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Continuous Finite-Time Stabilization of the Translational even yield control functions with a countably infinite number of

and Rotational Double Integrators discontinuities. In practical implementations, discontinuous feedback
controllers can lead to chattering behavior due to plant uncertainties
Sanjay P. Bhat and Dennis S. Bernstein or measurement imperfections. Such controllers may also excite

unmodeled high-frequency dynamics when used, for instance, to
control lightly damped structures [7].
Abstract—A class of bounded continuous time-invariant finite-time The design of continuous time-invariant finite-time-stabilizing

stabilizing feedback laws is given for the double integrator. Lyapunov
theory is used to prove finite-time convergence. For the rotational double feedback controllers presents a challenge because such controllers

integrator, these controllers are modified to obtain finite-time-stabilizing Necessarily involve non-Lipschitzian closed-loop dynamics. Conse-
feedbacks that avoid “unwinding.” quently, relatively little attention has been paid to such controllers

Index Terms—Finite-time stability, non-Lipschitzian dynamics, stabil- even though there are indications that finite-time_—stable Closeq-loqp
ity, stabilization. systems might have better robustness and disturbance rejection
properties [8]. While a constructive method for obtaining finite-
time-stabilizing controllers for the double integrator is given in
I. INTRODUCTION [9], the applicability of this method is limited by the fact that the
Most of the available techniques for feedback stabilization lea$nstruction involves finding closed-form analytical solutions to
to closed-loop systems with Lipschitzian dynamics. The convergengigebraic equations. A class of finite-time-stabilizing controllers
in such systems is at best exponential with infinite settling time. fior linear systems appears in [10]. This class of controllers is
other words, none of the solutions starting in an open neighborholbdited to systems having as many control inputs as state variables
of the origin converge to the origin in finite time. In fact, finite-and hence cannot be applied to the double integrator. A family
time convergence implies nonuniqueness of solutions (in reve®k continuous time-invariant finite-time-stabilizing controllers for
time) which is not possible in the presence of Lipschitz-continuotige double integrator is proposed in [11]. These controllers are
dynamics. unbounded, while the proofs use constructions special to the case
Our goal is to develop techniques for obtaining continuous finitef the double integrator.
time-stabilizing feedback controllers. The present paper focuses odn Section Il of this paper we give a family of continuous
the double integrator as an illustrative example of this objective. time-invariant finite-time-stabilizing feedback laws for the double
Since the double integrator is controllable, open-loop contréitegrator. In contrast to [11], we demonstrate finite-time stabilization
strategies can be used to drive the state to the origin in finidérectly by constructing a suitable Lyapunov function. In Section IV
time [1, p. 38]. One such control strategy is the minimum energye give a class of globally bounded feedback laws for the finite-time
control [2], which transfers the state of the systém= « from stabilization of the double integrator. The results are based on the

the initial conditionsz(0) = 20, #(0) = yo to the origin in a Lyapunov theory for finite-time differential equations developed in
given timet;. This control strategy minimizes the control energy12]. This theory is briefly presented in Section Il for completeness.
cost.J(u) = foff(u(t))2 dt and is given by [2, pp. 466-475] As an extension of these results, we consider a rigid body rotating
under the action of a control torque about a fixed axis. Such a
u(ro,yo.t) = _%(310 + 2yots) + %(210 + yot 7)t. _rigid body has equatio_ns of motion that_resemb_le those of a double

f ) integrator. However, since states that differ by integral multiples of

Similar finite-settling-time open-loop controls for linear systems at%? tlt? aggglartﬁosn:otn correspcf)ndttr:)t;htg sarlng phb)llsu_:atl conzlg_uratlon
given in [3] and some of the references contained therein. Open-loEép € body, the stale space Tor ational double Integratons

- ; ; ' 2
strategies, however, are generally sensitive to system uncertain tesg\_/l\_/o_-dlmenstlor?l cyllcr;deﬁl x (Iij rattr;]er éharg[la .[}3’ p.t 4]%?%
and may perform poorly in the presence of disturbances. abilizing controf laws developed for the double integrator

