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Bode Integral Constraints, Colocation, and Spillover
in Active Noise and Vibration Control

Jeongho Hong and Dennis S. Bernstein

Abstract—With the success of feedforward techniques for active =~ The basis of our work is the fact that in the single-
noise control, feedback control researchers have begun to explore sensor/single-actuator case, the closed-loop transfer function
the relationship between these two control paradigms. The goal of can be written as the product of the sensitivity function

this paper is to further investigate this relationship by means of d tial t called theill functi hich
the classical Bode integral constraint on achievable performance. and a spatial component calle pilover function whic

This constraint provides insight into the phenomenon of spillover depends upon the physical arrangement of the measurement,
which we define as disturbance amplification by the closed- control, disturbance and performance. It turns out that if the
loop system relative to the open-loop transfer function gain. control speaker and the disturbance source are noncolocated
Specifically, it is shown that a particular feedforward controller and if the performance microphone and the measurement
called the zero spillover controlleravoids spillover by producing . h located. then it i ible t
perfect disturbance cancellation at every frequency. The analysis microphone are ”‘?”C‘? ocated, then 1tis pOS§| eto overcome
suggests that spillover can be avoided only if the control speaker the Bode constraint in the sense that arbitrary attenuation
and the disturbance source are noncolocated and the performance of the open-loop transfer function can be achieved. In fact,
microphone and the measurement microphone are noncolocated. control strategies for minimizing the spillover function appear
For realizability, we derive the approximate zero spillover controller in the feedforward literature for broadband suppression. A
which is shown to be an optimal feedback controller for an LQG troller that loits this struct . in 110 .d
problem with suitable cross weighting. Finally, the results are F:0n ro e_‘r a_‘ exploits this s r.uc ure was g'V?n in [10] an
illustrated by means of structural and acoustic examples. is described in [11, p. 186]. This controller, which we call the
zero spillover controllerwas obtained as a singular multiloop
LQG controller in [12].

In addition to clarifying the distinctions and similarities
between traditional feedback control techniques and more

. INTRODUCTION specialized feedforward noise control methods, the Bode con-

LTHOUGH feedforward control techniques are widelystraint helps to clarify the phenomenon of spillover which is

used in active noise control applications [1], an alternatidely discussed in the feedback vibration control literature
tive approach is to apply standard feedback control techniquBEs3], [14]. In [13], control spillover is defined to be the
Although feedback techniques have seen relatively limited ugcitation by the actuator of unmodeled plant dynamics, while
in noise control problems, there have been an increasing nupservation spilloveris defined to be the sensing by the
ber of applications. For example, the feasibility of feedbadkensor of unmodeled plant dynamics. In the present paper,
control for suppressing noise in a one-dimensional duct wa§ say thatspillover occurs at frequency if the closed-
shown in [2], while, in related experiments [3], [4], modelloop transfer function magnitudgr. ..(jw)| is greater than
based feedback controllers were used to obtain broad-bdRg open-loop transfer function magnituglg. ., (jw)|. With
noise suppression. this definition, spillover can occur whether or not the plant

With the success of feedforward techniques, feedback cdissesses unmodeled dynamics.

trol researchers have begun to explore the relationship betweet this paper, the Bode constraint is used to identify sit-
these two control paradigms [5] The goa| of the preseHﬂtiOl’]S in which SpiIIover is unavoidable regardless of the
paper is to further investigate this relationship by means bfear time-invariant control law (assuming relative degree 2
the classical Bode integral constraint on sensitivity [6]-[9Pr greater loop transfer function). In particular, our results
Specifically, we show that the geometric arrangement 8how that spillover can be avoided only if 1) the control
speakers and microphones in the standard feedforward se@paker and the disturbance source are noncolocated and 2)
allows the control designer to effectively circumvent théhe performance microphone and the measurement microphone
inherent performance limitations of the Bode integral, whict@re noncolocated. Note that these conditions can be satisfied
for a stable loop transfer functioh(s) with relative degree Whether or not the control speaker and the measurement
at least 2, constrains the integrated log-magnitude of tA¥crophone are colocated. In fact, whether or not the control
sensitivity functionS(s) to be zero, whereS(s) = 1/[1 — speaker and the measurement microphone are colocated has
L(s)]. greater impact on robustability than on achievable nominal

