390285-3-T

Electromagnetic scattering and radiation
from microstrip patch antennas and arrays
residing in a cavity

e
AT

f

J. M. Jin, J. L. Volakis, and A. Alexanian

Morthrop Corporation
BZ Division
Pico Rivera CA 90660

April 1992



WL © OLL2) c\



Electromagnetic Scattering and Radiation
from Microstrip Patch Antennas and
Arrays Residing in a Cavity

Abstract

A new hybrid method is presented for the analysis of the scat-
ring and radiation by conformal antennas and arrays. The method
employs a finite element formulation within the cavity and the bound-
ary integral (exact boundary condition) for terminating the mesh. By
virtue of the finite element discretization, the method has no restric-
tions on the geometry and composition of the cavity or its termination.
Furthermore, because of the convolutional nature of the boundary in-
tegral and the inherent sparseness of the finite element matrix, the
storage requirement is kept very low at O(n). These unique features
of the method have already been exploited in other scattering appli-
cations and have permitted the analysis of large size structures with
remarkable efficiency. In this report, we describe the method’s for-
mulation and implementation for finite microstrip patch arrays with
superstrate and substrate configurations. Also, various modelling ap-
proaches are investigated and implemented for characterizing a variety
of feed structures to permit the computation of the input impedance
and radiation pattern. Many computational examples are presented
which demonstrate the method’s versatility, modeling capability and
accuracy.
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1 Introduction

This project dealt with the development of a new method for computing
the scattering and radiation by planar and conformal antennas such as those
illustrated in Figures 1 and 2. It was motivated by the lack of available
software for such characterizations which are in turn important for designing
and analyzing telemetry antennas with minimal backscattering effects.

Our first objective with this project was to develop the proposed mathe-
matical formulation for a configuration such as that shown in Figure 1 with
as little geometrical and electrical restrictions as possible. This prompted use
of the finite element method for modeling the cavity region (including feed
and radiating elements). Also, to avoid compromise in accuracy, the mesh
was terminated via the boundary integral equation which was enforced at
the cavity aperture. A challenge was the concurrent solution of the systems
which results from the finite element and boundary integral methods. This
required the development of a suitable solution scheme that maintained an
O(n) memory demand. A unique iterative solution scheme making use of
the biconjugate gradient method along with the fast fourier transform was
therefore developed which proved very successful in accomplishing this goal.

Much of the effort during this phase of the project was expended in de-
veloping and coding the formulation with the aim of validating it as outlined

in the proposal. However, because of the unusual success of the solution



method, we also proceeded with additional improvements of the formulation.
In general, the method was demonstrated capable of characterizations dealing
with finite size substrates, a variety of patch shapes, substrate/superstrates,
lumped loads, various feeds, material homogeneities, distributed loads such
as resistive sheets and parasitic elements of any shape and configuration.
This is owed to the versatility and adaptability of the finite element method,
making the method unique in this respect. It is thus suitable in forming
the basis of a general purpose code for this most popular class of anten-
nas. A distinct characteristic of the method over standard approaches is
the elimination of the need to employ a green’s function which involves the
substrate/superstrate parameters and surrounding geometry. The derivation
of such green’s functions is not possible for most cases or must be redone
for each individual geometry. In contrast, the proposed formulation makes
use of the same free space green’s function regardless of the antenna’s ge-
ometrical properties. Variations in substrate geometry, antenna/feed shape
and materials are treated in the context of the finite element method (FEM)
whose formulation is unaffected by such variations.

Below we summarize the formulation of the proposed finite element
boundary integral method (FE-BI) which was described at some detail in
the first bimonthly report. This is followed by a section on the method’s

attributes and capabilities. Several computations of scattering and radia-



tion for various antennas configurations are also given which demonstrate

the method’s accuracy and versatility.

2 Formulation

Consider the three-dimensional structure illustrated in Figure 1. The specific
configuration consists of a microstrip patch antennas or array residing on or
embedded in the substrate. The whole structure is residing in a cavity which
is recessed in a ground plane. We will denote the free space region above
the plane (z > 0) as region I and that inside the cavity (-t < z < 0) as
region II occupying the volume V. We will further assume that the cavity
is filled with an inhomogeneous material having a relative permittivity €, (r)
and relative permeability u, (r).

In accordance with the equivalence principle [6], the fields in the two
regions can be decoupled by closing the aperture with a perfect conductor

and introducing the equivalent magnetic current
M=Exz (1)

over the extent of the aperture, where E is the electric field at the aperture
(2 = 0). The field in region I is then due to the radiation caused by the
equivalent current M residing on the ground plane and possibly by other

impressed external sources (J., M) in the upper half space. Accordingly, by



invoking image theory we have

Hl(r) = Hi(r) + H'(r) - 2jkoYs //S Go(r, ') o M(r') S’ 2)
where H denotes the incident field due to (J.,M.) and H" is that reflected
by the ground plane without the aperture. Also, ko = 27/X is the free space
wavenumber, Zy = 1/Y, is the free space intrinsic impedance, S denotes the

planar surface area of the aperture and Go is the free-space dyadic Green’s

function given by

= = 1
Go(r,r') = (I + pVV) Go(r,r') (3)
0
with
T . n . a .n d G , e—jkoll‘—l"l
=XX+yy +2z an o(r,r)—m.

Note, however, that when the antenna is in the radiation mode, no external
sources (Je, M,) exist and, therefore, the first two terms on the right hand
side of (2) disappear.

Enforcing continuity of the tangential electric fields across the aperture,
we find that the field in region II can be represented by the radiation of
the equivalent magnetic current —M and other impressed internal sources
(J;,M;) which can be used to model various feed structures. The fields in
the two regions are then coupled by enforcing continuity of the tangential

magnetic fields across the aperture. This gives
7 x H(M,J.,M,) =2 x H(-M,J;,M;) at 2=0 (4)
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where H! and H! denote the magnetic fields in regions I and II, respectively.
The fields in the cavity region (region II) can be formulated using the
finite element method. Specifically, the cavity fields are demanded to satisfy

the variational equation
§F =0 (5)

where the functional F is given by

F(E") = % ///V [ui (V xE") o (V x E") - k2¢,E" o Eﬂl av

+ /// [jkOZOJi oEI_ lMi o (V % EII)] dv
v P

+jkoZo S,[fg (E" x HY) ¢ 1dS (6)

if the variation is taken with respect to the electric field. In (6), V denotes the
volume occupied by region II, S.,, corresponds to the surface that encloses V
and n denotes the unit vector normal to the surface, pointing away from the
cavity. The second volume integral represents the radiation of the impressed
internal sources (J;, M;).

To solve (6), it is necessary that the fields be known over the surface
specified by Scay. Obviously, the boundary condition to be imposed on the
conducting boundaries of the cavity and also on the surface of the patch

antennas is

fxET=0 (7)



Substituting this into (6) eliminates the portion of the surface integral over
the conducting boundary of the cavity (that is, there is no power flow through
the metallic portion of Sc,y). It remains to specify the boundary condition
over the cavity’s aperture and this is given by (1). Enforcing the continuity

condition (4), we obtain

F = % ///V [;1- (Vx ET) o (V x ET) - k2¢,E o EH] av
+ ///V [jkOZOJ,- oEI_ —1—M,~ o (Vx EH)} v
—2k2//M [/ Golr, ') o )ds']ds

— ikoZo // M(r r)+ H(r)] dS (8)

which can be discretized via the finite element method for a solution of M
and the internal field EI'. Once M is found, the far zone scattered or radiated
field can be easily computed from

e~ Jkor

Hs(r) — _jkOYE) ﬂ 0" & . M .’I) Y )ejkosmﬂ(a: cos ¢+’ sin @) dz' dy (9)

2rr

where (r,0, ¢) are the usual spherical coordinates of the observation point.

