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ENERGY FLOW CONTROL OF
INTERCONNECTED STRUCTURES:
I. MODAL SUBSYSTEMS®

Y. KisumoTo,! D. S. BErnSTEIN? AND S. R, Harz?

Abstract.  Dissipative energy flow controllers are designed for interconnected
modal subsystems. Active feedback controllers for vibration suppression are then
viewed as either an additional subsystem or a dissipative coupling. These control-
lers, which are designed by the LQG positive real control approach, maximize en-
ergy flow from a specified modal subsystem.
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1. Introduction

Energy flow has been widely studied as an effective tool for analyzing large,
interconnected vibrating systems (Bernstein and Hyland, 1991; Crandail and
Lotz, 1971; Davies, 1972a; b; 1973; Langley, 1992; Lyon, 1975; Lvon and
Maidanik, 1962; Mace, 1992 a; b; Maidanik, 1981; Miller and Von Flotow, 1989;
Newland, 1968; Norton, 1989; Pan et al, 1992, Pinnington and White, 1981:
Smith, Jr., 1979; Von Flotow, 1986; Woodhouse, 1981). One of the key results of
this approach is the fact that, within interconnected subsystems, energy flow can
often be expressed as a linear combination of subsystem energy.

Energy flow modeling techniques can be categorized into two groups,
namely, the wave propagation approach (Langley, 1992; Mace, 1992 a; b:<Miller
and Von Flotow, 1989; Pinnington and White, 1981; Von Flotow, 1986) and the
modal approach (Crandall and Lotz, 1971; Davies, 1972 a; b; 1973; Lyon, 1975
Lyon and Maidanik, 1962; Maidanik, 1981; Newland, 1968; Pan et al, 1992;
Smith, Jr., 1979; Woodhouse, 1981). For the wave propagation approach, Von
Flotow (1986) and Miller and Von Flotow (1989) analyzed structural networks,
while Mace (1992b) calculated the energy flow between two interconnected
beams. The wave approach can also be applied to 1rregular structures
MacMartin and Hall (1991) by using concepts from structural acoustics (Lyon,
1987). Using the modal approach, the energy flow between two interconnected
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beams was calculated in Crandall and Lotz (1971) and Davies (1972 a; b; 1973),
while energy flow between a rigid body and the supporting pane! was studied
by Pan et al. (1992). Furthermore, Statistical Energy Analysis (SEA), based on
both approaches, has been extensively developed and successfully applied to
practical problems in vibrations and acoustics (Lyon, 1975; Lyon and Maidanik,
1962; Maidanik, 1981; Newland, 1968; Smith, Jr., 1979; Woodhouse, 1981).

In active feedback control for reducing vibration, energy flow has been con-
sidered as a performance index to be minimized (Mace, 1987; MacMartin and
Hall, 1991; 1994; Miller et al., 1990; Pan and Hansen, 1991; Von Flotow and
Shifer, 1986). The design of these active controllers, however, has proven to be a
challenging problem. For example, the optimal controller is often noncausal
(MacMartin and Hall, 1991) and thus asympfotic stability of the closed-loop sys-
tem cannot be guaranteed. Furthermore, active energy flow control for intercon-
nected structures composed of more than two subsystems has received limited
attention due to the lack of energy flow models for such interconnected systems.

. In recent work (Kishimoto and Bernstein, 1995 a; b; Kishimoto et al., 1995 a)
motivated by Wyatt et al. (1984), deterministic energy flow model was derived
for a structure consisting of several modal subsystems that are coupled either
conservatively or dissipatively. In the present paper, our goal is to apply the
results of Kishimoto and Bernstein (1995 a; b) and Kishimoto et al. (1995 a) to
design active control laws for coupled structures. For this purpose, we design
active control laws for modal subsystems in this paper, while structural sub-
systems are considered in a companion paper (Kishimoto et al,, 1995 b).

Three typical sifuations requiring energy flow controllers are considered in
this paper. First, in Sec. 4, we consider energy flow control for several sub-
systems interconnected by conservative coupling (Kishimoto and Bernstein,
1995 a). For such an interconnected system, the control law is designed for the
system as a whole by means of an energy flow model for the entire system
including the controller. We thus treat the feedback controller as an additional
subsystem interconnected by a conservative coupling, so that energy flow is con-
trolled through the coupling.

Next, in Sec. 5, we consider energy flow control among individual structural
modes. Here we exploit the fact that structural modes are essentially coupled by
the input and output matrices. By enlarging the input and output matrices, we
design a dissipative feedback controller that serves, in effect, as a dissipative
coupling (Kishimoto and Bernstein, 1995 b). As an application of this approach,
in Sec. 6 we consider two uncoupled systems that are controiled by a relative
force actuator.

.In both cases, the controller is designed to maximize the steady state energy
flow from one of the subsystems in order to reduce the vibration of a specified
subsystem, The control approach we use is due to Lozano-Leal and Joshi (1990),
with refinements by Haddad et al. (1994). This approach is briefly reviewed in
Sec. 3. Since the controller and plant are both positive real, closed-loop asymp-
totic stability is guaranteed in spite of modeling uncertainty.

