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ABSTRACT

A hybrid numerical technique is proposed for a characterization of the scattering and
radiation properties of microstrip patch anténnas and arrays residing in a cavity which
is, in turn, recessed in a ground plane. The technique combines the finite element and
boundary integral methods to formulate a system for the solution of the fields at the
aperture and those inside the cavity. By virtue of the finite element method, the pro-
posed technique is applicable to patch antennas and arrays residing on or embedded in
the dielectric substrate. Also, the technique is capable of treating various feed structures.
In this report, we develop the formulation and describe the pertinent numerical imple-
mentation. Numerical examples are also presented demonstrating the validity, versatility

and capability of the technique.

OBJECTIVE

The ultimate objective of this project is to develop a new technique which permits an
accurate simulation of microstrip patch antennas or arrays with various feed, superstrate
and/or substrate configurations residing in a cavity recessed in a ground plane (An
example of such a structure is given in Figure 1). The techniéue combines the finite
element and boundary integral methods to formulate a system suitable for solution via
the conjugate gradient method in conjunction with the fast Fourier transform. The final
code is intended to compute both scattering and radiation patterns of the structure with

an affordable memory demand.
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Figure 1: Geometry of a microstrip patch array in a cavity.



BACKGROUND

Electromagnetic scattering and radiation from microstrip patch antennas and arrays
is an important problem having many practical applications. However, although well
documented methodologies exist for analysis of patch antennas with infinite superstrate
and/or substrates [1], there is no well established method to treat those residing in a
cavity (see Figure 1) as is the case with airborne deployments.

Recently, a new technique which combines the finite element and boundary integral
formulations to yield a system for solution via the conjugate gradient method (CGM)
and the fast Fourier transform (FFT) was proposed for electromagnetic scattering com-
putations. In particular, the method was formulated for the characterization of filled
slots and grooves in a thick ground plane with transverse electric (TE) and transverse
magnetic (TM) incidence (2], [3]. This technique was later extended for a characteriza-
tion of three-dimensional cavity-backed apertures in a ground plane [4] and slots in a
thick conducting plane [5]. In this report we describe an extension of this technique for
the electromagnetic characterization of the scattering and radiation from the microstrip
patch antennas and arrays residing in a cavity.

The presented technique invokes the equivalence principle [6] to subdivide the original
problem into two equivalent problems which are then coupled by enforcing field conti-
nuity. The fields in each region are subsequently formulated via a variational or integral
equation approach leading to a coupled set of integral equations solved via the finite
element method [7]. By virtue of the finite element method, the technique is applicable
to patch antennas residing on or embedded in the substrate. In the following sections

the proposed hybrid formulation is discussed in some detail along with the pertinent



discretization of the resulting integral equations. Somef results are also presented for

validation purposes.

PROGRESS

A. Formulation

Consider the three-dimensional structure illustrated in Figure 1. The specific con-
figuration consists of some microstrip patch antennas residing on or embedded in the
substrate. The whole structure is residing in a cavity which is recessed in a ground
plane. We will denote the free space region above the plane (z > 0) as region I and
that inside the cavity (-t < z < 0) as region II occupying the volﬁme V. We will fur-
ther assume that the cavity is filled with an inhomogeneous material having a relative
permittivity €,(r) and relative permeability u,(r).

In accordance with the equivalence principle [6], the fields in the two regions can be
decoupled by closing the aperture with a perfect conductor and introducing the equiva-

lent magnetic current
M=Exz (1)

over the extent of the aperture, where E is the electric field at the aperture (2 = 0). The
field in region I is then due to the radiation caused by the equivalent current M residing
on the ground plane and possibly by other impressed external sources (J., M,) in the

upper half space. Accordingly, by invoking image theory we have

H(r) = Hi(r) + H'(r) - 2jko¥ //S Golr,r') o M(r')dS’ )



where H* denotes the incident field due to (J., M.,) and H" is that reflected by the
ground plane without the aperture. Also, kg = 27/A is the free space wavenumber,
Zo = 1/Yy is the free space intrinsic impedance, S denotes the planar surface area of the

aperture and (=}0 is the free-space dyadic Green’s function given by

= = 1
Golr,r') = (1 + 7v;vv) Go(r,r') 3)
0
with
f n . n . d G ' e"jkolr—r’l
=XX+yy+2zZ an o(r,r)—m.