The radar cross section (RCS) of the structure is then given by

H*(r)|?
o= lim 47rr2| .
r—oo  |Hi(r)[2

(10)

The input impedance and antenna gain can also obtained from the solution

of EIL,



The discretization of the functional F as given in (8) was accomplished by
subdividing the cavity volume as a collection of rectangular bricks (not nec-
essarily of equal sides). Within each brick the fields were then expanded in
terms of edge-based or vector basis functions. The coeflicients of this expan-
sion correspond to the fields parallel to each edge forming the rectangular
brick. In contrast to the usual nodal basis/shape functions the aforemen-
tioned vector bases are rid of several shortcomings. Most importantly, they
are not associated with spurious resonances and are further well behaved at
* metallic corners and edges. As a result, the resulting system is well-behaved
and converges more rapidly than usual.

The details of the discretization of F' are given in the first bimonthly
report and are thus omitted here. In general, the resulting system can be
written in the form

14] {9} = {8} (11)
where [A] is a symmetric matrix composed of a large sparse submatrix and a
small full submatrix which is associated with the aperture nodes. The column
{#} represents the unknown element edge fields and {b} is the resultant
excitation vector. A most efficient method for solving this system is the
biconjugate gradient (BicG) method. The required solution algorithm is as

follows:



Initialize the residual and search vectors with an initial guess zo:

po =10 = b— Az

Iterate for k = 0,1,2,...:

(Tky k)
Qg —_—
(Pk,APk)
Tiy1r = Tk + Qppk
Tee1 = Tk — arpApk
B, = (Tk+1,7‘k+1>
(T'k, Tk)

De+1 = Tre1 + BrPk

Terminate when

_ lIresall

err = < tolerance.
18]

In the algorithm, (z,y) = 27y, where T denotes the transpose of the column.

The memory required for implementing this solution algorithm is approx-

imately
120N; + 100N,
where
N; = total numbers of unknowns
Ny = number of unknowns at the aperture.
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Clearly, this is a relatively low memory demand for an exact solution, and
an important attribute of the method.

In the next section we present various applications of the formuulation
which demonstrate its versatility, efficiency, accuracy and overall capability.
However, before doing so we first discuss the modeling of various configura-

tions which will be encountered in these applications.

3 Modeling considerations

In this section we consider the modelling of the conducting patches, mi-
crostrip transmission lines, impedance loads, resistive cards, shorting pins
and coaxial feeds in the context of the finite element — boundary integral
formulation. We also discuss some computational aspects related to the im-
plementation of the technique.

3.1 Conducting patches and microstrip transmission

lines

The modelling of the conducting patches is straightforward and is carried
out by setting the tangential electric field components to zero for the élement
sides coinciding with the patch. The modelling of microstrip transmission
lines is treated in exactly the same manner. We remark, though, that owing
to the use of the edge-based expansion functions, no special condition needs

to be imposed on the transverse components of the electric field at the patch
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or stripline edges.

3.2 Impedance loads and shorting pins

An impedance load of Z;, ohms can be modelled as a post of finite conduc-
tivity joining both the patch and the base of the cavity. Assuming a post of
length [ and cross section s, the required conductivity of the post to represent
the load must be ¢ = {/(Z1s). Accordingly, its contribution to the matrix

element A;; is

jkOZOI [/ e e
s uNi o N; dv

where the integration is over the volume of the post and INY are the shape
functions. Provided the post is very thin, this reduces to j IcoZglzN?oN;3 /ZL,
where NY ¢ N¢ takes its value at the position of the post. Further, if the thin
post is coincident with the ith edge, then it only contributes to A;; and this
contribution is jkoZol?/Zy. The short-circuit (Z1, = 0) condition is usually
realized with a shorting pin and two approaches can be used in this case.
One approach is to represent it with a post of high conductivity and another
is to simply set the electric field along the post to zero. We have observed

that the final solution is unaffected by the choice of the model.

3.3 Coaxial feeds and gap generators

We consider two types of models for simulating a coaxial feed via this tech-

nique. For thin substrates the coaxial feed may be replaced by a current
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filament and in this case, the contribution to the matrix element is simply
JkoZoll @ N, where I denotes the electric current of the filament and [ is
its length. For thicker substrates a magnetic frill current model may be em-
ployed. In this case, the inner conductor of the coaxial feed is modelled as a
conducting post and an equivalent magnetic current is introduced over the
aperture of the coaxial feed. This is similar to the treatment for the cavity
aperture, except that the free space region is now replaced by the coaxial

waveguide. Finally, one may resort to a simple gap generator for the exci-

tation whose modelling amounts to specifying a priori the field across the

gap.
3.4 Resistive cards

A resistive sheet is an infinitesimally thin sheet of certain resistivity R (2 per
square), capable of supporting an electric current flowing on its surfaces. In
practice, these sheets are made by sputtering/spraying conducting material
on a thin membrane whose dielectric constant is nearly unity. Mathemati-

cally, the sheet can be modelled by enforcing the boundary condition
nx(nxE)=-RIJ (12)

where n denotes the outward unit vector normal to the resistive sheet, J
denotes the current on the sheet and E is the field measured at the location

of the sheet. Whereas the tangential electric field is continuous across the
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resistive sheet, the introduction of the surface current creates a discontinuous
tangential magnetic field. Assuming that the magnetic field on one side is
H* (A/m) and that on the other side is H™ (A/m) (fi points from the “~”

side to “+” side), from (36) we have
fAix(ixE)=-Rax(Ht-H"). (13)

Because of the discontinuous magnetic field, the functional F' given by (6)
or (8) must be supplemented with the addition of a boundary integral over the
surface of the resistive card S,. Essentially, this implies that the last surface
integral must now be carried out over S,y and over both sides of the resistive
surface S,. For continuous magnetic fields at S, the sum of the integrals from
each side of the surface S, would, of course, yield zero contribution. This is
not, however, the case when the condition (36) is imposed at S,, in which

case the functional (6) must be supplemented by the terms

ikoZo //S Ee(H x0)dS (14)
and

—jkoz(,]/s' E e (H* x A)dS. | (15)

Combining the two integrals and invoking the resistive sheet condition (2)

we obtain
. 1 A m
—]k(,zo//& =Eoffi x (i x )] dS
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= ikoZe [/S ]lz(ﬁ X E) s (i x E)dS (16)

and as noted before, R denotes the resistivity of the resistive sheet and it
was not factored out of the integral since it can be a function of position. As

a result, (6) can be written as

F(E) = %///‘/[%(VXE)o(VxE)—kSerEoE] dv
+///[]kOZOJ E——M (VxE)] v

chozogj(g (E x H).ﬁds

+ koo //S %z—(ﬁ X E) e ( x E)dS (17)

The integral over S, is discretized following the procedure outlined above,

i.e. by replacing the fields with their expansion given in (16).

4 Applications

To demonstrate the method’s versatility, capability and accuracy, a computer
code was written on the basis of the proposed formulation. This code employs
its own mesh generator and was used to compute the scattering the radiation
for a variety of antenna configurations. Several of these computations were
already reported in the second bimonthly report. Here we summarize these
results and we incorporate a few more. In addition, we also show some

results scattering by a finite array of metal cavities. These results relate to a
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companion project but are included here because they are based on the same

formulation.