Notation.
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cross spectral density matrix of x and y
identity matrix

~1
(&, 1)-element of A
real, imaginary part of A
diagonal matrix whose ith diagonal element is a;
transpose, complex conjugate transpose of A
symmetric positive (nonnegative) definite matrix
ith column of 7
trace of 4

: state space realization of the transfer function

G(s)=C(sl —AY'B+ D

: diagonal matrix generating modal subsystem

: column vector generating relative force and velocity

: resistance or damping of ith subsystem

: disturbance matrix

: measurement matrices for LQG performance index

: stiffness of ith subsystem ' :

: linear time-invariant coupling matrix

;. mass of ith subsystem

- solutions of LQG Riccati equations

- steady-state average coupling energy flow of ith subsystem

: steady-state average energy dissipation rate of ith subsystem
- steady-state average external energy flow of sth subsystem

: positive-definite matrix for strictly positive real plant

: steady-state covariance for feedback representation of inter-

connected system

modal coordinate of ith mode

weighting matrices for LQG controller
normalized unit intensity white noise disturbance
subsystem impedance matrix

subsystem (impedance transfer function)
structural damping coefficient

modal decomposition

2. Energy Flow Model for Interconnected Sysfems

In this section, we briefly review some results concerning energy flow
obtained in Kishimoto and Bernstein (1995 a; b) and Kishimoto et al. (1995 a).
Consider 7 subsystems z(s), -, z,(s) interconnected by a linear time-invariant
coupling L(s). An electrical representation of this interconnection involving




1566 Y. KisHmmoTo, D. S. BERNSTEIN AND S. R, HALL

scalar impedances 2;(s) is given in Fig. 1 which is adapted from Kishimoto
and Bernstein (1995 a; b), Kishimoto et al. (1995 a) and Wyatt et al. (1984). Each
subsystem z;(s) is assumed to be a strictly positive real and thus asymptoti-
cally stable scalar transfer function. We assume that the disturbance vector
wo(t) Afwy(t) - w,(t)|" is given by

wolt) = Din(t), (1)

where D € %™¢ is a constant matrix and #(¢) A [y(t) -+ W4(t)) is normal-
ized white noise whose intensity matrix is identity. Thus the intensity matrix
Siwew, Of wolt) is given by Sy, = DD™. Now we denote the elements of S,
as

9o

~

Swowm,,,, = Sw,»w‘- y Swowo(,‘.,, = Swowmj_,, = 3w,~w,~ = Sw,.vw,» . (2)
For later use, we define the » X # diagonal transfer function
Z(s) 4 diag(z(s), 2(s), -, 2,(s}) (3)

and the r-dimensional vectors

w) Voltage noise
_ source
Port-1 v, (Voltage) +—

1l lzy(s s
¥, {Current) ‘1; )| Impedance
+
Wy
Port-2 vy
, "
_
L{s)

Portr { v,
+,

U, 2,{(s)
— Yy -

Fig. 1. Electrical representation of coupled
impedance subsystems.
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Thus, Fig. 1 can be recast as Fig. 2 in terms of Z™1(s), which is strictly positive
real, and where vy = Ly, and ug = wy ~ vy. Figure 2 will be useful in applying
our results to mechanical systems for which vy denotes 7 force inputs and Y
denotes » velocity outputs.

Next, we introduce three steady-state energy flows PS, P4 PS =1, .7,
defined by
P% 4 the steady-state average energy flow entering the ith subsystem through

the coupling L(s),

P? A the steady-state average energy dissipation rate of the jth subsystem,
P A the steady-state average external energy flow entering the ith subsystem.
As shown in Kishimoto and Bernstein (1995 a), Ps, P‘,;’ and P%, i=1,...,r, are
given by

P§ = = [ Rel LG} L(jw) + Z ()
X Suun(LUO)+ ZG0) Yo, )

pi = ~-2—%[—flRe[Z(ja))(L(jw)+ Z (jw))™?

X Su:o_wo(L(jm) + Z(J'C!’)r*}(i.-i)d“’» | . (5)
Pt = -:2%;]_ Re[ Sy (LUj0)+ Z(jo)) )i pde. (6)

Energy balance at each subsystém implies that P¢, P9 and P¢ satisfy
PS+PI4Pl=0, j=1,.. 7. (7)

Furthermore, if the coupling L(s) is conservative (lossless), that is, L(jw)
+ LY(jw) =0, then, .

Py

W
+ #o ¥, (Current, Velocity)
O 274

Strictly positive real admittance

v (Voltage, Force)

L(s)

Impedance

Fig. 2. Feedback representation of coupled electrical
or mechanical subsystems.




1568 Y. KISHIMOTO, D. S. BERNSTEIN AND S. R. HaLL
r
2 Pi=0, (8)
i=

whereas if the coupling L(s) is dissipative, that is, L{jo)+ L*(jw) =0, then,
2Pi=0. (9)

As an example Fig. 3 illustrates the resulting energy flow model for the case
r = 3.

P§ P
P 2

P P
Cg) 3 L(s) 2 2
P; rd

Fig. 3. Energy flow mode} with three subsystems.

3. LQG Positive Real Control Approach

In this section, we briefly review the LQG positive real control approach de-
veloped in Lozano-Leal and Joshi (1990). This result was recently extended to'an
H,/H. problem in Haddad et al. (1994), although this extension will not be
needed here.