Note, however, that when the antenna is in the radiation mode, no external sources (J.,
M.) exist and, therefore, the first two terms on the right hand side of (2) disappear.
Enforcing continuity of the tangential electric fields across the aperture, we find that
the field in region II can be represented by the radiation of the equivalent magnetic
current —M and other impressed internal sources (J;, M;) which can be used to model
various feed structures. The fields in the two regions are then coupled by enforcing

continuity of the tangential magnetic fields across the aperture. This gives
#x H/(M,J.,M,) =z x H'{(-M,J;,M;) at z=0 (4)

where H! and H/! denote the magnetic fields in regions I and II, respectively.
The fields in the cavity region (region II) can be formulated using the finite element

method. Specifically, the cavity fields are demanded to satisfy the variational equation

§F=0 (5)



where the functional F is given by

F(B) = %///V [ui (VX EM) o (V x B) - ke, B .E”} v

] Pt L5
v fr

+5koZo ﬁ (B x H'T) o idS (6)
SCGU

if the variation is taken with respect to the electric field. In (6), V denotes the volume
occupied by region II, S.4, corresponds to the surface that encloses V and i denotes the
unit vector normal to the surface, pointing away from the cavity. The second volume
integral represents the radiation of the impressed internal sources (J;, M;).

To solve (6), it is necessary that the fields be known over the surface specified by
Scav. Obviously, the boundary condition to be imposed on the conducting boundaries of

the cavity and also on the surface of the patch antennas is
AxET =0 (7)

Substituting this into (6) eliminates the portion of the surface integral over the conduct-
ing boundary of the cavity (that is, there is no power flow through the metallic portion
of Scay). It remains to specify the boundary condition over the cavity’s aperture and

this is given by (1). Enforcing the continuity condition (4), we obtain

F = %/f/v [7}- (V x EY) o (V x E) - ke, BV .E”] av
+ /// [jkOZoJ,- B - Lm;e (v X E”)] av
1 HKr

_ok? //ﬁ M(r) o [ //S Go(r,r') o M(r')ds'] is
—jkoZo //S M(r) o [Hi(r) + H'(r)] dS (8)



which can be discretized via the finite element method for a solution of M and the
internal field E/7. Once M is found, the far zone scattered or radiated field can be easily
computed from

) e—ikor
H'(r) = —]koYo

/ (06 + ¢¢ M(JI y )e]ko sin 6(z’ cos p+y' smd:)dzldy (9)
where (r,0,¢) are the usual spherical coordinates of the observation point. The radar
cross section (RCS) of the structure is then given by

. H?(r)|?
o= lim 47r7-2| . .
r—co |H!(r)|2

(10)
The input impedance and antenna gain can also obtained from the solution of E¥/,

~ B. Discretization
For a numerical implementation of (5) we must first discretize the functionals by
subdividing V' and § into smaller volume and surface elements, respectively. Considering

(8), it is convenient to rewrite the functional F as
F=Fy+Fs+ Fr+Fg (11)
where Fy is the volume integral

_1 05, DB, (05 OB, (05, 05
Fr = [[/{ur[((?y Bz) +(6z Oz + dz dy

~ke (E2+ B2+ ER)}av  (12)

obtained by expanding the appropriate integrand in (8) and Fs denotes the surface

integral

Fo = -28 [] (o) | [] Bt e s (13)
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The remaining portion of F' is associated with the sources and is given by
1
FI:W {jkoZoJ,’.E—‘;‘M,‘.(VXE) av (14)
|4 r

and
Fg = —2jkoZo //S M(r) o H'(r)dS (15)

upon using the relation z x H™(r) = z x H(r). For simplicity, we have omitted the
superscript I1 and this practice will be continued in the remaining portion of the report.
To discretize (12) we subdivide the volume V into M, small volume elements such as
tetrahedra, triangular prisms, or rectangular bricks. The ideal element for the discretiza-
tion of rectangular cavities or those that can be modelled as a collection of rectangular
volumes is the rectangular brick illustrated in Figure 2. An example of the finite element
mesh using rectangular bricks is given in Figure 3. For arbitrarily shaped cavities, trian-
gular prisms and tetrahedra may be used but in this report we restrict our attention to
rectangular bricks. Consider the rectangular brick of dimensions a x b X ¢, representing
the eth element, as illustrated in Figure 2. The field components within this element
may be expressed as
4 4 4
E; =) N;i(y,2)8%; By=Y Ngj(z,2)65; E, = Y NEi(2, )6 (16)
J=1 j=1 j=1

where N7, Ny, and N;; are the expansion or shape functions given by

3

Ne =(b—y’)(c-z,). e =yl(c"zl). e =(_b.ﬁ- Ne =iz.’.
rl bc ’ z2 be ’ 3 be ’ 4 bc

ye 2 (e=e=2) e _Hla=d) o (e=2) 27
v ca B L ca ' 9 ca ' ¥ g

NeE _(a—z’)(b_y,), e _xl(b—y’). e _(a—z,)y’. e _i’_?_/_/
217 ab PUEET gy T gy ) AT gy