. . _ Berformance. In fact, it follows from singular LQG theory that
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from the control speaker to the measurement microphone be [ll. BODE SENSITIVITY INTEGRAL
minimum phase, in particular, colocatéd. CONSTRAINT AND SPILLOVER

I_:inally, the consequences of colocation in vibration and gy, the special case in which the loop transfer funciigs)
noise control are discussed in [16]-{19]. is asymptotically stable and has relative degree at least two,
the Bode sensitivity integral constraint [6]-[8] states that
Il. PRELIMINARIES -
Consider a control problem represented by a linear time- / log [S(yw)| dw = 0. (12)
invariant system with transfer matri¥(s) partitioned as 0

An immediate consequence of (12) is that the magnitude
Gzl-w(s) Gzl-u(s) p (12) J

G(s) = (1) |S(yw)| of the sensitivity function cannot be less than unity
Gyow(s)  Gyouls) at every frequency.
with realization Now consider the case in which the state performance
A D. B variable z,, and the noiseless measurementare colocated
! S0 thatG._,,(s) = Gy, w(s) and G, ,(s) = G, .(s) and the
G(s) ~ E; 0 0] (2)  case in which the disturbance signaland the control input
C 0 0 u are colocated so tha¥., .(s) = G.,.(s) and Gy, . (s) =

Gy, u(s). In both of these cases it follows from (10) that the

The state performance variabig, noiseless measuremept, spillover function satisfies

disturbance signaly and control inputy are related by

20 = Gey )0+ G (s ©) FlG)] = Gevwl) 3)
Yz = Gy w(s)w + Gy, u(s)u (4) and thus, by (9)
and satisfy the state-space equations Grow(w) = Qoo (J0)S (Jw) (14)
#(t) = Az(t) + Bu(t) + Diw(t) (5) so that
(1) =Bt © ()| = [Cou)ISG). (25)
Yo (t) = Cu(t) ()
. _ o Thus, in either case, since the magnitudgw)| of the
wherex(t) € ®*. The control inputu is given by sensitivity function cannot be less than unity at all frequencies,
w= Go(8)ys (8) it follows that |G, ., (yw)| must be greater thajér ., (jw)| at

some frequencies. This phenomenon, namely, |that,, (jw)]
where G (s) is the controller transfer function. We say thats greater thanG.,..,(sw)| at a frequencyw, is defined as
the noiseless measuremept and state performance variablespillover. It is important to note that in the cases discussed
z, are colocatedif C' = E; [so thatz,(t) = y»(¢)], while above, spillover (as defined here) is unavoidable even if the
the disturbance signab and the control input: arecolocated system modelZ(s) is a completely accurate representation

if B = Di. of the physical system, that is, whether or not the plant has
Assuming thatz,., ., w, andw are scalars, the closed-loopparameter uncertainty or unmodeled dynamics. In theory, the
transfer function fromw to z, can be written as effect of spillover can be reduced by choosing controllers so

~ that|S(yw)| ~ 1 over a wide frequency range [20]. In practice,

Geow(s) = FlGe(s)]5(s) ) however, the ability to do this is subject to bandwidth and

where saturation limitations of the control actuator and electronics.