The LQG control approach provides the optimal controller for the following
problem. Given the nth-order stabilizable and detectable plant

() = Ax(t)+ Bu(t)+ Dy (), (1)
y(t) = Cx({)+ Dy (i), (11)
. . A, | B.
determine an nth-order dynamic feedback compensator G,(s) ~ [ ] of the
form C 10
£ty = A.x )+ B, v(t), (12)
u(t)=C.x.(¢), (13)

such that the closed-loop system (10)-(13) with dynamics matrix
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- T4 B
AQ[BCC AC}

is asymptotically stable, and the H, performance index
t
J(A;, B, C,) = }im & {"Z:J [x7(s)Ryx(s)+ uT(S)Rzu(S)]dS} (14)
3 0
=|G(s)I (15)

C(s)”[}% lg}

is the closed-loop transfer function from the unit intensity white noise distur-
bance @ (1) to the performance variables

is minimized, where

2(ty = Ex(t)+ Eyu(t), (16)

B.D, ¢
E{E,=0. It is assumed that A, B, C, Dy and E; satisfy (i) (4, B) and
(A, Dy) are stabilizable and (ii) (C, A) and (Ey, A) are detectable. Further-
more, for convenience, define V, 4 D, DT, V, A D,D} >0, and assume that
D; D] =0, which implies that the disturbance and the measurement noise are
uncorrelated. ‘The standard feedback representation of -this control problem
(Boyd and Barratt, 1991) is shown in Fig. 4.
For this problem, the optimal compensator (4,, B,, C,) is given by

. Dl ‘
and where D__A:[ : J EA[E, EC), RAEJE, RAEJE, >0 and

A, = A-QCV;'C~ BR;'B'P, (17)
B, =QC™V3, | " (18)
C.=-R;'B'P, (19)

where @ and P are » X n nonnegative-definite matrices satisfying

R — [Gu(s) | e —

Ga(s) Gals)| J

Ge(s)

Fig. 4. Standard feedback representation.
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AQ+ QAT +V, - QCTV;CQ =0, (20)
ATP+ PA+ R, — PBR;'BTP =0. (21)

Next, we assume that the plant {10), (11) is positive real. For positive real
plants, a strictly positive real controller is desirable since the negative-feedback
closed-loop system is guaranteed to he asymptotically stable (Benhabib et al,
1981). The controller obtained above, however, is not necessarily strictly positive
real. For this problem, Theorem 1 of Lozano-Leal and Joshi (1990) can be used

Ae Bﬂ
-C. |0
that minimizes the H, performance index J(A,, B, C,). Since the plant

G(s) ~ {é fﬂ is positive real, there exists a positive-definite matrix ¢ satis-
fying (Anderson and Vongpanitlerd, 1973)

to obtain an nth-order strictly positive real compensator —G,(s) ~[

AQy + QAT =~LL, (22)
QOC"":B. (23)

As shown in Lozano-Leal and Joshi (1990), if the LQG weights V|, Vo, Ry, K
are chosen according to

Vi =LL +BR,'B" >0, (24)
Vo= Ry >0, (25)
R, >C"V;C, (26)

then the dynamic compensator —G.(s) given by (17), (18) and (19) is strictly
positive real. With —G,(s), the negative feedback closed-loop system matrix A’
is now asymptotically stable as explained above.

In the following sections, we consider two types of energy flow conirol prob-
lems in which the plant is positive real. In each case, we design positive real
controllers by means of the above approach.

4. Design of an Energy Flow Controller as an
Additional Interconnected Subsystem

In this section, we consider a control problem involving 7 ~1 subsystems
z;{s) interconnected by a conservative coupling. In this problem, we assume that
the controller G.(s) =z, () can interact with the subsystems only through ad-
ditional coupling elements. Thus, the controller can be treated as an additional -
rth subsystem. This situation can be viewed as representative of a large space
structure with appendages that are interconnected by a central support struc-
ture. The controller can then be realized as an active or passive device that
is also connected to the central support structure. The transfer functions
Z;I(s) = diag (2 (s), -, z',’.ll(s)) and z;"(s) are assumed to be expressed by
the state space models
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5(1) = A,5,(1) + B,u, (1), (27)
(0 =Cx, (1), (28)
X8 = Ax () + B.y(f), {29)
w(t)=C.x.(1), (30)

respectively, where x,(1) € #", x.(t) € #™, yz(t)e-?/?’"l, u,(t)€ %! and
¥(£), u(t) are scalars. As shown in Fig. 5, Z71(s) in F ig. 2 is now comprised of
both Z, '(s) and 2 '(s), that is, Z(s)=diag((s), -, 2,1(5), 2.(s)), so that
the total number of subsystems is 7. Furthermore, ¥,(t) and #o(¢) in Fig. 5 are

given by
¥y u,
m——t g =4
Yo [u]’ "o [J}

After the controller is connected, the lossless coupling L(s) is expressed by
the state space model

()= Az () + B,‘_vo(g‘}’ o 1)
vo(t) = Cox,(2), (32)
where x,(f) € 2™ and vo(t) € #’.

We assume that no disturbance enters z,'(s). Therefore, wy in Fig. 2 is
given by

w, :».mz Da, (33)

where w(t) A {w(t) - w,_,(+)]" and

w
D
.
:fuz] v.]
L TR o} y"z[;}
- 0z '(s)
) L(s)

Fig. 5. Feedback representation of plant and controller.




1572 Y. KisHIMOTO, D. S. BERNSTEIN AND S. R. HALL

D é[‘DH :} e :;z,er,
Ixd

and where Dy € RD* Gince uo(t) = wo(t) —vy(t) it follows that

IR

which implies that w,(¢) is the force vector resulting from the difference of the
disturbance forces and the coupling forces, while y(¢) represents the coupling
force only as shown in Fig. 5.

With this notation and the above equations the feedback system shown in
Fig. 5 is obtained by

£(t)= Az(t)+ Div(¢), (34)
where
xz(i) Az —BzCLl 0 BZDH
£ 4 x(8) |, Aé B C, A, B,C. | Dé 0 ,
x.(2) 0 “BCCL‘Z A, _ 0

and B € #"WUY Boe pu Cpq € U™ ang C.2 € AV are obtained
by partitioning B, and C, as

C
B, = (B Bysl, C, = [C,Lﬂ

We now determine A,, B, and C, in (29) and (30) by means of the 1QG
positive real approach described in Sec. 3. By defining

i [) Az Bz CI.] i+ gy |
Oal o) 44 4

)
LBy
sz Dli
0

B

>

}e%%“% CA[0 —CplEe Rt

D

it

]E %,(nk.v'rq,)x:-

then A and D in (34) have the same form as in the LQG problem, where D, in
D represents fictitious measurement noise required by the LQG approach. Thus,
(4, B, C) can be viewed as a realization of the plant Gy(s) in Fig. 4.

