.  2005 results. 
 
Factor                                  Value   s.e.     d.f.  t-value   P___    
A.  2004 
Intercept                                 0.776  0.538    27    1.44    0.16 
Conspecific v. HPT Prior   0.069  0.495    27    0.14    0.89 
Population                         -1.689  0.678    38   -2.49    0.017 
 
B.  2005 
Intercept                            -0.436   0.421   70   -1.04    0.3 
Population                         -2.176   0.759   41   -2.87    0.007 
Conspecific v. HPT After   0.901   0.476   70     1.90    0.06 
Conspecific v. HPT Prior   0.772   0.472   70     1.63    0.10 
 
 
Table 2.4  For 2005 HPT study, ANOVA table of effects of plant population (Iowa or 
Wisconsin) and pollination treatment on Viola seed set. 
               
                  numerator  denominator 
Factor             d.f.               d.f.           F-value      P  ___    
Intercept          1                  21           605.87    < 0.0001 
Population       1                  26               1.74       0.198 
Treatment        2                  21               3.21       0.061 
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Table 2.5  Numbers of visits of different visitor groups to Viola and Euphorbia over two 
years. 

   Species 
Solitary 

bee 
Social 

bee Wasp Lepidoptera Diptera Coleoptera Hymenoptera Total 
2005 Results        

Viola 10 1 0 0 0 1 0 12 
Euphorbia 36 2 3 0 22 7 1 71 
2006 Results        

Viola 9 0 0 2 0 0 0 11 
Euphorbia 65 0 0 0 22 0 0 87 
 
 
 
Table 2.6  Results of GLM of effects of Euphorbia status (whether flowering Euphorbia 
was present in the vicinity) and site within Euphorbia status on the quantity of 
conspecific pollen received. 
 
                                                      Deviance   Resid.   Resid. 
Factor           d.f.      explained    d.f.    deviance   F     P 
Intercept                                                            93     1232774                     
Euphorbia status                  1         637.65       92     1232136  0.047  0.83 
Site in Euphorbia status       2       3444.60       90     1228691  0.126  0.88 
 
 
 
Table 2.7  Results of negative binomial GLM of effects of Euphorbia status (whether 
flowering Euphorbia was present in the vicinity), site within Euphorbia status, and 
quantity of conspecific pollen on the quantity of Euphorbia pollen received (negative 
binomial θ = 1.4). 
                                                     Deviance   Resid.    Resid. 
Factor                              d.f        explained    d.f       deviance   P(Chi) 
Intercept                                                          93         164.13            
Euphorbia status              1          40.48          92         123.65   < 0.001 
Conspecific                      1           8.55           91         115.11     0.003 
Site in Euphorbia status   2           6.11           89         108.99     0.047 
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Table 2.8  A.  Results of binomial GLM of effect of flower type, Euphorbia status 
(flowering Euphorbia present or absent), and site within Euphorbia status on fruit set.  B.  
Results including only chasmogamous flowers. 
                                                         Deviance   Resid.   Resid. 
Factor                   d.f.  explained     d.f.     deviance  P(Chi) 
A.  All flowers 
Intercept                     178      270.71           
Flower Type                               1    48.48          177      222.23   <0.001 
Euphorbia status                        1      8.43          176      213.80     0.004 
Flower Type:Euphorbia status  1      0.002         175      213.80     0.97 
Site in Euphorbia status             2     0.45           173      213.35     0.80 
 
B.  Including only chasmogamous flowers 
Intercept                          91      133.76            
Euphorbia status                        1      6.40            90      127.36     0.01 
Site in Euphorbia status             2      8.18            88      119.18     0.02 
 
 
Table 2.9  Results of GLM of effects of flower type, Euphorbia status, the interaction of 
these factors, and site within Euphorbia status on seed set.   
                                                       Deviance  Resid.   Resid. 
Factor                           d.f.  explained  d.f.     deviance     F       P(F) 
Intercept                   124     28320.5                   
Flower Type                             1     1131.9      123     27188.7   6.34    0.013 
Euphorbia status                      1       410.8      122     26777.8   2.30    0.13 
Flower type:Euphorbia status  1       122.8      121     26655.0   0.68    0.41 
Site in Euphorbia status           2     5289.3      119     21365.7  14.73  < 0.0001 
 
 
Table 2.10  Results of binomial GLM of effects of conspecific, Euphorbia, and other 
heterospecific pollen counts on fruit set. 
                                                     Deviance   Resid. Resid. 
Factor              d.f.  explained   d.f.     deviance  P(Chi) 
Intercept                                                          87      120.35           
Conspecific pollen                1     4.60            86        115.75     0.032 
Euphorbia pollen                  1     0.21            85        115.55     0.65 
Other heterospecific pollen   1     0.01            84        115.54     0.94 
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Figure 2.1  Fruit set (fruits / flowers) (+ s.e.) of Viola exposed to four pollination 
treatments at McCormack Prairie, 2003.  No fruit set occurred in the Enclosed treatment.  
Numbers below bars indicate sample size of flowers with known results.  Different letters 
indicate Bonferroni adjusted significant differences at P < 0.05. 
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Figure 2.2  Fruit set  (+ s.e.) of Viola with three pollination treatments in the greenhouse, 
2005.  Numbers below bars indicate sample size, and different letters indicate significant 
contrasts at P < 0.05.    
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Figure 2.3  Fruit set  (+ s.e.) of Viola flowers, for HPT Prior and Conspecific treatments 
from Iowa or Wisconsin populations, for greenhouse 2004 study. 
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Figure 2.4  Seed set per fruit (+ s.e.) of Viola flowers from Iowa or Wisconsin 
populations for HPT-Prior and Conspecific treatments, greenhouse 2004. 
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Figure 2.5  Fruit set  (+ s.e.) of Viola flowers from Iowa or Wisconsin population for 
three pollination treatments for greenhouse 2005 study. 
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Figure 2.6  Seed set per fruit (+ s.e.) of Viola flowers for three pollination treatments 
(cross-pollinated = Conspecific, Euphorbia pollen applied after cross pollination = HPT 
After, Euphorbia pollen applied before cross pollination = HPT Prior), combining results 
from both populations, for greenhouse 2005 study. 
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Figure 2.7  Effect of Viola flower type, and presence or absence of Euphorbia on Viola 
fruit set  (+ s.e.). 
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Figure 2.8  Effect of flower type, and presence or absence of Euphorbia on seed set per 
fruit.  (+ s.e.).
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Chapter 3 

 

Patterns of Heterospecific Pollen Receipt for Prairie Plants with Different Floral 
Traits 

 

ABSTRACT Flowers may receive heterospecific pollen from simultaneously flowering 

species with shared pollinators, but the effect of floral morphology on heterospecific 

pollen receipt has received little attention.  To investigate whether floral restrictiveness 

influences patterns of heterospecific pollen receipt, I determined patterns of pollinator 

visitation and rates of heterospecific pollen receipt for 29 species with a range of floral 

morphologies flowering simultaneously with the introduced plant Euphorbia esula (leafy 

spurge, Euphorbiaceae) which has an unrestrictive morphology.  Pollinator overlap was 

significantly greater between Euphorbia and other species with unrestrictive than 

restrictive morphologies.  As hypothesized, flowers with unrestrictive morphologies 

received significantly more Euphorbia pollen, more heterospecific pollen excluding 

Euphorbia, and a greater diversity of pollen per stigma than flowers with restrictive 

morphologies.  However, stigmatic surface area was significantly larger for flowers with 

unrestrictive morphologies, and the density of Euphorbia and other heterospecific pollen 

per stigmatic surface area did not significantly differ between flowers with restrictive and 

unrestrictive morphologies.  These results show that that stigmatic surface area is larger 

for flowers with unrestrictive morphologies and support the hypothesis that larger stigma  

size is as an adaptation to prevent stigma clogging and hence reduce theis potentially 

harmful effect of heterospecific pollen receipt. 
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INTRODUCTION 

 

 Because most pollinators are generalists (Waser et al. 1996), pollinators may 

deposit heterospecific pollen as well as conspecific pollen (Rathcke 1983, Waser 1983).   

Heterospecific pollen may reduce pollination success by a variety of mechanisms 

(Kanchan and Chandra 1980, Rathcke 1983, Waser 1983, Fishman and Wyatt 1999, 

Murphy 2002), so patterns of heterospecific pollen receipt have potential ecological and 

evolutionary implications.   From an evolutionary perspective, in cases for which 

heterospecific pollen receipt leads to reduced pollination success, selection may favor 

traits that minimize heterospecific pollen receipt (Feinsinger 1983) or its effects (Kohn 

and Waser 1985). 

Heterospecific pollen receipt is a common phenomenon, with reports of 

heterospecific pollen occurring on from 4% to 81% of stigmas, but little work has 

investigated what influences this variation (McLernon et al. 1996, Waites and Aagren 

2004).  Ecological factors, including relative floral abundance, heterospecific proximity 

and density, as well as pollinator visit rates and floral constancy, can influence rates of 

heterospecific pollen receipt (Levin 1971, Kephart 1983, Campbell 1986, Feinsinger et 

al. 1986, Kunin 1993, Larson et al. 2006).   

Floral morphology could also influence rates of heterospecific pollen receipt 

through multiple mechanisms.  Flowers with restrictive morphologies tend to exclude 

generalist pollinators (Heinrich 1975b, Ostler and Harper 1978) and are more likely to 

attract specialist pollinators or pollinators that exhibit constancy, defined as transitions 

between conspecific flowers within flowering bouts beyond expectations due strictly to 

preference for that species (Feinsinger 1983, Waser 1983, 1986).  Additionally, 

restrictive morphologies could decrease receipt of wind-dispersed pollen if they 

physically shield the stigma.  Consequently, restrictive flowers may be expected to have 

more specialized pollinators and to receive less heterospecific pollen (Faegri and van Der 

Pijl 1979, McLernon et al. 1996, Fishman and Wyatt 1999).   Because heterospecific 

pollen receipt can reduce reproductive success, selection for avoidance of heterospecific 

pollen could explain why some plant taxa have evolved restrictive morphologies.  

However, the prediction that flowers with restrictive morphologies receive less 
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heterospecific pollen has remained virtually untested (but see Feinsinger et al. 1986, 

McLernon et al. 1996) 

 Similarity of floral morphology could also increase heterospecific pollen receipt 

because increased similarity can lead to increased overlap in pollinator species (Brown 

and Kodric-Brown 1979, Arroyo and Dafni 1992), and deposition of pollen on the same 

locations on the pollinator (Sprague 1962, Levin and Berube 1972, Brown and Kodric-

Brown 1979, Waser 1983).  Additionally, pollinators may be more likely to transition 

between similar than dissimilar flowers (Kunin 1993, Chittka et al. 1997) because extra 

learning time is required for transitions between dissimilar flowers (Heinrich 1975b, 

Lewis 1986).  Thus, the prediction that flowers with restrictive morphologies receive less 

heterospecific pollen may depend in part on the floral morphology of coflowering species 

(Feinsinger 1983) as well as on pollinator overlap and behavior.  

 An alternative evolutionary strategy to avoiding heterospecific pollen receipt is 

possessing traits that minimize effects of heterospecific pollen receipt.  It has been 

hypothesized that possessing a large stigmatic surface is one trait that helps to minimize 

effects of heterospecific pollen receipt because a given amount of heterospecific pollen 

occludes a smaller fraction of a large stigma than a small one (Cruden and Millerward 

1981, Kohn and Waser 1985).  If, as hypothesized, flowers with unrestrictive 

morphologies receive more heterospecific pollen than flowers with restrictive 

morphologies, then it may be hypothesized that flowers with unrestrictive morphologies 

should have larger stigmas to cope with higher rates of heterospecific pollen receipt.    

In this study, I measure heterospecific pollen receipt in the field for 29 species 

and relate natural levels of heterospecific pollen receipt to floral morphology, and 

pollinator overlap.  I focus on patterns of pollinator overlap and heterospecific pollen 

receipt from Euphorbia esula, an abundant introduced plant with an unrestrictive floral 

morphology.  I test the hypotheses that restrictive morphologies reduce pollinator sharing 

and pollen receipt, especially from flowers with unrestrictive morphologies.  Specifically, 

I test the predictions that pollinator overlap and heterospecific pollen receipt rates from 

Euphorbia and other sources are lower for species with restrictive than unrestrictive 

morphologies.  Additionally, I test whether patterns of pollinator overlap with Euphorbia 

and an index of Euphorbia’s relative floral abundance are predictive of patterns of 
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heterospecific pollen transfer.  Finally, I also test whether, as predicted, stigmas are 

smaller for species with restrictive morphologies.  In the next chapter, I follow up this 

study by investigating effects of heterospecific pollen receipt from Euphorbia to a range 

of species with different floral traits. 

 

METHODS 

Study System 

 This study was conducted at Broken Kettle Grasslands Preserve in Iowa’s Loess 

Hills (Plymouth County, 42.709° N, 96.579° W).  The site includes native mixed grass 

prairie interspersed with introduced grasses and forbs.  A major introduced species in the 

study area is Euphorbia esula L. (Euphorbiaceae; leafy spurge). Euphorbia’s morphology 

consists of a cyathium of unisexual pistillate and staminate flowers and subtending bracts 

with nectaries.  Despite this unusual floral morphology, the floral morphology is non-

restrictive, with open access to the nectar, anthers and stigma.   

Because Euphorbia is introduced from Eurasia, establishing in midwestern North 

America in the late 1800s (Dunn 1985), it is unlikely that selection resulting from 

competition for pollination with Euphorbia has substantially influenced the floral 

morphology of the studied species.  Instead, Euphorbia, by virtue of its abundance and 

unrestrictive morphology, allows assessment of other species’ susceptibility to 

heterospecific pollen receipt before floral trait evolution is likely to have occurred.   

Twenty-nine species flowering simultaneously and in close proximity to 

Euphorbia were included in the study, of which 21 were native (Table1).  Nearly all of 

these species were herbaceous dicots, although one monocot (Sisyrinchium campestre E. 

Bickn; Iridceae) and one shrub (Ceanothus americana L. Rhamnaceae) were included.  

 

Floral Morphologies 

Flowers were categorized as having a restrictive or unrestrictive morphology by 

first assigning all flowers whose stigma was level with or exerted beyond the level of the 

petals as having an unrestrictive morphology.  For flowers with stigmas not exerted 

beyond the petals, the perpendicular distance between the edge of the stigma and the 
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petal (hereafter tube radius) was measured with calipers for three flowers per species.  

Flowers with a tube radius of at least 2 mm were classified as unrestrictive, whereas 

flowers with a radius of 2 mm or less were classified as restrictive. 

Flowering Phenology  

 The flowering phenologies of the study species were investigated in 2006 by 

establishing 49 rectangular plots measuring 5 m by 10 m in an approximately 400 m by 

240 m area.  Nine plots were spaced at equal intervals, with 35 m between plots, along 

five east-west transects approximately parallel to the dominant contour of the slope.  

Transects were separated by 35 m, and plot positions were staggered along the east-west 

axis to form a checker-board of plots.  Three adjoining plots were arranged with the same 

spatial pattern on a spur of higher quality prairie in an area otherwise heavily dominated 

by dense Bromus grass.  A final plot was in a similar area ca. 400 meters away, included 

in order to measure the phenology of Comandra, which occurred only rarely in the 

contiguous area.  Within each plot, a square one-quarter m subplot was established with 

flags in the northwest corner of each plot. 

From April 26 through June 19, 2006, plots were surveyed every seven or eight 

days, and the number of plants of each species with flowers in each plot was counted or 

estimated.  Additionally, for each species except Euphorbia in flower, the numbers of 

flowers were counted on the three plants closest to the northwest corner, with aster heads 

counted as individual flowers.  For Euphorbia, to increase sampling of different genets 

within each plot, flowering status was instead monitored on the flowering ramets closest 

to the northwest, north central, and northeast points in each plot were counted.  For each 

of these three ramets, the number of cyathia with male flowers was counted, as well as 

the number with male or female flowers.  Observations of flowering phenology were 

supplemented by noting when species were observed in flower outside of the phenology 

plots but within the confines of the study area. 

Pollinator Overlap and Visits 

 To assess the overlap in pollinators between Euphorbia and co-flowering species, 

pollinator observations were performed during the 2005 and 2006 field seasons.  

Observations were performed by haphazardly placing a circular 1 m diameter sampling 
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frame and observing visits to flowers of all species within the frame, typically for 15 

minutes.  In 2005, the order of observations was haphazard, but staggered among species 

in flower.  In 2006, the order of observations was established by choosing species 

randomly, without replacement, from a list of all species in flower at the time of 

observation, and repeating the process once all species in flower had been observed.  For 

each observation, the sampling frame was placed around the focal species, but other 

species in the plot were simultaneously observed.  Observations during both years were 

made between 7:00 am and 6:00 pm, avoiding periods of rain.  In 2005, 74.25 hours of 

pollinator observations were performed split among three observers, and in 2006, 86.50 

hours of observations were performed, split among two observers.  Pollinator visits were 

counted as new visits each time a pollinator arrived at a new plant or ramet, but 

consecutive visits to flowers on a ramet or plant were not counted.  Additionally, 

observations of pollinators to species for which few visits had been observed were noted 

as they were observed during the course of other field work. 

 In 2005, a small subset of pollinators was captured to aid in identification, but 

most identifications were made to higher level taxonomic or morphological groups based 

on field observations.  In 2006, pollinators were captured whenever possible to do so 

without damaging the plants being observed, with captured insects used to verify field 

identifications to higher level groups.  Both captures and field identifications were 

included in the analysis.  

 

Heterospecific Pollen Receipt  

 Amounts of heterospecific pollen receipt were measured by collecting stigmas of 

29 species with overlapping phenology with Euphorbia (see Table 1 for list of species, 

morphologies, and nativity to the United States).  Most stigmas were collected during the 

spring of 2005, and additional stigmas of some species were collected in 2006.  Most 

collections were made in a ca. 400 m by 400 m section of prairie demarcated by fencing 

and two ridgelines, but to maximize the number of species sampled, collections of five 

species present but not abundant within this area were sampled in adjoining areas.  

Flowering was clustered spatially and temporally, and an emphasis was placed on 

collecting as many species flowering simultaneously with Euphorbia as possible.  
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Stigmas were collected haphazardly, but to minimize confounding spatial variation in the 

data, an effort was made to collect from individuals less than three meters from flowering 

Euphorbia, and to collect from several different patches of each species.  Similarly, to 

minimize confounding temporal variation, an effort was made to collect from all species 

in flower on each collection day, and to collect stigmas from each species over several 

collection days. 

 Stigmas were dissected from flowers using cleaned forceps in the field and were 

stored in 0.5 ml microcentrifuge tube in a solution of 9:1 70% ethyl alcohol: glycerin.  

Stigmas from up to three flowers per plant were collected, depending on availability, and 

were stored in the same vial.  For ten samples of each species, stigmas from one flower 

were transferred in the laboratory to a 2.0 ml microcentrifuge tube, and the stigmas were 

acetolyzed according to the standard procedure (Kearns and Inouye 1993), modified for 

small sample volumes.  Pollen was then transferred to a microscope slide by melting 

basic fuschin jelly (Kearns and Inouye 1993) into the bottom of the microcentrifuge tube 

and  allowing the jelly to solidify.  Additionally, pollen that became dislodged during 

storage was collected by removing remaining stigmas, centrifuging the microcentrifuge 

tube, drawing off the solution, and transferring the remaining pollen to a microscope slide 

using the process previously described. 

 All heterospecific pollen on each slide was counted and identified to species or 

morphospecies, primarily based on size and shape, using a compound binocular scope at 

600 magnification.  Additionally, darkness and surficial characters were used as 

secondary identification characteristics.  Although not all species were distinguishable, 

Euphorbia pollen was distinct from all other species, both in acetolyzed and non-

acetolyzed samples.  Three individuals performed pollen counts, with periodic cross-

checking of identifications.  Each individual performed counts of similar numbers of 

samples of each species.  Conspecific pollen receipt was not analyzed because for most 

species it was not possible to differentiate between outcrossed pollen and self pollen that 

was deposited naturally or transferred during dissections. 

 To estimate the surface areas of stigmas for each species, between five and eleven 

stigmas per species (mean + s.e.= 9.0 + 1.4, minimum = 5 stigmas),were mounted in 

fuchsin jelly on a microscope slide and photographed using a dissecting scope at 20 to 60 
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magnification.  Stigmatic surface area was then estimated as the two dimensional size of 

the stigma in the photograph, adjusted for magnification power and for the number of 

stigmatic lobes if only a subset were measured.  Analyses were performed with ImageJ 

(Rasband 2006). 

The number of morphospecies of pollen on each slide was determined by 

counting the number of different heterospecific pollen types apparent, regardless of 

whether or not they could be identified to species.  The appearance of pollen is affected 

by acetolysis.  Because pollen adhering to stigmas was acetolyzed, whereas dislodged 

pollen was not, it was not always possible to determine whether the morphospecies from 

the stigma sample were the same as the morphospecies from the dislodged pollen sample.  

Consequently, the number of morphospecies of pollen present was calculated as the 

maximum value between the stigma and dislodged pollen sample.  The estimate of pollen 

diversity is likely an underestimate both because dislodged and stigmatic pollen could 

have different species composition, and because different species may have not been 

distinguished. 

 

Data Analysis 

 To quantify flowering phenologies, the flowering density of each species in each 

plot was calculated as the product of the number of ramets in flower and the average 

number of flowers per ramet.  Average flowering density for each species was calculated 

by averaging flowering density across all plots.  When identical maximum flowering 

densities occurred in consecutive weeks, maximum peak flowering was estimated to 

occur halfway between these dates.  For species whose maximum recorded flowering was 

during the first or last survey, peak flowering was assumed to occur on the survey date.  

For Euphorbia’s phenology, the same process was used, but including only counts of 

cyathia with male flowers in order to best gauge the relative ability over the flowering 

season for Euphorbia to act as source of heterospecific pollen to other species.  

An index of Euphorbia flowering intensity was created in order to determine 

whether patterns of Euphorbia pollen receipt to other species were attributable to 

differences in the availability of Euphorbia pollen over the study period.  The index, 
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ranging from 0 to 1.0 was created by dividing each survey date’s average Euphorbia 

flowering density by the maximum average flowering density attained by Euphorbia.   