Finite-time-stabilizing feedback laws can be obtained throu etran_slational double integrat()rw_her? applied to the rot_ationafl
optimal synthesis. A well-known example is the bang-bang tim ouble integrator lead to the “unwinding” phenomenon in which

optimal controller. In [4] and [5], it is shown that the minimization ofF € body may rotate numerous times before coming to rest, even

certain nonquadratic cost functionals subject to a saturation cons’[réfintrIe initial con_flgu_ratlon is the same as the final deswed_ one. In
pacecraft applications, such unwinding can lead to the inefficient

on the control input yields finite-time-stabilizing feedback controllers p " t devi d fuel. H the desi
In fact, it is shown in [5] that the time-optimal controller for the!!S€ O' momentum-management devices and Iuel. Hence the design

double integrator also minimizes a nonquadratic cost functional. ngcontrollers that finite-time stabilize the rotational double integrator

property of the time-optimal controller is used in [6] to derive é(vnhout causing unwinding is of special interest. In Section V, we

finite-time-stabilizing feedback controller for uncertain scalar secon&‘[esem such a class of finite-time-stabilizing feedback controllers for

order systems. One drawback of the controllers given in [4]-[6] ?”:otatlonelatl dofubsle Ehtegrﬁtloi./ | in 114 hich i
that, like the time-optimal controller, they are discontinuous. For " e. results O. e? ;(k:)]ns B ?SO appear in [14], which is a
certain initial conditions, some of the controllers in [4] and [5]ore|m|nary Version ot the present paper.
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y: I — D is said to be aolutionof (1) on the intervall C TR if y  which is continuous everywhere sinaec (0,1). It is easy to verify
satisfies (1) for alt € I. The continuity off implies that for every that, fork > 0 and(z,y) € IR*
2 € D, there existry < 0 < 7 and a solutiony(-) of (1) defined on VR k) = KV (2, y) ©)
(70.71) such thaty(0) = z [15, pp. 10—~11]. We will assume that (1) = o Y
possesses unique solutions in forward time for all initial conditions, V("2 ky) = k"V (2, y). (7)
except possibly the origin; that is, for everye D\{0} there exist
7 > 0 and a unique solutioy(:) of (1) defined on[0,72) and . - o o
satisfyingy(0) = z. In this case E/ve denote the uniqUt[a soll)Jt;c(n) V- and -V takg pﬁmve values on t.he ge:t) = {zy)
of (1) satisfyingy(0) = 2 € D\{0} by py(z), thatis,p¢(x) = y(t). max(ey)#(0,010a|>==, [y[} = 1} which is 2 closed curve
Remark 1: The uniqueness assumption is of more than just acBN¢Ircling the origin. S,,'Eie for everyw,y) € IR7\{(0,0)} there
demic interest. Uniqueness in forward time and the continuity of existsk > O_SUCh that(};‘ ‘t’_l_"’y) € Q,_the h(_)rmogenele prop_ertles
ensure that solutions are continuous functions of initial conditior(g) and (7) imply thad” is positive fje_f'n'te ‘de/ is negative definite.
even whenf is not Lipschitz continuous (see [15, Th. 2.1, p. 94]). It also‘ follows from (6,) thatV is radllally unboundgd S.? .that
Definition: The origin is said to be finite-time-stable equilibrium the setV = {(x,y) : V(w,y) = 1} is compact. Sincel” is
of (1) if there exists an open neighborhad@C D of the origin and CONtiNUOUS}” achieves its maximum on the compact setDefine
a functionT: A\{0} — (0,c), called thesettling time such that ¢ = ~ MaX(z.p)ev V ('r’;”) and note that > 0 since—V’ is positive
the following statements hold. definite and(0,0) ¢ V. The homogenelty pfopertlel(s) and (7)
1) Finite-time convergence: For every € A\{0}, pi(x) is can now bgused 10 show theit(z, y) < —c{V (w.’y)}g_a for "’?”
defined fort € [0.T(x)). pi(x) € N\{0}. for t € [0,T(x)), (&) € IR% see, for instance, [6] and [14]. Since € (0,1) is
andlim,_ (o) pi(z) = 0. equivalent tog € (0, _1), finite-time s_tz_ablllty of the origin _f_ollows
2) Lyapunov stability: For every open st such that) € 4. C fr_om [11_, Th. 1 in Section | or Prc_;p_osmon 1_]. Glob_al_ stability holds
N, there exists an open st such tha[)ve Us C A" and ::*,u?:h sinceV is radially unbounded antl is nggatlve dgflnlte. . (I
that for everyax € Us\ {0}, pi(x) € U for t € [_O,T(a:)). Remark 2: The closed-_loop vectqr flelql obtained by using the
The origin is said to be globally finite-time-stable equilibriunf it feedpack contro[ law (4) is locally Lipschitz everywhere except the
s @ finie-time-stable equibrium and = A = I 1) of the funaion . . Since he closec-oop vector i, i
l;/ersmns of the following result have appeared in [6], [11], ang_ <\ ersal toV at every point in¥\{(0,0)}, it follows from [16,
[ 'I#weorem 1: Suppose there exists a continuously differentiablglm?osmon 2.2 or [17, Lemma 2, p. 107] that every initial condition
function V: D — IR, real numbers: > 0 anda € (0.1), and a X \_{.(0,0)_} ha§ a unique solution in forward time. The gbhs
neighborhood/ C D of the origin such thal” is positive definite a posltlvely invariant set for the closed-loop dyn_amlcs, that is, every
solution(x(-), y(+)) of the closed-loop system satisfies(t), y(¢)) €