The controller is now required to maximize the energy flow from the ith sub-
system, that is, to maximize ~ P¢. By defining

o _4[ ¢ O("I)X"L O(r—l)x(nz*'”n)J € prX2nsxn)
- len, lenL Cc

P$ in (6) is given by Kishimoto and Bernstein (1995 a)
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| R
E[DDTC{]UJ)- (35)

Thus, P¢ is constant and independent of the controller gains. In fact, for the
special case in which each subsystem is a second-order system, P¢ in (35) is
given by P{=S,,/2m; where m; is the mass of the ith subsystem
(Woodhouse, 1981). It thus follows from (7) that maximizing — P$ is equivalent
to minimizing — P?.

To express the dissipation of the ith subsystem P% in terms of the steady
state covariance @ 4 lim,_,., &Lx(£)x7(2)], we now assume that each subsystem
2;(s) has constant real part ¢; and define

€ ..
Pt =

C; 4 diag(cy, -, c,q, 0) € ™ (36)
Then PY, i=1,... 7 — 1, defined by (5) can be obtained by (Kishimoto and
Bernstein, 1995 a)

Pl = -:-2'—7}( f Re[Z (Go)(L{jo) + Z (j0))™ Sy, L) + Z jw))‘*}dw)m)

- -;—“ CALUj) + Z(G)) DDT(L(ja) + Z( jw))«sdw}
§ - (7.7}

-1 . . e ] . A
:E}“[C"j (L(j@)+Z{(jo)) ' DDT(L{jw)+ Z(jo)) ‘dw}
- _ 16.0)
~~(coge [ 1600~ Ay UG o1 - A )
2 J ~ J0)
= ~(C;GQCT )i sy, '
where @ satisfies the Lyapunov equation
0= AQ+ QAT +DDT . ‘ . (37)
Thus, the cost ~P‘,;’ to be minimized is given by
—P{ = (CiGQCT )i (38)
Now using the definition of § yields
-pi= [CaCi(lim L)L ONCT )
= lim &[ef CaGrx ()27 (1) CTe;]
= }im Eltrlel CaGx ()27 (1)CT e 1)
= Ilim FlelxT(H)CT e el C,0 5 (4)]]

= lim ELxT(HCTeieiel € x(1)]. (39)
%
Thus, letting the performance matrix £ in (16) be given by

Ey = ¢ elC (40)
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corresponds to minimizing — P
In order to guarantee closed-loop stability, we need to show that the con-

trolled plant Gy (s) is positive real. By partitioning the stiffness coupling L(s)
in (46) as

L(s)=

[LU(S) le(sq (41)

Ly (s) Ly(s)

it can be shown that Gy;(s), Gia(s), Ga(s) and Gu(s) in Fig. 4 are given by

Gu(s) A i el(Z,(s)+ Lu(s) 7, (42)
Gio(s)Y A V¢ e1(Z,(s)+ Ly (5)) Lyp(s) — By, (43)
Con(s) A = Ly (SHZ,(s)+ Ly ()Y, (44)

Ga(s) A Lyp(s) ~ Ly (s)(1 + Z7HS) L ()Y V2 (s Lig(s)
= Lop(s) = Loy (SWZ,(s) + L1y () Lia(s). (45)

Since L{jw)+ L*(jw) =0, it follows that
Ly (jw)+ L (jo) =0, Lyp(jw)+ Ln(jo)=0, Lyp(jo)=-L5(jo).

Furthermore, from the fact that Z,(s) is strictly positive real, we have Z,(s)
+ Z¥(s) >0 for Re[s] > 0. These relations imply
Gpljo)+ Ghljo)
= Ly(jo) = Ly(jo) Z,(jo)+ Ly (jo)) ™ La(jo)
+[ Lop(joo) = Ly (oW Z,(jo) + Ly (jo)) " Lip(j0)T*
= = Ly (jo )\ Z,(jo)+ Ly (jo)) " Ly(jo)
- L(JoNZ, (jo) + Ly (j0))™ L3 (jw)
= = Lp(jo)Z,(jo)+ Ly(jw))™
X [(Z,(jo)+ Ly (jo))* +(Z,(jo)+ Ln(je))]
X(Z,(jo)+ Ln(jo)) ' Li(jo)
=~ Ln(jo)Z,(jo)+ Ly(jo)) ™ (Z.(ju) + Z;(jo))
X (Z:(jo) + Ly (o))" Lip(jo)
= Li(jo)(Z,(jo)+ Lu(jo))™(Z,(jo)+ Z;(jo))
X (Z,(jw)+ L1 (jo)) " Lp(jo)
=0.
Thus the plant G(s) is positive real. This fact can also be explained as fol-
lows. If the plant Gy (s) is not positive real, then the Nyquist plot contour inter-

sects the left half plane. When a suitable strictly positive real controller zzl(s)
is applied to such a system, the loop gain is increased and the contour encircles
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—=1+ 70, which destabilizes the closed-loop system. This contradicts the fact
that the feedback system shown in Fig. 5 is asymptotically stable for every
strictly positive real controller z.(s) (Kishimoto and Bernstein, 1995 a). Since
the plant Gy(s) is positive real, the results in Sec. 3 can be used to determine
an optimal strictly positive real compensator z;!(s).

