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027723-3-T

FORWARD

This document is the third and last first year progress report of
this research project entitled "Scattering by Conformal Antennas and
Radomes" funded through the NASA-Ames interchange No. NCA2-
543. The following three pages of the report is the executive
summary of this year's progress along with an outline of next year's
plan. The remaining portion of the report contains two separate
papers which should be read in continuum with the first two reports
027723-1-T and 027723-2-T. One of the papers presents an
experimental validation of the developed analysis for scattering and
input impedance computations, and the other describes a novel
model of a resistive sheet within the context of the finite element
method.



Background and First Year Progress Summary

The objective of this project is to develop a new technique for
analyzing the scattering and radiation properties of planar and
conformal microstrip arrays. The proposed technique is a hybrid
methodology which combines the finite element and boundary
element methods. The resulting system of equations is then solved
via the conjugate or biconjugate gradient method and a unique
aspect of this solution is the use of the FFT to eliminate the need to
generate the boundary element matrix and thus retain the O(n)
storage requirement, inherent in the finite element formulation.
Consequently, the proposed solution technique is referred to as FE-
CGFFT or FE-BGFFT, depending on whether the conjugate or
biconjugate gradient method is used to solve the system.

During this year's effort we primarily concentrated on developing the
proposed method and associated algorithms for planar arrays of
rectangular patches in a filled cavity. Judging from the results
presented in this report (027723-3-T) and the two earlier technical
reports 027723-1-T and 027723-2-T, the method has proved very
successful in all respects and we have exceeded our original goals
and expectations outlined in the proposal. Specifically, this year we
completed the following subtasks:

1. We implemented the method using new edge-based

- basis/expansion functions and validated the
implementation by comparison with traditional codes based
nodal expansion functions. We found that the edge-based
expansions, in addition to satisfying the natural corner/edge
conditions, lead to faster convergence and are more
compatible with the usual boundary element expansion
functions.

2. A code was developed with the appropriate input geometry
routine to compute the scattering by rectangular patches in
a terminated rectangular cavity and rectangular patch
arrays also in a cavity filled with substrate material. This
implementation relied on brick elements for modeling the
cavity volume and rectangular elements at the cavity
surface/boundary.



3. Formulations were developed and coded for modeling the
antenna input terminals and loads placed at various
locations between the patch and the substrate. The effect of
the loads was examined and vector maps were generated
which demonstrated that most of the field intensity is
concentrated near the patch edges. As a result, the
scattering pattern was completely dominated by the patches
themselves whereas the (shallow) cavity terminations were
less important. This observation implies that one could,
under certain conditions, neglect the cavity terminations and
instead use standard array theory for generating the
scattering and radiation patterns of large arrays. Several
scattering and radiation patterns were generated which
validated this conclusion.

4. A formulation was developed for modeling resistive cards in
connection with the standard finite element method.
Resistive cards are often used for reducing edge diffraction
and are thus important in this implementation. The
associated formulation was coded and tested by comparison
with a certain physical model of the resistive card.

5. A low cross section body was designed to serve as a
platform for measuring the scattering by patch antennas in
a cavity. During this year, scattering patterns were
measured for single, unloaded, free-standing patches. The
measured data were used to validate the proposed
formulation and associated code. Good agreement was
observed between measurements and calculations in all
cases.

6. Input impedance computations were performed using the
proposed formulation for a number of patch antennas. This
is a first for the finite element method and comparisons
were done with calculations based on traditional
formulations. Good agreement was observed in all cases in
spite of the approximate input terminal model used at this
time.

Proposed Work for Second Year



Our primary goals during the second year of this work are

1. To generalize the method for application to circularly
conformal arrays. This will involve the development of the
finite element formulation using circularly conformal three
dimensional elements. These elements must also be
conformal to the surface/outer boundary of the cavity and
must ensure a convolutional boundary integral to
maintain the O(n) storage requirement. Further, the
expansion basis for these elements will be developed along
with the associated finite and boundary element equations.
Essentially, all of the subtasks completed during the first
year in connection with the rectangular bricks will be
repeated during the second year for the circularly conformal
distorted bricks.