A
FlGe(s)] = Gzuls) — [Gwa(S)Gywu(s) IV. ZERO SPILLOVER CONTROLLER
= Gu(8)Gy,w(8)]Ge(s) (10) AND FEEDFORWARD CONTROL

and It was shown in Section Ill that if the state performance

A 1 variable and noiseless mea;urement are colocated or t_he dis-

= T-L0) L(s) = Gy, u(s)Gc(s).  (11) turbance 5|gna! and control input are colocated, then splllover
cannot be avoided. We thus consider the case in which the

Note that(._..(s) is the product of two terms, namely, theState performance variable and noiseless measurement are
spillover functionF'[G.(s)], which depends upon the physicanoncolocated and the dlsturbance _S|gnal_ and_ control input
arrangement of the measurement, control, disturbance, &8 noncolocated. Clearly, spillover is avoided in the case of

performance, and theensitivity functions(s), which depends Perfect cancellation, that is, wheh, ., (s) = 0, which implies
upon the loop transfer functioh(s). that the spillover function satisfidg[G(s)] = 0. The resulting
zero spillover controlleris given by
1Recall that a colocated (driving point) admittance transfer function from
force to velocity, from voltage to current, or from pressure to volume velocity G (3)
is dual, that is, the product of the input and output signals has the dimensions stc(s) = <
of power. Such a transfer function is positive real and thus minimum phase. Gzlw(S)Gylu(S) -G (S)Gylw(s)

L

S5(s)

(16)
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SinceGzsc(s) yields F[Gzsc(s)] = 0, it follows from (9) that measurement microphone to the performance microphone. In
szw(s) = 0 and thusGzsc(s) provides perfect cancellationthe notation of (1), the appropriate correspondences are
of the disturbance at every frequency and hence produces no
spillover. This property ofGzsc(s) was noted in [12]. We

shall say that the zero spillover controll6lsc(s) exists if Hi(f) =Gyoulw),  Ha(f) = Gerulw),

the denominator of7zsc(s) in (16) is not identically equal Ho(f) = M (18)

to zero. Gy, w(w)
Note that the expression (16) f@¥zsc(s) indicates plant

inversion and thus possible sensitivity to plant uncertainty. [Fhus

addition, if either the state performance variable and noiseless

measurement are colocated so thGt, ,(s) = Gy, w(s) G, w(w)

and G, .(s) = Gy,u(s), or the disturbance source and the Gy (w)

control input are colocated so thét._ . (s) = G._.(s) and olf) = a 0w)

Gy, w(s) = Gy, u(s), then the denominator ofizsc(s) is Gyou(gw) % = Gou(w)

identically equal to zero, and thuSzsc(s) does not exist. vz

However, these cases do not occur in feedforward control = Grpw(Iw)

where the measurement microphone is usually placed near Grpio () Gy u(Jw) = Gopu(J0) Gy ()

the disturbance source and far from the performance location, =Gzsc(w).

while the disturbance occurs far from the control speaker

which is typically located downstream in a duct. The ability of the zero spillover controller to avoid spillover
It can be shown that the zero spillover control&fsc(s) can be seen in [10, Fig. 5] where significant noise reduction

may be improper. Thus the loop transfer functidfis) = with minimal spillover was achieved over a broad frequency

Gy.u(s)Gzso(s) may have relative degree less than two angand. If Gsc(s) is improper, then it is not physically realiz-
hence the Bode integral constraint (12) may not be satisfieghle. Therefore, in the following section we consider a strictly

However, the zero spillover controller yieldS'.,..(s) = proper modification of the zero spillover controller.
0 whether or not (12) applies. The following result gives
conditions under whichGzsc(s) stabilizes the sensitivity V. APPROXIMATE ZERO SPILLOVER CONTROLLER

function S(s).

Proposition 4.1: SupposeG(s) is asymptotically stable,
G.,u(s) and Gy, ., (s) are minimum phase, andizsc(s)
exists. Then the sensitivity functio§(s) is asymptotically

In this section, we continue to assume that;, «, andw are
scalar and we derive a state-space realization for a modification
of the zero spillover controller. To do this, we introduce a
nonzero control weighting’, and nonzero measurement noise

stable.
Proof: Letting num[-] and den[-] denote numerator and Dyw such that (6) and (7) are replaced by
denominator, respectively, it follows that: 2(t) = E1a(t) + Eyu(t) (19)

y(t) = Cx(t) + Dyw(t). (20)

@

den[S(s)] =mum[l — Grsc(s)Gy. u(s)] The modified version of the zero spillover controller (16) cor-