We now specialize the above results to the case of stiffness coupling. By set-
ting A, =0 and B, = I in (31), the stiffness coupling L(s) is given hy

L(s) =G, (46)
where the » X » symmetric matrix C, is partitioned as

Crinn Cm]

c, 4 (47
L-—!:CZ\Z Crz (47)

and C;y; € A VXU"D Note that the dimension of the state space vector % (1)
for the coupling L(s) is now #, = 7.

Furthermore, we assume that x, in (27) consists of both positions and veloci-
ties so that there exists an output matrix G, such that

jyzdt =Cyx,. ' {48)

Then from (31), (32) and (48), it follows that

J vt Cpx,
[ e = = (49)
J udt ‘

where a scalar state x,,(¢) is defined by
%p(t) A ut). {50)

Hence, with x; 4 [(C,x,)" )

r Al
C,x.
vy =C,x, = CL[ "x‘}. (51)
Xpe |

By substituting the # X » matrices 4, =0, B, = [ and (51) into (34), we ob-
tain the fecdback system shown in Fig. 5 with

£(ty= Az(t)+ Da(t), (52)
where
xz(t) Az AB?,CLHCD ‘“BZCle 0 BZDII {)
F()A|x,(t)), AA 0 0 C.|, DAl o ol

xc(t) - BcCZme "BCCLZZ Ar: 0 0
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Note that as shown in (51) the first » —1 elements of x,(f) are given by

C,x,(t), which depends on x,(¢). Therefore, since only the 7th element x,.(f)

of x,(t) in (34) is included in the state of the augmented feedback expression

(52), it follows that the dimension of #(f) is 2(#n, + 1) rather than 2(sn, + n,).
By defining

4, —B,CnCy —~B.Cpy € DX

A
aal® % A
B A [0 0 1]7‘ e _g/—?nzﬂ' C _é_ [__ C{lch — CLZZ] [ ;%IX(;I,,-.LI),
Dl _é_ B_,. Du O}E ‘_%(n, sl)xr,

L0 0
it follows that A and D in (52) have the same form as the LQG problem. Thus,
we can design a positive real controller (A,, B,, C,) that minimizes - P? in the
same manner as above.

As an iilustrative numerical example we consider the three coupled oscillator
system with controller as shown in Fig. 6, where ky= 35, ky=25, ky=1,
ny 1, wy = 2, Wiz = 3, Kl? =05, K13= 06, K.g\; =7, [{1@: 0.8, -K‘.Zc =9,
K;, =10 and ¢, =01, =02, ¢;=03. Furthermore, let the white noise
disturbances w,(f), i=1,2,3, have unit intensity S,, =1 so that D=
diag(1, 1, 1,0). To maximize —P%, i=1,2,3, we sel. B, =01 in (16). The re-
sulting energy flow diagrams calculated by means of the steady state covariance
(Kishimoto and Bernstein, 1995 a} are illustrated in Fig. 7, where OL denotes the
open-loop system and G, Gy and G represent the controllers designed to
maximize — P§, —P§ and — P%, respectively. Figure 7 shows that the controller
absorbs energy from all of the subsystems and reduces the energy dissipation
from each subsystem. Note that in Fig. 7 the signs of the energy flows corre-
spond to the arrows in the figure. For example, energy flow into oscillator 3 in

Controller G,

Force actuator Velocity sensor

/
Ky, K3 g %Kgc K

T Hhy K 12 iy T Kg:;

Fig. 6. Three coupled oscillator system with controller.
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OL: 0.4889
OL: 01828 05 (1) Gar: 0.3045
b U/ Gt 0.4634
Gt 0.1498 gezi o
Gpo: 0.1389 e3t V.
Cez: 0.1139 OL: 0.0111
Go: 0.1955
G.g+ 0.0366 0.25
Coa: 0.0318
® b ®©
OL: —0.0162 OL: 0.0051
Co: 00169 Gz 00237
Gt 00278 G 0.0608
01667 |Gu:  0.0527 Gea: 0.0276
OL: 0.2449
G003 Go1: 0.2263
(e 0.1252 Ga , Gro: 01892
Gog: 01121 > Gig: 0.2224

Fig. 7. Energy flow among oscillators for the open-loop system and
for the closed-loop system with controllers G,1, Gy and G.s.

the open-loop system is reversed after controller G, is applied. Furthermore, it
can be seen that the controller G; maximizes energy flow from the ith sub-
system and thus minimizes the energy dissipated by the sth subsystem.

To examine the actual reduction of vibration by these controllers, we define
the steady-state stored energy by

&4 inzi«f{x%(t>1+“§‘kié:’[x%(t)3, i=1,2,3, . (53)
where x;(¢) and £;(¢) are the displacement and the velocity of the ith oscillator,
respectively. Table 1 shows that each controller G, successfully reduces the

stored energy &; of the corresponding ith oscillator. For example, controller G4
reduces the stored energy of oscillator 1 to 48.32 percent of its open-loop value.

Table 1. Steady-state stored energy for three coupled oscillators

Stored energy Open-loop Controller 1 Controller 2 Controller 3
& 4.2936 2.0747 3.5476 3.8208
(48.32(%} (82.63(%)) {88.99(%)
& 2.0556 1.5775 0.9772 1.6290
(76.74[ %)) 4754[%) (79.25[%]
& 1.3458 0.8542 0.7809 0.6374
(63.47[%}) (B8.02[%)) (42.24[%D
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Gain and phase plots of the controllers are shown in Fig. 8, which shows that
the gain plot of controiler G, has a peak near the coupled natural frequency of
oscillator 1, that is, @; = (ky + kyp + kyy + ky,)/my = 2.3238 [rad/sec). Similarly,
controller G, has a gain peak near w, = 1516 [rad/sec], while controller G,
has a gain peak near w; = 1.048 [rad/sec]. These controllers are strictly positive
real since their phase plots lie in the range (— 90°, 90°).