2. Improved input antenna feed models will be investigated
and developed which account for the presence of the coaxial
cable and other possible physical characteristics of the feed.

3. The effect of loads, feed location and structure, resistive
card loading and patch geometry will be investigated with
respect to the arrays performance parameters.

4. Alternative boundary integral formulations will be
investigated which permit conformal modeling of non-
rectangular patches without comprising the convolutionality
of the operator, essential for maintaining the O(n) storage
requirement.
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ABSTRACT

A hybrid numerical technique has been presented in the past for a characterization of
the scattering and radiation properties of microstrip patch antennas and arrays residing
in a cavity recessed in a ground plane. The technique combines the finite element and
boundary integral methods to formulate a system for the solution of the fields at the
aperture and those inside the cavity via the biconjugate gradient method in conjunc-
tion with the fast Fourier transform (FFT). Numerical results were already presented
for scattering and radiation patterns for unloaded and loaded single patches and large
arrays. In this report, we present experimental verification of the scattering computa-
tions. In addition, input impedance computations are also presented and compared with

measurements and calculations based on the moment method.



I. INTRODUCTION

In our previous two technical reports 027723-1-T and 027723-2-T (3], [4], we devel-
oped a hybrid finite element formulation for a chafacterization of the scattering and
radiation properties associated with microstrip patch antennas and arrays residing in a
cavity that is recessed in a ground plane. The technique employed the finite element
method (FEM) to model the substrate in the cavity region and the mesh was terminated
at the aperture of the cavity via the boundary integral method. By virtue of the FEM,
the analysis is applicable to patch antennas and arrays which reside on or are embedded
in the layered dielectric substrate. In an earlier report [4], it was also shown that various
feed structures and impedance loads can be modeled within the context of the FEM.

The system resulting from the application of the hybrid finite element - boundary
in{égral method was solved via the biconjugate gradient (BiCG) method in a manner
that exploited the sparseness features of the FEM matrix and the convolutional form
of the boundary integral. That is, the boundary integral was evaluated via the fast
Fourier transform (FFT) and this led to alow O(N) memory demand necessary for large
scale implementations. For example, systems with over 120,000 unknowns were handled
for scattering and antenna pattern computations and we observed that the employed
implementation reached convergence usually within 100 or so iterations. Some scattering
and radiation patterns for single patches as well as for large arrays were presented which
demonstrated the method’s accuracy and capability.

In this final report, we address two important issues. First, an experimental veri-
fication is presented for our scattering computations and for this purpose, a low cross
section body was designed to serve as a test platform simulating the ground plane.

Scattering patterns were measured for single unloaded patches and the measured data



were compared with the computed results and in all cases good agreement was observed
between the measurements and calculations. Secondly, we present a number of input
impedance computations for the microstrip patch aﬁtenna. This is a first for the finite
element method and comparisons are presented with measured data and calculations
‘based on traditional formulations. It is shown that in spite of the approximate input
terminal model (probe) employed at this time, good agreement was observed between

measurements and calculations obtained for the input impedance.

II. SUMMARY OF FORMULATION
Consider the three-dimensional structure illustrated in Figure 1 where a microstrip
patch antenna or array is residing on or embedded in a substrate recessed in a ground
plane. In accordance with the finite element — boundary integral method [1]-[4], the
fields in the cavity can be formulated using the finite element method and those above
the antenna can be represented by a boundary integral equation. The two regions are
then coupled by enforcing continuity of the tangential fields at the aperture of the cavity.
Let us first formulate the fields inside the cavity via the variational approach which

demands that the cavity fields satisfy the variational equation
JF(E)=0 (1)
where the functional F is given by
FE) = 2/// [—(VXE (VxE)—kge,E-E] v
+ ///V [jkOZOJ'"‘ oE- ZI:M"” o (VX E)J av
+jkoZo/S (E x H) 0 2dS )

In this, V represents the cavity volume, S represents the cavity’s aperture, and (€rypir)

denote the relative permittivity and permeability of the material filling the cavity. Also,
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ko = 27/ is the free space wavenumber, Zy = 1/Y; is the free space intrinsic impedance,
and (J™ M) represent the internal sources in the cavity.