Test Example 1: RCS of a single patch residing in a finite cavity

The geometry of this configuration is given in Figure 3. The patch is 1.448in
x 1.038in and resides on a dielectric substrate having thickness ¢t = 0.057in
and relative permittivity ¢, =~ 4.0. The substrate is housed in a 2.89in
x 2.10in x 0.057in rectangular cavity recessed in a ground plane. This
configuration is subjected to a 0 polarized plane wave incident in the zz plane.
The backscatter zz pattern for this excitation at 9.2GHz is shown in Figure 4
and is seen to be in good agreement with the measured data [1]. Figure 5
shows the corresponding backscatter pattern of the cavity in isolation (i.e.
patch is removed). As seen, the calculated pattern is again in good agreement

with the measured data.

Test Example 2: Input impedance computation with probe feed

The specific antenna geometry is shown in Figure 6 consisting of a patch
3.4cm X 5.0cm residing at the aperture of a 7.5cm X 5.lcm cavity. The
substrate is of thickness ¢t = 0.08779 and has a relative permittivity ¢, = 2.17
with a loss tangent of 0.0015. Figure 7 shows the complex input impedance

as a function of frequency with the probe feed placed at (1.22cm, 0.85cm).
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These calculations were done in the presence of a 50 resistor (lumped load)
placed between the patch and substrate at (—2.2cm, —1.5cm). Our calcula-
tions are seen to be in good agreement with the measured data [2] whereas
corresponding calculations using traditional methods are not as accurate.
We remark that the 500 load (509 resistive) serves to reduce the RCS of the
patch at resonance. However, it also reduces the antenna gain. It has been
observed though that at resonance the dB reduction in RCS is twice that of
the gain (i.e. if the gain is reduced by 5dB, the RCS will be reduced by ap-
proximately 10dB). Unfortunately, the resistors do not have any appreciable
effect on the RCS when the patch is illuminated with a frequency out of its

resonant frequency.

Test Example 3: Input impedance of a microstrip line feed patch

The specific configuration is illustrated in Figure 8. It is a 4.02cm x 4.02cm
patch fed by a 502 microstrip line at 2.01cm from the nearest corner. The
substrate is 0.159cm thick and has a permittivity of €, = 2.55 with a loss
tangent of tané = 0.002. Figure 9 shows on a Smith chart the calculated
input impedance referenced to the point where the microstrip line joins the
patch. The different points comprising the contour on the chart correspond
to different calculation frequencies. Except for a slight shift in frequency,

it is seen that our calculations are in good agreement with those given by
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Bailey and Deshpande (3], who employed the traditional moment method.
It should be remarked though that for our calculations the patch was placed
on a finite substrate whereas those in [3] were computed for an infinite one.
The agreement shown in Figure 9 simply points out that the finite substrate

does not play a significant role on the radiation properties of the patch.

Test example 4: Input impedance of a strip line fed microstrip patch

The configuration is illustrated in Figure 10. The patch is 2.5cm x 4.0cm
and resides on a finite substrate of size 7.5cm x 7.5cm. The stripline is
0.5cm wide and is sandwiched between two dielectric layers each of thickness
0.15cm and having €, = 2.2. It is electromagnetically coupled to the patch
as illustrated in the figure. The input impedance (referred to A) for this
configuration is plotted on a Smith chart in Figure 11 for different frequencies
about resonance. The S;; parameter for a similar configuration is plotted in

Figure 10.

Test example 5: Radiation pattern of a single patch

The geometry of the pertinent patch is given in Figure 12 along with the
associated FE and H-plane radiation pattern at f = 2.62GHz. The patch is
3.66cm x 3.66cm and resides at the aperture of a 5.20cm x 7.32cm the sub-

strate is of thickness 0.158cm, has permittivity ¢, = 2.17 and a loss tangent
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tan 6 = 0.001. We remark that cavity terminations have negligible effect on
the radiation pattern and the same-is true for the feed point. However, the

input impedance is strongly dependent on the location and type of the feed.

Test example 6: Radiation pattern of a 3 x 3 patch array

The patches of this array are identical to those described in test example 5.
They are 5.49cm apart in the z-direction and 3.90cm apart in the y-direction
and reside in the aperture of a 18.3cm x 13.0cm. With the patches uniformly
fed, the E and H radiation patterns are shown in Figure 14 and these were

computed at 2.92GHz.

Test example 7: Radiation pattern of a 200 element array

This is a 13 x 16 element array. Each element is identical to that in test
example 5 and is separated from its adjacent the same distances given in test
example 6. The radiation pattern of this array is of the expected form and is
shown in Figure 15. What is impressive though is the size of the system (more
than 120,000 unknowns) which was solved to generate this pattern. Most
impressive is the fast convergence of the solution. Normally most iterative
routines converge in N/3 iterations whereas this system converged in only

100 iterations!
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Test example 8: Characterization of a dielectrically coated patch

To reduce the RCS of the patch we consider the possibility of coating it with
a lossy ferrite material as shown in Figure 16. The RCS of this patch as a
function of the coating’s thickness is shown in Figure 17. It is clearly seen that
the RCS is reduced more than the gain, which is a desirable result. We remark
that the calculations in Figure 17 were performed at the resonant frequency
of the coated patch which is plotted in Figure 18. The input impedance of the
coated patch at the resonant frequency is shown in Figure 19. Finally, a plot
of the RCS as a function of frequency for the coated patch with ¢ = 0.15cm
is given in Figure 20. The RCS peaks occur at the resonant frequency. It is
observed that although the coating reduces the RCS in the operating band

of the patch it does not do the same away from resonance.

Test example 9: Characterization of a patch loaded with a resistive skirt

As seen from test example 8, the placement of a dielectric coating did not
reduce the RCS of the patch. In fact, the RCS was increased for frequencies
above resonance. The usual approach for reducing the RCS at resonance
is to place lumped loads (see test example 2) at the patch edges and this
reduces the RCS and gain (dB RCS reduction is twice that of the gain) of
the patch. However, it was found that the lumped loads do not affect the

RCS above resonance where the structural contribution of the patch plays
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a significant role. After some investigation, we found that a rather effective
method for reducing the RCS at higher frequencies without substantially
affecting the patch’s radiation performance performance was to attach a thin
ribbon of resistive sheet at the patch’s edges as shown in Figure 21. The
corresponding RCS of the patch with and without the resistive skirt is shown
in the same figure, and it is seen that the R-skirt nearly eliminates all resonant
characteristics of the patch above the first resonance. In contrast the gain
of the patch at the first resonance is only nominally reduced by 4-5 dB, as

illustrated in Figure 22. The radiation pattern is unaffected.

Test example 10: Scattering by a 5 x 5 cavity array

This example demonstrates the method’s capability in modeling radomes
and arrays of patches residing in different but adjacent cavities. Such is the
nature of the configuration depicted in Figure 23, which displays an array
of 5 x 5 patches residing in individual rectangular metallic cavities. For our
computations the cavity base will be assumed metallic, but if kept open, the
array may then represent a bandpass radome. The radiating element can be
placed anywhere in the cavity, but its most usual position is at the aperture,
as shown. The reflection coefficient and active resistance of such an array
as a function of scanning angle is shown in Figure 24. For this particular

example, there is obviously no blindness angle other than at grazing. How-
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ever, blindness may occur at other angles as well, even when the cavities are
separated by metallic walls. Thus, the lack or presence of surface waves does
not necessarily control the blindness angles of the array.

The backscatter RCS patterns for a similar 5 x 5 cavity array with the
patch removed is shown in Figur¢ 25. These patterns are compared with
measured data and the agreement is indeed excellent. Two grating lobes are
seen in these patterns. One occurs at 23 degrees from normal and the other

is seen at about 55 degrees.