Figure 2: A rectangular brick.



Figure 3: Finite element mesh for a cavity with four patches.
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In these, (2',3', 2) denote the local coordinates specifying a point within the eth element
and from an examination of the expansion functions we observe that ¢¢, represents an
average of the field component E along the edge segment (1,2). Likewise, ¢%, is associ-
ated with the E; component along the edge (3,4), ¢S5 corresponds to the E, component
along the edge (5,6) and ¢3, is associated with the E, component along the edge (7,8).
Similar identifications can, of course, be made for ¢5; and ¢3;. Therefore, zis Ny
and N7; can be termed as edge-based expansion functions, in contrast to the traditional
node-based expansion functions employed in [4]. A feature of these functions is that they
satisfy the divergence condition within the volume of the element and this permits the
elimination of the penalty term discussed in [4]. Also, the edge-based functions allow a
* convenient enforcement of the required boundary conditions at the dielectric interfaces
and conducting walls. Furthermore, the edge-based functions avoid an explicit specifica-
tion of the fields at the corners and edges, where these may be singular [8]. This is not,
however, permitted when employing the node-based expansion functions unless special
basis functions (which model the singular behavior of the fields) are incorporated into
the formulation leading to a much more complicated implementation.

Substituting (16) into (12) yields the portion of Fy attributed to the eth element. The
complete expression for Fy is then obtained by summing/assembling the contributions
from all elements. This yields a functional in terms of the unknown field components
which must be found to satisfy (5). In accordance with the Rayleigh-Ritz procedure this

is equivalent to setting the derivatives of F' with respect to the fields ¢5; (p = 2,9,2)

equal to zero. Differentiating the portion of Fy attributed to the eth element with

11



respect to the field ¢¢. we obtain

OFy 4 1 [IONgON; QN aNg 1

_aNin 6N5J e alV;i E)N;] e }dV

0y 9z Y 9z oz
Similarly, by differentiating with respect to the other field components we have

oFy  _ i /// 1 {_f)N;,. INE; | +[6N;,- aN;j+aN;,- ON¢;
j=10Ve fr

g%, 0 dy ¥ 7| 0z 0z " 8z 02

aNe' aNe'
2 e are t z
koeru,NyiNyj] i _—azy 83/] ZJ} dv

and

OF‘E — i[[/ _1___ _ajvfiaNgf e__aN:iaN;j e
0ge. = v dr 9z "™ 9y 9z ¥

4]

5Nzez 0aNe ath BNZ
{ 52 32 T oy By “kgefﬂfNﬁiij} §j}dV-

(18)

(19)

We observe that if €, and u, are assumed constant within the eth element, all integrals

in (17)-(19) can be evaluated analytically. Otherwise, a numerical integration may be

required for their evaluation.

Let us now consider the discretization of the surface integral in (13). A difficulty

in the evaluation of this integral is the usual singularity associated with the derivatives

of the free space Green’s function. This, however, can be avoided by transfering the
P

derivatives to the current. To do so, we invoke a common vector identity and the

divergence theorem, leading to

Fs = -2 /fs M(r) e [kg //S M(r')Go(r, ')dS’
+V[/S V' e M(r')Go(r, r')dS'] ds.