As seen, the surface integral in (2) involves the tangential electric and magnetic fields
at the aperture and it is, therefore, necessary that we introduce an additional relation
between these fields. This is provided by the boundary integral equation for the fields

in the upper half space
H(r) = H"(r) + H/ (r) - 2jkoY /[5 Go(r,r') o [E(r') x 3] dS’ 3)

where H™ denotes the incident field due to possible external sources (Je=t, Me=t),
H™/ is that reflected by the ground plane without the aperture, and 50 is the usual
free-space dyadic Green’s function. Enforcing continuity of the tangential electric and

magnetic fields across the aperture, we may substitute (3) into (2) to find

F(E) = %///V [i(VxE)o(VxE)—kge,EoE] v
+ ///V [jkozoJ‘"‘ oE -‘u—iM*’nf o (V x E)} dv
_ok? //S [E(r) x 5] o [ //S Golr,r') o [E(r') x 3] ds'] ds

~2jkoZ0 // [E(r) x 3] » H"™(r) dS ()
S
which involves only the electric field and can be discretized in the usual context of the
finite element method for a solution of the cavity and aperture fields.
To discretize (4), the volume V is subdivided into small volume elements such as
tetrahedra, triangular prisms, or rectangular bricks. Accordingly, using the cdge-based

vector basis functions, the electric field E is expanded as

N
E=) EW, (5)

i=1

where N denotes the total number of element edges resulting from the subdivision,

excluding those coinciding with conducting surfaces since the tangential components of
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the electric field associated with those edges are zero. Also, E; denote the unknown
expansion coefficients equal to the element edge fields and W; are the chosen vector
basis functions. By substituting (5) into (4) and taking partial derivative of F with

respect to F;, we obtain

oF N 1 2

5 ZE,///V [—T(VxW,-)o(Vij)—koe,W,;oWj] v
+ /// [JngoJmt Mm‘ Y xW,-)] v
—2k2y; //S»[Wi X 3] .J;XjEj [ //S Gos [W) x 3] ds'] ds
—2jkoZoxi / [ (Wi x 3] e e dS (6)

where y; = 1 when the ith edge lies on the aperture § and x; = 0 elsewhere. The final
system of equations is then obtained by imposing the stationarity condition (1), i.e., by
letting OF/OFE; =0 for 1 = 1,2,...,N.

It remains to choose the vector basis functions W; and this depends on the choice
of volume elements. However, if rectangular bricks are chosen for the discretization, the
surfacg integral can be cast in the form of the discrete Fourier transform. As a result
the FFT can be used for its evaluation when an iterative solution such as the conjugate
or biconjugate gradient method is employed. This circumvents a need to generate and
store the full submatrix, thus retaining the O(N) storage requirement for solving the
system.

The modelling of the conducting patches, microstrip transmission lines, impedance
loads, shorting pins and coaxial feeds can be considered in the context of the finite ele-
ment formulation. Specifically, the radiating patches and transmission lines are modelled
by setting the tangential electric field components to zero on a conducting surface; the

impedance load (or conducting pin) is modelled as a post of finite (or infinite) conduc-



tivity joining both the patch and the base of the cavity. Finally, the coaxial feed can be
modelled either by an electric current filament or by a magnetic frill current. The input
impedance can be simply calculated as the voltage observed at the feed point for a unit

electric current input.

