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Bode Integral Constraints, Colocation, and Spillover
in Active Noise and Vibration Control

Jeongho Hong and Dennis S. Bernstein

Abstract—With the success of feedforward techniques for active
noise control, feedback control researchers have begun to explore
the relationship between these two control paradigms. The goal of
this paper is to further investigate this relationship by means of
the classical Bode integral constraint on achievable performance.
This constraint provides insight into the phenomenon of spillover
which we define as disturbance amplification by the closed-
loop system relative to the open-loop transfer function gain.
Specifically, it is shown that a particular feedforward controller
called the zero spillover controlleravoids spillover by producing
perfect disturbance cancellation at every frequency. The analysis
suggests that spillover can be avoided only if the control speaker
and the disturbance source are noncolocated and the performance
microphone and the measurement microphone are noncolocated.
For realizability, we derive the approximate zero spillover controller
which is shown to be an optimal feedback controller for an LQG
problem with suitable cross weighting. Finally, the results are
illustrated by means of structural and acoustic examples.

Index Terms—Bode integral constraint, colocation, LQG, pos-
itive real, spillover.

I. INTRODUCTION

A LTHOUGH feedforward control techniques are widely
used in active noise control applications [1], an alterna-

tive approach is to apply standard feedback control techniques.
Although feedback techniques have seen relatively limited use
in noise control problems, there have been an increasing num-
ber of applications. For example, the feasibility of feedback
control for suppressing noise in a one-dimensional duct was
shown in [2], while, in related experiments [3], [4], model-
based feedback controllers were used to obtain broad-band
noise suppression.

With the success of feedforward techniques, feedback con-
trol researchers have begun to explore the relationship between
these two control paradigms [5]. The goal of the present
paper is to further investigate this relationship by means of
the classical Bode integral constraint on sensitivity [6]–[9].
Specifically, we show that the geometric arrangement of
speakers and microphones in the standard feedforward setup
allows the control designer to effectively circumvent the
inherent performance limitations of the Bode integral, which,
for a stable loop transfer function with relative degree
at least 2, constrains the integrated log-magnitude of the
sensitivity function to be zero, where
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The basis of our work is the fact that in the single-
sensor/single-actuator case, the closed-loop transfer function
can be written as the product of the sensitivity function
and a spatial component called thespillover function, which
depends upon the physical arrangement of the measurement,
control, disturbance and performance. It turns out that if the
control speaker and the disturbance source are noncolocated
and if the performance microphone and the measurement
microphone are noncolocated, then it is possible to overcome
the Bode constraint in the sense that arbitrary attenuation
of the open-loop transfer function can be achieved. In fact,
control strategies for minimizing the spillover function appear
in the feedforward literature for broadband suppression. A
controller that exploits this structure was given in [10] and
is described in [11, p. 186]. This controller, which we call the
zero spillover controller, was obtained as a singular multiloop
LQG controller in [12].

In addition to clarifying the distinctions and similarities
between traditional feedback control techniques and more
specialized feedforward noise control methods, the Bode con-
straint helps to clarify the phenomenon of spillover which is
widely discussed in the feedback vibration control literature
[13], [14]. In [13], control spillover is defined to be the
excitation by the actuator of unmodeled plant dynamics, while
observation spilloveris defined to be the sensing by the
sensor of unmodeled plant dynamics. In the present paper,
we say thatspillover occurs at frequency if the closed-
loop transfer function magnitude is greater than
the open-loop transfer function magnitude . With
this definition, spillover can occur whether or not the plant
possesses unmodeled dynamics.

In this paper, the Bode constraint is used to identify sit-
uations in which spillover is unavoidable regardless of the
linear time-invariant control law (assuming relative degree 2
or greater loop transfer function). In particular, our results
show that spillover can be avoided only if 1) the control
speaker and the disturbance source are noncolocated and 2)
the performance microphone and the measurement microphone
are noncolocated. Note that these conditions can be satisfied
whether or not the control speaker and the measurement
microphone are colocated. In fact, whether or not the control
speaker and the measurement microphone are colocated has
greater impact on robuststability than on achievable nominal
performance. In fact, it follows from singular LQG theory that
arbitrarily goodnominal performance can be achieved if and
only if the transfer functions from the control speaker to the
performance microphone and from the disturbance source to
the measurement microphone are both minimum phase [15].
Note that this result does not require that the transfer function
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from the control speaker to the measurement microphone be
minimum phase, in particular, colocated.1

Finally, the consequences of colocation in vibration and
noise control are discussed in [16]–[19].