 For pollinator observations, visits were tallied within each species across 2005 

and 2006 because for several species, few visits were recorded within each year.  Visits 

by ants, true bugs and most beetles were excluded from analysis because these groups are 

unlikely to transport pollen among plants; however, visits by soldier beetles (family 

Cantharidae) were retained because they were observed to carry pollen and move 

between plants.  Three plant species (Phlox pilosa, Galium aparine, and Medicago 

lupulina) were excluded from analysis because fewer than five visits were observed to 

each.  Pollinator overlap between Euphorbia and all other remaining species was 

calculated with the Morisita-Horn overlap index (Magurran 1988), using EstimateS 

(Colwell 2005).  The hypothesis that pollinator overlap is greater between Euphorbia and 

species with unrestrictive morphologies than restrictive morphologies was tested using a 

one-sided t-test, after confirming homogeneity of variance with Levene’s test, and 

visually confirming normality of residuals. 

 Analyses of heterospecific pollen receipt were based on counts of Euphorbia 

pollen grains, other heterospecific pollen, and number of morphospecies of pollen.  To 

combine counts of dislodged and stigmatic pollen for each sample, the count of dislodged 

pollen for each pollen category was divided by the number of stigmas collected for that 

plant, then added to the count of stigmatic pollen.  Species averages for each measure 

were calculated by averaging pollen receipt for each pollen category across the ten 

samples analyzed. 

 Counts of average Euphorbia pollen receipt per stigma for each species were 

transformed by the natural log of one plus average receipt to improve the normality of 

residuals.  Euphorbia pollen receipt was then compared among species with unrestrictive 

and restrictive morphologies using a one-tailed t-test to test the a priori prediction that 

flowers with unrestrictive morphologies will receive more heterospecific pollen.  The 

number of heterospecific pollen grains, excluding Euphorbia, was compared between 

morphologies using a one-tailed t-test after log-transformation.  Finally, the number of 

morphospecies of heterospecific pollen was also compared with a one-tailed t-test.  In all 



 60

cases, homogeneity of variance was confirmed with Levene’s test, and residuals were 

inspected for normality. 

 Phenological differences among species meant that the abundance of Euphorbia 

as a pollen donor was potentially greater for some species than others.  To test this 

possibility, the index value for Euphorbia flowering intensity on the date of peak 

flowering was calculated for each species, interpolating between values for survey dates 

when necessary, and this value was used as an estimate of Euphorbia flowering intensity 

for each species.  Multiple linear regression, including floral restrictiveness, pollinator 

overlap, and Euphorbia flowering intensity as independent variables, was used to 

determine whether greater pollinator overlap and greater Euphorbia flowering intensity 

led to greater Euphorbia pollen receipt per stigma. Euphorbia pollen receipt per stigma 

was again log-plus-one transformed prior to analysis.  Three species for which pollinator 

overlap was not measured due to inadequate sample size were excluded from this 

analysis. 

 Stigma size was estimated as the median measured size for each species.  Median 

stigma size was chosen in order to minimize the impact of occasional stigma mounts at 

unfavorable angles which could result in under-estimates of stigmatic surface area.  

Stigma size was compared between flowers with unrestrictive and restrictive 

morphologies using a two-sided t-test on log-transformed measures, confirming 

homogeneity of variance with Levene’s test and normality of residuals.  The effect of 

stigmatic area and floral restrictiveness on Euphorbia and total heterospecific pollen 

receipt were investigated with separate GLMs for each response variable, dropping non-

significant interaction terms.  Pollen densities per stigmatic area were determined by 

dividing average pollen counts by median stigma size for each species.  The density of 

Euphorbia pollen per area of stigma was not normally distributed even after a variety of 

transformations, so comparisons were performed with a two-sided Wilcoxon rank-sum 

test.  The density of all heterospecific pollen, and heterospecific pollen excluding 

Euphorbia per stigmatic area were compared between restrictive and unrestrictive 

flowers using t-tests on log-transformed counts, after confirming normality of residuals 

and homogeneity of variance.  The effects of stigmatic area and floral restrictiveness on 

patterns of Euphorbia pollen receipt were further analyzed using a GLM after log-plus-
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one transforming Euphorbia pollen counts.  The same analysis was also performed with 

log-transformed counts of other heterospecific pollen as the dependent variable.   

 

RESULTS 

 

Floral Morphologies 

 Sixteen species were categorized as having an unrestrictive morphology, whereas 

13 species were categorized as having a restrictive morphology. 

 

Flowering Phenologies 

 The flowering phenologies of the 29 study species and other unsampled species to 

flower are shown in Figure 3.1.  Euphorbia flowered throughout the duration of the floral 

surveys, from 26 May through 19 June, and maximum flowering for male flowers 

occurred in late May (Figure 3.2). 

 

Pollinator Overlap 

 Across both field seasons, a total of 1,031 floral visits were observed, including 

202 visits to Euphorbia (Table 3.1).  Excluding Euphorbia and the three species for 

which too few visits were observed to allow analysis, an average (+ s.d.) of 32 + 24 visits 

were observed for the remaining 26 species.  Hymenopterans were the most frequent 

visitors (687 visits), and of these species, the most frequent visitors were Agapostemon / 

Augochorella (family Halictidae, subfamily Halictinae) (178 visits), Dialictus (family 

Halictidae, subfamily Halictinae) (192 visits), other solitary bees (197 visits), and 

Bombus (bumblebees, 72 visits).  The category of ‘other solitary bees’ included 

Megachilids; non-metallic halictini bees (family Halictidae, subfamily Halictinae); 

Hylaeus (family Colletidae, subfamily Hylaeinae), as well as other taxa.  Dipterans were 

the next most frequent visitors, with most visits by syrphids (86 visits) and other flies (93 

visits).  Lepidopterans (moths and butterflies) accounted for 138 visits, with 67 visits by 

clear-winged moths.  Finally, ‘soldier beetles’ accounted for 27 visits. 
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 Pollinator overlap with Euphorbia, measured by the Morista-Horn index, ranged 

from a minimum of 0.03 for Astragulus crassicarpus to 0.90 for Sisymbrium loeselii, 

with an overall average (+ s.d.) of 0.53 (+ 0.22) (Table 3.2).  Pollinator overlap was 

significantly greater for flowers with unrestrictive than restrictive morphologies (t = 

2.642, d.f. = 26, P = 0.007).  

 

Patterns of heterospecific pollen receipt 

Rates of Euphorbia, other heterospecific, and total heterospecific pollen per 

stigma, as well as stigma size and Euphorbia and other heterospecific pollen densities per 

mm of stigmatic surface are shown for individual species in Table 3.3.  Species with 

unrestrictive morphologies received significantly more Euphorbia pollen per stigma than 

species with restrictive morphologies (Table 3.4, t = 2.028, d.f. = 27, P = 0.026).  

Similarly, species with unrestrictive morphologies received significantly more other 

heterospecific pollen, whether excluding Euphorbia pollen (Table 3.4, t = 2.055, d.f. = 

27, P = 0.025), or including it (t = 2.290, d.f. = 27, P = 0.015).  The richness of 

morphospecies of heterospecific pollen was also significantly greater than for flowers 

with unrestrictive than restrictive morphologies (Table 3.4, t = 3.501, d.f. = 27, P = 

0.0008).   

In a model of Euphorbia pollen receipt per stigma as the response variable, 

neither pollinator overlap nor the abundance of Euphorbia pollen sources significantly 

affected the response variable, and floral restrictiveness had a marginally significant 

effect (Table 3.5).  Dropping terms did not substantially change results for remaining 

variables (results not shown).  Nevertheless, when effects of  floral restrictiveness and 

pollinator overlap on Euphorbia pollen receipt are jointly considered, it is apparent that 

flowers with open morphologies have greater pollinator overlap with Euphorbia and 

receive more Euphorbia pollen  per stigma, although pollinator overlap explains less than 

10% of the variation in Euphorbia pollen receipt (Figure 3.3). 

The stigmatic areas of flowers with restrictive morphologies were significantly 

smaller than flowers with unrestrictive morphologies, (t = 2.7426, d.f. = 27, P = 0.01, 

Table 3.6).  Euphorbia pollen receipt per stigma increased with increasing stigmatic area 

(Figure 3.4).  The effect of stigmatic area was significant, explaining 50% of the variation 
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in Euphorbia pollen receipt across all species, and the effect of floral restrictiveness was 

not statistically significant once differences in stigma size were accounted for (Table 3.7).  

Upon exclusion of Convolvulus, which had an exceptionally large stigmatic area, only 

12% of variation in Euphorbia pollen receipt was explained by stigmatic area. 

After adjusting for stigmatic area, Euphorbia pollen receipt did not differ 

significantly between restrictive and unrestrictive morphologies (Table 3.6; Z = 0.790, P 

= 0.43).  Similar results were observed for total heterospecific pollen receipt (Table 3.5), 

whether excluding Euphorbia pollen (t = -0.454, d.f. = 27, P = 0.65), or including it (t = -

0.279, d.f. = 27, P = 0.78).   

 

DISCUSSION 

 

This study supports the prediction that flowers with unrestrictive morphologies 

receive more heterospecific pollen than flowers with restrictive morphologies.  This was 

found specifically for pollen from Euphorbia, which itself has an unrestrictive 

morphology, but also for all other heterospecific pollen, which includes pollen from 

flowers with a range of morphologies.  Furthermore, a greater richness of pollen morpho-

species was found on flowers with unrestrictive morphologies.  These results are 

consistent with the hypothesis that restrictive morphologies reduce heterospecific pollen 

receipt.  At a different site, Larson et al. (2006) also found lower incidence of Euphorbia 

pollen, total heterospecific pollen, and diversity of heterospecific pollen for two legumes 

with restrictive morphologies than four other species with unrestrictive morphologies.   

Heterospecific pollen receipt has been found to reduce fruit or seed set in a variety 

of studies (Waser 1978a, Harder et al. 1993, Caruso and Alfaro 2000, Brown and 

Mitchell 2001), although some studies have not detected reductions (Kwak and 

Jennersten 1991, Gross 1996, Kasagi and Kudo 2005, Moragues and Traveset 2005).  

This reduced fecundity may result from stigma clogging (Galen and Gregory 1989), 

pollen allelopathy (Murphy 2000), premature stigmatic closure (Waser and Fugate 1986), 

or production of unviable hybrids (Randall and Hilu 1990, Fishman and Wyatt 1999).  

Because heterospecific pollen receipt can reduce fruit and seed production, avoidance of 

heterospecific pollen receipt may have selected for restrictive floral morphologies.  
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Reduction in diversity of heterospecific pollen received could be important 

because not all pollen is allelopathic (Murphy and Aarssen 1989), but receipt of even a 

few grains of allelopathic pollen can substantially affect fruit and seed production 

(Murphy 2000).  Thus, receipt of pollen from fewer species could decrease the chance of 

receipt from an allelopathic species. 

 Although Euphorbia pollen was found on the stigmas of most species, it was 

typically present only in small quantities (Table 3.3).  Similar results were found by 

Larson et al (2006), who found average receipt rates of no more than 0.5 grains per 

stigma (back calculated from Larson et al. Figure 3), and two species in their study 

received no Euphorbia pollen. This indicates that Euphorbia pollen is unlikely to reduce 

the fruit of seed of other species as a result of stigma clogging, and competitive effects 

resulting from competition for ovules or formation of unviable hybrids is unlikely 

because there are no co-flowering congeners at the site.  However, receipt of Euphorbia 

pollen could reduce success if the pollen is allelopathic, or if other species react to it with 

premature stigma closure or similar mechanisms.   

Receipt rates of total heterospecific pollen were substantially higher for some 

species in this study, reaching 172 pollen grains for Convolvulus arvensis, and smaller 

absolute receipt rates nevertheless translated to high densities per stigmatic area for a 

variety of species. Larson et al. (2006) found a similar range of rates, reaching a 

maximum of approximately 260 pollen grains for a population of Campanula 

rotundifolia L. (Campanulaceae), a species with an unrestrictive morphology.  Waites 

and Agren (2004) found even higher rates, with a range of average heterospecific pollen 

receipt from about 100 grains in some populations of Lythrum salicaria L. (Lythraceae)to 

more than 2000 pollen grains in others, accounting for 9%-81% of total pollen receipt.  

Arroyo and Dafni (1993) reported an average heterospecific pollen receipt rate of about 

six grains per stigma for the pin morph of Narcissus assoanus Dufour (Amaryllidaceae), 

and lower rates for the other morph and another species sampled.  Galen and Newport 

(1988) found receipt of approximately 8 heterospecific pollen grains for Polemonium 

viscosum Nutt. (Polemoniaceae), accounting for 18% of pollen received. In a cross-

species comparison, McLernon et al. (1996) reported that on average 10% of pollen was 
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heterospecific, with up to approximately 35% for one species, but absolute numbers of 

pollen grains were not reported. 

Receipt of Euphorbia pollen by the different species was not correlated with 

Euphorbia flowering intensity.  Euphorbia’s peak flowering occurred approximately 

midway through the study period, which could result in some species being exposed to 

greater potential than other species for interspecific pollen transfer from Euphorbia.   

However, the index of Euphorbia flowering intensity did not significantly correlate with 

Euphorbia pollen receipt.  This lack of correlation may be accounted for the collection of  

stigmas from each species throughout its flowering period rather than just near peak 

flowering.  McLernon et al. (1996) similarly found that for most species heterospecific 

pollen receipt did not correlate well with the flowering phenology of heterospecifics, 

perhaps because phenological patterns across the entire site do not represent well local 

abundance of heterospecific flowers around sampled individuals.   

The observed reduction in heterospecific pollen receipt to flowers with restrictive 

morphologies could be attributable to multiple mechanisms.  First, pollinator overlap was 

lower between Euphorbia and flowers with restrictive than unrestrictive morphologies, 

which could lead to fewer opportunities for pollinators to deposit Euphorbia pollen onto 

flowers with restrictive morphologies. Pollinator visits to Euphorbia overlapped less with 

flowers with restrictive than unrestrictive morphologies because Euphorbia received a 

low proportion of visits from Bombus and lepidopterans, both of which groups tended to 

visit flowers with restrictive morphologies.  Additionally, dipterans comprised 

approximately one-third of visits to Euphorbia, and dipterans were more frequent visitors 

to flowers with unrestrictive than restrictive morphologies. 

Although pollinator overlap with Euphorbia and Euphorbia pollen receipt were 

both greater for flowers with unrestrictive morphologies, pollinator overlap failed to  

significantly predict Euphorbia pollen receipt to individual species.  Overlap may not be 

a good indicator because sharing a small number of taxa that make frequent interspecific 

flights could result in a high rate of heterospecific pollen receipt even if most visitors are 

not shared between species.  Conversely, having many shared pollinator taxa would not 

lead to heterospecific pollen receipt if pollinators exhibit labile preferences, choosing a 

species to visit depending on floral abundance and reward rates, or if pollinators exhibit 
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constancy over consecutive floral visits due to costs of transitioning between species 

(Heinrich 1979, Waser 1986).  Pollinator constancy is expected to be greater to flowers 

with restrictive morphologies (Heinrich 1975a, Gegear and Laverty 1998, Stout et al. 

1998), and increased constancy would reduce the opportunity for heterospecific pollen 

transfer even under conditions of substantial pollinator overlap (Levin and Anderson 

1970, Straw 1972, Heinrich 1975a).  Additionally, pollinator overlap could be a poor 

predictor of heterospecific pollen receipt if differential pollen placement leads to minimal 

pollinator sharing even when visitors make interspecific flights (Sprague 1962, Levin and 

Berube 1972, Brown and Kodric-Brown 1979, Waser 1983).   

 Restrictive floral morphologies could block wind-pollinated pollen from landing 

on stigmas, reducing heterospecific pollen receipt from some donor species.  Not all 

heterospecific pollen was identified to species, but pine pollen, which is wind-dispersed, 

was found in several samples, confirming that wind pollination contributed to 

heterospecific pollen receipt.  However, this would not account for patterns of Euphorbia 

pollen receipt, because Euphorbia pollen is sticky and unlikely to disperse by wind 

(Selleck et al. 1962). 

 A final explanation for increased heterospecific pollen receipt for flowers with 

unrestrictive morphologies is that stigma size was significantly larger for these species 

than flowers with unrestrictive morphologies.  Because larger stigmas are likely to 

contact a larger portion of a pollinator’s body, they are likely to acquire more pollen on 

each visit (Cruden and Millerward 1981), which could include heterospecific pollen.  

This explanation is supported by the finding that per unit of stigmatic area, flowers with 

restrictive morphologies tended to receive less heterospecific pollen both from Euphorbia 

and from all other sources, although the difference was not statistically significant.   

Large stigma size could itself be an adaptation to mitigate effects of heterospecific pollen 

receipt, because a smaller portion of the stigma would be occluded by receipt of a similar 

amount of  pollen (Cruden and Millerward 1981, Kohn and Waser 1985).   

The results of this study contrast with those of McLernon et al. (1996), who found 

increased heterospecific pollen receipt to zygomorphic flowers, which have restrictive 

morphologies, relative to actinomorphic flowers, which have unrestrictive morphologies.  

The difference between their study and my study might be explained by different relative 
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abundances of zygomorphic and actinomorphic flowers at the two sites, as six of the nine 

most common species at their site were restrictive legumes.  For example, increased 

densities of restrictive zygomorphic flowers could have created more opportunities for 

heterospecific pollen transfer among zygomorphic flowers at their site.  Arroyo and Dafni 

(1992), found that flowers morphs with more restrictive morphologies (thrum flowers) 

tend to contaminate other similar morphs, and flowers with less restrictive morphologies 

(pin morphs) tend to receive pollen from other flowers with unrestrictive morphologies.  

This finding further supports the hypothesis that even if flowers with unrestrictive 

morphologies generally receive more heterospecific pollen, restrictive flowers may in 

fact receive more heterospecific pollen in communities dominated by similar restrictive 

flowers. 

Another challenge in interpreting the results of  McLernon et al. (1996) is that in 

their study, all six species with restrictive morphologies were legumes, and two of the 

three unrestrictive flowers were congeners (Potentilla), making it difficult to separate 

effects of morphology from other differences among related species.  The sample of 29 

species across 15 families in this study allows greater confidence that the patterns 

detected are representative of different floral morphologies, not particular taxonomic 

groups.  

 Nonetheless, in the analyses presented here, species have been treated as 

independent observations, but phylogenetic constraints on species traits could introduce 

non-independence among species responses.  For example, the seven legumes (Fabaceae) 

included in the study all were classified as having restrictive morphologies, whereas the 

six composites (Asteraceae) were classified as having unrestrictive morphologies.  This 

limitation could be addressed in future studies either by creating a design with 

phylogenetically constrained comparisons or by manipulating floral restrictiveness with 

natural or artificial flowers in order to achieve variation without associated phylogenetic 

correlations. 

 A variety of factors not examined here could also influence patterns of 

heterospecific pollen receipt.  In particular, floral density is expected to influence the rate 

of pollinator transitions between species, and consequently heterospecific pollen receipt 

rates (Levin and Anderson 1970, Kephart 1983, Rathcke 1983, Campbell 1986).  
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Additionally, interplant spacing of conspecific and heterospecific flowers may influence 

heterospecific pollen receipt (Waser 1978b, Kephart 1983, Kunin 1993, Stout et al. 1998, 

Caruso 2002).  

This study has demonstrated that flowers with unrestrictive morphologies receive 

more heterospecific pollen, yet many species have unrestrictive floral morphologies 

suggesting that there are benefits.  Unrestrictive morphologies increase the diversity of 

potential pollinators, thus allowing higher visitation rates and increasing the likelihood of 

adequate pollinator service when one pollinator group becomes rare (Waser et al. 1996).  

These advantages of generalization may outweigh benefits of specialization, particularly 

for common or self-compatible species, but rare outcrossing plants are disproportionately 

likely to have restrictive flowers, presumably because benefits of increased pollinator 

constancy outweigh costs of a reduced pool of potential visitors (Kunin and Shmida 

1997).  Thus, deleterious effects of heterospecific pollen receipt may be one factor that 

has selected for increasingly restrictive morphologies, but the net direction of selection 

will ultimately depend on a variety of factors favoring unrestrictive or restrictive 

morphologies. 
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Table 3.1  List of species for which pollen counts were made, with type of symmetry, 
restrictedness of floral morphology and whether native or introduced into the contiguous 
United States, organized alphabetically within family. 