III. EXPERIMENTAL SETUP

To experimentally verify the proposed formulation for scattering computations, a
low cross section body was designed and built to serve as the test platform. This test
body is shown in Figure 2 and its top surface is intended to simulate the infinite ground
plane and is diamond shaped to minimize its scattering when there is no patch or cavity
aperture on its surface. The bottom of the test body was designed to house the test
antenna with minimal interference to the aperture scattering. A removable diamond-
shaped plate was placed on the top flat surface of the test body to permit the mounting
of different test antenna structures or other targets. The test body was first measured
by itself in the University of Michigan tapered anechoic chamber as shown in Figure 3.
Without the presence of a cavity (i.e., the removable plate was plat and uncut), the radar
cross section of the test body by itself was measured to be less than —45 dBsm in the
principal plane for incidences to 10 degrees from the broadside. Additional reduction to
the RCS level of the test body could have been achieved with some treatment but this
was not deemed necessary at this time. Further, it should be pointed out that because
of the finiteness of the test body, the infinite ground plane simulation is comprised near
grazing. In particular, it will be seen that the measured data should be representative

of the ground plane simulation for incidences above 10 degrees from grazing.
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IV. NUMERICAL AND EXPERIMENTAL RESULTS

A. Ezperimental Verification

The specific patch geometry which was measured was a 1.448 in. x 1.083 in. rectan-
gular patch residing on a dielectric substrate having thickness ¢t = 0.057 in. and relative
permittivity €, =~ 4.0. The substrate was housed in a 2.89 in. X 2.10 in. x 0.057 in.
rectangular cavity recessed in a ground plane. The incident plane wave was polarized
along the § direction and the backscatter radar cross section (RCS) was measured as a
function of the angle of incidence in the plane perpendicular to the patch and parallel
to its longer dimension.

Figures 4-7 show the backscatter RCS at four different frequencies (9.2 GHz, 9.64
GHz, 10.0 GHz and 10.8 GHz) of the filled cavity stucture with the patch removed.
Figures 8-11 show the backscatter RCS at the same four frequencies with the patch now
placed on the surface of the substrate. Good agreement is observed between measure-
ments and calculations in all cases for the incidence angles within the range of 10-80
degrees. As noted above, the measured data near grazing angles and near broadside are

in error because of contributions from the low cross section body.

B. Input Impedance Calculations

To validate the computation of the input impedance via the hybrid finite element
method we compare the calculated input impedance of a microstrip antenna excited by
a filament of uniform current to corresponding results based on the moment method
solution [5) and data measured for a coaxially fed microstrip antenna. We note that
whereas the measured data and moment method solution [5] were based on the infinite
substrate model our computations were made for the patch antenna on the substrate

which fills a 5.1 em X 7.5 cm X 0.08779 cm cavity recessed in a ground plane. Experi-
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mental calculations showed, however, that in this case the effect of the cavity termination
on the input impedance is negligible. Figure 12 shows the input impedance locus near
the first resonance whereas Figure 13 displays similar results in the vicinity of the second
resonance, both plotted on a Smith Chart. It is observed that the results based on this
method are in good agreement with the moment method solution and the measured data
except for a slight frequency shift of 1%. Figures 14 and 15 show the input impedance
for a loaded microstrip antenna and in this case it is seen that our calculations are in
better agreement with the measurements. To further demonstrate the capability of the
method, Figures 16 and 17 show the calculated input impedance for an unloaded and

shorted microstrip antenna.

CONCLUSIONS

5 report, we presented experimental verification of the scattering and input
impedance computations for patch antennas obtained via the hybrid finite element -
boundary integral method. The RCS measurements were obtained by placing the patch
antenna in a cavity which was housed in a l‘ow cross section body. Scattering patterns
were measured for single unloaded patches and the measured data were compared with
the computed results. Good agreement was observed between the measurements and
calculations in all cases. The input impedance computations were compared with mea-
sured data available in the literature. Again, good agreement agreement was observed in

spite of the approximate input terminal model (probe) employed for those calculations.
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FIGURE CAPTIONS

. 1 Geometry of a microstrip patch array in a cavity.
. 2 The low cross section test body serving as the test platform.
. 3 Experimental setup.

. 4 A comparison of the computed (dots) and measured (solid line) 6-polarized RCS

of a rectangular cavity recessed in a ground plane at 9.2 GHz.