II. PRELIMINARIES

Consider a control problem represented by a linear time-
invariant system with transfer matrix partitioned as

(1)

with realization

(2)

The state performance variable, noiseless measurement,
disturbance signal and control input are related by

(3)

(4)

and satisfy the state-space equations

(5)

(6)

(7)

where . The control input is given by

(8)

where is the controller transfer function. We say that
the noiseless measurement and state performance variable

are colocatedif [so that ], while
the disturbance signal and the control input arecolocated
if .

Assuming that , , , and are scalars, the closed-loop
transfer function from to can be written as

(9)

where

(10)

and

(11)

Note that is the product of two terms, namely, the
spillover function , which depends upon the physical
arrangement of the measurement, control, disturbance, and
performance, and thesensitivity function , which depends
upon the loop transfer function .

1Recall that a colocated (driving point) admittance transfer function from
force to velocity, from voltage to current, or from pressure to volume velocity
is dual, that is, the product of the input and output signals has the dimensions
of power. Such a transfer function is positive real and thus minimum phase.

III. B ODE SENSITIVITY INTEGRAL

CONSTRAINT AND SPILLOVER

For the special case in which the loop transfer function
is asymptotically stable and has relative degree at least two,
the Bode sensitivity integral constraint [6]–[8] states that

(12)

An immediate consequence of (12) is that the magnitude
of the sensitivity function cannot be less than unity

at every frequency.
Now consider the case in which the state performance

variable and the noiseless measurementare colocated
so that and and the
case in which the disturbance signaland the control input

are colocated so that and
. In both of these cases it follows from (10) that the

spillover function satisfies

(13)

and thus, by (9)

(14)

so that

(15)

Thus, in either case, since the magnitude of the
sensitivity function cannot be less than unity at all frequencies,
it follows that must be greater than at
some frequencies. This phenomenon, namely, that
is greater than at a frequency , is defined as
spillover. It is important to note that in the cases discussed
above, spillover (as defined here) is unavoidable even if the
system model is a completely accurate representation
of the physical system, that is, whether or not the plant has
parameter uncertainty or unmodeled dynamics. In theory, the
effect of spillover can be reduced by choosing controllers so
that over a wide frequency range [20]. In practice,
however, the ability to do this is subject to bandwidth and
saturation limitations of the control actuator and electronics.

IV. ZERO SPILLOVER CONTROLLER

AND FEEDFORWARD CONTROL

It was shown in Section III that if the state performance
variable and noiseless measurement are colocated or the dis-
turbance signal and control input are colocated, then spillover
cannot be avoided. We thus consider the case in which the
state performance variable and noiseless measurement are
noncolocated and the disturbance signal and control input
are noncolocated. Clearly, spillover is avoided in the case of
perfect cancellation, that is, when , which implies
that the spillover function satisfies . The resulting
zero spillover controlleris given by

(16)
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Since yields , it follows from (9) that
and thus provides perfect cancellation

of the disturbance at every frequency and hence produces no
spillover. This property of was noted in [12]. We
shall say that the zero spillover controller exists if
the denominator of in (16) is not identically equal
to zero.

Note that the expression (16) for indicates plant
inversion and thus possible sensitivity to plant uncertainty. In
addition, if either the state performance variable and noiseless
measurement are colocated so that
and , or the disturbance source and the
control input are colocated so that and

, then the denominator of is
identically equal to zero, and thus does not exist.
However, these cases do not occur in feedforward control
where the measurement microphone is usually placed near
the disturbance source and far from the performance location,
while the disturbance occurs far from the control speaker
which is typically located downstream in a duct.

It can be shown that the zero spillover controller
may be improper. Thus the loop transfer function

may have relative degree less than two and
hence the Bode integral constraint (12) may not be satisfied.
However, the zero spillover controller yields

whether or not (12) applies. The following result gives
conditions under which stabilizes the sensitivity
function .