—num|1— Grrw(5)Gys u(5) responding to (5), (19), and (20) will be called tygproximate
G w(8)Gy,u(s) = Gou(8)Gyw(s) | zero spillover controlleiG s (s) and is given by the strictly

=num[G._ ,(s)| num[Gy, proper transfer function
-den[G., ,(s)] den[Gy, .,

Gow(s) '
Gew (S)Gyu (s) = Gau (S)Gyw (s)

. . rEmeparing (16) and (21) suggests that the zero spillover con-
the transfer functions;, u(s) and Gy,.(s) are minimum troller can be recovered from the approximate zero spillover

phase, it follows thaden[S(s)] is Hurwitz. _controller by lettingE, — 0 and D, — 0, that is
Next we show that the zero spillover controller (16) is

identical to the feedforward controller given in [10]. In the . lgn o Gazsc(s) = Gzsc(s). (22)
notation of [10], Roure considers the controller 2R

Gazsc(s) = (21)

Since the open-loop system is asymptotically stable and si

However, Gzsc(s) may not exist and thus (22) may not be
Ho(f) valid. . o _
C(f) = H,())Ho(f) = Ha(f) 17) We now obtain a state-space realization for the approximate
! 0 2 zero spillover controller. Unlike the zero spillover controller,
this development does not exclude the colocated ddsesF,

where f = w/2r, Hi(f) is the transfer function from the andp = p,. With (19) and (20), we redefine the system (1) as
control speaker to the measurement microphdfig,f) is the

transfer function from the control speaker to the performance G(s) = Gauw(s)  Gau(s) (23)
microphone, andHy(f) is the transfer function from the Gyuw(s) Gyuls)
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with the state-space realizations
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the transformed stat8>x has2n uncontrollable states which
can be truncated to yield the orderrealization

A D A B
Gn(s) ~ L Gus) ~ G A-BE\/E; - D\C/D; | Di/D;
Ey 0 £, Ey azsc(s) ~ _E\/Es ‘ 0 ‘
A Dy A B
Gyu(s) ~ . Gyuls) ~ , (28)
() ~ | DQ] Sl P

Numerical evidence strongly suggests that (27) is valid in

By applying formulas for parallel and cascade interconnectioﬁgneral’ even iiD, # B.

of transfer functions and for the inverse of a transfer functiog ltrggivr; a:teemza;?osstoilIg\?;?rglgt?oﬁgrngtlggirl]isz eljsnﬁzrc\ll\c/)zlgg-lghoe
to (21), it follows thatGazsc(s) has a realization of order PP P P

. transfer function. This question, along with connections to
on given by (24) at the bottom of the page. However, thlEQG control, is addressed in the following section.

realization is not minimal and its order can be reduced by

applying the state transformation matrix
VI. LQG CONTROL AND A MULTIVARIABLE GENERALIZATION

OF THE APPROXIMATE ZERO SPILLOVER CONTROLLER

S =
ro 0 0 0 I The realization (28) of the approximate zero spillover con-
0 0 DD I 0 —-BDY troller was obtained for the case in whiehy, », andw are
0 DIDI DID\D,I —-DIDiI 0 scalar. In this section, we generalize the approximate zero
1 0 0 0 -1 spillover controller to the multivariable case by using LQG
LO 0 0 I 0 control. Consider thell; norm of the closed-loop transfer
51—1 = function G, (s) given by
r I 0 0 I 0 J(Go) = ||Gawll? (29)
-BDD,/DID, -D.I/DID, I/DID;, 0 I o
BDY /DI D, I/D¥D, 0 0 0 where the controlleZ.(s) has a realization
0 0 0 0 I 4, | B.
L 1 0 0 00 Ge(s) ~ (30)
(25) C. 0

The following result yields théd,-optimal controller for the
The transformed staté;xz hasn uncontrollable states andcase in which dimz = dim « and dimy = dim w. In this
n unobservable states which can be truncated to yield tbgse,E, and D, are square matrices.
order 3n realization given in (26) at the bottom of the page. Theorem 6.1:Suppose tha#, and D, are invertible and
If B = Dy, then by applying the state transformation matrixthat A— BE; *E; and A—D; Dy C are asymptotically stable.
Then theH,-optimal controller is given by