Family Species 
Floral 
Symmetry

Floral  
Restrictiveness 

U.S. 
Nativity 

Asteraceae Erigeron strigosus Radial Unrestrictive Native 
Asteraceae Achilea millefolium Radial Unrestrictive Introduced
Asteraceae Nothocalais cuspidata Radial Unrestrictive Native 
Asteraceae Senecio plattensis Radial Unrestrictive Native 
Asteraceae Tragopogon dubius Radial Unrestrictive Introduced
Asteraceae Taraxacum officinale Radial Unrestrictive Introduced
Boraginaceae Lithospermum canescens Radial Restrictive Native 
Boraginaceae Lithospermum incisum Radial Restrictive Native 
Brassicaceae Sisymbrium loeselii Radial Restrictive Introduced
Convolvulaceae Convolvulus arvensis Radial Unrestrictive Introduced
Fabaceae Astragulus crassicarpus Bilateral Restrictive Native 
Fabaceae Astragulus lotiflorus Bilateral Restrictive Native 
Fabaceae Medicago lupulina Bilateral Restrictive Introduced
Fabaceae Melilotus officinalus Bilateral Restrictive Introduced
Fabaceae Oxytropis lambertii Bilateral Restrictive Native 
Fabaceae Psoralea esculentum Bilateral Restrictive Native 
Fabaceae Vicia americana Bilateral Restrictive Native 
Iridaceae Sisyrinchium campestre Radial Unrestrictive Native 
Lamiaceae Scuttelaria parvula Bilateral Restrictive Native 
Linaceae Linum rigidum Radial Unrestrictive Native 
Onagraceae Gaura coccinea Bilateral Unrestrictive Native 
Oxalidaceae Oxalis stricta Radial Unrestrictive Introduced
Polemoniaceae Phlox pilosa Radial Restrictive Native 
Rhamnaceae Ceanothus americanus Radial Unrestrictive Native 
Rubiaceae Galium aparine Radial Unrestrictive Native 
Santalaceae Comandra umbellata Radial Unrestrictive Native 
Scrophulariaceae Castilleja sessiliflora Bilateral Unrestrictive Native 
Scrophulariaceae Penstemon albidus Bilateral Unrestrictive Native 
Violaceae Viola pedatifida Bilateral Restrictive Native 
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Table 3.2  Total number of pollinators visits observed per flower species in 2005 and 
2006 shown for pollinator categories. 
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Euphorbia          
esula 33 3 42 - 36 2 - 5 17 1 49 - 7 7 202

Achilea 
millefolium - 1 - - 9 - 10 - 4 - 2 6 4 15 51

Astragulus 
crassicarpus - 1 - - - - 7 - 1 - - 6 1 - 16

Astragulus 
lotiflorus 5 - - - 2 - 8 - - - - 9 2 - 26

Castilleja 
sessiliflora 7 - 24 - 7 - - - - - - 1 - - 39

Ceanothus 
americanus 20 1 7 - 18 - 1 1 1 - 2 - 1 - 52

Comandra 
umbellata 3 - - - 1 - 10 - 4 - 5 6 2 - 31

Convolvulus 
arvensis 4 - - - 11 - - - 5 - 5 - 2 4 31

Erigeron 
strigosus 1 2 - - 3 - - - 2 - 3 - - 1 12

Galium aparine - - - - 1 - - - - - 1 - - - 2

Gaura coccinea 2 - 1 - 2 - - - - - 1 1 2 - 9
Linum      

rigidum 4 - 3 - 7 1 1 1 2 - 2 - 7 - 28
Lithospermum 

canescens 2 - 1 - 2 - 7 - - 1 3 10 9 - 35
Lithospermum 

incisum 5 1 2 - 2 - - - - - 2 - - - 12
Medicago 

lupulina - - - - - - - - - - - - - - 0
Melilotus 

officinalus 2 1 1 1 6 - 1 - 1 - 6 - 2 - 20
Nothocalais 

cuspidata 22 6 1 - 6 - - - - - - - - - 35
Oxalis stricta 5 - 5 - 10 - - - 27 - - - - - 42
Oxytropis 

lambertii 10 1 2 1 5 - 15 - - - 3 14 17 - 68
Penstemon 

albidus 11 1 8 - 11 - 4 - - - - 7 1 - 43
Phlox pilosa 1 - - - - - - - - - - - - - 1
Psoralea 

esculentum 1 - 1 - 1 - 4 - - - - 1 - - 8
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…Table 3.2 continued… 
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Scuttelaria 
parvula 1 1 - - 5 - - - - - - - - - 7

Senecio 
plattensis 9 9 6 - 32 - - - 1 - 1 - 3 - 61

Sisymbrium 
loeselii 3 - 5 1 4 - - 2 3 - 2 - 1 - 20

Sisyrinchium 
campestre 15 - 77 - 14 1 1 - 3 - 1 1 1 - 114

Taraxacum 
officinale 2 1 2 - - - - - 9 - 3 - 7 - 24

Tragopogon 
dubius 4 - - - 1 - - - - - 1 - - - 6

Vicia americana 2 - - - 1 - 2 - 6 - 1 3 2 - 17

Viola pedatifida 4 5 4 - 5 - 1 - - 1 - 2 - - 22
Total 178 34 192 3 195 4 72 9 86 3 93 67 71 27 1,034
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Table 3.3  Pollinator overlap as calculated by Morisita-Horn index, and values of 
heterospecific pollen receipt for Euphorbia and other study species.  Other heterospecific 
pollen includes all heterospecific pollen except Euphorbia; total heterospecific pollen 
includes Euphorbia and other sources of heterospecific pollen; morphospecies represents 
the richness of pollen morphospecies per sample; stigma size is calculated as described in 
methods; Euphorbia and other heterospecific pollen are calculated as counts per stigma 
divided by stigma area. 

  Pollen per stigma  
Pollen density per 

mm area 

Species 
Morisita-
Horn Index 

Euph-
orbia 

Other 
hetero-
specific

Total 
hetero-
specific

Morpho-
species 

Stigma 
area 

(mm) 
Euph-
orbia 

Other  
hetero-specific

Euphorbia  esula n.a. 12.63 4.7 4.7 8 0.384 0.0 12.3 

Achilea millefolium 0.339 0.5 2.3 2.8 2.2 0.039 12.9 60.2 
Astragulus 

crassicarpus 0.033 0.167 0.7 0.8 1 0.029 5.8 23.1 

Astragulus lotiflorus 0.219 0 0.4 0.4 0.6 0.042 0.0 10.3 

Castilleja sessiliflora 0.615 0 22.2 22.2 2.9 0.291 0.0 76.3 
Ceanothus 

americanus 0.721 0.633 4.4 5.0 2.7 0.052 12.2 85.0 

Comandra umbellata 0.400 0.233 1.2 1.4 1 0.030 7.7 38.6 

Convolvulus arvensis 0.755 21.5 150.5 172.0 6 1.947 11.0 77.3 

Erigeron strigosus 0.753 0.267 1.7 2.0 1.4 0.023 11.4 73.9 
Galium aparine n.a. 0.033 1.4 1.5 1.9 0.013 2.5 109.2 
Gaura  coccinea 0.748 0.667 29.1 29.8 4 0.642 1.0 45.4 
Linum  rigidum 0.718 4.8 91.1 95.9 5.3 0.246 19.5 370.7 
Lithospermum 

canescens 0.295 0.067 1.4 1.4 1.5 0.105 0.6 13.0 
Lithospermum 

incisum 0.800 0 1.8 1.8 0.8 0.057 0.0 30.8 
Medicago lupulina n.a. 0.233 1.0 1.3 1.2 0.008 28.9 128.0 

Melilotus officinalus 0.843 0.2 2.0 2.2 1.6 0.010 19.7 193.3 
Nothocalais 

cuspidata 0.452 3.467 4.7 8.2 3 0.287 12.1 16.5 
Oxalis  stricta 0.316 1.967 3.5 5.4 2.5 0.187 10.5 18.6 

Oxytropis lambertii 0.354 0 2.3 2.3 1.5 0.048 0.0 46.4 
Penstemon albidus 0.679 0.833 12.5 13.4 4.5 0.069 12.0 180.2 
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…Table 3.3 continued...   

  Pollen per stigma  
Pollen density per 

mm area 

Species 
Morisita-

Horn Index 
Euph-
orbia 

Other 
hetero-
specific

Total 
hetero-
specific

Morpho-
species

Stigma 
area 
(mm) 

Euph-
orbia 

Other  
hetero-
specific 

Phlox pilosa n.a. 0.067 1.9 2.0 1.3 0.270 0.2 7.2 
Psoralea 

esculentum 0.283 0.2 14.9 15.1 2.2 0.027 7.3 547.0 
Scuttelaria 

parvula 0.414 2.4 5.7 8.1 4.1 0.006 375.3 883.4 

Senecio plattensis 0.578 0.667 2.2 2.9 2.8 0.037 17.8 59.7 
Sisymbrium 

loeselii 0.897 1.317 19.0 20.3 2.8 0.109 12.1 174.4 
Sisyrinchium 

campestre 0.568 0.533 2.3 2.8 2 0.045 11.8 50.5 
Taraxacum 

officinale 0.486 0.267 4.3 4.5 2.1 0.152 1.8 28.2 
Tragopogon 

dubius 0.533 3.467 3.9 7.4 2.4 0.818 4.2 4.8 
Vicia   americana 0.415 0.1 8.0 8.1 1.9 0.052 1.9 153.5 
Viola   pedatifida 0.629 3.95 45.1 49.1 4.3 0.070 56.4 644.8 

 

 

Table 3.4  Number of species sampled with unrestrictive or restrictive floral 
morphologies, and for each category average number (+ s.e.) of Euphorbia pollen grains, 
other heterospecific pollen grains, and morphospecies of heterospecific pollen per 
species.  Differences were statistically significant for each of three measures – see text 
for statistics.  
 
 Number of Euphorbia Other hetero- Number of  
Morphology species pollen specific pollen  morphospecies  
Unrestrictive 16 2.6 (1.3) 22.2 (10.2) 3.0 (0.3) 
Restrictive 13 0.6 (0.3)   6.6 (3.4) 1.8 (0.3) 
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Table 3.5  Effect of floral restrictiveness, pollinator overlap, and Euphorbia flowering 
intensity on Euphorbia pollen receipt rates per stigma.   
 
                                                         Sum of    Mean 
                                                d.f.     Squares   Square      F        P  
Floral restrictiveness                 1     1.876       1.876     3.596  0.07 
Pollinator overlap           1     0.277       0.277     0.531  0.47 
Euphorbia flowering intensity  1     0.293       0.293     0.561  0.46 
Residuals                                  22  11.489       0.522 
 

Table 3.6  Average stigmatic area in mm2 (+ s.e.), and density (+ s.e.) of Euphorbia 
pollen and other heterospecific pollen grains (grains per stigmatic area)  for flowers with 
unrestrictive or restrictive morphologies.  Difference in stigmatic area was statistically 
significant between floral categories, but differences in pollen densities were not - see 
text for statistics.   
 
 Stigmatic Euphorbia Other heterospecific   
Morphology area pollen density pollen density  
Unrestrictive 0.31 (0.13)   9.59    (1.52) 89.61     (6.01)    
Restrictive 0.06 (0.02) 40.72  (31.52) 214.52 (25.17)   
 
 
Table 3.7  Effect of stigmatic area and floral restrictiveness on receipt of a. Euphorbia 
pollen and b. all other heterospecific pollen. Euphorbia pollen receipt was transformed by 
the natural log plus one, and other heterospecific pollen receipt was natural log 
transformed prior to analysis. 
 
                                         Deviance     Residual Residual. 
                                  d.f.  explained    d.f.          deviation    F               P_____ 
A.  Euphorbia pollen receipt 
 
Null                                                      28           14.750                    
Stigmatic area             1    7.832          27             6.918    30.534   < 0.001 
Floral restrictiveness   1    0.249          26             6.669      0.972      0.333 
 
B.  Other heterospecific pollen receipt 
 
Null                                                      28          58.634                    
Stigmatic area              1 17.921          27          40.712     12.115     0.002 
Floral restrictiveness    1   2.252          26          38.461       1.522     0.23 
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Date

5/11 5/27 6/11

 
Figure 3.1  Flowering phenologies of Euphorbia, 29 study species, and other plants 
blooming at study site, for spring 2006.  Solid line indicates period of flowering within 
plots, and dotted line indicates flowering in the study area but not within plots.  Circles 
indicate survey date of peak flowering, or median date if same maximum flowering 
occurred in consecutive weeks.   
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Figure 3.2  Euphorbia flowering phenology, including the number of cyathia with male 
flowers per flowering ramet (circles), the number of ramets with male flowers per 0.25 
m2 subplot (triangles), and the total number of cyathia with male flowers per subplot (x). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3  Relationship between floral restrictiveness and pollinator overlap on average 
Euphorbia pollen receipt per stigma (ln + 1 transformed).  Diamonds indicate averages 
for species with open morphologies; squares represent averages for species with 
restrictive morphologies.  The regression line includes both morphologies.   
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Figure 3.4  Relationship between floral restrictiveness, and pollinator overlap on average 
Euphorbia pollen receipt per stigma (ln + 1 transformed).  Diamonds indicate averages 
for species with open morphologies; squares represent averages for species with 
restrictive morphologies.  The regression line includes both morphologies.  
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Chapter 4 

 
Effects of Heterospecific Pollen Receipt from Euphorbia esula on Prairie Plants with 

Different Floral Traits 
 

ABSTRACT  Flowers may receive heterospecific pollen from simultaneously flowering 

species, potentially resulting in reduced fruit or seed set.  However, there has been a 

paucity of research concerning whether effects of heterospecific pollen receipt are similar 

across multiple species with different breeding systems and floral traits.  I investigated 

this question by looking at effects of heterospecific pollen receipt from Euphorbia esula 

(leafy spurge, Euphorbiaceae) on fruit and seed set of seven species with a range of floral 

traits.  In hand-pollination experiments, receipt of Euphorbia pollen significantly 

decreased fruit or seed set for three species, Linum rigidum (stiff flax, Linaceae), Viola 

pedatifida (prairie violet, Violaceae), and Zizia aurea (golden alexander, Apiaceae).  The 

effect of Euphorbia pollen receipt varied according to the order, timing and magnitude of 

pollen application, with stronger effects associated with earlier application of Euphorbia 

pollen relative to conspecific pollen and with application of larger quantities of 

Euphorbia pollen.  For four other species, receipt of Euphorbia pollen did not result in a 

statistically significant decrease in fruit or seed set.  These results suggest that 

heterospecific pollen receipt may be harmful in some instances, but in other cases plants 

pollination success is unaffected, particularly for low levels of heterospecific pollen 

receipt.  Study results suggest that traits associated with self-incompatibility may mitigate 

effects of heterospecific pollen receipt, but no evidence was found that plants naturally 

receiving more heterospecific pollen are less affected by its receipt.  
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INTRODUCTION 

 

 Because most pollinators do not specialize exclusively on a single plant species 

(Waser et al. 1996), pollinators may deposit heterospecific pollen as well as conspecific 

pollen (Rathcke 1983, Waser 1983).  Heterospecific pollen receipt can result in reduced 

pollination success, leading to reduced fruit or seed set (Waser 1978a).  This effect of  

heterospecific pollen receipt can occur through a variety of mechanisms, including stigma 

clogging (Galen and Gregory 1989, Randall and Hilu 1990), pollen allelopathy (Kanchan 

and Chandra 1980, Murphy and Aarssen 1989, Murphy 2000), and premature stigma 

closure (Waser and Fugate 1986).  Similarly, receipt of pollen from closely related 

species may reduce seed production due to abortion of inviable hybrids (Stucky 1985, 

Wang and Curzan 1998, Fishman and Wyatt 1999).  In cases for which heterospecific 

pollen receipt leads to reduced pollination success, selection may favor traits that result in 

reduced heterospecific pollen receipt (Brown and Kodric-Brown 1979, Feinsinger 1983) 

or that minimize the negative effects of heterospecific pollen receipt (Kohn and Waser 

1985). 

 As documented in the previous chapter, heterospecific pollen receipt is common 

(McLernon et al. 1996, Waites and Aagren 2004).  A variety of floral traits, including the 

flowering phenology and restrictiveness of floral morphology, could influence the foreign 

pollen receipt rates (Rathcke 1983, Feinsinger et al. 1986).  Additionally, distance and 

density of neighboring heterospecifics can influence pollen exchange (Beattie 1969, 

Levin 1971, Kephart 1983). 

 Studies have found a range of responses to heterospecific pollen receipt, from 

substantial reductions in fruit or seed set to no  significant effect (references in McLernon 

et al. 1996).  This range of outcomes suggests that the degree to which heterospecific 

pollen reduces pollination success may depend on the timing or quantity of heterospecific 

pollen receipt (Murphy and Aarssen 1989, Caruso and Alfaro 2000) or on traits of the 

recipient flower (Kohn and Waser 1985) or the donor pollen (Murphy 2000).  Despite 

this range in outcomes, only a few studies have investigated effects of heterospecific 

pollen receipt for different application quantities or timing (Waser and Fugate 1986, 

Kwak and Jennersten 1991, Caruso and Alfaro 2000), for different taxa of heterospecific 
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pollen (Galen and Gregory 1989, Murphy and Aarssen 1995a), or for different recipient 

species with different floral traits (Harder et al. 1993).  Such studies could help us make 

predictions when heterospecific pollen transfer is likely to have substantial effects on 

pollination success. 

Self-incompatibility is one trait that may correlate with tolerance for 

(experiencing less harm from) heterospecific pollen receipt.  For example, recipient 

flowers exhibiting self-incompatibility may have adaptations to prevent harm from self-

pollen, and these same mechanisms might prevent harm from receipt of heterospecific 

pollen.  This can be a consequence of unilateral interspecific incompatibility which refers 

to when pollen tubes of self-incompatible species successfully penetrate the stigmas of 

closely related self-compatible species, whereas pollen tubes are unsuccessful in the 

reverse crosses (Harder et al. 1993).  Flowers with less restrictive morphologies tend to 

receive more heterospecific pollen (chapter 3).  If heterospecific pollen receipt selects for 

traits that mitigate effects of this receipt, then it can be hypothesized that plants with 

unrestrictive morphologies and high rates of heterospecific pollen receipt should be less 

affected by application of heterospecific pollen than flowers with restrictive 

morphologies.  In addition, a fixed quantity of heterospecific pollen would occlude a 

smaller portion of a large stigma than a small stigma, so larger stigmas could also be a 

trait that mitigates effects of heterospecific pollen receipt (Cruden and Millerward 1981). 

 In this study, I perform experimental hand pollinations to investigate the effects of 

heterospecific pollen from the introduced species Euphorbia esula L. (leafy spurge, 

Euphorbiaceae) on seven native species that vary in breeding system, floral 

restrictiveness, and stigma size.  Because Euphorbia has only been present in Iowa since 

the late 1800s (Huerd and Taylor 1998), there has presumably been little opportunity for 

simultaneously flowering species to evolve traits that minimize effects of Euphorbia 

pollen receipt.  By using one pollen from one donor species for all heterospecific pollen 

transfer experiments, I remove an important source of variation that complicates 

comparisons of results among other studies.  For some recipient species in this study, I 

also vary the quantity and timing of Euphorbia pollen application to determine the 

sensitivity of results to these differences.  Additionally, I investigate the breeding system 

of species for which information is lacking. 
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METHODS 

 

Study System 

 The study was conducted on plant species at Broken Kettle Grasslands Preserve in 

the Iowa’s Loess Hills (Plymouth County, 42.709° N, 96.579° W).  For the hand-

pollination studies, seven species with different floral traits were selected, of which six 

species occurred in the area used for stigma collections (chapter 3).  Species are referred 

to by their genus throughout the chapter.  The same site used for stigma collections, as 

descriped in chapter 3, was used for hand-pollination studies of four recipient species, 

and other species were studied under greenhouse conditions.  The site includes native 

mixed grass prairie interspersed with introduced grasses and forbs, and is heavily invaded 

by Euphorbia.  

 

Breeding Systems of Study Species 

I conducted breeding system studies on most species because published 

information was inadequate or not available.  Euphorbia itself requires pollinator visits 

for success, and is self-compatible, although self-pollination reduces seed set success 

compared to cross-pollination (Bakke 1936, Selleck et al. 1962, Selbo and Carmichael 

1999).  My experiments demonstrate that Sisyrinchium campestre Bickn. (Iridaceae, 

blue-eyed grass) is self-incompatible (chapter 1) and Viola pedatifida L. (Violaceae, 

prairie violet) is self-compatible but benefits from pollinator visits (chapter 2).  

Lithospermum canescens (Michx) Lehm (Boraginaceae, hoary puccoon) is distylous, 

with pin and thrum morphology, and is likely self-incompatible (Johnston 1952, Molano-

Flores 2004).   

Information on the breeding system of the remaining species was lacking or 

inadequate.  The breeding system of Zizia aurea L. (Apiaceae, golden alexanders) was 

unknown, but the congener Zizia trifoliata is andromonecious (with male and 

hermaphroditic flowers on the same plant), strongly protogynous (stigma receptivity 

occurs before anther dehiscence), and self-compatible, resulting in a 5-10% self-

pollination rate (Lindsey 1982).  Piehl (1965) found evidence for self-compatibility of 
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Comandra umbellata L. (Santalaceae, bastard toadflax), based on fruit production of a 

single isolated greenhouse clone, but suggested that more work was needed to verify this 

conclusion. No previous research on the breeding system of Linum rigidum Pursh. 

(Linaceae, stiff flax) has been found, and both self-compatibility and self-incompatibility 

have been found among congeners (Kearns and Inouye 1994, Richards 1997).  To my 

knowledge, previous research has not investigated the breeding system of Oxytropis 

lambertii Pursh (Fabaceae, locoweed) or congeners.   

Heterospecific pollen transfer studies were performed in the field on four of these 

species (Comandra, Linum, Lithospermum, and Oxytropis).  Another two species 

(Sisyrinchium and Viola) were common at the study site, but for logistical reasons, 

experiments were conducted on transplanted plants from other regions in the greenhouse.  

Finally, the seventh species (Zizia) is reported to grow at Broken Kettle Grasslands 

Preserve (Scott Moats pers. comm.), but was not found on the drier hillsides where the 

study was conducted.  However, elsewhere Zizia has been observed growing in close 

proximity to Euphorbia (B. Montgomery, unpublished data).  It was also studied in the 

greenhouse using plants transplanted from another location in northwestern Iowa.   

 

Breeding Systems and Effects of Heterospecific Pollen Transfer (HPT) Studies 

 

 Because details of the pollination experiments differed, each species is discussed 

separately.  Studies of breeding systems and effects of Euphorbia pollen receipt on 

Sisyrinchium and Viola are described in chapters one and two, respectively.  Studies of 

the remaining five species are described here. 

 

i.  Comandra umbellata 

The breeding system of Comandra and effects of Euphorbia pollen receipt on 

Comandra were studied in the field during the 2005 field season.  The breeding system 

study of Comandra consisted of 30 plants split between two areas 50 m apart.  Fifteen 

plants were enclosed with wire frames and bridal veil netting, and fifteen plants were left 

exposed to pollinators (open-pollination).  Enclosures prevented access for most 

pollinators, but ants and thrips could access flowers.  For open-pollinated plants, the first 
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8 flowers on each were labeled and monitored.  Up to twelve flowers on enclosed plants 

were randomly assigned one of three treatments: cross-pollinate; self-pollinate; and 

unmanipulated, with twice as many flowers assigned to the unmanipulated treatment as to 

cross- and self-pollinate.  Pollinations were performed from 10 May through 18 May, on 

the first day without substantial precipitation that a flower was open, as defined by the 

stage at which most petals were either vertical or angled outwards. 

Hand-pollinations were performed, usually in the morning, by transferring pollen 

on forceps tips, which were cleaned with alcohol between pollinations.  Comandra is 

clonal, so cross-pollinations were always performed between patches to minimize 

geitonogamous pollination.  In total 292 flowers were included, with 119 exposed 

flowers, 85 enclosed unmanipulated flowers, and 44 flowers each in the cross-pollinate 

and self pollinate treatments.  Bags were removed and fruit set was determined on 29 

May by swelling at the base of the ovary.  Remaining fruits were collected on 9 June.  

Because only one seed is produced per fruit, seed set was not measured separately. 

The HPT study of Comandra was performed on 19 ramets, divided between the 

two areas used in the breeding system study.  Ramets were enclosed with bridal veil 

netting supported by wire.  After initiating the experiment on 4 May, plants were 

monitored daily for new flowers.  On each plant, flowers were randomly assigned one of 

three treatments: unmanipulated; cross-pollinate; or a heterospecific pollen transfer 

(HPT) treatment consisting of pollination with Euphorbia followed by conspecific 

pollination.  Pollinations were performed on the first dry day a flower was open.  Up to 

six flowers were randomly assigned the umanipulated treatment, and up to three flowers 

were assigned to both the cross-pollinate and HPT treatments, with reduced replication 

on plants with fewer flowers.  In total, cross-pollinate and HPT treatments each included 

56 flowers, and unmanipulated included 115 flowers. 