. 5 A comparison of the computed (dots) and measured (solid line) 6-polarized RCS

of a rectangular cavity recessed in a ground plane at 9.64 GHz.

. 6 A comparison of the computed (dots) and measured (solid line) 6-polarized RCS

of a rectangular cavity recessed in a ground plane at 10 GHz.

. 7 A comparison of the computed (dots) and measured (solid line) #-polarized RCS

of a rectangular cavity recessed in a ground plane at 10.8 GHz.

8 A comparison of the computed (dots) and measured (solid line) 6-polarized RCS
of a rectangular patch on a substrate filling a rectangular cavity recessed in a

ground plane at 9.2 GHz.

9 A comparison of the computed (dots) and measured (solid line) #-polarized RCS
of a rectangular patch on a substrate filling a rectangular cavity recessed in a

ground plane at 9.64 GHz.

10 A comparison of the computed (dots) and measured (solid line) #-polarized
RCS of a rectangular patch on a substrate filling a rectangular cavity recessed in

a ground plane at 10 GHz.
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Fig.

11 A comparison of the computed (dots) and measured (solid line) 6-polarized
RCS of a rectangular patch on a substrate filling a rectangular cavity recessed in

a ground plane at 10.8 GHz.

12 A comparison of the computed and measured input impedance near and at the

first resonance for a microstrip patch antenna.

13 A comparison of the computed and measured input impedance near and at the

second resonance for a microstrip patch antenna.

14 A comparison of the computed and measured real part of the input impedance

for a loaded microstrip patch antenna.

15 A comparison of the computed and measured reactive part of the input impedance

for a loaded microstrip patch antenna.

16 A comparison of the computed real part of the input impedance for an unloaded

and shorted microstrip patch antenna.

17 A comparison of the computed reactive part of the input impedance for an

unloaded and shorted microstrip patch antenna.

15



A
Z y

Microstrip Fed Probe Fed
Patches Patches
> X

Ground Plane

Fig. 1 Geometry of a microstrip patch array in a cavity.

16



Cavity with patch antenna

Opening with
.......... . flush cover

L B PP K Sy R |

[
1
'
'
'
'
'
'
'—

10" .
reg— - »<:———>. |~
A

Top view

48"
I¢\ /__:l: — a1

la— »l
28" )
Cross section AA

y
S _ar

Cross section BB *

Fig. 2 The low cross section test body serving as the test platform.

17



]

1

: :

] ]

1 1

: : : : :

1 ] 1 1 ]

1 1 ] 1 ]

, 10" | 457 y 1Y : :

- . -

'- L ' X
: 28" :
‘- »'

Bottom View

)
Fig. 2 The low cross section test body serving as the test platform (Cont d).

18




19




RCS FROM CAVITY HAT: 9.2 GHz
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Fig. 4 A comparison of the computed (dots) and measured (solid line) f-polarized RCS
of a rectangular cavity recessed in a ground plane at 9.2 GHz.
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RCS FROM CAVITY HAT: 9.64 GHz
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Fig. 5 A comparison of the computed (dots) and measured (solid line) 6-polarized RCS
of a rectangular cavity recessed in a ground plane at 9.64 GHz.
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RCS FROM CAVITY HAT: 18 GHz
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Fig. 6 A comparison of the computed (dots) and measured (solid line) 6-polarized RCS
of a rectangular cavity recessed in a ground plane at 10 GHz.
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RCS FROM CAVITY HAT: 180.8 GHz
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Fig. T A comparison of the computed (dots) and measured (solid line) 6-polarized RCS
of a rectangular cavity recessed in a ground plane at 10.8 GHz.
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RCS FROM FRTCH HAT: 9.2 GHz
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Fig. 8 A comparison of the computed (dots) and measured (solid line) §-polarized RCS

of a rectangular patch on a substrate filling a rectangular cavity recessed in a
ground plane at 9.2 GHz.