BDY/DTD,  1/DID, 0 . . .
Sy = 0 0 1/DID\D, G oin(s) ~ A-BE; B\ —DDy°C | DDy |
- BDY/DED, —1/DFD, 0 cop _E'E, o0
i I 0 I (31)
Syt =|-BDT + DD, 1 0 -BDT
i 0 DID Dyl 0 Furthermore
27) J(Ge opt) =0 (32)
A DE/(D;E,) 0 —D\E /(D;E;) —D,C/D, D, /D,
0 A D:C 0 0 0
0 BE,/(D:E;) A —BE,/(D:E;)  —BC/D, B/D,
Gazsc(s) ~ 0 BE, /E, 0 A — BE, /E, 0 B (24)
0 D\E/(D3Ey) 0  —D\E /(DyEy) A-D,C/Dy | Di/D,
—E,/E, 0 0 0 0 0
Gazsc(s) ~
A-D,C/Dy — D,E,BDY /(E,DYD,) —D\E,/(DYD,E,) D\E,/(DYD,D;E;) | D,/D,
ABDY — BDT A A 0 0
D.CBDY - BDTD,C D.C A 0 (26)
—E/E> 0 0 | 0
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and thus@zw(s) = 0. Finally, the sensitivity functiort(s) is Theorem 6.1 provides a specialized LQG controller that
asymptotically stable. involves cross weightings. To interpret (32), write the cost

Proof: The Hy regulator Riccati equation with nonzeroas
cross weighting has the form

J(G.) = lim EE{ /0 T (s) BT By(s)

0=(A—-BRy;'RL)TP + P(A— BR;'RL,) t—oo ¢
—1 T —1 T
= PBRy B P+ Fi — Rty Ry + 2a:T(s) ElTEgu(s) + uT(s)EQTEgu(s)] ds}
where R, = ETE|, Ri» = ETE, and R, = E3 E5. Since (36)

E, and D, are invertible, it follows thatRlQR;]‘RlT2 =

ETEyETEy)"'ESE, = EFYE, = R, and R;'R], = wherew(t) in (5) and (20) is white noise with unit intensity.

(EYEy)~Y(ELE,)"T = Ey'E;. Thus, the regulator Riccati The optimal cost (32) shows that the cross-weighting term

equation becomes xTEL E>yu is negative and exactly cancels the state and control
termszTELTE1 2 and uT EY Eyu.

0=(A-BE;'E\)"P+ P(A— BE;*E\)— PBR;'BTP. Note that theH;-optimal controller (31) and the approxi-
mate zero spillover controller (28) are identical, that is

Since 4 — BE;lEl is asymptotically stable, the unique

stabilizing solution to this Riccati equation?isP = 0. Gazsc(s) = Geopt(s) (37)
Likewise, for the observer Riccati equation with correlated
plant disturbance and measurement noise given by in the case in whicty, y, u, andw are scalar and under the
assumption that (28) is equivalent to (26), The LQG controller
0=(A-VV;1O)Q + QA - ViV tO)T Ge,opt(s) thus provides a multivariable generalization of the
— QCTVQ—]‘CQ +V - V12V2_1V1T2 approximate zero spillover controller.

If the transfer functions from the control input to the
whereV, = DD, Vi, = D DY, andV, = D,DY, the state performance variable and from the disturbance signal
unique stabilizing solution i€ = 0. With these solutions, the w to the noiseless measuremept are positive real, then
H,-optimal controller has the form (31). Furthermore, sincd — BE; *Ey andA— D, D;*C are asymptotically stable for