Proposition 4.1: Suppose is asymptotically stable,
and are minimum phase, and

exists. Then the sensitivity function is asymptotically
stable.

Proof: Letting and denote numerator and
denominator, respectively, it follows that:

Since the open-loop system is asymptotically stable and since
the transfer functions and are minimum
phase, it follows that is Hurwitz.

Next we show that the zero spillover controller (16) is
identical to the feedforward controller given in [10]. In the
notation of [10], Roure considers the controller

(17)

where , is the transfer function from the
control speaker to the measurement microphone, is the
transfer function from the control speaker to the performance
microphone, and is the transfer function from the

measurement microphone to the performance microphone. In
the notation of (1), the appropriate correspondences are

(18)

Thus

The ability of the zero spillover controller to avoid spillover
can be seen in [10, Fig. 5] where significant noise reduction
with minimal spillover was achieved over a broad frequency
band. If is improper, then it is not physically realiz-
able. Therefore, in the following section we consider a strictly
proper modification of the zero spillover controller.

V. APPROXIMATE ZERO SPILLOVER CONTROLLER

In this section, we continue to assume that , and are
scalar and we derive a state-space realization for a modification
of the zero spillover controller. To do this, we introduce a
nonzero control weighting and nonzero measurement noise

such that (6) and (7) are replaced by

(19)

(20)

The modified version of the zero spillover controller (16) cor-
responding to (5), (19), and (20) will be called theapproximate
zero spillover controller and is given by the strictly
proper transfer function

(21)

Comparing (16) and (21) suggests that the zero spillover con-
troller can be recovered from the approximate zero spillover
controller by letting and , that is

(22)

However, may not exist and thus (22) may not be
valid.

We now obtain a state-space realization for the approximate
zero spillover controller. Unlike the zero spillover controller,
this development does not exclude the colocated cases
and . With (19) and (20), we redefine the system (1) as

(23)
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with the state-space realizations

By applying formulas for parallel and cascade interconnections
of transfer functions and for the inverse of a transfer function
to (21), it follows that has a realization of order

given by (24) at the bottom of the page. However, this
realization is not minimal and its order can be reduced by
applying the state transformation matrix

(25)

The transformed state has uncontrollable states and
unobservable states which can be truncated to yield the

order realization given in (26) at the bottom of the page.
If , then by applying the state transformation matrix

(27)

the transformed state has uncontrollable states which
can be truncated to yield the orderrealization

(28)

Numerical evidence strongly suggests that (27) is valid in
general, even if .

It now remains to determine conditions under which the
approximate zero spillover controller stabilizes the closed-loop
transfer function. This question, along with connections to
LQG control, is addressed in the following section.

VI. LQG CONTROL AND A MULTIVARIABLE GENERALIZATION

OF THE APPROXIMATE ZERO SPILLOVER CONTROLLER

The realization (28) of the approximate zero spillover con-
troller was obtained for the case in which and are
scalar. In this section, we generalize the approximate zero
spillover controller to the multivariable case by using LQG
control. Consider the norm of the closed-loop transfer
function given by

(29)

where the controller has a realization

(30)

The following result yields the -optimal controller for the
case in which dim dim and dim dim . In this
case, and are square matrices.

Theorem 6.1:Suppose that and are invertible and
that and are asymptotically stable.
Then the -optimal controller is given by

(31)

Furthermore

(32)

(24)

(26)
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and thus . Finally, the sensitivity function is
asymptotically stable.

Proof: The regulator Riccati equation with nonzero
cross weighting has the form

where and . Since
and are invertible, it follows that

and
. Thus, the regulator Riccati

equation becomes

Since is asymptotically stable, the unique
stabilizing solution to this Riccati equation is2 .
Likewise, for the observer Riccati equation with correlated
plant disturbance and measurement noise given by

where , and , the
unique stabilizing solution is . With these solutions, the

-optimal controller has the form (31). Furthermore, since
, the -optimal cost is given by

Thus, it follows from (29) that3 .
With the controller (31), the sensitivity function has

the realization

(33)

where , , and
. Under the assumptions of Theorem 6.1 and with

the controller (31), it follows that:

(34)

where

(35)

Hence is asymptotically stable.