12
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Through the same process, (20) can be further rewritten as
Fs = —2k2 // M(r) s [ / M(r')Go(r,r')ds'] ds
+2 // V o M(r [ / V' o M(r')Go(r, r )dS’] (21)

and by invoking (1) we obtain

Fs = -2k //5 E. [ // ExGodS’] dS — 243 // E, [ / EyGodS’] ds
B Das

which can be discretized by subdividing $ into M, smaller surface elements. Substituting

(16) into (22) and replacing S in the first pair of integrals with 5¢, the area of the eth
surface element, gives the portion of Fs attributed to the eth element. As noted earlier,
to enforce the stationarity condition we need the derivatives of Fg with respect to the

fields ¢7; and ¢f;. For the eth element we have

OF My &
9Fs - Lo // qus / N&;GodS'| dS
¢S, =)= Se
aNg aNg . AN
+9 / ( s e Ui e)Gds' ds, (23)
LB TS L (-5
9Fs  _ _2k2// Ne. fvjf:(p / N¢;GodS'
0y VO et
e | M, e e
2 [ ONy; 22// (aN, . f’aﬂ,i °)Gods’] is  (24)
© e=1j=1 ¢

and 0F5/8¢%; = 0 since Fs is not a function of E,. We note that in deriving (23)
and (24) the differentiation was performed only with respect to the node fields outside
the square brackets in (22) while those introduced by substituting (2) into (6) remained

uneffected.
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It remains to discretize (14) and (15) which involve the excitation fields. Let us

consider (14) first. By expanding the integrand in (14), we have

. 1 [[0E, OF
Fy = jkoZ /// EoJip + EyJiy + E.Ji, dV—/// —[(—’_—’i> 3
I JRoZo V( + y y‘*t ,_) v i ay 9z M

0E, 0E,)\ . (0B, OE, .
(02 _. c")z)h'y (8:8 - 8y)M"]dV (25)

By introducing the expansion (16), we obtain

oF; . . L /0N, ONg .
99 —]koZo// Ve NziJizdV /[/ ¢ Ur ( 0z Miy oy M,,) av, (26)

BF;" o Yt 8Nyt' . )
g = ol ///V NgJidv /// am( My, - SEM) v, (20)

and

aFe 6sz aNzi .
o = %o /// NEJidV - m e ur( M - S M,y) av. (28)

Now let us consider (15). By replacing M with E in accordance with (1) we obtain
Fg = 2jko Zo / (E.H; - E, 1) ds. (29)
s

This can again be discretized by introducing the expansion (16) and by doing so we

obtain (for the eth element)

9F%
= e 30
Sar. = kol / N HidS (30)
and
OF¢ -
9YE _ _9ikeZ / N&.HidS 31
a¢;’ JRoZo P yittz ( )
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Given the partial derivatives of all integral functions comprising the functional F' we
can now proceed with the construction of the final system of equations by imposing the

stationarity condition (5). This implies that

oF M, OFV Moors  Mogrg Mo gpe

20 - Zow,t Lis “’Z RPNl e
i=1,2,3,..,N;

OF & oFg aF, OFf  *OFf _

- = 33

26, = 2ozt Z zaqse Za¢;, 9
i=1,2,3,..,N,

oF M oFg OF¢

95n = 2o, ;:aw =Y (349
i=1,2,3,..,N,

leading to a matrix system for the solution of the node fields. In (32), N, denotes the
total number of element edges parallel to the z-axis and similar definitions hold for N,
and N,. Also, ¢, (p = z,y,2) are the fields labelled with global indices and as before

5 (P = 2,9, 2) are the fields associated with the eth volume or surface element. Both
¢pi and b5 refer to the field at the same edge and thus the eth term of the summations
has non-zero value only if the global edge i belongs to the eth element. The system
implied by (32)-(34) must, of course, be solved after imposing the boundary condition
(7) which permits us to zero out those field components that belong to edges on metallic
boundaries. This reduces substantially the number of unknowns in the system which can
then be solved via direct inversion, LU decomposition, or iteration. However, since the
system matrix is partly full and partly sparse as well as symmetric and banded (if the
nodes are properly numbered), it can be more efficiently solved by those algorithms which

exploit these properties [9]. Various partition techniques such as the those discussed in

15



[10] can also be employed to enhance the efficiency of the solution. Further, the matrix
system is amenable to a conjugate gradient - fast Fourier transform solution, thus,

reducing the memory demand to O(N) as in [2], [3].

C. Results

Based on the formulation and implementation procedure described above, a computer
code was developed for scattering computations. The code has been validated for cavity
and slot scattering by comparing the results with those obtained using the moment
method and the mode matching method. A variety of comparisons can be found in [4]
and [5]. Here we present a comparison of our numerical solution with measured data.
Figure 4 shows the backscatter pattern for a cavity which is 16 inch long, 0.1968 inch
wide and 0.837 inch deep. The measurement was performed at 12 GHz [11] and it is seen
that the numerical results agree with the measured data very well. Figure 5 presents the
frequency response of the backscattering from the same cavity at § = 18° (the actual
measurement was performed at § = 15° and it is reasonable to assume a possible error
of 3° might exist). Again the numerical results and measured data [11] agree quite well.