5 Conclusions

From the above, it is quite clear that we have developed a new formula-
tion which is rid of the usual limitations associated with previous numerical
approaches. Such approaches are suited for special purpose antennas, i.e.
either rectangular or circular patches but not both; do not allow for lumped
and distributed loading and are only suited for simple feed models; do not
readily permit variations in antenna shape and conformity; do not permit
modeling of finite length substrates/superstrates; are not suited for finite
size arrays and do not account for coupling effects associated with substrate
terminations. Moreover, the analysis of circularly conformal arrays has been
beyond their reach in spite of continuous attempts to develop a usable anal-

ysis based on traditional methods. The developed method does not suffer
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from these geometrical /modeling limitations and is computationally efficient.
It is therefore well suited in forming the basis of the software platform for
the analysis and design of conformal microstrip patch antennas and arrays.
The development of such a platform requires the incorporation of several
peripheral software for defining the geometry, the finite element mesh, the
desired output parameters and an appropriate user interface. As outlined in
our subsequent proposal, the analytical methodology must also be modified
to allow for cylindrically curved antennas and arrays, since the present de-
- velopment was intentionally restricted to planar arrays. The methodology is
still applicable to this type of antenna configuration but must be revised to
employ a different green’s function and volume element for discretizing the

cylindrical substrate/superstrate.
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Normal incidence normalized RCS and Gain of the patch in Figure 15
as a function of coating thickness at the resonant frequency.

Resonant frequency of the coated patch in Figure 16 as a function of
coating thickness.

Input resistance of the coated patch in Figure 16 as a function of coating
thickness.

Normal incidence RCS of the coated patch in Figure 16 as a function of
frequency. Comparison of data calculated with and without a coating
of thickness 0.15cm.

Geometry of the patch loaded with a resistive skirt at the edges and its
backscatter RCS as a function of frequency. The RCS was computed
at an incidence angle of 70 degrees from the normal.

Gain and RCS of the patch in Figure 21 at near resonance.
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Figure 23.

Figure 24.

Figure 25.

Array of patches residing on the surface of individual rectangular cav-
ities.

Reflection coeflicient and active resistance as a function of scan angle for
the 5 x 5 cavity-backed patch array in Figure 23. For this computation
T = T, = 5cm, the cavity size is 4.5cm X 4.5cm X 0.2cm, f = 3GHz
and the patch size is 3cm X 3cm. Also, the cavity is filled with a
dielectric having ¢, = 2.80.

Principal backscatter pattern of the 5 x 5 cavity array shown in Fig-
ure 23 with the patch removed. For this computation T, = T, = 4cm,
d = 0.45cm, and f = 9.1GHz. (a) E, pattern; (b) E, pattern.
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Fig. 1 Geometry of a microstrip patch array in a cavity.



<«—— Conformal array

Figure 2. Geometry of a conformal microstrip patch array.
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Figure 3. Geometry of the cavity-backed patch antenna whose radar cross section

is given in Figures 4 and 5. The cavity’s depth is 0.057 inches and the
substrate has €, = 4.
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Figure 4. Comparison of the computed and measured 8-polarized zz-plane back-
scatter RCS of the planar antenna shown in Figure 3 at 9.2 GHz.
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Computed and measured 6-polarized zz2-plane backscatter RCS of the

cavity shown in Figure 3 with the patch removed at 9.2GHz.



3.4 cm |._

+—5. 1 cm —»

Figure 6. Geometry of the cavity-backed probe-fed patch antenna whose input
impedance is given in Figure 7. The cavity’s depth is 0.08779cm and

has ¢, = 2.17 with a loss tangent of 0.0015.
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Figure 7. Comparison of computed and measured [2] input impedances of the
probe-fed patch shown in Figure 6 loaded with a 50() resistor at (zp =
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0.85cm). (a) Real part; (b) reactive part.



X measured [3]

11§

slilseciiieact coveomiur(fi) 00 comox
1353

RADIALLY SCALLD MRAM(T(RS

o L3

- tomace ume [*

e

.
- 33 [

3

HEA R R ]
}:s TOws 00 Lt ¢ 0TS e
jleg sy e N s
Hels 12 ¢ 2
ittt :
A3
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Figure 8. Geometry of the microstrip line-fed patch whose input impedance is
given in Figure 9.
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Figure 10. Geometry of the stripline-fed patch whose input impedance and reflec-
tion coefficient are shown in Figures 11 and 12. The substrate has
¢, = 2.2 and the stripline is 0.159cm below the patch and 0.159cm
above the ground plane.
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Calculated input impedance of the stripline-fed patch shown in Fig-
ure 10 at frequencies from 3.0GHz-4.0GHz. The impedance is refer-

enced to point below the patch’s edge.
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Figure 12. Calculated Sp; scattering coeflicient to the stripline-fed patch shown in

Figure 10.
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T, T=0.158 cm

. er=2.17

B — X tand=0.001
AN N=1280

> f=2.62 GHz

(1.31 cm, 0.78 cm)

0O -10 -20 -30 -30 -20 -10 O
Relative Power (dB)

Calculated E and H plane radiatio pattern of the illustrated cavity-
backed patch at 2.62GHz. The feed is at (1.31cm, 0.78cm), the patch

size is 3.66cm X 2.60cm. The substrate is housed in a 7.32cm x 5.20cm
x 0.158cm cavity.
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Figure 14.

3x3 array
N=6423
f=2.62 GH

90°

0 -10 -20 -30 -30 20 -10 O
Relative Power (dB)

Calculated E and H plane radiation patterns of a 3 x 3 cavity-backed
patch array at 2.62GHz. The patches are uniformly fed and identical
in size to that in Figure 13. Their centers are 5.49cm apart in the
z-direction and 3.90cm apart in the y-direction. The entire array is
housed in 18.3cm X 13cm x 0.158cm cavity.
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Figure 16. Geometry of the dielectrically coated patch. The coating has ¢, =
10.2 — 3.8, g, = 2.12 — j1.5. The lower substrate has ¢, = 2.17.
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Figure 17. Normal incidence normalized RCS and Gain of the patch in Figure 15
as a function of coating thickness at the resonant frequency.
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Figure 18. Resonant frequency of the coated patch in Figure 16 as a function of
coating thickness.

Uy



300.
280.
260. |
240.

220. f

Rin in Ohms

200. |
180. F

160. F

140. F

120.:...l.l..IL...I,.‘Ll_,._I____
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Thickness of Dielectric Pétch incm

Figure 19. Input resistance of the coated patch in Figure 16 as a function of coating
thickness.
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Figure 20. Normal incidence RCS of the coated patch in Figure 16 as a function of
frequency. Comparison of data calculated with and without a coating
of thickness 0.15cm.
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RCS of a patch in a cavity with and w/o resistive loading at the edges

R -skirt: 0.15625 cm wide
R=05

Vllllllllllll’lllll

patch : 5.0 cm x 3.4375 cm
cavity : 9375 cm x 9375 cm
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Frequency in GHz

Figure 21. Geometry of the patch loaded with a resistive skirt at the edges and its
backscatter RCS as a function of frequency. The RCS was computed
at an incidence angle of 70 degrees from the normal.
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Figure 22. Gain and RCS of the patch in Figure 21 at near resonance.

uy



N

\k\\\\\\‘i\\\\\\\\\

&\\\\\\\\\\\\\k\\
\ 'Q\\\\\\\\Y\\‘Q\\\k\}\
‘M\\\\‘Q\\\

(LY ///)7 (LA,

Y L P 7,

DAY

T

\}&\\\\\\\\\\\\\\
N
§§gk
\\\\\\\\\\\\\\

‘&\\\\\\V.\‘Q\\\\\
\!!IIIIII

’/V/X// ’” ///////ﬁ/y ////A////Z’ /7
//// A /./,'é";/ /4/ //g/ﬂ A /ZZ SIS //// /?
/ %% %% %2 Z
4 7 ) | W ’%'
z . 1A
Il bl )
'7///////////////// //////////////////// A/////////////////// 7 /////////////////// /
/ /////'7/// IS AT 4/‘% SIS AT ////// A,
2z %27

/ %% %27 %
Z 27 %27 %27 %
Vil ?
Z 2% 2% A VP Z
Z %% %22 %7 Z
Z %27 %% 2% Z
Z %27 2% %% /
Z %27 %% %%
Z %% %7 Z
?/ W /7 éf/// /7// 46///// /// //5/‘/5/5/ /ﬁ' // _)r
1 ?é ) P
] %27 %% %% Z
Z Z 7
L El ] ER
Z %7 %% %7 Z
7 2% %% %7 J
T /////////A////V 7 A v

1€ >|

Ty
Top view

T Il [T T [ 4o

Cross-sectional view

Figure 23. Array of patches residing on the surface of individual rectangular
cavities.