24



RCS FROM PATCH HAT: 9.64 GHz
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Fig. 9 A comparison of the computed (dots) and measured (solid line) 6-polarized RCS
of a rectangular patch on a substrate filling a rectangular cavity recessed in a
ground plane at 9.64 GHz.
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RCS FROM FATCH AT: 1@ GHz
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Fig. 10 A comparison of the computed (dots) and measured (solid line) 6-polarized
RCS of a rectangular patch on a substrate filling a rectangular cavity recessed in
a ground plane at 10 GHz.
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Fig. 11 A comparison of the computed (dots) and measured (solid line) 6-polarized
RCS of a rectangular patch on a substrate filling a rectangular cavity recessed in
a ground plane at 10.8 GHz.
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Fig. 12 A comparison of the computed and measured input impedance near and at the
first resonance for a microstrip patch antenna.
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Fig. 13 A comparison of the computed and measured input impedance near and at the
second resonance for a microstrip patch antenna.
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Abstract

A formulation is presented for modeling resistive sheet in the con-
text of the finite element method. The appropriate variational func-
tion is derived and results are presented for scattering by resistively
loaded metal-backed cavity which are used to validate the formulation.
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1 Introduction

A resistive card is an infinitesimally thin sheet of material which allows par-
tial penetration of the electromagnetic field. Thin dielectric layers and very
thin conductors whose thickness is less than the skin depth are examples
of materials which can be modelled by resistive cards or sheets. Resis-
tive cards are often used for radar cross section and RF power penetration
control and as a result they have been studied extensively. Such studies
have generally been done in the context of high frequency [1,2] and integral
equation solutions [3,4], but to date the treatment of resistive cards within
the context of the finite element method (FEM) has not been considered.
Over the past few years, FEM has been applied to a variety of electromag-
netic applications and it is thus important to incorporate the modeling of
resistive cards in the FEM. In this paper we propose an FEM formulation
which accounts for the presence of resistive sheets. To validate this formu-
~ lation results based on a physical modeling of the resistive sheet are also
presented. In this case, the resistive sheet is equivalently replaced by a thin
dielectric layer. The modeling of such a layer in the usual manner leads to
larger and consequently inefficient linear systems, which is the primary rea-
son for resorting to a mathematical modeling of the resistive sheet. Results
based on the mathematical and physical modeling of the resistive sheet are
presented in connection with the scattering by a metal-backed cavity in a
ground plane. These are used to validate the proposed mathematical model
of the resistive sheet in the context of the FEM.

2 Formulation

A resistive sheet is characterized by its resistivity R which is measured in
Ohms per square. Mathematically, it satisfies the boundary condition [4]

A x (A x B) =R x (Ht —H") (1)

where H* denotes the magnetic field above and below the sheet, E is the
electric field and its tangential component is continuous across the sheet,
and n denotes the unit normal to the sheet pointing in the upward direction
(+ side). To a first order, this boundary condition can be used to simulate
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the presence of a thin dielectric layer of material by setting [5]

Z,

szko(e,—l)t

In this, t is the thickness of the layer, Z, and k, denote the free space
intrinsic impedance and wave number, respectively, and ¢, is the relative
dielectric constant of the layer. Alternatively, a resistive sheet may be
equivalently replaced by a thin dielectric layer having thickness ¢ and a
relative permittivity of

€ = —jZO
T k,tR

(2)

Generally, the accuracy of this simulation increases as the thickness t is
decreased. Typically, t should not exceed 1/10th of the wavelength in the
material.

Let us now consider a finite element solution of the fields within a vol-
ume V subject to a given excitation. The volume consists of some inhomo-
geneous dielectric having relative permittivity and permeability €, and pu,,
respectively, and we shall also assume that resistive cards may be embedded
within the dielectric (see Figure 1). In accordance with the finite element
method, the volume is subdivided into M smaller volume elements and in
this case we require that the resistive cards are tangential to the boundary
surface of these elements. A weak solution of the fields within the volume
can be obtained by extremizing the functional