?)Q,M andV' + kV* is negative semidefinite o, whereV'(v) = o4 > ¢ jf (2(0),y(0)) € S. This follows by noting that along the
£~ () f(x). Then the origin is a finite-time-stable equilibrium of (1). . ; 1—o 2
oz closed-loop solutiong .o, = —|y|" ~“|da (2, y)|Z—= < 0 for every

f i i i . 1 ()l b U
Moreover, if T is the settling time, thed(z) < Vi) (x,y) € IR*. Moreover, onS, the closed-loop system is given by

It can easily be shown that, for > 1 and s < 1, both

k(l—a)
for all « in some open neighborhood of the origin.
i = —sign(2)[(2 - )|z]] 7=
I1l. CoNTINUOUS FINITE-TIME-STABILIZING CONTROLLERS ®)

; - . o g = —sign(y)|y|".
In this section, we present a class of continuous time-invariant ) ) ) o
feedback controllers that globally finite-time stabilize the doublgyStem (8) is locally Lipschitz everywhere except the origin and

integrator. By a finite-time-stabilizing feedback law, we mean {1€refore possesses unique solutions in forward time for initial
feedback controller that renders the origin of the closed-loop systerfig'ditions inS\{(0,0)}. Thus the closed-loop system satisfies the

finite-time-stable equilibrium as defined in the previous section. Thi§iqueness assumption made in Section I. )
we seek a continuous feedback law Example 1: Fig. 1 shows the phase portrait of the double integra-

tor under the feedback law

u=1(x,y) 2)
ey — ok (3 5)? 9
that finite-time stabilizes the double integrator Play) =—y7 — (o + 5Y ©)
T =y, ¥ =u. () which is obtained from (4) by using = 1. An interesting feature
Proposition 1: The origin of (3) is a globally finite-time-stable of the closed-loop system is that all trajectories converge to the set
s 5 o g .
equilibrium under the feedback control law (2) with S ={(z.y) : x + 5y% = 0} in finite time. The set is positively

, ; N invariant and represents what is calledeaminal sliding moden
dla,y) = —sign(y)ly|* = sign(¢a (e, y)|oale, )| () [g]. The term—y? in (9) rendersS positively invariant while the
for everya € (0,1), whereo, (z,y) £ = + L sign(y)|y)* . remaining term—(z + %yéﬁ in (9) drives states t& in finite-time.
Proof: Fix a € (0,1). For convenience denote,(x,y) by The controller (4) is thus an example of sliding mode control without
$. and consider the continuously differentiable Lyapunov functio#sing discontinuous or high-gain feedback.
candidate

IV. BOUNDED CONTINUOUS FINITE-TIME CONTROLLERS

i 2—« 3—a ) r 3
Ve, y) = ——|al 2= + syda + |yl (5) o L - :
3-a 3-a The finite-time-stabilizing controllers developed in the previous
wherer and s are positive numbers. section were unbounded. In this section, we modify the class of
Along the closed-loop trajectories, we have controllers introduced in the last section to obtain a class of bounded

. 5 o e 14a continuous time-invariant feedback controllers that globally finite-
Vie,y) = —ry” = sloa 2= = ly| 7" |al == time stabilize the double integrator. The modification consists of
— soa sign(y)|y|* = (r + s) sign(yoa)|y|*~ “|oa|2-=  saturating various terms in the controller (4).
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Fig. 2. Double integrator with the controller (10).
Given a positive number, define stability, we define the sets
sat.(y) =y, lyl <e A={(x,y):y > 2y, dala,y) < —c4}
=esignly), |yl 2= B=A{(z,y):y> =y, 0alr,y) > —24}
Note that|sat.(y)| < ¢ for all y € IR. C={(x.9): |yl < 2y dalr.y) > =5}
Proposition 2: The origin of (3) is a globally finite-time-stable D= {(x,y): |yl <=y, |bualz.y)| < 2o}
equilibrium under the bounded feedback control law: ¢s.: (x, y) . .
with wheree, = == andey = = « . Fig. 2 depicts these sets for
; ] clarity. For con\_/enience, denote, (z,y) by ¢, and 05‘; (z,y)T +
Veai(,y) = —sat-{sign(y)|y|"} 20 (2, y)j by o