 Unmanipulated flowers were labeled with paint on the ovary and corolla but not 

otherwise treated.  HPT flowers were pollinated with Euphorbia pollen, and after a delay 

of between two and three hours, they were pollinated with conspecific pollen collected 

from the distant area.  All pollinations were performed by transferring pollen on forceps 

tips, which were cleaned with ethyl alcohol between treatments.  For both species, 

enough pollen was applied to be visible with a hand lens over most of the stigma.  Cross-



 84

pollinate flowers were touched with clean forceps tips in the manner used to apply 

Euphorbia pollen, and after a similar time delay conspecific pollen from the distant area 

was applied to stigmas.  Pollinations were performed from 7 May through 17 May.  

Exclosure bags were removed and fruit set was determined on 27 May, with remaining 

fruits harvested on 9 June. 

 

ii.  Oxytropis lambertii 

 The breeding system and effect of Euphorbia pollen receipt on Oxytropis was 

investigated with field studies in the spring of 2005 and 2006.  In 2005, on 19 May 16 

plants were enclosed with bridal veil netting supported by wire frames.  Enclosures 

prevented visits by most pollinators, but thrips and less commonly ants were present in 

enclosures.  Previously opened inflorescences were removed, leaving at least three 

unopened inflorescences per plant, and pollinations were performed on up to the next 

four inflorescences to open.  Hand pollinations were performed between 20 and 28 May.   

 Four flowers were assigned without replacement to one of four pollination 

treatments per inflorescence: enclosed unmanipulated, self-pollinate, cross-pollinate, or 

heterospecific pollen transfer (HPT) from Euphorbia followed later by cross-pollination.  

Flowers were pollinated in the order in which they opened (typically from the base of the 

stem upward), and treatment orders for each inflorescence were pre-determined in a 

manner that varied the order among plants and inflorescences within plants.  Flowers 

were pollinated in the morning or early afternoon on the first dry day that the lateral wing 

petals were observed to have opened sufficiently to allow access to the stigma.   

Techniques for hand-pollinations were similar among treatments, and all flowers 

were labeled with acrylic paint on their calyx and stalk below the flower.  To perform 

self-pollinations, keel petals were depressed to expose the stigma, and clean forceps were 

used to remove excess pollen from around the stigma, in the process pollinating the 

stigma.  Additionally, the stigma was rubbed gently with forceps tips to mimic other 

treatments.  For cross-pollinate flowers, keel petals were depressed to expose the stigma, 

after which the anthers were removed and the stigma was gently rubbed with clean 

forceps.  Two to four hours later, conspecific pollen was applied with a natural hair 

paintbrush.  A conspecific pollen supply was created by collecting pollen in a 
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microcentrifuge tube from at least ten unopened flowers from at least four plants.  For 

HPT flowers, the same steps were followed, except that following anther removal, 

Euphorbia pollen from about two anthers was applied using forceps tips, followed two to 

four hours later by application of conspecific pollen. 

 Enclosure bags were removed on 7 June, by which time all experimental flowers 

had either initiated fruit development or aborted, allowing determination of fruit set.  

Developing fruits were harvested at two times before seed dispersal began: earlier 

pollinated flowers were harvested on 25 June and later pollinated flowers were harvested 

on 29 June.  Fruits were stored in coin envelopes.  In the laboratory, seeds were counted, 

including only large well formed seeds.  Seed set was similar between the cross-pollinate 

and HPT treatments, so seeds from these treatments were weighed in order to maintain an 

objective criteria for what constituted a developed seed.  Since there was a gradual 

gradation between small, clearly undeveloped and large developed seeds, a series of 

threshold weights were established above which the seed would count as being 

developed.  Statistical results did not meaningfully change significance levels across this 

range of thresholds, so a threshold size of 0.4 mg was arbitrarily chosen as the threshold 

weight to be considered a seed. 

 In 2006, an additional Oxytropis pollination study was conducted in the field to 

investigate effects of smaller quantities of Euphorbia pollen receipt.  Four treatments 

were included:  cross-pollinate, enclosed unmanipulated, application of large amounts of 

Euphorbia pollen (HPT large), and application of smaller amounts of Euphorbia pollen 

(HPT small).  The study was initiated on 21 May, and again included 16 plants enclosed 

with netting supported by wire frames in the same area as the previous year’s study.  Four 

inflorescences were selected per plant, and treatments were applied in varying order to 

each inflorescence in the order in which flowers opened.  Treatments were performed 

similarly to 2005, except for the HPT small treatment, in which a small amount of 

Euphorbia pollen was applied with a natural hair paintbrush cut down to a few bristles.  

Pollinations were performed between 22 May and 1 June.  Nets were removed on 17 

June, and fruits were collected from 25 June to 29 June.  All seeds were weighed, and 

those at least 0.4 mg were counted as developed seeds. 
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iii.  Lithospermum canescens  

 The effect of heterospecific pollen transfer on Lithospermum was investigated 

with a field study in 2005.  On 26 May, eighteen ramets were enclosed in anchored mesh 

bags.  Thereafter, on days without rain, plants were checked for open healthy flowers on 

a rotating basis of three to five plants per day.  Flowers were included in the study only if 

the stigmas and ovules were light in color and not shriveled.  Flowers were randomly 

assigned to one of three treatments: enclosed unmanipulated, cross-pollinated, or 

pollinated with Euphorbia pollen then later cross-pollinated (HPT).   Each treatment was 

applied to three to five flowers per plant, expect for three plants for which a lack of 

healthy flowers or subsequent exclusion due to florivory led to inclusion of fewer 

flowers.  In total, the unmanipulated, cross-pollinate, and HPT treatments included 56, 

52, and 53 flowers, respectively.  

Corollas were removed from all treatments, including the unmanipulated control, 

to facilitate pollination treatments for both treatment groups.  For the HPT treatment, 

Euphorbia pollen, collected from the anthers of nearby plants, was lightly brushed onto 

Lithospermum stigmas with forceps tips.  For cross-pollinate treatments, stigmas were 

lightly brushed with clean forceps tips in the same manner.  Then for both HPT and 

cross-pollinate flowers, two to four hours later, outcrossed pollen was applied to the 

stigma in the same manner.  This Lithospermum is distylous (pin and thrum), so 

pollinations were performed with pollen from an individual of the other morph.  Forceps 

were cleaned with ethyl alcohol between pollinations, and flowers were labeled with 

acrylic paint on their sepals. 

Exclusion bags were removed around 29 May, and fruit and seed set were 

determined on 11 June.  Lithospermum flowers typically have four ovaries, which each 

may form a separate nutlet, and scars of dispersed fruits are apparent, allowing 

determination of fruit set after dispersal.  For equivalence with other study species, all of 

which make at most one fruit per flower, fruit set for Lithospermum was defined as a 

flower developing at least one ovary.  Seed set per flower was determined as the number 

of developed nutlets per flower, irrespective of fruit set.  Finally, seed set per successful 

flower was determined as the number of nutlets per flower that produced at least one 

nutlet.   
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iv. Zizia aurea 

 The breeding system and effect of heterospecific pollen transfer on Zizia was 

studied with greenhouse experiments in 2005 and 2006.  In 2003, Zizia were transplanted 

from a restoration site in O’Brien County, northwestern Iowa into 1-quart pots.  Plants 

were maintained outside except during experiments, when they were transferred to a cool 

greenhouse (maximum temperature of 16○ C).  Plants were fertilized regularly and 

watered below the flowers throughout the experiments.   

 For the 2005 study, plants were moved to the greenhouse on 10 February.  

Thirteen inflorescences on nine plants were selected haphazardly and labeled with acrylic 

paint on the pedicel.  For each selected umbel, four outer sub-umbels were selected and 

labeled with paint on the pedicel.  Within each sub-umbel, six outer flowers representing 

five treatments were selected and labeled with paint on the ovary.  The following 

treatments were each represented with one flower per sub-umbel: self pollinate, cross-

pollinate, Euphorbia pollen followed after a two to four hour delay with conspecific 

pollen (HPT 2 hour delay), and Euphorbia pollen followed immediately by conspecific 

pollen (HPT-immediately-prior).  Additionally, two flowers on each sub-umbel were left 

unmanipulated.  Treatments were assigned to flowers quasi-randomly by assigning 

treatments in a varied pre-determined order from a randomly chosen starting flower. 

 Euphorbia pollen application was usually performed around 13:00, and other 

pollinations were performed around 16:00.  Euphorbia pollen was applied to both 

stigmas on each flower using the point of a dissecting needle.  Conspecific pollinations 

were performed by lightly rubbing two anthers from different plants against the stigmas. 

Pollination success for both treatments was visibly apparent.  Fruit set was determined 

initially by observing ovary enlargement in late May.  Fruits were collected on 12 July, 

by which time a few fruits had dispersed.  Fruits were weighed after drying in an oven at 

60○ C for a week.  A histogram of fruit weights divided into one mode of fruits less than 

2 mg, which appeared undeveloped, and another mode of heavier developed fruits, so 2 

mg was considered the minimum threshold to count as a fruit.  Additionally, dispersed 

ovaries that had been determined to be swollen in earlier surveys were counted as fruits.   
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 For the 2006 study, plants were transferred to the greenhouse in early February, 

and pollinations were performed starting on 21 March.  The self-pollinate and HPT-

immediately-prior treatments were omitted.  Instead, in addition to the unmanipulated 

treatment, a two-factorial design was used to vary Euphorbia and conspecific pollen 

application.  Euphorbia pollen was either omitted or applied in small or large quantities, 

and conspecific pollen was applied in small or large quantities, leading to six treatment 

combinations.  Each treatment was applied to one outer flower per sub-umbel on six sub-

umbels per umbel, using the assignment process described for  2005.  On sub-umbels 

with extra outer flowers, a second unmanipulated flower was also labeled.  Ten umbels 

were treated across nine plants, for a total of 470 flowers.   

 To perform pollinations, large amounts of Euphorbia pollen were transferred 

from a slide to both stigmas using cleaned forceps tips.  To apply small amounts of 

pollen, whether Euphorbia or conspecific, pollen was initially spread on a slide, then 

collected and applied using a single hair acrylic paint brush.  A hand lens was used to 

confirm the transfer of pollen.  Stigmas of flowers receiving only conspecific pollen were 

touched with cleaned forceps tips to mimic application of large amounts Euphorbia 

pollen.  To apply large amounts of conspecific pollen, a dehisced anther was rubbed 

across the stigmas.  All conspecific pollen was outcross pollen, and came from the same 

donor plant for all treatments to a given inflorescence. Euphorbia pollen application and 

sham controls were applied two to four hours prior to conspecific pollen application, and 

pollinations were timed such that all conspecific pollen application occurred at the same 

time for a given inflorescence. 

 To determine fruit set, sub-umbels were harvested in early June and stored 

separately in coin-envelopes.  After drying at room temperature, fruits were weighed 

individually.  As in 2005, the distribution of weights was apparently bimodal, with one 

mode corresponding to undeveloped ovaries less than 2 mg, and a second mode of larger 

developed fruits.  Consequently, aborted flowers and remaining ovaries less than 2 mg 

were treated as failures, and larger remaining ovaries were counted as fruits.   
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v. Linum rigidum 

 The breeding system and effect of Euphorbia pollen receipt on the pollination of 

Linum was investigated with field studies during the summers of 2005 and 2006. 

 To investigate Linum’s breeding system, on 29 May 2005, ten Linum plants were 

enclosed with mesh bags supported by wire frames.  Thereafter, plants were checked 

daily for newly opened flowers, which were assigned randomly without replacement to 

one of three pollination treatments: leave unmanipulated, cross-pollinate, or self-

pollinate.  Once all treatments were represented equally on a plant, the randomization 

process was repeated.  Flowers were excluded if they were in contact with the bag, if they 

developed abnormally, or if flowers had already self-pollinated.  Each treatment was 

performed on at least one flower per plant, except for two plants which produced few 

flowers and lacked any flowers in the unmanipulated treatment.  Overall 20 or 21 flowers 

were included in each treatment. 

Pollinations were performed in the morning or early afternoon, during dry periods 

from 30 May through 15 June.  Unmanipulated flowers, were not treated except to collect 

one anther for use as a pollen source.  For self pollinations, pollen was transferred 

autogamously from anthers to each stigma using forceps tips until multiple pollen grains 

were apparent on each stigma.  Afterwards, a subset of anthers were removed to be used 

as a pollen source.  Cross pollinations were performed by mixing pollen from at least 

three plants in a microcentrifuge tube and applying the mixture to each stigma.  Flowers 

were labeled with acrylic paint on their sepals and subtending stem.  Enclosure bags were 

removed on 22 June.  At this time, fruit set was determined and mature fruits were 

collected and stored in microcentrifuge tubes.  Remaining fruits were collected as they 

matured through 30 June, at which time remaining fruits were collected.  Seed set per 

fruit was later determined in the laboratory. 

 For the 2005 study of effects of Euphorbia pollen receipt on Linum, on 26 May, 

twenty-four Linum rigidum plants were enclosed in mesh bags supported by wire frames.  

Thereafter, plants were checked daily for newly opened, unpollinated flowers, which 

were assigned to one of three pollination treatments: unmanipulated , cross-pollinate, or 

heterospecific pollen transfer (HPT) of Euphorbia pollen followed later by pollination 

with outcrossed Linum pollen.  Treatment were assigned randomly without replacement, 
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repeating the process once each treatment was represented with equal numbers on a given 

plant.  Each treatment was performed on at least one flower per plant.   

Pollinations were performed in the morning or early afternoon during dry periods 

from late May through early June.  To prevent self-pollination prior to treatments, 

flowers in the cross pollinate and HPT treatments were emasculated.  At this time, 

Euphorbia pollen was applied to flowers by lightly touching anthers to all five stigmas 

and spreading the pollen with cleaned forceps tips.  As a control, cross pollinate flowers 

were similarly rubbed with forceps tips.  Then, two to four hours later, cross pollinate and 

HPT flowers were pollinated with a mixture of conspecific pollen from previously 

collected anthers, applied with a paintbrush.  Flowers were labeled as in the breeding 

system study.  In late June, enclosure bags were removed, fruit set was determined, and 

mature fruits were collected into microcentrifuge tubes.  Less mature fruits were checked 

periodically through 30 June, at which time remaining fruits were collected for seed 

counts. 

 In 2006, two related studies of Linum pollination were conducted.  As in 2005, 

both included a cross-pollinate treatment and a heterospecific pollen transfer treatment in 

which a large amount of Euphorbia pollen was applied two to four hours prior to 

conspecific pollen.  The first study, investigating effects of quantity of heterospecific 

pollen, also included a third treatment of a smaller amount of Euphorbia pollen applied 

two to four hours prior to conspecific pollen.  The second study , investigating effects of 

timing of heterospecific pollen, included a third treatment of a large amount of Euphorbia 

pollen applied immediately prior to conspecific pollen.  For the heterospecific pollen 

quantity study, flowers were treated on twelve plants.  The timing study included flowers 

on 16 different plants, and additionally flowers from four plants used in the quantity 

study for which five pollinations per treatment had already been performed, for a total of 

20 plants.  For plants used in both studies, treatments flowers were labeled differently 

between studies, and data were separated between the studies so subsequent analyses of 

the studies would be independent. 

 In both the quantity and timing studies, up to five flowers were used per treatment 

per plant, depending on availability.  Treatments were assigned randomly without 

replacement, repeating the process once a plant had equal numbers of each treatment.  
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For the heterospecific quantity study, the cross-pollinate and heterospecific pollen 

transfer with a large amount of Euphorbia pollen (HPT-large) treatments were performed 

as in the 2005 study.  To transfer a small amount of Euphorbia pollen (HPT-small), 

Euphorbia pollen was transferred on the point of an insect pin, and its presence was 

visually confirmed on the stigma, then conspecific pollen was applied two to four hours 

later as for the other treatments.  For the timing study, the cross-pollinate treatment and 

treatment of heterospecific pollen transfer with a time delay (HPT-delay) were performed 

as in the quantity study.  The treatment of heterospecific pollen transfer without a time 

delay (HPT-immediate) was performed as for the HPT-delay treatment, except that 

Euphorbia pollen was applied immediately before cross-pollinations.  Pollinations were 

timed such that all cross-pollinations were performed at the same time, regardless of 

when Euphorbia pollen was applied.   

Pollinations were performed during mornings and early afternoons between 1 and 

13 June for the quantity study, and between 3 and 14 June for the timing study.  For both 

studies, a subset of stigmas were collected the next day, by which time they had senesced, 

and stored individually in 9:1 70% ethanol:glycerin for pollen counts.  In total, 134 

flowers were included in the quantity study, and 116 flowers were included in the timing 

study. For both studies, nets were removed and fruit set was determined on 18 June, after 

which plants were checked daily through 1 July for mature fruits, which were collected 

for seed counts as they matured.  To determine the amount of Euphorbia and Linum 

pollen received in each treatment, a subset of 15 stigmas from each treatment were 

acetolyzed in microcentrifuge tubes with acetic anhydride and sulfuric acid, and the 

pollen was mounted in basic fuchsin jelly on slides for identification under compound 

microscopy (Kearns and Inouye 1993).   

 

Statistical Analyses 

 Because details of the experiments varied, the statistical analysis is discussed 

separately for each species.  All analyses were conducted in S-Plus 7.0.   
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Comandra 

The study of Comandra’s breeding system was analyzed with a general linear 

model (GLM) specifying a binomial distribution, with the dependent variable 

representing the number of fruits and aborted flowers for each plant and treatment 

combination, and treatment included as a fixed effect.  Plant was omitted from the 

analysis because the open-pollination treatment was performed on different plants than 

the three enclosed treatments.  Seed set was not analyzed separately because fruits have 

only one seed.  The Comandra HPT study was analyzed with a general linear mixed 

effects (GLME) model using the ‘correlatedData’ library in S-Plus, with a binomial 

distribution, specifying the logit-link function, and including ramet as a random effect 

and treatment as a fixed effect.  Additionally, for comparison with other studies, the data 

were reanalyzed similarly, but omitting the unmanipulated treatment. 

 

Oxytropis  

Fruit set results from the 2005 Oxytropis study were analyzed with a GLME 

model as described above for Comandra.  Seed set results across all four treatments were 

analyzed with a linear mixed effects model, including treatment as a fixed effect and 

plant as a random effect.  Additionally, for consistency with other studies, fruit set and 

seed results were reanalyzed including only cross-pollinate and HPT treatments.  Fruit set 

and seed set data from 2006 were analyzed as in 2005, including a separate analysis of 

only the cross pollinate and HPT large treatments.  Additionally, for both fruit set and 

seed set results from the cross pollinate and HPT treatments from 2005 and 2006 were 

combined and analyzed together, initially including a treatment by year interaction term, 

which was dropped if non-significant or if the model failed to converge with the 

interaction included.   

 

Lithospermum 

 For Lithospermum, fruit set was analyzed with a GLME model as described 

previously.  Additionally, for consistency with other studies, successful flowering was 

reanalyzed including only cross-pollinate and HPT treatments.  Seed set per successful 
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flower was analyzed with a linear mixed effects model, excluding the unmanipulated 

treatment because only two flowers set fruit and there was no variability in results.  Seed 

set per flower, irrespective of success, was analyzed with a GLME model including plant 

as a random effect, and with a Poisson distribution because the average number of seeds 

was low and seed number is bounded by zero.  Seed set per flower was also reanalyzed 

excluding the unaminpulated treatment using a linear mixed effects model.   

 

Zizia 

 For Zizia, developed fruits typically contain two seeds, so seed set was not 

analyzed separately from fruit set.  For both years, fruit set was analyzed with a GLME 

model as described previously, including inflorescence as a random effect.  For 2005, 

analyses were performed including all treatments and for consistency with other analyses, 

including only the cross-pollinate and HPT-large treatments.  For 2006, the fruit set of 

unmanipulated flowers was compared to all flowers receiving conspecific pollen, 

regardless of conspecific or heterospecific pollen quantity.  To investigate effects of 

pollination treatment among pollinated flowers, unmanipulated flowers were excluded 

and the remaining treatments were analyzed with a GLME model including main effects 

of heterospecific pollen transfer (none v. small v. large), conspecific pollen receipt (small 

v. large), and their interaction.  The interaction term was determined to be non-

significant, so was dropped from the model.  For consistency with previous analyses, an 

additional analysis was performed comparing only the HPT-large and cross-pollinate (ie. 

no-HPT) treatments, including results from both large and small conspecific pollination 

treatments because there was no significant difference between them (see results).  

Finally, to investigate the effects of Euphorbia pollen receipt across both study years, the 

two data sets were analyzed together, including only the HPT-large and cross-pollinate 

treatments, with a GLME model including main effects of year and treatment, after 

dropping the non-significant interaction term. 
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Linum 

 For the 2005 Linum breeding system study, fruit set per flower was analyzed with 

a GLME model, as described previously, including plant as a random effect.  The effect 

of treatment on Linum seed set was analyzed using the Kruskal-Wallis rank-sum test 

because residuals of linear mixed effects (LME) models deviated substantially from 

normality, even after a variety of transformations.  Fruit set per flower for the Linum 

2005 HPT study analyzed as in the breeding system study.  Seed set per fruit for the  

Linum 2005 HPT study was analyzed with a LME model including plant as a random 

effect, after confirming approximate normality of residuals.   

 The 2006 Linum HPT studies were analyzed independently, except as described 

below.  Conspecific pollen receipt was compared among treatments with ANOVA.  The 

effect of treatment on fruit set in both the quantity and timing studies was analyzed with a 

GLME model including plant as a random effect, as previously described.  For the 

quantity study, the effect of treatment on seed set was fit with a linear mixed effects 

model including plant as a random effect, and normality of residuals was visually 

confirmed.  Seed set in the timing study was analyzed as in the quantity study after 

transforming seed set by 1.4 power to improve normality of residuals.   

 For comparison with other studies, the shared treatments (cross-pollinated and 

heterospecific transfer of large quantities of Euphorbia pollen with a time delay) among 

the 2005 and both 2006 Linum HPT studies were analyzed jointly to arrive at a single 

estimate of the effect of adding Euphorbia pollen in large quantities with a time delay.  