0
-0
2 —yof
£ ~60r
(]
S -g8of <
._100 Lot L1itid [N ERF LIS SR RITY IR ERERI] 13 i Lo a0t
107 107 100 0t 100 10t
Frequency [rad/sec.]
100
g 50 ,‘
5 0 !
- N
B -50F A J
,__]OO ‘1 RN ET:}) —9 L gy H |'u~m‘x |i-||M°l LIIIT
1072 10t 1 10t 100 10° 10*

Frequency {rad/sec ]

Fig. 8. Magnitude and phase of controllers G,y (solid),
Gez (dashed), Gy (dash-dot).

5. Design of an Energy Flow Controller as a Dissipative Coupling

In the previous section, we considered the subsystem interconnection explic-
itly in the energy flow analysis. As an alternative approach, we view the struc-
ture as a collection of uncoupled subsystems, such as modes, which become
coupled only by means of the feedback controller. In contrast to the previous
section, in which the control is applied to the flexible structure only through the
conservative coupling, we now assume that the control force can be applied to
the structure directly and design a controller to regulate cnergy flow among
structural modes.

Consider a structure subject to unit intensity white noise disturbances #;{f),
1==1, .., d, applied at locations éji. The ith actuator located at §I., i=1,-, m,
applies a control force #;(¢). Our goal is to design a controller that maximizes
energy flow from the dth structural mode. For this purpose we consider each
mode as a subsystem to obtain the feedback system corresponding to Fig. 1 and
design a dissipative controller as a dissipative coupling.
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First, we denote the modal decomposition of the structure by
x(é,t)='§lq,~(f)wi(<‘:), (54)
where ¢.(¢) denotes modal coordinates and ¥, (&) denotes orthogonal eigen-

functions. Then, using the boundary conditions and orthogonality properties, it
follows that the modal coordinates ¢ j.(t) satisfy

m d
4,0+ 20,4,(1) + &g () = Ly E)u)+ Ty E)m(r),  (55)
where we assume proportional damping 2{}.0))-. From (54), X(&, 1) is the ve-
locity of the structure at the ith actuator position Zj,. and we assume that m
velocity sensors are also located at these positions. Ience, the m sensors and m

actuators are colocated and dual.
Now we consider 7 structural modes and define

W Alq (1) 4(t) at) (g 1) ¢,
WD ALus(1) uplt) w8,
w(t) ALy (t)  wa(t) - ()],
Y ALHE ) & 1) &, Y.
Then from (54), we obtain the state space model
(1) = Ax(t)+ Bu(ty+ Dw(t), = {56)
y(t)= B"x(t), (57)
where v | : ‘

A é block-diag[ﬂo 2 1 J fou 57{21‘)(27‘ ,

i=1, o r w; “zé’i @;
B R [ o 0 ]
W}(él) o Wl(ém) ‘ - W1(§1) - ‘l’l( d)
0 ) . ()’~ e O.\
Bé Wg(él) V’z(-ém) E‘?—‘/‘?d’xm» Dé Wg(gl) o vlz( d) eé%Zer.
0 0 0 0
v, (&) v (8] v, (8) oy (8]

To obtain the feedback system equivalent to Fig. 2 we introduce the diagonal
matrix By defined by

BO é diag(O’ 1, 0! 1; ) 01 1) = :?/”zrxzrv

and define
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Z"‘1(3)~[ét %"}, (58)
3,() 4 Byx(t) € R, (59)
wy(t) A Dio(t) € RY, (60)
vo(t) A — Bu(t) € % . (61)

We thus obtain Fig. 9 where the coupling L(s) is defined by
L(s)A —~BG.(s)BT. (62)

Now using the LQG positive real approach we design a strictly positive real
controller G,(s) satisfying

G(s)+Gi(s)<0, Re[s]>0, (63)
so that L(s) satisfies

L(s}+ L*(s)=~BG,(s)B” ~[BG.(s)BTT*
=~ B[G(s)+Gi(s)]B”
=0 ' (64)

for Re[s]> 0. Thus the coupling L(s) serves as a dissipative controller which
controls the energy flow among the structural modes. Qur goal is to design
G(s) so that L(s) maximizes energy flow from a specified mode.

Next we consider a realization of the feedback system in Fig. 9. The transfer
functions Z7'(s) and G.(s) are expressed by the state space models

£{t)= Ax(1)+ Byuy(t), (65)

w

D

wo

+
~{/ [221] Z-] yO
JrmTTemee s nenen A j
vy B —u| G, y BT

.........................................