— sat. {sign(gba(;y, y))|d)a(¢,y)|ﬁ} (10) The boundary oD, bd D = {(x,y) € D : |y| = 4} U {(x,y) €

D:|da| =<4} Itis easy to verify that o (x,y) € D : |y| = g4},

for every a € (0,1) and = > 0, where ¢,(z,y) £ = + yj < 0 while on{(z.y) € D : |[bu| = €0}, bada < 0. It thus
S sign(y)|y|*~*. follows that closed-loop solutions cannot leafein forward time,
Proof: Let « € (0,1) ande > 0. The boundedness af... that is,D is positively invariant. However, o®, (4) and (10) are

follows from the triangle inequality. To prove global finite-timeidentical, that is,¥s.c(z,y) = ¥(z,y) for all (x,y) € D. Hence
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it follows from Proposition 1 that the origin is a finite-time-stable
equilibrium.
The proof of global stability consists of showing that all trajectories

starting outsideD enterD after a finite amount of time. It can be 3
shown that after a finite amount of time (that depends on the initial )
condition), every trajectory starting il (—.A) entersB (—B),
every trajectory starting i3 (—B) entersC U D (—C U —-D), 1
and every trajectory starting i (—C) entersD, where —A = 8 Gadis) 0
{(z,y) : (—z,—y) € A}, etc. The proof, which appears in [14],
is straightforward but tedious and is omitted in the interests of space. -1
Since every point outsid® liesin AUBUCU-AU-BU-C, it -
follows that the origin is globally finite-time stable. (I
Example 2: Fig. 2 shows the phase portrait for the double inte- =3 N “
grator under the bounded feedback control law T —— ¢
. L -2n - 0 T 2x
VYsat (v, y) = —saty (y%) — sat; { <;v + égﬁ) 0 } (11) ‘ZI}
)1 1 5 0 (rad)

which is obtained from (10) withy = é andz = 1. In this case, Fig- 3. Rotational double integrator with the controller (13).
as in Example 1, all trajectories converge to the Setlefined in

Example 1 above. However, in certain regions of the phase plane,

Ysat(2,y) = 0. This constant velocity “coasting” behavior of thewhereo., (z, y) is as given in Proposition 1. The phase portrait for the
closed-loop system is similar to that of the closed-loop systeslosed-loop system (3) with the feedbagk= o (x, y) is shown

obtained by using the fuel-optimal controller for the double integrates Fig. 3 for o = é

[2, pp. 675-703]. The phase portrait in Fig. 3 reveals several interesting features
of the closed-loop system. The closed-loop system has equilib-
V. THE ROTATIONAL DOUBLE INTEGRATOR rium points ats, = (2n7,0), u, = ((2n 4+ 1)7,0), n =

The motion of a rigid body rotating about a fixed axis with unit* "> —1,0:1,---. Of these, the equilibrium points, are (locally)
moment of inertia is governed by finite-time stable in forward time, while the points, are finite-

. time saddlesthat is, for everyn there exist solutions that converge
f(t) = u(t) (12) {0 u,, in finite time in forward time and solutions that do likewise

where# is the angular displacement from some reference ang [N reverse time. For a given € (0,1), the setD, = {(x,y) :
the control torque. Equation (12) can be rewritten in the form (3f” — 1)7 < ¢a(x,y) < (2n 4 1)n} is the domain of attraction
by substitutings = # andy = 6. However, for every(x, y) € IR?, of the _equmbnum points,.. The shaded region in Fig. 3 represents
the states(x =+ 2n7.y), n = 0,1,2,---, correspond to the same@ Portion of Do. The setsif,—. and ., wherelt, = {(x,y) :
physical state of the rigid body. The state space for the rotatiora (#,¥) = (2n +1)7}, n = ---,=1,0,1,---, form the boundary
double integrator is, therefore, the two-dimensional cylinflesx R~ ©f D and are the stable manifolds of the equilibrium poiats-,
rather thanlR? [13]. andu,,, respectively. All trajectories starting in the $8f converge
Some applications might require that a particular angular positiofl, finite time to the seS, = {(z,y) : ¢a(,y) = 2nx} in forward
say6 = 0, of the rigid body be rendered finite-time stable. In term§me and to the sét,_, Ul{. in reverse time. Moreover, the sefs
of (3), this requirement means that each of the physically identicdi¢ Positively invariant, while the sei$, are negatively invariant.
states(£2n7,0), n = 0,1,2,--- in IR? has to be a finite-time- The setsSy, /1, andl{; are labeled in Fig. 3 for clarity.
stable equilibrium. The feedback controller (4) given in Proposition 1, A novel feature of the closed-loop system is the extreme
however, finite-time stabilizes only the origin. This feedback law, flonuniqueness of solutions to initial conditions lying in any of the
applied to the rotational double integrator, leads to tinevinding S€tSn, 7 = ---,—1,0.1,---. For any given initial condition in
phenomenon. Unwinding can be understood by considering the inifigf Se4. and for everyr > 0, there exist two closed-loop solutions
condition (47, 0). This initial condition coincides with the desiredStarting from that initial condition such that both stay!ify until
final angular position of the rigid body and no further control actiogxactly timer, and then. one enter.s.the. $et, and Fhe .other enters
is needed. However, the feedback controller (4) takes the stagg ~ the SetD.+1. One such initial condition is the equilibrium poiat, .
from (47,0) to (0,0), causing the rigid body to rotate at |easl!5very solution startl_ng fro_nnn corresponds to the rigid body resting
twice before coming to rest in the configuration it started in. FdP @n unstable configuration and then spontaneously begins to move
spacecraft applications, unwinding is highly undesirable from tifdockwise or counterclockwise. There exists a solution exhibiting
point of view of vibration suppression and fuel consumption. Henc8Very given departure time. Departure from an unstable equilibrium
feedback controllers developed for the translational double integrat®@ feature unique to non-Lipschitzian systems. Lipschitzian systems
are not always suitable for the rotational double integrator so tH# Not possess solutions that depart from an equilibrium.
finite-time stabilization of the rotational double integrator deserves !t should be pointed out that the desired final configuration is