To accomplish this, data from the two treatments shared across both 2006 studies were 

combined.  For the four plants used in both 2006 HPT studies, fruit and seed set results 

were combined prior to the analysis.  Fruit set was analyzed with a GLME model, as 

previously described, including treatment and year as fixed effects and plant as a random 

effect.  Seed set was analyzed similarly, but with a LME model, and confirming 

normality of residuals.  For both analyses, the interaction term between fixed effects was 

dropped after confirming that it did not approach significance. 
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Cross-Species Analyses 

 To determine whether the response of the seven species to Euphorbia pollen 

receipt differed, fruit set results across species were analyzed in a single GLM analysis, 

including treatment and species as fixed effects.  The data was simplified to include only 

two treatments: cross-pollinate and for most species application of large amounts of 

Euphorbia pollen with a time delay.  For Viola and Sisyrinchium, a treatment with time 

delay and appropriate control treatment were not available, so the Euphorbia pollen 

application immediately prior to conspecific pollen was substituted.  For Sisyrinchium 

this is justifiable because the effect of adding Euphorbia pollen with or without a time 

delay did not significantly differ.  For Viola, this substitution is conservative because for 

other species effects tend to be even stronger when a time delay is included between the 

application of Euphorbia and conspecific pollen (see results and discussion).  For three 

species (Viola, Oxytropis, and Linum), studies were performed in two years, and because 

there was no significant effect of year on fruit set in these studies, the two years’ data 

were combined prior to analysis.  Seed set per fruit was calculated for the same 

treatments for the five species for which seed set was determined independently of fruit 

set, again averaging across multiple years of data as necessary. 

 To determine whether there was an overall effect of Euphorbia pollen receipt on 

fruit set for all the study species generally, combined species data were reanalyzed with a 

GLME analysis including treatment as a fixed effect and species as a random effect.  For 

the purpose of comparing effects of Euphorbia pollen receipt among studies, absolute 

effect size was calculated as the difference in fruit or seed set between treatment and 

control flowers.  Relative effect size was calculated as natural log of treatment fruit set 

divided by control fruit set.  For both, negative effect sizes indicate decreased fruit set for 

flowers receiving Euphorbia pollen relative to control flowers. 

 To investigate whether the effect of receipt of Euphorbia pollen on seed set 

differs among species, seed set per fruit was calculated for the five species for which seed 

set was determined independently of fruit set.  The same two treatments were included as 

in the fruit set analysis, and results were averaged across multiple years of data as 

necessary.  The effect of species, treatment, and their interaction on seed set was 

analyzed with a generalized least squares model, fit by restricted maximum likelihood 
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with species and treatment included as fixed factors, and a heterogeneous residual 

variance structure for species, allowing different species to have different residual 

variance parameters.  There was a significant interaction between species and treatment 

(see results), and determination of which of the ten species pairs differed significantly 

was made by comparing P-values to Bonferroni-adjusted values.   

 

RESULTS 

 

Comandra 

For the breeding system study of Comandra, fruit set was low for all treatments, 

ranging from a low of 5% for enclosed unmanipulated flowers (no hand-pollination) to a 

high of 13% for cross-pollinated flowers (Figure 4.1A).  In the breeding system study, 

there was not a significant effect of treatment on fruit set (5.4% of variance explained; 

3,56 d.f., PChi = 0.21), although the effect became marginally significant (F2,28 = 2.859, P 

= 0.07) upon dropping the open-pollinated treatment (which was performed on different 

plants) and including plant as a random effect.  

 In the HPT study for Comandra, there was a significant effect of treatment (F2,36 

= 4.130, P = 0.024), with fruit set lower in the unmanipulated treatment than the cross-

pollinate and HPT treatments (Figure 4.1B).  However, there was no significant 

difference between the cross-pollinate and HPT treatments, and removing the 

unmanipulated treatment did not affect this conclusion (analysis not shown). 

 

Oxytropis 

 For Oxytropis in 2005, there was a significant effect of treatment on fruit set, with 

significantly higher fruit set for cross-pollinated flowers than self-pollinated and 

unmanipulated flowers, and lower fruit set for unmanipulated flowers than all other 

treatments (F3,228 = 15.838, P < 0.0001, Figure 4.2).  There was no significant difference 

between the cross-pollinate and HPT treatments whether these treatments were analyzed 

with the other treatments or in isolation (t15 = 0.515, P > 0.5).  For 2005, there was a 

significant effect of treatment on seed set, with significantly higher seed set for cross-
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pollinate than HPT, and significantly higher seed set for both of these treatments than 

either self-pollinated or enclosed unmanipulated flowers (F3,101 = 19.623, P < 0.0001, 

Figure 4.3).  Exclusion of the self-pollinate and unmanipulated treatment did not change 

the finding of higher seed set per fruit in the cross pollinate than HPT treatment (F1,68 = 

5.719, P = 0.02). 

 For Oxytropis in 2006, there was an overall significant effect of treatment on fruit 

set (F3,237=10.533, P < 0.0001), due to substantially lower fruit set for enclosed 

unmanipulated flowers (Figure 4.2).  However, there was no significant difference in fruit 

set between cross-pollinate and either HPT treatment, and the treatment effect remained 

insignificant when comparing just the cross-pollinate and HPT large treatment (results 

not shown).  In 2006, seed set per fruit for unmanipulated flowers was substantially lower 

than for the other treatments, which all had similar seed set (Figure 4.3), but presumably 

due to the small sample size for this treatment (n=2), there was no significant overall 

effect of treatment (F3,88 = 1.934, P = 0.13).  When only the cross-pollinated and HPT-

large treatments were analyzed across both years, there was no significant effect of year 

or treatment on fruit or seed set (Table 4.1).  

 

Lithospermum 

For Lithospermum, there was a significant effect of treatment on fruit set (F1,35 = 

9.921, P = 0.003), due to substantially lower success in the unmanipulated treatment 

(Figure 4.4A).  However, there was no significant difference in successful flowering 

between cross-pollinate and HPT treatments, and this did not change upon excluding the 

unmanipulated treatment from the analysis (F1,17 = 1.318, P = 0.27).  Seed set per 

successful flower was lower, but not significantly so, for HPT compared to cross-

pollinate (F1,22 = 0.2623, P = 0.61, Figure 4.4B).  Seed set per flower, irrespective of 

success, varied significantly with treatment (F2,142 = 12.2465, P < 0.0001), due to 

substantially lower fruit set for the unmanipulated treatment (Figure 4.4C).  However, 

there was no significant difference in seed set per flower when only the cross-pollinate 

and HPT treatments were analyzed (F1,87 = 1.376, P = 0.244). 
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Zizia 

 For the Zizia 2005 study including all treatments, there was a significant effect of 

treatment (F4,315 = 9.264, P < 0.0001), due largely to substantially lower fruit set in the 

unmanipulated treatment compared to all others (Figure 4.5a).  Fruit set was lower for the 

HPT-2-hours-prior treatment than the cross-pollinate treatment, but this difference was 

not significant, even upon excluding other treatments from analysis (F1,97 = 2.964, P = 

0.09).  In 2006, as in 2005, fruit set was significantly higher for pollinated than 

unmanipulated flowers (F1,459 = 50.281, P < 0.0001).  Considering only hand-pollinated 

flowers, there was a significant effect of the quantity of Euphorbia pollen, with lower 

fruit set for flowers receiving large quantities of Euphorbia pollen relative to flowers 

receiving small amounts or no Euphorbia pollen (Figure 4.5b, Table 4.2).  There was not 

a significant effect of the quantity of conspecific pollen applied, and the interaction term 

was also non-significant so was dropped from the model.  For Zizia in 2006, when only 

the HPT-large and cross-pollinate treatments were included, application of Euphorbia 

pollen significantly decreased fruit set (F1,230 = 6.052, P = 0.01).  When these treatments 

were analyzed across 2005 and 2006, fruit set was significantly lower for the HPT-large 

treatment than cross-pollinate, and neither year nor the interaction term was significant 

(Table 4.3).  

 

Linum 

 For the breeding system study of Linum, there was a significant effect of 

treatment (F2,16 = 4.322, P = 0.03), with similar fruit set between cross- and self-pollinate 

treatments but significantly lower fruit set for unmanipulated flowers (Figure 4.6a).  Seed 

set per fruit was not significantly affected by treatment, although there was a trend 

toward lower seed set for unmanipulated flowers (X2 = 5.632, P = 0.06, Figure 4.6b).  For 

the 2005 HPT study, there was a significant effect of treatment (F2,46 = 4.459, P = 0.017), 

with significantly lower fruit set in the HPT and unmanipulated treatments compared to 

the cross-pollinate treatment (Figure 4.7a).  Seed set per fruit was also significantly 

affected by treatment (F2,79 = 3.788, P = 0.027), with significantly lower seed for flowers 

receiving Euphorbia pollen than cross-pollinated flowers, and intermediate seed set for 
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unmanipulated flowers not significantly different from either other treatment (Figure 

4.7b). 

 For the 2006 study of effects of Euphorbia pollen quantity on Linum’s 

pollination, pollen counts indicated that flowers assigned large quantities of Euphorbia 

pollen received substantially more than those assigned small quantities, and flowers in 

the cross-pollinate treatment received only trace amounts (Table 4.4a).  Conspecific 

pollen retained on stigmas decreased with larger treatments of Euphorbia pollen (Table 

4.4a), but differences between treatments were not significant (F2,42 = 2.429, P = 0.10).  

For the study of timing of Euphorbia pollen application, Euphorbia pollen receipt was 

similar whether it was added immediately prior or a few hours prior to conspecific pollen 

(Table 4.4b).  However, conspecific pollen receipt varied significantly with treatment 

(F2,34 = 8.219, P = 0.001), with reduced conspecific pollen retention when Euphorbia 

pollen was applied with a time delay prior to conspecific pollen compared to the other 

two treatments, which did not differ significantly from each other (Table 4.4b).   

For Linum in the Euphorbia quantity study, fruit set decreased from cross-

pollinate to HPT-small and was lowest for HPT-large, but the effect of treatment did not 

approach significance (F2,22 = 0.208, P = 0.81, Figure 4.8a).  There was, however, a 

significant effect of treatment on seed set per fruit (F2,40 = 5.546, P = 0.008), with similar 

seed set for cross-pollinate and HPT-small, but lower seed set for HPT-large (Figure 

4.8b).  For the timing study, although fruit set was lowest for the HPT-delay treatment 

and intermediate for the HPT-immediate treatment, there was no significant effect of 

treatment on fruit set (F2,31 = 1.308, P = 0.29, Figure  8c).  For seed set in the timing 

study, there was a significant effect of treatment (F2,44 = 4.595, P = 0.015), with 

significantly lower seed set for HPT-delay relative to cross-pollinate, and intermediate 

success for HPT-immediate (Figure 4.8d). 

 In the combined analysis of 2005 and 2006 Linum results, both fruit and seed set 

were significantly lower for the HPT treatment than the cross-pollinate treatment, there 

was not a significant effect of year for either response variable, and both interaction terms 

were dropped for lack of significance (Table 4.5a,b). 
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Cross-species analysis 

Fruit set per flower for control and treated flowers, as explained for the cross-

species analysis, are summarized in Table 4.6a.  Linum and Zizea experienced the largest 

absolute decrease in fruit set, and Linum and Lithospermum experienced the largest 

relative decrease upon receipt of large quantities of Euphorbia pollen.  In the GLM 

including all seven recipient species, there were significant differences in fruit set among 

species, and significantly lower fruit set for flowers receiving Euphorbia pollen (Table 

4.7).  However, there was not a significant interaction between species and treatment.  

When the data was reanalyzed with a GLME with species included as a random rather 

than fixed effect, the effect of treatment was not significant (F1,6 = 3.435, P = 0.11). 

In the cross-species comparison, there was a significant interaction between 

treatment and species, indicating that Euphorbia pollen receipt affected some species 

more than others (Table 4.8).  Euphorbia pollen receipt decreased seed set for Viola 

significantly more than it did for Oxytropis, Lithospermum and Linum, and there was a 

marginally significant difference in the effect on Viola compared to Sisyrinchium, but the 

effect of treatment did not significantly differ between other treatment pairs.  Viola and 

Linum experienced the largest relative decrease in seed set upon receipt of large 

quantities of Euphorbia pollen (Table 4.6b). 

 A summary of the floral restrictiveness, breeding system, natural Euphorbia 

pollen receipt rates, and effects of Euphorbia pollen receipt on fruit and seed set is 

provided in Table 4.9.   

 

DISCUSSION 

 

Of the native species studied here, three species had restrictive morphologies and 

the other four had unrestrictive morphologies.  Two species were self-incompatible and 

the remainder could self-pollinate, albeit with reduced seed set for Oxytropis.   

Some aspects of the breeding system studies merit attention.  The low fruit set of 

Comandra, less than 20% across all treatments, is typical for the species (Piehl 1965), so 

does not reflect abnormal pollen or resource limitation at this study site.  Thrips and ants 

were able to access flowers despite pollinator exclusion bags, and their presence may 
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have led to autogamous or geitenogamous self-pollination of unmanipulated flowers, as 

seen in other study systems (Baker and Cruden 1991).  Such visits or unaided self-

pollination could explain low rates of fruit set seen for several of the species (Comandra, 

Oxytropis, Zizea, in this chapter, and Viola in chapter 2).  For Lithospermum, pollinators 

were occasionally observed probing through bags, and occasional successes could 

account for the low fruit set of unmanipulated flowers.  Finally, for Linum, flowers were 

frequently observed to self-pollinate without visitors, particularly on windy days, and this 

probably accounts for the relatively high fruit set of unmanipulated flowers.  Bagged 

unmanipulated treatments were also included in most of the heterospecific pollen transfer 

studies, and low fruit and seed set across these treatments for all species not expected to 

be able to self-pollinate without pollinators confirm that exclusion of pollinators was 

generally successful.  

 Euphorbia pollen receipt significantly reduced fruit or seed set for three of the 

seven species tested (Viola, Zizia and Linum) (Table 4.9).  For the other four species 

(Sisyrinchium, Comandra, Lithospermum, and Oxytropis), neither fruit nor seed set was 

significantly affected by Euphorbia pollen receipt overall.  These results indicate that 

Euphorbia pollen, if received in large quantities, can reduce reproductive success, but 

that it does not necessarily do so.  Results of previous heterospecific pollen transfer 

studies have varied, with many studies detecting a significant effect, and other studies not 

detecting an effect on fruit or seed set (e.g. Campbell and Motten 1985, Galen and 

Gregory 1989, Armbruster and McGuire 1991, McGuire and Armbruster 1991, Moragues 

and Traveset 2005).  However, these studies have varied in study design and donor and 

recipient species, making it difficult to determine what factors lead to variation in study 

outcomes (but see Randall and Hilu 1990, Harder et al. 1993).  In this study, the donor 

species (Euphorbia) was the same for seven recipient species, eliminating one potential 

source of variation in study outcomes. 

The similarity in study designs for the seven species tested here helps to eliminate 

another potential source of variation in study outcomes.  Although details of the study 

designs varied among plants, all study designs, except for Viola and Sisyrinchium, 

included a treatment with a large amount of Euphorbia pollen delivered hours in advance 

of conspecific pollen, and all designs included a cross-pollinate treatment.  Results from 
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Viola and Sisyrinchium may nonetheless be included and compared with the other 

studies.  For Viola, there was a significant negative effect on seed set of adding 

Euphorbia pollen immediately prior to conspecific pollen (see chapter 2). Because adding 

a time delay made the negative effect stronger for the other plant species, it is reasonable 

to assume that adding Euphorbia pollen to Viola with a time delay prior to application of 

conspecific pollen would have a similar or stronger effect.  For Sisyrinchium neither fruit 

nor seed set was significantly different when Euphorbia pollen was added immediately 

prior to conspecific pollen compared to two hours prior to conspecific pollen.  Thus, it 

can be inferred for Sisyrinchium that Euphorbia pollen receipt two to four hours prior to 

conspecific pollen would be unlikely to reduce fruit or seed set relative to conspecific 

cross-pollen treatments. 

For fruit set, the statistical significance of results largely parallel effect 

magnitudes, as the two species whose fruit set was significantly reduced by Euphorbia 

pollen receipt, Zizia and Linum, experienced the greatest absolute difference in percent 

fruit set upon receipt of Euphorbia pollen.  For Lithospermum, fruit set was not 

significantly affected by Euphorbia pollen receipt, and Lithospermum experienced a 

smaller absolute reduction in fruit set than Linum and Zizia.  However, because 

Lithospermum’s average fruit set was low, it experienced a greater relative reduction in 

successful flowering than Zizia.  The GLM analysis of fruit set found no significant 

interaction between species and treatment, which fails to reject the possibility that for 

fruit set the studied species are similarly affected by receipt of large amounts of 

Euphorbia pollen.  Furthermore, the GLME analysis of fruit set across species found no 

significant effect of treatment, which indicates that receipt of Euphorbia pollen receipt 

does not generally decrease fruit set. 

For seed set per fruit, statistical significance parallels effect magnitudes even 

more closely than for fruit set.  Viola and Linum, the two species whose seed sets were 

significantly affected by Euphorbia pollen receipt, experienced the largest relative 

reductions in seed set.  The cross-species analysis of seed set indicated that effects of 

Euphorbia receipt differed among species, but the only statistically significant difference 

was that seed set was more affected for Viola than the other four species for which seed 

set was measured.  Because there is a larger effect of Euphorbia pollen receipt on the 
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seed set of Viola than the other species, it is worth considering traits that differ between 

Viola and the other species.  Unlike the other species, Viola lacks an external stigmatic 

surface; instead, pollen germinates within the lumen of the style (Beattie 1969).  Thus, 

the area available for pollen adherence may be more limiting than for other species.  

Additionally, pollen is drawn into the lumen during pollination (Beattie 1969), and 

clogging of the lumen by heterospecific pollen could prevent subsequent entry of 

conspecific pollen.  Euphorbia may be particularly likely to clog the lumen, as it has 

sticky pollen that loosely adheres in masses connected by viscin threads (Selleck et al. 

1962, Messersmith et al. 1985).  Thus, Viola may be more vulnerable to heterospecific 

pollen clogging than the other species tested, for which pollen does not need to pass 

through a constricted opening. 

Results showed some support for the hypothesis that self-incompatible species are 

less affected than self-compatible species by heterospecific pollen receipt (Table 4.9).  

Among the seven species studied here, the three species negatively affected by large 

quantities of Euphorbia pollen receipt (Viola, Linum and Zizia) are all self-compatible, 

whereas neither self-incompatible species (Lithospermum and Sisyrinchium) was 

negatively affected.  This result supports the hypothesis that that traits associated with 

self-incompatibility may reduce the effects of heterospecific pollen receipt.  However, 

two self-compatible species (Comandra and Oxytropis) were unaffected by heterospecific 

pollen receipt, so self-compatibility status alone does not completely predict the effect.  

Testing more species will be necessary to determine the generality of this relationship 

between breeding system and effects. 

 The hypothesis that a large stigmatic area buffers plants from negative effects of 

heterospecific pollen receipt was not supported.  Linum, which has the largest stigmatic 

area of the species studied, experienced significant decreases in fruit and seed set upon 

receipt of Euphorbia pollen, whereas the three species with the smallest stigmatic areas 

(Sisyrinchium, Comandra and Oxytropis) were not significantly affected (Table 4.9).  A 

possible explanation for why species with larger stigmas were not less affected by 

Euphorbia pollen receipt in this study is that more Euphorbia pollen was applied to large 

than small stigmas.  For a fixed amount of heterospecific pollen, a smaller portion of a 

large stigma would be occluded than for a small stigma, but because proportionately 
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more Euphorbia pollen was applied to larger stigmas in this study, stigmatic occlusion 

would not have been lessened for larger stigmas.  Effects of stigma size may also have 

been obscured by the large quantities of heterospecific pollen applied.  For example, 

Linum received approximately 3-fold more total heterospecific pollen in the HPT-small 

treatment and many fold more Euphorbia pollen in the HPT-large treatments than it 

received under natural conditions (compare Euphorbia pollen receipt in Table 4.4 versus 

Table 4.9).  Thus, Linum’s large stigmatic surface area relative to the other species would 

not have mitigated effects of heterospecific pollen receipt in this study, even if it would 

have mitigated effects of  receipt of lesser quantities of heterospecific pollen under 

natural conditions.   

The hypothesis that species that receive more heterospecific pollen in nature will 

be less affected by it was not supported by this study.  My studies show that Linum and 

Viola experienced the second and third highest rates of natural Euphorbia pollen receipt 

per stigma, respectively, among the 29 species examined, and even after adjusting for 

stigmatic area, both species were among the top five recipients of Euphorbia pollen 

(chapter 3).  However, both of these species were negatively affected by Euphorbia 

pollen receipt.  In contrast, Sisyrinchium, Oxytropis, Lithospermum and Comandra, 

which received substantially less heterospecific pollen, were not significantly affected by 

it.  Subsequent tests of this hypothesis with lower rates of heterospecific pollen receipt, 

applied in equal quantities to all species, would provide a more powerful test of this 

hypothesis. 

There was also no support for the hypothesis that species with restrictive 

morphologies are more affected by heterospecific pollen receipt.  Lithospermum and 

Oxytropis, the two species with the most restrictive morphologies, did not show 

significantly reduced fruit or seed set upon application of Euphorbia pollen, whereas 

Linum and Zizia, both of which have unrestrictive morphologies, experienced 

significantly reduced fruit or seed set upon receipt of Euphorbia pollen.  Viola has a 

restrictive morphology and was significantly affected by Euphorbia pollen receipt, but it 

does not support the mechanism because is exceptional in that it, unlike most other 

species with restrictive morphologies, naturally receives large amounts of heterospecific 

pollen.  Thus, although Viola follows the predicted pattern, it does not conform to the 
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logic of the hypothesis, namely that restrictive flowers are more affected by 

heterospecific pollen receipt when it occurs because they receive less heterospecific 

pollen under natural conditions. 

 These studies did not determine the mechanism of interference of Euphorbia 

pollen with the reproduction of Viola, Zizia and Linum.  The lack of a significant effect of 

small amounts of Euphorbia pollen on the fruit or seed set of Zizia and Linum, the two 

species for which this was studied, suggests that if allelopathy is responsible, then the 

allelopathic constituents must be present only in low concentrations.  Alternatively, 

Euphorbia may have clogged stigmatic surfaces, preventing adherence or germination of 

conspecific pollen.  This explanation would also account for why Euphorbia pollen only 

significantly affected fruit or seed set of Zizia and Linum when applied in large 

quantities.  The hypothesis of stigmatic clogging is supported by the finding that for 

Linum less conspecific pollen adhered on stigmas to which large quantities of Euphorbia 

pollen had been applied.   