Fig. 9. Feedback representation of coupled structural modes.
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¥, (8) = Byx(2), (66)
% ()= Acx () + B y(2), (67)
u(t) = C.x.(t), (68)

respectively. Since u, = wo— v, and ByB = B, it follows from (56), (57) (65)—
{68) that

£(8) = Ax(t)+ BC.x.(t) + Bywo(1), (69)
i (t)= A,z (t)+ B, B x(t). _ (70)

Thus, the feedback system (69) and (70) is given by

£(t)y= Az )+ D), (71)
where
. . ;
. A x(t)J 4r A A BC, pArxar
(“-‘—[xc(t) AT ALl g g |EFT
- B()D ) 9
A A P 3 K27

By setting C = B" in (11), it can be seen that A has the usual closed-loop
structure. '

Now we choose the performance variable in (16) to maximize energy flow
from the 7th structural mode, that is, to maximize - P%. By the same argument
as in the previous section, this is equivalent to minimizing — P94,

From Fig. 9, we obtain

£

Yo = (L(s)+ Z()) g = CiosT ~ A)' By D, (72)

where
Cla é [BO O?rXZr} € 17,[27)(47 . (73)

Furthermore, by defining the 27 X 2r damping matrix C,, as
Cao A diag (0, 26, @,, 0, 26, @, -+, 0, 2 @,), | (74)
then PY, i=1,-, r, defined by (5) is given by
Pl = (CdaclaQNCITa)(‘zi,‘zi)i (75)
where @ satisfies the Lyapunov equation
0=AQ+QA" + DD", (76)

Thus, the performance index to be minimized is given by (C.C,,QC fa)(2i72,») as
in the previous section. Furthermore, since
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(CinC1QC )i 2y = [Cdacxa(}_iglocg’[x(f)xT(t)])Cg}z](zi,zi)
= lim &103:CaaCrax ()27 (1)CT 0]
= lim £ {tr[ e3; Cao Ci % ()27 (1) Ce 1]
= }1_?; Q[ x7(1)Cre003: Cu Crax (1]
= }fglcé‘"[xT(f)ClTaeziCda(zlf,zi)egzc1ax(t)] : (77)

the performance matrix Ej needed in (16) to maximize energy flow from the ith
mode is given by

E = Cda(zz‘,znﬂe'f‘cu =N ZC,-“’TQJ'TCM' (78)

Finally, since (56} and (57) comprise a state space model of the structure given
by (55), it follows that the plant (A, B, C) is strictly positive real. We can thus
obtain a strictly positive real controller —~G,(s) in the same manner as in the
previous section,

As a numerical example, we now consider the simply supported uniform
Bernoulli-Euler beam of length L in Fig. 10, The partial differential equation for
the transverse deflection y(&, ) is given by

2 2 42
R (L) I [EIA c)x(é,f)}

o JE? e
=z§5(5“§ﬂ“f(f>+ éé(é*é)w;(t), (79)
with boundary conditions
2(& Dlg=0.= 0, E1,1i‘°f34(—‘;t—'ﬂ =0,
% £=0,L

where p is the mass per unit length and EI, is the bending stiffness.
By substituting (54) into (79) and using the orthogonality properties ’

L L 1 .
[pviomie=a, [ pnTrviom@e=os,

Fig. 10. Simply supported uniform beam.
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where &;; is the Kronecker delta, we obtain (55) with natural frequencies @; and
eigenfunctions v (&) given by

— |El (im Y - /._?M L I
wi"— p (L)r Wl(é)n pL sin L’ 2_1,2)3r

For numerical simplicity, let L =z and EI, = p = 2/x so that

2

o =1, y(&)=sini, i=123,..

Furthermore, two actuators are assumed to be located at §1=§ 1, §2= 2, and
a white noise disturbance with unit intensity is entering at & = 1.7. Finally,
we set § =, = (=001 and E; =/ in (16) and retain the first three modes.
The resulting energy flows are shown in Fig. 11 for controllers G,;, G4 and G,
designed to maximize —P§, —P% and —P§, respectively. These results show
that each controller maximizes the energy flow from the specified mode and that
the energy removed from each subsystem is dissipated by the coupling.
Note that in this example the matrix B of (56) is-given by

0 0
08415  0.9093
0 0
A
B4 09093 —0.7578 |"
0 0
0.1411 —0.2794
Gop: 0.0077
04917 — s G o 0.0167
| Ge: 00165
G.1: 03958
G,:g: 0.3164 ;1 0.4839
Gea: 0.2897 Gen: 0.4750
G.3: 04752 0.0326

(3\ ~BGg(s)B" v 2
J 2 0.0330 G.1: 0.0279

Gcl .
Gen: 01122 ‘ G20 00303
Go: 01388 G.y: 0.0301
0.4286 Cor: 0.0048
e 05448 G.or 0.0024
G,y 0.6174 G,y 0.0026
Goat 0.6441

Fig. 11. Energy flow among structural modes with
controllers Gy, G and Gg.
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The elements of the sixth row of B corresponding to the third mode are smaller
than the other elements corresponding to the first and the second modes due to
the fact that & =1=L/3 and § =2=2L/3, that is, actuators 1 and 2 are
located near the nodes of the th1rd mode. This suggests, as reflected by Fig. 11,
that the controllers are less effective in removing energy flow from the third
mode.

Now, we define the steady-state modal energy by

& ASERUN+FAREEW], P=1.2.3, (80)

and the result is shown in Table 2. Table 2 shows that controller G, successfully
reduces the stored energy ¢; of the ith mode.

Table 2. Stcady-state modal energy of the ith mode of a flexible beam

Modal energy Open-loop Controller 1 Controller 2 Controller 3
& 245847 0.3873 0.8288 0.8276
(1.58[%}) (3.371%) (3.37(%)
&y 0.8160 0.0606 0.0295 0.0482
(7.43[%) (3.17[%) (6.91{%)
&, 4.7618 2.1960 1.7561 1.3266
(46.12[%0) (36.88[ %0 ]) (27.86[ %))

6. Design of an Energy Flow Controller for Relative Force

As a further illustration of the approach of the previous section, we consider
the interconnection of two positive real systems z{s), 7 =1, 2, by means of a
relative force controller, The controller thus serves as a dissipative coupling as
in the previous section. This controller can be viewed as a device for regulating
energy flow between two nominally uncoupled subsystems or as an interstitial
force device attached to two points on a single structure.