2SinceP = 0 is the stabilizing solution, it is also the maximal solution
(see [21]). Therefore, it is the only nonnegative-definite solution.

3This can be confirmed directly as well.

Theorem 6.1 provides a specialized LQG controller that
involves cross weightings. To interpret (32), write the cost
as

(36)

where in (5) and (20) is white noise with unit intensity.
The optimal cost (32) shows that the cross-weighting term

is negative and exactly cancels the state and control
terms and .

Note that the -optimal controller (31) and the approxi-
mate zero spillover controller (28) are identical, that is

(37)

in the case in which and are scalar and under the
assumption that (28) is equivalent to (26), The LQG controller

thus provides a multivariable generalization of the
approximate zero spillover controller.

If the transfer functions from the control input to the
state performance variable and from the disturbance signal

to the noiseless measurement are positive real, then
and are asymptotically stable for

all and such that and are positive
definite. This result follows from the fact that the negative
feedback interconnection of a positive real transfer function
and a strictly positive real transfer function is asymptotically
stable [22]. Furthermore, note that the transfer functions from
the control input to the state performance variable and
from the disturbance signal to the noiseless measurement
are positive real if the control inputand the state performance
variable are colocated and dual and the disturbance signal

and the noiseless measurementare colocated and dual.
These positive real conditions guarantee stability as

in recovering from as in (22). Note that
this spatial arrangement does not violate the noncolocation
requirements for avoiding spillover discussed in Section III.
A summary of the various cases is given in Table I. Finally,
note that Proposition 4.1 shows that and
need only be minimum phase in order to guarantee that
the sensitivity function is asymptotically stable for the
controller

VII. EXAMPLES

A. Two-Mass Example

The equations of motion for the two-mass system shown in
Fig. 1 are given by
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TABLE I
CONSEQUENCES OFCOLOCATION

1) zx andyx are colocated. Spillover is unavoidable
[see (15)].

2) w andu are colocated. Spillover is unavoidable
[see (15)].

3). G(s) is asymptotically stable
andGz u(s) andGy w(s) are
minimum phase.

Arbitrarily good nominal
performance is possible [15]. If
GZSC(s) exists, then it stabilizes
S(s) and ~Gz w(s) = 0.

4) Gz u(s) andGy w(s) are
positive real.

Arbitrarily good nominal
performance is possible using
GAZSC(s), which is proper and
stabilizing.

5) Gy u(s) is positive real. Robust stability is possible via
dissipative control [23], [24].

Fig. 1. Two-mass system.

which yields the system shown in (38) shown at the bottom
of the page, and the zero spillover controller

With this PI controller, the loop transfer function and sensitiv-
ity are given by (39) shown at the bottom of the page. It can be
verified directly that and thus
so that perfect disturbance rejection has been achieved despite
the fact that the Bode constraint (12) on the sensitivity is
satisfied. It can be seen that the sensitivity function is
asymptotically stable, which is consistent with Proposition 4.1.

To obtain the approximate zero spillover controller, let
, and consider the

state-space description

It now follows from (27) that is given by (40) at
the bottom of the next page, where

Next note that since and are colocated, and are
colocated, and and are velocities, it follows that
and are positive real and hence minimum phase, and
thus and are asymptotically stable
for all . Therefore, it follows from Theorem 6.1
that the approximate zero spillover controller stabilizes the
closed-loop system. Finally, since , it
follows that:

which verifies (22). It can be seen that the loop transfer
function has four poles due to the cancellation of a
pole-zero pair at the origin.

(38)

(39)
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Fig. 2. Acoustic duct.

B. Acoustic Duct Example

The equations of motion for the acoustic duct shown in
Fig. 2 are given by [4]

where is the acoustic pressure,is the phase speed of
the acoustic wave (343 m/s in air at room conditions),
and are the speaker cone velocities (m/s) of the actuating
speaker and the disturbance speaker, respectively, andis the
equilibrium density of air (1.21 kg/mat room conditions). By
using separation of variables, retainingmodal frequencies,

is given by

By introducing proportional damping, the state-space realiza-
tion of the system is given by (5)–(7), where

...