The greater negative effects for fruit and seed set of Linum and Zizia when an 

extended delay occurred prior to conspecific pollen receipt suggests that the germination 

of Euphorbia pollen is involved in the mechanism of interference.  The importance of the 

time delay for Linum is also apparent in the finding that less conspecific pollen adhered if 

it was applied with a time delay after application of Euphorbia pollen.  This effect of a 

time delay could be due to release of allelopathic chemicals during germination, by 

competition with conspecific pollen tubes for space in the style, or by causing the stigma 

to senesce prematurely.  Euphorbia pollen was found to germinate on and penetrate the 

stigmatic surface of Linum (unpublished data).  It is possible that these events elicited 

reactions in Linum associated with being successfully pollinated, leading the stigma to 

lose receptivity.  Other studies have shown similar effects of time delays.  The seed set of  

Ipomopsis aggregata (Polemoniaceae) was not reduced if heterospecific pollen from 

Delphinium nelsonii (Ranunculaceae) was applied simultaneously with conspecific pollen 

(Kohn and Waser 1985), but seed set was reduced by inducing early stigma closure if 

heterospecific pollen was applied several hours earlier than conspecific pollen (Waser 

and Fugate 1986).  A related study found that seed set of Ipomopsis aggregata was also 

reduced by early application of heterospecific pollen from Castilleja lilnariaefolia 
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(Scrophulariaceae), but not when it was applied simultaneously (Caruso and Alfaro 

2000).  

Although time delay can increase negative effects of heterospecific pollen receipt 

on fruit or seed set, such a delay is not is not always necessary for heterospecific pollen to 

reduce pollination success. In this study, Euphorbia pollen applied immediately prior to 

conspecifc pollen negatively affected reproduction in Viola, and other studies have shown 

that heterospecific pollen reduces seed set even if applied simultaneously with 

conspecific pollen (Randall and Hilu 1990, Brown and Mitchell 2001).  A time delay 

does not always lead to a reduction in reproductive success, as evidenced by a lack of a 

significant effect on Lithospermum, Sisyrinchium, Comandra, and Oxytropis in this 

study.  Similarly, Kwak and Jennersten (1991) found that heterospecific pollen did not 

significantly affect seed set of Viscaria vulgaris (Caryophyllaceae), whether applied 

simultaneously with or several hours prior to conspecific pollen.  As a whole, these 

various results suggest that heterospecific pollen receipt reduces seed set more if received 

a well in advance of conspecific pollen, but that timing of receipt is not the only factor 

influencing the effect of heterospecific pollen receipt. 

 The studies presented here show how different plant species respond to receiving 

large quantities of heterospecific pollen receipt.  However, field studies show that in 

nature receipt rates of Euphorbia and other heterospecific pollen, are substantially lower 

than the quantities applied in these studies and therefore unlikely to affect the 

reproductive success.  For Linum, for example, natural pollen receipt averaged only five 

Euphorbia pollen grains per stigma, approximately 2% as much as the pollen applied in 

the HPT-large treatments.  Similarly, Viola naturally received an average of four 

Euphorbia pollen grains per stigma, compared to an average of 103 in the 2004 

heterospecific pollen transfer study.  Pollen counts were not performed in the other hand-

pollination studies, but it is likely that similar discrepancies occur between natural and 

artificial pollen receipt rates for the other species.  Thus, the study supports the 

contention of Brown and Kodric Brown (1979) that stigmatic occlusion is unlikely to 

naturally occur at high enough rates to substantially influence fruit or seed set. 

Heterospecific pollen receipt may nonetheless be important if pollen is 

allelopathic, allowing it to have an effect at densities too low to substantially occlude the 
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stigma.  Even for pollen demonstrated to be allelopathic, natural pollen receipt rates may 

be too low to lead to allelopathic effects in some cases (Murphy and Aarssen 1989) but 

may be adequate to substantially reduce success in other cases (Murphy 2000).  

Subsequent studies may further improve our understanding of the effect of heterospecific 

pollen receipt by continuing to compare effects across species with different breeding 

systems, stigma sizes and natural rates of heterospecific pollen receipt.  As more studies 

are performed, meta-analyses may also begin to shed light on what plant traits influence 

susceptibility to harm from heterospecific pollen receipt. 
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Table 4.1   Significance testing of fixed effects of year and pollination treatment on 
Oxytropis fruit and seed set, including only cross-pollinate and HPT-large treatments and 
results from 2005 and 2006. 
 
                         Numerator   Denominator 
  d.f.   d.f.       F   P 
a.  Fruit set 
 
Intercept      1    218  13.238   0.0003 
Year      1       30     3.054   0.09 
Treatment      1    218      0.002   0.968 
 
b.  Seed set 
 
Intercept       1   124 231.308 <0.0001 
Year       1     29     1.204   0.28 
Treatment       1  124     2.766   0.10 
 

 

Table 4.2  Significance testing of fixed effects of conspecific pollen receipt and 
Euphorbia pollen receipt on Zizia fruit set for 2006 study.  The unmanipulated treatment 
was excluded from this analysis. 
 

                                Numerator   Denominator 
  d.f.   d.f.       F                P 
Intercept  1     348      3.132   0.078 
Euphorbia Quantity       2     348      6.628   0.002 
Conspecfic Quantity       1     348      0.029   0.87 
 
 
 
Table 4.3   Significance testing of fixed effects of year and Euphorbia pollen receipt 
(large or none) on Zizia fruit set for the 2005 and 2006 studies combined.   
 
                         Numerator   Denominator 
  d.f.   d.f.       F   P 
Year      1       22  0.264   0.61 
Treatment      1    328  9.066   0.003 
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Table 4.4  Quantities (+ s.d.) of Euphorbia and conspecific pollen found on stigmas for 
the 2006 Linum a. HPT quantity study and b. HPT timing study. 
 

                                   Sample     Euphorbia receipt              Linum receipt 
                                      size mean            s.d.              mean         s.d. 
a.  Quantity study   
       Cross-pollinate     15     2.2     2.3 64.3 25.0 
       HPT-small    15   47.1   47.1 59.9 26.0 
       HPT-large              15 338.1 106.2 44.9 24.9 
 
b.  Timing study 
       Cross-pollinate 11     3.1   2.6 61.2 24.1   
       HPT-immediate 13 259.8 80.3 71.0 28.1 
       HPT-delay 13 272.4 90.4 29.5 28.5 
 
 
 
Table 4.5  Significance testing of fixed effects of year and Euphorbia pollen receipt 
(large or none) on Linum a. fruit set and b. seed set for the 2005 and 2006 studies 
combined.   
 
                         Numerator   Denominator 
  d.f.   d.f.       F   P 
a.  Fruit set 
 
Intercept   1    48     2.694  0.11 
Year        1       50      2.094   0.15 
Treatment       1       48      7.630   0.008 
 
b.  Seed set 
 
Intercept      1    100  817.2966   < 0.0001 
Year      1       48        0.0007      0.9783 
Treatment      1    100     24.5098   < 0.0001 
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Table 4.6  Fruit set per flower (a) and seed set per fruit (b) for control and treatment 
flowers for seven species with calculations of absolute and relative effect sizes.  Absolute 
effect size is calculated as the difference in fruit or seed set between treatment and 
control flowers.  Relative effect size is calculated as natural log of treatment fruit or seed 
set divided by control fruit or seed set.  For both absolute and relative effect, negative 
values indicate reduced success upon receipt of Euphorbia pollen. 
 
   Absolute Relative 
Species Control HPT   effect  effect 
a.  Fruit set 
 
Comandra 0.107 0.125   0.018    0.154  
Linum 0.631 0.469 - 0.162  - 0.297 
Lithospermum 0.365 0.283 - 0.082  - 0.255 
Oxytropis 0.643    0.640 - 0.003  - 0.004 
Sisyrinchium  0.791    0.860   0.070  0.085 
Viola 0.333    0.389   0.056  0.154 
Zizia 0.646    0.511 - 0.134   - 0.234 
 
b.  Seed set 
 
Linum   8.39   6.43  -1.96  - 0.266 
Lithospermum   2.21   2.00  -0.21  - 0.010 
Oxytropis   6.94   5.87  -1.06  - 0.166 
Sisyrinchium  19.65 21.09    1.44    0.071 
Viola 25.04 16.10 - 8.94  - 0.442 
 
 
 
Table 4.7  Significance testing of fixed effects of species, Euphorbia pollen receipt (large 
or none), and their interaction and on Linum fruit set. 
 
  Deviance          Residual 
                   d.f.  explained.  d.f.  Deviance   P (Chi)  
Null                       13 189.009 
Species   6  172.395   7   16.613 < 0.0001 
Treatment   1        6.167   6   10.446    0.013 
Species by treatment   6     10.446   0     0.000    0.11   
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Table 4.8  Significance testing of fixed effects of species, heterospecific pollen transfer 
of large amounts of Euphorbia pollen, and their interaction on seed set. 
                                Numerator   Denominator 
  d.f.   d.f.       F   P 
 Intercept      1       425 4180.95    < 0.0001 
Species      4          425     82.23   < 0.0001 
Treatment      1          425     10.32      0.0014 
Species by treatment      4            425       5.74      0.0002 
 
 
 
Table 4.9  Summary of floral morphology, stigmatic area, breeding system, natural rates 
of Euphorbia pollen receipt, and relative effects of Euphorbia pollen on fruit and seed 
set.  Categorization of morphology, stigmatic area, and rates of Euphorbia pollen receipt 
are from study of natural incidence of Euphorbia pollen (chapter 3).  For breeding system 
results, plants were considered self-compatible (s.c.) if the fruit and seed set of self- and 
cross-pollinated flowers were not significantly different; self-incompatible (s.i.) if fruit 
and seed set of self-pollinated flowers was near zero, and partially self-compatible (p.s.c.) 
if fruit and seed set were intermediate between s.c. and s.i.. 
 
 Floral Stigmatic Breeding  Euphorbia     Relative effect____ 
Species Morphology area (mm) System  receipt rate  Fruit set  Seed set 
Comandra Unrestrictive 0.03      s.c.      0.233    0.154         na 
Linum  Unrestrictive 0.25       s.c.      4.8  - 0.297    - 0.266 
Lithospermum Restrictive 0.11       s.i.   0.067  - 0.255    - 0.010 
Oxytropis Restrictive 0.03       p.s.c.  0.0  - 0.004    - 0.166 
Sisyrinchium  Unrestrictive 0.05       s.i.     0.533     0.085      0.071 
Viola  Restrictive 0.07       s.c.    3.95     0.154   - 0.442 
Zizia  Unrestrictive (t.b.d.)       s.c.   n.a.  - 0.234         n.a. 
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Figure 4.1  Fruit set per flower (+ s.e.) for Comandra exposed to different pollination 
treatments.  A.  Breeding system study  B.  Heterospecific pollen transfer (HPT) study.   
Different letters indicate significant differences within each experiment at P < 0.05; for 
the breeding system study differences were not statistically significant.   
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Figure 4.2  Fruit set per flower (+ s.e.) in for Oxytropis exposed to five different 
pollination treatments, for 2005 and 2006.  Treatments indicated ‘na’ were not performed 
in one year.  Lowercase letters indicate significant differences between treatments in 
2005 and uppercase letters indicate differences among treatments in 2006 at P < 0.05. 
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Figure 4.3  Seed set per fruit (+ s.e.) in for Oxytropis exposed to five different pollination 
treatments, for 2005 and 2006.  Treatments indicated ‘na’ were not performed in one 
year.  Letters indicate significant differences between treatments in 2005 at P < 0.05.  No 
significant effects occurred in 2006. 
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Figure 4.4  For Lithospermum, A.  fruit set (proportion of flowers developing at least one 
fruit) (+ s.e.), B. number of seeds per successful flower (+ s.e.), and C. seeds per flower 
(+ s.e.) for three pollination treatments.  No error bar or letter indicating significant 
difference is shown for the unmanipulated treatment in pane B because the only two 
flowers to set fruit in this treatment each developed one seed. 
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Figure 4.5  Fruit set (+ s.e.) for Zizia A. for 2005 study, for five pollination treatments.  
Different letters indicate statistical differences at P < 0.05. B. for 2006 study, fruit set per 
flower (+ s.e.) for unmanipulated flowers, and flowers receiving three different levels of 
Euphorbia pollen (large, small or none) and two different levels of conspecific pollen 
(large or small quantities). See results for significance testing. 
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Figure 4.6  For the breeding system study of Linum, A. fruit set per flower (+ s.e.), and 
B. seed set per fruit (+ s.e.) for three pollination treatments. For both measures, different 
letters indicate statistical differences at P < 0.05. 
 



 118

0.0

0.2

0.4

0.6

0.8

1.0

a

b
b

Cros
s-p

oll
ina

te
HPT

Unm
an

ipu
lat

ed

A
Fr

ui
t s

et

Treatment

0

2

4

6

8

10

12

a

b
a,b

Cros
s-p

oll
ina

te
HPT

Unm
an

ipu
lat

ed

B

S
ee

d 
se

t

 

Figure 4.7  For Linum HPT study in 2005, A. fruit set per flower (+ s.e.), and B. seed set 
per fruit (+ s.e.) for three pollination treatments.  For both measures, different letters 
indicate statistical differences at P < 0.05.   
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Figure 4.8  For Linum HPT studies in 2006, A. fruit set per flower (+ s.e.) for quantity 
study, B. seed set per fruit (+ s.e.) for quantity study, C. fruit set per flower (+ s.e.) for 
timing study, and D. seed set per fruit (+ s.e.) for timing study.  In each case, different 
letters indicate statistical differences at P < 0.05. 
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Chapter 5 
 

A Modeling Framework to Predict Effects of Pollinator Abundance, Constancy and 
Degree of Pollen Carryover on Competition by Interspecific Pollen Loss 

 

ABSTRACT 

 Plant populations compete by pollen loss when interspecific pollen transfer leads 

to decreased conspecific pollen receipt, and consequently decreased fecundity.  It has 

been suggested that pollen carryover mitigates this effect because pollen deposition over 

multiple flowers allows for successful pollination even if pollinators make intervening 

heterospecific visits.  I present analytical and computational models to investigate how 

several factors influence competition by pollen loss.  Like earlier models, my models 

demonstrate that increased relative floral abundance, visitation rates, and pollinator 

constancy decrease competition by pollen loss, but my results demonstrate that some 

earlier models overestimate the effect of pollen loss because they fail to account for 

diminishing returns of multiple visits.  My analytical models demonstrate that carryover 

has no effect on average conspecific pollen receipt, but that carryover decreases 

competition if it does not come at a cost to earlier visited flowers.  Additionally, I present 

a simulation model which indicates that carryover affects the frequency distribution of 

pollen receipt, and the effect of pollen carryover on competition by pollen loss depends 

on the relationship between pollen receipt and reproductive success.  Rare flowers benefit 

from low carryover rates, especially if their pollen receipt thresholds are high, but 

common flowers with low thresholds benefit from increased carryover.  Finally, 

parameterization of the simulation model with empirical values for an herb that has been 

demonstrated to experience competition by pollen loss shows that carryover may increase 

fecundity.  Together, these models suggests that carryover reduces competition by pollen 

loss, but only in some instances, and further that pollen receipt thresholds, degree of 

carryover, and rarity are likely to be correlated traits in plants.
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INTRODUCTION 

Interspecific interactions among plants for pollination are of interest because they 

are predicted to lead to ecological effects, including competitive exclusion for 

simultaneously flowering plants (Levin and Anderson 1970) or coexistence for 

competing species with staggered flowering times (Ishii and Higashi 2001).  

Additionally, such interactions may lead to evolutionary effects, including selection on 

flowering phenology (Waser 1978a, Agren and Fagerstrom 1980, but see Kochmer and 

Handel 1986), floral morphology (Armbruster et al. 1994, Hapeman and Inouye 1997, 

Hansen et al. 2000), and floral specialization under some conditions (Feinsinger 1983, 

Kunin and Shmida 1997).   

Competition by interspecific pollen loss occurs when pollinators deposit pollen of 

one species on flowers of a different species, resulting in reduced conspecific deposition 

to the initial species, and it is one of several mechanisms by which plants of different 

species may compete for pollination (Rathcke 1983, Waser 1983).  Competition by 

interspecific pollen loss has been predicted by analytical models (Levin and Anderson 

1970, Straw 1972, Campbell 1986) and simulation models (Waser 1978b).   Furthermore, 

this mechanism has been detected in laboratory experiments (Feinsinger and Busby 1987, 

Feinsinger and Tiebout 1991, Murcia and Feinsinger 1996), and found to contribute to 

reduced fruit or seed set in the field (Campbell and Motten 1985).  According to a  

previous model, pollen carryover, which refers to the retention of some pollen on a 

pollinator over multiple subsequent flowers, mitigates competition by pollen loss 

(Feldman et al. 2004), but this claim has not been systematically investigated.  In this 

paper, I expand on previous models of competition by interspecific pollen loss by 

developing an analytical model and a closely related simulation model that allow 

investigation of the effects of several variables on the severity of competition by pollen 

loss.  The variables investigated include plant relative abundance, pollinator visitation 

rates and constancy, degree of pollen carryover, and thresholds of pollen receipt 

necessary for pollination success.  Additionally, the models presented here incorporate 

more realistic assumptions than some earlier models, as explained below. 
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The models developed here build upon the model of Levin and Anderson (1970), 

which represents two annual plant species that rely on shared generalist pollinators.  

Their model assumes that no carryover occurs, so only pollinator flights between 

conspecific flowers (i.e. intraspecific flights) result in pollination, and they assume that 

the relative fecundity of each species is proportional to the number of intraspecific flights 

each receives.  With these assumptions and no pollinator preference, the model predicts 

positive frequency dependence and competitive exclusion of the minority species.  

Straw’s (1972) model is similar, but considers a pollinator’s choice of flowers as a first-

order Markov process in which the flower species next visited is influenced by the 

species most recently visited.  According to both models, pollinator constancy, defined as 

a tendency to visit another flower of the same species on the next visit more frequently 

than expected by chance alone, results in decreased competition and slower competitive 

exclusion.   

These models of Levin and Anderson (1970), and Straw (1972) include the 

unrealistic  assumption that fecundity increases linearly with the number of intraspecific 

flights.  As acknowledged by Straw (1972), this assumption may be realistic for low visit 

rates, but for high visit rates pollination success is expected to asymptote because 

additional visits bring pollen to flowers that have already received adequate conspecific 

pollen.  Pollen grains in excess of the number required to fertilize all ovules would not be 

expected to increase fruit or seed set, and consistent with this idea, many supplemental 

pollination studies fail to detect a significant increase in fruit or seed set (Burd 1994, 

Ashman et al. 2004).  Furthermore, a variety of empirical studies have detected an 

asymptotic or decelerating relationship of fruit or seed set as a function of pollen grains 

received (e.g. Campbell 1986, Niesenbaum 1999, Cane and Schiffhauer 2003).  If 

pollinators are saturating and pollen loss is the only mechanism of competition, then 

flowers of competing species should be equally successful regardless of relative 

abundance; however, the aforementioned models would predict success to be 

disproportionately high in the more common species.  Subsequent analytical models and 

the models presented here incorporate an asymptotic relationship between visits and 

success by instead calculating the probability that a flower remains unpollinated after 
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some number of independent pollinator visits (Campbell 1986, Ishii and Higashi 2001, 

Feldman et al. 2004).   

Another possible relationship between pollen receipt and pollination success is 

that of a threshold below which fruit or seed set is disproportionately low, but above 

which it is disproportionately high (e.g. Cane and Schiffhauer 2003).  This pattern may 

occur if low pollen receipt results in fewer ovules fertilized and developing fruits with 

few seeds are likely to abort (Stephenson 1981), or if a critical quantity of pollen 

exudates is required for pollen germination or penetration of the stigma (Brewbaker and 

Majumder 1961, Jennings and Topham 1971).  Even when pollination success is an 

asymptotic function of conspecific pollen receipt, this may be approximated by a 

threshold below which fruit set or seed set is unlikely but above which it is likely.  

Because pollination success is likely to be a non-linear function of the quantity of pollen 

received, models of competition by pollen loss should consider the frequency distribution 

of pollen receipt as well as average receipt.  

An unrealistic assumption of most previous models of competition by 

interspecific pollen loss is that no pollen carryover occurs, so non-consecutive visits to 

one species are assumed to not result in pollination.  In contrast to early assumptions that 

all pollen acquired from one flower is deposited on the next, a variety of empirical studies 

demonstrate that pollinators typically distribute their pollen load over multiple flowers 

(e.g. Thomson and Plowright 1980, Price and Waser 1982, Morris et al. 1994).  Feldman 

et al. (2004) show that pollen carryover may reduce competition by pollen loss because 

pollination can be successful even if a pollinator visits intervening heterospecific flowers 

between conspecific visits.  However, their model may be unrealistic because it assumes 

that pollen carryover to later flowers comes at no cost to earlier visited flowers.  Varying 

pollen carryover rates have also been incorporated into a simulation model of pollen loss 

(Campbell 1986), but this model represents two pollinator taxa that also vary in other 

ways, so the effects of different carryover rates are not isolated. 

 In this paper, I develop an analytical model of competition by pollen loss that 

includes pollinator constancy as a variable and accounts for diminishing returns of 

multiple pollinator visits, and I demonstrate that the results of Levin and Anderson’s 
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(1970) model are a special case of the model presented here for the limit as the pollinator 

visitation rate approaches zero.  In addition, I examine two related models that 

incorporate pollen carryover either 1. by assuming that pollen is carried over across some 

specified number of flowers or 2.  that a constant proportion of pollen is deposited on 

each flower visited.  These two approaches to modeling carryover lead to different 

conclusions about the effect of carryover on competition by pollen loss.  To address these 

differences, I present a simulation model that incorporates pollen carryover and pollen 

loss and allows determination of the frequency distribution of pollen receipt.  These 

frequency distributions help resolve the different conclusions from the two analytical 

models including carryover by showing that pollen carryover has no effect on average 

pollen receipt, but that carryover does affect the distribution of pollen.  For some non-

linear relationships between pollen receipt and pollination success, carryover is expected 

to reduce competition by pollen loss. 

