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1. INTRODUCTION

This paper describes a nonlinear control design problem involving the nonlinear interaction of
a translational oscillator and an eccentric rotational proof mass. This problem provides a bench-
mark for examining nonlinear control design techniques within the framework of a nonlinear
fourth-order dynamical system. The problem is posed in the spirit of the linear benchmark
problem described in Reference 1.

This system was originally studied as a simplified model of a dual-spin spacecraft to investigate
the resonance capture phenomenon.? More recently, it has been studied to investigate the utility
of a rotational proof-mass actuator for stabilizing translational motion.>~> Viewed in this way,
the rotational/translational proof-mass actuator (RTAC) has the feature that the nonlinearities
associated with the actuator stroke limitation are implicit in the system dynamics. In contrast, the
stroke limitation constraint must be considered separately in linear translational proof-mass
actuators.® A similar system has been studied as a rotating unbalanced mass (RUM) actuator in
References 7 and 8.

2. PROBLEM STATEMENT

The system shown in Figure 1 represents a translational oscillator with an eccentric rotational
proof-mass actuator. The oscillator consists of a cart of mass M connected to a fixed wall by
a linear spring of stiffness k. The cart is constrained to have one-dimensional travel. The
proof-mass actuator attached to the cart has mass m and moment of inertia I about its centre of
mass, which is located a distance e from the point about which the proof mass rotates. The motion
occurs in a horizontal plane, so that no gravitational forces need to be considered. In Figure 1,
N denotes the control torque applied to the proof mass, and F is the disturbance force on the cart.

Let g and ¢ denote the translational position and velocity of the cart, and let § and 0 denote the
angular position and velocity of the rotational proof mass, where 6 = 0 is perpendicular to the
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Figure 1. Rotational actuator to control a translational oscillator

motion of the cart, and 0 = 90° is aligned with the positive ¢ direction. The equations of motion
are given by

(M + m)§ + kq = —me(fcos — 0?sin6) + F

(I +me*) 0 = — megcos® + N

M+ m
I+me2q’

y M+m N, é M+m
k(I + me?) I+ mé®

the equations of motion become

With the normalizations?
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where ¢ is the normalized cart position, and w and u represent the non-dimensionalized
disturbance and control torque, respectively. In the normalized equations, the symbol () repres-
ents differentiation with respect to the normalized time 7. The coupling between the translational
and rotational motions is represented by the parameter ¢ which is defined by

me
\/(I + me*)(M + m)

1>

&

Letting x = [x1, X2, X3, X4]" = [&, g0, @]T, the non-dimensional equations of motion in first-
order form are given by

X =f(x)+ g(x) u +dx)w
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where
. X5 - . 0 - . 0 -
— X; + ex3sinx; — £COS X3 1
1 —¢&*cos’x; 1 —&2cos? x5 1 — &?cos? x;
fx)= , glx) = , d(x)=
X4 0 0
2. 1
£cos x3(x; — exjsin x3) — £COS X3
L 1 — &?cos®x; N L 1 —é&?cos®x; L 1 —&?cos?x;

The nonlinear benchmark problem can now be stated as follows.

Nonlinear benchmark problem
Design a controller that satisfies the following criteria:

1. The closed-loop system is stable (e.g. locally or globally).

2. The closed-loop system exhibits good settling behaviour for a class of initial conditions.

3. The closed-loop system exhibits good disturbance rejection compared to the uncontrolled
oscillator for a class of disturbance signals.

4. The control effort should be reasonable (e.g. maximum torque).
It may be interesting to consider the following, optional objective:

5. The controller should not distinguish between the values 6 and 6 mod 27, since these values
represent the same rotational configuration.

The requirements 1-4 for stabilization, free response, disturbance rejection and control effort
are not precisely stated. Instead, each designer is given some freedom to interpret these issues
individually. Requirement 5 avoids ‘unwinding’, i.e. the use of control effort to move the system
from [0, 0, 27n, 0] to [0, 0, 0, 0]*. Additionally, each designer may impose additional constraints
on the problem as desired, where such features serve to highlight the capabilities of particular
nonlinear control design methods.

3. LABORATORY TESTBED

A laboratory-scale version of the nonlinear benchmark problem has been constructed.® The
parameters for a nominal configuration are given in Table L.

Table I
Description Parameter Value Units
Cart mass M 1-3608 kg
Arm mass m 0-096 kg
Arm eccentricity e 0-0592 m
Arm inertia I 0-0002175 kg m?
Spring stiffness k 186:3 N/m
Coupling parameter e 0-200 —
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The physical configuration of the system necessitates the constraint
gl <0025 m

In addition, the control torque is limited by N < 0.100 N m continuous, although somewhat
higher torques can be tolerated for short periods.
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