(a)

(b)

Fig. 3. (a) The open-loop and closed-loop transfer functions fromw to zx

with colocated measurement and performance and with colocated control and
disturbance indicate spillover. (b) The open-loop and closed-loop transfer
functions fromw to zx with noncolocated measurement and performance and
with noncolocated control and disturbance indicate the absence of spillover.

...
...

(40)
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(a) (b)

(c) (d)

Fig. 4. Pole-zero plots of the transfer functions (a)Gz w(s), (b)Gz u(s), (c)Gy w(s), and (d)Gy u(s) with noncolocated measurement and performance
and with noncolocated control and disturbance show thatGz u(s) andGy w(s) satisfy pole-zero interlacing and thus are minimum phase.

and

where is the cross-sectional area of the speaker,is the
damping ratio of theth acoustic mode, and is the length of
the duct. For simplicity, speaker dynamics [4] are neglected.
Numerical values for this example are m ,
m, , , m, and m.

In Sections III and IV it was shown that if either the state
performance variable and the measurement are colocated
or the control input and the disturbance signal are
colocated, then spillover cannot be prevented. This property
is illustrated in Fig. 3(a) by applying LQG with ,

, , and . Note that since
and , does not exist for this case. In contrast,
consider the case in which the performance microphone and
the measurement microphone are noncolocated and the control
speaker and the disturbance signal are noncolocated. In this
case, by letting and and applying LQG with

and , it can be seen in Fig. 3(b) that
spillover has been avoided.

Next, we apply Theorem 6.1 with , , and
a decreasing sequence of values of and ,
where is chosen to be equal to . As can be seen
from Fig. 4(b) and (c), the transfer function from
the disturbance speaker to the measurement microphone and
the transfer function from the control speaker to the
performance microphone are both minimum phase.4 Thus, in
accordance with Proposition 4.1, it is verified numerically
that stabilizes the sensitivity function . Note
from Fig. 4(d), however, that the transfer function
from the control speaker to the measurement microphone is
nonminimum phase.

Fig. 5(b) shows the magnitude of the sensitivity function
with as and decrease. The

poor form of the sensitivity is consistent with the fact that the
transfer function from the control speaker to the measurement
microphone is nonminimum phase, and thus the system is
inherently difficult to control [20]. Note that the controller,

4In fact, these colocated impedance transfer functions are positive real since
the input is volume velocity, the output is pressure, and their product has the
dimensions of power.
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(a) (b)

(c) (d)

Fig. 5. For the case of noncolocated measurement and performance and noncolocated control and disturbance: (a) The approximate zero spillover controller
GAZSC(s) is relatively insensitive toD2 andE2. (b) The sensitivity functionS(s) with Gc(s) = GAZSC(s) is relatively insensitive toD2 andE2. (c)
The spillover functionF [Gc(s)] is highly sensitive toGc(s), so that small changes inGAZSC(s) due to decreasingD2 andE2 cause large suppression of
F [GAZSC(s)]. (d) The magnitude of the closed-loop transfer function~Gz w(s) with the controllerGAZSC(s) = Gc; opt(s) decreases asD2 andE2 ! 0,
which indicates that the�1 dB performance of the zero spillover controllerGZSC(s) is recovered from a sequence of approximate zero spillover controllers.

and thus the sensitivity function, does not change significantly
as and decrease as shown in Fig. 5(a) and (b). However,
the magnitude of approaches dB as
and as shown in Fig. 5(c). Hence the magnitude of the
closed-loop transfer function with the controller

decreases as and as shown in
Fig. 5(d). The numerical results indicate that the sequence of
approximate zero spillover controllers recovers the

dB performance of the zero spillover controller .

VIII. C ONCLUSIONS

In this paper, spillover was analyzed in terms of the Bode
integral constraint, and it was shown that the feedforward
controller given in [10] can be viewed as a zero spillover
controller in a feedback formulation. For implementation pur-
poses, a realization of the approximate zero spillover controller
was given. For analytical and numerical examples, the zero
spillover controller was shown to be a limiting case of an

-optimal controller. This property suggests that the zero
spillover controller is the solution to a singular LQG prob-

lem. Current research is focusing on this problem using the
techniques of [15] and [25]–[27].
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