 

THE MODEL 

Analytical model without pollen carryover 

The initial model developed here is similar to that of Campbell (1986) for the 

condition of plants competing by pollen loss but not by stigmatic interference.  Consider 

a community of two simultaneously flowering self-incompatible plants whose spatial 

distributions are well-mixed at the scale of typical pollinator flight distances.  Like Levin 

and Anderson (1970), I consider generalist pollinators that visit both flowering species, 

and initially, I assume initially that the pollinators show no constancy.  Consequently, the 

probability of a pollinator visiting a given species on any particular visit is simply the 

proportion of that flower in the entire community. 

Once a flower has been pollinated, no additional benefit accrues from subsequent 

pollinator visits, an assumption not represented by the models of Levin and Anderson 

(1970) or Straw (1972).  This assumption necessitates specifying a distribution of the 

number of pollinator visits each flower receives, which I represent with a Poisson 

distribution around some expected number of visits.  For the time being, the model will 

also be limited to the scenario in which no pollen carryover occurs, so only conspecific 

flights are capable of leading to seed production.  Then, for each visit of a pollinator to a 
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flower of species A, the probability that the pollinator had most recently visited another 

flower of the same species is simply the proportion of species A in the entire community, 

represented by a.  Thus, the probability that the pollinator most recently visited some 

other species is [1 – a]. 

It follows that the probability, P(s), that a flower is successfully pollinated after a 

given number of visits, i, is given by:  

iaisP )1(1)|( −−=      (5.1) 

Given a Poisson distribution of the number of visits received around some expected 

number of visits, λ, then the probability that a flower of species A receives exactly i visits 

can be calculated by: 

!
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The probability that a flower is successfully pollinated then can be calculated as one 

minus the probability of failure, with the probability of failure calculated as the joint 

probabilities of receiving some number of visits i and being successfully pollinated 

having received i visits, summed across all possible numbers of visits: 
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where Psp indicates the probability of successful pollination.  By performing algebraic 

manipulation, and recognizing the infinite series to be a Taylor series expansion of ex, 

where x equals λ(1-a), equation (5.3) simplifies to: 

 aesP λ−−= 1)(      (5.4) 

Thus, the probability of pollination success increases with an increase in the expected 

number of visits or the proportion of the community comprised by that species (Fig. 5.1). 

 To allow a full comparison with the model of Levin and Anderson, pollinator 

constancy can be incorporated into this model by assuming that upon leaving a flower, 

there is some probability (c) that a pollinator chooses to visit another flower of the same 

species.  Otherwise, there is a probability (1-c) that the pollinator randomly chooses the 
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next species to visit.  Given these assumptions, the following equation may be used to 

calculate the probability of successful pollination for plants potentially receiving 

redundant pollinator visits (see Appendix A for derivation): 

 ))1((1)( accesP −+−−= λ      (5.5) 

 As with the Levin and Anderson model, increased rates of pollinator constancy 

predict an increased probability of pollination success, indicating that competition by 

pollen loss is less severe (Fig. 5.2).  As indicated by Fig 5.2., when pollinators are 

completely constant (c = 1), relative abundance has no effect on expected pollination 

success, and only flowers that receive no visits are unsuccessful.  

Population Dynamic Model 

 Levin and Anderson (1970) initially presented their model of competition by 

pollen loss as a discrete-time population dynamic model of two competing annual plant 

species.  The species were assumed to be identical in all respects, and the community was 

assumed to be saturated, such that the proportion of plants of each species in the next 

generation was equal to the proportion of seeds contributed by each species in the current 

generation.  For comparison to their original model, the same approach is applied here, 

using the derived probabilities of seed set with and without pollinator constancy and 

pollen carryover. 

 The proportional abundance of a species in the next generation is assumed to 

equal the proportion of seeds in the current generation produced by that species out of all 

seeds produced by all species.  To calculate this for a two-species community, it is first 

necessary to calculate an index of seed production for each species, A and B, by 

multiplying the proportion of the community each comprises by its per flower probability 

of seed set given its relative abundance, as determined by Equation 5.4.  Then, to keep 

the overall community size constant, the index of seed production for each species is 

divided by the sum of the indices of seed production for both species, leading to the 

following equations: 
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 Because bt = 1 – at, these equations can be simplified to: 
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 To consider the dynamics of this system, it is useful to consider a graph of the at 

v. at+1 (Fig 5.3).  Wherever the function is over the line y = x, the population size of a is 

increasing, and wherever the function is below this line, the population size of a is 

decreasing.  Furthermore, the greater the distance from the function to the line y = x, the 

faster the population size is changing. 

 Several important findings are apparent in Fig 5.3.  First, as in the Levin and 

Anderson (1970) model, whichever species is initially more abundant increases 

monotonically, so competitive exclusion is inevitably approached.  Second, when the 

expected number of visits is quite small, the shape of the curve resembles that in the 

Levin and Anderson model.  The similarity between the two models can be demonstrated 

by considering that as λ approaches zero, then, using L’Hopital’s Rule, Equation 7 

approaches 
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This is equivalent to the Levin and Anderson models when pollinators exhibit no 

constancy.  However, as the expected number of visits, λ, increases, the curve moves 

closer to the line y = x, indicating that the proportions of the two species change more 

slowly.  In contrast, the Levin and Anderson model assumes that the rate at which 

competitive displacement is approached is independent of the expected number of visits.  

Thus, under the condition that pollinators display no constancy, the Levin and Anderson 
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model may be considered a special case of the model presented here for the condition that 

the rate of pollinator visits approaches zero. 

 A population dynamic model that includes pollinator constancy may also be 

derived (see Appendix A).  This model, like the Levin and Anderson model, 

demonstrates that increased pollinator constancy leads to slower rates of competitive 

exclusion (Fig 5.3).  For any given rate of pollinator constancy, the model developed here 

predicts a slower rate of competitive exclusion than the Levin and Anderson model, and 

the Levin and Anderson model represents the limit of this model as the number of 

pollinator visits approaches zero (Appendix A). 

 

Incorporating Pollen Carryover  

 Pollen carryover can be incorporated into the model in two different ways.  First, 

it may be assumed that due to pollen carryover, a visit may be successful so long as the 

pollinator visited no more than some number, h, of heterospecific flowers since last 

visiting a conspecific flower.  In this case, then as derived in Appendix B, the probability 

of successful pollination may be calculated as: 
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With pollen carryover, as without, the probability of pollination success increases with an 

increase in the expected number of visits or the proportion of the community comprised 

by that species (Fig 5.4).  The probability of pollination success is, however, higher with 

pollen carryover than without, especially when the flower is rare (Fig 5.4). 

It is useful heuristically to consider pollen carryover as occurring only over some 

predetermined number of intervening flowers, but this assumption does not well represent 

the quantities of pollen deposited by a pollinator over sequential visits.  Instead, a second 

approach to incorporating carryover is based on the empirical finding that some fraction 

of the remaining pollen is deposited on each flower a pollinator visits, so pollen loads 

decay over successive visits (Thomson and Plowright 1980, Morris et al. 1994).  It is 

expected that a pollinator carrying less conspecific pollen is correspondingly less likely to 

successfully pollinate a flower it is visiting, so it may be assumed that the probability of 
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pollination success declines with increased numbers of intervening visits in a similar 

manner.  Thus, for each pollinator visit it is necessary to determine both the probability 

that each earlier visited flower was conspecific and the amount of pollen remaining if the 

flower was conspecific.   

 The probability that each earlier visited flower is a conspecific remains a, the 

proportional abundance of the flower.  Now, let r represent the fraction of the pollen 

picked up from a flower that is deposited on each subsequent visit.  The amount of pollen 

remaining on a pollinator from a flower visited some number of visits, j, earlier depends 

on the fraction of the pollen load (1 - r) that is retained over each earlier visit and the 

number of visits between picking up pollen and reaching the current flower.  The 

pollinator then deposits some fraction, r, of the pollen load remaining from that particular 

pollen source.  Thus, the fraction, f, of the initial pollen load from a conspecific flower j 

visits earlier that is deposited on the flower currently being visited is:  

 1)1( −−= j
j rrf      (5.10) 

which is similar to Bateman’s (1947) model of pollen carryover. 

According to these assumptions, an arriving pollinator carries some fraction of the 

initial pollen deposited from all previously visited conspecific flowers, from the most 

recently visited flower (j=1) through many earlier visited flowers, approximated by (j= 

∞).  Because each earlier visited flower has a probability, a, of being conspecific, the 

expected total amount of conspecific pollen receipt (PR|1) by the conspecific flower from 

one visit can be calculated by:   
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which is a geometric series that simplifies to  

aPR =1|      (5.12) 

This indicates that the expected pollen load deposited per visit with carryover is equal to 

the proportional abundance of conspecific flowers in the community. 
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 In the model assuming no pollen carryover, it was assumed that a within-species 

pollinator visit always results in deposition of the entire pollen load and guarantees 

pollination success (P(s) = 1), whereas a pollinator visit with any intervening 

heterospecific flowers results in no conspecific pollen receipt and hence no chance of 

pollination success (P(s) = 0).  To make this model with fractional pollen deposition 

comparable to the earlier model without carryover, it is assumed that the expected 

probability of pollination success per visit is proportional to the expected total fraction of 

a conspecific pollen load that is received on that visit, as represented by equation 12.  

According to this model, the sum of fractional pollen loads deposited on a stigma is 

always between zero and one, inclusively, even if all previously visited flowers are 

conspecific, allowing the sum to be reasonably treated as a probability. 

 Using equation 12 to represent the probability of pollination success on any 

particular visit, the probability of successful pollination given i visits if each visit 

contributes independently to the probability of pollination success may be calculated by: 

( )iaisP −−= 11)|(      (5.13) 

This probability is identical to the probability of pollination success in the earlier model 

assuming no carryover (Equation 1).  It then follows that by incorporating a Poisson 

distribution of visits (Equations 2 and 3) and simplifying, the same expectation of 

pollination success is derived for this model including fractional pollen carryover as in 

the earlier model assuming no carryover, namely: 

aesP λ−−= 1)(                 (5.14) 

 This result indicates that, according to the assumptions of this model, pollen 

carryover does not affect the severity of competition mediated by pollen loss, and the 

expected probability of pollination success is identical regardless of what proportion of 

pollen is deposited on each flower visited.  This result differs from the earlier model of 

carryover across a specified number of flowers (equation 9), which predicts that 

carryover increases the probability of pollination success. 

 Finally, the expected pollen receipt given a Poisson distribution of visits may be 

calculated as the expected amount of pollen received given i visits, weighted by the 
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probability of receiving i visits.  Because, each visit is expected to bring an amount of 

pollen represented by equation 11, total expected pollen receipt may be calculated by: 
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which may be simplified to: 

aPR λ=            (5.16) 

Equation 16 indicates that expected pollen receipt does not vary with the degree of pollen 

carryover. 

Simulation Model Including Pollen Carryover 

Although the model of pollen carryover with proportional deposition of pollen 

loads suggests that the average pollen load is not influenced by the proportion of pollen 

deposited, the frequency distribution of pollen loads received by flowers may 

nevertheless vary with the proportion of pollen deposited.  The distribution of net pollen 

loads received merits investigation to allow predictions of pollination success if success 

is not a linear function of the amount of pollen received.  In particular, a plausible 

scenario for which pollination success would not be a linear function of pollen receipt is 

if success is unlikely below some threshold quantity of pollen received and equally likely 

above the receipt threshold.   

To investigate aspects of the frequency distribution of pollen received, I created a 

simulation model in S programming language based closely on equation 15. The model 

includes an array of 600 plants whose pollen loads are determined.  The algorithm first 

determines the number of visits each flower receives by either assigning a constant 

number of visits to all plants or by sampling from a Poisson distribution around a 

specified expected value.   

Next, the amount of pollen each plant receives from each pollinator visit is 

determined.  To accomplish this, a history of the last 70 flowers visited is independently 

simulated for each pollinator visit with each flower randomly assigned a conspecific or 

heterospecific identity according to the species’ proportional abundance.  For each 

conspecific in the visit history, it is calculated what proportion of the initial pollen load 
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acquired on the pollinator is deposited on the current recipient flower.  This is 

accomplished by multiplying by the term r * (1-r) j-1 (Equation 10), where r represents the 

fraction of pollen deposited and j represents the rank of the flower in the pollinator’s visit 

history (with j = 1 being the most recent flower visited).  The sum of pollen deposited 

from all 70 flowers in the visit history is then determined, and if the flower is assigned 

multiple pollinator visits, the sum across all visit histories is calculated. 

After repeating these steps for each plant, the mean and variance of pollen loads 

received for all 600 recipient plants is calculated.  To compare patterns of pollen receipt 

across a range of pollen carryover values, the entire algorithm after determination of the 

number of pollinator visits to each flower is repeated ten times for values of r (pollen 

deposition rate) from 0.1 to 1.0 for each proportional abundance tested. 

Simulation Model Results 

 Across ten proportional abundances and ten values of r, both linearly spaced from 

0.1 to 1.0, and two expected numbers of visits (λ=1 or 4), the average pollen load 

predicted by the simulation model correlates with the expected value given by equation 

16 (PLsim = 1.01 PLpred – 0.02, r2= 0.999, n=200), confirming that the algorithm 

represents the analytical model well.  On average, the pollen load predicted by the model 

deviated from the analytically calculated pollen load by less than 3%.  As expected from 

Equation 16, the average received pollen load in these simulations was independent of the 

degree of pollen carryover but increased with plant relative abundance and the expected 

number of pollinator visits. 

 Although the degree of pollen carryover has no effect on average pollen receipt, it 

does affect the frequency distribution of pollen.  For each combination of floral 

abundance and expected number of pollinator visits tested, the variance in pollen receipt 

increased with decreasing rates of pollen carryover.  The effect of carryover on the 

frequency distribution of pollen is especially strong for low and consistent numbers of 

pollinator visits, as in simulations when all flowers receive exactly one visit (Fig. 5a-c).  

For flowers receiving one visit when there is a high degree of pollen carryover (small r 

value), pollen receipt is relatively even among all flowers.  In contrast, when there is a 

low degree of pollen carryover (large r value), there is greater range of pollen loads 



 133

received and a sharp transition between flowers receiving small and large pollen loads.  

These patterns hold true for a range of flower relative abundances, although relative 

abundance affects what proportion of flowers receive a small or large pollen load. 

The distributions of pollen receipt loads allow determination of what proportion 

of flowers receive pollen loads equal to or greater than any specified amount.  This 

translates to pollination success if below some threshold of pollen receipt flowers are 

likely to abort, but above that threshold, flowers are likely to successfully mature.  When 

all flowers receive exactly one pollinator visit and pollen receipt thresholds are small, 

then a larger proportion of flowers are successful if there is a high degree of pollen 

carryover (ie. a low rate of pollen deposition)  (Fig 5 a-c).  Conversely, if pollen receipt 

thresholds are large, then a larger proportion of flowers are successful if there is a low 

degree of pollen carryover.  For any relative abundance, there is some threshold where 

pollination success is equal regardless of the degree of carryover, indicated graphically 

by the intersection the respective cumulative frequency distributions. 

 For flowers that receive one pollinator visit, the threshold for which increased 

pollen carryover switches from increasing to decreasing success depends on plant relative 

abundance.  Rare flowers benefit from pollen carryover only if their threshold is low; 

otherwise, pollination success is higher if less carryover occurs (Fig 5.5a).  However, for 

very low thresholds, a higher number of rare flowers are expected to be successfully 

pollinated if a high degree of carryover occurs, whereas fewer flowers are expected to be 

successfully pollinated if little carryover occurs (Fig 5.5a).  For plants of intermediate 

abundance, similar patterns hold, though the advantage of pollen carryover extends to 

higher pollen receipt thresholds (Fig 5.5b).  Additionally, for very low thresholds, the 

benefit of pollen carryover is less for plants of intermediate abundance than for rare 

plants.  Finally, very abundant flowers benefit from pollen carryover only if their pollen 

receipt threshold is very high (Fig 5.5c).  For abundant flowers, for all but the highest 

thresholds, most flowers are successfully pollinated regardless of the degree of carryover, 

so a change in the degree of pollen carryover has little effect on the proportion of flowers 

successfully pollinated.  If, however, the threshold of pollen receipt is quite high (> 0.8 

pollen loads), then a substantially greater proportion of abundant flowers are successfully 

pollinated if there is little pollen carryover (Fig 5.5c). 
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 Incorporation of a random number of pollinator visits into the simulation model 

increases the range of pollen loads received, especially for a greater number of expected 

visits (compare Fig 5.5, D-F with G-I).  Among flowers receiving any particular number 

of visits, pollen carryover continues to effect the distribution of pollen loads received.  

However if the number of visits is allowed to vary, then for any given pollen receipt 

threshold, the degree of pollen carryover has a smaller effect on the proportion of flowers 

successfully pollinated than is the case if all flowers receive exactly one visit.  This effect 

of pollen carryover is particularly small for common plants that are expected to receive a 

large number of visits (e.g. Fig 5.5 I).  Nonetheless, even for flowers potentially receiving 

multiple visits, the degree of carryover may substantially effect the proportion of flowers 

successfully pollinated, particularly for rare or moderately abundant plants and low 

pollen receipt thresholds (e.g. Fig 5.5 D,E,G,H).  Additionally, carryover may still be an 

important determinate of pollination success for rare plants with high receipt thresholds. 

In this case, the degree of carryover could be the difference between small proportion of 

plants or no plants being successfully pollinated. 

 Pollen carryover may affect expected reproductive success even without 

thresholds for pollination success, so long as the relationship between pollination receipt 

and reproductive success (fruit set or seed set) is non-linear.  To illustrate this, I reanalyze 

data of Campbell (1986), who measured pollen deposition rates for the two most common 

visitors to Stellaria pubera, a plant that experiences competition by interspecific pollen 

loss.  The original analysis investigated the effectiveness of these pollinators for plants in 

different spatial configurations, but also included differences in flight direction and flight 

distances, so effects of carryover alone were not isolated.  To focus on the effect of pollen 

carryover, differences in other aspects of these species’ pollinating behavior are not 

included here.  The bee fly Bombylius major and inquiline bee Nomada were reported to 

both collect approximately 140 pollen grains upon visiting staminate S. pubera, and to 

deposit pollen at a rate of 23% and 47%, respectively.  Stellaria pubera flowers are 

approximately twice as likely to be staminate as pistillate (Campbell 1985a), meaning 

that their abundance as a pollen source is two-thirds of their overall floral abundance.  

Pollen receipt in this simulation model was determined in the same way as for the earlier 

described model, using the observed pollen deposition rates specified above as well as 
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more extreme rates of 10% or 90% in order to determine whether more extreme rates 

would lead to stronger effects.  For this model, reproductive success is based on the 

empirically derived non-linear regression of seed counts as a function of pollen receipt, 

according to the equation Y = 5.05(1-e-0.15X) which increases steeply for pollen receipt 

between zero and one-hundred grains, but asymptotes to approximately five seeds per 

flower for increasing quantities of pollen (Fig 6 in Campbell 1986).  Results are analyzed 

for a community in which S. pubera’s relative abundance is either 15% (10% staminate) 

or 50% (33.3% staminate). 

 Simulations indicate that carryover increases fecundity of S. pubera and that the 

difference is greater for extreme values of deposition than moderate values (Fig 5.6).  

Additionally, differences in carryover lead to a greater difference in seed set for rare than 

common plants for both pairs of carryover values.  This result that increased pollen 

carryover increases expected pollination success can be generalized to any situation in 

which there are decreasing marginal returns for pollination success of increased pollen 

receipt (e.g. asymptotic curves).  This conclusion holds because as shown earlier 

increased pollen carryover leads to decreased variance in pollen receipt but no change in 

the average pollen receipt.  For any curve with decreasing marginal returns, the decrease 

in success of those flowers that receive less than the average amount of pollen outweighs 

the increase in success of those flowers that receive more than the average amount of 

pollen.  Thus, success is maximized when variance in pollen receipt is minimized, which 

occurs with a high degree of carryover. 

 

DISCUSSION 

 Both the analytical and the simulation models presented here demonstrate that the 

effect of interspecific competition by pollen loss depends on several factors, including 

pollinator visitation rates and floral constancy, the plant’s relative floral abundance, the 

degree of pollen carryover, and the relationship between a flower’s pollen receipt and 

probability of pollination success.  Some of these factors may be considered attributes 

purely of the plant (e.g. the relationship between pollen receipt and pollination success), 
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or community (relative floral abundance), while others are jointly influenced by the plant 

and pollinators (e.g. floral constancy and degree of pollen carryover).   

Despite the multiple factors involved, several generalizations may be reached 

about how these factors influence the severity of interspecific competition by pollen loss.  

First, in agreement with earlier models, the models presented here suggest that the 

severity of competition by pollen loss is strongest when visitation rates are low and 

diminishes with increased visitation rates.  The models of Levin and Anderson (1970) 

and Straw (1972), which do not correct for redundant visits, overestimate the severity of 

competition by pollen loss for more realistic pollinator visitation rates.  However, the 

analytical model presented here confirms their qualitative finding that increased 

pollinator constancy decreases the severity of competition for pollination.  Additionally, 

the models presented here agree with earlier models that increased floral relative 

abundance decreases the severity of competition for pollination.   

   The effect of pollen carryover on competition by pollen loss is more complex.  

Whether pollen carryover affects competition by pollen loss depends on the relationship 

between the number of pollen grains received and  pollination success.  The analytical 

model demonstrates that the degree of pollen carryover has no effect on the expected 

number of pollen grains received per flower.  This outcome makes intuitive sense 

because once a pollinator has acquired a pollen load from a pollinator, then so long as it 

visits other flowers in proportion to their relative abundances, it will deposit the same 

proportion of that pollen load on conspecifics whether it deposits all pollen at one time or 

smaller quantities of pollen over many consecutive flowers.  However, the degree of 

carryover does affect whether a few flowers receive a large quantity of pollen or whether 

many flowers each receive less pollen.  If pollination success is linearly dependent on the 

number of pollen grains received, then the population’s pollination success would be 

unaffected by the degree of carryover.  In other cases, such as when there are thresholds 

of pollination receipt necessary for pollination success, or when seed set otherwise varies 

non-linearly with pollen receipt, then changes in the distribution of pollen as a result of 

carryover may substantially affect the population’s pollination success.   
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The results of the simulation model help to explain the apparently conflicting 

results between the two analytical models of pollen carryover. The simulation model 

predicts that pollination success is increased by pollen carryover when pollen receipt 

thresholds are low, especially for flowers that are rare or receive few visits.  This benefit 

of carryover in this scenario results from carryover allowing more flowers to cross the 

low receipt threshold necessary for success while not reducing the pollen receipt of 

earlier visited flowers by enough that they drop below the threshold.  These conditions 

are similar to assumptions implicit in the analytical model of carryover across a specified 

number of flowers, namely that receipt of more pollen by later visited flowers increases 

their success without substantially reducing the success of earlier visited flowers.  Thus, 

the model of carryover across a specified number of flowers may be a useful 

approximation for flowers that have low pollen receipt thresholds.  The simulation model 

also agrees with the analytical model with fractional pollen deposition inasmuch as both 

predict that average pollen receipt is not affected by the degree of carryover.  Predictions 

only differ between this analytical model and the simulation model because the former 

assumes that pollination success is linearly dependent on pollen receipt, while the latter 

assumes a non-linear relationship.  A linear relationship between pollen receipt and 

pollination success could conceivably occur for flowers that have many ovules relative to 

typical pollen loads and that ripen fruit regardless of the proportion of ovules fertilized.  