Let Z7Y(s) and G,(s) represent the transfer functions of the two uncoupled
strictly positive real systems and the controller, respectively, and assume these
systems have the state space realizations

£5(1) = Ax,(t) + Byuglt). ' (81)
3,(8) = Cpz, (1), (82)
()= A x )+ Byli), (83)
u(t) = Cox(t), (84)

respectively, where x,(¢) € R", u(t) € A2, x (1) € R Now olf) € € #?% is the
velocity vector of the two uncoupled systems and the scalms y{t) and wu(f)
represent the relative velocity of the subsystems and the relative force applied to
each subsystem, respectively.
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To obtain the relative velocity y(t) and the coupling force vy(f) € A% we
define B as

zal t] (85)
so that y(¢)= B"y,(¢) and ve(¢)= ~ Bu(t). With B given by (85), the feed-
back system shown in Fig. 12 is equivalent to Fig. 2, where in Fig. 12, L(s) is
given by

L(s)A -BG.(5)B". (86)
Thus, the coupling L(s) serves as a dissipative controller which controls energy
flow between the two subsystems. 5
Now, (83) and (84) can be rewritten with B as
£ (t)= A.x.()+ B.BTy,(1), (87)
vo(t) =~ BC,x.(1), (88)
and thus the feedback system (81), (82), (87) and (88) is given by

2(t)= Az (t)+ Dii(t), (89)

where
; . xp(E) D _— A BpBCr.‘ DA%
Fyai > ez A4 N € GEnran
HOE {xc(”} T ‘_BC»BTCp A
. B,D .
A 14 splnXl
pa] B0
@
D
Wy ]
c; Y g Yo
LR LR LI L EEEEL L e na e
P S N —~ 1 ; N '
¢ ; B -G, ) BT e
e ;

Fig. 12. Feedback representation of coupled system.
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By setting B = B,B and C = B'C,, it follows that A = [ BAC ZC‘J so that
(89) has the usual closed-loop structure. ¢ ¢

Now we choose the performance variable Eyx(f) to maximize the energy
flow from the ith subsystem, where { = 1, 2, By the same argument in the previ-
ous sections this is equivalent to minimizing —P¢.

We now assume that each subsystem z(s) has constant real part ¢; and
define the 2 X 2 damping matrix C,; by C, A diag(cy, ¢z). Then PY, i=1,2,
is given by

P = —(C1 CpaQCh )i iy » (90)
where C,, A[C, 0]€ A and @ satisfies the Lyapunov equation
0=A0+QAT + DD" . (91)
Thus, the performance matrix E; in (16) is given by
B =+celC. (92)

Since the plant represented by (A4, B, C) is strictly positive real, we can use the
positive real control approach to obtain the strictly positive real controller
- G.(s).

To illustrate this approach we consider the two oscillator system with cou-
pling L(s) shown in Fig. 13, where f represents the relative force. For illustra-
tive purposes we set k =10, k=2, m; =03, my=04 and ¢, =01, ¢, =02,
and let the white noise disturbances w;(t), i = 1, 2, have unit intensity, that is,
D =1. By setting E,=01 in (16) we design the controllers G, and G, to
maximize —P§ and ~ P$, respectively. The resulting energy flows given in Fig.
14 show that each controller successfully removes energy from the specified sub-
system by minimizing the dissipated energy flow out of the subsystem. The
steady-state stored energy &;, [ = 1, 2, defined by (53) is listed in Table 3, which
shows that each controller successfully reduces the stored energy of the corre-
sponding oscillator. Finally, the Bode plots of the controllers in Fig. 15 show that
the controllers are strictly positive real.

m L my

W ) =] Wy ]

Fig. 13. Two oscillator system with relative force controller coupling.
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Ge1: 07672 Ger: 0.9337 Guy: 1.2158
Gug: 15735 Ga: 0.4869 Gea: 0.8562

G,y 0.8995 Ce1: 0.0342
Ga: 0.0032 Go: 0.3938

1.6667 1.25

Fig. 14. Energy flow between oscillators with controllers G, and Gy.

Table 3. Steady-state stored energy for two coupled oscillators
with relative force actuator

Stored energy Open-loop Controller 1 Controller 2
& 5.0 2.6401 4.5683
' 62.08[%7 91.37[%))
& 25 2.3549 1.2041
: (94.20[%) (48.16[%])
0
— =20
[as)
B 40
-§ ~60
~80
_]00 bbb S LILIE bkl LI 1IN Lol L il bt d 11411 Al diLidL FAR SRR Tl

07 107t 10f 100 10 10> 10t
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& 501 i
vt L3
@ ok }
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A, —-5p- H J
\\.
_100 I3 1iring 1 Fashal H Ill:llll 18t r it NI T e NN E)

1072 107! 10° 10! 10 10° 10
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Fig. 15. Magnitude and phase of controllers
G, (solid) and G,p (dashed).
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7. Conclusion

In this paper, we applied energy flow models obtained in Kishimoto and
Bernstein (1995 a; b), Kishimoto et al. (1995 a) and Wyatt et al. (1984) to design
energy flow controllers for modal subsystems. By using the LQG positive real
control approach, each controller was considered as either an additional sub-
system or as a dissipative coupling. Each resulting controller was shown to
maximize energy flow from the specified subsystem. Furthermore, closed-loop
asymptotic stability is guaranteed since strictly positive real controllers were de-
signed in a negative feedback loop. These features were demonstrated by nu-
merical examples.
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