Q = P = 0, the H,-optimal cost is given by all E; and D, such thatk, + E and D, + D} are positive
definite. This result follows from the fact that the negative
J(Goopt) =t1[QR1 + P(Via + QCT) feedback interconnection of a positive real transfer function
. V2—1(V12 +CcM =o. and a strictly positive real transfer function is asymptotically
stable [22]. Furthermore, note that the transfer functions from
Thus, it follows from (29) thét ézw(s) = Q. the control inputw to the state performance variable and
With the controller (31), the sensitivity functiofi(s) has from the disturbance signal to the noiseless measuremegnt
the realization are positive real if the control inputand the state performance

variable z, are colocated and dual and the disturbance signal

A BC. B w and the noiseless measuremegnptare colocated and dual.
S(s) ~ B.C A 0 (33) These positive real conditions guarantee stabilityasD, —
0 C. ] 1 0 in recoveringGzsc(s) from G zsc(s) as in (22). Note that
this spatial arrangement does not violate the noncolocation
where A, = A+ BC. — B.C, B = D\D;*, and C, = requirements for avoiding spillover discussed in Section IlI.
_EQ_IEl- Under the assumptions of Theorem 6.1 and with summary of the various cases is given in Table I. FinaIIy,
the controller (31), it follows that: note that Proposition 4.1 shows thatxu(s) and Gyxw(s)
need only be minimum phase in order to guarantee that
A BC:| _ the sensitivity functionS(s) is asymptotically stable for the
B.C A, controller Gzsc(s)
I 0][A+BCc. BC. 1[I o] (34
I 1 0 A-B.C||I T VIl. EXAMPLES
where A. Two-Mass Example
A+ BC.=A—- BE;lEl The equations of motion for the two-mass system shown in
A-—B.C=A~— DlDQ_IC (35) Flg 1 are given by
HenceS(s) is asymptotically stable. [ | midi + ady+ kg + e - @) + ke - @) =w

made + c2(g2 — G1) + ka(q2 — q1) + caga + kag2 =u
2Since P = 0 is the stabilizing solution, it is also the maximal solution
(see [21]). Therefore, it is the only nonnegative-definite solution.

3This can be confirmed directly as well. Zz =Q2, Y =q1
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TABLE | state-space description
CONSEQUENCES OFCOLOCATION

1) z, andy, are colocated. Spillover is unavoidable i 0 1 0 0 1

[see (15)]. kit+ky a+te ko C2
2) w andu are colocated. Spillover is unavoidable i = my my my my "
3). G(s) is asymptotically stablpArbitrarily good nominal 23 2 _kaths  _cates
andG.,.(s) andG,,.(s) are |performance is possible [15]. If L me mo ma me
minimum phase. Gzsc(s) exists, then it stabilizes 0 0

S(s) andG., . (s) = 0. 0 1

4) G-, .(s) andG,, . (s) are  |Arbitrarily good nominal +1 0 fut | jw
positive real. performance is possible using 1 0
Gazsc(s), which is proper and e
A 2 0
stabilizing.
y=[0 1 0 O]z+ Dw
5) Gy, «(s) is positive real. Robust stability is possible via z2=[0 0 0 1]z + Fou.

dissipative control [23], [24].

It now follows from (27) thatG szsc(s) is given by (40) at
the bottom of the next page, where

q, q
acw | o au [T 1 4
4 S —> 4 —> ~ }/ g(s) = 2 (DyEamymas® + {Dam1 + Eama
- m, - m, - + D2 Es[(c1 + c2)ma + (c2 + c3)ma]}s°
___}/\/\/\“* — + {1+ Dy(c1 +¢2) + Ez(cy + ¢3)
ki % k. z, K + Do Esler + c2 + c1es + cacs + (k1 + k2)me
Fig. 1. Two-mass system. + (k2 + k3)my]}s* 4+ {Da(ky + k2) + Ea (ko + k3)