When applying these models of pollen loss to a specific plant, determination of the 

relationship between pollen receipt and pollination success is essential for choosing the 

appropriate analytical model or for parameterizing a simulation model, as done here and 

by Campbell for the data of Campbell (1986). 

 The simulation model is constructed around randomly determining pollinator visit 

numbers, and each pollinator’s previous visit history from specified distributions rather 

than representing pollinators and plants as agents in a spatially explicit model.  This 

approach was chosen to mimic as closely as possible the assumptions of the analytical 

model.  However, an agent based model was also constructed that represented a single 

pollinator visiting each plant in an array in random order, with pollen acquired and 

deposited according to similar rules, and the outcome of the model was qualitatively 
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similar to the simulation results presented here for the case of one pollinator visit per 

flower (B. Montgomery, unpublished data). 

 The new models presented here suggest important considerations for both 

empirical studies of competition by pollen loss and for modeling approaches generally.  

For studies of competition by pollen loss, our different model results emphasize the 

importance of investigating the relationship between pollen receipt and the probability of 

pollination success before predicting the importance of pollen loss in any given system.   

Additionally, the simulation model suggests that empirical investigations of the effect of 

carryover on competition for pollen loss are most likely to detect effects for rare plants 

that receive few pollinator visits.  More generally, a comparison of the analytical and 

simulation models emphasizes the importance of considering the variation around the 

expected outcome predicted by a model.  The analytical model, based solely on means, 

suggests that carryover is unimportant, while the simulation model, which captures the 

distribution in pollen loads received, suggests that carryover may be important even if it 

does not affect mean pollen receipt.  This lesson parallels conclusions from optimal 

foraging models, in which the importance of investigating the distribution of foraging 

success was recognized only after a period of focusing solely on the expected foraging 

success (Pyke 1984), and echoes the advice of Lertzman and Gass (1983) that when 

investigating patterns of pollen transfer, it is important to consider variation as well as 

central tendencies.   

 The models presented here make several simplifying assumptions.  First, they 

ignore the possibility of geitonogamous pollen transfer, the occurrence of which is 

decreased with increased pollen carryover (Geber 1985, Robertson 1992, Morris et al. 

1994, Johnson and Edwards 2000).  The results of these models are thus most directly 

applicable to plants with one or few flowers open and in female phase simultaneously, or 

to plants whose floral arrangement and phenology minimizes the possibility of 

geitonogamous self-pollination (Bertin and Newman 1993).  In this paper, the degree of 

carryover only relates to the number of flowers receiving pollen or the proportion of 

pollen distributed to each flower from a pollen donor, and only for simplicity is it 

assumed that pollen is deposited on immediately following consecutive flowers.  The 

model would equally apply to a scenario, such as is typical in orchids, in which pollen 
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deposition is delayed for some period before deposition occurs, after which time pollen is 

deposited either at once or over a sequence of flowers (Johnson and Edwards 2000).  As 

this scenario avoids geitonamy, the model could be applied to it even for plants with 

multiple inflorescences simultaneously open.  A related phenomenon is that instead of a 

smooth decrease in the amount of pollen deposited over sequential flowers, pollen 

deposition may be hit-and-miss, with some flowers receiving little or no pollen 

interspersed with other flowers receiving decreasing amounts of pollen.  This has been 

found in simulation models (Lertzman and Gass 1983), as well as empirical studies (e.g. 

Thomson and Plowright 1980, but infrequently in Waser and Price 1984, Rademaker et 

al. 1997).  The models presented here can be interpreted to include flowers in the visit 

history that receive no pollen despite being visited.  Effectively, these misses would just 

mean that the visitation rates functionally experienced by the plants would be lower than 

the rate determined by counting pollinator visits. 

 The analytical model of carryover with fractional pollen deposition, and the 

simulation model both assume that a constant fraction of pollen is deposited on each visit.  

However, it has been suggested from empirical studies that upon acquiring a pollen load 

pollinators deposit more pollen on both flowers visited soon afterwards and flowers at the 

end of the pollen deposition curve than is predicted by this “single-geometric” model 

(Morris et al. 1994, Harder and Wilson 1998).  This may occur if pollen deposition rates 

vary according to the pollen’s horizontal location on a pollinator, the pollen’s depth in 

pollen layers on the pollinator, or variation in pollen deposition between pollinators 

(Lertzman and Gass 1983, Harder and Wilson 1998).  Following previous models (e.g. 

Bateman 1947, Plowright and Hartling 1981, Campbell 1986, Robertson 1992, de Jong et 

al. 1993), I elected to maintain the single-geometric model for its simplicity and 

mathematical tractability, and suggest that the model captures patterns of pollen 

deposition with different carryover rates that are similar to more realistic curves that 

require more parameters.   

 The models presented here make another simplification in omitting terms to 

account for pollen loss that results from pollen falling or being groomed off pollinators in 

flight or from pollen being deposited on flower parts other than the stigma (see discussion 

in Harder and Barrett 1996).  However, empirical studies have shown that only a small 
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fraction of pollen acquired by pollinators is deposited on stigmas of conspecifics (Murcia 

and Feinsinger 1996, Rademaker et al. 1997).  Implicitly, the models here assume that the 

same fraction of pollen acquired by pollinators is lost to these non-stigmatic pools, 

regardless of the degree of carryover, and that the model applies to the remaining fraction 

of pollen that the pollinator will deposit on stigmas.  However, examining the effect of 

explicitly incorporating pollen loss to non-stigmatic pools into the models presented here 

may be a worthwhile endeavor.   

 The models developed here are constructed primarily as ecological models, 

predicting pollination success as a function of plant and pollinator abundances and plant 

traits, and they do not explicitly model selection.  For the situation modeled here without 

the complication of geitonogamy, selection for maternal success should select for stigmas 

that acquire more conspecific pollen from each pollinator, at least up to a point at which 

no further benefit accrues.  The models come closer to representing male fitness, as 

selection would favor pollen donors whose pollen is distributed in a manner that 

optimizes the number of stigmas that attain at least a threshold pollen load.  However, to 

fully represent male fitness, it would be necessary to also take into account the number of 

ovules fertilized by each male for cases in which pollen from multiple flowers reaches the 

same stigma.  Furthermore, for plants with multiple flowers open simultaneously, 

selection imposed by geitonogamy may lead to different patterns of selection (de Jong et 

al. 1993).  Finally, it should be noted that the actual carryover rate may vary from the 

optimum for the plant because pollinator traits as well as plant traits may influence the 

degree of carryover (Waser and Price 1983, Geber 1985).   

Although the model does not represent selection explicitly, it does suggest 

patterns that could be tested for in cross-species comparisons.  Across species, pollen 

receipt thresholds are likely to vary with the number of ovules per flower, which vary 

across at least seven orders of magnitude from flowers with one ovule to orchid flowers, 

which may contain several million ovules (Johnson and Edwards 2000).  The simulation 

model suggests that higher thresholds of pollen receipt should be associated with 

decreased rates of pollen carryover, whereas lower thresholds should be associated with 

increased carryover.  Furthermore, it has been argued that flowers show adaptations for 

rarity (Kunin 1997) and the model suggests that the association between thresholds and 
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the degree of pollen carryover should be strongest for rare flowers receiving few visits, 

and weaker for more common flowers or flowers receiving more visits.  In this light, it is 

interesting to consider floral traits of orchids, which tend to be rare and require receipt of 

large numbers of pollen grains to fertilize the many ovules.  Consistent with this model, 

orchid pollen is delivered in pollinaria, which leads to pollen being delivered in packages 

with large quantities of pollen, although even in orchids, some species exhibit fractional 

pollen deposition (Johnson and Edwards 2000). 

 This model considers only one mechanism by which plants may compete 

interspecifically for pollination – they may also compete by loss of visits (Chittka and 

Schürkens 2001, Brown et al. 2002) or by decreased pollination success due to receipt of 

interspecific pollen (Waser 1978a, Murphy and Aarssen 1995a).  Other models have 

considered the joint effects of changes in visit rates and loss of pollen (Feldman et al. 

2004), and pollen loss and interspecific pollen receipt (Waser 1978b, Campbell 1986) but 

further investigations may profitably investigate how these mechanisms interact to affect 

competition for pollination for varying degrees of pollen carryover and pollen receipt 

thresholds. 
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APPENDIX A 

Incorporation of pollinator constancy into analytical models 

1.  No pollen carryover 

 If no pollen carryover occurs, then only conspecific pollinator flights result in 

pollination.  A pollinator exhibits constancy and intentionally seeks out a conspecific 

flower with a probability c, but randomly chooses the next species of flower to visit with 

a probability (1-c), in which case it will randomly visit a flower of species A according to 

its proportional abundance (a).  Then, as demonstrated by Levin and Anderson (1970), 

the overall probability of a pollinator making a conspecific flight upon leaving a flower 

of species A may be represented by: 

accsP )1()( 1| −+=       (5.A1) 

Given i visits, the probability of successful pollination may be calculated as one 

minus the probability that each independent visit is unsuccessful, as represented by: 
i
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 Assuming a Poisson distribution of visits about a mean of λ, the overall 

probability of pollination success may then be calculated as: 
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By performing algebraic manipulation, and recognizing the infinite series to be a Taylor 

series expansion of ex, where x equals λ[1-(c+(1-c)a)], it may be shown that equation 

(A3) simplifies to: 
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2.  Discrete-time population dynamic version of model including pollinator constancy 

 To develop a discrete-time population dynamic model including pollinator 

constancy, I start with the discrete time model lacking a term for pollinator constancy 

(Equation 16), but modify it by substituting the probabilities of a pollinator making a 

conspecific flight upon leaving a flower of species A or B with constancy taken into 

account.  For species A, this is represented by equation A1, and for species B by the 

equation Psp|1 =  c + (1-c)(1-a), giving 
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 At the limit, as the expected rate of pollinator visits, λ, approaches zero, equation 

A5 approaches the Levin and Anderson model including pollinator constancy, namely: 
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APPENDIX B   

Incorporation of pollinator carryover into analytical models: 

Assume that a visit is successful so long as the pollinator has visited no more than 

some number, h, of interspecific flowers since last visiting a conspecific flower.  Then for 

each pollinator visit, the probability that the pollinator did not visit a flower of the same 

species in either of the two most recent visits is given by [1-a]h+1.  For example, if it is 

assumed that pollen carryover can occur over one intervening flower (h=1), then the 

probability of pollination success from one visit is equal to the probability that at least 

one of the previously two visited flowers was conspecific, or [1-a]2.  The probability of a 

flower being successfully pollinated after i visits is then: 

ih
i aP )1()1(1 +−−=      (5.B1) 

 Consequently, the probability of a flower being successfully pollinated with 

pollen carryover over c intervening flowers can be calculated by modifying equation (3) 

to the following: 
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By recognizing that Equation (6) contains a Taylor series expansion, it may be 

demonstrated that  
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Figure 5.1  Probability of pollination success as a function of plant relative abundance 
and number of expected pollinator visits (λ) for case of no pollen carryover and no 
pollinator constancy. 
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Figure 5.2  Probability of pollination success for three values of pollinator constancy, c, 
for a plant with 25% relative abundance (a = 0.25) and two expected visits per flower (λ 
= 2). 
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Figure 5.3  Discrete-time map of abundance of species A at time t+1 as a function of 
abundance at time t for two expected numbers of pollinator visits (λ) and two rates of 
pollinator constancy (c).   
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Figure 5.4  Probability of pollination success for case of no pollen carryover (h = 0), or 
carryover across one or two intervening flowers (h = 1,2 respectively) (a) as a function of 
relative abundance for a plant that receives an average of two visits per flower  (b) as a 
function of number of expected visits for a plant that comprises 30% of community.   
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Figure 5.5  Cumulative frequency distribution of pollen loads received for 600 flowers 
receiving exactly one visit (A – C), a Poisson distribution of visits around a mean of 1 
visit (D – F) or a Poisson distribution of visits around a mean of 3 visits (G – I), for plants 
with relative abundances of 10% (A, D, G), 50% (B, E, H) or 90% (C, F, I), for a 10% 
rate of pollen deposition (high carryover) or 90% pollen deposition (low carryover).  
Note variation in scale of y-axis among graphs. 
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Figure 5.6  Cumulative frequency distribution of seed set for 600 flowers receiving a 
Poisson distribution of visits around a mean of three visits, for a species whose staminate 
flowers represent 10% (A, C) or 33.3% (B, D)of the floral community.  More extreme 
deposition rates are contrasted in A and B, while moderate deposition rates, as measured 
for the two most common visitors to Stellaria pubera are contrasted in C and D.  Arrows 
indicate average seed set for each deposition rate, and percentages indicate reduction in 
seed set with the higher deposition rate (reduced carryover).  Deposition rates and 
relationship of pollen receipt to seed set are based on parameter estimates of Campbell 
(1986), as explained in the text.
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Conclusions 
 

 The overarching goal of these studies was to develop and test hypotheses about 

how different floral and reproductive traits influence plants’ susceptibility to 

experiencing interspecific competition for pollination.  The first four chapters, 

empirically investigating competition for pollination, were designed to assay the potential 

for the introduced plant Euphorbia esula to interfere with the pollination of prairie 

species with a range of floral and reproductive traits.  The intent of the final chapter was 

to refine models of pollination success in scenarios where pollen could be lost to 

heterospecific stigmas in order to develop hypotheses about how plant and pollinator 

abundance and the degree of pollen carryover affect pollination success. 

 The first two chapters investigated the effects of proximity to Euphorbia on 

Sisyrinchium campestre, a self-incompatible plant with an unrestrictive morphology, and 

Viola pedatifida, a self-compatible plant with a restrictive floral morphology.  The 

difference in floral restrictiveness suggests that Sisyrinchium is more likely than Viola to 

receive Euphorbia pollen, but a comparison of Euphorbia pollen receipt rates between 

these studies indicates that Viola receives more Euphorbia pollen per stigma than 

Sisyrinchium.  There are multiple possible explanations for this outcome.  First, all three 

species were primarily visited by solitary bees, which would create opportunities for 

pollinator sharing despite the different morphologies.  Additionally, Sisyrinchium flowers 

were far more abundant than Viola, and it is possible that as a result pollinators showed 

increased loyalty to Sisyrinchium while making more interspecific flights to Viola.  Viola 

stigmas also persist for several days, whereas Sisyrinchium stigmas typically only persist 

for one day, and this extra time could allow more opportunities for heterospecific pollen 

transfer to Viola. 

 I had hypothesized that Viola would be more affected than Sisyrinchium by 

heterospecific pollen receipt because Sisyrinchium, being self-incompatible, would be 
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expected to have adaptations minimizing deleterious effects of ‘improper’ (sensu Rathcke 

1983) self-pollen, and these adaptations could also minimize effects of heterospecific 

pollen receipt.  I hypothesized that Viola, being self-compatible, would be less likely to 

possess traits minimizing effects of improper pollen receipt.  In keeping with this set of 

hypotheses, Viola experienced decreased seed set as a result of Euphorbia pollen receipt, 

whereas neither fruit nor seed set was affected for Sisyrinchium. 

 I also investigated fruit and seed set of both species either near to or 

approximately ten meters from Euphorbia for both species in order to determine whether 

either experiences decreased pollination success near Euphorbia.   Neither species 

experienced decreased reproductive success at these distances, and for Viola the trend 

was toward increased success in close proximity to Euphorbia.  For Sisyrinchium, hand-

pollination failed to significantly increase fruit or seed set, indicating that pollinator 

service was not limiting at either distance.  For Viola, patterns were not significantly 

different for chasmogamous and cleistogamous flowers, indicating that the trend toward 

increased success near Euphorbia was not attributable to differences in pollinator service.  

Overall, these results suggest that both species share pollinators with Euphorbia, but that 

neither species experiences reduced reproductive success as a result of interactions with 

Euphorbia.  

 In the next two chapters, I sought to determine whether patterns of pollen 

incidence and effects observed for Sisyrinchium and Viola were similar across a broader 

array of species.  In chapter 3, I compared rates of heterospecific pollen receipt and 

stigma sizes across 29 species which were categorized as having unrestrictive or 

restrictive floral morphologies.  I found that as hypothesized, but counter to the pattern 

observed for Sisyrinchium and Viola, flowers with restrictive morphologies received less 

Euphorbia and other heterospecific pollen than flowers with unrestrictive morphologies.  

This discrepancy in results illustrates the importance of investigating patterns across a 

diverse assemblage of species, rather than generalizing patterns from comparisons 

between two species.  In chapter 3, I also found that average stigma size was smaller for 

species with restrictive than unrestrictive morphologies.  This result in conjunction with 

the finding of greater heterospecific pollen receipt for flowers with unrestrictive 

morphologies is consistent with the hypothesis that a large stigma functions to decrease 
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the effect of heterospecific pollen receipt.  To my knowledge this is the first test of this 

hypothesis. 

 The final empirical chapter investigates the effect of Euphorbia pollen receipt for 

five species in addition to previously described results for Viola and Sisyrinchium, for a 

total of seven species.  Breeding system studies and associated evidence suggests that 

five of the species are self-compatible whereas two (Sisyrinchium and Lithospermum 

canescens) are self-incompatible.  Three species were classified as having restrictive 

morphologies, whereas four were classified as having unrestrictive morphologies.  Large 

quantities of Euphorbia pollen, applied with a time delay for all species except Viola, 

were found to decrease fruit or seed set for three species, whereas the remaining four 

species were unaffected.  There was no clear trend for the effect of Euphorbia pollen 

receipt to differ between restrictive and unrestrictive flowers.  There was a suggestion 

that self-incompatible species are less affected by Euphorbia pollen receipt than self-

compatible species, as neither self-incompatible species was significantly affected.  

However, larger sample sizes would be necessary to test this conclusion statistically. 

Overall, these studies suggest that Euphorbia is relatively unlikely to decrease the 

fruit or seed set of simultaneously flowering species due to heterospecific pollen receipt.  

Considering the three species significantly affected, the effect of Viola apparently 

depended on the order of pollen arrival, as fruit and seed of flowers exposed to 

Euphorbia pollen after conspecific pollen was similar to flowers receiving only 

outcrossed pollen.  The effect on Linum and Zizea of Euphorbia pollen receipt was 

significantly different from control flowers receiving just conspecific pollen only when 

the amount of Euphorbia pollen received was quite large and delivered long before 

conspecific pollen.  For both Linum and Zizea, these conditions probably occur rarely in 

nature.  These results suggest that application of large amounts of heterospecific pollen 

exaggerate the effects on fruit and seed set.  This may be a useful technique to compare 

the relative effects of heterospecific pollen receipt among species with different traits.  

However, if the goal is to determine how pollination success is likely to be affected under 

natural conditions, then these results emphasize the importance of applying heterospecific 

pollen in biologically reasonable quantities and timing regimes. 
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The research presented here does not definitively answer whether the presence of 

Euphorbia affects the pollination of simultaneously flowering species.  This study 

suggests that heterospecific pollen receipt in naturally occurring quantities and timing 

regimes is unlikely to result in reduced pollination success.  However, species flowering 

simultaneously with Euphorbia could still experience loss of pollen to Euphorbia flowers 

or decreased visit rates in the presence of Euphorbia.  A related study at a different 

location in fact found decreased pollinator visit rates and decreased conspecific pollen 

receipt for some species nearby Euphorbia, but fruit and seed set were not measured 

(Larson et al. 2006).  The potential for these effects were investigated in this study only 

for Sisyrinchium and Viola, and for these two species plants distant from Euphorbia were 

typically still within 20 meters.  Future studies would benefit from measuring fruit and 

seed set of multiple species nearby Euphorbia and at larger distances from Euphorbia.  

Such a study should also have similar native plant communities at both locations, 

conditions that could not be satisfied at the prairie used for this study. 

In the final chapter, I developed analytical and simulation models to investigate 

how plant relative abundance, pollinator visit rates, and the degree of pollen carryover 

affect the probability of pollination success for populations susceptible to competition by 

loss of pollen to heterospecifics.  My model demonstrates that predictions resulting from 

the classic model of competition by pollen loss (Levin and Anderson 1970) are accurate 

only for the extreme case of pollinator visit rates approaching zero.  Under more realistic 

scenarios, the classic model would overestimate effects of competition by this 

mechanism.  My analytical models also call into question the hypothesis that pollen 

carryover reduces competition by pollen loss by making clear that expected pollen receipt 

per stigma is unaffected by pollen carryover.  This implies that pollen carryover can only 

reduce competition by pollen loss if the relationship between pollen receipt and 

pollination success is non-linear.   

 To address the potential importance of a non-linear relationship between pollen 

receipt and pollination success, I created a simulation model based closely on the 

assumptions of the analytical model, but allowing different functional forms of the pollen 

receipt – pollination success relationship.  The model suggests that if a threshold of 

pollen grain receipt is necessary for pollination success, then for low thresholds, 
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pollination carryover increases expected pollination success.  In contrast, for high 

thresholds, pollen carryover decreases expected pollination success.  Finally, the model 

indicates that if pollination success is an increasing but decelerating function of pollen 

receipt, then pollen carryover is expected to mitigate effects of competition by pollen 

loss. 

 In conclusion, in this research I have worked to further develop and test 

hypotheses about which traits affect a plant’s susceptibility to experiencing effects of 

competition for pollination.  Unlike previous studies, I have sought to investigate the 

importance of different traits, including floral restrictiveness, breeding system and stigma 

size, by investigating effects across a large range of species.  I also examined the 

potential for competition for pollination in greater depth for a subset of two species with 

contrasting floral traits.  Finally, I have furthered our theoretical understanding of 

competition for pollination by refining models of this interaction and developing 

hypotheses about the circumstances in which pollen carryover could affect this 

interaction. 
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