44



Reflection Coefficient

1.00
—— E-Plane e

b 075F e
g8 T e H-Plane ..~
@) ol
=
S  050f -
3]
o)
e 0.25

0 OO .... - 1 1 1 1 |

00 150 300 450 600 750 90.0

(a) Scanning angle (degrees)

Active Resistance

150.

E 1 25 N ——— E-Plane

9 ------------

8 100. F == ".\‘\ """ H-Plane

g

g st .

a N e

Qo N e

R~ 5.+ N L - .

(] .

2 -‘
8 25 . \“
<

O. 1 1 1 1 1 3

00 150 300 450 600 750 900

(b) Scanning angle (degrees)

Figure 24. Reflection coefficient and active resistance as a function of scan angle for
the 5 x 5 cavity-backed patch array in Figure 23. For this computation
T, = T, = 5cm, the cavity size is 4.5cm x 4.5cm x 0.2cm, f = 3GHz
and the patch size is 3cm x 3cm. Also, the cavity is filled with a
dielectric having ¢, = 2.80.
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Figure 25. Principal backscatter pattern of the 5 x 5 cavity array shown in « g
ure 23 with the patch removed. For this computation T; = T, = 4cm,
d = 0.45cm, and f = 9.1GHz. (a) Ey pattern; (b) E4 pattern.
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Appendix 1

Discretization of the volume region

For a numerical implementation of (5) we must first discretize the functionals
by subdividing V and S into smaller volume and surface elements, respec-

tively. Considering (8), it is convenient to rewrite the functional F' as
F=Fy+Fs+Fr+Fg (A1)

where Fy is the volume integral

1 1 [(oE, OE,\®> (8E, OE,\’ (8E, OE,\’
pos L]0 0B (%Y (05 5

dy 0z 0z Oz
— k3¢, (E2 + E2 + E?)} dV (A2)

obtained by expanding the appropriate integrand in (8) and Fs denotes the

surface integral

— _ 92 ~ ’ ’ '
Fs = —2k% [ M(x) o [ /) Go(r,r)oM(r)dS] ds. (A3)
The remaining portion of F is associated with the sources and is given by
. 1
Fr= ///V [Jkozo.],- *E— Mo (Vx E)] dv (Ad)
and
Fg = —2jkoZ, M H'(r)d A
5 = ~2jkZ | M(r) e H(r) dS (A5)
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upon using the relation 2 x H™(r) = 2xH'(r). For simplicity, we have omitted
the superscript II and this practice will be continued in the remaining portion
of the report.

To discretize (A2) we subdivide the volume V into M, small volume
elements such as tetrahedra, triangular prisms, or rectangular bricks. The
ideal element for the discretization of rectangular cavities or those that can
be modelled as a collection of rectangular volumes is the rectangular brick
illustrated in Figure Al. For arbitrarily shaped cavities, triangular prisms
‘and tetrahedra may be used but in this report we restrict our attention
to rectangular bricks. Consider the rectangular brick of dimensions a x
b x c, representing the eth element, as illustrated in Figure Al. The field

components within this element may be expressed as

4

E. =) N(y,2)¢%; E, = ZNc (z,2)¢5;; E. = Z s (A6)
J=1

where N7, N;: and Nf; are the expansion or shape functions given by

Ne, = (b=y')(c=2") . Ne. = y'(e=2') | Ne, = &= ! Ne = ¥2
zl — be ’ 2 — be ; 3 — ) z4 T pe

e _ (c=2")(a-7') . e _ 2Z(a=z') , e _ (c=2)z' | e _ 2'z'
Nyl - ca ’ Ny2 - ca ’ Ny3 - ca ’ Ny4

~ Tca

e (a—z Mb-y! e _ z'(b—y') . e _ (a=z)y' | e _ z'y
Nzl Nz2 - ab N Nz4 ==t

) ’ 237  ab ab

In these, (z',y',2') denote the local coordinates specifying a point within
the eth element and from an examination of the expansion functions we ob-

serve that @3, represents an average of the field component E, along the
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edge segment (1,2). Likewise, ¢¢, is associated with the E, component along
the edge (3,4), ¢2; corresponds to the E, component along the edge (5,6)
and ¢¢, is associated with the E; component along the edge (7,8). Similar
identifications can, of course, be made for ¢}; and ¢;;. Therefore, i Noi
and Nf; can be termed as edge-based expansion functions, in contrast to the
traditional node-based expansion functions. A feature of these functions is
that they satisfy the divergence condition within the volume of the element
and this permits the elimination of the usual penalty term. Also, the edge-
based functions allow a convenient enforcement of the required boundary
conditions at the dielectric interfaces and conducting walls. Furthermore,
the edge-based functions avoid an explicit specification of the fields at the
corners and edges, where these may be singular. This is not, however, permit-
ted when employing the node-based expansion functions unless special basis
functions (which model the singular behavior of the fields) are incorporated
into the formulation leading to a much more complicated implementation.
Substituting (A6) into (A2) yields the portion of Fy attributed to the
eth element. The complete expression for Fy is then obtained by sum-
ming/assembling the contributions from all elements. This yields a functional
in terms of the unknown field components which must be found to satisfy (5).

In accordance with the Rayleigh-Ritz procedure this is equivalent to setting

the derivatives of F' with respect to the fields ¢¢; (p = z,y, z) equal to zero.
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Differentiating the portion of Fy attributed to the eth element with respect

to the field ¢¢; we obtain

aF‘e/ - ! 1 aN;{ aN;J 6N:i aNz‘ej 2 e nre e
age; Z[//ve e {[ dy Oy t 5 8 Foerpr NeiNa;
BNB aN;J e __ aNe aIV:.‘I e dV

0y Oz "9z 0Oz

(A7)

Similarly, by differentiating with respect to the other field components we

have
oFg ON; 8N§J . ON;; ON;;  ON; ON¢;
0%, Z/[/e { oz Oy = ¥ { 0z Oz + 0z 0=z

ON;; ON;; .
6z Oy }dV

— k26, NN ] (A8)

LA

and

oFy ¢ 1 ON¢, aN§J . ONg aN;fJ ¢
ags, z:[//ve u,{ 9z 8z % 9y 0z
6Nzei aNzej aN:i aN:j 2 e are
[63: 5% 3 oy — ko€ pur N; N, dv. (A9)

+

We observe that if €, and p, are assumed constant within the eth element,
all integrals in (A7)—-(A9) can be evaluated analytically. The results of this
evaluation are as follows:

Let

(K2°)ij /] NN, dV  p=z,y,z.
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Then