+ Do Es[ci (ke + k3) + co(k1 + k3)

which yields the system shown in (38) shown at the bottom + ca(k1 + k2)ys + DaEs[(ky + ko) (k2 + k3) — k3.
of the page, and the zero spillover controller
Next note that sincev and y, are colocatedy and z, are
colocated, and, andy, are velocities, it follows that7.._,(s)
Gso(s) = —ca — k2 andG,, .,(s) are positive real and hence minimum phase, and
s’ thusA— BE; ' E; and A— D, D;* C are asymptotically stable
for all E5, Dy > 0. Therefore, it follows from Theorem 6.1
that the approximate zero spillover controller stabilizes the
With this PI controller, the loop transfer function and sensiticlosed-loop system. Finally, sindéng, p,—o g(s) = 1, it
ity are given by (39) shown at the bottom of the page. It can b&lows that:
verified directly thatF[Gzsc(s)] = 0 and thusG._ ,(s) = 0
so that perfect disturbance rejection has been achieved despite m @ () = —co — k2 — Gsols)
the fact that the Bode constraint (12) on the sensitivity is By, Dy—o  E5C 2T Z8C
satisfied. It can be seen that the sensitivity functis) is
asymptotically stable, which is consistent with Proposition 4.fhich verifies (22). It can be seen that the loop transfer
To obtain the approximate zero spillover controller, Ieunction L(s) has four poles due to the cancellation of a
1 = ¢, %2 = ¢, %3 = 2, T4 = ¢ and consider the pole-zero pair at the origin.

Cos% + kos m1s> + (c1 + c2)s® + (k1 + ko)s
{zm} _ mas® 4 (co +c3)s? 4 (ko + ks)s c25? + kos {w} 38)
Yz o [m132 + (Cl + 62)8 + k1 + kQ][mQSQ + (CQ + 63)8 + ko + /{}3] - (CQS + /{}2)2 (2
L(s) = —(c2s + ky)?
[mi1s? 4 (c1 + co)s + k1 + ko|[mas? + (co + c3)s + ko + k3] — (cas + k2)?
2
S(s) =1 (cz5 + k2) (39)

[m1s? + (c1 +c2)s + k1 + ko][mas? + (ca + c3)s + k2 + k3]
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Fig. 2. Acoustic duct.

B. Acoustic Duct Example

The equations of motion for the acoustic duct shown in
Fig. 2 are given by [4]

SpulEs 1) = pee(€, )+ poin (O — &)
+ pO@'w(t)é(S - Sw)
Za;(t) :p(£Z7 t)v yaz(t) = p(£y7 t)

wherep(¢, t) is the acoustic pressure,s the phase speed of
the acoustic wave (343 m/s in air at room conditions))
andw,,(t) are the speaker cone velocities (m/s) of the actuating
speaker and the disturbance speaker, respectivelyygisdhe
equilibrium density of air (1.21 kg/fnat room conditions). By
using separation of variables, retainingnodal frequencies,

p(€,t) is given by

30 1 x
T 1 treq rad/sec
p(Sv t) = Z (Jz(t)vz(g) (b)
—
‘ Fig. 3. (a) The open-loop and closed-loop transfer functions froito =,

By introducing proportional damping, the state-space realizgith colocated measurement and performance and with colocated control and

tion of the system is given by (5)_(7) where disturbance indicate spillover. (b) The open-loop and closed-loop transfer
! functions fromw to =z, with noncolocated measurement and performance and

T with noncolocated control and disturbance indicate the absence of spillover.

(1) = { /0 R /0 (@) do g

(1) = Awa(®), w(t) = Agwu(?) ] PR
u(t) = Asvult), w(t) = Av,(t 00 Po
2 V(6 P Vi(6)
0 1 A A
B = D =
—w?  —2Gwn ’ !
A2 0 0
0 1 00 Po
_w1211’ _2C7‘wnr ~4ls (5 )' LS (5 )_
r 0 1 0 0 0 7
ki + ko c1+ ¢ 1 ﬁ C2 1
my my my Dy my my my Dy ks
0 0 0 1 0 —C2—
G ~ =35 40
AZSC(S) ﬁ 2 B k2 + kg _CQ + c3 B 1 0 g(s) ( )
mo mo ma mo maFEo
1
0 0 0 - 0
L B, J
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Fig. 4. Pole-zero plots of the transfer functions @), ..(s), (b) G, «(s), (€) Gy, w(s), and (d)Gy, . (s) with noncolocated measurement and performance
and with noncolocated control and disturbance show ¢hat. (s) and G,_..(s) satisfy pole-zero interlacing and thus are minimum phase.
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where A, is the cross-sectional area of the speaKgiis the

1,2,

77)

D, = 0.1 and E5 = 2000, it can be seen in Fig. 3(b) that
spillover has been avoided.