Next we present some results for plane wave scattering by patches (without feeds)
residing on or embedded in the substrate in a cavity. Figure 6 shows the aperture field
distribution for normal incidence with a patch residing on the surface of the substrate.
The bistatic scattering patterns are given in Figure 7 for normal incidence and in Figure 8
for 6' = 45°, ¢* = 0°. Figures 9-11 show the corresponding results for a patch embedded
within the substrate, half way between the top and base of the cavity. The final two

sets of plots include aperture field data and scattering patterns for two patches residing

16
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Figure 4: Backscatter pattern for a 16 inch long, 0.1968 inch wide and 0.837 inch deep

cavity at f = 12 GHz.
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on the surface or embedded in the substrate, half way between the surface and base of
the cavity. In particular Figures 12-15 pertain to the antenna having patches on the
substrate surface whereas Figures 16-19 refer to that having both patches embedded in

the substrate.

CONCLUSIONS

A hybrid technique was presented which combines the finite element and boundary
integral methods for a characterization of the scattering and radiation properties of
microstrip patch antennas residing in a cavity. It was found that the technique is efficient
and accurate for simulating the geometry. Numerical results were presented for scattering

| computations demonstrating the validity, versatility and capability of the technique.

TRANSITIONS

The next step in this project is the implementation of the conjugate gradient method
in conjunction with the FFT for the solution of the final system. This will make the
simulation of large size structures possible. The estimated time for this step is four
months. Following this step is the development of various feed models to be incorporated
in the computer code and this will take about six months. The resulting code should be
capable of characterizing accurately and efficiently the scattering and radiation of finite

microstrip structures.
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Figure 6: Aperture field (real part) for a patch residing on the surface of the substrate
excited with an z-directed normally incident plane wave (E* = XEp). Cavity size: 3.7

cm X 3.8 X 0.16 cm; patch size: 1.85 cm x 1.9 cm; € = 2.22, p, = 1.
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Figure 7: Bistatic scattering pattern for the same geometry and excitation as that in
Figure 6.
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Figure 9: Aperture field (real part) for a patch embedded half way between the top and
base of the substrate excited with an z-directed normally incident plane wave (E* = %Ej).

Cavity size: 3.7 cm X 3.8 x 0.32 cm; patch size: 1.85 cm X 1.9 cm; € = 2.22, pr = 1.
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Figure 10: Bistatic scattering pattern for the same geometry and excitation as that in
Figure 9.
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Figure 11: Bistatic scattering pattern for the same geometry as that in Figure 9 corre-
sponding to a plane wave incidence at 6 = 45° and ¢' = 0°. a = 0° corresponds to Ey

polarization whereas a = 90° corresponds to £y polarization.
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Figure 12: Aperture field (real part) for two patches residing on the surface of the
substrate excited with an z-directed normally incident plane wave (E* = XEq). Cavity

size: 6.66 cm x 3.8 x 0.16 cm; patch size: 1.85 cm x 1.9 cm; € = 2.22, p, = 1.
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Figure 13: Bistatic scattering pattern for the same geometry and excitation as that in

Figure 12.
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Figure 14: Aperture field (real part) for two patches residing on the surface of the
substrate for excited with a y-directed normally incident plane wave (E' = §Ey). The

geometry is the same as that in Figure 12.
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Figure 15: Bistatic scattering pattern for the same geometry and excitation as that in

Figure 14.
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Figure 16: Aperture field (real part) for two patches embedded half way between the
top and base of the substrate excited with an x-polarized normally incident plane wave
(E* = XEp). Cavity size: 6.66 cm x 3.8 x 0.32 cm; patch size: 1.85 cm x 1.9 cm;

€=2.22, pu. =1.
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Figure 17: Bistatic scattering pattern for the same geometry and excitation as that in
Figure 16.
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Figure 18: Aperture field (real part) for two patches embedded half way between the
top and base of the substrate excited with a y-polarized normally incident plane wave

(E* = $Ep). The geometry is the same as that in Figure 16.
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Figure 19: Bistatic scattering pattern for the same geometry and excitation as that in
Figure 18.
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