4 2 21
abc 2 41 2
[KOO] 21 4 2
1 2 2 4
To evaluate
ON;; BNe
{qq [/ = b b 9 = bJ b
veaq 6q p=1,Y,2, ¢ =2,Y,2
let
2 -2 1 -1
o l-2 2 -1 1
=1 1 1 o 9
-1 1 -2 2
and
2 1 =2 -1
1 2 -1 =2
Kl=1 o 1 2
-1 =2 1 2
In terms of these submatrices we find
ab
[K’”’]— [Kl] [(”]‘—[Kzl

(K] = aum, [K5] = ool

be ac
)y _ K Yy —
[Kz ] 6a [1{1]’ [ z ] 6b[1(2]

To evaluate

BNe ONE.
(K2)i; //V —2dV  p==z,y,2, ¢=2,y,2

Bq Op
let
2 1 -2 -1
-2 -1 2 1
(K] = 1 2 -1 =2
-1 =2 1 2
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Then
(K%)= £lkal, (K3 = SIKs), [KZ) = 1K),

and other elements are given by
[ qu] [ qu]T
Discretization of the boundary equation

Let us now consider the discretization of the surface integral in (A3). A
difficulty in the evaluation of this integral is the usual singularity associated
with the derivatives of the free space Green’s function. This, however, can
be avoided by transfering the derivatives to the current. To do so, we invoke

a common vector identity and the divergence theorem, leading to
Fs = -2 //S M(r) o [kg JM@E)Go(r, ) as'
+V //S V' o M(r')Go(r, ') dS’] dS. (A10)
Through the same process, (A10) can be further rewritten as
Fs = —2R // M(r) o [ / M(r') Go(r,r')dS’] ds
+2//v M(r [/ V' o M(r )Go(rr)dS'] ds, (Al1)

and by invoking (1) we obtain

Fs = -2 [[ B, [ I E,Gods'] ds — 2k2 // E, [ JJE.6o dS’] ds
+2// ( 5 ) [//( )Gods’] ds,  (A12)
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which can be discretized by subdividing S into M, smaller surface elements.
Substituting (A6) into (A12) and replacing S in the first pair of integrals
with S¢, the area of the eth surface element, gives the portion of Fs attributed
to the eth element. As noted earlier, to enforce the stationarity condition we
need the derivatives of Fs with respect to the fields ¢;; and ¢5;. For the eth

element we have

gisi = _2]‘“‘3[/SCN;£ l:%[izz:¢ // Ne GodS] (A13)

e=1j=1
+2//eazve [2;// (aNf’ - (;V )GodS'] s,
g(g = -2k} //S NV [ﬁ;gﬁj / . N;,Go dS’] ds (A14)
_2//2 AN, [21?:1// <aN:, ;J_aaNyf] E>G0ds,} i,

and 0F§/0¢%; = 0 since Fy is not a function of E,. We note that in deriving
(A13) and (A14) the differentiation was performed only with respect to the
node fields outside the square brackets in (A12) while those introduced by
substituting (2) into (6) remained unaffected.

It remains to discretize (A4) and (A5) which involve the excitation fields.

Let us consider (A4) first. By expanding the integrand in (A4), we have
F = jkZ o+ By + BuJia) 4V = ]
1 = jkZo [[[ (Budia+ Eydiy + Budic) dV - /wr[(a 82)
0E, OE, 0E,
+ ( az - E) Mty + ( a ) tz] A15
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By introducing the expansion (16), we obtain

gf’ —JkoZo/// NiJigdV — ///V - (6Nz, 'y~ a@l;M,-,) dV,(A16)

gz = jkoZo ///V NpiJiydV - ///V - (aNyz - a_(f)gv_"M,.x) dv, (A17)

and

gg = jtoto [[f, NedeaV - ///V ” (BN“ ~ %Miy) dV. (A18)

Now let us consider (A5). By replacing M with E in accordance with (1) we

obtain
Fi = 2jko 7 / [ (B.H} - B,H}) ds. (A19)

This can again be discretized by introducing the expansion (A6), and by

doing so we obtain (for the eth element)

aF = 2koZo // N&H: dS (A20)
and

OFg : e 17i

5ar = ~2ko%o / N&H: dS. (A21)

Given the partial derivatives of all integral functions comprising the func-

tional F' we can now proceed with the construction of the final system of
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equations by imposing the stationarity condition (5). This implies that

oF M. gFe M. gFe OF¢ OF¢

e = M Lot Lot g =0 (A22)
i =1,2,3,..., N,

oF OF¢ oF¢ OF¢ OF¢

R VS s S S v 8L (AZ)
1=1,2,3,..., N,

oF 6FV OF,_

rrlie Z 23 (A24)
i=1,2,3,...,N,

leading to a matrix system for the solution of the node fields. In (A22), N,
denotes the total number of element edges parallel to the z-axis and similar
definitions hold for N, and N,. Also, ¢,; (p = z,y, z) are the fields labelled
with global indices, and as before ¢%; (p = z,y, ) are the fields associated
with the eth volume or surface element. Both ¢,; and ¢;; ref- to the field at
the same edge and thus the eth term of the summations has non-zero value
only if the global edge i belongs to the eth element. The system implied by
(A22)-(A24) must, of course, be solved after imposing the boundary con-
dition (7) which permits us to zero out those field components that belong
to edges on metallic boundaries. This reduces substantially the number of
unknowns in the system which can then be solved via direct inversion, LU
decomposition, or iteration. However, since the system matrix is partly full

and partly sparse as well as symmetric and Ianded (if the nodes are properly
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numbered), it can be more efficiently solved by those algorithms which ex-
ploit these properties. Various partition techniques can also be employed to
enhance the efficiency of the solution. Further, the matrix system is amenable
to a conjugate gradient—fast Fourier transform solution, as discussed in the

text.
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Figure Al A rectangular brick.
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APPENDIX 2

CAVITY3D  MANUAL

CAVITY3D is a program which allows the user to study the
radiation and scattering characteristics of a cavity in an infinite
ground plane. The cavity may be filled with different
dielectrics, while conducting patches, lumped loads, probe feeds
and short circuit pins can-be placed in it. Finally, the aperture
may be covered by an R-card.

Since the program employs the FEM method, information
pertinent to mesh generation, such as number of nodes, needs
to be given. These inputs will, in effect, determine the
computing time required, along with the accuracy of the
results.

This manual will present an explanation for each input that
the program requires.

INPUT 1 : INPUT DIMENSIONS OF THE CAVITY: XL,YL,2zL (in cm)

The first three numbers you will be asked to input will be
the XL, YL, ZL. XL is the x-size, YL is the y-size, and ZL is the
depth, of the cavity. All numbers are actual dimensions in cm.

INPUT 2 : INPUT NUMBER OF POINTS ALONG EACH CAVITY SIDES: NX,NY,NZ

The next step is to specify the number of nodes inside the
cavity. Since NX and NY are the number of nodes, NX-1 and
NY-1 will be the number of elements, in the x and y directions
respectively. The program uses a Fast Fourier Transform (FFT)
to solve the problem. The FFT pad size is related to NX and NY
as follows:

NX -> FFT pad x-size NY -> FFT pad y-size

2-7 16 2-7 16
8-15 32 8-15 32
16-31 64 16-31 64
32- 63 128 32-63 128

The size of the FFT pad is proportional to the computing
time required, whereas more nodes will increase the accuracy
of the results. If, therefore, you were to pick 16 for NX and NY
instead of 15 you would be increasing the computing time
tremendously (FFT pad=64x64 vs FFT pad=32x32) without a
significant increase in accuracy. If on the other hand you had to
choose a number above 15 for NX and NY the wise choice
would be 31. Anything below 31 and above 15 would require
the same computing time (FFT pad =64x64 for that range), but
would decrease the accuracy (fewer nodes).



b

NZ is the number of nodes in the z-direction thus giving NZ-
1 layers and elements in the same direction, with layer 1 being
the topmost.