Next, we apply Theorem 6.1 with, = &, & = &, and
a decreasing sequence of valuesiof > 0 and E> > 0,
where D, is chosen to be equal td,. As can be seen
from Fig. 4(b) and (c), the transfer functiofd,,.,(s) from
the disturbance speaker to the measurement microphone and
the transfer functior7,_,,(s) from the control speaker to the

damping ratio of théth acoustic mode, anfl is the length of performance microphone are both minimum pragéus, in
the duct. For simplicity, speaker dynamics [4] are neglectegiccordance with Proposition 4.1, it is verified numerically

Numerical values for this example asg = 0.0025 m?, L = 2
m¢=014i=1,.---,5, &, =0.121 m, and{, = 1.937 m.

that Gzsc(s) stabilizes the sensitivity functios(s). Note
from Fig. 4(d), however, that the transfer functigh,, .(s)

In Sections Il and IV it was shown that if either the statérom the control speaker to the measurement microphone is
performance variable, and the measurement are colocated nonminimum phase.

or the control inputw and the disturbance signal are

Fig. 5(b) shows the magnitude of the sensitivity function

colocated, then spillover cannot be prevented. This propef§ys) with G.(s) = Gazsc(s) as D, and E, decrease. The

is illustrated in Fig. 3(a) by applying LQG with, = &,
€u = &w, Dy = 0.1, and B> = 2000. Note that since, = &,

poor form of the sensitivity is consistent with the fact that the
transfer function from the control speaker to the measurement

and¢,, = &,, Gzsc(s) does not exist for this case. In contrastmicrophone is nonminimum phase, and thus the system is
consider the case in which the performance microphone antierently difficult to control [20]. Note that the controller,

the measurement microphone are noncolocated and the contrl

In fact, these colocated impedance transfer functions are positive real since

speaker a“q the disturbance Signal are nor!colocated.. In En.ésinput is volume velocity, the output is pressure, and their product has the
case, by letting, = &, and¢, = ¢, and applying LQG with dimensions of power.
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Fig. 5. For the case of noncolocated measurement and performance and noncolocated control and disturbance: (a) The approximate zero sfiglover contr
Gazsc(s) is relatively insensitive taD» and E». (b) The sensitivity functionS(s) with G<(s) = Gazsc(s) is relatively insensitive tdD, and E;. (c)

The spillover functionF'[G(s)] is highly sensitive taG.(s), so that small changes ifiyzsc(s) due to decreasin@» and E» cause large suppression of
F[Gazsc(s)]. (d) The magnitude of the closed-loop transfer funci®n, ..(s) with the controllerG azsc (s) = G, opt(s) decreases aB2 andE; — 0,

which indicates that the-co dB performance of the zero spillover controli8sc (s) is recovered from a sequence of approximate zero spillover controllers.

and thus the sensitivity function, does not change significantgm. Current research is focusing on this problem using the
asD, and E, decrease as shown in Fig. 5(a) and (b). Howeveagchniques of [15] and [25]-[27].

the magnitude of |G s zsc(s)] approaches-oo dB asDy — 0

andE> — 0 as shown in Fig. 5(c). Hence the magnitude of the

closed-loop transfer function with the controll€fyzsc(s) = ACKNOWLEDGMENT

Ge,opt(s) decreases a®, — 0 and £, — 0 as shown in  The authors thank S. Bhat for providing the example of
Fig. 5(d). The numerical results indicate that the sequenceSéction VII-A and C. V. Hollot, University of Massachusetts,
approximate zero spillover controlle€s, zsc(s) recovers the Amherst, for suggesting Proposition 4.1.

—oo dB performance of the zero spillover controlt@psc(s).
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