special consideration. not globally stable because of the presence of an unstable equi-
From the preceding discussion, it is clear that a feedback controll@ium configuration a#/ = 7 corresponding to the saddle points
for the rotational double integrator will not lead to the unwinding=: * = --*»—1,0,1,---. This defect, however, is shared by every

phenomenon if it is periodic im with period27. One such feedback cc_)ntinuous c_ontrolle_r th_at stapili_zes the rotational c_iouble in_tegra?or

law can be obtained by modifying (4) to without causing unwinding. This is because the desired configuration

) N corresponds to multiple equilibria in the phase plane, and thus

Yror(,y) = —sign(y)ly| every controller that stabilizes the desired configuration stabilizes

— sign(sin(da(x,9)))|sin(éa(x,y))|7==  (13) each of these equilibria. Stability, continuous dependence on initial
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conditions, and uniqueness of solutions imply that the domains of Comments on “An Algorithm for Real-Time

attraction of any two distinct equilibrium points in the plane are Failure Detection in Kalman Filters”
nonempty, open and disjoint. Sind&* cannot be written as the
union of a collection of disjoint open sets, it follows that there exist Thomas H. Kerr

initial conditions in the plane that do not converge to any of the
equilibria corresponding to the desired configuration. In the case of

(13), these initial conditions make up the stable manifold of the Abstract—n the above-mentioned paper, we object to claims made of
unstable configuration. providing simpler implementation complexity or computational burden

The controller (13) has the advantage that the nOﬂ-LipSChitZiéle{hOUt an explicit mechanization for obtaining a solution ever actually

. ing offered (and operations counts being tallied).
character of the resulting closed-loop system makes the unstal ?e
configuration extremely sensitive to perturbations. This sensitivity js/ndex Terms—Constrained optimization, ellipsoid confidence region
brought out by the fact that the closed-loop system admits solution&? overlap test, failure detection, Kalman filter, RAIM.
that depart spontaneously from the unstable configuration, even in

the absence of external perturbations. Unlike in the Lipschitzian caseye have provided frequent up-to-date surveys of the status of

where solutions starting sufficiently close to an unstable equilibriupgjlure detection technology (elucidating the various emerging ap-
stay in a given neighborhood of the equilibrium for arbitrarilyhroaches) on seven previous occasions [1]-[5], [7], [8] in keeping

long periods of time, solutions of the non-Lipschitzian closed-looghreast of this fast changing area. We have developed first hand,
system that depart from the unstable equilibrium leave every smabntified, specified, or recommended preferred implementations for

neighborhood of the unstable equilibrium and converge to the stablgrticular application situations or scenarios, including that of de-

configuration in a bounded amount of time. Thus the non-Lipschitziggcting anomalous behavior of new navigation systems introduced

nature of the closed-loop system renders the state of rest at i SSBN submarines [10]-[17] and for a multisensor navigation
desired configuration a globally stable equilibrium for all practicaijter and failure detection, identification, and reconfiguration (FDIR)
purposes. strategy in the advanced tactical fighter (ATF) involving multiple

simultaneous navaids such as the joint tactical information and
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