For the program to give accurate results, a good rule of

thumb is to keep the element sizes smaller than a fifteenth of
a guided wavelength.

Xelement size=XL/(NX-1) < Ag/15
Yelement size=YL/(NX-1) < Ag/15
Zelement size=ZL/(NX-1) < Ag/15
Note: Ay is the wavelength in the dielectric.

Example: A small mesh
XL=2cm NX=3 DX=XL/(NX-1)=lcm z A
XY=3cm NY=4 DY=YL/(NY-1)=lcm
XZ=lcm NZ=2 DZ=ZL/(NZ-1)=1cm y
>
DY X
1 4
DZ 3
2
2
1 f 2 31
FFT pad= 16x16
DX pa

NOTE: Each cube is a cell. Each edge of a cube is an element
and each corner is a node.

INPUT 3 : 15 THE CAVITY FILLING HOMOGENEQUS? 1)YES 2)NO

If you answer 1 (i.e. YES) to the next prompt you will be
asked to specify the relative permeability and permittivity.
The whole cavity will then be filled with that dielectric.

If you answer 2 (i.e. NO) you will then need to input for
each of the NZ -1 layers, the thickness in cm along with the
relative permeability and permittivity, starting with layer 1 (ie
the top layer). The program will prompt you for each
suv.  sive layer separately.

Note that e and ur are complex numbers. If, for example,
er =2-j1 and pr =1+j0 then the inputs would be (2.,-1.) and
(1.,0.) respectively.
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INPUT 4: INPUT BEGINNING, FINAL AND INCREMENTAL FREQUENCIES:

By specifying (in GHz) the initial, final and incremental
frequencies you may perform a frequency sweep. If you desire
to run the program at only one frequency, let's say 10 GHz,
then your input should be: 10 10 1

INPUT §: INPUT KODE: 0 FOR BISTATIC SCATTERING
1  FOR BACKSCATTERING
2  FOR RADIATION

A: 2=Radiation

If the choice is 2 then radiation characteristics such as
radiated intensity and input impedance will be computed. The
next two inputs will determine the point(s) in space, where the
radiated intensity will be evaluated.

Input Al: FOR RADIATION i'ATTERN COMPUTATION,
INPUT BEGINNING, FINAL AND INCREMENTAL ANGLES:
PHIBEG,PHIFIN, PHISTP (in degrees)

¢ is the angle as defined in the conventional spherical
system( i.e. in the x-y plane and measured from the x-axis). Its
initial, final and incremental values have to be given in
degrees. For example, an input of 0 90 2 will perform the
radiation computations for ¢ =0,2,4,6,8,10,12,...... ,90 degrees. If
the input is 90 90 1 then ¢ =90 degrees for all computations.

.
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Input A2: INPUT BEGINNING, FINAL AND INCREMENTAL ANGLES:
p * THEBEG, THEFIN, THESTP (in degrees)

6 is the angle as defined in the conventional spherical
system( i.e. measured from the z-axis). Its initial, final and
incremental values have to be given in degrees. For example,
an input of 0 90 5 will perform the radiation computations for
6 =0,5,10,15,20,25,30.......,90 degrees. If the input is 0 O 1 then ©
=0 degrees ( i.e. normal incidence * for all computations.

Input A3: INPUT TOLERANCE AND MAXIMUM ITERATIONS: TOL(~.01), ITMAX

At this point the program will request the tolerance and
maximum iterations. A tolerance of 0.01 is a good choice. Also
choosing the number of maximum iterations to be 500-1000 is
quite appropriate. If the max number of iterations is exceeded
before the residual falls below the specified tolerance value
then the program halts.

Input A4: MONITOR THE SOLUTION CONVERGENCE? 1)YES 2)NO

Sometimes the program converges long before it satisfies
the tolerance requirement. To save time one can monitor the
solution convergence by answering 1 (ie YES) to this prompt.
The residual (RSS) is then displayed for each iteration during
output. The RSS value is expected to "hop around”. If the
computed radiated intensity and input impedance values
remain relatively constant for each iteration then convergence
has been achieved.

FFT PAD SIZE: NXFT = NYFT =
SURFACE ELEMENT SIZE: DX= DY=

The program at this point will let you know what FFT pad
size will be employed along with the surface element size,
where: DX=XL/(NX-1) and DY=YL/(NX-1)

Input AS5: NUMBER OF CONDUCTING PATCHES: NPATCH

The number of conducting patches that will be placed in the
cavity is then requested. The patches are rectangular in shape.
In order, therefore, to create a different geometry, a collection
of patches must be used. For each patch, the user needs to
specify the following.



INPUT FOR THE PATCH # 1

POSITION OF THE LEFT BOTTOM CORNER OF THE PATCH
IN TERM$ OF NODES: NCX,NCY

1) The lower left corner of the patch in terms of cavity
nodes NCX, NCY. (This positions the patch on the x-y node
coordinate plane)

PATCH DIMENSION IN TERMS OF SEGMENTS: MX,MY

2) The number of elements along the x and y directions on
the patch. This actually dimensions the patch, since the element
sizes in the x and y directions have already been determined.
Their values are the surface element sizes DX and DY.

ON WHICH INTERFACE DOES THE PATCH RESIDE: NSUR
NSUR = 1 IF THE PATCH SJT7& AT THE TOP OF THE 1ST LAYER

2 IF THE PATCH SITS AT THE TOP OF THE 2ND LAYER
ETC.

3) The layer on which the patch sits on. You may pick from a
total of NZ-1 layers.

Input A6: PATCH GEOMETRY DISPLAY? 1)YES 2)NO

If a patch display is chosen then a graph of the cavity and
the patch is shown. The stars indicate conducting patch surface
elements and the dots represent cavity (dielectric) surface
elements. Each dot or star can be thought of as a surface
rectangular element of dimensions DX, DY.

Input A7: NUMBER OF SHORT-CIRCUIT PINS: NPIN

Here you are required to specify the total number of short -
circuit pins to be placed in the cavity. If you do not wish any,
just input 0. For each pin its coordinates in terms of nodes will
be requested.

Then the layer in which it is placed will be asked for.

Note that if you have more than one layers you will need Fo
stack pins one under the other, all the way to the ground, in

order to get a short.

TOTAL NUMBER OF UNKNOWNS =

At this point the program will output the total number of
unknowns it will have to solve for. This should give you an idea
of the size of the problem it will attempt to tackle.



Input A8: INPUT NUMBER OF :iUBE FEEDS: NFEED

The total number of probe feeds is then requested. Note that
without a feed all radiation characteristics will be zero.

INPUT LUCATION OF THE FEED # + : LFX, LPY

For each fced the first input required is its location in terms
of nodes LFX, LFY.
INPUT AMPLITUDE AND PHASE OF THE PROBE CURRENT: CAM,CPH
Second you need to input the magnitude and phase of the
current.
IN WHICH LAYER IS THE FEED EMBEDDED: NLAY
Finally you will have to give the layer in which the feed is
embedded . This number will range between 1 and NZ-1.Note
that if you need to have the feed running from the top to the
bottom of the cavity and you have more than one layers you
may need to stack NZ-1 (=total number of layers) feeds one on
top of the other.

Input A9: INPUT NUMBER OF IMPEDANCE LOADS: NLOAD
Here you are asked to input the number of lumped loads

you wish to place in the cavity. If you do not wish any, just
type 0 and hit return.