F=§“a (3)

e=1

Fe o= ///V [%(VxE)-(VxE)—kze,E-E dv

+ik.Z, y}s E-(H x #.)ds (4)
with respect to the electric field E including that implied in H. In this

expression, V. is the volume of the element which is enclosed by the surface
S. and 7. denotes the outward normal to S..
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Generally, for a dielectric volume not enclosing resistive sheets or other
current sheets, the contributions of the surface integrals in (3)-(4) vanish
everywhere except when S, coincides with the outer surface S, of the vol-
ume V. This is a consequence of field continuity across the elements, but
if a portion of the element’s surface coincides with a resistive sheet, then
the surface integral in (4) does not vanish since the magnetic field is dis-
continuous as described in (1). Let us for example consider the surface
Sre which borders the eth and (e 4+ 1)th elements, and is coincident with a
resistive sheet of resistivity R. Then the contribution from this surface to
the surface integral in (4) is

ko7, / / E- (H™ x i) ds

from the eth element and

—]kZ// H xn,e)ds

from the (e + 1)th element with 71, pointing from the eth to the (e + 1)th
element. Combining these two integrals, it follows that the contribution of
the surface S, to the surface integral in (4) is

_ jk"Z"//sn [E- (H* - H) x .| ds
= k.2, / /b ) %E < [fire X (fire X E)] ds

- ]LZ// ~ (fire X E) - (ye x E) ds (5)

Consequently, the functional F' may be rewritten as

Z///{ (VxE)- (vxE)-kge,E.E}dv
+jkozo//sj(m X E)- (A, x E)ds
+ik.Z, @g B (Hx,)ds (6)
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in which S, denotes the surface occupied by the resistive sheet and S, is the
outer surface enclosing the volume V. As usual, 71, is the outward normal
to S, and 7, is correspondingly the outward normal to S,. If S, borders
the outer surface of the volume V, then S, should be considered to be just
over the exterior side of S, (i.e., S, always encloses S,).

Having derived the explicit form of the functional F', we may now ex-
pand the element field using the standard linear shape functions. If the
sources are within V then F should be modified to read

///‘/{pl—(VxE)-(VxE) —kze,E-E}dv
+///‘;E [jkoZoJi"t—Vx (%Mint)] dv

+JLZ// (fir X E) - (i, x E)ds

+ikoZ, ﬂs E-(H x fi,)ds (7)

where (J™, M) denote the impressed sources internal to V. Then, upon
setting the first order variation of F' to zero, we can obtain a system of
equations for the solution of the interior and boundary electric fields. For a
unique solution of this system we must, however, specify a relation between
the tangential electric and magnetic field which appear in the surface inte-
gral over S,. If we assume that the subject volume is that occupied by the
metal-backed cavity recessed in a ground plane, as shown in figure 2, then
S, reduces to the aperture area in that cavity. By invoking image theory,
the magnetic field on the aperture can then be expressed as

H = H™ + H' - 2jk,Y, / /S [(1 + k2vv) o(r,r')] [E(r) x 3]ds' (8)

where S, denotes the aperture surface, G,(r,r’) is the free space scalar
Green’s function, r specifies the observation point located on S, and I =
&&+{y+52 is the unit dyad. Also, H™ denotes the magnetic field generated
by sources in the free space and H™/ is the corresponding reflected field
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when the cavity’s aperture is shorted. Substituting (8) into (7) gives a
functional only in terms of the electric field. The system obtained from this
functional will be partly sparse and partly full. In particular the volume
integrals and that over S, in (7) lead to a sparse submatrix involving the
interior fields of the cavity. However, in view of (8) the last surface integral
of (7) over S, (or S,) renders a full Toeplitz submatrix since the boundary
integral is convolutional. Consequently, by resorting to an iterative solution
such as the conjugate or biconjugate gradient method in conjunction with
the fast Fourier transform, the need to generate the Toeplitz matrix is
eliminated thus maintaining the O(n) storage requirement, characteristic
of finite element solutions. The details pertaining to this implementation
are discussed in [6] - [8]. In the next section we only present some results
aimed at evaluating the accuracy of the proposed resistive sheet model.