INPUT LOCATION OF THE IMPEDANCE LOAD # 1 : LDX, LDY
For each load, first its coordinuics in terms of nodes will be
requested.

INPUT VALUE OF THE IMPEDANCE LOAD: ZL (COMPLEX)

Second its impedance, will have to be specitied. If for
example ZL=500 +j30 Q then the input will be (500.,30.).

IN WHICH LAYER IS THE LOAD EMBEDDED: NLAY

Finally you need to input the layer in which the load is
placed, which will be a number between 1 and NZ-1. Note that
if you have more than one layers and you want your loads to
start from the surface of the cavity and touch the ground at its
bottom you will need to specify as many loads as the layers
and stack them one on top of the other.This will add their
impedances in series.

0¥
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Input A10Q; CAVITY APERTURE ( _VERED BY A RESISTIVE CARD? 1)YES 2)NO

A choice regarding a resistive card covering the cavity is
presented. An input of 2 (ie NO) will leave the cavity "as is", i.e.
without an R-card. An input of 1 (ie YES) will cover the cavity
with an R-card.

Then you will be prompted to specify the R-card resistivity (
normalized to the free space intrinsic imnedance 377Q ).

INPUT NORMALIZED RESISTIVITY: ETA (COMPLEX)
NOTE: IF ETA IS A FUNCTION OF POSITION,
SPECIFY IT IN SUBRQOUTINF LIESTY

If instead of a uniform resistivity a spatially varying one is
needed you have to specify it internally, within the subroutine
RESIS. In this subroutine a place is specified for such
customization. If this is done, then the R-card value you input
externally is disregarded. An example of such a customization
and its effects on the R-card resistivity is attached.



//countach/users/angelos/junkl5 PAGE1l

SUBROUTINE RESIS (AX,AY,EX,EY,NSX,NSY,NX,NY,Nz,DX,DY,KO,ETA)
C*********************‘k***********************************************

cC THIS SUBROUTINE ADDS THE RESISTIVE SHEET’S CONTRIBUTION TO AX *

.....

C ... AND AY *
AR KKK KKK KKK KKK KKKy kk KKK KKK KA I K KKK KKK AKKIK KRR RKRRKRRRRRRR AKX
COMPLEX AX(*),AY(*),EX(*),EY(*),ETA,CJ,Al,A2
REAL KO
INTEGER NSX (2, *) ,NSY (2, *)
NX1=NX-1
NY1l=NY-1
NXT=NX1*NY*N2Z
NYT=NX*NY1*NZ
CJ=CMPLX(0.0,1.0)
Al=CJ*KO*DX*DY/ (3.*ETA)
AZ2=0.5*Al
DO 703 J=1,NY1
Y= (FLOAT (J) -0.5) *DY
DO 703 I=1,NX1
X=(FLOAT (I)-0.5) *DX
Chxkkkkkkkkkkkkk kA kk ok k ok ok kA k Ak k kA KKk kK Kk kR k kA ko kX kkkkkkkkkk kX kkk k%

C.o... IF ETA IS A FUNCTION OF X AND Y, SPECIFY HERE

Note: If a variable resistivity is required it can be specified

internally at this point. The example below places a tapered
" R-skirt 6 elements wide at the cavity edges. We assume that the

cavity has 61*61 nodes or 60*60 elements on its surface.
i denotes the x-node coordinate and j the y-node coordinate
The normalized resistivity is eta and is a complex number.
Its value starts from a value of 1 and ends at .1 . Note that
outside the R-skirt eta=(8000.,0.), which makes
the R-card in this region to be treated as free space.
Finally you need to be aware that very low resistivities
ie R<.1l might cause convergence problems.

OO0 0000000000

if ((i.ge.55).0r.(j.ge.55).0r.(i.1t.7).0r.(j.1t.7)) then
eta=(1.,0.0) i

else

eta=(8000.,0.0)

endif

if ((i.ge.56) .or.(j.ge.56).0or.(i.1t.6).0or.(j.1t.6)) then
eta=(.8,0.0)

endif

if ((i.ge.57).0r.(j.ge.57).0r.(i.1t.5).or.(j.1t.5)) then
eta=(.6,0.0)

endif

if ((i.ge.58).0r.(j.ge.58).or.(i.lt.4).or.(j.1lt.4)) then
eta=(.4,0.0)

endif

if ((i.ge.59).or.(j.ge.59).or.(1i.1t.3).0r.(j.1t.3)) then
eta=(.2,0.0)

endif

if ((i.ge.60).0r.(j.ge.60).or.(i.1t.2).0r.(j.1t.2)) then
eta=(.1,0.0)

endif

Al=CJ*KO*DX*DY/ (3.*ETA)
A2=0.5*Al

C************************'k*********************************************

K=(J-1) *NX1+I

03/27/92
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B: 1=Backscattering

If you choose 1 then the backscattered power will be
computed (ie transmitter and receiver are located at the same
place).

Input BIl: INPUT rOLARIYATION ANGLE: ALPHA (in degrecs)

Here you are asked to input the polarization angle o. If a=0
then the incident wave is TM and if =90 it is TE.

The next two inputs determine the directions at which the
receiver and the transmitter are placed.

A 0 and ¢ have to be specified the same way they were for
the radiation pattern computations. From here on all
subsequent program inputs have already been described in the
Radiation option (i.e. part A of this manual).

C. 0=Bistatic Scattering

If you choose O for the code then the transmitter and the
receiver can be at different locations, that is you will have
chosen the bistatic scattering option.

Input C1l: INPUT INCIDENCE ANGLE: PHIINC,THEINC (in degrees)

For bistatic scattering, the first input required is the
direction of the incident wave. This is achieved by
specifying the 6 and ¢ angles in degrees (as defined in the
conventional spherical coordinate system). 6 can range from O
to 90 degrees and ¢ from O to 360 degrees.

The next step is to specify the polarization angle o . This .
input, along with all subsequent ones have been described in
the Radiation case (i.e. part A of this manual).

=t
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L1=NSX(1l,K)

L2=NSX(2,K)
AX(L1)=AX(L1l)+A1*EX(L1l) +A2*EX (L2)
AX (L2)=A X(L2)+A2*EX(L1l)+A1*EX(L2)
L1=NSY(1,K)

L2=NSY (2,K)

AY (L1)=AY(L1l)+Al*EY(L1l)+A2*EY (L2)
AY (L2)=AY (L2)+A2*EY (L1) +A1*EY (L2)
CONTINUE

RETURN

END
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Tvpical input fi

cavity size in cm (X,y,z)
number of nodes (x,y,z)
- uniform dielectric
substrate dielectric - er ur
frequency min, max, increment
- radiated intensity calculation
theta min, max, increment
phi min, max, increment
tolerance, number of iterations
- monitor cnvergence 1=yes 2=no
number of patch
lower left corner of patch node(x,y)
number of elements on patch (x,y)
layer in which patch resides
- patch display 1=yes 2=no
number of short circuit pins
number of feeds
feed position node(x,y)
amplitude and phase of current source
layer in which feed is embedded
number of loads
node(x,y) load 1 position
value of load 1 (complex) in Q
layer in which load 1 is embedded
node(x,y) load 2 position
value of load 2 (complex) in Q
layer in which load 2 is embedded
node(x,y) load 3 position
value of load 3 (complex) in Q
layer in which load 3 is embedded
node(x,y) load 4 position
value of load 4 (complex) in Q
layer in which load 4 is embedded
- resistive card 1=yes 2=no
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Actugl element dimensions for the following patch and cavity
configurations.
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Patch dimensions : x=5.0cm, y=3.4cm

This 18 the exact patch-cavity configuration resulting from the input
file given.
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