-3 Numerical Results

Let us consider the metal-backed rectangular cavity illustrated in Figure 2.
The cavity is assumed to be empty (no internal sources) and is illuminated
by a plane wave in the ¢ = 0 plane. For implementing the aforementioned
solution, the cavity is subdivided into rectangular bricks and the results of
the solution are shown in Figure 3. These are radar cross section (RCS)
patterns and refer to a 1\ deep cavity whose aperture is also 1A x 1. The
RCS pattern in Figure 3(b) applies to the cavity which is loaded with a
resistive sheet of 100§2/0 placed at its aperture, whereas the result in Figure
3(b) is for the untreated empty cavity. The simulation of the resistive sheet
was done through direct discretization of the first order variation of the
functional F' as given in (7) and alternatively by modeling the resistive
sheet as a dielectric layer of thickness A/20 having the dielectric constant
computed from (2). As shown in Figure 3(b) the results based on the two
simulations are in reasonable agreement and the differences among them is
due to the finite thickness which was necessarily introduced in the physical
model of the resistive sheet. As noted in [9] and [10], the dielectric layer
introduces vertical components of the electric field which are not present in
the resistive sheet. It is certainly of interest to point out that the presence
of the resistive sheet at the aperture surface reduced the RCS of the cavity
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by 10dB at normal incidence and by as much as 20dB at grazing incidence.

The second geometry which was considered is a circular metal-backed
cavity again situated in a ground plane. In this case the aperture of the
circular cavity is loaded with a sheet having non-uniform resistivity given

by

z.]01+10(2)"] 5> 050
R(p) =
00 elsewhere on S,

where a denotes the radius of the aperture. Results with and without
resistive loading for a cavity having a = lin and a depth of 0.25in are
shown in Figure 4. These RCS patterns were computed at 16GHz and
the incident field is a plane wave in the zy plane polarized along the 6
or ¢ direction. Again, the data in Figure 4 demonstrate the validity of
the proposed mathematical model. Also, as in the case of the rectangular
cavity the presence of the resistive cards causes substantial reduction in the
overall RCS of the cavity. A vector map of the real and imaginary parts
of the aperture electric fields is presented in Figure § generated with and
without the resistive loading. This clearly demonstrates that the primary
reason for the RCS reduction is due to the reduced strength of the electric
fields normal to the rim of the circular cavity.

4 Conclusions

A formulation was derived for modeling resistive cards within the context
of the finite element method. Essentially, the pertinent variational func-
tional was supplemented with an additional boundary integral over the
surface of the resistive sheet/card. Results based on the discretization of
the functional were also presented aimed at demonstrating the accuracy of
the derived mathematical model.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

FIGURE CAPTIONS

Tlustration of a dielectric volume in the presence of a resistive card. (a) Resistive
card within the dielectric (b) Resistive card on the surface of the dielectric.

Tlustration of a cavity backed aperture in a ground plane.

Monostatic RCS for a rectangular aperture (1A x 1A) backed by a rectangular cavity

(1A x 1A x 1A) in the ¢=0 plane. (a) Empty cavity without resistive loading (b)
Empty cavity whose aperture is covered with a resistive sheet having a resistivity of

100Q/m. (Solid and dashed lines correspond to results based on the mathematical
simulation; circles and squares refer to results based on the physical modeling of
the resistive sheet)

Monostatic RCS for a circular aperture (1 inch in diameter) backed by a circular
cavity (1 inch in diameter and 0.25 inches deep) at 16 GHz. (a) Empty cavity. (b)
Empty cavity covered with a resistive sheet whose resistivity is given by equ. (12).
(Solid and dashed lines correspond to results based on the mathematical
simulation; circles and squares refer to results based on the physical modeling of
the resistive sheet) :

Vector map of the electric field on the aperture of the circular cavity whose RCS is
given in Fig. 4. (a) Empty cavity (b) Empty cavity covered with a resistive sheet
whose resistivity is given by equ. (12).
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